1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_memnode.cpp.incl"
  31 
  32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  33 
  34 //=============================================================================
  35 uint MemNode::size_of() const { return sizeof(*this); }
  36 
  37 const TypePtr *MemNode::adr_type() const {
  38   Node* adr = in(Address);
  39   const TypePtr* cross_check = NULL;
  40   DEBUG_ONLY(cross_check = _adr_type);
  41   return calculate_adr_type(adr->bottom_type(), cross_check);
  42 }
  43 
  44 #ifndef PRODUCT
  45 void MemNode::dump_spec(outputStream *st) const {
  46   if (in(Address) == NULL)  return; // node is dead
  47 #ifndef ASSERT
  48   // fake the missing field
  49   const TypePtr* _adr_type = NULL;
  50   if (in(Address) != NULL)
  51     _adr_type = in(Address)->bottom_type()->isa_ptr();
  52 #endif
  53   dump_adr_type(this, _adr_type, st);
  54 
  55   Compile* C = Compile::current();
  56   if( C->alias_type(_adr_type)->is_volatile() )
  57     st->print(" Volatile!");
  58 }
  59 
  60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  61   st->print(" @");
  62   if (adr_type == NULL) {
  63     st->print("NULL");
  64   } else {
  65     adr_type->dump_on(st);
  66     Compile* C = Compile::current();
  67     Compile::AliasType* atp = NULL;
  68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  69     if (atp == NULL)
  70       st->print(", idx=?\?;");
  71     else if (atp->index() == Compile::AliasIdxBot)
  72       st->print(", idx=Bot;");
  73     else if (atp->index() == Compile::AliasIdxTop)
  74       st->print(", idx=Top;");
  75     else if (atp->index() == Compile::AliasIdxRaw)
  76       st->print(", idx=Raw;");
  77     else {
  78       ciField* field = atp->field();
  79       if (field) {
  80         st->print(", name=");
  81         field->print_name_on(st);
  82       }
  83       st->print(", idx=%d;", atp->index());
  84     }
  85   }
  86 }
  87 
  88 extern void print_alias_types();
  89 
  90 #endif
  91 
  92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
  93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
  94   if (tinst == NULL || !tinst->is_known_instance_field())
  95     return mchain;  // don't try to optimize non-instance types
  96   uint instance_id = tinst->instance_id();
  97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
  98   Node *prev = NULL;
  99   Node *result = mchain;
 100   while (prev != result) {
 101     prev = result;
 102     if (result == start_mem)
 103       break;  // hit one of our sentinels
 104     // skip over a call which does not affect this memory slice
 105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 106       Node *proj_in = result->in(0);
 107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 108         break;  // hit one of our sentinels
 109       } else if (proj_in->is_Call()) {
 110         CallNode *call = proj_in->as_Call();
 111         if (!call->may_modify(t_adr, phase)) {
 112           result = call->in(TypeFunc::Memory);
 113         }
 114       } else if (proj_in->is_Initialize()) {
 115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 116         // Stop if this is the initialization for the object instance which
 117         // which contains this memory slice, otherwise skip over it.
 118         if (alloc != NULL && alloc->_idx != instance_id) {
 119           result = proj_in->in(TypeFunc::Memory);
 120         }
 121       } else if (proj_in->is_MemBar()) {
 122         result = proj_in->in(TypeFunc::Memory);
 123       } else {
 124         assert(false, "unexpected projection");
 125       }
 126     } else if (result->is_MergeMem()) {
 127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 128     }
 129   }
 130   return result;
 131 }
 132 
 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 136   PhaseIterGVN *igvn = phase->is_IterGVN();
 137   Node *result = mchain;
 138   result = optimize_simple_memory_chain(result, t_adr, phase);
 139   if (is_instance && igvn != NULL  && result->is_Phi()) {
 140     PhiNode *mphi = result->as_Phi();
 141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 142     const TypePtr *t = mphi->adr_type();
 143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 145         t->is_oopptr()->cast_to_exactness(true)
 146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 148       // clone the Phi with our address type
 149       result = mphi->split_out_instance(t_adr, igvn);
 150     } else {
 151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 152     }
 153   }
 154   return result;
 155 }
 156 
 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 158   uint alias_idx = phase->C->get_alias_index(tp);
 159   Node *mem = mmem;
 160 #ifdef ASSERT
 161   {
 162     // Check that current type is consistent with the alias index used during graph construction
 163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 164     bool consistent =  adr_check == NULL || adr_check->empty() ||
 165                        phase->C->must_alias(adr_check, alias_idx );
 166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 173       // don't assert if it is dead code.
 174       consistent = true;
 175     }
 176     if( !consistent ) {
 177       st->print("alias_idx==%d, adr_check==", alias_idx);
 178       if( adr_check == NULL ) {
 179         st->print("NULL");
 180       } else {
 181         adr_check->dump();
 182       }
 183       st->cr();
 184       print_alias_types();
 185       assert(consistent, "adr_check must match alias idx");
 186     }
 187   }
 188 #endif
 189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 190   // means an array I have not precisely typed yet.  Do not do any
 191   // alias stuff with it any time soon.
 192   const TypeOopPtr *tinst = tp->isa_oopptr();
 193   if( tp->base() != Type::AnyPtr &&
 194       !(tinst &&
 195         tinst->klass()->is_java_lang_Object() &&
 196         tinst->offset() == Type::OffsetBot) ) {
 197     // compress paths and change unreachable cycles to TOP
 198     // If not, we can update the input infinitely along a MergeMem cycle
 199     // Equivalent code in PhiNode::Ideal
 200     Node* m  = phase->transform(mmem);
 201     // If transformed to a MergeMem, get the desired slice
 202     // Otherwise the returned node represents memory for every slice
 203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 204     // Update input if it is progress over what we have now
 205   }
 206   return mem;
 207 }
 208 
 209 //--------------------------Ideal_common---------------------------------------
 210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 213   // If our control input is a dead region, kill all below the region
 214   Node *ctl = in(MemNode::Control);
 215   if (ctl && remove_dead_region(phase, can_reshape))
 216     return this;
 217   ctl = in(MemNode::Control);
 218   // Don't bother trying to transform a dead node
 219   if( ctl && ctl->is_top() )  return NodeSentinel;
 220 
 221   // Ignore if memory is dead, or self-loop
 222   Node *mem = in(MemNode::Memory);
 223   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 224   assert( mem != this, "dead loop in MemNode::Ideal" );
 225 
 226   Node *address = in(MemNode::Address);
 227   const Type *t_adr = phase->type( address );
 228   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 229 
 230   PhaseIterGVN *igvn = phase->is_IterGVN();
 231   if( can_reshape && igvn != NULL && igvn->_worklist.member(address) ) {
 232     // The address's base and type may change when the address is processed.
 233     // Delay this mem node transformation until the address is processed.
 234     phase->is_IterGVN()->_worklist.push(this);
 235     return NodeSentinel; // caller will return NULL
 236   }
 237 
 238   // Avoid independent memory operations
 239   Node* old_mem = mem;
 240 
 241   // The code which unhooks non-raw memories from complete (macro-expanded)
 242   // initializations was removed. After macro-expansion all stores catched
 243   // by Initialize node became raw stores and there is no information
 244   // which memory slices they modify. So it is unsafe to move any memory
 245   // operation above these stores. Also in most cases hooked non-raw memories
 246   // were already unhooked by using information from detect_ptr_independence()
 247   // and find_previous_store().
 248 
 249   if (mem->is_MergeMem()) {
 250     MergeMemNode* mmem = mem->as_MergeMem();
 251     const TypePtr *tp = t_adr->is_ptr();
 252 
 253     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 254   }
 255 
 256   if (mem != old_mem) {
 257     set_req(MemNode::Memory, mem);
 258     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 259     return this;
 260   }
 261 
 262   // let the subclass continue analyzing...
 263   return NULL;
 264 }
 265 
 266 // Helper function for proving some simple control dominations.
 267 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 268 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 269 // is not a constant (dominated by the method's StartNode).
 270 // Used by MemNode::find_previous_store to prove that the
 271 // control input of a memory operation predates (dominates)
 272 // an allocation it wants to look past.
 273 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 274   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 275     return false; // Conservative answer for dead code
 276 
 277   // Check 'dom'. Skip Proj and CatchProj nodes.
 278   dom = dom->find_exact_control(dom);
 279   if (dom == NULL || dom->is_top())
 280     return false; // Conservative answer for dead code
 281 
 282   if (dom == sub) {
 283     // For the case when, for example, 'sub' is Initialize and the original
 284     // 'dom' is Proj node of the 'sub'.
 285     return false;
 286   }
 287 
 288   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 289     return true;
 290 
 291   // 'dom' dominates 'sub' if its control edge and control edges
 292   // of all its inputs dominate or equal to sub's control edge.
 293 
 294   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 295   // Or Region for the check in LoadNode::Ideal();
 296   // 'sub' should have sub->in(0) != NULL.
 297   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 298          sub->is_Region(), "expecting only these nodes");
 299 
 300   // Get control edge of 'sub'.
 301   Node* orig_sub = sub;
 302   sub = sub->find_exact_control(sub->in(0));
 303   if (sub == NULL || sub->is_top())
 304     return false; // Conservative answer for dead code
 305 
 306   assert(sub->is_CFG(), "expecting control");
 307 
 308   if (sub == dom)
 309     return true;
 310 
 311   if (sub->is_Start() || sub->is_Root())
 312     return false;
 313 
 314   {
 315     // Check all control edges of 'dom'.
 316 
 317     ResourceMark rm;
 318     Arena* arena = Thread::current()->resource_area();
 319     Node_List nlist(arena);
 320     Unique_Node_List dom_list(arena);
 321 
 322     dom_list.push(dom);
 323     bool only_dominating_controls = false;
 324 
 325     for (uint next = 0; next < dom_list.size(); next++) {
 326       Node* n = dom_list.at(next);
 327       if (n == orig_sub)
 328         return false; // One of dom's inputs dominated by sub.
 329       if (!n->is_CFG() && n->pinned()) {
 330         // Check only own control edge for pinned non-control nodes.
 331         n = n->find_exact_control(n->in(0));
 332         if (n == NULL || n->is_top())
 333           return false; // Conservative answer for dead code
 334         assert(n->is_CFG(), "expecting control");
 335         dom_list.push(n);
 336       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 337         only_dominating_controls = true;
 338       } else if (n->is_CFG()) {
 339         if (n->dominates(sub, nlist))
 340           only_dominating_controls = true;
 341         else
 342           return false;
 343       } else {
 344         // First, own control edge.
 345         Node* m = n->find_exact_control(n->in(0));
 346         if (m != NULL) {
 347           if (m->is_top())
 348             return false; // Conservative answer for dead code
 349           dom_list.push(m);
 350         }
 351         // Now, the rest of edges.
 352         uint cnt = n->req();
 353         for (uint i = 1; i < cnt; i++) {
 354           m = n->find_exact_control(n->in(i));
 355           if (m == NULL || m->is_top())
 356             continue;
 357           dom_list.push(m);
 358         }
 359       }
 360     }
 361     return only_dominating_controls;
 362   }
 363 }
 364 
 365 //---------------------detect_ptr_independence---------------------------------
 366 // Used by MemNode::find_previous_store to prove that two base
 367 // pointers are never equal.
 368 // The pointers are accompanied by their associated allocations,
 369 // if any, which have been previously discovered by the caller.
 370 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 371                                       Node* p2, AllocateNode* a2,
 372                                       PhaseTransform* phase) {
 373   // Attempt to prove that these two pointers cannot be aliased.
 374   // They may both manifestly be allocations, and they should differ.
 375   // Or, if they are not both allocations, they can be distinct constants.
 376   // Otherwise, one is an allocation and the other a pre-existing value.
 377   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 378     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 379   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 380     return (a1 != a2);
 381   } else if (a1 != NULL) {                  // one allocation a1
 382     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 383     return all_controls_dominate(p2, a1);
 384   } else { //(a2 != NULL)                   // one allocation a2
 385     return all_controls_dominate(p1, a2);
 386   }
 387   return false;
 388 }
 389 
 390 
 391 // The logic for reordering loads and stores uses four steps:
 392 // (a) Walk carefully past stores and initializations which we
 393 //     can prove are independent of this load.
 394 // (b) Observe that the next memory state makes an exact match
 395 //     with self (load or store), and locate the relevant store.
 396 // (c) Ensure that, if we were to wire self directly to the store,
 397 //     the optimizer would fold it up somehow.
 398 // (d) Do the rewiring, and return, depending on some other part of
 399 //     the optimizer to fold up the load.
 400 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 401 // specific to loads and stores, so they are handled by the callers.
 402 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 403 //
 404 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 405   Node*         ctrl   = in(MemNode::Control);
 406   Node*         adr    = in(MemNode::Address);
 407   intptr_t      offset = 0;
 408   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 409   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 410 
 411   if (offset == Type::OffsetBot)
 412     return NULL;            // cannot unalias unless there are precise offsets
 413 
 414   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 415 
 416   intptr_t size_in_bytes = memory_size();
 417 
 418   Node* mem = in(MemNode::Memory);   // start searching here...
 419 
 420   int cnt = 50;             // Cycle limiter
 421   for (;;) {                // While we can dance past unrelated stores...
 422     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 423 
 424     if (mem->is_Store()) {
 425       Node* st_adr = mem->in(MemNode::Address);
 426       intptr_t st_offset = 0;
 427       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 428       if (st_base == NULL)
 429         break;              // inscrutable pointer
 430       if (st_offset != offset && st_offset != Type::OffsetBot) {
 431         const int MAX_STORE = BytesPerLong;
 432         if (st_offset >= offset + size_in_bytes ||
 433             st_offset <= offset - MAX_STORE ||
 434             st_offset <= offset - mem->as_Store()->memory_size()) {
 435           // Success:  The offsets are provably independent.
 436           // (You may ask, why not just test st_offset != offset and be done?
 437           // The answer is that stores of different sizes can co-exist
 438           // in the same sequence of RawMem effects.  We sometimes initialize
 439           // a whole 'tile' of array elements with a single jint or jlong.)
 440           mem = mem->in(MemNode::Memory);
 441           continue;           // (a) advance through independent store memory
 442         }
 443       }
 444       if (st_base != base &&
 445           detect_ptr_independence(base, alloc,
 446                                   st_base,
 447                                   AllocateNode::Ideal_allocation(st_base, phase),
 448                                   phase)) {
 449         // Success:  The bases are provably independent.
 450         mem = mem->in(MemNode::Memory);
 451         continue;           // (a) advance through independent store memory
 452       }
 453 
 454       // (b) At this point, if the bases or offsets do not agree, we lose,
 455       // since we have not managed to prove 'this' and 'mem' independent.
 456       if (st_base == base && st_offset == offset) {
 457         return mem;         // let caller handle steps (c), (d)
 458       }
 459 
 460     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 461       InitializeNode* st_init = mem->in(0)->as_Initialize();
 462       AllocateNode*  st_alloc = st_init->allocation();
 463       if (st_alloc == NULL)
 464         break;              // something degenerated
 465       bool known_identical = false;
 466       bool known_independent = false;
 467       if (alloc == st_alloc)
 468         known_identical = true;
 469       else if (alloc != NULL)
 470         known_independent = true;
 471       else if (all_controls_dominate(this, st_alloc))
 472         known_independent = true;
 473 
 474       if (known_independent) {
 475         // The bases are provably independent: Either they are
 476         // manifestly distinct allocations, or else the control
 477         // of this load dominates the store's allocation.
 478         int alias_idx = phase->C->get_alias_index(adr_type());
 479         if (alias_idx == Compile::AliasIdxRaw) {
 480           mem = st_alloc->in(TypeFunc::Memory);
 481         } else {
 482           mem = st_init->memory(alias_idx);
 483         }
 484         continue;           // (a) advance through independent store memory
 485       }
 486 
 487       // (b) at this point, if we are not looking at a store initializing
 488       // the same allocation we are loading from, we lose.
 489       if (known_identical) {
 490         // From caller, can_see_stored_value will consult find_captured_store.
 491         return mem;         // let caller handle steps (c), (d)
 492       }
 493 
 494     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 495       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 496       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 497         CallNode *call = mem->in(0)->as_Call();
 498         if (!call->may_modify(addr_t, phase)) {
 499           mem = call->in(TypeFunc::Memory);
 500           continue;         // (a) advance through independent call memory
 501         }
 502       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 503         mem = mem->in(0)->in(TypeFunc::Memory);
 504         continue;           // (a) advance through independent MemBar memory
 505       } else if (mem->is_MergeMem()) {
 506         int alias_idx = phase->C->get_alias_index(adr_type());
 507         mem = mem->as_MergeMem()->memory_at(alias_idx);
 508         continue;           // (a) advance through independent MergeMem memory
 509       }
 510     }
 511 
 512     // Unless there is an explicit 'continue', we must bail out here,
 513     // because 'mem' is an inscrutable memory state (e.g., a call).
 514     break;
 515   }
 516 
 517   return NULL;              // bail out
 518 }
 519 
 520 //----------------------calculate_adr_type-------------------------------------
 521 // Helper function.  Notices when the given type of address hits top or bottom.
 522 // Also, asserts a cross-check of the type against the expected address type.
 523 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 524   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 525   #ifdef PRODUCT
 526   cross_check = NULL;
 527   #else
 528   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 529   #endif
 530   const TypePtr* tp = t->isa_ptr();
 531   if (tp == NULL) {
 532     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 533     return TypePtr::BOTTOM;           // touches lots of memory
 534   } else {
 535     #ifdef ASSERT
 536     // %%%% [phh] We don't check the alias index if cross_check is
 537     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 538     if (cross_check != NULL &&
 539         cross_check != TypePtr::BOTTOM &&
 540         cross_check != TypeRawPtr::BOTTOM) {
 541       // Recheck the alias index, to see if it has changed (due to a bug).
 542       Compile* C = Compile::current();
 543       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 544              "must stay in the original alias category");
 545       // The type of the address must be contained in the adr_type,
 546       // disregarding "null"-ness.
 547       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 548       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 549       assert(cross_check->meet(tp_notnull) == cross_check,
 550              "real address must not escape from expected memory type");
 551     }
 552     #endif
 553     return tp;
 554   }
 555 }
 556 
 557 //------------------------adr_phi_is_loop_invariant----------------------------
 558 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 559 // loop is loop invariant. Make a quick traversal of Phi and associated
 560 // CastPP nodes, looking to see if they are a closed group within the loop.
 561 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 562   // The idea is that the phi-nest must boil down to only CastPP nodes
 563   // with the same data. This implies that any path into the loop already
 564   // includes such a CastPP, and so the original cast, whatever its input,
 565   // must be covered by an equivalent cast, with an earlier control input.
 566   ResourceMark rm;
 567 
 568   // The loop entry input of the phi should be the unique dominating
 569   // node for every Phi/CastPP in the loop.
 570   Unique_Node_List closure;
 571   closure.push(adr_phi->in(LoopNode::EntryControl));
 572 
 573   // Add the phi node and the cast to the worklist.
 574   Unique_Node_List worklist;
 575   worklist.push(adr_phi);
 576   if( cast != NULL ){
 577     if( !cast->is_ConstraintCast() ) return false;
 578     worklist.push(cast);
 579   }
 580 
 581   // Begin recursive walk of phi nodes.
 582   while( worklist.size() ){
 583     // Take a node off the worklist
 584     Node *n = worklist.pop();
 585     if( !closure.member(n) ){
 586       // Add it to the closure.
 587       closure.push(n);
 588       // Make a sanity check to ensure we don't waste too much time here.
 589       if( closure.size() > 20) return false;
 590       // This node is OK if:
 591       //  - it is a cast of an identical value
 592       //  - or it is a phi node (then we add its inputs to the worklist)
 593       // Otherwise, the node is not OK, and we presume the cast is not invariant
 594       if( n->is_ConstraintCast() ){
 595         worklist.push(n->in(1));
 596       } else if( n->is_Phi() ) {
 597         for( uint i = 1; i < n->req(); i++ ) {
 598           worklist.push(n->in(i));
 599         }
 600       } else {
 601         return false;
 602       }
 603     }
 604   }
 605 
 606   // Quit when the worklist is empty, and we've found no offending nodes.
 607   return true;
 608 }
 609 
 610 //------------------------------Ideal_DU_postCCP-------------------------------
 611 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 612 // going away in this pass and we need to make this memory op depend on the
 613 // gating null check.
 614 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 615   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 616 }
 617 
 618 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 619 // some sense; we get to keep around the knowledge that an oop is not-null
 620 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 621 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 622 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 623 // some of the more trivial cases in the optimizer.  Removing more useless
 624 // Phi's started allowing Loads to illegally float above null checks.  I gave
 625 // up on this approach.  CNC 10/20/2000
 626 // This static method may be called not from MemNode (EncodePNode calls it).
 627 // Only the control edge of the node 'n' might be updated.
 628 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 629   Node *skipped_cast = NULL;
 630   // Need a null check?  Regular static accesses do not because they are
 631   // from constant addresses.  Array ops are gated by the range check (which
 632   // always includes a NULL check).  Just check field ops.
 633   if( n->in(MemNode::Control) == NULL ) {
 634     // Scan upwards for the highest location we can place this memory op.
 635     while( true ) {
 636       switch( adr->Opcode() ) {
 637 
 638       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 639         adr = adr->in(AddPNode::Base);
 640         continue;
 641 
 642       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 643         adr = adr->in(1);
 644         continue;
 645 
 646       case Op_CastPP:
 647         // If the CastPP is useless, just peek on through it.
 648         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 649           // Remember the cast that we've peeked though. If we peek
 650           // through more than one, then we end up remembering the highest
 651           // one, that is, if in a loop, the one closest to the top.
 652           skipped_cast = adr;
 653           adr = adr->in(1);
 654           continue;
 655         }
 656         // CastPP is going away in this pass!  We need this memory op to be
 657         // control-dependent on the test that is guarding the CastPP.
 658         ccp->hash_delete(n);
 659         n->set_req(MemNode::Control, adr->in(0));
 660         ccp->hash_insert(n);
 661         return n;
 662 
 663       case Op_Phi:
 664         // Attempt to float above a Phi to some dominating point.
 665         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 666           // If we've already peeked through a Cast (which could have set the
 667           // control), we can't float above a Phi, because the skipped Cast
 668           // may not be loop invariant.
 669           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 670             adr = adr->in(1);
 671             continue;
 672           }
 673         }
 674 
 675         // Intentional fallthrough!
 676 
 677         // No obvious dominating point.  The mem op is pinned below the Phi
 678         // by the Phi itself.  If the Phi goes away (no true value is merged)
 679         // then the mem op can float, but not indefinitely.  It must be pinned
 680         // behind the controls leading to the Phi.
 681       case Op_CheckCastPP:
 682         // These usually stick around to change address type, however a
 683         // useless one can be elided and we still need to pick up a control edge
 684         if (adr->in(0) == NULL) {
 685           // This CheckCastPP node has NO control and is likely useless. But we
 686           // need check further up the ancestor chain for a control input to keep
 687           // the node in place. 4959717.
 688           skipped_cast = adr;
 689           adr = adr->in(1);
 690           continue;
 691         }
 692         ccp->hash_delete(n);
 693         n->set_req(MemNode::Control, adr->in(0));
 694         ccp->hash_insert(n);
 695         return n;
 696 
 697         // List of "safe" opcodes; those that implicitly block the memory
 698         // op below any null check.
 699       case Op_CastX2P:          // no null checks on native pointers
 700       case Op_Parm:             // 'this' pointer is not null
 701       case Op_LoadP:            // Loading from within a klass
 702       case Op_LoadN:            // Loading from within a klass
 703       case Op_LoadKlass:        // Loading from within a klass
 704       case Op_LoadNKlass:       // Loading from within a klass
 705       case Op_ConP:             // Loading from a klass
 706       case Op_ConN:             // Loading from a klass
 707       case Op_CreateEx:         // Sucking up the guts of an exception oop
 708       case Op_Con:              // Reading from TLS
 709       case Op_CMoveP:           // CMoveP is pinned
 710       case Op_CMoveN:           // CMoveN is pinned
 711         break;                  // No progress
 712 
 713       case Op_Proj:             // Direct call to an allocation routine
 714       case Op_SCMemProj:        // Memory state from store conditional ops
 715 #ifdef ASSERT
 716         {
 717           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 718           const Node* call = adr->in(0);
 719           if (call->is_CallJava()) {
 720             const CallJavaNode* call_java = call->as_CallJava();
 721             const TypeTuple *r = call_java->tf()->range();
 722             assert(r->cnt() > TypeFunc::Parms, "must return value");
 723             const Type* ret_type = r->field_at(TypeFunc::Parms);
 724             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 725             // We further presume that this is one of
 726             // new_instance_Java, new_array_Java, or
 727             // the like, but do not assert for this.
 728           } else if (call->is_Allocate()) {
 729             // similar case to new_instance_Java, etc.
 730           } else if (!call->is_CallLeaf()) {
 731             // Projections from fetch_oop (OSR) are allowed as well.
 732             ShouldNotReachHere();
 733           }
 734         }
 735 #endif
 736         break;
 737       default:
 738         ShouldNotReachHere();
 739       }
 740       break;
 741     }
 742   }
 743 
 744   return  NULL;               // No progress
 745 }
 746 
 747 
 748 //=============================================================================
 749 uint LoadNode::size_of() const { return sizeof(*this); }
 750 uint LoadNode::cmp( const Node &n ) const
 751 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 752 const Type *LoadNode::bottom_type() const { return _type; }
 753 uint LoadNode::ideal_reg() const {
 754   return Matcher::base2reg[_type->base()];
 755 }
 756 
 757 #ifndef PRODUCT
 758 void LoadNode::dump_spec(outputStream *st) const {
 759   MemNode::dump_spec(st);
 760   if( !Verbose && !WizardMode ) {
 761     // standard dump does this in Verbose and WizardMode
 762     st->print(" #"); _type->dump_on(st);
 763   }
 764 }
 765 #endif
 766 
 767 
 768 //----------------------------LoadNode::make-----------------------------------
 769 // Polymorphic factory method:
 770 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 771   Compile* C = gvn.C;
 772 
 773   // sanity check the alias category against the created node type
 774   assert(!(adr_type->isa_oopptr() &&
 775            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 776          "use LoadKlassNode instead");
 777   assert(!(adr_type->isa_aryptr() &&
 778            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 779          "use LoadRangeNode instead");
 780   switch (bt) {
 781   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 782   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 783   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 784   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 785   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 786   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 787   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 788   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 789   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 790   case T_OBJECT:
 791 #ifdef _LP64
 792     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 793       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 794       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 795     } else
 796 #endif
 797     {
 798       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 799       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 800     }
 801   }
 802   ShouldNotReachHere();
 803   return (LoadNode*)NULL;
 804 }
 805 
 806 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 807   bool require_atomic = true;
 808   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 809 }
 810 
 811 
 812 
 813 
 814 //------------------------------hash-------------------------------------------
 815 uint LoadNode::hash() const {
 816   // unroll addition of interesting fields
 817   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 818 }
 819 
 820 //---------------------------can_see_stored_value------------------------------
 821 // This routine exists to make sure this set of tests is done the same
 822 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 823 // will change the graph shape in a way which makes memory alive twice at the
 824 // same time (uses the Oracle model of aliasing), then some
 825 // LoadXNode::Identity will fold things back to the equivalence-class model
 826 // of aliasing.
 827 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 828   Node* ld_adr = in(MemNode::Address);
 829 
 830   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 831   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 832   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 833       atp->field() != NULL && !atp->field()->is_volatile()) {
 834     uint alias_idx = atp->index();
 835     bool final = atp->field()->is_final();
 836     Node* result = NULL;
 837     Node* current = st;
 838     // Skip through chains of MemBarNodes checking the MergeMems for
 839     // new states for the slice of this load.  Stop once any other
 840     // kind of node is encountered.  Loads from final memory can skip
 841     // through any kind of MemBar but normal loads shouldn't skip
 842     // through MemBarAcquire since the could allow them to move out of
 843     // a synchronized region.
 844     while (current->is_Proj()) {
 845       int opc = current->in(0)->Opcode();
 846       if ((final && opc == Op_MemBarAcquire) ||
 847           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 848         Node* mem = current->in(0)->in(TypeFunc::Memory);
 849         if (mem->is_MergeMem()) {
 850           MergeMemNode* merge = mem->as_MergeMem();
 851           Node* new_st = merge->memory_at(alias_idx);
 852           if (new_st == merge->base_memory()) {
 853             // Keep searching
 854             current = merge->base_memory();
 855             continue;
 856           }
 857           // Save the new memory state for the slice and fall through
 858           // to exit.
 859           result = new_st;
 860         }
 861       }
 862       break;
 863     }
 864     if (result != NULL) {
 865       st = result;
 866     }
 867   }
 868 
 869 
 870   // Loop around twice in the case Load -> Initialize -> Store.
 871   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 872   for (int trip = 0; trip <= 1; trip++) {
 873 
 874     if (st->is_Store()) {
 875       Node* st_adr = st->in(MemNode::Address);
 876       if (!phase->eqv(st_adr, ld_adr)) {
 877         // Try harder before giving up...  Match raw and non-raw pointers.
 878         intptr_t st_off = 0;
 879         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 880         if (alloc == NULL)       return NULL;
 881         intptr_t ld_off = 0;
 882         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 883         if (alloc != allo2)      return NULL;
 884         if (ld_off != st_off)    return NULL;
 885         // At this point we have proven something like this setup:
 886         //  A = Allocate(...)
 887         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 888         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 889         // (Actually, we haven't yet proven the Q's are the same.)
 890         // In other words, we are loading from a casted version of
 891         // the same pointer-and-offset that we stored to.
 892         // Thus, we are able to replace L by V.
 893       }
 894       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 895       if (store_Opcode() != st->Opcode())
 896         return NULL;
 897       return st->in(MemNode::ValueIn);
 898     }
 899 
 900     intptr_t offset = 0;  // scratch
 901 
 902     // A load from a freshly-created object always returns zero.
 903     // (This can happen after LoadNode::Ideal resets the load's memory input
 904     // to find_captured_store, which returned InitializeNode::zero_memory.)
 905     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 906         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 907         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 908       // return a zero value for the load's basic type
 909       // (This is one of the few places where a generic PhaseTransform
 910       // can create new nodes.  Think of it as lazily manifesting
 911       // virtually pre-existing constants.)
 912       return phase->zerocon(memory_type());
 913     }
 914 
 915     // A load from an initialization barrier can match a captured store.
 916     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 917       InitializeNode* init = st->in(0)->as_Initialize();
 918       AllocateNode* alloc = init->allocation();
 919       if (alloc != NULL &&
 920           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
 921         // examine a captured store value
 922         st = init->find_captured_store(offset, memory_size(), phase);
 923         if (st != NULL)
 924           continue;             // take one more trip around
 925       }
 926     }
 927 
 928     break;
 929   }
 930 
 931   return NULL;
 932 }
 933 
 934 //----------------------is_instance_field_load_with_local_phi------------------
 935 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
 936   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
 937       in(MemNode::Address)->is_AddP() ) {
 938     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
 939     // Only instances.
 940     if( t_oop != NULL && t_oop->is_known_instance_field() &&
 941         t_oop->offset() != Type::OffsetBot &&
 942         t_oop->offset() != Type::OffsetTop) {
 943       return true;
 944     }
 945   }
 946   return false;
 947 }
 948 
 949 //------------------------------Identity---------------------------------------
 950 // Loads are identity if previous store is to same address
 951 Node *LoadNode::Identity( PhaseTransform *phase ) {
 952   // If the previous store-maker is the right kind of Store, and the store is
 953   // to the same address, then we are equal to the value stored.
 954   Node* mem = in(MemNode::Memory);
 955   Node* value = can_see_stored_value(mem, phase);
 956   if( value ) {
 957     // byte, short & char stores truncate naturally.
 958     // A load has to load the truncated value which requires
 959     // some sort of masking operation and that requires an
 960     // Ideal call instead of an Identity call.
 961     if (memory_size() < BytesPerInt) {
 962       // If the input to the store does not fit with the load's result type,
 963       // it must be truncated via an Ideal call.
 964       if (!phase->type(value)->higher_equal(phase->type(this)))
 965         return this;
 966     }
 967     // (This works even when value is a Con, but LoadNode::Value
 968     // usually runs first, producing the singleton type of the Con.)
 969     return value;
 970   }
 971 
 972   // Search for an existing data phi which was generated before for the same
 973   // instance's field to avoid infinite generation of phis in a loop.
 974   Node *region = mem->in(0);
 975   if (is_instance_field_load_with_local_phi(region)) {
 976     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
 977     int this_index  = phase->C->get_alias_index(addr_t);
 978     int this_offset = addr_t->offset();
 979     int this_id    = addr_t->is_oopptr()->instance_id();
 980     const Type* this_type = bottom_type();
 981     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 982       Node* phi = region->fast_out(i);
 983       if (phi->is_Phi() && phi != mem &&
 984           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
 985         return phi;
 986       }
 987     }
 988   }
 989 
 990   return this;
 991 }
 992 
 993 
 994 // Returns true if the AliasType refers to the field that holds the
 995 // cached box array.  Currently only handles the IntegerCache case.
 996 static bool is_autobox_cache(Compile::AliasType* atp) {
 997   if (atp != NULL && atp->field() != NULL) {
 998     ciField* field = atp->field();
 999     ciSymbol* klass = field->holder()->name();
1000     if (field->name() == ciSymbol::cache_field_name() &&
1001         field->holder()->uses_default_loader() &&
1002         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1003       return true;
1004     }
1005   }
1006   return false;
1007 }
1008 
1009 // Fetch the base value in the autobox array
1010 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1011   if (atp != NULL && atp->field() != NULL) {
1012     ciField* field = atp->field();
1013     ciSymbol* klass = field->holder()->name();
1014     if (field->name() == ciSymbol::cache_field_name() &&
1015         field->holder()->uses_default_loader() &&
1016         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1017       assert(field->is_constant(), "what?");
1018       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1019       // Fetch the box object at the base of the array and get its value
1020       ciInstance* box = array->obj_at(0)->as_instance();
1021       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1022       if (ik->nof_nonstatic_fields() == 1) {
1023         // This should be true nonstatic_field_at requires calling
1024         // nof_nonstatic_fields so check it anyway
1025         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1026         cache_offset = c.as_int();
1027       }
1028       return true;
1029     }
1030   }
1031   return false;
1032 }
1033 
1034 // Returns true if the AliasType refers to the value field of an
1035 // autobox object.  Currently only handles Integer.
1036 static bool is_autobox_object(Compile::AliasType* atp) {
1037   if (atp != NULL && atp->field() != NULL) {
1038     ciField* field = atp->field();
1039     ciSymbol* klass = field->holder()->name();
1040     if (field->name() == ciSymbol::value_name() &&
1041         field->holder()->uses_default_loader() &&
1042         klass == ciSymbol::java_lang_Integer()) {
1043       return true;
1044     }
1045   }
1046   return false;
1047 }
1048 
1049 
1050 // We're loading from an object which has autobox behaviour.
1051 // If this object is result of a valueOf call we'll have a phi
1052 // merging a newly allocated object and a load from the cache.
1053 // We want to replace this load with the original incoming
1054 // argument to the valueOf call.
1055 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1056   Node* base = in(Address)->in(AddPNode::Base);
1057   if (base->is_Phi() && base->req() == 3) {
1058     AllocateNode* allocation = NULL;
1059     int allocation_index = -1;
1060     int load_index = -1;
1061     for (uint i = 1; i < base->req(); i++) {
1062       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1063       if (allocation != NULL) {
1064         allocation_index = i;
1065         load_index = 3 - allocation_index;
1066         break;
1067       }
1068     }
1069     bool has_load = ( allocation != NULL &&
1070                       (base->in(load_index)->is_Load() ||
1071                        base->in(load_index)->is_DecodeN() &&
1072                        base->in(load_index)->in(1)->is_Load()) );
1073     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1074       // Push the loads from the phi that comes from valueOf up
1075       // through it to allow elimination of the loads and the recovery
1076       // of the original value.
1077       Node* mem_phi = in(Memory);
1078       Node* offset = in(Address)->in(AddPNode::Offset);
1079       Node* region = base->in(0);
1080 
1081       Node* in1 = clone();
1082       Node* in1_addr = in1->in(Address)->clone();
1083       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1084       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1085       in1_addr->set_req(AddPNode::Offset, offset);
1086       in1->set_req(0, region->in(allocation_index));
1087       in1->set_req(Address, in1_addr);
1088       in1->set_req(Memory, mem_phi->in(allocation_index));
1089 
1090       Node* in2 = clone();
1091       Node* in2_addr = in2->in(Address)->clone();
1092       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1093       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1094       in2_addr->set_req(AddPNode::Offset, offset);
1095       in2->set_req(0, region->in(load_index));
1096       in2->set_req(Address, in2_addr);
1097       in2->set_req(Memory, mem_phi->in(load_index));
1098 
1099       in1_addr = phase->transform(in1_addr);
1100       in1 =      phase->transform(in1);
1101       in2_addr = phase->transform(in2_addr);
1102       in2 =      phase->transform(in2);
1103 
1104       PhiNode* result = PhiNode::make_blank(region, this);
1105       result->set_req(allocation_index, in1);
1106       result->set_req(load_index, in2);
1107       return result;
1108     }
1109   } else if (base->is_Load() ||
1110              base->is_DecodeN() && base->in(1)->is_Load()) {
1111     if (base->is_DecodeN()) {
1112       // Get LoadN node which loads cached Integer object
1113       base = base->in(1);
1114     }
1115     // Eliminate the load of Integer.value for integers from the cache
1116     // array by deriving the value from the index into the array.
1117     // Capture the offset of the load and then reverse the computation.
1118     Node* load_base = base->in(Address)->in(AddPNode::Base);
1119     if (load_base->is_DecodeN()) {
1120       // Get LoadN node which loads IntegerCache.cache field
1121       load_base = load_base->in(1);
1122     }
1123     if (load_base != NULL) {
1124       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1125       intptr_t cache_offset;
1126       int shift = -1;
1127       Node* cache = NULL;
1128       if (is_autobox_cache(atp)) {
1129         shift  = exact_log2(type2aelembytes(T_OBJECT));
1130         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1131       }
1132       if (cache != NULL && base->in(Address)->is_AddP()) {
1133         Node* elements[4];
1134         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1135         int cache_low;
1136         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1137           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1138           // Add up all the offsets making of the address of the load
1139           Node* result = elements[0];
1140           for (int i = 1; i < count; i++) {
1141             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1142           }
1143           // Remove the constant offset from the address and then
1144           // remove the scaling of the offset to recover the original index.
1145           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1146           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1147             // Peel the shift off directly but wrap it in a dummy node
1148             // since Ideal can't return existing nodes
1149             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1150           } else {
1151             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1152           }
1153 #ifdef _LP64
1154           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1155 #endif
1156           return result;
1157         }
1158       }
1159     }
1160   }
1161   return NULL;
1162 }
1163 
1164 //------------------------------split_through_phi------------------------------
1165 // Split instance field load through Phi.
1166 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1167   Node* mem     = in(MemNode::Memory);
1168   Node* address = in(MemNode::Address);
1169   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1170   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1171 
1172   assert(mem->is_Phi() && (t_oop != NULL) &&
1173          t_oop->is_known_instance_field(), "invalide conditions");
1174 
1175   Node *region = mem->in(0);
1176   if (region == NULL) {
1177     return NULL; // Wait stable graph
1178   }
1179   uint cnt = mem->req();
1180   for( uint i = 1; i < cnt; i++ ) {
1181     Node *in = mem->in(i);
1182     if( in == NULL ) {
1183       return NULL; // Wait stable graph
1184     }
1185   }
1186   // Check for loop invariant.
1187   if (cnt == 3) {
1188     for( uint i = 1; i < cnt; i++ ) {
1189       Node *in = mem->in(i);
1190       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1191       if (m == mem) {
1192         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1193         return this;
1194       }
1195     }
1196   }
1197   // Split through Phi (see original code in loopopts.cpp).
1198   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1199 
1200   // Do nothing here if Identity will find a value
1201   // (to avoid infinite chain of value phis generation).
1202   if ( !phase->eqv(this, this->Identity(phase)) )
1203     return NULL;
1204 
1205   // Skip the split if the region dominates some control edge of the address.
1206   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1207     return NULL;
1208 
1209   const Type* this_type = this->bottom_type();
1210   int this_index  = phase->C->get_alias_index(addr_t);
1211   int this_offset = addr_t->offset();
1212   int this_iid    = addr_t->is_oopptr()->instance_id();
1213   int wins = 0;
1214   PhaseIterGVN *igvn = phase->is_IterGVN();
1215   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1216   for( uint i = 1; i < region->req(); i++ ) {
1217     Node *x;
1218     Node* the_clone = NULL;
1219     if( region->in(i) == phase->C->top() ) {
1220       x = phase->C->top();      // Dead path?  Use a dead data op
1221     } else {
1222       x = this->clone();        // Else clone up the data op
1223       the_clone = x;            // Remember for possible deletion.
1224       // Alter data node to use pre-phi inputs
1225       if( this->in(0) == region ) {
1226         x->set_req( 0, region->in(i) );
1227       } else {
1228         x->set_req( 0, NULL );
1229       }
1230       for( uint j = 1; j < this->req(); j++ ) {
1231         Node *in = this->in(j);
1232         if( in->is_Phi() && in->in(0) == region )
1233           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1234       }
1235     }
1236     // Check for a 'win' on some paths
1237     const Type *t = x->Value(igvn);
1238 
1239     bool singleton = t->singleton();
1240 
1241     // See comments in PhaseIdealLoop::split_thru_phi().
1242     if( singleton && t == Type::TOP ) {
1243       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1244     }
1245 
1246     if( singleton ) {
1247       wins++;
1248       x = igvn->makecon(t);
1249     } else {
1250       // We now call Identity to try to simplify the cloned node.
1251       // Note that some Identity methods call phase->type(this).
1252       // Make sure that the type array is big enough for
1253       // our new node, even though we may throw the node away.
1254       // (This tweaking with igvn only works because x is a new node.)
1255       igvn->set_type(x, t);
1256       // If x is a TypeNode, capture any more-precise type permanently into Node
1257       // otherwise it will be not updated during igvn->transform since
1258       // igvn->type(x) is set to x->Value() already.
1259       x->raise_bottom_type(t);
1260       Node *y = x->Identity(igvn);
1261       if( y != x ) {
1262         wins++;
1263         x = y;
1264       } else {
1265         y = igvn->hash_find(x);
1266         if( y ) {
1267           wins++;
1268           x = y;
1269         } else {
1270           // Else x is a new node we are keeping
1271           // We do not need register_new_node_with_optimizer
1272           // because set_type has already been called.
1273           igvn->_worklist.push(x);
1274         }
1275       }
1276     }
1277     if (x != the_clone && the_clone != NULL)
1278       igvn->remove_dead_node(the_clone);
1279     phi->set_req(i, x);
1280   }
1281   if( wins > 0 ) {
1282     // Record Phi
1283     igvn->register_new_node_with_optimizer(phi);
1284     return phi;
1285   }
1286   igvn->remove_dead_node(phi);
1287   return NULL;
1288 }
1289 
1290 //------------------------------Ideal------------------------------------------
1291 // If the load is from Field memory and the pointer is non-null, we can
1292 // zero out the control input.
1293 // If the offset is constant and the base is an object allocation,
1294 // try to hook me up to the exact initializing store.
1295 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1296   Node* p = MemNode::Ideal_common(phase, can_reshape);
1297   if (p)  return (p == NodeSentinel) ? NULL : p;
1298 
1299   Node* ctrl    = in(MemNode::Control);
1300   Node* address = in(MemNode::Address);
1301 
1302   // Skip up past a SafePoint control.  Cannot do this for Stores because
1303   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1304   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1305       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1306     ctrl = ctrl->in(0);
1307     set_req(MemNode::Control,ctrl);
1308   }
1309 
1310   // Check for useless control edge in some common special cases
1311   if (in(MemNode::Control) != NULL) {
1312     intptr_t ignore = 0;
1313     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1314     if (base != NULL
1315         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1316         && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw
1317         && all_controls_dominate(base, phase->C->start())) {
1318       // A method-invariant, non-null address (constant or 'this' argument).
1319       set_req(MemNode::Control, NULL);
1320     }
1321   }
1322 
1323   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
1324     Node* base = in(Address)->in(AddPNode::Base);
1325     if (base != NULL) {
1326       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1327       if (is_autobox_object(atp)) {
1328         Node* result = eliminate_autobox(phase);
1329         if (result != NULL) return result;
1330       }
1331     }
1332   }
1333 
1334   Node* mem = in(MemNode::Memory);
1335   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1336 
1337   if (addr_t != NULL) {
1338     // try to optimize our memory input
1339     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1340     if (opt_mem != mem) {
1341       set_req(MemNode::Memory, opt_mem);
1342       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1343       return this;
1344     }
1345     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1346     if (can_reshape && opt_mem->is_Phi() &&
1347         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1348       // Split instance field load through Phi.
1349       Node* result = split_through_phi(phase);
1350       if (result != NULL) return result;
1351     }
1352   }
1353 
1354   // Check for prior store with a different base or offset; make Load
1355   // independent.  Skip through any number of them.  Bail out if the stores
1356   // are in an endless dead cycle and report no progress.  This is a key
1357   // transform for Reflection.  However, if after skipping through the Stores
1358   // we can't then fold up against a prior store do NOT do the transform as
1359   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1360   // array memory alive twice: once for the hoisted Load and again after the
1361   // bypassed Store.  This situation only works if EVERYBODY who does
1362   // anti-dependence work knows how to bypass.  I.e. we need all
1363   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1364   // the alias index stuff.  So instead, peek through Stores and IFF we can
1365   // fold up, do so.
1366   Node* prev_mem = find_previous_store(phase);
1367   // Steps (a), (b):  Walk past independent stores to find an exact match.
1368   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1369     // (c) See if we can fold up on the spot, but don't fold up here.
1370     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1371     // just return a prior value, which is done by Identity calls.
1372     if (can_see_stored_value(prev_mem, phase)) {
1373       // Make ready for step (d):
1374       set_req(MemNode::Memory, prev_mem);
1375       return this;
1376     }
1377   }
1378 
1379   return NULL;                  // No further progress
1380 }
1381 
1382 // Helper to recognize certain Klass fields which are invariant across
1383 // some group of array types (e.g., int[] or all T[] where T < Object).
1384 const Type*
1385 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1386                                  ciKlass* klass) const {
1387   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1388     // The field is Klass::_modifier_flags.  Return its (constant) value.
1389     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1390     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1391     return TypeInt::make(klass->modifier_flags());
1392   }
1393   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1394     // The field is Klass::_access_flags.  Return its (constant) value.
1395     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1396     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1397     return TypeInt::make(klass->access_flags());
1398   }
1399   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1400     // The field is Klass::_layout_helper.  Return its constant value if known.
1401     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1402     return TypeInt::make(klass->layout_helper());
1403   }
1404 
1405   // No match.
1406   return NULL;
1407 }
1408 
1409 //------------------------------Value-----------------------------------------
1410 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1411   // Either input is TOP ==> the result is TOP
1412   Node* mem = in(MemNode::Memory);
1413   const Type *t1 = phase->type(mem);
1414   if (t1 == Type::TOP)  return Type::TOP;
1415   Node* adr = in(MemNode::Address);
1416   const TypePtr* tp = phase->type(adr)->isa_ptr();
1417   if (tp == NULL || tp->empty())  return Type::TOP;
1418   int off = tp->offset();
1419   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1420 
1421   // Try to guess loaded type from pointer type
1422   if (tp->base() == Type::AryPtr) {
1423     const Type *t = tp->is_aryptr()->elem();
1424     // Don't do this for integer types. There is only potential profit if
1425     // the element type t is lower than _type; that is, for int types, if _type is
1426     // more restrictive than t.  This only happens here if one is short and the other
1427     // char (both 16 bits), and in those cases we've made an intentional decision
1428     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1429     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1430     //
1431     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1432     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1433     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1434     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1435     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1436     // In fact, that could have been the original type of p1, and p1 could have
1437     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1438     // expression (LShiftL quux 3) independently optimized to the constant 8.
1439     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1440         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1441       // t might actually be lower than _type, if _type is a unique
1442       // concrete subclass of abstract class t.
1443       // Make sure the reference is not into the header, by comparing
1444       // the offset against the offset of the start of the array's data.
1445       // Different array types begin at slightly different offsets (12 vs. 16).
1446       // We choose T_BYTE as an example base type that is least restrictive
1447       // as to alignment, which will therefore produce the smallest
1448       // possible base offset.
1449       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1450       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1451         const Type* jt = t->join(_type);
1452         // In any case, do not allow the join, per se, to empty out the type.
1453         if (jt->empty() && !t->empty()) {
1454           // This can happen if a interface-typed array narrows to a class type.
1455           jt = _type;
1456         }
1457 
1458         if (EliminateAutoBox) {
1459           // The pointers in the autobox arrays are always non-null
1460           Node* base = in(Address)->in(AddPNode::Base);
1461           if (base != NULL) {
1462             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1463             if (is_autobox_cache(atp)) {
1464               return jt->join(TypePtr::NOTNULL)->is_ptr();
1465             }
1466           }
1467         }
1468         return jt;
1469       }
1470     }
1471   } else if (tp->base() == Type::InstPtr) {
1472     assert( off != Type::OffsetBot ||
1473             // arrays can be cast to Objects
1474             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1475             // unsafe field access may not have a constant offset
1476             phase->C->has_unsafe_access(),
1477             "Field accesses must be precise" );
1478     // For oop loads, we expect the _type to be precise
1479   } else if (tp->base() == Type::KlassPtr) {
1480     assert( off != Type::OffsetBot ||
1481             // arrays can be cast to Objects
1482             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1483             // also allow array-loading from the primary supertype
1484             // array during subtype checks
1485             Opcode() == Op_LoadKlass,
1486             "Field accesses must be precise" );
1487     // For klass/static loads, we expect the _type to be precise
1488   }
1489 
1490   const TypeKlassPtr *tkls = tp->isa_klassptr();
1491   if (tkls != NULL && !StressReflectiveCode) {
1492     ciKlass* klass = tkls->klass();
1493     if (klass->is_loaded() && tkls->klass_is_exact()) {
1494       // We are loading a field from a Klass metaobject whose identity
1495       // is known at compile time (the type is "exact" or "precise").
1496       // Check for fields we know are maintained as constants by the VM.
1497       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1498         // The field is Klass::_super_check_offset.  Return its (constant) value.
1499         // (Folds up type checking code.)
1500         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1501         return TypeInt::make(klass->super_check_offset());
1502       }
1503       // Compute index into primary_supers array
1504       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1505       // Check for overflowing; use unsigned compare to handle the negative case.
1506       if( depth < ciKlass::primary_super_limit() ) {
1507         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1508         // (Folds up type checking code.)
1509         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1510         ciKlass *ss = klass->super_of_depth(depth);
1511         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1512       }
1513       const Type* aift = load_array_final_field(tkls, klass);
1514       if (aift != NULL)  return aift;
1515       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1516           && klass->is_array_klass()) {
1517         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1518         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1519         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1520         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1521       }
1522       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1523         // The field is Klass::_java_mirror.  Return its (constant) value.
1524         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1525         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1526         return TypeInstPtr::make(klass->java_mirror());
1527       }
1528     }
1529 
1530     // We can still check if we are loading from the primary_supers array at a
1531     // shallow enough depth.  Even though the klass is not exact, entries less
1532     // than or equal to its super depth are correct.
1533     if (klass->is_loaded() ) {
1534       ciType *inner = klass->klass();
1535       while( inner->is_obj_array_klass() )
1536         inner = inner->as_obj_array_klass()->base_element_type();
1537       if( inner->is_instance_klass() &&
1538           !inner->as_instance_klass()->flags().is_interface() ) {
1539         // Compute index into primary_supers array
1540         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1541         // Check for overflowing; use unsigned compare to handle the negative case.
1542         if( depth < ciKlass::primary_super_limit() &&
1543             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1544           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1545           // (Folds up type checking code.)
1546           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1547           ciKlass *ss = klass->super_of_depth(depth);
1548           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1549         }
1550       }
1551     }
1552 
1553     // If the type is enough to determine that the thing is not an array,
1554     // we can give the layout_helper a positive interval type.
1555     // This will help short-circuit some reflective code.
1556     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1557         && !klass->is_array_klass() // not directly typed as an array
1558         && !klass->is_interface()  // specifically not Serializable & Cloneable
1559         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1560         ) {
1561       // Note:  When interfaces are reliable, we can narrow the interface
1562       // test to (klass != Serializable && klass != Cloneable).
1563       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1564       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1565       // The key property of this type is that it folds up tests
1566       // for array-ness, since it proves that the layout_helper is positive.
1567       // Thus, a generic value like the basic object layout helper works fine.
1568       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1569     }
1570   }
1571 
1572   // If we are loading from a freshly-allocated object, produce a zero,
1573   // if the load is provably beyond the header of the object.
1574   // (Also allow a variable load from a fresh array to produce zero.)
1575   if (ReduceFieldZeroing) {
1576     Node* value = can_see_stored_value(mem,phase);
1577     if (value != NULL && value->is_Con())
1578       return value->bottom_type();
1579   }
1580 
1581   const TypeOopPtr *tinst = tp->isa_oopptr();
1582   if (tinst != NULL && tinst->is_known_instance_field()) {
1583     // If we have an instance type and our memory input is the
1584     // programs's initial memory state, there is no matching store,
1585     // so just return a zero of the appropriate type
1586     Node *mem = in(MemNode::Memory);
1587     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1588       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1589       return Type::get_zero_type(_type->basic_type());
1590     }
1591   }
1592   return _type;
1593 }
1594 
1595 //------------------------------match_edge-------------------------------------
1596 // Do we Match on this edge index or not?  Match only the address.
1597 uint LoadNode::match_edge(uint idx) const {
1598   return idx == MemNode::Address;
1599 }
1600 
1601 //--------------------------LoadBNode::Ideal--------------------------------------
1602 //
1603 //  If the previous store is to the same address as this load,
1604 //  and the value stored was larger than a byte, replace this load
1605 //  with the value stored truncated to a byte.  If no truncation is
1606 //  needed, the replacement is done in LoadNode::Identity().
1607 //
1608 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1609   Node* mem = in(MemNode::Memory);
1610   Node* value = can_see_stored_value(mem,phase);
1611   if( value && !phase->type(value)->higher_equal( _type ) ) {
1612     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1613     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1614   }
1615   // Identity call will handle the case where truncation is not needed.
1616   return LoadNode::Ideal(phase, can_reshape);
1617 }
1618 
1619 //--------------------------LoadUBNode::Ideal-------------------------------------
1620 //
1621 //  If the previous store is to the same address as this load,
1622 //  and the value stored was larger than a byte, replace this load
1623 //  with the value stored truncated to a byte.  If no truncation is
1624 //  needed, the replacement is done in LoadNode::Identity().
1625 //
1626 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1627   Node* mem = in(MemNode::Memory);
1628   Node* value = can_see_stored_value(mem, phase);
1629   if (value && !phase->type(value)->higher_equal(_type))
1630     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1631   // Identity call will handle the case where truncation is not needed.
1632   return LoadNode::Ideal(phase, can_reshape);
1633 }
1634 
1635 //--------------------------LoadUSNode::Ideal-------------------------------------
1636 //
1637 //  If the previous store is to the same address as this load,
1638 //  and the value stored was larger than a char, replace this load
1639 //  with the value stored truncated to a char.  If no truncation is
1640 //  needed, the replacement is done in LoadNode::Identity().
1641 //
1642 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1643   Node* mem = in(MemNode::Memory);
1644   Node* value = can_see_stored_value(mem,phase);
1645   if( value && !phase->type(value)->higher_equal( _type ) )
1646     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1647   // Identity call will handle the case where truncation is not needed.
1648   return LoadNode::Ideal(phase, can_reshape);
1649 }
1650 
1651 //--------------------------LoadSNode::Ideal--------------------------------------
1652 //
1653 //  If the previous store is to the same address as this load,
1654 //  and the value stored was larger than a short, replace this load
1655 //  with the value stored truncated to a short.  If no truncation is
1656 //  needed, the replacement is done in LoadNode::Identity().
1657 //
1658 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1659   Node* mem = in(MemNode::Memory);
1660   Node* value = can_see_stored_value(mem,phase);
1661   if( value && !phase->type(value)->higher_equal( _type ) ) {
1662     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1663     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1664   }
1665   // Identity call will handle the case where truncation is not needed.
1666   return LoadNode::Ideal(phase, can_reshape);
1667 }
1668 
1669 //=============================================================================
1670 //----------------------------LoadKlassNode::make------------------------------
1671 // Polymorphic factory method:
1672 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1673   Compile* C = gvn.C;
1674   Node *ctl = NULL;
1675   // sanity check the alias category against the created node type
1676   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1677   assert(adr_type != NULL, "expecting TypeOopPtr");
1678 #ifdef _LP64
1679   if (adr_type->is_ptr_to_narrowoop()) {
1680     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1681     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1682   }
1683 #endif
1684   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1685   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1686 }
1687 
1688 //------------------------------Value------------------------------------------
1689 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1690   return klass_value_common(phase);
1691 }
1692 
1693 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1694   // Either input is TOP ==> the result is TOP
1695   const Type *t1 = phase->type( in(MemNode::Memory) );
1696   if (t1 == Type::TOP)  return Type::TOP;
1697   Node *adr = in(MemNode::Address);
1698   const Type *t2 = phase->type( adr );
1699   if (t2 == Type::TOP)  return Type::TOP;
1700   const TypePtr *tp = t2->is_ptr();
1701   if (TypePtr::above_centerline(tp->ptr()) ||
1702       tp->ptr() == TypePtr::Null)  return Type::TOP;
1703 
1704   // Return a more precise klass, if possible
1705   const TypeInstPtr *tinst = tp->isa_instptr();
1706   if (tinst != NULL) {
1707     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1708     int offset = tinst->offset();
1709     if (ik == phase->C->env()->Class_klass()
1710         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1711             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1712       // We are loading a special hidden field from a Class mirror object,
1713       // the field which points to the VM's Klass metaobject.
1714       ciType* t = tinst->java_mirror_type();
1715       // java_mirror_type returns non-null for compile-time Class constants.
1716       if (t != NULL) {
1717         // constant oop => constant klass
1718         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1719           return TypeKlassPtr::make(ciArrayKlass::make(t));
1720         }
1721         if (!t->is_klass()) {
1722           // a primitive Class (e.g., int.class) has NULL for a klass field
1723           return TypePtr::NULL_PTR;
1724         }
1725         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1726         return TypeKlassPtr::make(t->as_klass());
1727       }
1728       // non-constant mirror, so we can't tell what's going on
1729     }
1730     if( !ik->is_loaded() )
1731       return _type;             // Bail out if not loaded
1732     if (offset == oopDesc::klass_offset_in_bytes()) {
1733       if (tinst->klass_is_exact()) {
1734         return TypeKlassPtr::make(ik);
1735       }
1736       // See if we can become precise: no subklasses and no interface
1737       // (Note:  We need to support verified interfaces.)
1738       if (!ik->is_interface() && !ik->has_subklass()) {
1739         //assert(!UseExactTypes, "this code should be useless with exact types");
1740         // Add a dependence; if any subclass added we need to recompile
1741         if (!ik->is_final()) {
1742           // %%% should use stronger assert_unique_concrete_subtype instead
1743           phase->C->dependencies()->assert_leaf_type(ik);
1744         }
1745         // Return precise klass
1746         return TypeKlassPtr::make(ik);
1747       }
1748 
1749       // Return root of possible klass
1750       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1751     }
1752   }
1753 
1754   // Check for loading klass from an array
1755   const TypeAryPtr *tary = tp->isa_aryptr();
1756   if( tary != NULL ) {
1757     ciKlass *tary_klass = tary->klass();
1758     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1759         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1760       if (tary->klass_is_exact()) {
1761         return TypeKlassPtr::make(tary_klass);
1762       }
1763       ciArrayKlass *ak = tary->klass()->as_array_klass();
1764       // If the klass is an object array, we defer the question to the
1765       // array component klass.
1766       if( ak->is_obj_array_klass() ) {
1767         assert( ak->is_loaded(), "" );
1768         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1769         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1770           ciInstanceKlass* ik = base_k->as_instance_klass();
1771           // See if we can become precise: no subklasses and no interface
1772           if (!ik->is_interface() && !ik->has_subklass()) {
1773             //assert(!UseExactTypes, "this code should be useless with exact types");
1774             // Add a dependence; if any subclass added we need to recompile
1775             if (!ik->is_final()) {
1776               phase->C->dependencies()->assert_leaf_type(ik);
1777             }
1778             // Return precise array klass
1779             return TypeKlassPtr::make(ak);
1780           }
1781         }
1782         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1783       } else {                  // Found a type-array?
1784         //assert(!UseExactTypes, "this code should be useless with exact types");
1785         assert( ak->is_type_array_klass(), "" );
1786         return TypeKlassPtr::make(ak); // These are always precise
1787       }
1788     }
1789   }
1790 
1791   // Check for loading klass from an array klass
1792   const TypeKlassPtr *tkls = tp->isa_klassptr();
1793   if (tkls != NULL && !StressReflectiveCode) {
1794     ciKlass* klass = tkls->klass();
1795     if( !klass->is_loaded() )
1796       return _type;             // Bail out if not loaded
1797     if( klass->is_obj_array_klass() &&
1798         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1799       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1800       // // Always returning precise element type is incorrect,
1801       // // e.g., element type could be object and array may contain strings
1802       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1803 
1804       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1805       // according to the element type's subclassing.
1806       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1807     }
1808     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1809         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1810       ciKlass* sup = klass->as_instance_klass()->super();
1811       // The field is Klass::_super.  Return its (constant) value.
1812       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1813       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1814     }
1815   }
1816 
1817   // Bailout case
1818   return LoadNode::Value(phase);
1819 }
1820 
1821 //------------------------------Identity---------------------------------------
1822 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1823 // Also feed through the klass in Allocate(...klass...)._klass.
1824 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1825   return klass_identity_common(phase);
1826 }
1827 
1828 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1829   Node* x = LoadNode::Identity(phase);
1830   if (x != this)  return x;
1831 
1832   // Take apart the address into an oop and and offset.
1833   // Return 'this' if we cannot.
1834   Node*    adr    = in(MemNode::Address);
1835   intptr_t offset = 0;
1836   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1837   if (base == NULL)     return this;
1838   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1839   if (toop == NULL)     return this;
1840 
1841   // We can fetch the klass directly through an AllocateNode.
1842   // This works even if the klass is not constant (clone or newArray).
1843   if (offset == oopDesc::klass_offset_in_bytes()) {
1844     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1845     if (allocated_klass != NULL) {
1846       return allocated_klass;
1847     }
1848   }
1849 
1850   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1851   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1852   // See inline_native_Class_query for occurrences of these patterns.
1853   // Java Example:  x.getClass().isAssignableFrom(y)
1854   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1855   //
1856   // This improves reflective code, often making the Class
1857   // mirror go completely dead.  (Current exception:  Class
1858   // mirrors may appear in debug info, but we could clean them out by
1859   // introducing a new debug info operator for klassOop.java_mirror).
1860   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1861       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1862           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1863     // We are loading a special hidden field from a Class mirror,
1864     // the field which points to its Klass or arrayKlass metaobject.
1865     if (base->is_Load()) {
1866       Node* adr2 = base->in(MemNode::Address);
1867       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1868       if (tkls != NULL && !tkls->empty()
1869           && (tkls->klass()->is_instance_klass() ||
1870               tkls->klass()->is_array_klass())
1871           && adr2->is_AddP()
1872           ) {
1873         int mirror_field = Klass::java_mirror_offset_in_bytes();
1874         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1875           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1876         }
1877         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1878           return adr2->in(AddPNode::Base);
1879         }
1880       }
1881     }
1882   }
1883 
1884   return this;
1885 }
1886 
1887 
1888 //------------------------------Value------------------------------------------
1889 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1890   const Type *t = klass_value_common(phase);
1891   if (t == Type::TOP)
1892     return t;
1893 
1894   return t->make_narrowoop();
1895 }
1896 
1897 //------------------------------Identity---------------------------------------
1898 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1899 // Also feed through the klass in Allocate(...klass...)._klass.
1900 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1901   Node *x = klass_identity_common(phase);
1902 
1903   const Type *t = phase->type( x );
1904   if( t == Type::TOP ) return x;
1905   if( t->isa_narrowoop()) return x;
1906 
1907   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1908 }
1909 
1910 //------------------------------Value-----------------------------------------
1911 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1912   // Either input is TOP ==> the result is TOP
1913   const Type *t1 = phase->type( in(MemNode::Memory) );
1914   if( t1 == Type::TOP ) return Type::TOP;
1915   Node *adr = in(MemNode::Address);
1916   const Type *t2 = phase->type( adr );
1917   if( t2 == Type::TOP ) return Type::TOP;
1918   const TypePtr *tp = t2->is_ptr();
1919   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1920   const TypeAryPtr *tap = tp->isa_aryptr();
1921   if( !tap ) return _type;
1922   return tap->size();
1923 }
1924 
1925 //-------------------------------Ideal---------------------------------------
1926 // Feed through the length in AllocateArray(...length...)._length.
1927 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1928   Node* p = MemNode::Ideal_common(phase, can_reshape);
1929   if (p)  return (p == NodeSentinel) ? NULL : p;
1930 
1931   // Take apart the address into an oop and and offset.
1932   // Return 'this' if we cannot.
1933   Node*    adr    = in(MemNode::Address);
1934   intptr_t offset = 0;
1935   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
1936   if (base == NULL)     return NULL;
1937   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1938   if (tary == NULL)     return NULL;
1939 
1940   // We can fetch the length directly through an AllocateArrayNode.
1941   // This works even if the length is not constant (clone or newArray).
1942   if (offset == arrayOopDesc::length_offset_in_bytes()) {
1943     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1944     if (alloc != NULL) {
1945       Node* allocated_length = alloc->Ideal_length();
1946       Node* len = alloc->make_ideal_length(tary, phase);
1947       if (allocated_length != len) {
1948         // New CastII improves on this.
1949         return len;
1950       }
1951     }
1952   }
1953 
1954   return NULL;
1955 }
1956 
1957 //------------------------------Identity---------------------------------------
1958 // Feed through the length in AllocateArray(...length...)._length.
1959 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1960   Node* x = LoadINode::Identity(phase);
1961   if (x != this)  return x;
1962 
1963   // Take apart the address into an oop and and offset.
1964   // Return 'this' if we cannot.
1965   Node*    adr    = in(MemNode::Address);
1966   intptr_t offset = 0;
1967   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1968   if (base == NULL)     return this;
1969   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1970   if (tary == NULL)     return this;
1971 
1972   // We can fetch the length directly through an AllocateArrayNode.
1973   // This works even if the length is not constant (clone or newArray).
1974   if (offset == arrayOopDesc::length_offset_in_bytes()) {
1975     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1976     if (alloc != NULL) {
1977       Node* allocated_length = alloc->Ideal_length();
1978       // Do not allow make_ideal_length to allocate a CastII node.
1979       Node* len = alloc->make_ideal_length(tary, phase, false);
1980       if (allocated_length == len) {
1981         // Return allocated_length only if it would not be improved by a CastII.
1982         return allocated_length;
1983       }
1984     }
1985   }
1986 
1987   return this;
1988 
1989 }
1990 
1991 //=============================================================================
1992 //---------------------------StoreNode::make-----------------------------------
1993 // Polymorphic factory method:
1994 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
1995   Compile* C = gvn.C;
1996 
1997   switch (bt) {
1998   case T_BOOLEAN:
1999   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2000   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2001   case T_CHAR:
2002   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2003   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2004   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2005   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2006   case T_ADDRESS:
2007   case T_OBJECT:
2008 #ifdef _LP64
2009     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2010         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2011          adr->bottom_type()->isa_rawptr())) {
2012       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2013       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2014     } else
2015 #endif
2016     {
2017       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2018     }
2019   }
2020   ShouldNotReachHere();
2021   return (StoreNode*)NULL;
2022 }
2023 
2024 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2025   bool require_atomic = true;
2026   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2027 }
2028 
2029 
2030 //--------------------------bottom_type----------------------------------------
2031 const Type *StoreNode::bottom_type() const {
2032   return Type::MEMORY;
2033 }
2034 
2035 //------------------------------hash-------------------------------------------
2036 uint StoreNode::hash() const {
2037   // unroll addition of interesting fields
2038   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2039 
2040   // Since they are not commoned, do not hash them:
2041   return NO_HASH;
2042 }
2043 
2044 //------------------------------Ideal------------------------------------------
2045 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2046 // When a store immediately follows a relevant allocation/initialization,
2047 // try to capture it into the initialization, or hoist it above.
2048 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2049   Node* p = MemNode::Ideal_common(phase, can_reshape);
2050   if (p)  return (p == NodeSentinel) ? NULL : p;
2051 
2052   Node* mem     = in(MemNode::Memory);
2053   Node* address = in(MemNode::Address);
2054 
2055   // Back-to-back stores to same address?  Fold em up.
2056   // Generally unsafe if I have intervening uses...
2057   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2058     // Looking at a dead closed cycle of memory?
2059     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2060 
2061     assert(Opcode() == mem->Opcode() ||
2062            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2063            "no mismatched stores, except on raw memory");
2064 
2065     if (mem->outcnt() == 1 &&           // check for intervening uses
2066         mem->as_Store()->memory_size() <= this->memory_size()) {
2067       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2068       // For example, 'mem' might be the final state at a conditional return.
2069       // Or, 'mem' might be used by some node which is live at the same time
2070       // 'this' is live, which might be unschedulable.  So, require exactly
2071       // ONE user, the 'this' store, until such time as we clone 'mem' for
2072       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2073       if (can_reshape) {  // (%%% is this an anachronism?)
2074         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2075                   phase->is_IterGVN());
2076       } else {
2077         // It's OK to do this in the parser, since DU info is always accurate,
2078         // and the parser always refers to nodes via SafePointNode maps.
2079         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2080       }
2081       return this;
2082     }
2083   }
2084 
2085   // Capture an unaliased, unconditional, simple store into an initializer.
2086   // Or, if it is independent of the allocation, hoist it above the allocation.
2087   if (ReduceFieldZeroing && /*can_reshape &&*/
2088       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2089     InitializeNode* init = mem->in(0)->as_Initialize();
2090     intptr_t offset = init->can_capture_store(this, phase);
2091     if (offset > 0) {
2092       Node* moved = init->capture_store(this, offset, phase);
2093       // If the InitializeNode captured me, it made a raw copy of me,
2094       // and I need to disappear.
2095       if (moved != NULL) {
2096         // %%% hack to ensure that Ideal returns a new node:
2097         mem = MergeMemNode::make(phase->C, mem);
2098         return mem;             // fold me away
2099       }
2100     }
2101   }
2102 
2103   return NULL;                  // No further progress
2104 }
2105 
2106 //------------------------------Value-----------------------------------------
2107 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2108   // Either input is TOP ==> the result is TOP
2109   const Type *t1 = phase->type( in(MemNode::Memory) );
2110   if( t1 == Type::TOP ) return Type::TOP;
2111   const Type *t2 = phase->type( in(MemNode::Address) );
2112   if( t2 == Type::TOP ) return Type::TOP;
2113   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2114   if( t3 == Type::TOP ) return Type::TOP;
2115   return Type::MEMORY;
2116 }
2117 
2118 //------------------------------Identity---------------------------------------
2119 // Remove redundant stores:
2120 //   Store(m, p, Load(m, p)) changes to m.
2121 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2122 Node *StoreNode::Identity( PhaseTransform *phase ) {
2123   Node* mem = in(MemNode::Memory);
2124   Node* adr = in(MemNode::Address);
2125   Node* val = in(MemNode::ValueIn);
2126 
2127   // Load then Store?  Then the Store is useless
2128   if (val->is_Load() &&
2129       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2130       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2131       val->as_Load()->store_Opcode() == Opcode()) {
2132     return mem;
2133   }
2134 
2135   // Two stores in a row of the same value?
2136   if (mem->is_Store() &&
2137       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2138       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2139       mem->Opcode() == Opcode()) {
2140     return mem;
2141   }
2142 
2143   // Store of zero anywhere into a freshly-allocated object?
2144   // Then the store is useless.
2145   // (It must already have been captured by the InitializeNode.)
2146   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2147     // a newly allocated object is already all-zeroes everywhere
2148     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2149       return mem;
2150     }
2151 
2152     // the store may also apply to zero-bits in an earlier object
2153     Node* prev_mem = find_previous_store(phase);
2154     // Steps (a), (b):  Walk past independent stores to find an exact match.
2155     if (prev_mem != NULL) {
2156       Node* prev_val = can_see_stored_value(prev_mem, phase);
2157       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2158         // prev_val and val might differ by a cast; it would be good
2159         // to keep the more informative of the two.
2160         return mem;
2161       }
2162     }
2163   }
2164 
2165   return this;
2166 }
2167 
2168 //------------------------------match_edge-------------------------------------
2169 // Do we Match on this edge index or not?  Match only memory & value
2170 uint StoreNode::match_edge(uint idx) const {
2171   return idx == MemNode::Address || idx == MemNode::ValueIn;
2172 }
2173 
2174 //------------------------------cmp--------------------------------------------
2175 // Do not common stores up together.  They generally have to be split
2176 // back up anyways, so do not bother.
2177 uint StoreNode::cmp( const Node &n ) const {
2178   return (&n == this);          // Always fail except on self
2179 }
2180 
2181 //------------------------------Ideal_masked_input-----------------------------
2182 // Check for a useless mask before a partial-word store
2183 // (StoreB ... (AndI valIn conIa) )
2184 // If (conIa & mask == mask) this simplifies to
2185 // (StoreB ... (valIn) )
2186 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2187   Node *val = in(MemNode::ValueIn);
2188   if( val->Opcode() == Op_AndI ) {
2189     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2190     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2191       set_req(MemNode::ValueIn, val->in(1));
2192       return this;
2193     }
2194   }
2195   return NULL;
2196 }
2197 
2198 
2199 //------------------------------Ideal_sign_extended_input----------------------
2200 // Check for useless sign-extension before a partial-word store
2201 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2202 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2203 // (StoreB ... (valIn) )
2204 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2205   Node *val = in(MemNode::ValueIn);
2206   if( val->Opcode() == Op_RShiftI ) {
2207     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2208     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2209       Node *shl = val->in(1);
2210       if( shl->Opcode() == Op_LShiftI ) {
2211         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2212         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2213           set_req(MemNode::ValueIn, shl->in(1));
2214           return this;
2215         }
2216       }
2217     }
2218   }
2219   return NULL;
2220 }
2221 
2222 //------------------------------value_never_loaded-----------------------------------
2223 // Determine whether there are any possible loads of the value stored.
2224 // For simplicity, we actually check if there are any loads from the
2225 // address stored to, not just for loads of the value stored by this node.
2226 //
2227 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2228   Node *adr = in(Address);
2229   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2230   if (adr_oop == NULL)
2231     return false;
2232   if (!adr_oop->is_known_instance_field())
2233     return false; // if not a distinct instance, there may be aliases of the address
2234   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2235     Node *use = adr->fast_out(i);
2236     int opc = use->Opcode();
2237     if (use->is_Load() || use->is_LoadStore()) {
2238       return false;
2239     }
2240   }
2241   return true;
2242 }
2243 
2244 //=============================================================================
2245 //------------------------------Ideal------------------------------------------
2246 // If the store is from an AND mask that leaves the low bits untouched, then
2247 // we can skip the AND operation.  If the store is from a sign-extension
2248 // (a left shift, then right shift) we can skip both.
2249 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2250   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2251   if( progress != NULL ) return progress;
2252 
2253   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2254   if( progress != NULL ) return progress;
2255 
2256   // Finally check the default case
2257   return StoreNode::Ideal(phase, can_reshape);
2258 }
2259 
2260 //=============================================================================
2261 //------------------------------Ideal------------------------------------------
2262 // If the store is from an AND mask that leaves the low bits untouched, then
2263 // we can skip the AND operation
2264 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2265   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2266   if( progress != NULL ) return progress;
2267 
2268   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2269   if( progress != NULL ) return progress;
2270 
2271   // Finally check the default case
2272   return StoreNode::Ideal(phase, can_reshape);
2273 }
2274 
2275 //=============================================================================
2276 //------------------------------Identity---------------------------------------
2277 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2278   // No need to card mark when storing a null ptr
2279   Node* my_store = in(MemNode::OopStore);
2280   if (my_store->is_Store()) {
2281     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2282     if( t1 == TypePtr::NULL_PTR ) {
2283       return in(MemNode::Memory);
2284     }
2285   }
2286   return this;
2287 }
2288 
2289 //------------------------------Value-----------------------------------------
2290 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2291   // Either input is TOP ==> the result is TOP
2292   const Type *t = phase->type( in(MemNode::Memory) );
2293   if( t == Type::TOP ) return Type::TOP;
2294   t = phase->type( in(MemNode::Address) );
2295   if( t == Type::TOP ) return Type::TOP;
2296   t = phase->type( in(MemNode::ValueIn) );
2297   if( t == Type::TOP ) return Type::TOP;
2298   // If extra input is TOP ==> the result is TOP
2299   t = phase->type( in(MemNode::OopStore) );
2300   if( t == Type::TOP ) return Type::TOP;
2301 
2302   return StoreNode::Value( phase );
2303 }
2304 
2305 
2306 //=============================================================================
2307 //----------------------------------SCMemProjNode------------------------------
2308 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2309 {
2310   return bottom_type();
2311 }
2312 
2313 //=============================================================================
2314 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2315   init_req(MemNode::Control, c  );
2316   init_req(MemNode::Memory , mem);
2317   init_req(MemNode::Address, adr);
2318   init_req(MemNode::ValueIn, val);
2319   init_req(         ExpectedIn, ex );
2320   init_class_id(Class_LoadStore);
2321 
2322 }
2323 
2324 //=============================================================================
2325 //-------------------------------adr_type--------------------------------------
2326 // Do we Match on this edge index or not?  Do not match memory
2327 const TypePtr* ClearArrayNode::adr_type() const {
2328   Node *adr = in(3);
2329   return MemNode::calculate_adr_type(adr->bottom_type());
2330 }
2331 
2332 //------------------------------match_edge-------------------------------------
2333 // Do we Match on this edge index or not?  Do not match memory
2334 uint ClearArrayNode::match_edge(uint idx) const {
2335   return idx > 1;
2336 }
2337 
2338 //------------------------------Identity---------------------------------------
2339 // Clearing a zero length array does nothing
2340 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2341   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2342 }
2343 
2344 //------------------------------Idealize---------------------------------------
2345 // Clearing a short array is faster with stores
2346 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2347   const int unit = BytesPerLong;
2348   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2349   if (!t)  return NULL;
2350   if (!t->is_con())  return NULL;
2351   intptr_t raw_count = t->get_con();
2352   intptr_t size = raw_count;
2353   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2354   // Clearing nothing uses the Identity call.
2355   // Negative clears are possible on dead ClearArrays
2356   // (see jck test stmt114.stmt11402.val).
2357   if (size <= 0 || size % unit != 0)  return NULL;
2358   intptr_t count = size / unit;
2359   // Length too long; use fast hardware clear
2360   if (size > Matcher::init_array_short_size)  return NULL;
2361   Node *mem = in(1);
2362   if( phase->type(mem)==Type::TOP ) return NULL;
2363   Node *adr = in(3);
2364   const Type* at = phase->type(adr);
2365   if( at==Type::TOP ) return NULL;
2366   const TypePtr* atp = at->isa_ptr();
2367   // adjust atp to be the correct array element address type
2368   if (atp == NULL)  atp = TypePtr::BOTTOM;
2369   else              atp = atp->add_offset(Type::OffsetBot);
2370   // Get base for derived pointer purposes
2371   if( adr->Opcode() != Op_AddP ) Unimplemented();
2372   Node *base = adr->in(1);
2373 
2374   Node *zero = phase->makecon(TypeLong::ZERO);
2375   Node *off  = phase->MakeConX(BytesPerLong);
2376   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2377   count--;
2378   while( count-- ) {
2379     mem = phase->transform(mem);
2380     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2381     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2382   }
2383   return mem;
2384 }
2385 
2386 //----------------------------clear_memory-------------------------------------
2387 // Generate code to initialize object storage to zero.
2388 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2389                                    intptr_t start_offset,
2390                                    Node* end_offset,
2391                                    PhaseGVN* phase) {
2392   Compile* C = phase->C;
2393   intptr_t offset = start_offset;
2394 
2395   int unit = BytesPerLong;
2396   if ((offset % unit) != 0) {
2397     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2398     adr = phase->transform(adr);
2399     const TypePtr* atp = TypeRawPtr::BOTTOM;
2400     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2401     mem = phase->transform(mem);
2402     offset += BytesPerInt;
2403   }
2404   assert((offset % unit) == 0, "");
2405 
2406   // Initialize the remaining stuff, if any, with a ClearArray.
2407   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2408 }
2409 
2410 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2411                                    Node* start_offset,
2412                                    Node* end_offset,
2413                                    PhaseGVN* phase) {
2414   if (start_offset == end_offset) {
2415     // nothing to do
2416     return mem;
2417   }
2418 
2419   Compile* C = phase->C;
2420   int unit = BytesPerLong;
2421   Node* zbase = start_offset;
2422   Node* zend  = end_offset;
2423 
2424   // Scale to the unit required by the CPU:
2425   if (!Matcher::init_array_count_is_in_bytes) {
2426     Node* shift = phase->intcon(exact_log2(unit));
2427     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2428     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2429   }
2430 
2431   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2432   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2433 
2434   // Bulk clear double-words
2435   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2436   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2437   return phase->transform(mem);
2438 }
2439 
2440 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2441                                    intptr_t start_offset,
2442                                    intptr_t end_offset,
2443                                    PhaseGVN* phase) {
2444   if (start_offset == end_offset) {
2445     // nothing to do
2446     return mem;
2447   }
2448 
2449   Compile* C = phase->C;
2450   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2451   intptr_t done_offset = end_offset;
2452   if ((done_offset % BytesPerLong) != 0) {
2453     done_offset -= BytesPerInt;
2454   }
2455   if (done_offset > start_offset) {
2456     mem = clear_memory(ctl, mem, dest,
2457                        start_offset, phase->MakeConX(done_offset), phase);
2458   }
2459   if (done_offset < end_offset) { // emit the final 32-bit store
2460     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2461     adr = phase->transform(adr);
2462     const TypePtr* atp = TypeRawPtr::BOTTOM;
2463     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2464     mem = phase->transform(mem);
2465     done_offset += BytesPerInt;
2466   }
2467   assert(done_offset == end_offset, "");
2468   return mem;
2469 }
2470 
2471 //=============================================================================
2472 // Do we match on this edge? No memory edges
2473 uint StrCompNode::match_edge(uint idx) const {
2474   return idx == 5 || idx == 6;
2475 }
2476 
2477 //------------------------------Ideal------------------------------------------
2478 // Return a node which is more "ideal" than the current node.  Strip out
2479 // control copies
2480 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2481   return remove_dead_region(phase, can_reshape) ? this : NULL;
2482 }
2483 
2484 // Do we match on this edge? No memory edges
2485 uint StrEqualsNode::match_edge(uint idx) const {
2486   return idx == 5 || idx == 6;
2487 }
2488 
2489 //------------------------------Ideal------------------------------------------
2490 // Return a node which is more "ideal" than the current node.  Strip out
2491 // control copies
2492 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2493   return remove_dead_region(phase, can_reshape) ? this : NULL;
2494 }
2495 
2496 //=============================================================================
2497 // Do we match on this edge? No memory edges
2498 uint StrIndexOfNode::match_edge(uint idx) const {
2499   return idx == 5 || idx == 6;
2500 }
2501 
2502 //------------------------------Ideal------------------------------------------
2503 // Return a node which is more "ideal" than the current node.  Strip out
2504 // control copies
2505 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2506   return remove_dead_region(phase, can_reshape) ? this : NULL;
2507 }
2508 
2509 //------------------------------Ideal------------------------------------------
2510 // Return a node which is more "ideal" than the current node.  Strip out
2511 // control copies
2512 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2513   return remove_dead_region(phase, can_reshape) ? this : NULL;
2514 }
2515 
2516 //=============================================================================
2517 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2518   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2519     _adr_type(C->get_adr_type(alias_idx))
2520 {
2521   init_class_id(Class_MemBar);
2522   Node* top = C->top();
2523   init_req(TypeFunc::I_O,top);
2524   init_req(TypeFunc::FramePtr,top);
2525   init_req(TypeFunc::ReturnAdr,top);
2526   if (precedent != NULL)
2527     init_req(TypeFunc::Parms, precedent);
2528 }
2529 
2530 //------------------------------cmp--------------------------------------------
2531 uint MemBarNode::hash() const { return NO_HASH; }
2532 uint MemBarNode::cmp( const Node &n ) const {
2533   return (&n == this);          // Always fail except on self
2534 }
2535 
2536 //------------------------------make-------------------------------------------
2537 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2538   int len = Precedent + (pn == NULL? 0: 1);
2539   switch (opcode) {
2540   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2541   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2542   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2543   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2544   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2545   default:                 ShouldNotReachHere(); return NULL;
2546   }
2547 }
2548 
2549 //------------------------------Ideal------------------------------------------
2550 // Return a node which is more "ideal" than the current node.  Strip out
2551 // control copies
2552 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2553   return remove_dead_region(phase, can_reshape) ? this : NULL;
2554 }
2555 
2556 //------------------------------Value------------------------------------------
2557 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2558   if( !in(0) ) return Type::TOP;
2559   if( phase->type(in(0)) == Type::TOP )
2560     return Type::TOP;
2561   return TypeTuple::MEMBAR;
2562 }
2563 
2564 //------------------------------match------------------------------------------
2565 // Construct projections for memory.
2566 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2567   switch (proj->_con) {
2568   case TypeFunc::Control:
2569   case TypeFunc::Memory:
2570     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2571   }
2572   ShouldNotReachHere();
2573   return NULL;
2574 }
2575 
2576 //===========================InitializeNode====================================
2577 // SUMMARY:
2578 // This node acts as a memory barrier on raw memory, after some raw stores.
2579 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2580 // The Initialize can 'capture' suitably constrained stores as raw inits.
2581 // It can coalesce related raw stores into larger units (called 'tiles').
2582 // It can avoid zeroing new storage for memory units which have raw inits.
2583 // At macro-expansion, it is marked 'complete', and does not optimize further.
2584 //
2585 // EXAMPLE:
2586 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2587 //   ctl = incoming control; mem* = incoming memory
2588 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2589 // First allocate uninitialized memory and fill in the header:
2590 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2591 //   ctl := alloc.Control; mem* := alloc.Memory*
2592 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2593 // Then initialize to zero the non-header parts of the raw memory block:
2594 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2595 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2596 // After the initialize node executes, the object is ready for service:
2597 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2598 // Suppose its body is immediately initialized as {1,2}:
2599 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2600 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2601 //   mem.SLICE(#short[*]) := store2
2602 //
2603 // DETAILS:
2604 // An InitializeNode collects and isolates object initialization after
2605 // an AllocateNode and before the next possible safepoint.  As a
2606 // memory barrier (MemBarNode), it keeps critical stores from drifting
2607 // down past any safepoint or any publication of the allocation.
2608 // Before this barrier, a newly-allocated object may have uninitialized bits.
2609 // After this barrier, it may be treated as a real oop, and GC is allowed.
2610 //
2611 // The semantics of the InitializeNode include an implicit zeroing of
2612 // the new object from object header to the end of the object.
2613 // (The object header and end are determined by the AllocateNode.)
2614 //
2615 // Certain stores may be added as direct inputs to the InitializeNode.
2616 // These stores must update raw memory, and they must be to addresses
2617 // derived from the raw address produced by AllocateNode, and with
2618 // a constant offset.  They must be ordered by increasing offset.
2619 // The first one is at in(RawStores), the last at in(req()-1).
2620 // Unlike most memory operations, they are not linked in a chain,
2621 // but are displayed in parallel as users of the rawmem output of
2622 // the allocation.
2623 //
2624 // (See comments in InitializeNode::capture_store, which continue
2625 // the example given above.)
2626 //
2627 // When the associated Allocate is macro-expanded, the InitializeNode
2628 // may be rewritten to optimize collected stores.  A ClearArrayNode
2629 // may also be created at that point to represent any required zeroing.
2630 // The InitializeNode is then marked 'complete', prohibiting further
2631 // capturing of nearby memory operations.
2632 //
2633 // During macro-expansion, all captured initializations which store
2634 // constant values of 32 bits or smaller are coalesced (if advantageous)
2635 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2636 // initialized in fewer memory operations.  Memory words which are
2637 // covered by neither tiles nor non-constant stores are pre-zeroed
2638 // by explicit stores of zero.  (The code shape happens to do all
2639 // zeroing first, then all other stores, with both sequences occurring
2640 // in order of ascending offsets.)
2641 //
2642 // Alternatively, code may be inserted between an AllocateNode and its
2643 // InitializeNode, to perform arbitrary initialization of the new object.
2644 // E.g., the object copying intrinsics insert complex data transfers here.
2645 // The initialization must then be marked as 'complete' disable the
2646 // built-in zeroing semantics and the collection of initializing stores.
2647 //
2648 // While an InitializeNode is incomplete, reads from the memory state
2649 // produced by it are optimizable if they match the control edge and
2650 // new oop address associated with the allocation/initialization.
2651 // They return a stored value (if the offset matches) or else zero.
2652 // A write to the memory state, if it matches control and address,
2653 // and if it is to a constant offset, may be 'captured' by the
2654 // InitializeNode.  It is cloned as a raw memory operation and rewired
2655 // inside the initialization, to the raw oop produced by the allocation.
2656 // Operations on addresses which are provably distinct (e.g., to
2657 // other AllocateNodes) are allowed to bypass the initialization.
2658 //
2659 // The effect of all this is to consolidate object initialization
2660 // (both arrays and non-arrays, both piecewise and bulk) into a
2661 // single location, where it can be optimized as a unit.
2662 //
2663 // Only stores with an offset less than TrackedInitializationLimit words
2664 // will be considered for capture by an InitializeNode.  This puts a
2665 // reasonable limit on the complexity of optimized initializations.
2666 
2667 //---------------------------InitializeNode------------------------------------
2668 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2669   : _is_complete(false),
2670     MemBarNode(C, adr_type, rawoop)
2671 {
2672   init_class_id(Class_Initialize);
2673 
2674   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2675   assert(in(RawAddress) == rawoop, "proper init");
2676   // Note:  allocation() can be NULL, for secondary initialization barriers
2677 }
2678 
2679 // Since this node is not matched, it will be processed by the
2680 // register allocator.  Declare that there are no constraints
2681 // on the allocation of the RawAddress edge.
2682 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2683   // This edge should be set to top, by the set_complete.  But be conservative.
2684   if (idx == InitializeNode::RawAddress)
2685     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2686   return RegMask::Empty;
2687 }
2688 
2689 Node* InitializeNode::memory(uint alias_idx) {
2690   Node* mem = in(Memory);
2691   if (mem->is_MergeMem()) {
2692     return mem->as_MergeMem()->memory_at(alias_idx);
2693   } else {
2694     // incoming raw memory is not split
2695     return mem;
2696   }
2697 }
2698 
2699 bool InitializeNode::is_non_zero() {
2700   if (is_complete())  return false;
2701   remove_extra_zeroes();
2702   return (req() > RawStores);
2703 }
2704 
2705 void InitializeNode::set_complete(PhaseGVN* phase) {
2706   assert(!is_complete(), "caller responsibility");
2707   _is_complete = true;
2708 
2709   // After this node is complete, it contains a bunch of
2710   // raw-memory initializations.  There is no need for
2711   // it to have anything to do with non-raw memory effects.
2712   // Therefore, tell all non-raw users to re-optimize themselves,
2713   // after skipping the memory effects of this initialization.
2714   PhaseIterGVN* igvn = phase->is_IterGVN();
2715   if (igvn)  igvn->add_users_to_worklist(this);
2716 }
2717 
2718 // convenience function
2719 // return false if the init contains any stores already
2720 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2721   InitializeNode* init = initialization();
2722   if (init == NULL || init->is_complete())  return false;
2723   init->remove_extra_zeroes();
2724   // for now, if this allocation has already collected any inits, bail:
2725   if (init->is_non_zero())  return false;
2726   init->set_complete(phase);
2727   return true;
2728 }
2729 
2730 void InitializeNode::remove_extra_zeroes() {
2731   if (req() == RawStores)  return;
2732   Node* zmem = zero_memory();
2733   uint fill = RawStores;
2734   for (uint i = fill; i < req(); i++) {
2735     Node* n = in(i);
2736     if (n->is_top() || n == zmem)  continue;  // skip
2737     if (fill < i)  set_req(fill, n);          // compact
2738     ++fill;
2739   }
2740   // delete any empty spaces created:
2741   while (fill < req()) {
2742     del_req(fill);
2743   }
2744 }
2745 
2746 // Helper for remembering which stores go with which offsets.
2747 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2748   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2749   intptr_t offset = -1;
2750   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2751                                                phase, offset);
2752   if (base == NULL)     return -1;  // something is dead,
2753   if (offset < 0)       return -1;  //        dead, dead
2754   return offset;
2755 }
2756 
2757 // Helper for proving that an initialization expression is
2758 // "simple enough" to be folded into an object initialization.
2759 // Attempts to prove that a store's initial value 'n' can be captured
2760 // within the initialization without creating a vicious cycle, such as:
2761 //     { Foo p = new Foo(); p.next = p; }
2762 // True for constants and parameters and small combinations thereof.
2763 bool InitializeNode::detect_init_independence(Node* n,
2764                                               bool st_is_pinned,
2765                                               int& count) {
2766   if (n == NULL)      return true;   // (can this really happen?)
2767   if (n->is_Proj())   n = n->in(0);
2768   if (n == this)      return false;  // found a cycle
2769   if (n->is_Con())    return true;
2770   if (n->is_Start())  return true;   // params, etc., are OK
2771   if (n->is_Root())   return true;   // even better
2772 
2773   Node* ctl = n->in(0);
2774   if (ctl != NULL && !ctl->is_top()) {
2775     if (ctl->is_Proj())  ctl = ctl->in(0);
2776     if (ctl == this)  return false;
2777 
2778     // If we already know that the enclosing memory op is pinned right after
2779     // the init, then any control flow that the store has picked up
2780     // must have preceded the init, or else be equal to the init.
2781     // Even after loop optimizations (which might change control edges)
2782     // a store is never pinned *before* the availability of its inputs.
2783     if (!MemNode::all_controls_dominate(n, this))
2784       return false;                  // failed to prove a good control
2785 
2786   }
2787 
2788   // Check data edges for possible dependencies on 'this'.
2789   if ((count += 1) > 20)  return false;  // complexity limit
2790   for (uint i = 1; i < n->req(); i++) {
2791     Node* m = n->in(i);
2792     if (m == NULL || m == n || m->is_top())  continue;
2793     uint first_i = n->find_edge(m);
2794     if (i != first_i)  continue;  // process duplicate edge just once
2795     if (!detect_init_independence(m, st_is_pinned, count)) {
2796       return false;
2797     }
2798   }
2799 
2800   return true;
2801 }
2802 
2803 // Here are all the checks a Store must pass before it can be moved into
2804 // an initialization.  Returns zero if a check fails.
2805 // On success, returns the (constant) offset to which the store applies,
2806 // within the initialized memory.
2807 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2808   const int FAIL = 0;
2809   if (st->req() != MemNode::ValueIn + 1)
2810     return FAIL;                // an inscrutable StoreNode (card mark?)
2811   Node* ctl = st->in(MemNode::Control);
2812   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2813     return FAIL;                // must be unconditional after the initialization
2814   Node* mem = st->in(MemNode::Memory);
2815   if (!(mem->is_Proj() && mem->in(0) == this))
2816     return FAIL;                // must not be preceded by other stores
2817   Node* adr = st->in(MemNode::Address);
2818   intptr_t offset;
2819   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2820   if (alloc == NULL)
2821     return FAIL;                // inscrutable address
2822   if (alloc != allocation())
2823     return FAIL;                // wrong allocation!  (store needs to float up)
2824   Node* val = st->in(MemNode::ValueIn);
2825   int complexity_count = 0;
2826   if (!detect_init_independence(val, true, complexity_count))
2827     return FAIL;                // stored value must be 'simple enough'
2828 
2829   return offset;                // success
2830 }
2831 
2832 // Find the captured store in(i) which corresponds to the range
2833 // [start..start+size) in the initialized object.
2834 // If there is one, return its index i.  If there isn't, return the
2835 // negative of the index where it should be inserted.
2836 // Return 0 if the queried range overlaps an initialization boundary
2837 // or if dead code is encountered.
2838 // If size_in_bytes is zero, do not bother with overlap checks.
2839 int InitializeNode::captured_store_insertion_point(intptr_t start,
2840                                                    int size_in_bytes,
2841                                                    PhaseTransform* phase) {
2842   const int FAIL = 0, MAX_STORE = BytesPerLong;
2843 
2844   if (is_complete())
2845     return FAIL;                // arraycopy got here first; punt
2846 
2847   assert(allocation() != NULL, "must be present");
2848 
2849   // no negatives, no header fields:
2850   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2851 
2852   // after a certain size, we bail out on tracking all the stores:
2853   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2854   if (start >= ti_limit)  return FAIL;
2855 
2856   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2857     if (i >= limit)  return -(int)i; // not found; here is where to put it
2858 
2859     Node*    st     = in(i);
2860     intptr_t st_off = get_store_offset(st, phase);
2861     if (st_off < 0) {
2862       if (st != zero_memory()) {
2863         return FAIL;            // bail out if there is dead garbage
2864       }
2865     } else if (st_off > start) {
2866       // ...we are done, since stores are ordered
2867       if (st_off < start + size_in_bytes) {
2868         return FAIL;            // the next store overlaps
2869       }
2870       return -(int)i;           // not found; here is where to put it
2871     } else if (st_off < start) {
2872       if (size_in_bytes != 0 &&
2873           start < st_off + MAX_STORE &&
2874           start < st_off + st->as_Store()->memory_size()) {
2875         return FAIL;            // the previous store overlaps
2876       }
2877     } else {
2878       if (size_in_bytes != 0 &&
2879           st->as_Store()->memory_size() != size_in_bytes) {
2880         return FAIL;            // mismatched store size
2881       }
2882       return i;
2883     }
2884 
2885     ++i;
2886   }
2887 }
2888 
2889 // Look for a captured store which initializes at the offset 'start'
2890 // with the given size.  If there is no such store, and no other
2891 // initialization interferes, then return zero_memory (the memory
2892 // projection of the AllocateNode).
2893 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2894                                           PhaseTransform* phase) {
2895   assert(stores_are_sane(phase), "");
2896   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2897   if (i == 0) {
2898     return NULL;                // something is dead
2899   } else if (i < 0) {
2900     return zero_memory();       // just primordial zero bits here
2901   } else {
2902     Node* st = in(i);           // here is the store at this position
2903     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2904     return st;
2905   }
2906 }
2907 
2908 // Create, as a raw pointer, an address within my new object at 'offset'.
2909 Node* InitializeNode::make_raw_address(intptr_t offset,
2910                                        PhaseTransform* phase) {
2911   Node* addr = in(RawAddress);
2912   if (offset != 0) {
2913     Compile* C = phase->C;
2914     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2915                                                  phase->MakeConX(offset)) );
2916   }
2917   return addr;
2918 }
2919 
2920 // Clone the given store, converting it into a raw store
2921 // initializing a field or element of my new object.
2922 // Caller is responsible for retiring the original store,
2923 // with subsume_node or the like.
2924 //
2925 // From the example above InitializeNode::InitializeNode,
2926 // here are the old stores to be captured:
2927 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2928 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2929 //
2930 // Here is the changed code; note the extra edges on init:
2931 //   alloc = (Allocate ...)
2932 //   rawoop = alloc.RawAddress
2933 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2934 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2935 //   init = (Initialize alloc.Control alloc.Memory rawoop
2936 //                      rawstore1 rawstore2)
2937 //
2938 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2939                                     PhaseTransform* phase) {
2940   assert(stores_are_sane(phase), "");
2941 
2942   if (start < 0)  return NULL;
2943   assert(can_capture_store(st, phase) == start, "sanity");
2944 
2945   Compile* C = phase->C;
2946   int size_in_bytes = st->memory_size();
2947   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2948   if (i == 0)  return NULL;     // bail out
2949   Node* prev_mem = NULL;        // raw memory for the captured store
2950   if (i > 0) {
2951     prev_mem = in(i);           // there is a pre-existing store under this one
2952     set_req(i, C->top());       // temporarily disconnect it
2953     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2954   } else {
2955     i = -i;                     // no pre-existing store
2956     prev_mem = zero_memory();   // a slice of the newly allocated object
2957     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2958       set_req(--i, C->top());   // reuse this edge; it has been folded away
2959     else
2960       ins_req(i, C->top());     // build a new edge
2961   }
2962   Node* new_st = st->clone();
2963   new_st->set_req(MemNode::Control, in(Control));
2964   new_st->set_req(MemNode::Memory,  prev_mem);
2965   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2966   new_st = phase->transform(new_st);
2967 
2968   // At this point, new_st might have swallowed a pre-existing store
2969   // at the same offset, or perhaps new_st might have disappeared,
2970   // if it redundantly stored the same value (or zero to fresh memory).
2971 
2972   // In any case, wire it in:
2973   set_req(i, new_st);
2974 
2975   // The caller may now kill the old guy.
2976   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
2977   assert(check_st == new_st || check_st == NULL, "must be findable");
2978   assert(!is_complete(), "");
2979   return new_st;
2980 }
2981 
2982 static bool store_constant(jlong* tiles, int num_tiles,
2983                            intptr_t st_off, int st_size,
2984                            jlong con) {
2985   if ((st_off & (st_size-1)) != 0)
2986     return false;               // strange store offset (assume size==2**N)
2987   address addr = (address)tiles + st_off;
2988   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
2989   switch (st_size) {
2990   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
2991   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
2992   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
2993   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
2994   default: return false;        // strange store size (detect size!=2**N here)
2995   }
2996   return true;                  // return success to caller
2997 }
2998 
2999 // Coalesce subword constants into int constants and possibly
3000 // into long constants.  The goal, if the CPU permits,
3001 // is to initialize the object with a small number of 64-bit tiles.
3002 // Also, convert floating-point constants to bit patterns.
3003 // Non-constants are not relevant to this pass.
3004 //
3005 // In terms of the running example on InitializeNode::InitializeNode
3006 // and InitializeNode::capture_store, here is the transformation
3007 // of rawstore1 and rawstore2 into rawstore12:
3008 //   alloc = (Allocate ...)
3009 //   rawoop = alloc.RawAddress
3010 //   tile12 = 0x00010002
3011 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3012 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3013 //
3014 void
3015 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3016                                         Node* size_in_bytes,
3017                                         PhaseGVN* phase) {
3018   Compile* C = phase->C;
3019 
3020   assert(stores_are_sane(phase), "");
3021   // Note:  After this pass, they are not completely sane,
3022   // since there may be some overlaps.
3023 
3024   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3025 
3026   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3027   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3028   size_limit = MIN2(size_limit, ti_limit);
3029   size_limit = align_size_up(size_limit, BytesPerLong);
3030   int num_tiles = size_limit / BytesPerLong;
3031 
3032   // allocate space for the tile map:
3033   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3034   jlong  tiles_buf[small_len];
3035   Node*  nodes_buf[small_len];
3036   jlong  inits_buf[small_len];
3037   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3038                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3039   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3040                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3041   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3042                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3043   // tiles: exact bitwise model of all primitive constants
3044   // nodes: last constant-storing node subsumed into the tiles model
3045   // inits: which bytes (in each tile) are touched by any initializations
3046 
3047   //// Pass A: Fill in the tile model with any relevant stores.
3048 
3049   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3050   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3051   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3052   Node* zmem = zero_memory(); // initially zero memory state
3053   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3054     Node* st = in(i);
3055     intptr_t st_off = get_store_offset(st, phase);
3056 
3057     // Figure out the store's offset and constant value:
3058     if (st_off < header_size)             continue; //skip (ignore header)
3059     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3060     int st_size = st->as_Store()->memory_size();
3061     if (st_off + st_size > size_limit)    break;
3062 
3063     // Record which bytes are touched, whether by constant or not.
3064     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3065       continue;                 // skip (strange store size)
3066 
3067     const Type* val = phase->type(st->in(MemNode::ValueIn));
3068     if (!val->singleton())                continue; //skip (non-con store)
3069     BasicType type = val->basic_type();
3070 
3071     jlong con = 0;
3072     switch (type) {
3073     case T_INT:    con = val->is_int()->get_con();  break;
3074     case T_LONG:   con = val->is_long()->get_con(); break;
3075     case T_FLOAT:  con = jint_cast(val->getf());    break;
3076     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3077     default:                              continue; //skip (odd store type)
3078     }
3079 
3080     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3081         st->Opcode() == Op_StoreL) {
3082       continue;                 // This StoreL is already optimal.
3083     }
3084 
3085     // Store down the constant.
3086     store_constant(tiles, num_tiles, st_off, st_size, con);
3087 
3088     intptr_t j = st_off >> LogBytesPerLong;
3089 
3090     if (type == T_INT && st_size == BytesPerInt
3091         && (st_off & BytesPerInt) == BytesPerInt) {
3092       jlong lcon = tiles[j];
3093       if (!Matcher::isSimpleConstant64(lcon) &&
3094           st->Opcode() == Op_StoreI) {
3095         // This StoreI is already optimal by itself.
3096         jint* intcon = (jint*) &tiles[j];
3097         intcon[1] = 0;  // undo the store_constant()
3098 
3099         // If the previous store is also optimal by itself, back up and
3100         // undo the action of the previous loop iteration... if we can.
3101         // But if we can't, just let the previous half take care of itself.
3102         st = nodes[j];
3103         st_off -= BytesPerInt;
3104         con = intcon[0];
3105         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3106           assert(st_off >= header_size, "still ignoring header");
3107           assert(get_store_offset(st, phase) == st_off, "must be");
3108           assert(in(i-1) == zmem, "must be");
3109           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3110           assert(con == tcon->is_int()->get_con(), "must be");
3111           // Undo the effects of the previous loop trip, which swallowed st:
3112           intcon[0] = 0;        // undo store_constant()
3113           set_req(i-1, st);     // undo set_req(i, zmem)
3114           nodes[j] = NULL;      // undo nodes[j] = st
3115           --old_subword;        // undo ++old_subword
3116         }
3117         continue;               // This StoreI is already optimal.
3118       }
3119     }
3120 
3121     // This store is not needed.
3122     set_req(i, zmem);
3123     nodes[j] = st;              // record for the moment
3124     if (st_size < BytesPerLong) // something has changed
3125           ++old_subword;        // includes int/float, but who's counting...
3126     else  ++old_long;
3127   }
3128 
3129   if ((old_subword + old_long) == 0)
3130     return;                     // nothing more to do
3131 
3132   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3133   // Be sure to insert them before overlapping non-constant stores.
3134   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3135   for (int j = 0; j < num_tiles; j++) {
3136     jlong con  = tiles[j];
3137     jlong init = inits[j];
3138     if (con == 0)  continue;
3139     jint con0,  con1;           // split the constant, address-wise
3140     jint init0, init1;          // split the init map, address-wise
3141     { union { jlong con; jint intcon[2]; } u;
3142       u.con = con;
3143       con0  = u.intcon[0];
3144       con1  = u.intcon[1];
3145       u.con = init;
3146       init0 = u.intcon[0];
3147       init1 = u.intcon[1];
3148     }
3149 
3150     Node* old = nodes[j];
3151     assert(old != NULL, "need the prior store");
3152     intptr_t offset = (j * BytesPerLong);
3153 
3154     bool split = !Matcher::isSimpleConstant64(con);
3155 
3156     if (offset < header_size) {
3157       assert(offset + BytesPerInt >= header_size, "second int counts");
3158       assert(*(jint*)&tiles[j] == 0, "junk in header");
3159       split = true;             // only the second word counts
3160       // Example:  int a[] = { 42 ... }
3161     } else if (con0 == 0 && init0 == -1) {
3162       split = true;             // first word is covered by full inits
3163       // Example:  int a[] = { ... foo(), 42 ... }
3164     } else if (con1 == 0 && init1 == -1) {
3165       split = true;             // second word is covered by full inits
3166       // Example:  int a[] = { ... 42, foo() ... }
3167     }
3168 
3169     // Here's a case where init0 is neither 0 nor -1:
3170     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3171     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3172     // In this case the tile is not split; it is (jlong)42.
3173     // The big tile is stored down, and then the foo() value is inserted.
3174     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3175 
3176     Node* ctl = old->in(MemNode::Control);
3177     Node* adr = make_raw_address(offset, phase);
3178     const TypePtr* atp = TypeRawPtr::BOTTOM;
3179 
3180     // One or two coalesced stores to plop down.
3181     Node*    st[2];
3182     intptr_t off[2];
3183     int  nst = 0;
3184     if (!split) {
3185       ++new_long;
3186       off[nst] = offset;
3187       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3188                                   phase->longcon(con), T_LONG);
3189     } else {
3190       // Omit either if it is a zero.
3191       if (con0 != 0) {
3192         ++new_int;
3193         off[nst]  = offset;
3194         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3195                                     phase->intcon(con0), T_INT);
3196       }
3197       if (con1 != 0) {
3198         ++new_int;
3199         offset += BytesPerInt;
3200         adr = make_raw_address(offset, phase);
3201         off[nst]  = offset;
3202         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3203                                     phase->intcon(con1), T_INT);
3204       }
3205     }
3206 
3207     // Insert second store first, then the first before the second.
3208     // Insert each one just before any overlapping non-constant stores.
3209     while (nst > 0) {
3210       Node* st1 = st[--nst];
3211       C->copy_node_notes_to(st1, old);
3212       st1 = phase->transform(st1);
3213       offset = off[nst];
3214       assert(offset >= header_size, "do not smash header");
3215       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3216       guarantee(ins_idx != 0, "must re-insert constant store");
3217       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3218       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3219         set_req(--ins_idx, st1);
3220       else
3221         ins_req(ins_idx, st1);
3222     }
3223   }
3224 
3225   if (PrintCompilation && WizardMode)
3226     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3227                   old_subword, old_long, new_int, new_long);
3228   if (C->log() != NULL)
3229     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3230                    old_subword, old_long, new_int, new_long);
3231 
3232   // Clean up any remaining occurrences of zmem:
3233   remove_extra_zeroes();
3234 }
3235 
3236 // Explore forward from in(start) to find the first fully initialized
3237 // word, and return its offset.  Skip groups of subword stores which
3238 // together initialize full words.  If in(start) is itself part of a
3239 // fully initialized word, return the offset of in(start).  If there
3240 // are no following full-word stores, or if something is fishy, return
3241 // a negative value.
3242 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3243   int       int_map = 0;
3244   intptr_t  int_map_off = 0;
3245   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3246 
3247   for (uint i = start, limit = req(); i < limit; i++) {
3248     Node* st = in(i);
3249 
3250     intptr_t st_off = get_store_offset(st, phase);
3251     if (st_off < 0)  break;  // return conservative answer
3252 
3253     int st_size = st->as_Store()->memory_size();
3254     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3255       return st_off;            // we found a complete word init
3256     }
3257 
3258     // update the map:
3259 
3260     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3261     if (this_int_off != int_map_off) {
3262       // reset the map:
3263       int_map = 0;
3264       int_map_off = this_int_off;
3265     }
3266 
3267     int subword_off = st_off - this_int_off;
3268     int_map |= right_n_bits(st_size) << subword_off;
3269     if ((int_map & FULL_MAP) == FULL_MAP) {
3270       return this_int_off;      // we found a complete word init
3271     }
3272 
3273     // Did this store hit or cross the word boundary?
3274     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3275     if (next_int_off == this_int_off + BytesPerInt) {
3276       // We passed the current int, without fully initializing it.
3277       int_map_off = next_int_off;
3278       int_map >>= BytesPerInt;
3279     } else if (next_int_off > this_int_off + BytesPerInt) {
3280       // We passed the current and next int.
3281       return this_int_off + BytesPerInt;
3282     }
3283   }
3284 
3285   return -1;
3286 }
3287 
3288 
3289 // Called when the associated AllocateNode is expanded into CFG.
3290 // At this point, we may perform additional optimizations.
3291 // Linearize the stores by ascending offset, to make memory
3292 // activity as coherent as possible.
3293 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3294                                       intptr_t header_size,
3295                                       Node* size_in_bytes,
3296                                       PhaseGVN* phase) {
3297   assert(!is_complete(), "not already complete");
3298   assert(stores_are_sane(phase), "");
3299   assert(allocation() != NULL, "must be present");
3300 
3301   remove_extra_zeroes();
3302 
3303   if (ReduceFieldZeroing || ReduceBulkZeroing)
3304     // reduce instruction count for common initialization patterns
3305     coalesce_subword_stores(header_size, size_in_bytes, phase);
3306 
3307   Node* zmem = zero_memory();   // initially zero memory state
3308   Node* inits = zmem;           // accumulating a linearized chain of inits
3309   #ifdef ASSERT
3310   intptr_t first_offset = allocation()->minimum_header_size();
3311   intptr_t last_init_off = first_offset;  // previous init offset
3312   intptr_t last_init_end = first_offset;  // previous init offset+size
3313   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3314   #endif
3315   intptr_t zeroes_done = header_size;
3316 
3317   bool do_zeroing = true;       // we might give up if inits are very sparse
3318   int  big_init_gaps = 0;       // how many large gaps have we seen?
3319 
3320   if (ZeroTLAB)  do_zeroing = false;
3321   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3322 
3323   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3324     Node* st = in(i);
3325     intptr_t st_off = get_store_offset(st, phase);
3326     if (st_off < 0)
3327       break;                    // unknown junk in the inits
3328     if (st->in(MemNode::Memory) != zmem)
3329       break;                    // complicated store chains somehow in list
3330 
3331     int st_size = st->as_Store()->memory_size();
3332     intptr_t next_init_off = st_off + st_size;
3333 
3334     if (do_zeroing && zeroes_done < next_init_off) {
3335       // See if this store needs a zero before it or under it.
3336       intptr_t zeroes_needed = st_off;
3337 
3338       if (st_size < BytesPerInt) {
3339         // Look for subword stores which only partially initialize words.
3340         // If we find some, we must lay down some word-level zeroes first,
3341         // underneath the subword stores.
3342         //
3343         // Examples:
3344         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3345         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3346         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3347         //
3348         // Note:  coalesce_subword_stores may have already done this,
3349         // if it was prompted by constant non-zero subword initializers.
3350         // But this case can still arise with non-constant stores.
3351 
3352         intptr_t next_full_store = find_next_fullword_store(i, phase);
3353 
3354         // In the examples above:
3355         //   in(i)          p   q   r   s     x   y     z
3356         //   st_off        12  13  14  15    12  13    14
3357         //   st_size        1   1   1   1     1   1     1
3358         //   next_full_s.  12  16  16  16    16  16    16
3359         //   z's_done      12  16  16  16    12  16    12
3360         //   z's_needed    12  16  16  16    16  16    16
3361         //   zsize          0   0   0   0     4   0     4
3362         if (next_full_store < 0) {
3363           // Conservative tack:  Zero to end of current word.
3364           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3365         } else {
3366           // Zero to beginning of next fully initialized word.
3367           // Or, don't zero at all, if we are already in that word.
3368           assert(next_full_store >= zeroes_needed, "must go forward");
3369           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3370           zeroes_needed = next_full_store;
3371         }
3372       }
3373 
3374       if (zeroes_needed > zeroes_done) {
3375         intptr_t zsize = zeroes_needed - zeroes_done;
3376         // Do some incremental zeroing on rawmem, in parallel with inits.
3377         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3378         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3379                                               zeroes_done, zeroes_needed,
3380                                               phase);
3381         zeroes_done = zeroes_needed;
3382         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3383           do_zeroing = false;   // leave the hole, next time
3384       }
3385     }
3386 
3387     // Collect the store and move on:
3388     st->set_req(MemNode::Memory, inits);
3389     inits = st;                 // put it on the linearized chain
3390     set_req(i, zmem);           // unhook from previous position
3391 
3392     if (zeroes_done == st_off)
3393       zeroes_done = next_init_off;
3394 
3395     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3396 
3397     #ifdef ASSERT
3398     // Various order invariants.  Weaker than stores_are_sane because
3399     // a large constant tile can be filled in by smaller non-constant stores.
3400     assert(st_off >= last_init_off, "inits do not reverse");
3401     last_init_off = st_off;
3402     const Type* val = NULL;
3403     if (st_size >= BytesPerInt &&
3404         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3405         (int)val->basic_type() < (int)T_OBJECT) {
3406       assert(st_off >= last_tile_end, "tiles do not overlap");
3407       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3408       last_tile_end = MAX2(last_tile_end, next_init_off);
3409     } else {
3410       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3411       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3412       assert(st_off      >= last_init_end, "inits do not overlap");
3413       last_init_end = next_init_off;  // it's a non-tile
3414     }
3415     #endif //ASSERT
3416   }
3417 
3418   remove_extra_zeroes();        // clear out all the zmems left over
3419   add_req(inits);
3420 
3421   if (!ZeroTLAB) {
3422     // If anything remains to be zeroed, zero it all now.
3423     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3424     // if it is the last unused 4 bytes of an instance, forget about it
3425     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3426     if (zeroes_done + BytesPerLong >= size_limit) {
3427       assert(allocation() != NULL, "");
3428       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3429       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3430       if (zeroes_done == k->layout_helper())
3431         zeroes_done = size_limit;
3432     }
3433     if (zeroes_done < size_limit) {
3434       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3435                                             zeroes_done, size_in_bytes, phase);
3436     }
3437   }
3438 
3439   set_complete(phase);
3440   return rawmem;
3441 }
3442 
3443 
3444 #ifdef ASSERT
3445 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3446   if (is_complete())
3447     return true;                // stores could be anything at this point
3448   assert(allocation() != NULL, "must be present");
3449   intptr_t last_off = allocation()->minimum_header_size();
3450   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3451     Node* st = in(i);
3452     intptr_t st_off = get_store_offset(st, phase);
3453     if (st_off < 0)  continue;  // ignore dead garbage
3454     if (last_off > st_off) {
3455       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3456       this->dump(2);
3457       assert(false, "ascending store offsets");
3458       return false;
3459     }
3460     last_off = st_off + st->as_Store()->memory_size();
3461   }
3462   return true;
3463 }
3464 #endif //ASSERT
3465 
3466 
3467 
3468 
3469 //============================MergeMemNode=====================================
3470 //
3471 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3472 // contributing store or call operations.  Each contributor provides the memory
3473 // state for a particular "alias type" (see Compile::alias_type).  For example,
3474 // if a MergeMem has an input X for alias category #6, then any memory reference
3475 // to alias category #6 may use X as its memory state input, as an exact equivalent
3476 // to using the MergeMem as a whole.
3477 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3478 //
3479 // (Here, the <N> notation gives the index of the relevant adr_type.)
3480 //
3481 // In one special case (and more cases in the future), alias categories overlap.
3482 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3483 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3484 // it is exactly equivalent to that state W:
3485 //   MergeMem(<Bot>: W) <==> W
3486 //
3487 // Usually, the merge has more than one input.  In that case, where inputs
3488 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3489 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3490 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3491 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3492 //
3493 // A merge can take a "wide" memory state as one of its narrow inputs.
3494 // This simply means that the merge observes out only the relevant parts of
3495 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3496 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3497 //
3498 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3499 // and that memory slices "leak through":
3500 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3501 //
3502 // But, in such a cascade, repeated memory slices can "block the leak":
3503 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3504 //
3505 // In the last example, Y is not part of the combined memory state of the
3506 // outermost MergeMem.  The system must, of course, prevent unschedulable
3507 // memory states from arising, so you can be sure that the state Y is somehow
3508 // a precursor to state Y'.
3509 //
3510 //
3511 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3512 // of each MergeMemNode array are exactly the numerical alias indexes, including
3513 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3514 // Compile::alias_type (and kin) produce and manage these indexes.
3515 //
3516 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3517 // (Note that this provides quick access to the top node inside MergeMem methods,
3518 // without the need to reach out via TLS to Compile::current.)
3519 //
3520 // As a consequence of what was just described, a MergeMem that represents a full
3521 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3522 // containing all alias categories.
3523 //
3524 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3525 //
3526 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3527 // a memory state for the alias type <N>, or else the top node, meaning that
3528 // there is no particular input for that alias type.  Note that the length of
3529 // a MergeMem is variable, and may be extended at any time to accommodate new
3530 // memory states at larger alias indexes.  When merges grow, they are of course
3531 // filled with "top" in the unused in() positions.
3532 //
3533 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3534 // (Top was chosen because it works smoothly with passes like GCM.)
3535 //
3536 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3537 // the type of random VM bits like TLS references.)  Since it is always the
3538 // first non-Bot memory slice, some low-level loops use it to initialize an
3539 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3540 //
3541 //
3542 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3543 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3544 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3545 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3546 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3547 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3548 //
3549 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3550 // really that different from the other memory inputs.  An abbreviation called
3551 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3552 //
3553 //
3554 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3555 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3556 // that "emerges though" the base memory will be marked as excluding the alias types
3557 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3558 //
3559 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3560 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3561 //
3562 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3563 // (It is currently unimplemented.)  As you can see, the resulting merge is
3564 // actually a disjoint union of memory states, rather than an overlay.
3565 //
3566 
3567 //------------------------------MergeMemNode-----------------------------------
3568 Node* MergeMemNode::make_empty_memory() {
3569   Node* empty_memory = (Node*) Compile::current()->top();
3570   assert(empty_memory->is_top(), "correct sentinel identity");
3571   return empty_memory;
3572 }
3573 
3574 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3575   init_class_id(Class_MergeMem);
3576   // all inputs are nullified in Node::Node(int)
3577   // set_input(0, NULL);  // no control input
3578 
3579   // Initialize the edges uniformly to top, for starters.
3580   Node* empty_mem = make_empty_memory();
3581   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3582     init_req(i,empty_mem);
3583   }
3584   assert(empty_memory() == empty_mem, "");
3585 
3586   if( new_base != NULL && new_base->is_MergeMem() ) {
3587     MergeMemNode* mdef = new_base->as_MergeMem();
3588     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3589     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3590       mms.set_memory(mms.memory2());
3591     }
3592     assert(base_memory() == mdef->base_memory(), "");
3593   } else {
3594     set_base_memory(new_base);
3595   }
3596 }
3597 
3598 // Make a new, untransformed MergeMem with the same base as 'mem'.
3599 // If mem is itself a MergeMem, populate the result with the same edges.
3600 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3601   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3602 }
3603 
3604 //------------------------------cmp--------------------------------------------
3605 uint MergeMemNode::hash() const { return NO_HASH; }
3606 uint MergeMemNode::cmp( const Node &n ) const {
3607   return (&n == this);          // Always fail except on self
3608 }
3609 
3610 //------------------------------Identity---------------------------------------
3611 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3612   // Identity if this merge point does not record any interesting memory
3613   // disambiguations.
3614   Node* base_mem = base_memory();
3615   Node* empty_mem = empty_memory();
3616   if (base_mem != empty_mem) {  // Memory path is not dead?
3617     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3618       Node* mem = in(i);
3619       if (mem != empty_mem && mem != base_mem) {
3620         return this;            // Many memory splits; no change
3621       }
3622     }
3623   }
3624   return base_mem;              // No memory splits; ID on the one true input
3625 }
3626 
3627 //------------------------------Ideal------------------------------------------
3628 // This method is invoked recursively on chains of MergeMem nodes
3629 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3630   // Remove chain'd MergeMems
3631   //
3632   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3633   // relative to the "in(Bot)".  Since we are patching both at the same time,
3634   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3635   // but rewrite each "in(i)" relative to the new "in(Bot)".
3636   Node *progress = NULL;
3637 
3638 
3639   Node* old_base = base_memory();
3640   Node* empty_mem = empty_memory();
3641   if (old_base == empty_mem)
3642     return NULL; // Dead memory path.
3643 
3644   MergeMemNode* old_mbase;
3645   if (old_base != NULL && old_base->is_MergeMem())
3646     old_mbase = old_base->as_MergeMem();
3647   else
3648     old_mbase = NULL;
3649   Node* new_base = old_base;
3650 
3651   // simplify stacked MergeMems in base memory
3652   if (old_mbase)  new_base = old_mbase->base_memory();
3653 
3654   // the base memory might contribute new slices beyond my req()
3655   if (old_mbase)  grow_to_match(old_mbase);
3656 
3657   // Look carefully at the base node if it is a phi.
3658   PhiNode* phi_base;
3659   if (new_base != NULL && new_base->is_Phi())
3660     phi_base = new_base->as_Phi();
3661   else
3662     phi_base = NULL;
3663 
3664   Node*    phi_reg = NULL;
3665   uint     phi_len = (uint)-1;
3666   if (phi_base != NULL && !phi_base->is_copy()) {
3667     // do not examine phi if degraded to a copy
3668     phi_reg = phi_base->region();
3669     phi_len = phi_base->req();
3670     // see if the phi is unfinished
3671     for (uint i = 1; i < phi_len; i++) {
3672       if (phi_base->in(i) == NULL) {
3673         // incomplete phi; do not look at it yet!
3674         phi_reg = NULL;
3675         phi_len = (uint)-1;
3676         break;
3677       }
3678     }
3679   }
3680 
3681   // Note:  We do not call verify_sparse on entry, because inputs
3682   // can normalize to the base_memory via subsume_node or similar
3683   // mechanisms.  This method repairs that damage.
3684 
3685   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3686 
3687   // Look at each slice.
3688   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3689     Node* old_in = in(i);
3690     // calculate the old memory value
3691     Node* old_mem = old_in;
3692     if (old_mem == empty_mem)  old_mem = old_base;
3693     assert(old_mem == memory_at(i), "");
3694 
3695     // maybe update (reslice) the old memory value
3696 
3697     // simplify stacked MergeMems
3698     Node* new_mem = old_mem;
3699     MergeMemNode* old_mmem;
3700     if (old_mem != NULL && old_mem->is_MergeMem())
3701       old_mmem = old_mem->as_MergeMem();
3702     else
3703       old_mmem = NULL;
3704     if (old_mmem == this) {
3705       // This can happen if loops break up and safepoints disappear.
3706       // A merge of BotPtr (default) with a RawPtr memory derived from a
3707       // safepoint can be rewritten to a merge of the same BotPtr with
3708       // the BotPtr phi coming into the loop.  If that phi disappears
3709       // also, we can end up with a self-loop of the mergemem.
3710       // In general, if loops degenerate and memory effects disappear,
3711       // a mergemem can be left looking at itself.  This simply means
3712       // that the mergemem's default should be used, since there is
3713       // no longer any apparent effect on this slice.
3714       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3715       //       from start.  Update the input to TOP.
3716       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3717     }
3718     else if (old_mmem != NULL) {
3719       new_mem = old_mmem->memory_at(i);
3720     }
3721     // else preceding memory was not a MergeMem
3722 
3723     // replace equivalent phis (unfortunately, they do not GVN together)
3724     if (new_mem != NULL && new_mem != new_base &&
3725         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3726       if (new_mem->is_Phi()) {
3727         PhiNode* phi_mem = new_mem->as_Phi();
3728         for (uint i = 1; i < phi_len; i++) {
3729           if (phi_base->in(i) != phi_mem->in(i)) {
3730             phi_mem = NULL;
3731             break;
3732           }
3733         }
3734         if (phi_mem != NULL) {
3735           // equivalent phi nodes; revert to the def
3736           new_mem = new_base;
3737         }
3738       }
3739     }
3740 
3741     // maybe store down a new value
3742     Node* new_in = new_mem;
3743     if (new_in == new_base)  new_in = empty_mem;
3744 
3745     if (new_in != old_in) {
3746       // Warning:  Do not combine this "if" with the previous "if"
3747       // A memory slice might have be be rewritten even if it is semantically
3748       // unchanged, if the base_memory value has changed.
3749       set_req(i, new_in);
3750       progress = this;          // Report progress
3751     }
3752   }
3753 
3754   if (new_base != old_base) {
3755     set_req(Compile::AliasIdxBot, new_base);
3756     // Don't use set_base_memory(new_base), because we need to update du.
3757     assert(base_memory() == new_base, "");
3758     progress = this;
3759   }
3760 
3761   if( base_memory() == this ) {
3762     // a self cycle indicates this memory path is dead
3763     set_req(Compile::AliasIdxBot, empty_mem);
3764   }
3765 
3766   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3767   // Recursion must occur after the self cycle check above
3768   if( base_memory()->is_MergeMem() ) {
3769     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3770     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3771     if( m != NULL && (m->is_top() ||
3772         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3773       // propagate rollup of dead cycle to self
3774       set_req(Compile::AliasIdxBot, empty_mem);
3775     }
3776   }
3777 
3778   if( base_memory() == empty_mem ) {
3779     progress = this;
3780     // Cut inputs during Parse phase only.
3781     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3782     if( !can_reshape ) {
3783       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3784         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3785       }
3786     }
3787   }
3788 
3789   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3790     // Check if PhiNode::Ideal's "Split phis through memory merges"
3791     // transform should be attempted. Look for this->phi->this cycle.
3792     uint merge_width = req();
3793     if (merge_width > Compile::AliasIdxRaw) {
3794       PhiNode* phi = base_memory()->as_Phi();
3795       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3796         if (phi->in(i) == this) {
3797           phase->is_IterGVN()->_worklist.push(phi);
3798           break;
3799         }
3800       }
3801     }
3802   }
3803 
3804   assert(progress || verify_sparse(), "please, no dups of base");
3805   return progress;
3806 }
3807 
3808 //-------------------------set_base_memory-------------------------------------
3809 void MergeMemNode::set_base_memory(Node *new_base) {
3810   Node* empty_mem = empty_memory();
3811   set_req(Compile::AliasIdxBot, new_base);
3812   assert(memory_at(req()) == new_base, "must set default memory");
3813   // Clear out other occurrences of new_base:
3814   if (new_base != empty_mem) {
3815     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3816       if (in(i) == new_base)  set_req(i, empty_mem);
3817     }
3818   }
3819 }
3820 
3821 //------------------------------out_RegMask------------------------------------
3822 const RegMask &MergeMemNode::out_RegMask() const {
3823   return RegMask::Empty;
3824 }
3825 
3826 //------------------------------dump_spec--------------------------------------
3827 #ifndef PRODUCT
3828 void MergeMemNode::dump_spec(outputStream *st) const {
3829   st->print(" {");
3830   Node* base_mem = base_memory();
3831   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3832     Node* mem = memory_at(i);
3833     if (mem == base_mem) { st->print(" -"); continue; }
3834     st->print( " N%d:", mem->_idx );
3835     Compile::current()->get_adr_type(i)->dump_on(st);
3836   }
3837   st->print(" }");
3838 }
3839 #endif // !PRODUCT
3840 
3841 
3842 #ifdef ASSERT
3843 static bool might_be_same(Node* a, Node* b) {
3844   if (a == b)  return true;
3845   if (!(a->is_Phi() || b->is_Phi()))  return false;
3846   // phis shift around during optimization
3847   return true;  // pretty stupid...
3848 }
3849 
3850 // verify a narrow slice (either incoming or outgoing)
3851 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3852   if (!VerifyAliases)       return;  // don't bother to verify unless requested
3853   if (is_error_reported())  return;  // muzzle asserts when debugging an error
3854   if (Node::in_dump())      return;  // muzzle asserts when printing
3855   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3856   assert(n != NULL, "");
3857   // Elide intervening MergeMem's
3858   while (n->is_MergeMem()) {
3859     n = n->as_MergeMem()->memory_at(alias_idx);
3860   }
3861   Compile* C = Compile::current();
3862   const TypePtr* n_adr_type = n->adr_type();
3863   if (n == m->empty_memory()) {
3864     // Implicit copy of base_memory()
3865   } else if (n_adr_type != TypePtr::BOTTOM) {
3866     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3867     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3868   } else {
3869     // A few places like make_runtime_call "know" that VM calls are narrow,
3870     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3871     bool expected_wide_mem = false;
3872     if (n == m->base_memory()) {
3873       expected_wide_mem = true;
3874     } else if (alias_idx == Compile::AliasIdxRaw ||
3875                n == m->memory_at(Compile::AliasIdxRaw)) {
3876       expected_wide_mem = true;
3877     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3878       // memory can "leak through" calls on channels that
3879       // are write-once.  Allow this also.
3880       expected_wide_mem = true;
3881     }
3882     assert(expected_wide_mem, "expected narrow slice replacement");
3883   }
3884 }
3885 #else // !ASSERT
3886 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3887 #endif
3888 
3889 
3890 //-----------------------------memory_at---------------------------------------
3891 Node* MergeMemNode::memory_at(uint alias_idx) const {
3892   assert(alias_idx >= Compile::AliasIdxRaw ||
3893          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3894          "must avoid base_memory and AliasIdxTop");
3895 
3896   // Otherwise, it is a narrow slice.
3897   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3898   Compile *C = Compile::current();
3899   if (is_empty_memory(n)) {
3900     // the array is sparse; empty slots are the "top" node
3901     n = base_memory();
3902     assert(Node::in_dump()
3903            || n == NULL || n->bottom_type() == Type::TOP
3904            || n->adr_type() == TypePtr::BOTTOM
3905            || n->adr_type() == TypeRawPtr::BOTTOM
3906            || Compile::current()->AliasLevel() == 0,
3907            "must be a wide memory");
3908     // AliasLevel == 0 if we are organizing the memory states manually.
3909     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3910   } else {
3911     // make sure the stored slice is sane
3912     #ifdef ASSERT
3913     if (is_error_reported() || Node::in_dump()) {
3914     } else if (might_be_same(n, base_memory())) {
3915       // Give it a pass:  It is a mostly harmless repetition of the base.
3916       // This can arise normally from node subsumption during optimization.
3917     } else {
3918       verify_memory_slice(this, alias_idx, n);
3919     }
3920     #endif
3921   }
3922   return n;
3923 }
3924 
3925 //---------------------------set_memory_at-------------------------------------
3926 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3927   verify_memory_slice(this, alias_idx, n);
3928   Node* empty_mem = empty_memory();
3929   if (n == base_memory())  n = empty_mem;  // collapse default
3930   uint need_req = alias_idx+1;
3931   if (req() < need_req) {
3932     if (n == empty_mem)  return;  // already the default, so do not grow me
3933     // grow the sparse array
3934     do {
3935       add_req(empty_mem);
3936     } while (req() < need_req);
3937   }
3938   set_req( alias_idx, n );
3939 }
3940 
3941 
3942 
3943 //--------------------------iteration_setup------------------------------------
3944 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3945   if (other != NULL) {
3946     grow_to_match(other);
3947     // invariant:  the finite support of mm2 is within mm->req()
3948     #ifdef ASSERT
3949     for (uint i = req(); i < other->req(); i++) {
3950       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3951     }
3952     #endif
3953   }
3954   // Replace spurious copies of base_memory by top.
3955   Node* base_mem = base_memory();
3956   if (base_mem != NULL && !base_mem->is_top()) {
3957     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3958       if (in(i) == base_mem)
3959         set_req(i, empty_memory());
3960     }
3961   }
3962 }
3963 
3964 //---------------------------grow_to_match-------------------------------------
3965 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3966   Node* empty_mem = empty_memory();
3967   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3968   // look for the finite support of the other memory
3969   for (uint i = other->req(); --i >= req(); ) {
3970     if (other->in(i) != empty_mem) {
3971       uint new_len = i+1;
3972       while (req() < new_len)  add_req(empty_mem);
3973       break;
3974     }
3975   }
3976 }
3977 
3978 //---------------------------verify_sparse-------------------------------------
3979 #ifndef PRODUCT
3980 bool MergeMemNode::verify_sparse() const {
3981   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
3982   Node* base_mem = base_memory();
3983   // The following can happen in degenerate cases, since empty==top.
3984   if (is_empty_memory(base_mem))  return true;
3985   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3986     assert(in(i) != NULL, "sane slice");
3987     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
3988   }
3989   return true;
3990 }
3991 
3992 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
3993   Node* n;
3994   n = mm->in(idx);
3995   if (mem == n)  return true;  // might be empty_memory()
3996   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
3997   if (mem == n)  return true;
3998   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
3999     if (mem == n)  return true;
4000     if (n == NULL)  break;
4001   }
4002   return false;
4003 }
4004 #endif // !PRODUCT