1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 class Chaitin;
  30 class NamedCounter;
  31 class MultiNode;
  32 class  SafePointNode;
  33 class   CallNode;
  34 class     CallJavaNode;
  35 class       CallStaticJavaNode;
  36 class       CallDynamicJavaNode;
  37 class     CallRuntimeNode;
  38 class       CallLeafNode;
  39 class         CallLeafNoFPNode;
  40 class     AllocateNode;
  41 class       AllocateArrayNode;
  42 class     LockNode;
  43 class     UnlockNode;
  44 class JVMState;
  45 class OopMap;
  46 class State;
  47 class StartNode;
  48 class MachCallNode;
  49 class FastLockNode;
  50 
  51 //------------------------------StartNode--------------------------------------
  52 // The method start node
  53 class StartNode : public MultiNode {
  54   virtual uint cmp( const Node &n ) const;
  55   virtual uint size_of() const; // Size is bigger
  56 public:
  57   const TypeTuple *_domain;
  58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  59     init_class_id(Class_Start);
  60     init_flags(Flag_is_block_start);
  61     init_req(0,this);
  62     init_req(1,root);
  63   }
  64   virtual int Opcode() const;
  65   virtual bool pinned() const { return true; };
  66   virtual const Type *bottom_type() const;
  67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  68   virtual const Type *Value( PhaseTransform *phase ) const;
  69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  71   virtual const RegMask &in_RegMask(uint) const;
  72   virtual Node *match( const ProjNode *proj, const Matcher *m );
  73   virtual uint ideal_reg() const { return 0; }
  74 #ifndef PRODUCT
  75   virtual void  dump_spec(outputStream *st) const;
  76 #endif
  77 };
  78 
  79 //------------------------------StartOSRNode-----------------------------------
  80 // The method start node for on stack replacement code
  81 class StartOSRNode : public StartNode {
  82 public:
  83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  84   virtual int   Opcode() const;
  85   static  const TypeTuple *osr_domain();
  86 };
  87 
  88 
  89 //------------------------------ParmNode---------------------------------------
  90 // Incoming parameters
  91 class ParmNode : public ProjNode {
  92   static const char * const names[TypeFunc::Parms+1];
  93 public:
  94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
  95     init_class_id(Class_Parm);
  96   }
  97   virtual int Opcode() const;
  98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  99   virtual uint ideal_reg() const;
 100 #ifndef PRODUCT
 101   virtual void dump_spec(outputStream *st) const;
 102 #endif
 103 };
 104 
 105 
 106 //------------------------------ReturnNode-------------------------------------
 107 // Return from subroutine node
 108 class ReturnNode : public Node {
 109 public:
 110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 111   virtual int Opcode() const;
 112   virtual bool  is_CFG() const { return true; }
 113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 114   virtual bool depends_only_on_test() const { return false; }
 115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 116   virtual const Type *Value( PhaseTransform *phase ) const;
 117   virtual uint ideal_reg() const { return NotAMachineReg; }
 118   virtual uint match_edge(uint idx) const;
 119 #ifndef PRODUCT
 120   virtual void dump_req() const;
 121 #endif
 122 };
 123 
 124 
 125 //------------------------------RethrowNode------------------------------------
 126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 127 // ends the current basic block like a ReturnNode.  Restores registers and
 128 // unwinds stack.  Rethrow happens in the caller's method.
 129 class RethrowNode : public Node {
 130  public:
 131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 132   virtual int Opcode() const;
 133   virtual bool  is_CFG() const { return true; }
 134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 135   virtual bool depends_only_on_test() const { return false; }
 136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 137   virtual const Type *Value( PhaseTransform *phase ) const;
 138   virtual uint match_edge(uint idx) const;
 139   virtual uint ideal_reg() const { return NotAMachineReg; }
 140 #ifndef PRODUCT
 141   virtual void dump_req() const;
 142 #endif
 143 };
 144 
 145 
 146 //------------------------------TailCallNode-----------------------------------
 147 // Pop stack frame and jump indirect
 148 class TailCallNode : public ReturnNode {
 149 public:
 150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 152     init_req(TypeFunc::Parms, target);
 153     init_req(TypeFunc::Parms+1, moop);
 154   }
 155 
 156   virtual int Opcode() const;
 157   virtual uint match_edge(uint idx) const;
 158 };
 159 
 160 //------------------------------TailJumpNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailJumpNode : public ReturnNode {
 163 public:
 164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, ex_oop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //-------------------------------JVMState-------------------------------------
 175 // A linked list of JVMState nodes captures the whole interpreter state,
 176 // plus GC roots, for all active calls at some call site in this compilation
 177 // unit.  (If there is no inlining, then the list has exactly one link.)
 178 // This provides a way to map the optimized program back into the interpreter,
 179 // or to let the GC mark the stack.
 180 class JVMState : public ResourceObj {
 181 private:
 182   JVMState*         _caller;    // List pointer for forming scope chains
 183   uint              _depth;     // One mroe than caller depth, or one.
 184   uint              _locoff;    // Offset to locals in input edge mapping
 185   uint              _stkoff;    // Offset to stack in input edge mapping
 186   uint              _monoff;    // Offset to monitors in input edge mapping
 187   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 188   uint              _endoff;    // Offset to end of input edge mapping
 189   uint              _sp;        // Jave Expression Stack Pointer for this state
 190   int               _bci;       // Byte Code Index of this JVM point
 191   ciMethod*         _method;    // Method Pointer
 192   SafePointNode*    _map;       // Map node associated with this scope
 193 public:
 194   friend class Compile;
 195 
 196   // Because JVMState objects live over the entire lifetime of the
 197   // Compile object, they are allocated into the comp_arena, which
 198   // does not get resource marked or reset during the compile process
 199   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 200   void operator delete( void * ) { } // fast deallocation
 201 
 202   // Create a new JVMState, ready for abstract interpretation.
 203   JVMState(ciMethod* method, JVMState* caller);
 204   JVMState(int stack_size);  // root state; has a null method
 205 
 206   // Access functions for the JVM
 207   uint              locoff() const { return _locoff; }
 208   uint              stkoff() const { return _stkoff; }
 209   uint              argoff() const { return _stkoff + _sp; }
 210   uint              monoff() const { return _monoff; }
 211   uint              scloff() const { return _scloff; }
 212   uint              endoff() const { return _endoff; }
 213   uint              oopoff() const { return debug_end(); }
 214 
 215   int            loc_size() const { return _stkoff - _locoff; }
 216   int            stk_size() const { return _monoff - _stkoff; }
 217   int            mon_size() const { return _scloff - _monoff; }
 218   int            scl_size() const { return _endoff - _scloff; }
 219 
 220   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 221   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 222   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 223   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 224 
 225   uint              sp()     const { return _sp; }
 226   int               bci()    const { return _bci; }
 227   bool          has_method() const { return _method != NULL; }
 228   ciMethod*         method() const { assert(has_method(), ""); return _method; }
 229   JVMState*         caller() const { return _caller; }
 230   SafePointNode*    map()    const { return _map; }
 231   uint              depth()  const { return _depth; }
 232   uint        debug_start()  const; // returns locoff of root caller
 233   uint        debug_end()    const; // returns endoff of self
 234   uint        debug_size()   const {
 235     return loc_size() + sp() + mon_size() + scl_size();
 236   }
 237   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 238 
 239   // Returns the JVM state at the desired depth (1 == root).
 240   JVMState* of_depth(int d) const;
 241 
 242   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 243   bool same_calls_as(const JVMState* that) const;
 244 
 245   // Monitors (monitors are stored as (boxNode, objNode) pairs
 246   enum { logMonitorEdges = 1 };
 247   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 248   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 249   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 250   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 251   bool is_monitor_box(uint off)    const {
 252     assert(is_mon(off), "should be called only for monitor edge");
 253     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 254   }
 255   bool is_monitor_use(uint off)    const { return (is_mon(off)
 256                                                    && is_monitor_box(off))
 257                                              || (caller() && caller()->is_monitor_use(off)); }
 258 
 259   // Initialization functions for the JVM
 260   void              set_locoff(uint off) { _locoff = off; }
 261   void              set_stkoff(uint off) { _stkoff = off; }
 262   void              set_monoff(uint off) { _monoff = off; }
 263   void              set_scloff(uint off) { _scloff = off; }
 264   void              set_endoff(uint off) { _endoff = off; }
 265   void              set_offsets(uint off) {
 266     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 267   }
 268   void              set_map(SafePointNode *map) { _map = map; }
 269   void              set_sp(uint sp) { _sp = sp; }
 270   void              set_bci(int bci) { _bci = bci; }
 271 
 272   // Miscellaneous utility functions
 273   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 274   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 275 
 276 #ifndef PRODUCT
 277   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 278   void      dump_spec(outputStream *st) const;
 279   void      dump_on(outputStream* st) const;
 280   void      dump() const {
 281     dump_on(tty);
 282   }
 283 #endif
 284 };
 285 
 286 //------------------------------SafePointNode----------------------------------
 287 // A SafePointNode is a subclass of a MultiNode for convenience (and
 288 // potential code sharing) only - conceptually it is independent of
 289 // the Node semantics.
 290 class SafePointNode : public MultiNode {
 291   virtual uint           cmp( const Node &n ) const;
 292   virtual uint           size_of() const;       // Size is bigger
 293 
 294 public:
 295   SafePointNode(uint edges, JVMState* jvms,
 296                 // A plain safepoint advertises no memory effects (NULL):
 297                 const TypePtr* adr_type = NULL)
 298     : MultiNode( edges ),
 299       _jvms(jvms),
 300       _oop_map(NULL),
 301       _adr_type(adr_type)
 302   {
 303     init_class_id(Class_SafePoint);
 304   }
 305 
 306   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 307   JVMState* const _jvms;      // Pointer to list of JVM State objects
 308   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 309 
 310   // Many calls take *all* of memory as input,
 311   // but some produce a limited subset of that memory as output.
 312   // The adr_type reports the call's behavior as a store, not a load.
 313 
 314   virtual JVMState* jvms() const { return _jvms; }
 315   void set_jvms(JVMState* s) {
 316     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 317   }
 318   OopMap *oop_map() const { return _oop_map; }
 319   void set_oop_map(OopMap *om) { _oop_map = om; }
 320 
 321   // Functionality from old debug nodes which has changed
 322   Node *local(JVMState* jvms, uint idx) const {
 323     assert(verify_jvms(jvms), "jvms must match");
 324     return in(jvms->locoff() + idx);
 325   }
 326   Node *stack(JVMState* jvms, uint idx) const {
 327     assert(verify_jvms(jvms), "jvms must match");
 328     return in(jvms->stkoff() + idx);
 329   }
 330   Node *argument(JVMState* jvms, uint idx) const {
 331     assert(verify_jvms(jvms), "jvms must match");
 332     return in(jvms->argoff() + idx);
 333   }
 334   Node *monitor_box(JVMState* jvms, uint idx) const {
 335     assert(verify_jvms(jvms), "jvms must match");
 336     return in(jvms->monitor_box_offset(idx));
 337   }
 338   Node *monitor_obj(JVMState* jvms, uint idx) const {
 339     assert(verify_jvms(jvms), "jvms must match");
 340     return in(jvms->monitor_obj_offset(idx));
 341   }
 342 
 343   void  set_local(JVMState* jvms, uint idx, Node *c);
 344 
 345   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 346     assert(verify_jvms(jvms), "jvms must match");
 347     set_req(jvms->stkoff() + idx, c);
 348   }
 349   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 350     assert(verify_jvms(jvms), "jvms must match");
 351     set_req(jvms->argoff() + idx, c);
 352   }
 353   void ensure_stack(JVMState* jvms, uint stk_size) {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     int grow_by = (int)stk_size - (int)jvms->stk_size();
 356     if (grow_by > 0)  grow_stack(jvms, grow_by);
 357   }
 358   void grow_stack(JVMState* jvms, uint grow_by);
 359   // Handle monitor stack
 360   void push_monitor( const FastLockNode *lock );
 361   void pop_monitor ();
 362   Node *peek_monitor_box() const;
 363   Node *peek_monitor_obj() const;
 364 
 365   // Access functions for the JVM
 366   Node *control  () const { return in(TypeFunc::Control  ); }
 367   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 368   Node *memory   () const { return in(TypeFunc::Memory   ); }
 369   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 370   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 371 
 372   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 373   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 374   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 375 
 376   MergeMemNode* merged_memory() const {
 377     return in(TypeFunc::Memory)->as_MergeMem();
 378   }
 379 
 380   // The parser marks useless maps as dead when it's done with them:
 381   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 382 
 383   // Exception states bubbling out of subgraphs such as inlined calls
 384   // are recorded here.  (There might be more than one, hence the "next".)
 385   // This feature is used only for safepoints which serve as "maps"
 386   // for JVM states during parsing, intrinsic expansion, etc.
 387   SafePointNode*         next_exception() const;
 388   void               set_next_exception(SafePointNode* n);
 389   bool                   has_exceptions() const { return next_exception() != NULL; }
 390 
 391   // Standard Node stuff
 392   virtual int            Opcode() const;
 393   virtual bool           pinned() const { return true; }
 394   virtual const Type    *Value( PhaseTransform *phase ) const;
 395   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 396   virtual const TypePtr *adr_type() const { return _adr_type; }
 397   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 398   virtual Node          *Identity( PhaseTransform *phase );
 399   virtual uint           ideal_reg() const { return 0; }
 400   virtual const RegMask &in_RegMask(uint) const;
 401   virtual const RegMask &out_RegMask() const;
 402   virtual uint           match_edge(uint idx) const;
 403 
 404   static  bool           needs_polling_address_input();
 405 
 406 #ifndef PRODUCT
 407   virtual void              dump_spec(outputStream *st) const;
 408 #endif
 409 };
 410 
 411 //------------------------------SafePointScalarObjectNode----------------------
 412 // A SafePointScalarObjectNode represents the state of a scalarized object
 413 // at a safepoint.
 414 
 415 class SafePointScalarObjectNode: public TypeNode {
 416   uint _first_index; // First input edge index of a SafePoint node where
 417                      // states of the scalarized object fields are collected.
 418   uint _n_fields;    // Number of non-static fields of the scalarized object.
 419   DEBUG_ONLY(AllocateNode* _alloc;)
 420 public:
 421   SafePointScalarObjectNode(const TypeOopPtr* tp,
 422 #ifdef ASSERT
 423                             AllocateNode* alloc,
 424 #endif
 425                             uint first_index, uint n_fields);
 426   virtual int Opcode() const;
 427   virtual uint           ideal_reg() const;
 428   virtual const RegMask &in_RegMask(uint) const;
 429   virtual const RegMask &out_RegMask() const;
 430   virtual uint           match_edge(uint idx) const;
 431 
 432   uint first_index() const { return _first_index; }
 433   uint n_fields()    const { return _n_fields; }
 434   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 435 
 436   // SafePointScalarObject should be always pinned to the control edge
 437   // of the SafePoint node for which it was generated.
 438   virtual bool pinned() const; // { return true; }
 439 
 440   virtual uint size_of() const { return sizeof(*this); }
 441 
 442   // Assumes that "this" is an argument to a safepoint node "s", and that
 443   // "new_call" is being created to correspond to "s".  But the difference
 444   // between the start index of the jvmstates of "new_call" and "s" is
 445   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 446   // corresponds appropriately to "this" in "new_call".  Assumes that
 447   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 448   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 449   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 450 
 451 #ifndef PRODUCT
 452   virtual void              dump_spec(outputStream *st) const;
 453 #endif
 454 };
 455 
 456 //------------------------------CallNode---------------------------------------
 457 // Call nodes now subsume the function of debug nodes at callsites, so they
 458 // contain the functionality of a full scope chain of debug nodes.
 459 class CallNode : public SafePointNode {
 460 public:
 461   const TypeFunc *_tf;        // Function type
 462   address      _entry_point;  // Address of method being called
 463   float        _cnt;          // Estimate of number of times called
 464 
 465   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 466     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 467       _tf(tf),
 468       _entry_point(addr),
 469       _cnt(COUNT_UNKNOWN)
 470   {
 471     init_class_id(Class_Call);
 472     init_flags(Flag_is_Call);
 473   }
 474 
 475   const TypeFunc* tf()        const { return _tf; }
 476   const address entry_point() const { return _entry_point; }
 477   const float   cnt()         const { return _cnt; }
 478 
 479   void set_tf(const TypeFunc* tf) { _tf = tf; }
 480   void set_entry_point(address p) { _entry_point = p; }
 481   void set_cnt(float c)           { _cnt = c; }
 482 
 483   virtual const Type *bottom_type() const;
 484   virtual const Type *Value( PhaseTransform *phase ) const;
 485   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 486   virtual uint        cmp( const Node &n ) const;
 487   virtual uint        size_of() const = 0;
 488   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 489   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 490   virtual uint        ideal_reg() const { return NotAMachineReg; }
 491   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 492   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 493   virtual bool        guaranteed_safepoint()  { return true; }
 494   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 495   // the node the JVMState must be cloned.
 496   virtual void        clone_jvms() { }   // default is not to clone
 497 
 498   // Returns true if the call may modify n
 499   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 500   // Does this node have a use of n other than in debug information?
 501   bool                has_non_debug_use(Node *n);
 502   // Returns the unique CheckCastPP of a call
 503   // or result projection is there are several CheckCastPP
 504   // or returns NULL if there is no one.
 505   Node *result_cast();
 506 
 507   virtual uint match_edge(uint idx) const;
 508 
 509 #ifndef PRODUCT
 510   virtual void        dump_req()  const;
 511   virtual void        dump_spec(outputStream *st) const;
 512 #endif
 513 };
 514 
 515 //------------------------------CallJavaNode-----------------------------------
 516 // Make a static or dynamic subroutine call node using Java calling
 517 // convention.  (The "Java" calling convention is the compiler's calling
 518 // convention, as opposed to the interpreter's or that of native C.)
 519 class CallJavaNode : public CallNode {
 520 protected:
 521   virtual uint cmp( const Node &n ) const;
 522   virtual uint size_of() const; // Size is bigger
 523 
 524   bool    _optimized_virtual;
 525   ciMethod* _method;            // Method being direct called
 526 public:
 527   const int       _bci;         // Byte Code Index of call byte code
 528   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 529     : CallNode(tf, addr, TypePtr::BOTTOM),
 530       _method(method), _bci(bci), _optimized_virtual(false)
 531   {
 532     init_class_id(Class_CallJava);
 533   }
 534 
 535   virtual int   Opcode() const;
 536   ciMethod* method() const                { return _method; }
 537   void  set_method(ciMethod *m)           { _method = m; }
 538   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 539   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 540 
 541 #ifndef PRODUCT
 542   virtual void  dump_spec(outputStream *st) const;
 543 #endif
 544 };
 545 
 546 //------------------------------CallStaticJavaNode-----------------------------
 547 // Make a direct subroutine call using Java calling convention (for static
 548 // calls and optimized virtual calls, plus calls to wrappers for run-time
 549 // routines); generates static stub.
 550 class CallStaticJavaNode : public CallJavaNode {
 551   virtual uint cmp( const Node &n ) const;
 552   virtual uint size_of() const; // Size is bigger
 553 public:
 554   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 555     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 556     init_class_id(Class_CallStaticJava);
 557   }
 558   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 559                      const TypePtr* adr_type)
 560     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 561     init_class_id(Class_CallStaticJava);
 562     // This node calls a runtime stub, which often has narrow memory effects.
 563     _adr_type = adr_type;
 564   }
 565   const char *_name;            // Runtime wrapper name
 566 
 567   // If this is an uncommon trap, return the request code, else zero.
 568   int uncommon_trap_request() const;
 569   static int extract_uncommon_trap_request(const Node* call);
 570 
 571   virtual int         Opcode() const;
 572 #ifndef PRODUCT
 573   virtual void        dump_spec(outputStream *st) const;
 574 #endif
 575 };
 576 
 577 //------------------------------CallDynamicJavaNode----------------------------
 578 // Make a dispatched call using Java calling convention.
 579 class CallDynamicJavaNode : public CallJavaNode {
 580   virtual uint cmp( const Node &n ) const;
 581   virtual uint size_of() const; // Size is bigger
 582 public:
 583   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 584     init_class_id(Class_CallDynamicJava);
 585   }
 586 
 587   int _vtable_index;
 588   virtual int   Opcode() const;
 589 #ifndef PRODUCT
 590   virtual void  dump_spec(outputStream *st) const;
 591 #endif
 592 };
 593 
 594 //------------------------------CallRuntimeNode--------------------------------
 595 // Make a direct subroutine call node into compiled C++ code.
 596 class CallRuntimeNode : public CallNode {
 597   virtual uint cmp( const Node &n ) const;
 598   virtual uint size_of() const; // Size is bigger
 599 public:
 600   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 601                   const TypePtr* adr_type)
 602     : CallNode(tf, addr, adr_type),
 603       _name(name)
 604   {
 605     init_class_id(Class_CallRuntime);
 606   }
 607 
 608   const char *_name;            // Printable name, if _method is NULL
 609   virtual int   Opcode() const;
 610   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 611 
 612 #ifndef PRODUCT
 613   virtual void  dump_spec(outputStream *st) const;
 614 #endif
 615 };
 616 
 617 //------------------------------CallLeafNode-----------------------------------
 618 // Make a direct subroutine call node into compiled C++ code, without
 619 // safepoints
 620 class CallLeafNode : public CallRuntimeNode {
 621 public:
 622   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 623                const TypePtr* adr_type)
 624     : CallRuntimeNode(tf, addr, name, adr_type)
 625   {
 626     init_class_id(Class_CallLeaf);
 627   }
 628   virtual int   Opcode() const;
 629   virtual bool        guaranteed_safepoint()  { return false; }
 630 #ifndef PRODUCT
 631   virtual void  dump_spec(outputStream *st) const;
 632 #endif
 633 };
 634 
 635 //------------------------------CallLeafNoFPNode-------------------------------
 636 // CallLeafNode, not using floating point or using it in the same manner as
 637 // the generated code
 638 class CallLeafNoFPNode : public CallLeafNode {
 639 public:
 640   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 641                    const TypePtr* adr_type)
 642     : CallLeafNode(tf, addr, name, adr_type)
 643   {
 644   }
 645   virtual int   Opcode() const;
 646 };
 647 
 648 
 649 //------------------------------Allocate---------------------------------------
 650 // High-level memory allocation
 651 //
 652 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 653 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 654 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 655 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 656 //  order to differentiate the uses of the projection on the normal control path from
 657 //  those on the exception return path.
 658 //
 659 class AllocateNode : public CallNode {
 660 public:
 661   enum {
 662     // Output:
 663     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 664     // Inputs:
 665     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 666     KlassNode,                        // type (maybe dynamic) of the obj.
 667     InitialTest,                      // slow-path test (may be constant)
 668     ALength,                          // array length (or TOP if none)
 669     ParmLimit
 670   };
 671 
 672   static const TypeFunc* alloc_type() {
 673     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 674     fields[AllocSize]   = TypeInt::POS;
 675     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 676     fields[InitialTest] = TypeInt::BOOL;
 677     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 678 
 679     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 680 
 681     // create result type (range)
 682     fields = TypeTuple::fields(1);
 683     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 684 
 685     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 686 
 687     return TypeFunc::make(domain, range);
 688   }
 689 
 690   bool _is_scalar_replaceable;  // Result of Escape Analysis
 691 
 692   virtual uint size_of() const; // Size is bigger
 693   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 694                Node *size, Node *klass_node, Node *initial_test);
 695   // Expansion modifies the JVMState, so we need to clone it
 696   virtual void  clone_jvms() {
 697     set_jvms(jvms()->clone_deep(Compile::current()));
 698   }
 699   virtual int Opcode() const;
 700   virtual uint ideal_reg() const { return Op_RegP; }
 701   virtual bool        guaranteed_safepoint()  { return false; }
 702 
 703   // allocations do not modify their arguments
 704   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 705 
 706   // Pattern-match a possible usage of AllocateNode.
 707   // Return null if no allocation is recognized.
 708   // The operand is the pointer produced by the (possible) allocation.
 709   // It must be a projection of the Allocate or its subsequent CastPP.
 710   // (Note:  This function is defined in file graphKit.cpp, near
 711   // GraphKit::new_instance/new_array, whose output it recognizes.)
 712   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 713   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 714 
 715   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 716   // an offset, which is reported back to the caller.
 717   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 718   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 719                                         intptr_t& offset);
 720 
 721   // Dig the klass operand out of a (possible) allocation site.
 722   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 723     AllocateNode* allo = Ideal_allocation(ptr, phase);
 724     return (allo == NULL) ? NULL : allo->in(KlassNode);
 725   }
 726 
 727   // Conservatively small estimate of offset of first non-header byte.
 728   int minimum_header_size() {
 729     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 730                                 instanceOopDesc::base_offset_in_bytes();
 731   }
 732 
 733   // Return the corresponding initialization barrier (or null if none).
 734   // Walks out edges to find it...
 735   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 736   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 737   InitializeNode* initialization();
 738 
 739   // Convenience for initialization->maybe_set_complete(phase)
 740   bool maybe_set_complete(PhaseGVN* phase);
 741 };
 742 
 743 //------------------------------AllocateArray---------------------------------
 744 //
 745 // High-level array allocation
 746 //
 747 class AllocateArrayNode : public AllocateNode {
 748 public:
 749   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 750                     Node* size, Node* klass_node, Node* initial_test,
 751                     Node* count_val
 752                     )
 753     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 754                    initial_test)
 755   {
 756     init_class_id(Class_AllocateArray);
 757     set_req(AllocateNode::ALength,        count_val);
 758   }
 759   virtual int Opcode() const;
 760   virtual uint size_of() const; // Size is bigger
 761 
 762   // Dig the length operand out of a array allocation site.
 763   Node* Ideal_length() {
 764     return in(AllocateNode::ALength);
 765   }
 766 
 767   // Dig the length operand out of a array allocation site and narrow the
 768   // type with a CastII, if necesssary
 769   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 770 
 771   // Pattern-match a possible usage of AllocateArrayNode.
 772   // Return null if no allocation is recognized.
 773   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 774     AllocateNode* allo = Ideal_allocation(ptr, phase);
 775     return (allo == NULL || !allo->is_AllocateArray())
 776            ? NULL : allo->as_AllocateArray();
 777   }
 778 };
 779 
 780 //------------------------------AbstractLockNode-----------------------------------
 781 class AbstractLockNode: public CallNode {
 782 private:
 783   bool _eliminate;    // indicates this lock can be safely eliminated
 784   bool _coarsened;    // indicates this lock was coarsened
 785 #ifndef PRODUCT
 786   NamedCounter* _counter;
 787 #endif
 788 
 789 protected:
 790   // helper functions for lock elimination
 791   //
 792 
 793   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 794                             GrowableArray<AbstractLockNode*> &lock_ops);
 795   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 796                                        GrowableArray<AbstractLockNode*> &lock_ops);
 797   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 798                                GrowableArray<AbstractLockNode*> &lock_ops);
 799   LockNode *find_matching_lock(UnlockNode* unlock);
 800 
 801 
 802 public:
 803   AbstractLockNode(const TypeFunc *tf)
 804     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 805       _coarsened(false),
 806       _eliminate(false)
 807   {
 808 #ifndef PRODUCT
 809     _counter = NULL;
 810 #endif
 811   }
 812   virtual int Opcode() const = 0;
 813   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 814   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 815   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 816   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 817 
 818   virtual uint size_of() const { return sizeof(*this); }
 819 
 820   bool is_eliminated()         {return _eliminate; }
 821   // mark node as eliminated and update the counter if there is one
 822   void set_eliminated();
 823 
 824   bool is_coarsened()  { return _coarsened; }
 825   void set_coarsened() { _coarsened = true; }
 826 
 827   // locking does not modify its arguments
 828   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 829 
 830 #ifndef PRODUCT
 831   void create_lock_counter(JVMState* s);
 832   NamedCounter* counter() const { return _counter; }
 833 #endif
 834 };
 835 
 836 //------------------------------Lock---------------------------------------
 837 // High-level lock operation
 838 //
 839 // This is a subclass of CallNode because it is a macro node which gets expanded
 840 // into a code sequence containing a call.  This node takes 3 "parameters":
 841 //    0  -  object to lock
 842 //    1 -   a BoxLockNode
 843 //    2 -   a FastLockNode
 844 //
 845 class LockNode : public AbstractLockNode {
 846 public:
 847 
 848   static const TypeFunc *lock_type() {
 849     // create input type (domain)
 850     const Type **fields = TypeTuple::fields(3);
 851     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 852     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 853     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 854     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 855 
 856     // create result type (range)
 857     fields = TypeTuple::fields(0);
 858 
 859     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 860 
 861     return TypeFunc::make(domain,range);
 862   }
 863 
 864   virtual int Opcode() const;
 865   virtual uint size_of() const; // Size is bigger
 866   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 867     init_class_id(Class_Lock);
 868     init_flags(Flag_is_macro);
 869     C->add_macro_node(this);
 870   }
 871   virtual bool        guaranteed_safepoint()  { return false; }
 872 
 873   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 874   // Expansion modifies the JVMState, so we need to clone it
 875   virtual void  clone_jvms() {
 876     set_jvms(jvms()->clone_deep(Compile::current()));
 877   }
 878 };
 879 
 880 //------------------------------Unlock---------------------------------------
 881 // High-level unlock operation
 882 class UnlockNode : public AbstractLockNode {
 883 public:
 884   virtual int Opcode() const;
 885   virtual uint size_of() const; // Size is bigger
 886   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 887     init_class_id(Class_Unlock);
 888     init_flags(Flag_is_macro);
 889     C->add_macro_node(this);
 890   }
 891   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 892   // unlock is never a safepoint
 893   virtual bool        guaranteed_safepoint()  { return false; }
 894 };