1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_gcm.cpp.incl"
  31 
  32 // To avoid float value underflow
  33 #define MIN_BLOCK_FREQUENCY 1.e-35f
  34 
  35 //----------------------------schedule_node_into_block-------------------------
  36 // Insert node n into block b. Look for projections of n and make sure they
  37 // are in b also.
  38 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  39   // Set basic block of n, Add n to b,
  40   _bbs.map(n->_idx, b);
  41   b->add_inst(n);
  42 
  43   // After Matching, nearly any old Node may have projections trailing it.
  44   // These are usually machine-dependent flags.  In any case, they might
  45   // float to another block below this one.  Move them up.
  46   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  47     Node*  use  = n->fast_out(i);
  48     if (use->is_Proj()) {
  49       Block* buse = _bbs[use->_idx];
  50       if (buse != b) {              // In wrong block?
  51         if (buse != NULL)
  52           buse->find_remove(use);   // Remove from wrong block
  53         _bbs.map(use->_idx, b);     // Re-insert in this block
  54         b->add_inst(use);
  55       }
  56     }
  57   }
  58 }
  59 
  60 
  61 //------------------------------schedule_pinned_nodes--------------------------
  62 // Set the basic block for Nodes pinned into blocks
  63 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
  64   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
  65   GrowableArray <Node *> spstack(C->unique()+8);
  66   spstack.push(_root);
  67   while ( spstack.is_nonempty() ) {
  68     Node *n = spstack.pop();
  69     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
  70       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
  71         Node *input = n->in(0);
  72         assert( input, "pinned Node must have Control" );
  73         while( !input->is_block_start() )
  74           input = input->in(0);
  75         Block *b = _bbs[input->_idx];  // Basic block of controlling input
  76         schedule_node_into_block(n, b);
  77       }
  78       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
  79         if( n->in(i) != NULL )
  80           spstack.push(n->in(i));
  81       }
  82     }
  83   }
  84 }
  85 
  86 #ifdef ASSERT
  87 // Assert that new input b2 is dominated by all previous inputs.
  88 // Check this by by seeing that it is dominated by b1, the deepest
  89 // input observed until b2.
  90 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
  91   if (b1 == NULL)  return;
  92   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
  93   Block* tmp = b2;
  94   while (tmp != b1 && tmp != NULL) {
  95     tmp = tmp->_idom;
  96   }
  97   if (tmp != b1) {
  98     // Detected an unschedulable graph.  Print some nice stuff and die.
  99     tty->print_cr("!!! Unschedulable graph !!!");
 100     for (uint j=0; j<n->len(); j++) { // For all inputs
 101       Node* inn = n->in(j); // Get input
 102       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 103       Block* inb = bbs[inn->_idx];
 104       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 105                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 106       inn->dump();
 107     }
 108     tty->print("Failing node: ");
 109     n->dump();
 110     assert(false, "unscheduable graph");
 111   }
 112 }
 113 #endif
 114 
 115 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 116   // Find the last input dominated by all other inputs.
 117   Block* deepb           = NULL;        // Deepest block so far
 118   int    deepb_dom_depth = 0;
 119   for (uint k = 0; k < n->len(); k++) { // For all inputs
 120     Node* inn = n->in(k);               // Get input
 121     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 122     Block* inb = bbs[inn->_idx];
 123     assert(inb != NULL, "must already have scheduled this input");
 124     if (deepb_dom_depth < (int) inb->_dom_depth) {
 125       // The new inb must be dominated by the previous deepb.
 126       // The various inputs must be linearly ordered in the dom
 127       // tree, or else there will not be a unique deepest block.
 128       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 129       deepb = inb;                      // Save deepest block
 130       deepb_dom_depth = deepb->_dom_depth;
 131     }
 132   }
 133   assert(deepb != NULL, "must be at least one input to n");
 134   return deepb;
 135 }
 136 
 137 
 138 //------------------------------schedule_early---------------------------------
 139 // Find the earliest Block any instruction can be placed in.  Some instructions
 140 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 141 // which all their inputs occur.
 142 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 143   // Allocate stack with enough space to avoid frequent realloc
 144   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 145   // roots.push(_root); _root will be processed among C->top() inputs
 146   roots.push(C->top());
 147   visited.set(C->top()->_idx);
 148 
 149   while (roots.size() != 0) {
 150     // Use local variables nstack_top_n & nstack_top_i to cache values
 151     // on stack's top.
 152     Node *nstack_top_n = roots.pop();
 153     uint  nstack_top_i = 0;
 154 //while_nstack_nonempty:
 155     while (true) {
 156       // Get parent node and next input's index from stack's top.
 157       Node *n = nstack_top_n;
 158       uint  i = nstack_top_i;
 159 
 160       if (i == 0) {
 161         // Special control input processing.
 162         // While I am here, go ahead and look for Nodes which are taking control
 163         // from a is_block_proj Node.  After I inserted RegionNodes to make proper
 164         // blocks, the control at a is_block_proj more properly comes from the
 165         // Region being controlled by the block_proj Node.
 166         const Node *in0 = n->in(0);
 167         if (in0 != NULL) {              // Control-dependent?
 168           const Node *p = in0->is_block_proj();
 169           if (p != NULL && p != n) {    // Control from a block projection?
 170             // Find trailing Region
 171             Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
 172             uint j = 0;
 173             if (pb->_num_succs != 1) {  // More then 1 successor?
 174               // Search for successor
 175               uint max = pb->_nodes.size();
 176               assert( max > 1, "" );
 177               uint start = max - pb->_num_succs;
 178               // Find which output path belongs to projection
 179               for (j = start; j < max; j++) {
 180                 if( pb->_nodes[j] == in0 )
 181                   break;
 182               }
 183               assert( j < max, "must find" );
 184               // Change control to match head of successor basic block
 185               j -= start;
 186             }
 187             n->set_req(0, pb->_succs[j]->head());
 188           }
 189         } else {               // n->in(0) == NULL
 190           if (n->req() == 1) { // This guy is a constant with NO inputs?
 191             n->set_req(0, _root);
 192           }
 193         }
 194       }
 195 
 196       // First, visit all inputs and force them to get a block.  If an
 197       // input is already in a block we quit following inputs (to avoid
 198       // cycles). Instead we put that Node on a worklist to be handled
 199       // later (since IT'S inputs may not have a block yet).
 200       bool done = true;              // Assume all n's inputs will be processed
 201       while (i < n->len()) {         // For all inputs
 202         Node *in = n->in(i);         // Get input
 203         ++i;
 204         if (in == NULL) continue;    // Ignore NULL, missing inputs
 205         int is_visited = visited.test_set(in->_idx);
 206         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 207           if (is_visited) {
 208             // assert( !visited.test(in->_idx), "did not schedule early" );
 209             return false;
 210           }
 211           nstack.push(n, i);         // Save parent node and next input's index.
 212           nstack_top_n = in;         // Process current input now.
 213           nstack_top_i = 0;
 214           done = false;              // Not all n's inputs processed.
 215           break; // continue while_nstack_nonempty;
 216         } else if (!is_visited) {    // Input not yet visited?
 217           roots.push(in);            // Visit this guy later, using worklist
 218         }
 219       }
 220       if (done) {
 221         // All of n's inputs have been processed, complete post-processing.
 222 
 223         // Some instructions are pinned into a block.  These include Region,
 224         // Phi, Start, Return, and other control-dependent instructions and
 225         // any projections which depend on them.
 226         if (!n->pinned()) {
 227           // Set earliest legal block.
 228           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 229         }
 230 
 231         if (nstack.is_empty()) {
 232           // Finished all nodes on stack.
 233           // Process next node on the worklist 'roots'.
 234           break;
 235         }
 236         // Get saved parent node and next input's index.
 237         nstack_top_n = nstack.node();
 238         nstack_top_i = nstack.index();
 239         nstack.pop();
 240       } //    if (done)
 241     }   // while (true)
 242   }     // while (roots.size() != 0)
 243   return true;
 244 }
 245 
 246 //------------------------------dom_lca----------------------------------------
 247 // Find least common ancestor in dominator tree
 248 // LCA is a current notion of LCA, to be raised above 'this'.
 249 // As a convenient boundary condition, return 'this' if LCA is NULL.
 250 // Find the LCA of those two nodes.
 251 Block* Block::dom_lca(Block* LCA) {
 252   if (LCA == NULL || LCA == this)  return this;
 253 
 254   Block* anc = this;
 255   while (anc->_dom_depth > LCA->_dom_depth)
 256     anc = anc->_idom;           // Walk up till anc is as high as LCA
 257 
 258   while (LCA->_dom_depth > anc->_dom_depth)
 259     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 260 
 261   while (LCA != anc) {          // Walk both up till they are the same
 262     LCA = LCA->_idom;
 263     anc = anc->_idom;
 264   }
 265 
 266   return LCA;
 267 }
 268 
 269 //--------------------------raise_LCA_above_use--------------------------------
 270 // We are placing a definition, and have been given a def->use edge.
 271 // The definition must dominate the use, so move the LCA upward in the
 272 // dominator tree to dominate the use.  If the use is a phi, adjust
 273 // the LCA only with the phi input paths which actually use this def.
 274 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 275   Block* buse = bbs[use->_idx];
 276   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 277   if (!use->is_Phi())  return buse->dom_lca(LCA);
 278   uint pmax = use->req();       // Number of Phi inputs
 279   // Why does not this loop just break after finding the matching input to
 280   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 281   // chains.  Means I cannot distinguish, from the def-use direction, which
 282   // of many use-defs lead from the same use to the same def.  That is, this
 283   // Phi might have several uses of the same def.  Each use appears in a
 284   // different predecessor block.  But when I enter here, I cannot distinguish
 285   // which use-def edge I should find the predecessor block for.  So I find
 286   // them all.  Means I do a little extra work if a Phi uses the same value
 287   // more than once.
 288   for (uint j=1; j<pmax; j++) { // For all inputs
 289     if (use->in(j) == def) {    // Found matching input?
 290       Block* pred = bbs[buse->pred(j)->_idx];
 291       LCA = pred->dom_lca(LCA);
 292     }
 293   }
 294   return LCA;
 295 }
 296 
 297 //----------------------------raise_LCA_above_marks----------------------------
 298 // Return a new LCA that dominates LCA and any of its marked predecessors.
 299 // Search all my parents up to 'early' (exclusive), looking for predecessors
 300 // which are marked with the given index.  Return the LCA (in the dom tree)
 301 // of all marked blocks.  If there are none marked, return the original
 302 // LCA.
 303 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 304                                     Block* early, Block_Array &bbs) {
 305   Block_List worklist;
 306   worklist.push(LCA);
 307   while (worklist.size() > 0) {
 308     Block* mid = worklist.pop();
 309     if (mid == early)  continue;  // stop searching here
 310 
 311     // Test and set the visited bit.
 312     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 313 
 314     // Don't process the current LCA, otherwise the search may terminate early
 315     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 316       // Raise the LCA.
 317       LCA = mid->dom_lca(LCA);
 318       if (LCA == early)  break;   // stop searching everywhere
 319       assert(early->dominates(LCA), "early is high enough");
 320       // Resume searching at that point, skipping intermediate levels.
 321       worklist.push(LCA);
 322       if (LCA == mid)
 323         continue; // Don't mark as visited to avoid early termination.
 324     } else {
 325       // Keep searching through this block's predecessors.
 326       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 327         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 328         worklist.push(mid_parent);
 329       }
 330     }
 331     mid->set_raise_LCA_visited(mark);
 332   }
 333   return LCA;
 334 }
 335 
 336 //--------------------------memory_early_block--------------------------------
 337 // This is a variation of find_deepest_input, the heart of schedule_early.
 338 // Find the "early" block for a load, if we considered only memory and
 339 // address inputs, that is, if other data inputs were ignored.
 340 //
 341 // Because a subset of edges are considered, the resulting block will
 342 // be earlier (at a shallower dom_depth) than the true schedule_early
 343 // point of the node. We compute this earlier block as a more permissive
 344 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 345 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 346   Node* base;
 347   Node* index;
 348   Node* store = load->in(MemNode::Memory);
 349   load->as_Mach()->memory_inputs(base, index);
 350 
 351   assert(base != NodeSentinel && index != NodeSentinel,
 352          "unexpected base/index inputs");
 353 
 354   Node* mem_inputs[4];
 355   int mem_inputs_length = 0;
 356   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 357   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 358   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 359 
 360   // In the comparision below, add one to account for the control input,
 361   // which may be null, but always takes up a spot in the in array.
 362   if (mem_inputs_length + 1 < (int) load->req()) {
 363     // This "load" has more inputs than just the memory, base and index inputs.
 364     // For purposes of checking anti-dependences, we need to start
 365     // from the early block of only the address portion of the instruction,
 366     // and ignore other blocks that may have factored into the wider
 367     // schedule_early calculation.
 368     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 369 
 370     Block* deepb           = NULL;        // Deepest block so far
 371     int    deepb_dom_depth = 0;
 372     for (int i = 0; i < mem_inputs_length; i++) {
 373       Block* inb = bbs[mem_inputs[i]->_idx];
 374       if (deepb_dom_depth < (int) inb->_dom_depth) {
 375         // The new inb must be dominated by the previous deepb.
 376         // The various inputs must be linearly ordered in the dom
 377         // tree, or else there will not be a unique deepest block.
 378         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 379         deepb = inb;                      // Save deepest block
 380         deepb_dom_depth = deepb->_dom_depth;
 381       }
 382     }
 383     early = deepb;
 384   }
 385 
 386   return early;
 387 }
 388 
 389 //--------------------------insert_anti_dependences---------------------------
 390 // A load may need to witness memory that nearby stores can overwrite.
 391 // For each nearby store, either insert an "anti-dependence" edge
 392 // from the load to the store, or else move LCA upward to force the
 393 // load to (eventually) be scheduled in a block above the store.
 394 //
 395 // Do not add edges to stores on distinct control-flow paths;
 396 // only add edges to stores which might interfere.
 397 //
 398 // Return the (updated) LCA.  There will not be any possibly interfering
 399 // store between the load's "early block" and the updated LCA.
 400 // Any stores in the updated LCA will have new precedence edges
 401 // back to the load.  The caller is expected to schedule the load
 402 // in the LCA, in which case the precedence edges will make LCM
 403 // preserve anti-dependences.  The caller may also hoist the load
 404 // above the LCA, if it is not the early block.
 405 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 406   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 407   assert(LCA != NULL, "");
 408   DEBUG_ONLY(Block* LCA_orig = LCA);
 409 
 410   // Compute the alias index.  Loads and stores with different alias indices
 411   // do not need anti-dependence edges.
 412   uint load_alias_idx = C->get_alias_index(load->adr_type());
 413 #ifdef ASSERT
 414   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 415       (PrintOpto || VerifyAliases ||
 416        PrintMiscellaneous && (WizardMode || Verbose))) {
 417     // Load nodes should not consume all of memory.
 418     // Reporting a bottom type indicates a bug in adlc.
 419     // If some particular type of node validly consumes all of memory,
 420     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 421     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 422     load->dump(2);
 423     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 424   }
 425 #endif
 426   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 427          "String compare is only known 'load' that does not conflict with any stores");
 428 
 429   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 430     // It is impossible to spoil this load by putting stores before it,
 431     // because we know that the stores will never update the value
 432     // which 'load' must witness.
 433     return LCA;
 434   }
 435 
 436   node_idx_t load_index = load->_idx;
 437 
 438   // Note the earliest legal placement of 'load', as determined by
 439   // by the unique point in the dom tree where all memory effects
 440   // and other inputs are first available.  (Computed by schedule_early.)
 441   // For normal loads, 'early' is the shallowest place (dom graph wise)
 442   // to look for anti-deps between this load and any store.
 443   Block* early = _bbs[load_index];
 444 
 445   // If we are subsuming loads, compute an "early" block that only considers
 446   // memory or address inputs. This block may be different than the
 447   // schedule_early block in that it could be at an even shallower depth in the
 448   // dominator tree, and allow for a broader discovery of anti-dependences.
 449   if (C->subsume_loads()) {
 450     early = memory_early_block(load, early, _bbs);
 451   }
 452 
 453   ResourceArea *area = Thread::current()->resource_area();
 454   Node_List worklist_mem(area);     // prior memory state to store
 455   Node_List worklist_store(area);   // possible-def to explore
 456   Node_List worklist_visited(area); // visited mergemem nodes
 457   Node_List non_early_stores(area); // all relevant stores outside of early
 458   bool must_raise_LCA = false;
 459 
 460 #ifdef TRACK_PHI_INPUTS
 461   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 462   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 463   // original memory state.  This indicates a PhiNode for which should not
 464   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 465   // may be overly conservative.
 466   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 467   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 468 #endif
 469 
 470   // 'load' uses some memory state; look for users of the same state.
 471   // Recurse through MergeMem nodes to the stores that use them.
 472 
 473   // Each of these stores is a possible definition of memory
 474   // that 'load' needs to use.  We need to force 'load'
 475   // to occur before each such store.  When the store is in
 476   // the same block as 'load', we insert an anti-dependence
 477   // edge load->store.
 478 
 479   // The relevant stores "nearby" the load consist of a tree rooted
 480   // at initial_mem, with internal nodes of type MergeMem.
 481   // Therefore, the branches visited by the worklist are of this form:
 482   //    initial_mem -> (MergeMem ->)* store
 483   // The anti-dependence constraints apply only to the fringe of this tree.
 484 
 485   Node* initial_mem = load->in(MemNode::Memory);
 486   worklist_store.push(initial_mem);
 487   worklist_visited.push(initial_mem);
 488   worklist_mem.push(NULL);
 489   while (worklist_store.size() > 0) {
 490     // Examine a nearby store to see if it might interfere with our load.
 491     Node* mem   = worklist_mem.pop();
 492     Node* store = worklist_store.pop();
 493     uint op = store->Opcode();
 494 
 495     // MergeMems do not directly have anti-deps.
 496     // Treat them as internal nodes in a forward tree of memory states,
 497     // the leaves of which are each a 'possible-def'.
 498     if (store == initial_mem    // root (exclusive) of tree we are searching
 499         || op == Op_MergeMem    // internal node of tree we are searching
 500         ) {
 501       mem = store;   // It's not a possibly interfering store.
 502       if (store == initial_mem)
 503         initial_mem = NULL;  // only process initial memory once
 504 
 505       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 506         store = mem->fast_out(i);
 507         if (store->is_MergeMem()) {
 508           // Be sure we don't get into combinatorial problems.
 509           // (Allow phis to be repeated; they can merge two relevant states.)
 510           uint j = worklist_visited.size();
 511           for (; j > 0; j--) {
 512             if (worklist_visited.at(j-1) == store)  break;
 513           }
 514           if (j > 0)  continue; // already on work list; do not repeat
 515           worklist_visited.push(store);
 516         }
 517         worklist_mem.push(mem);
 518         worklist_store.push(store);
 519       }
 520       continue;
 521     }
 522 
 523     if (op == Op_MachProj || op == Op_Catch)   continue;
 524     if (store->needs_anti_dependence_check())  continue;  // not really a store
 525 
 526     // Compute the alias index.  Loads and stores with different alias
 527     // indices do not need anti-dependence edges.  Wide MemBar's are
 528     // anti-dependent on everything (except immutable memories).
 529     const TypePtr* adr_type = store->adr_type();
 530     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 531 
 532     // Most slow-path runtime calls do NOT modify Java memory, but
 533     // they can block and so write Raw memory.
 534     if (store->is_Mach()) {
 535       MachNode* mstore = store->as_Mach();
 536       if (load_alias_idx != Compile::AliasIdxRaw) {
 537         // Check for call into the runtime using the Java calling
 538         // convention (and from there into a wrapper); it has no
 539         // _method.  Can't do this optimization for Native calls because
 540         // they CAN write to Java memory.
 541         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 542           assert(mstore->is_MachSafePoint(), "");
 543           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 544           assert(ms->is_MachCallJava(), "");
 545           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 546           if (mcj->_method == NULL) {
 547             // These runtime calls do not write to Java visible memory
 548             // (other than Raw) and so do not require anti-dependence edges.
 549             continue;
 550           }
 551         }
 552         // Same for SafePoints: they read/write Raw but only read otherwise.
 553         // This is basically a workaround for SafePoints only defining control
 554         // instead of control + memory.
 555         if (mstore->ideal_Opcode() == Op_SafePoint)
 556           continue;
 557       } else {
 558         // Some raw memory, such as the load of "top" at an allocation,
 559         // can be control dependent on the previous safepoint. See
 560         // comments in GraphKit::allocate_heap() about control input.
 561         // Inserting an anti-dep between such a safepoint and a use
 562         // creates a cycle, and will cause a subsequent failure in
 563         // local scheduling.  (BugId 4919904)
 564         // (%%% How can a control input be a safepoint and not a projection??)
 565         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 566           continue;
 567       }
 568     }
 569 
 570     // Identify a block that the current load must be above,
 571     // or else observe that 'store' is all the way up in the
 572     // earliest legal block for 'load'.  In the latter case,
 573     // immediately insert an anti-dependence edge.
 574     Block* store_block = _bbs[store->_idx];
 575     assert(store_block != NULL, "unused killing projections skipped above");
 576 
 577     if (store->is_Phi()) {
 578       // 'load' uses memory which is one (or more) of the Phi's inputs.
 579       // It must be scheduled not before the Phi, but rather before
 580       // each of the relevant Phi inputs.
 581       //
 582       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 583       // we mark each corresponding predecessor block and do a combined
 584       // hoisting operation later (raise_LCA_above_marks).
 585       //
 586       // Do not assert(store_block != early, "Phi merging memory after access")
 587       // PhiNode may be at start of block 'early' with backedge to 'early'
 588       DEBUG_ONLY(bool found_match = false);
 589       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 590         if (store->in(j) == mem) {   // Found matching input?
 591           DEBUG_ONLY(found_match = true);
 592           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 593           if (pred_block != early) {
 594             // If any predecessor of the Phi matches the load's "early block",
 595             // we do not need a precedence edge between the Phi and 'load'
 596             // since the load will be forced into a block preceeding the Phi.
 597             pred_block->set_raise_LCA_mark(load_index);
 598             assert(!LCA_orig->dominates(pred_block) ||
 599                    early->dominates(pred_block), "early is high enough");
 600             must_raise_LCA = true;
 601           }
 602         }
 603       }
 604       assert(found_match, "no worklist bug");
 605 #ifdef TRACK_PHI_INPUTS
 606 #ifdef ASSERT
 607       // This assert asks about correct handling of PhiNodes, which may not
 608       // have all input edges directly from 'mem'. See BugId 4621264
 609       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 610       // Increment by exactly one even if there are multiple copies of 'mem'
 611       // coming into the phi, because we will run this block several times
 612       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 613       phi_inputs.at_put(store->_idx, num_mem_inputs);
 614       assert(PhiNode::Input + num_mem_inputs < store->req(),
 615              "Expect at least one phi input will not be from original memory state");
 616 #endif //ASSERT
 617 #endif //TRACK_PHI_INPUTS
 618     } else if (store_block != early) {
 619       // 'store' is between the current LCA and earliest possible block.
 620       // Label its block, and decide later on how to raise the LCA
 621       // to include the effect on LCA of this store.
 622       // If this store's block gets chosen as the raised LCA, we
 623       // will find him on the non_early_stores list and stick him
 624       // with a precedence edge.
 625       // (But, don't bother if LCA is already raised all the way.)
 626       if (LCA != early) {
 627         store_block->set_raise_LCA_mark(load_index);
 628         must_raise_LCA = true;
 629         non_early_stores.push(store);
 630       }
 631     } else {
 632       // Found a possibly-interfering store in the load's 'early' block.
 633       // This means 'load' cannot sink at all in the dominator tree.
 634       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 635       assert(store != load->in(0), "dependence cycle found");
 636       if (verify) {
 637         assert(store->find_edge(load) != -1, "missing precedence edge");
 638       } else {
 639         store->add_prec(load);
 640       }
 641       LCA = early;
 642       // This turns off the process of gathering non_early_stores.
 643     }
 644   }
 645   // (Worklist is now empty; all nearby stores have been visited.)
 646 
 647   // Finished if 'load' must be scheduled in its 'early' block.
 648   // If we found any stores there, they have already been given
 649   // precedence edges.
 650   if (LCA == early)  return LCA;
 651 
 652   // We get here only if there are no possibly-interfering stores
 653   // in the load's 'early' block.  Move LCA up above all predecessors
 654   // which contain stores we have noted.
 655   //
 656   // The raised LCA block can be a home to such interfering stores,
 657   // but its predecessors must not contain any such stores.
 658   //
 659   // The raised LCA will be a lower bound for placing the load,
 660   // preventing the load from sinking past any block containing
 661   // a store that may invalidate the memory state required by 'load'.
 662   if (must_raise_LCA)
 663     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 664   if (LCA == early)  return LCA;
 665 
 666   // Insert anti-dependence edges from 'load' to each store
 667   // in the non-early LCA block.
 668   // Mine the non_early_stores list for such stores.
 669   if (LCA->raise_LCA_mark() == load_index) {
 670     while (non_early_stores.size() > 0) {
 671       Node* store = non_early_stores.pop();
 672       Block* store_block = _bbs[store->_idx];
 673       if (store_block == LCA) {
 674         // add anti_dependence from store to load in its own block
 675         assert(store != load->in(0), "dependence cycle found");
 676         if (verify) {
 677           assert(store->find_edge(load) != -1, "missing precedence edge");
 678         } else {
 679           store->add_prec(load);
 680         }
 681       } else {
 682         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 683         // Any other stores we found must be either inside the new LCA
 684         // or else outside the original LCA.  In the latter case, they
 685         // did not interfere with any use of 'load'.
 686         assert(LCA->dominates(store_block)
 687                || !LCA_orig->dominates(store_block), "no stray stores");
 688       }
 689     }
 690   }
 691 
 692   // Return the highest block containing stores; any stores
 693   // within that block have been given anti-dependence edges.
 694   return LCA;
 695 }
 696 
 697 // This class is used to iterate backwards over the nodes in the graph.
 698 
 699 class Node_Backward_Iterator {
 700 
 701 private:
 702   Node_Backward_Iterator();
 703 
 704 public:
 705   // Constructor for the iterator
 706   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 707 
 708   // Postincrement operator to iterate over the nodes
 709   Node *next();
 710 
 711 private:
 712   VectorSet   &_visited;
 713   Node_List   &_stack;
 714   Block_Array &_bbs;
 715 };
 716 
 717 // Constructor for the Node_Backward_Iterator
 718 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 719   : _visited(visited), _stack(stack), _bbs(bbs) {
 720   // The stack should contain exactly the root
 721   stack.clear();
 722   stack.push(root);
 723 
 724   // Clear the visited bits
 725   visited.Clear();
 726 }
 727 
 728 // Iterator for the Node_Backward_Iterator
 729 Node *Node_Backward_Iterator::next() {
 730 
 731   // If the _stack is empty, then just return NULL: finished.
 732   if ( !_stack.size() )
 733     return NULL;
 734 
 735   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 736   // made stateless, so I do not need to record the index 'i' on my _stack.
 737   // Instead I visit all users each time, scanning for unvisited users.
 738   // I visit unvisited not-anti-dependence users first, then anti-dependent
 739   // children next.
 740   Node *self = _stack.pop();
 741 
 742   // I cycle here when I am entering a deeper level of recursion.
 743   // The key variable 'self' was set prior to jumping here.
 744   while( 1 ) {
 745 
 746     _visited.set(self->_idx);
 747 
 748     // Now schedule all uses as late as possible.
 749     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 750     uint src_rpo = _bbs[src]->_rpo;
 751 
 752     // Schedule all nodes in a post-order visit
 753     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 754 
 755     // Scan for unvisited nodes
 756     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 757       // For all uses, schedule late
 758       Node* n = self->fast_out(i); // Use
 759 
 760       // Skip already visited children
 761       if ( _visited.test(n->_idx) )
 762         continue;
 763 
 764       // do not traverse backward control edges
 765       Node *use = n->is_Proj() ? n->in(0) : n;
 766       uint use_rpo = _bbs[use->_idx]->_rpo;
 767 
 768       if ( use_rpo < src_rpo )
 769         continue;
 770 
 771       // Phi nodes always precede uses in a basic block
 772       if ( use_rpo == src_rpo && use->is_Phi() )
 773         continue;
 774 
 775       unvisited = n;      // Found unvisited
 776 
 777       // Check for possible-anti-dependent
 778       if( !n->needs_anti_dependence_check() )
 779         break;            // Not visited, not anti-dep; schedule it NOW
 780     }
 781 
 782     // Did I find an unvisited not-anti-dependent Node?
 783     if ( !unvisited )
 784       break;                  // All done with children; post-visit 'self'
 785 
 786     // Visit the unvisited Node.  Contains the obvious push to
 787     // indicate I'm entering a deeper level of recursion.  I push the
 788     // old state onto the _stack and set a new state and loop (recurse).
 789     _stack.push(self);
 790     self = unvisited;
 791   } // End recursion loop
 792 
 793   return self;
 794 }
 795 
 796 //------------------------------ComputeLatenciesBackwards----------------------
 797 // Compute the latency of all the instructions.
 798 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 799 #ifndef PRODUCT
 800   if (trace_opto_pipelining())
 801     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 802 #endif
 803 
 804   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 805   Node *n;
 806 
 807   // Walk over all the nodes from last to first
 808   while (n = iter.next()) {
 809     // Set the latency for the definitions of this instruction
 810     partial_latency_of_defs(n);
 811   }
 812 } // end ComputeLatenciesBackwards
 813 
 814 //------------------------------partial_latency_of_defs------------------------
 815 // Compute the latency impact of this node on all defs.  This computes
 816 // a number that increases as we approach the beginning of the routine.
 817 void PhaseCFG::partial_latency_of_defs(Node *n) {
 818   // Set the latency for this instruction
 819 #ifndef PRODUCT
 820   if (trace_opto_pipelining()) {
 821     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 822                n->_idx, _node_latency.at_grow(n->_idx));
 823     dump();
 824   }
 825 #endif
 826 
 827   if (n->is_Proj())
 828     n = n->in(0);
 829 
 830   if (n->is_Root())
 831     return;
 832 
 833   uint nlen = n->len();
 834   uint use_latency = _node_latency.at_grow(n->_idx);
 835   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 836 
 837   for ( uint j=0; j<nlen; j++ ) {
 838     Node *def = n->in(j);
 839 
 840     if (!def || def == n)
 841       continue;
 842 
 843     // Walk backwards thru projections
 844     if (def->is_Proj())
 845       def = def->in(0);
 846 
 847 #ifndef PRODUCT
 848     if (trace_opto_pipelining()) {
 849       tty->print("#    in(%2d): ", j);
 850       def->dump();
 851     }
 852 #endif
 853 
 854     // If the defining block is not known, assume it is ok
 855     Block *def_block = _bbs[def->_idx];
 856     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 857 
 858     if ( (use_pre_order <  def_pre_order) ||
 859          (use_pre_order == def_pre_order && n->is_Phi()) )
 860       continue;
 861 
 862     uint delta_latency = n->latency(j);
 863     uint current_latency = delta_latency + use_latency;
 864 
 865     if (_node_latency.at_grow(def->_idx) < current_latency) {
 866       _node_latency.at_put_grow(def->_idx, current_latency);
 867     }
 868 
 869 #ifndef PRODUCT
 870     if (trace_opto_pipelining()) {
 871       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 872                     use_latency, j, delta_latency, current_latency, def->_idx,
 873                     _node_latency.at_grow(def->_idx));
 874     }
 875 #endif
 876   }
 877 }
 878 
 879 //------------------------------latency_from_use-------------------------------
 880 // Compute the latency of a specific use
 881 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 882   // If self-reference, return no latency
 883   if (use == n || use->is_Root())
 884     return 0;
 885 
 886   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 887   uint latency = 0;
 888 
 889   // If the use is not a projection, then it is simple...
 890   if (!use->is_Proj()) {
 891 #ifndef PRODUCT
 892     if (trace_opto_pipelining()) {
 893       tty->print("#    out(): ");
 894       use->dump();
 895     }
 896 #endif
 897 
 898     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 899 
 900     if (use_pre_order < def_pre_order)
 901       return 0;
 902 
 903     if (use_pre_order == def_pre_order && use->is_Phi())
 904       return 0;
 905 
 906     uint nlen = use->len();
 907     uint nl = _node_latency.at_grow(use->_idx);
 908 
 909     for ( uint j=0; j<nlen; j++ ) {
 910       if (use->in(j) == n) {
 911         // Change this if we want local latencies
 912         uint ul = use->latency(j);
 913         uint  l = ul + nl;
 914         if (latency < l) latency = l;
 915 #ifndef PRODUCT
 916         if (trace_opto_pipelining()) {
 917           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 918                         nl, j, ul, l, latency);
 919         }
 920 #endif
 921       }
 922     }
 923   } else {
 924     // This is a projection, just grab the latency of the use(s)
 925     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 926       uint l = latency_from_use(use, def, use->fast_out(j));
 927       if (latency < l) latency = l;
 928     }
 929   }
 930 
 931   return latency;
 932 }
 933 
 934 //------------------------------latency_from_uses------------------------------
 935 // Compute the latency of this instruction relative to all of it's uses.
 936 // This computes a number that increases as we approach the beginning of the
 937 // routine.
 938 void PhaseCFG::latency_from_uses(Node *n) {
 939   // Set the latency for this instruction
 940 #ifndef PRODUCT
 941   if (trace_opto_pipelining()) {
 942     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
 943                n->_idx, _node_latency.at_grow(n->_idx));
 944     dump();
 945   }
 946 #endif
 947   uint latency=0;
 948   const Node *def = n->is_Proj() ? n->in(0): n;
 949 
 950   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 951     uint l = latency_from_use(n, def, n->fast_out(i));
 952 
 953     if (latency < l) latency = l;
 954   }
 955 
 956   _node_latency.at_put_grow(n->_idx, latency);
 957 }
 958 
 959 //------------------------------hoist_to_cheaper_block-------------------------
 960 // Pick a block for node self, between early and LCA, that is a cheaper
 961 // alternative to LCA.
 962 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
 963   const double delta = 1+PROB_UNLIKELY_MAG(4);
 964   Block* least       = LCA;
 965   double least_freq  = least->_freq;
 966   uint target        = _node_latency.at_grow(self->_idx);
 967   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
 968   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
 969   bool in_latency    = (target <= start_latency);
 970   const Block* root_block = _bbs[_root->_idx];
 971 
 972   // Turn off latency scheduling if scheduling is just plain off
 973   if (!C->do_scheduling())
 974     in_latency = true;
 975 
 976   // Do not hoist (to cover latency) instructions which target a
 977   // single register.  Hoisting stretches the live range of the
 978   // single register and may force spilling.
 979   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
 980   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
 981     in_latency = true;
 982 
 983 #ifndef PRODUCT
 984   if (trace_opto_pipelining()) {
 985     tty->print("# Find cheaper block for latency %d: ",
 986       _node_latency.at_grow(self->_idx));
 987     self->dump();
 988     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
 989       LCA->_pre_order,
 990       LCA->_nodes[0]->_idx,
 991       start_latency,
 992       LCA->_nodes[LCA->end_idx()]->_idx,
 993       end_latency,
 994       least_freq);
 995   }
 996 #endif
 997 
 998   // Walk up the dominator tree from LCA (Lowest common ancestor) to
 999   // the earliest legal location.  Capture the least execution frequency.
1000   while (LCA != early) {
1001     LCA = LCA->_idom;         // Follow up the dominator tree
1002 
1003     if (LCA == NULL) {
1004       // Bailout without retry
1005       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1006       return least;
1007     }
1008 
1009     // Don't hoist machine instructions to the root basic block
1010     if (mach && LCA == root_block)
1011       break;
1012 
1013     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1014     uint end_idx   = LCA->end_idx();
1015     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1016     double LCA_freq = LCA->_freq;
1017 #ifndef PRODUCT
1018     if (trace_opto_pipelining()) {
1019       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1020         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1021     }
1022 #endif
1023     if (LCA_freq < least_freq              || // Better Frequency
1024         ( !in_latency                   &&    // No block containing latency
1025           LCA_freq < least_freq * delta &&    // No worse frequency
1026           target >= end_lat             &&    // within latency range
1027           !self->is_iteratively_computed() )  // But don't hoist IV increments
1028              // because they may end up above other uses of their phi forcing
1029              // their result register to be different from their input.
1030        ) {
1031       least = LCA;            // Found cheaper block
1032       least_freq = LCA_freq;
1033       start_latency = start_lat;
1034       end_latency = end_lat;
1035       if (target <= start_lat)
1036         in_latency = true;
1037     }
1038   }
1039 
1040 #ifndef PRODUCT
1041   if (trace_opto_pipelining()) {
1042     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1043       least->_pre_order, start_latency, least_freq);
1044   }
1045 #endif
1046 
1047   // See if the latency needs to be updated
1048   if (target < end_latency) {
1049 #ifndef PRODUCT
1050     if (trace_opto_pipelining()) {
1051       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1052     }
1053 #endif
1054     _node_latency.at_put_grow(self->_idx, end_latency);
1055     partial_latency_of_defs(self);
1056   }
1057 
1058   return least;
1059 }
1060 
1061 
1062 //------------------------------schedule_late-----------------------------------
1063 // Now schedule all codes as LATE as possible.  This is the LCA in the
1064 // dominator tree of all USES of a value.  Pick the block with the least
1065 // loop nesting depth that is lowest in the dominator tree.
1066 extern const char must_clone[];
1067 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1068 #ifndef PRODUCT
1069   if (trace_opto_pipelining())
1070     tty->print("\n#---- schedule_late ----\n");
1071 #endif
1072 
1073   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1074   Node *self;
1075 
1076   // Walk over all the nodes from last to first
1077   while (self = iter.next()) {
1078     Block* early = _bbs[self->_idx];   // Earliest legal placement
1079 
1080     if (self->is_top()) {
1081       // Top node goes in bb #2 with other constants.
1082       // It must be special-cased, because it has no out edges.
1083       early->add_inst(self);
1084       continue;
1085     }
1086 
1087     // No uses, just terminate
1088     if (self->outcnt() == 0) {
1089       assert(self->Opcode() == Op_MachProj, "sanity");
1090       continue;                   // Must be a dead machine projection
1091     }
1092 
1093     // If node is pinned in the block, then no scheduling can be done.
1094     if( self->pinned() )          // Pinned in block?
1095       continue;
1096 
1097     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1098     if (mach) {
1099       switch (mach->ideal_Opcode()) {
1100       case Op_CreateEx:
1101         // Don't move exception creation
1102         early->add_inst(self);
1103         continue;
1104         break;
1105       case Op_CheckCastPP:
1106         // Don't move CheckCastPP nodes away from their input, if the input
1107         // is a rawptr (5071820).
1108         Node *def = self->in(1);
1109         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1110           early->add_inst(self);
1111           continue;
1112         }
1113         break;
1114       }
1115     }
1116 
1117     // Gather LCA of all uses
1118     Block *LCA = NULL;
1119     {
1120       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1121         // For all uses, find LCA
1122         Node* use = self->fast_out(i);
1123         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1124       }
1125     }  // (Hide defs of imax, i from rest of block.)
1126 
1127     // Place temps in the block of their use.  This isn't a
1128     // requirement for correctness but it reduces useless
1129     // interference between temps and other nodes.
1130     if (mach != NULL && mach->is_MachTemp()) {
1131       _bbs.map(self->_idx, LCA);
1132       LCA->add_inst(self);
1133       continue;
1134     }
1135 
1136     // Check if 'self' could be anti-dependent on memory
1137     if (self->needs_anti_dependence_check()) {
1138       // Hoist LCA above possible-defs and insert anti-dependences to
1139       // defs in new LCA block.
1140       LCA = insert_anti_dependences(LCA, self);
1141     }
1142 
1143     if (early->_dom_depth > LCA->_dom_depth) {
1144       // Somehow the LCA has moved above the earliest legal point.
1145       // (One way this can happen is via memory_early_block.)
1146       if (C->subsume_loads() == true && !C->failing()) {
1147         // Retry with subsume_loads == false
1148         // If this is the first failure, the sentinel string will "stick"
1149         // to the Compile object, and the C2Compiler will see it and retry.
1150         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1151       } else {
1152         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1153         C->record_method_not_compilable("late schedule failed: incorrect graph");
1154       }
1155       return;
1156     }
1157 
1158     // If there is no opportunity to hoist, then we're done.
1159     bool try_to_hoist = (LCA != early);
1160 
1161     // Must clone guys stay next to use; no hoisting allowed.
1162     // Also cannot hoist guys that alter memory or are otherwise not
1163     // allocatable (hoisting can make a value live longer, leading to
1164     // anti and output dependency problems which are normally resolved
1165     // by the register allocator giving everyone a different register).
1166     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1167       try_to_hoist = false;
1168 
1169     Block* late = NULL;
1170     if (try_to_hoist) {
1171       // Now find the block with the least execution frequency.
1172       // Start at the latest schedule and work up to the earliest schedule
1173       // in the dominator tree.  Thus the Node will dominate all its uses.
1174       late = hoist_to_cheaper_block(LCA, early, self);
1175     } else {
1176       // Just use the LCA of the uses.
1177       late = LCA;
1178     }
1179 
1180     // Put the node into target block
1181     schedule_node_into_block(self, late);
1182 
1183 #ifdef ASSERT
1184     if (self->needs_anti_dependence_check()) {
1185       // since precedence edges are only inserted when we're sure they
1186       // are needed make sure that after placement in a block we don't
1187       // need any new precedence edges.
1188       verify_anti_dependences(late, self);
1189     }
1190 #endif
1191   } // Loop until all nodes have been visited
1192 
1193 } // end ScheduleLate
1194 
1195 //------------------------------GlobalCodeMotion-------------------------------
1196 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1197   ResourceMark rm;
1198 
1199 #ifndef PRODUCT
1200   if (trace_opto_pipelining()) {
1201     tty->print("\n---- Start GlobalCodeMotion ----\n");
1202   }
1203 #endif
1204 
1205   // Initialize the bbs.map for things on the proj_list
1206   uint i;
1207   for( i=0; i < proj_list.size(); i++ )
1208     _bbs.map(proj_list[i]->_idx, NULL);
1209 
1210   // Set the basic block for Nodes pinned into blocks
1211   Arena *a = Thread::current()->resource_area();
1212   VectorSet visited(a);
1213   schedule_pinned_nodes( visited );
1214 
1215   // Find the earliest Block any instruction can be placed in.  Some
1216   // instructions are pinned into Blocks.  Unpinned instructions can
1217   // appear in last block in which all their inputs occur.
1218   visited.Clear();
1219   Node_List stack(a);
1220   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1221   if (!schedule_early(visited, stack)) {
1222     // Bailout without retry
1223     C->record_method_not_compilable("early schedule failed");
1224     return;
1225   }
1226 
1227   // Build Def-Use edges.
1228   proj_list.push(_root);        // Add real root as another root
1229   proj_list.pop();
1230 
1231   // Compute the latency information (via backwards walk) for all the
1232   // instructions in the graph
1233   GrowableArray<uint> node_latency;
1234   _node_latency = node_latency;
1235 
1236   if( C->do_scheduling() )
1237     ComputeLatenciesBackwards(visited, stack);
1238 
1239   // Now schedule all codes as LATE as possible.  This is the LCA in the
1240   // dominator tree of all USES of a value.  Pick the block with the least
1241   // loop nesting depth that is lowest in the dominator tree.
1242   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1243   schedule_late(visited, stack);
1244   if( C->failing() ) {
1245     // schedule_late fails only when graph is incorrect.
1246     assert(!VerifyGraphEdges, "verification should have failed");
1247     return;
1248   }
1249 
1250   unique = C->unique();
1251 
1252 #ifndef PRODUCT
1253   if (trace_opto_pipelining()) {
1254     tty->print("\n---- Detect implicit null checks ----\n");
1255   }
1256 #endif
1257 
1258   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1259   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1260   // I can generate a memory op if there is not one nearby.
1261   if (C->is_method_compilation()) {
1262     // Don't do it for natives, adapters, or runtime stubs
1263     int allowed_reasons = 0;
1264     // ...and don't do it when there have been too many traps, globally.
1265     for (int reason = (int)Deoptimization::Reason_none+1;
1266          reason < Compile::trapHistLength; reason++) {
1267       assert(reason < BitsPerInt, "recode bit map");
1268       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1269         allowed_reasons |= nth_bit(reason);
1270     }
1271     // By reversing the loop direction we get a very minor gain on mpegaudio.
1272     // Feel free to revert to a forward loop for clarity.
1273     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1274     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1275       Node *proj = matcher._null_check_tests[i  ];
1276       Node *val  = matcher._null_check_tests[i+1];
1277       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1278       // The implicit_null_check will only perform the transformation
1279       // if the null branch is truly uncommon, *and* it leads to an
1280       // uncommon trap.  Combined with the too_many_traps guards
1281       // above, this prevents SEGV storms reported in 6366351,
1282       // by recompiling offending methods without this optimization.
1283     }
1284   }
1285 
1286 #ifndef PRODUCT
1287   if (trace_opto_pipelining()) {
1288     tty->print("\n---- Start Local Scheduling ----\n");
1289   }
1290 #endif
1291 
1292   // Schedule locally.  Right now a simple topological sort.
1293   // Later, do a real latency aware scheduler.
1294   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1295   memset( ready_cnt, -1, C->unique() * sizeof(int) );
1296   visited.Clear();
1297   for (i = 0; i < _num_blocks; i++) {
1298     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1299       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1300         C->record_method_not_compilable("local schedule failed");
1301       }
1302       return;
1303     }
1304   }
1305 
1306   // If we inserted any instructions between a Call and his CatchNode,
1307   // clone the instructions on all paths below the Catch.
1308   for( i=0; i < _num_blocks; i++ )
1309     _blocks[i]->call_catch_cleanup(_bbs);
1310 
1311 #ifndef PRODUCT
1312   if (trace_opto_pipelining()) {
1313     tty->print("\n---- After GlobalCodeMotion ----\n");
1314     for (uint i = 0; i < _num_blocks; i++) {
1315       _blocks[i]->dump();
1316     }
1317   }
1318 #endif
1319 }
1320 
1321 
1322 //------------------------------Estimate_Block_Frequency-----------------------
1323 // Estimate block frequencies based on IfNode probabilities.
1324 void PhaseCFG::Estimate_Block_Frequency() {
1325 
1326   // Force conditional branches leading to uncommon traps to be unlikely,
1327   // not because we get to the uncommon_trap with less relative frequency,
1328   // but because an uncommon_trap typically causes a deopt, so we only get
1329   // there once.
1330   if (C->do_freq_based_layout()) {
1331     Block_List worklist;
1332     Block* root_blk = _blocks[0];
1333     for (uint i = 1; i < root_blk->num_preds(); i++) {
1334       Block *pb = _bbs[root_blk->pred(i)->_idx];
1335       if (pb->has_uncommon_code()) {
1336         worklist.push(pb);
1337       }
1338     }
1339     while (worklist.size() > 0) {
1340       Block* uct = worklist.pop();
1341       if (uct == _broot) continue;
1342       for (uint i = 1; i < uct->num_preds(); i++) {
1343         Block *pb = _bbs[uct->pred(i)->_idx];
1344         if (pb->_num_succs == 1) {
1345           worklist.push(pb);
1346         } else if (pb->num_fall_throughs() == 2) {
1347           pb->update_uncommon_branch(uct);
1348         }
1349       }
1350     }
1351   }
1352 
1353   // Create the loop tree and calculate loop depth.
1354   _root_loop = create_loop_tree();
1355   _root_loop->compute_loop_depth(0);
1356 
1357   // Compute block frequency of each block, relative to a single loop entry.
1358   _root_loop->compute_freq();
1359 
1360   // Adjust all frequencies to be relative to a single method entry
1361   _root_loop->_freq = 1.0;
1362   _root_loop->scale_freq();
1363 
1364   // force paths ending at uncommon traps to be infrequent
1365   if (!C->do_freq_based_layout()) {
1366     Block_List worklist;
1367     Block* root_blk = _blocks[0];
1368     for (uint i = 1; i < root_blk->num_preds(); i++) {
1369       Block *pb = _bbs[root_blk->pred(i)->_idx];
1370       if (pb->has_uncommon_code()) {
1371         worklist.push(pb);
1372       }
1373     }
1374     while (worklist.size() > 0) {
1375       Block* uct = worklist.pop();
1376       uct->_freq = PROB_MIN;
1377       for (uint i = 1; i < uct->num_preds(); i++) {
1378         Block *pb = _bbs[uct->pred(i)->_idx];
1379         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1380           worklist.push(pb);
1381         }
1382       }
1383     }
1384   }
1385 
1386 #ifdef ASSERT
1387   for (uint i = 0; i < _num_blocks; i++ ) {
1388     Block *b = _blocks[i];
1389     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requiers meaningful block frequency");
1390   }
1391 #endif
1392 
1393 #ifndef PRODUCT
1394   if (PrintCFGBlockFreq) {
1395     tty->print_cr("CFG Block Frequencies");
1396     _root_loop->dump_tree();
1397     if (Verbose) {
1398       tty->print_cr("PhaseCFG dump");
1399       dump();
1400       tty->print_cr("Node dump");
1401       _root->dump(99999);
1402     }
1403   }
1404 #endif
1405 }
1406 
1407 //----------------------------create_loop_tree--------------------------------
1408 // Create a loop tree from the CFG
1409 CFGLoop* PhaseCFG::create_loop_tree() {
1410 
1411 #ifdef ASSERT
1412   assert( _blocks[0] == _broot, "" );
1413   for (uint i = 0; i < _num_blocks; i++ ) {
1414     Block *b = _blocks[i];
1415     // Check that _loop field are clear...we could clear them if not.
1416     assert(b->_loop == NULL, "clear _loop expected");
1417     // Sanity check that the RPO numbering is reflected in the _blocks array.
1418     // It doesn't have to be for the loop tree to be built, but if it is not,
1419     // then the blocks have been reordered since dom graph building...which
1420     // may question the RPO numbering
1421     assert(b->_rpo == i, "unexpected reverse post order number");
1422   }
1423 #endif
1424 
1425   int idct = 0;
1426   CFGLoop* root_loop = new CFGLoop(idct++);
1427 
1428   Block_List worklist;
1429 
1430   // Assign blocks to loops
1431   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1432     Block *b = _blocks[i];
1433 
1434     if (b->head()->is_Loop()) {
1435       Block* loop_head = b;
1436       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1437       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1438       Block* tail = _bbs[tail_n->_idx];
1439 
1440       // Defensively filter out Loop nodes for non-single-entry loops.
1441       // For all reasonable loops, the head occurs before the tail in RPO.
1442       if (i <= tail->_rpo) {
1443 
1444         // The tail and (recursive) predecessors of the tail
1445         // are made members of a new loop.
1446 
1447         assert(worklist.size() == 0, "nonempty worklist");
1448         CFGLoop* nloop = new CFGLoop(idct++);
1449         assert(loop_head->_loop == NULL, "just checking");
1450         loop_head->_loop = nloop;
1451         // Add to nloop so push_pred() will skip over inner loops
1452         nloop->add_member(loop_head);
1453         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1454 
1455         while (worklist.size() > 0) {
1456           Block* member = worklist.pop();
1457           if (member != loop_head) {
1458             for (uint j = 1; j < member->num_preds(); j++) {
1459               nloop->push_pred(member, j, worklist, _bbs);
1460             }
1461           }
1462         }
1463       }
1464     }
1465   }
1466 
1467   // Create a member list for each loop consisting
1468   // of both blocks and (immediate child) loops.
1469   for (uint i = 0; i < _num_blocks; i++) {
1470     Block *b = _blocks[i];
1471     CFGLoop* lp = b->_loop;
1472     if (lp == NULL) {
1473       // Not assigned to a loop. Add it to the method's pseudo loop.
1474       b->_loop = root_loop;
1475       lp = root_loop;
1476     }
1477     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1478       lp->add_member(b);
1479     }
1480     if (lp != root_loop) {
1481       if (lp->parent() == NULL) {
1482         // Not a nested loop. Make it a child of the method's pseudo loop.
1483         root_loop->add_nested_loop(lp);
1484       }
1485       if (b == lp->head()) {
1486         // Add nested loop to member list of parent loop.
1487         lp->parent()->add_member(lp);
1488       }
1489     }
1490   }
1491 
1492   return root_loop;
1493 }
1494 
1495 //------------------------------push_pred--------------------------------------
1496 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1497   Node* pred_n = blk->pred(i);
1498   Block* pred = node_to_blk[pred_n->_idx];
1499   CFGLoop *pred_loop = pred->_loop;
1500   if (pred_loop == NULL) {
1501     // Filter out blocks for non-single-entry loops.
1502     // For all reasonable loops, the head occurs before the tail in RPO.
1503     if (pred->_rpo > head()->_rpo) {
1504       pred->_loop = this;
1505       worklist.push(pred);
1506     }
1507   } else if (pred_loop != this) {
1508     // Nested loop.
1509     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1510       pred_loop = pred_loop->_parent;
1511     }
1512     // Make pred's loop be a child
1513     if (pred_loop->_parent == NULL) {
1514       add_nested_loop(pred_loop);
1515       // Continue with loop entry predecessor.
1516       Block* pred_head = pred_loop->head();
1517       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1518       assert(pred_head != head(), "loop head in only one loop");
1519       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1520     } else {
1521       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1522     }
1523   }
1524 }
1525 
1526 //------------------------------add_nested_loop--------------------------------
1527 // Make cl a child of the current loop in the loop tree.
1528 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1529   assert(_parent == NULL, "no parent yet");
1530   assert(cl != this, "not my own parent");
1531   cl->_parent = this;
1532   CFGLoop* ch = _child;
1533   if (ch == NULL) {
1534     _child = cl;
1535   } else {
1536     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1537     ch->_sibling = cl;
1538   }
1539 }
1540 
1541 //------------------------------compute_loop_depth-----------------------------
1542 // Store the loop depth in each CFGLoop object.
1543 // Recursively walk the children to do the same for them.
1544 void CFGLoop::compute_loop_depth(int depth) {
1545   _depth = depth;
1546   CFGLoop* ch = _child;
1547   while (ch != NULL) {
1548     ch->compute_loop_depth(depth + 1);
1549     ch = ch->_sibling;
1550   }
1551 }
1552 
1553 //------------------------------compute_freq-----------------------------------
1554 // Compute the frequency of each block and loop, relative to a single entry
1555 // into the dominating loop head.
1556 void CFGLoop::compute_freq() {
1557   // Bottom up traversal of loop tree (visit inner loops first.)
1558   // Set loop head frequency to 1.0, then transitively
1559   // compute frequency for all successors in the loop,
1560   // as well as for each exit edge.  Inner loops are
1561   // treated as single blocks with loop exit targets
1562   // as the successor blocks.
1563 
1564   // Nested loops first
1565   CFGLoop* ch = _child;
1566   while (ch != NULL) {
1567     ch->compute_freq();
1568     ch = ch->_sibling;
1569   }
1570   assert (_members.length() > 0, "no empty loops");
1571   Block* hd = head();
1572   hd->_freq = 1.0f;
1573   for (int i = 0; i < _members.length(); i++) {
1574     CFGElement* s = _members.at(i);
1575     float freq = s->_freq;
1576     if (s->is_block()) {
1577       Block* b = s->as_Block();
1578       for (uint j = 0; j < b->_num_succs; j++) {
1579         Block* sb = b->_succs[j];
1580         update_succ_freq(sb, freq * b->succ_prob(j));
1581       }
1582     } else {
1583       CFGLoop* lp = s->as_CFGLoop();
1584       assert(lp->_parent == this, "immediate child");
1585       for (int k = 0; k < lp->_exits.length(); k++) {
1586         Block* eb = lp->_exits.at(k).get_target();
1587         float prob = lp->_exits.at(k).get_prob();
1588         update_succ_freq(eb, freq * prob);
1589       }
1590     }
1591   }
1592 
1593   // For all loops other than the outer, "method" loop,
1594   // sum and normalize the exit probability. The "method" loop
1595   // should keep the initial exit probability of 1, so that
1596   // inner blocks do not get erroneously scaled.
1597   if (_depth != 0) {
1598     // Total the exit probabilities for this loop.
1599     float exits_sum = 0.0f;
1600     for (int i = 0; i < _exits.length(); i++) {
1601       exits_sum += _exits.at(i).get_prob();
1602     }
1603 
1604     // Normalize the exit probabilities. Until now, the
1605     // probabilities estimate the possibility of exit per
1606     // a single loop iteration; afterward, they estimate
1607     // the probability of exit per loop entry.
1608     for (int i = 0; i < _exits.length(); i++) {
1609       Block* et = _exits.at(i).get_target();
1610       float new_prob = 0.0f;
1611       if (_exits.at(i).get_prob() > 0.0f) {
1612         new_prob = _exits.at(i).get_prob() / exits_sum;
1613       }
1614       BlockProbPair bpp(et, new_prob);
1615       _exits.at_put(i, bpp);
1616     }
1617 
1618     // Save the total, but guard against unreasonable probability,
1619     // as the value is used to estimate the loop trip count.
1620     // An infinite trip count would blur relative block
1621     // frequencies.
1622     if (exits_sum > 1.0f) exits_sum = 1.0;
1623     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1624     _exit_prob = exits_sum;
1625   }
1626 }
1627 
1628 //------------------------------succ_prob-------------------------------------
1629 // Determine the probability of reaching successor 'i' from the receiver block.
1630 float Block::succ_prob(uint i) {
1631   int eidx = end_idx();
1632   Node *n = _nodes[eidx];  // Get ending Node
1633 
1634   int op = n->Opcode();
1635   if (n->is_Mach()) {
1636     if (n->is_MachNullCheck()) {
1637       // Can only reach here if called after lcm. The original Op_If is gone,
1638       // so we attempt to infer the probability from one or both of the
1639       // successor blocks.
1640       assert(_num_succs == 2, "expecting 2 successors of a null check");
1641       // If either successor has only one predecessor, then the
1642       // probabiltity estimate can be derived using the
1643       // relative frequency of the successor and this block.
1644       if (_succs[i]->num_preds() == 2) {
1645         return _succs[i]->_freq / _freq;
1646       } else if (_succs[1-i]->num_preds() == 2) {
1647         return 1 - (_succs[1-i]->_freq / _freq);
1648       } else {
1649         // Estimate using both successor frequencies
1650         float freq = _succs[i]->_freq;
1651         return freq / (freq + _succs[1-i]->_freq);
1652       }
1653     }
1654     op = n->as_Mach()->ideal_Opcode();
1655   }
1656 
1657 
1658   // Switch on branch type
1659   switch( op ) {
1660   case Op_CountedLoopEnd:
1661   case Op_If: {
1662     assert (i < 2, "just checking");
1663     // Conditionals pass on only part of their frequency
1664     float prob  = n->as_MachIf()->_prob;
1665     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1666     // If succ[i] is the FALSE branch, invert path info
1667     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1668       return 1.0f - prob; // not taken
1669     } else {
1670       return prob; // taken
1671     }
1672   }
1673 
1674   case Op_Jump:
1675     // Divide the frequency between all successors evenly
1676     return 1.0f/_num_succs;
1677 
1678   case Op_Catch: {
1679     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1680     if (ci->_con == CatchProjNode::fall_through_index) {
1681       // Fall-thru path gets the lion's share.
1682       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1683     } else {
1684       // Presume exceptional paths are equally unlikely
1685       return PROB_UNLIKELY_MAG(5);
1686     }
1687   }
1688 
1689   case Op_Root:
1690   case Op_Goto:
1691     // Pass frequency straight thru to target
1692     return 1.0f;
1693 
1694   case Op_NeverBranch:
1695     return 0.0f;
1696 
1697   case Op_TailCall:
1698   case Op_TailJump:
1699   case Op_Return:
1700   case Op_Halt:
1701   case Op_Rethrow:
1702     // Do not push out freq to root block
1703     return 0.0f;
1704 
1705   default:
1706     ShouldNotReachHere();
1707   }
1708 
1709   return 0.0f;
1710 }
1711 
1712 //------------------------------num_fall_throughs-----------------------------
1713 // Return the number of fall-through candidates for a block
1714 int Block::num_fall_throughs() {
1715   int eidx = end_idx();
1716   Node *n = _nodes[eidx];  // Get ending Node
1717 
1718   int op = n->Opcode();
1719   if (n->is_Mach()) {
1720     if (n->is_MachNullCheck()) {
1721       // In theory, either side can fall-thru, for simplicity sake,
1722       // let's say only the false branch can now.
1723       return 1;
1724     }
1725     op = n->as_Mach()->ideal_Opcode();
1726   }
1727 
1728   // Switch on branch type
1729   switch( op ) {
1730   case Op_CountedLoopEnd:
1731   case Op_If:
1732     return 2;
1733 
1734   case Op_Root:
1735   case Op_Goto:
1736     return 1;
1737 
1738   case Op_Catch: {
1739     for (uint i = 0; i < _num_succs; i++) {
1740       const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1741       if (ci->_con == CatchProjNode::fall_through_index) {
1742         return 1;
1743       }
1744     }
1745     return 0;
1746   }
1747 
1748   case Op_Jump:
1749   case Op_NeverBranch:
1750   case Op_TailCall:
1751   case Op_TailJump:
1752   case Op_Return:
1753   case Op_Halt:
1754   case Op_Rethrow:
1755     return 0;
1756 
1757   default:
1758     ShouldNotReachHere();
1759   }
1760 
1761   return 0;
1762 }
1763 
1764 //------------------------------succ_fall_through-----------------------------
1765 // Return true if a specific successor could be fall-through target.
1766 bool Block::succ_fall_through(uint i) {
1767   int eidx = end_idx();
1768   Node *n = _nodes[eidx];  // Get ending Node
1769 
1770   int op = n->Opcode();
1771   if (n->is_Mach()) {
1772     if (n->is_MachNullCheck()) {
1773       // In theory, either side can fall-thru, for simplicity sake,
1774       // let's say only the false branch can now.
1775       return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
1776     }
1777     op = n->as_Mach()->ideal_Opcode();
1778   }
1779 
1780   // Switch on branch type
1781   switch( op ) {
1782   case Op_CountedLoopEnd:
1783   case Op_If:
1784   case Op_Root:
1785   case Op_Goto:
1786     return true;
1787 
1788   case Op_Catch: {
1789     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1790     return ci->_con == CatchProjNode::fall_through_index;
1791   }
1792 
1793   case Op_Jump:
1794   case Op_NeverBranch:
1795   case Op_TailCall:
1796   case Op_TailJump:
1797   case Op_Return:
1798   case Op_Halt:
1799   case Op_Rethrow:
1800     return false;
1801 
1802   default:
1803     ShouldNotReachHere();
1804   }
1805 
1806   return false;
1807 }
1808 
1809 //------------------------------update_uncommon_branch------------------------
1810 // Update the probability of a two-branch to be uncommon
1811 void Block::update_uncommon_branch(Block* ub) {
1812   int eidx = end_idx();
1813   Node *n = _nodes[eidx];  // Get ending Node
1814 
1815   int op = n->as_Mach()->ideal_Opcode();
1816 
1817   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1818   assert(num_fall_throughs() == 2, "must be a two way branch block");
1819 
1820   // Which successor is ub?
1821   uint s;
1822   for (s = 0; s <_num_succs; s++) {
1823     if (_succs[s] == ub) break;
1824   }
1825   assert(s < 2, "uncommon successor must be found");
1826 
1827   // If ub is the true path, make the proability small, else
1828   // ub is the false path, and make the probability large
1829   bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
1830 
1831   // Get existing probability
1832   float p = n->as_MachIf()->_prob;
1833 
1834   if (invert) p = 1.0 - p;
1835   if (p > PROB_MIN) {
1836     p = PROB_MIN;
1837   }
1838   if (invert) p = 1.0 - p;
1839 
1840   n->as_MachIf()->_prob = p;
1841 }
1842 
1843 //------------------------------update_succ_freq-------------------------------
1844 // Update the appropriate frequency associated with block 'b', a succesor of
1845 // a block in this loop.
1846 void CFGLoop::update_succ_freq(Block* b, float freq) {
1847   if (b->_loop == this) {
1848     if (b == head()) {
1849       // back branch within the loop
1850       // Do nothing now, the loop carried frequency will be
1851       // adjust later in scale_freq().
1852     } else {
1853       // simple branch within the loop
1854       b->_freq += freq;
1855     }
1856   } else if (!in_loop_nest(b)) {
1857     // branch is exit from this loop
1858     BlockProbPair bpp(b, freq);
1859     _exits.append(bpp);
1860   } else {
1861     // branch into nested loop
1862     CFGLoop* ch = b->_loop;
1863     ch->_freq += freq;
1864   }
1865 }
1866 
1867 //------------------------------in_loop_nest-----------------------------------
1868 // Determine if block b is in the receiver's loop nest.
1869 bool CFGLoop::in_loop_nest(Block* b) {
1870   int depth = _depth;
1871   CFGLoop* b_loop = b->_loop;
1872   int b_depth = b_loop->_depth;
1873   if (depth == b_depth) {
1874     return true;
1875   }
1876   while (b_depth > depth) {
1877     b_loop = b_loop->_parent;
1878     b_depth = b_loop->_depth;
1879   }
1880   return b_loop == this;
1881 }
1882 
1883 //------------------------------scale_freq-------------------------------------
1884 // Scale frequency of loops and blocks by trip counts from outer loops
1885 // Do a top down traversal of loop tree (visit outer loops first.)
1886 void CFGLoop::scale_freq() {
1887   float loop_freq = _freq * trip_count();
1888   for (int i = 0; i < _members.length(); i++) {
1889     CFGElement* s = _members.at(i);
1890     float block_freq = s->_freq * loop_freq;
1891     if (block_freq < MIN_BLOCK_FREQUENCY) block_freq = MIN_BLOCK_FREQUENCY;
1892     s->_freq = block_freq;
1893   }
1894   CFGLoop* ch = _child;
1895   while (ch != NULL) {
1896     ch->scale_freq();
1897     ch = ch->_sibling;
1898   }
1899 }
1900 
1901 #ifndef PRODUCT
1902 //------------------------------dump_tree--------------------------------------
1903 void CFGLoop::dump_tree() const {
1904   dump();
1905   if (_child != NULL)   _child->dump_tree();
1906   if (_sibling != NULL) _sibling->dump_tree();
1907 }
1908 
1909 //------------------------------dump-------------------------------------------
1910 void CFGLoop::dump() const {
1911   for (int i = 0; i < _depth; i++) tty->print("   ");
1912   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1913              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1914   for (int i = 0; i < _depth; i++) tty->print("   ");
1915   tty->print("         members:", _id);
1916   int k = 0;
1917   for (int i = 0; i < _members.length(); i++) {
1918     if (k++ >= 6) {
1919       tty->print("\n              ");
1920       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1921       k = 0;
1922     }
1923     CFGElement *s = _members.at(i);
1924     if (s->is_block()) {
1925       Block *b = s->as_Block();
1926       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1927     } else {
1928       CFGLoop* lp = s->as_CFGLoop();
1929       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1930     }
1931   }
1932   tty->print("\n");
1933   for (int i = 0; i < _depth; i++) tty->print("   ");
1934   tty->print("         exits:  ");
1935   k = 0;
1936   for (int i = 0; i < _exits.length(); i++) {
1937     if (k++ >= 7) {
1938       tty->print("\n              ");
1939       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1940       k = 0;
1941     }
1942     Block *blk = _exits.at(i).get_target();
1943     float prob = _exits.at(i).get_prob();
1944     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1945   }
1946   tty->print("\n");
1947 }
1948 #endif