1 /*
   2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_macro.cpp.incl"
  27 
  28 
  29 //
  30 // Replace any references to "oldref" in inputs to "use" with "newref".
  31 // Returns the number of replacements made.
  32 //
  33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  34   int nreplacements = 0;
  35   uint req = use->req();
  36   for (uint j = 0; j < use->len(); j++) {
  37     Node *uin = use->in(j);
  38     if (uin == oldref) {
  39       if (j < req)
  40         use->set_req(j, newref);
  41       else
  42         use->set_prec(j, newref);
  43       nreplacements++;
  44     } else if (j >= req && uin == NULL) {
  45       break;
  46     }
  47   }
  48   return nreplacements;
  49 }
  50 
  51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  52   // Copy debug information and adjust JVMState information
  53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  54   uint new_dbg_start = newcall->tf()->domain()->cnt();
  55   int jvms_adj  = new_dbg_start - old_dbg_start;
  56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  57 
  58   Dict* sosn_map = new Dict(cmpkey,hashkey);
  59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  60     Node* old_in = oldcall->in(i);
  61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  64       uint old_unique = C->unique();
  65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  66       if (old_unique != C->unique()) {
  67         new_in = transform_later(new_in); // Register new node.
  68       }
  69       old_in = new_in;
  70     }
  71     newcall->add_req(old_in);
  72   }
  73 
  74   newcall->set_jvms(oldcall->jvms());
  75   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  76     jvms->set_map(newcall);
  77     jvms->set_locoff(jvms->locoff()+jvms_adj);
  78     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  79     jvms->set_monoff(jvms->monoff()+jvms_adj);
  80     jvms->set_scloff(jvms->scloff()+jvms_adj);
  81     jvms->set_endoff(jvms->endoff()+jvms_adj);
  82   }
  83 }
  84 
  85 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  86   Node* cmp;
  87   if (mask != 0) {
  88     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
  89     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
  90   } else {
  91     cmp = word;
  92   }
  93   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
  94   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  95   transform_later(iff);
  96 
  97   // Fast path taken.
  98   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
  99 
 100   // Fast path not-taken, i.e. slow path
 101   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 102 
 103   if (return_fast_path) {
 104     region->init_req(edge, slow_taken); // Capture slow-control
 105     return fast_taken;
 106   } else {
 107     region->init_req(edge, fast_taken); // Capture fast-control
 108     return slow_taken;
 109   }
 110 }
 111 
 112 //--------------------copy_predefined_input_for_runtime_call--------------------
 113 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 114   // Set fixed predefined input arguments
 115   call->init_req( TypeFunc::Control, ctrl );
 116   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 117   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 118   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 119   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 120 }
 121 
 122 //------------------------------make_slow_call---------------------------------
 123 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 124 
 125   // Slow-path call
 126   int size = slow_call_type->domain()->cnt();
 127  CallNode *call = leaf_name
 128    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 129    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 130 
 131   // Slow path call has no side-effects, uses few values
 132   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 133   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 134   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 135   copy_call_debug_info(oldcall, call);
 136   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 137   _igvn.hash_delete(oldcall);
 138   _igvn.subsume_node(oldcall, call);
 139   transform_later(call);
 140 
 141   return call;
 142 }
 143 
 144 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 145   _fallthroughproj = NULL;
 146   _fallthroughcatchproj = NULL;
 147   _ioproj_fallthrough = NULL;
 148   _ioproj_catchall = NULL;
 149   _catchallcatchproj = NULL;
 150   _memproj_fallthrough = NULL;
 151   _memproj_catchall = NULL;
 152   _resproj = NULL;
 153   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 154     ProjNode *pn = call->fast_out(i)->as_Proj();
 155     switch (pn->_con) {
 156       case TypeFunc::Control:
 157       {
 158         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 159         _fallthroughproj = pn;
 160         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 161         const Node *cn = pn->fast_out(j);
 162         if (cn->is_Catch()) {
 163           ProjNode *cpn = NULL;
 164           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 165             cpn = cn->fast_out(k)->as_Proj();
 166             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 167             if (cpn->_con == CatchProjNode::fall_through_index)
 168               _fallthroughcatchproj = cpn;
 169             else {
 170               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 171               _catchallcatchproj = cpn;
 172             }
 173           }
 174         }
 175         break;
 176       }
 177       case TypeFunc::I_O:
 178         if (pn->_is_io_use)
 179           _ioproj_catchall = pn;
 180         else
 181           _ioproj_fallthrough = pn;
 182         break;
 183       case TypeFunc::Memory:
 184         if (pn->_is_io_use)
 185           _memproj_catchall = pn;
 186         else
 187           _memproj_fallthrough = pn;
 188         break;
 189       case TypeFunc::Parms:
 190         _resproj = pn;
 191         break;
 192       default:
 193         assert(false, "unexpected projection from allocation node.");
 194     }
 195   }
 196 
 197 }
 198 
 199 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 200 void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
 201   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 202   Node *shift = p2x->unique_out();
 203   Node *addp = shift->unique_out();
 204   for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 205     Node *st = addp->last_out(j);
 206     assert(st->is_Store(), "store required");
 207     _igvn.replace_node(st, st->in(MemNode::Memory));
 208   }
 209 }
 210 
 211 // Search for a memory operation for the specified memory slice.
 212 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 213   Node *orig_mem = mem;
 214   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 215   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 216   while (true) {
 217     if (mem == alloc_mem || mem == start_mem ) {
 218       return mem;  // hit one of our sentinals
 219     } else if (mem->is_MergeMem()) {
 220       mem = mem->as_MergeMem()->memory_at(alias_idx);
 221     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 222       Node *in = mem->in(0);
 223       // we can safely skip over safepoints, calls, locks and membars because we
 224       // already know that the object is safe to eliminate.
 225       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 226         return in;
 227       } else if (in->is_Call()) {
 228         CallNode *call = in->as_Call();
 229         if (!call->may_modify(tinst, phase)) {
 230           mem = call->in(TypeFunc::Memory);
 231         }
 232         mem = in->in(TypeFunc::Memory);
 233       } else if (in->is_MemBar()) {
 234         mem = in->in(TypeFunc::Memory);
 235       } else {
 236         assert(false, "unexpected projection");
 237       }
 238     } else if (mem->is_Store()) {
 239       const TypePtr* atype = mem->as_Store()->adr_type();
 240       int adr_idx = Compile::current()->get_alias_index(atype);
 241       if (adr_idx == alias_idx) {
 242         assert(atype->isa_oopptr(), "address type must be oopptr");
 243         int adr_offset = atype->offset();
 244         uint adr_iid = atype->is_oopptr()->instance_id();
 245         // Array elements references have the same alias_idx
 246         // but different offset and different instance_id.
 247         if (adr_offset == offset && adr_iid == alloc->_idx)
 248           return mem;
 249       } else {
 250         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 251       }
 252       mem = mem->in(MemNode::Memory);
 253     } else if (mem->Opcode() == Op_SCMemProj) {
 254       assert(mem->in(0)->is_LoadStore(), "sanity");
 255       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 256       int adr_idx = Compile::current()->get_alias_index(atype);
 257       if (adr_idx == alias_idx) {
 258         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 259         return NULL;
 260       }
 261       mem = mem->in(0)->in(MemNode::Memory);
 262     } else {
 263       return mem;
 264     }
 265     assert(mem != orig_mem, "dead memory loop");
 266   }
 267 }
 268 
 269 //
 270 // Given a Memory Phi, compute a value Phi containing the values from stores
 271 // on the input paths.
 272 // Note: this function is recursive, its depth is limied by the "level" argument
 273 // Returns the computed Phi, or NULL if it cannot compute it.
 274 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 275   assert(mem->is_Phi(), "sanity");
 276   int alias_idx = C->get_alias_index(adr_t);
 277   int offset = adr_t->offset();
 278   int instance_id = adr_t->instance_id();
 279 
 280   // Check if an appropriate value phi already exists.
 281   Node* region = mem->in(0);
 282   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 283     Node* phi = region->fast_out(k);
 284     if (phi->is_Phi() && phi != mem &&
 285         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 286       return phi;
 287     }
 288   }
 289   // Check if an appropriate new value phi already exists.
 290   Node* new_phi = NULL;
 291   uint size = value_phis->size();
 292   for (uint i=0; i < size; i++) {
 293     if ( mem->_idx == value_phis->index_at(i) ) {
 294       return value_phis->node_at(i);
 295     }
 296   }
 297 
 298   if (level <= 0) {
 299     return NULL; // Give up: phi tree too deep
 300   }
 301   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 302   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 303 
 304   uint length = mem->req();
 305   GrowableArray <Node *> values(length, length, NULL);
 306 
 307   // create a new Phi for the value
 308   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 309   transform_later(phi);
 310   value_phis->push(phi, mem->_idx);
 311 
 312   for (uint j = 1; j < length; j++) {
 313     Node *in = mem->in(j);
 314     if (in == NULL || in->is_top()) {
 315       values.at_put(j, in);
 316     } else  {
 317       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 318       if (val == start_mem || val == alloc_mem) {
 319         // hit a sentinel, return appropriate 0 value
 320         values.at_put(j, _igvn.zerocon(ft));
 321         continue;
 322       }
 323       if (val->is_Initialize()) {
 324         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 325       }
 326       if (val == NULL) {
 327         return NULL;  // can't find a value on this path
 328       }
 329       if (val == mem) {
 330         values.at_put(j, mem);
 331       } else if (val->is_Store()) {
 332         values.at_put(j, val->in(MemNode::ValueIn));
 333       } else if(val->is_Proj() && val->in(0) == alloc) {
 334         values.at_put(j, _igvn.zerocon(ft));
 335       } else if (val->is_Phi()) {
 336         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 337         if (val == NULL) {
 338           return NULL;
 339         }
 340         values.at_put(j, val);
 341       } else if (val->Opcode() == Op_SCMemProj) {
 342         assert(val->in(0)->is_LoadStore(), "sanity");
 343         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 344         return NULL;
 345       } else {
 346 #ifdef ASSERT
 347         val->dump();
 348         assert(false, "unknown node on this path");
 349 #endif
 350         return NULL;  // unknown node on this path
 351       }
 352     }
 353   }
 354   // Set Phi's inputs
 355   for (uint j = 1; j < length; j++) {
 356     if (values.at(j) == mem) {
 357       phi->init_req(j, phi);
 358     } else {
 359       phi->init_req(j, values.at(j));
 360     }
 361   }
 362   return phi;
 363 }
 364 
 365 // Search the last value stored into the object's field.
 366 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 367   assert(adr_t->is_known_instance_field(), "instance required");
 368   int instance_id = adr_t->instance_id();
 369   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 370 
 371   int alias_idx = C->get_alias_index(adr_t);
 372   int offset = adr_t->offset();
 373   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 374   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 375   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 376   Arena *a = Thread::current()->resource_area();
 377   VectorSet visited(a);
 378 
 379 
 380   bool done = sfpt_mem == alloc_mem;
 381   Node *mem = sfpt_mem;
 382   while (!done) {
 383     if (visited.test_set(mem->_idx)) {
 384       return NULL;  // found a loop, give up
 385     }
 386     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 387     if (mem == start_mem || mem == alloc_mem) {
 388       done = true;  // hit a sentinel, return appropriate 0 value
 389     } else if (mem->is_Initialize()) {
 390       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 391       if (mem == NULL) {
 392         done = true; // Something go wrong.
 393       } else if (mem->is_Store()) {
 394         const TypePtr* atype = mem->as_Store()->adr_type();
 395         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 396         done = true;
 397       }
 398     } else if (mem->is_Store()) {
 399       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 400       assert(atype != NULL, "address type must be oopptr");
 401       assert(C->get_alias_index(atype) == alias_idx &&
 402              atype->is_known_instance_field() && atype->offset() == offset &&
 403              atype->instance_id() == instance_id, "store is correct memory slice");
 404       done = true;
 405     } else if (mem->is_Phi()) {
 406       // try to find a phi's unique input
 407       Node *unique_input = NULL;
 408       Node *top = C->top();
 409       for (uint i = 1; i < mem->req(); i++) {
 410         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 411         if (n == NULL || n == top || n == mem) {
 412           continue;
 413         } else if (unique_input == NULL) {
 414           unique_input = n;
 415         } else if (unique_input != n) {
 416           unique_input = top;
 417           break;
 418         }
 419       }
 420       if (unique_input != NULL && unique_input != top) {
 421         mem = unique_input;
 422       } else {
 423         done = true;
 424       }
 425     } else {
 426       assert(false, "unexpected node");
 427     }
 428   }
 429   if (mem != NULL) {
 430     if (mem == start_mem || mem == alloc_mem) {
 431       // hit a sentinel, return appropriate 0 value
 432       return _igvn.zerocon(ft);
 433     } else if (mem->is_Store()) {
 434       return mem->in(MemNode::ValueIn);
 435     } else if (mem->is_Phi()) {
 436       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 437       Node_Stack value_phis(a, 8);
 438       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 439       if (phi != NULL) {
 440         return phi;
 441       } else {
 442         // Kill all new Phis
 443         while(value_phis.is_nonempty()) {
 444           Node* n = value_phis.node();
 445           _igvn.hash_delete(n);
 446           _igvn.subsume_node(n, C->top());
 447           value_phis.pop();
 448         }
 449       }
 450     }
 451   }
 452   // Something go wrong.
 453   return NULL;
 454 }
 455 
 456 // Check the possibility of scalar replacement.
 457 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 458   //  Scan the uses of the allocation to check for anything that would
 459   //  prevent us from eliminating it.
 460   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 461   DEBUG_ONLY( Node* disq_node = NULL; )
 462   bool  can_eliminate = true;
 463 
 464   Node* res = alloc->result_cast();
 465   const TypeOopPtr* res_type = NULL;
 466   if (res == NULL) {
 467     // All users were eliminated.
 468   } else if (!res->is_CheckCastPP()) {
 469     alloc->_is_scalar_replaceable = false;  // don't try again
 470     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 471     can_eliminate = false;
 472   } else {
 473     res_type = _igvn.type(res)->isa_oopptr();
 474     if (res_type == NULL) {
 475       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 476       can_eliminate = false;
 477     } else if (res_type->isa_aryptr()) {
 478       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 479       if (length < 0) {
 480         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 481         can_eliminate = false;
 482       }
 483     }
 484   }
 485 
 486   if (can_eliminate && res != NULL) {
 487     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 488                                j < jmax && can_eliminate; j++) {
 489       Node* use = res->fast_out(j);
 490 
 491       if (use->is_AddP()) {
 492         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 493         int offset = addp_type->offset();
 494 
 495         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 496           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 497           can_eliminate = false;
 498           break;
 499         }
 500         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 501                                    k < kmax && can_eliminate; k++) {
 502           Node* n = use->fast_out(k);
 503           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 504             DEBUG_ONLY(disq_node = n;)
 505             if (n->is_Load() || n->is_LoadStore()) {
 506               NOT_PRODUCT(fail_eliminate = "Field load";)
 507             } else {
 508               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 509             }
 510             can_eliminate = false;
 511           }
 512         }
 513       } else if (use->is_SafePoint()) {
 514         SafePointNode* sfpt = use->as_SafePoint();
 515         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 516           // Object is passed as argument.
 517           DEBUG_ONLY(disq_node = use;)
 518           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 519           can_eliminate = false;
 520         }
 521         Node* sfptMem = sfpt->memory();
 522         if (sfptMem == NULL || sfptMem->is_top()) {
 523           DEBUG_ONLY(disq_node = use;)
 524           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 525           can_eliminate = false;
 526         } else {
 527           safepoints.append_if_missing(sfpt);
 528         }
 529       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 530         if (use->is_Phi()) {
 531           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 532             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 533           } else {
 534             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 535           }
 536           DEBUG_ONLY(disq_node = use;)
 537         } else {
 538           if (use->Opcode() == Op_Return) {
 539             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 540           }else {
 541             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 542           }
 543           DEBUG_ONLY(disq_node = use;)
 544         }
 545         can_eliminate = false;
 546       }
 547     }
 548   }
 549 
 550 #ifndef PRODUCT
 551   if (PrintEliminateAllocations) {
 552     if (can_eliminate) {
 553       tty->print("Scalar ");
 554       if (res == NULL)
 555         alloc->dump();
 556       else
 557         res->dump();
 558     } else {
 559       tty->print("NotScalar (%s)", fail_eliminate);
 560       if (res == NULL)
 561         alloc->dump();
 562       else
 563         res->dump();
 564 #ifdef ASSERT
 565       if (disq_node != NULL) {
 566           tty->print("  >>>> ");
 567           disq_node->dump();
 568       }
 569 #endif /*ASSERT*/
 570     }
 571   }
 572 #endif
 573   return can_eliminate;
 574 }
 575 
 576 // Do scalar replacement.
 577 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 578   GrowableArray <SafePointNode *> safepoints_done;
 579 
 580   ciKlass* klass = NULL;
 581   ciInstanceKlass* iklass = NULL;
 582   int nfields = 0;
 583   int array_base;
 584   int element_size;
 585   BasicType basic_elem_type;
 586   ciType* elem_type;
 587 
 588   Node* res = alloc->result_cast();
 589   const TypeOopPtr* res_type = NULL;
 590   if (res != NULL) { // Could be NULL when there are no users
 591     res_type = _igvn.type(res)->isa_oopptr();
 592   }
 593 
 594   if (res != NULL) {
 595     klass = res_type->klass();
 596     if (res_type->isa_instptr()) {
 597       // find the fields of the class which will be needed for safepoint debug information
 598       assert(klass->is_instance_klass(), "must be an instance klass.");
 599       iklass = klass->as_instance_klass();
 600       nfields = iklass->nof_nonstatic_fields();
 601     } else {
 602       // find the array's elements which will be needed for safepoint debug information
 603       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 604       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 605       elem_type = klass->as_array_klass()->element_type();
 606       basic_elem_type = elem_type->basic_type();
 607       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 608       element_size = type2aelembytes(basic_elem_type);
 609     }
 610   }
 611   //
 612   // Process the safepoint uses
 613   //
 614   while (safepoints.length() > 0) {
 615     SafePointNode* sfpt = safepoints.pop();
 616     Node* mem = sfpt->memory();
 617     uint first_ind = sfpt->req();
 618     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 619 #ifdef ASSERT
 620                                                  alloc,
 621 #endif
 622                                                  first_ind, nfields);
 623     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 624     transform_later(sobj);
 625 
 626     // Scan object's fields adding an input to the safepoint for each field.
 627     for (int j = 0; j < nfields; j++) {
 628       intptr_t offset;
 629       ciField* field = NULL;
 630       if (iklass != NULL) {
 631         field = iklass->nonstatic_field_at(j);
 632         offset = field->offset();
 633         elem_type = field->type();
 634         basic_elem_type = field->layout_type();
 635       } else {
 636         offset = array_base + j * (intptr_t)element_size;
 637       }
 638 
 639       const Type *field_type;
 640       // The next code is taken from Parse::do_get_xxx().
 641       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 642         if (!elem_type->is_loaded()) {
 643           field_type = TypeInstPtr::BOTTOM;
 644         } else if (field != NULL && field->is_constant()) {
 645           // This can happen if the constant oop is non-perm.
 646           ciObject* con = field->constant_value().as_object();
 647           // Do not "join" in the previous type; it doesn't add value,
 648           // and may yield a vacuous result if the field is of interface type.
 649           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 650           assert(field_type != NULL, "field singleton type must be consistent");
 651         } else {
 652           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 653         }
 654         if (UseCompressedOops) {
 655           field_type = field_type->make_narrowoop();
 656           basic_elem_type = T_NARROWOOP;
 657         }
 658       } else {
 659         field_type = Type::get_const_basic_type(basic_elem_type);
 660       }
 661 
 662       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 663 
 664       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 665       if (field_val == NULL) {
 666         // we weren't able to find a value for this field,
 667         // give up on eliminating this allocation
 668         alloc->_is_scalar_replaceable = false;  // don't try again
 669         // remove any extra entries we added to the safepoint
 670         uint last = sfpt->req() - 1;
 671         for (int k = 0;  k < j; k++) {
 672           sfpt->del_req(last--);
 673         }
 674         // rollback processed safepoints
 675         while (safepoints_done.length() > 0) {
 676           SafePointNode* sfpt_done = safepoints_done.pop();
 677           // remove any extra entries we added to the safepoint
 678           last = sfpt_done->req() - 1;
 679           for (int k = 0;  k < nfields; k++) {
 680             sfpt_done->del_req(last--);
 681           }
 682           JVMState *jvms = sfpt_done->jvms();
 683           jvms->set_endoff(sfpt_done->req());
 684           // Now make a pass over the debug information replacing any references
 685           // to SafePointScalarObjectNode with the allocated object.
 686           int start = jvms->debug_start();
 687           int end   = jvms->debug_end();
 688           for (int i = start; i < end; i++) {
 689             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 690               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 691               if (scobj->first_index() == sfpt_done->req() &&
 692                   scobj->n_fields() == (uint)nfields) {
 693                 assert(scobj->alloc() == alloc, "sanity");
 694                 sfpt_done->set_req(i, res);
 695               }
 696             }
 697           }
 698         }
 699 #ifndef PRODUCT
 700         if (PrintEliminateAllocations) {
 701           if (field != NULL) {
 702             tty->print("=== At SafePoint node %d can't find value of Field: ",
 703                        sfpt->_idx);
 704             field->print();
 705             int field_idx = C->get_alias_index(field_addr_type);
 706             tty->print(" (alias_idx=%d)", field_idx);
 707           } else { // Array's element
 708             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 709                        sfpt->_idx, j);
 710           }
 711           tty->print(", which prevents elimination of: ");
 712           if (res == NULL)
 713             alloc->dump();
 714           else
 715             res->dump();
 716         }
 717 #endif
 718         return false;
 719       }
 720       if (UseCompressedOops && field_type->isa_narrowoop()) {
 721         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 722         // to be able scalar replace the allocation.
 723         if (field_val->is_EncodeP()) {
 724           field_val = field_val->in(1);
 725         } else {
 726           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 727         }
 728       }
 729       sfpt->add_req(field_val);
 730     }
 731     JVMState *jvms = sfpt->jvms();
 732     jvms->set_endoff(sfpt->req());
 733     // Now make a pass over the debug information replacing any references
 734     // to the allocated object with "sobj"
 735     int start = jvms->debug_start();
 736     int end   = jvms->debug_end();
 737     for (int i = start; i < end; i++) {
 738       if (sfpt->in(i) == res) {
 739         sfpt->set_req(i, sobj);
 740       }
 741     }
 742     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 743   }
 744   return true;
 745 }
 746 
 747 // Process users of eliminated allocation.
 748 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 749   Node* res = alloc->result_cast();
 750   if (res != NULL) {
 751     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 752       Node *use = res->last_out(j);
 753       uint oc1 = res->outcnt();
 754 
 755       if (use->is_AddP()) {
 756         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 757           Node *n = use->last_out(k);
 758           uint oc2 = use->outcnt();
 759           if (n->is_Store()) {
 760             _igvn.replace_node(n, n->in(MemNode::Memory));
 761           } else {
 762             assert( n->Opcode() == Op_CastP2X, "CastP2X required");
 763             eliminate_card_mark(n);
 764           }
 765           k -= (oc2 - use->outcnt());
 766         }
 767       } else {
 768         assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
 769         assert( use->Opcode() == Op_CastP2X, "CastP2X required");
 770         eliminate_card_mark(use);
 771       }
 772       j -= (oc1 - res->outcnt());
 773     }
 774     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 775     _igvn.remove_dead_node(res);
 776   }
 777 
 778   //
 779   // Process other users of allocation's projections
 780   //
 781   if (_resproj != NULL && _resproj->outcnt() != 0) {
 782     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 783       Node *use = _resproj->last_out(j);
 784       uint oc1 = _resproj->outcnt();
 785       if (use->is_Initialize()) {
 786         // Eliminate Initialize node.
 787         InitializeNode *init = use->as_Initialize();
 788         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 789         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 790         if (ctrl_proj != NULL) {
 791            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 792           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 793         }
 794         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 795         if (mem_proj != NULL) {
 796           Node *mem = init->in(TypeFunc::Memory);
 797 #ifdef ASSERT
 798           if (mem->is_MergeMem()) {
 799             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 800           } else {
 801             assert(mem == _memproj_fallthrough, "allocation memory projection");
 802           }
 803 #endif
 804           _igvn.replace_node(mem_proj, mem);
 805         }
 806       } else if (use->is_AddP()) {
 807         // raw memory addresses used only by the initialization
 808         _igvn.hash_delete(use);
 809         _igvn.subsume_node(use, C->top());
 810       } else  {
 811         assert(false, "only Initialize or AddP expected");
 812       }
 813       j -= (oc1 - _resproj->outcnt());
 814     }
 815   }
 816   if (_fallthroughcatchproj != NULL) {
 817     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 818   }
 819   if (_memproj_fallthrough != NULL) {
 820     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 821   }
 822   if (_memproj_catchall != NULL) {
 823     _igvn.replace_node(_memproj_catchall, C->top());
 824   }
 825   if (_ioproj_fallthrough != NULL) {
 826     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 827   }
 828   if (_ioproj_catchall != NULL) {
 829     _igvn.replace_node(_ioproj_catchall, C->top());
 830   }
 831   if (_catchallcatchproj != NULL) {
 832     _igvn.replace_node(_catchallcatchproj, C->top());
 833   }
 834 }
 835 
 836 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 837 
 838   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 839     return false;
 840   }
 841 
 842   extract_call_projections(alloc);
 843 
 844   GrowableArray <SafePointNode *> safepoints;
 845   if (!can_eliminate_allocation(alloc, safepoints)) {
 846     return false;
 847   }
 848 
 849   if (!scalar_replacement(alloc, safepoints)) {
 850     return false;
 851   }
 852 
 853   process_users_of_allocation(alloc);
 854 
 855 #ifndef PRODUCT
 856 if (PrintEliminateAllocations) {
 857   if (alloc->is_AllocateArray())
 858     tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 859   else
 860     tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 861 }
 862 #endif
 863 
 864   return true;
 865 }
 866 
 867 
 868 //---------------------------set_eden_pointers-------------------------
 869 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 870   if (UseTLAB) {                // Private allocation: load from TLS
 871     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 872     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 873     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 874     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 875     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 876   } else {                      // Shared allocation: load from globals
 877     CollectedHeap* ch = Universe::heap();
 878     address top_adr = (address)ch->top_addr();
 879     address end_adr = (address)ch->end_addr();
 880     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
 881     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
 882   }
 883 }
 884 
 885 
 886 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
 887   Node* adr = basic_plus_adr(base, offset);
 888   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
 889   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
 890   transform_later(value);
 891   return value;
 892 }
 893 
 894 
 895 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
 896   Node* adr = basic_plus_adr(base, offset);
 897   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
 898   transform_later(mem);
 899   return mem;
 900 }
 901 
 902 //=============================================================================
 903 //
 904 //                              A L L O C A T I O N
 905 //
 906 // Allocation attempts to be fast in the case of frequent small objects.
 907 // It breaks down like this:
 908 //
 909 // 1) Size in doublewords is computed.  This is a constant for objects and
 910 // variable for most arrays.  Doubleword units are used to avoid size
 911 // overflow of huge doubleword arrays.  We need doublewords in the end for
 912 // rounding.
 913 //
 914 // 2) Size is checked for being 'too large'.  Too-large allocations will go
 915 // the slow path into the VM.  The slow path can throw any required
 916 // exceptions, and does all the special checks for very large arrays.  The
 917 // size test can constant-fold away for objects.  For objects with
 918 // finalizers it constant-folds the otherway: you always go slow with
 919 // finalizers.
 920 //
 921 // 3) If NOT using TLABs, this is the contended loop-back point.
 922 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
 923 //
 924 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
 925 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
 926 // "size*8" we always enter the VM, where "largish" is a constant picked small
 927 // enough that there's always space between the eden max and 4Gig (old space is
 928 // there so it's quite large) and large enough that the cost of entering the VM
 929 // is dwarfed by the cost to initialize the space.
 930 //
 931 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
 932 // down.  If contended, repeat at step 3.  If using TLABs normal-store
 933 // adjusted heap top back down; there is no contention.
 934 //
 935 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
 936 // fields.
 937 //
 938 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
 939 // oop flavor.
 940 //
 941 //=============================================================================
 942 // FastAllocateSizeLimit value is in DOUBLEWORDS.
 943 // Allocations bigger than this always go the slow route.
 944 // This value must be small enough that allocation attempts that need to
 945 // trigger exceptions go the slow route.  Also, it must be small enough so
 946 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
 947 //=============================================================================j//
 948 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
 949 // The allocator will coalesce int->oop copies away.  See comment in
 950 // coalesce.cpp about how this works.  It depends critically on the exact
 951 // code shape produced here, so if you are changing this code shape
 952 // make sure the GC info for the heap-top is correct in and around the
 953 // slow-path call.
 954 //
 955 
 956 void PhaseMacroExpand::expand_allocate_common(
 957             AllocateNode* alloc, // allocation node to be expanded
 958             Node* length,  // array length for an array allocation
 959             const TypeFunc* slow_call_type, // Type of slow call
 960             address slow_call_address  // Address of slow call
 961     )
 962 {
 963 
 964   Node* ctrl = alloc->in(TypeFunc::Control);
 965   Node* mem  = alloc->in(TypeFunc::Memory);
 966   Node* i_o  = alloc->in(TypeFunc::I_O);
 967   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
 968   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
 969   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
 970 
 971   assert(ctrl != NULL, "must have control");
 972   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
 973   // they will not be used if "always_slow" is set
 974   enum { slow_result_path = 1, fast_result_path = 2 };
 975   Node *result_region;
 976   Node *result_phi_rawmem;
 977   Node *result_phi_rawoop;
 978   Node *result_phi_i_o;
 979 
 980   // The initial slow comparison is a size check, the comparison
 981   // we want to do is a BoolTest::gt
 982   bool always_slow = false;
 983   int tv = _igvn.find_int_con(initial_slow_test, -1);
 984   if (tv >= 0) {
 985     always_slow = (tv == 1);
 986     initial_slow_test = NULL;
 987   } else {
 988     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
 989   }
 990 
 991   if (DTraceAllocProbes ||
 992       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
 993                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
 994     // Force slow-path allocation
 995     always_slow = true;
 996     initial_slow_test = NULL;
 997   }
 998 
 999 
1000   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1001   Node *slow_region = NULL;
1002   Node *toobig_false = ctrl;
1003 
1004   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1005   // generate the initial test if necessary
1006   if (initial_slow_test != NULL ) {
1007     slow_region = new (C, 3) RegionNode(3);
1008 
1009     // Now make the initial failure test.  Usually a too-big test but
1010     // might be a TRUE for finalizers or a fancy class check for
1011     // newInstance0.
1012     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1013     transform_later(toobig_iff);
1014     // Plug the failing-too-big test into the slow-path region
1015     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1016     transform_later(toobig_true);
1017     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1018     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1019     transform_later(toobig_false);
1020   } else {         // No initial test, just fall into next case
1021     toobig_false = ctrl;
1022     debug_only(slow_region = NodeSentinel);
1023   }
1024 
1025   Node *slow_mem = mem;  // save the current memory state for slow path
1026   // generate the fast allocation code unless we know that the initial test will always go slow
1027   if (!always_slow) {
1028     // Fast path modifies only raw memory.
1029     if (mem->is_MergeMem()) {
1030       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1031     }
1032 
1033     Node* eden_top_adr;
1034     Node* eden_end_adr;
1035 
1036     set_eden_pointers(eden_top_adr, eden_end_adr);
1037 
1038     // Load Eden::end.  Loop invariant and hoisted.
1039     //
1040     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1041     //       a TLAB to work around a bug where these values were being moved across
1042     //       a safepoint.  These are not oops, so they cannot be include in the oop
1043     //       map, but the can be changed by a GC.   The proper way to fix this would
1044     //       be to set the raw memory state when generating a  SafepointNode.  However
1045     //       this will require extensive changes to the loop optimization in order to
1046     //       prevent a degradation of the optimization.
1047     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1048     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1049 
1050     // allocate the Region and Phi nodes for the result
1051     result_region = new (C, 3) RegionNode(3);
1052     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1053     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1054     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1055 
1056     // We need a Region for the loop-back contended case.
1057     enum { fall_in_path = 1, contended_loopback_path = 2 };
1058     Node *contended_region;
1059     Node *contended_phi_rawmem;
1060     if( UseTLAB ) {
1061       contended_region = toobig_false;
1062       contended_phi_rawmem = mem;
1063     } else {
1064       contended_region = new (C, 3) RegionNode(3);
1065       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1066       // Now handle the passing-too-big test.  We fall into the contended
1067       // loop-back merge point.
1068       contended_region    ->init_req( fall_in_path, toobig_false );
1069       contended_phi_rawmem->init_req( fall_in_path, mem );
1070       transform_later(contended_region);
1071       transform_later(contended_phi_rawmem);
1072     }
1073 
1074     // Load(-locked) the heap top.
1075     // See note above concerning the control input when using a TLAB
1076     Node *old_eden_top = UseTLAB
1077       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
1078       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
1079 
1080     transform_later(old_eden_top);
1081     // Add to heap top to get a new heap top
1082     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
1083     transform_later(new_eden_top);
1084     // Check for needing a GC; compare against heap end
1085     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
1086     transform_later(needgc_cmp);
1087     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
1088     transform_later(needgc_bol);
1089     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1090     transform_later(needgc_iff);
1091 
1092     // Plug the failing-heap-space-need-gc test into the slow-path region
1093     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
1094     transform_later(needgc_true);
1095     if( initial_slow_test ) {
1096       slow_region    ->init_req( need_gc_path, needgc_true );
1097       // This completes all paths into the slow merge point
1098       transform_later(slow_region);
1099     } else {                      // No initial slow path needed!
1100       // Just fall from the need-GC path straight into the VM call.
1101       slow_region    = needgc_true;
1102     }
1103     // No need for a GC.  Setup for the Store-Conditional
1104     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
1105     transform_later(needgc_false);
1106 
1107     // Grab regular I/O before optional prefetch may change it.
1108     // Slow-path does no I/O so just set it to the original I/O.
1109     result_phi_i_o->init_req( slow_result_path, i_o );
1110 
1111     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1112                               old_eden_top, new_eden_top, length);
1113 
1114     // Store (-conditional) the modified eden top back down.
1115     // StorePConditional produces flags for a test PLUS a modified raw
1116     // memory state.
1117     Node *store_eden_top;
1118     Node *fast_oop_ctrl;
1119     if( UseTLAB ) {
1120       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
1121       transform_later(store_eden_top);
1122       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1123     } else {
1124       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
1125       transform_later(store_eden_top);
1126       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
1127       transform_later(contention_check);
1128       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1129       transform_later(store_eden_top);
1130 
1131       // If not using TLABs, check to see if there was contention.
1132       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
1133       transform_later(contention_iff);
1134       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
1135       transform_later(contention_true);
1136       // If contention, loopback and try again.
1137       contended_region->init_req( contended_loopback_path, contention_true );
1138       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
1139 
1140       // Fast-path succeeded with no contention!
1141       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
1142       transform_later(contention_false);
1143       fast_oop_ctrl = contention_false;
1144     }
1145 
1146     // Rename successful fast-path variables to make meaning more obvious
1147     Node* fast_oop        = old_eden_top;
1148     Node* fast_oop_rawmem = store_eden_top;
1149     fast_oop_rawmem = initialize_object(alloc,
1150                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1151                                         klass_node, length, size_in_bytes);
1152 
1153     if (ExtendedDTraceProbes) {
1154       // Slow-path call
1155       int size = TypeFunc::Parms + 2;
1156       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1157                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1158                                                       "dtrace_object_alloc",
1159                                                       TypeRawPtr::BOTTOM);
1160 
1161       // Get base of thread-local storage area
1162       Node* thread = new (C, 1) ThreadLocalNode();
1163       transform_later(thread);
1164 
1165       call->init_req(TypeFunc::Parms+0, thread);
1166       call->init_req(TypeFunc::Parms+1, fast_oop);
1167       call->init_req( TypeFunc::Control, fast_oop_ctrl );
1168       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
1169       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
1170       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1171       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1172       transform_later(call);
1173       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1174       transform_later(fast_oop_ctrl);
1175       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1176       transform_later(fast_oop_rawmem);
1177     }
1178 
1179     // Plug in the successful fast-path into the result merge point
1180     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
1181     result_phi_rawoop->init_req( fast_result_path, fast_oop );
1182     result_phi_i_o   ->init_req( fast_result_path, i_o );
1183     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
1184   } else {
1185     slow_region = ctrl;
1186   }
1187 
1188   // Generate slow-path call
1189   CallNode *call = new (C, slow_call_type->domain()->cnt())
1190     CallStaticJavaNode(slow_call_type, slow_call_address,
1191                        OptoRuntime::stub_name(slow_call_address),
1192                        alloc->jvms()->bci(),
1193                        TypePtr::BOTTOM);
1194   call->init_req( TypeFunc::Control, slow_region );
1195   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1196   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1197   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1198   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1199 
1200   call->init_req(TypeFunc::Parms+0, klass_node);
1201   if (length != NULL) {
1202     call->init_req(TypeFunc::Parms+1, length);
1203   }
1204 
1205   // Copy debug information and adjust JVMState information, then replace
1206   // allocate node with the call
1207   copy_call_debug_info((CallNode *) alloc,  call);
1208   if (!always_slow) {
1209     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1210   }
1211   _igvn.hash_delete(alloc);
1212   _igvn.subsume_node(alloc, call);
1213   transform_later(call);
1214 
1215   // Identify the output projections from the allocate node and
1216   // adjust any references to them.
1217   // The control and io projections look like:
1218   //
1219   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1220   //  Allocate                   Catch
1221   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1222   //
1223   //  We are interested in the CatchProj nodes.
1224   //
1225   extract_call_projections(call);
1226 
1227   // An allocate node has separate memory projections for the uses on the control and i_o paths
1228   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1229   if (!always_slow && _memproj_fallthrough != NULL) {
1230     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1231       Node *use = _memproj_fallthrough->fast_out(i);
1232       _igvn.hash_delete(use);
1233       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1234       _igvn._worklist.push(use);
1235       // back up iterator
1236       --i;
1237     }
1238   }
1239   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1240   // we end up with a call that has only 1 memory projection
1241   if (_memproj_catchall != NULL ) {
1242     if (_memproj_fallthrough == NULL) {
1243       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1244       transform_later(_memproj_fallthrough);
1245     }
1246     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1247       Node *use = _memproj_catchall->fast_out(i);
1248       _igvn.hash_delete(use);
1249       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1250       _igvn._worklist.push(use);
1251       // back up iterator
1252       --i;
1253     }
1254   }
1255 
1256   // An allocate node has separate i_o projections for the uses on the control and i_o paths
1257   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1258   if (_ioproj_fallthrough == NULL) {
1259     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1260     transform_later(_ioproj_fallthrough);
1261   } else if (!always_slow) {
1262     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1263       Node *use = _ioproj_fallthrough->fast_out(i);
1264 
1265       _igvn.hash_delete(use);
1266       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1267       _igvn._worklist.push(use);
1268       // back up iterator
1269       --i;
1270     }
1271   }
1272   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1273   // we end up with a call that has only 1 control projection
1274   if (_ioproj_catchall != NULL ) {
1275     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1276       Node *use = _ioproj_catchall->fast_out(i);
1277       _igvn.hash_delete(use);
1278       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1279       _igvn._worklist.push(use);
1280       // back up iterator
1281       --i;
1282     }
1283   }
1284 
1285   // if we generated only a slow call, we are done
1286   if (always_slow)
1287     return;
1288 
1289 
1290   if (_fallthroughcatchproj != NULL) {
1291     ctrl = _fallthroughcatchproj->clone();
1292     transform_later(ctrl);
1293     _igvn.hash_delete(_fallthroughcatchproj);
1294     _igvn.subsume_node(_fallthroughcatchproj, result_region);
1295   } else {
1296     ctrl = top();
1297   }
1298   Node *slow_result;
1299   if (_resproj == NULL) {
1300     // no uses of the allocation result
1301     slow_result = top();
1302   } else {
1303     slow_result = _resproj->clone();
1304     transform_later(slow_result);
1305     _igvn.hash_delete(_resproj);
1306     _igvn.subsume_node(_resproj, result_phi_rawoop);
1307   }
1308 
1309   // Plug slow-path into result merge point
1310   result_region    ->init_req( slow_result_path, ctrl );
1311   result_phi_rawoop->init_req( slow_result_path, slow_result);
1312   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1313   transform_later(result_region);
1314   transform_later(result_phi_rawoop);
1315   transform_later(result_phi_rawmem);
1316   transform_later(result_phi_i_o);
1317   // This completes all paths into the result merge point
1318 }
1319 
1320 
1321 // Helper for PhaseMacroExpand::expand_allocate_common.
1322 // Initializes the newly-allocated storage.
1323 Node*
1324 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1325                                     Node* control, Node* rawmem, Node* object,
1326                                     Node* klass_node, Node* length,
1327                                     Node* size_in_bytes) {
1328   InitializeNode* init = alloc->initialization();
1329   // Store the klass & mark bits
1330   Node* mark_node = NULL;
1331   // For now only enable fast locking for non-array types
1332   if (UseBiasedLocking && (length == NULL)) {
1333     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1334   } else {
1335     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1336   }
1337   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1338 
1339   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1340   int header_size = alloc->minimum_header_size();  // conservatively small
1341 
1342   // Array length
1343   if (length != NULL) {         // Arrays need length field
1344     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1345     // conservatively small header size:
1346     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1347     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1348     if (k->is_array_klass())    // we know the exact header size in most cases:
1349       header_size = Klass::layout_helper_header_size(k->layout_helper());
1350   }
1351 
1352   // Clear the object body, if necessary.
1353   if (init == NULL) {
1354     // The init has somehow disappeared; be cautious and clear everything.
1355     //
1356     // This can happen if a node is allocated but an uncommon trap occurs
1357     // immediately.  In this case, the Initialize gets associated with the
1358     // trap, and may be placed in a different (outer) loop, if the Allocate
1359     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1360     // there can be two Allocates to one Initialize.  The answer in all these
1361     // edge cases is safety first.  It is always safe to clear immediately
1362     // within an Allocate, and then (maybe or maybe not) clear some more later.
1363     if (!ZeroTLAB)
1364       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1365                                             header_size, size_in_bytes,
1366                                             &_igvn);
1367   } else {
1368     if (!init->is_complete()) {
1369       // Try to win by zeroing only what the init does not store.
1370       // We can also try to do some peephole optimizations,
1371       // such as combining some adjacent subword stores.
1372       rawmem = init->complete_stores(control, rawmem, object,
1373                                      header_size, size_in_bytes, &_igvn);
1374     }
1375     // We have no more use for this link, since the AllocateNode goes away:
1376     init->set_req(InitializeNode::RawAddress, top());
1377     // (If we keep the link, it just confuses the register allocator,
1378     // who thinks he sees a real use of the address by the membar.)
1379   }
1380 
1381   return rawmem;
1382 }
1383 
1384 // Generate prefetch instructions for next allocations.
1385 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1386                                         Node*& contended_phi_rawmem,
1387                                         Node* old_eden_top, Node* new_eden_top,
1388                                         Node* length) {
1389    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1390       // Generate prefetch allocation with watermark check.
1391       // As an allocation hits the watermark, we will prefetch starting
1392       // at a "distance" away from watermark.
1393       enum { fall_in_path = 1, pf_path = 2 };
1394 
1395       Node *pf_region = new (C, 3) RegionNode(3);
1396       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1397                                                 TypeRawPtr::BOTTOM );
1398       // I/O is used for Prefetch
1399       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1400 
1401       Node *thread = new (C, 1) ThreadLocalNode();
1402       transform_later(thread);
1403 
1404       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1405                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1406       transform_later(eden_pf_adr);
1407 
1408       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1409                                    contended_phi_rawmem, eden_pf_adr,
1410                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1411       transform_later(old_pf_wm);
1412 
1413       // check against new_eden_top
1414       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1415       transform_later(need_pf_cmp);
1416       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1417       transform_later(need_pf_bol);
1418       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1419                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1420       transform_later(need_pf_iff);
1421 
1422       // true node, add prefetchdistance
1423       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1424       transform_later(need_pf_true);
1425 
1426       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1427       transform_later(need_pf_false);
1428 
1429       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1430                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1431       transform_later(new_pf_wmt );
1432       new_pf_wmt->set_req(0, need_pf_true);
1433 
1434       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1435                                        contended_phi_rawmem, eden_pf_adr,
1436                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1437       transform_later(store_new_wmt);
1438 
1439       // adding prefetches
1440       pf_phi_abio->init_req( fall_in_path, i_o );
1441 
1442       Node *prefetch_adr;
1443       Node *prefetch;
1444       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1445       uint step_size = AllocatePrefetchStepSize;
1446       uint distance = 0;
1447 
1448       for ( uint i = 0; i < lines; i++ ) {
1449         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1450                                             _igvn.MakeConX(distance) );
1451         transform_later(prefetch_adr);
1452         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1453         transform_later(prefetch);
1454         distance += step_size;
1455         i_o = prefetch;
1456       }
1457       pf_phi_abio->set_req( pf_path, i_o );
1458 
1459       pf_region->init_req( fall_in_path, need_pf_false );
1460       pf_region->init_req( pf_path, need_pf_true );
1461 
1462       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1463       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1464 
1465       transform_later(pf_region);
1466       transform_later(pf_phi_rawmem);
1467       transform_later(pf_phi_abio);
1468 
1469       needgc_false = pf_region;
1470       contended_phi_rawmem = pf_phi_rawmem;
1471       i_o = pf_phi_abio;
1472    } else if( AllocatePrefetchStyle > 0 ) {
1473       // Insert a prefetch for each allocation only on the fast-path
1474       Node *prefetch_adr;
1475       Node *prefetch;
1476       // Generate several prefetch instructions only for arrays.
1477       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1478       uint step_size = AllocatePrefetchStepSize;
1479       uint distance = AllocatePrefetchDistance;
1480       for ( uint i = 0; i < lines; i++ ) {
1481         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1482                                             _igvn.MakeConX(distance) );
1483         transform_later(prefetch_adr);
1484         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1485         // Do not let it float too high, since if eden_top == eden_end,
1486         // both might be null.
1487         if( i == 0 ) { // Set control for first prefetch, next follows it
1488           prefetch->init_req(0, needgc_false);
1489         }
1490         transform_later(prefetch);
1491         distance += step_size;
1492         i_o = prefetch;
1493       }
1494    }
1495    return i_o;
1496 }
1497 
1498 
1499 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1500   expand_allocate_common(alloc, NULL,
1501                          OptoRuntime::new_instance_Type(),
1502                          OptoRuntime::new_instance_Java());
1503 }
1504 
1505 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1506   Node* length = alloc->in(AllocateNode::ALength);
1507   expand_allocate_common(alloc, length,
1508                          OptoRuntime::new_array_Type(),
1509                          OptoRuntime::new_array_Java());
1510 }
1511 
1512 
1513 // we have determined that this lock/unlock can be eliminated, we simply
1514 // eliminate the node without expanding it.
1515 //
1516 // Note:  The membar's associated with the lock/unlock are currently not
1517 //        eliminated.  This should be investigated as a future enhancement.
1518 //
1519 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1520 
1521   if (!alock->is_eliminated()) {
1522     return false;
1523   }
1524   if (alock->is_Lock() && !alock->is_coarsened()) {
1525       // Create new "eliminated" BoxLock node and use it
1526       // in monitor debug info for the same object.
1527       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1528       Node* obj = alock->obj_node();
1529       if (!oldbox->is_eliminated()) {
1530         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1531         newbox->set_eliminated();
1532         transform_later(newbox);
1533         // Replace old box node with new box for all users
1534         // of the same object.
1535         for (uint i = 0; i < oldbox->outcnt();) {
1536 
1537           bool next_edge = true;
1538           Node* u = oldbox->raw_out(i);
1539           if (u == alock) {
1540             i++;
1541             continue; // It will be removed below
1542           }
1543           if (u->is_Lock() &&
1544               u->as_Lock()->obj_node() == obj &&
1545               // oldbox could be referenced in debug info also
1546               u->as_Lock()->box_node() == oldbox) {
1547             assert(u->as_Lock()->is_eliminated(), "sanity");
1548             _igvn.hash_delete(u);
1549             u->set_req(TypeFunc::Parms + 1, newbox);
1550             next_edge = false;
1551 #ifdef ASSERT
1552           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1553             assert(u->as_Unlock()->is_eliminated(), "sanity");
1554 #endif
1555           }
1556           // Replace old box in monitor debug info.
1557           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1558             SafePointNode* sfn = u->as_SafePoint();
1559             JVMState* youngest_jvms = sfn->jvms();
1560             int max_depth = youngest_jvms->depth();
1561             for (int depth = 1; depth <= max_depth; depth++) {
1562               JVMState* jvms = youngest_jvms->of_depth(depth);
1563               int num_mon  = jvms->nof_monitors();
1564               // Loop over monitors
1565               for (int idx = 0; idx < num_mon; idx++) {
1566                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1567                 Node* box_node = sfn->monitor_box(jvms, idx);
1568                 if (box_node == oldbox && obj_node == obj) {
1569                   int j = jvms->monitor_box_offset(idx);
1570                   _igvn.hash_delete(u);
1571                   u->set_req(j, newbox);
1572                   next_edge = false;
1573                 }
1574               } // for (int idx = 0;
1575             } // for (int depth = 1;
1576           } // if (u->is_SafePoint()
1577           if (next_edge) i++;
1578         } // for (uint i = 0; i < oldbox->outcnt();)
1579       } // if (!oldbox->is_eliminated())
1580   } // if (alock->is_Lock() && !lock->is_coarsened())
1581 
1582   #ifndef PRODUCT
1583   if (PrintEliminateLocks) {
1584     if (alock->is_Lock()) {
1585       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1586     } else {
1587       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1588     }
1589   }
1590   #endif
1591 
1592   Node* mem  = alock->in(TypeFunc::Memory);
1593   Node* ctrl = alock->in(TypeFunc::Control);
1594 
1595   extract_call_projections(alock);
1596   // There are 2 projections from the lock.  The lock node will
1597   // be deleted when its last use is subsumed below.
1598   assert(alock->outcnt() == 2 &&
1599          _fallthroughproj != NULL &&
1600          _memproj_fallthrough != NULL,
1601          "Unexpected projections from Lock/Unlock");
1602 
1603   Node* fallthroughproj = _fallthroughproj;
1604   Node* memproj_fallthrough = _memproj_fallthrough;
1605 
1606   // The memory projection from a lock/unlock is RawMem
1607   // The input to a Lock is merged memory, so extract its RawMem input
1608   // (unless the MergeMem has been optimized away.)
1609   if (alock->is_Lock()) {
1610     // Seach for MemBarAcquire node and delete it also.
1611     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1612     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1613     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1614     Node* memproj = membar->proj_out(TypeFunc::Memory);
1615     _igvn.hash_delete(ctrlproj);
1616     _igvn.subsume_node(ctrlproj, fallthroughproj);
1617     _igvn.hash_delete(memproj);
1618     _igvn.subsume_node(memproj, memproj_fallthrough);
1619 
1620     // Delete FastLock node also if this Lock node is unique user
1621     // (a loop peeling may clone a Lock node).
1622     Node* flock = alock->as_Lock()->fastlock_node();
1623     if (flock->outcnt() == 1) {
1624       assert(flock->unique_out() == alock, "sanity");
1625       _igvn.hash_delete(flock);
1626       _igvn.subsume_node(flock, top());
1627     }
1628   }
1629 
1630   // Seach for MemBarRelease node and delete it also.
1631   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1632       ctrl->in(0)->is_MemBar()) {
1633     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1634     assert(membar->Opcode() == Op_MemBarRelease &&
1635            mem->is_Proj() && membar == mem->in(0), "");
1636     _igvn.hash_delete(fallthroughproj);
1637     _igvn.subsume_node(fallthroughproj, ctrl);
1638     _igvn.hash_delete(memproj_fallthrough);
1639     _igvn.subsume_node(memproj_fallthrough, mem);
1640     fallthroughproj = ctrl;
1641     memproj_fallthrough = mem;
1642     ctrl = membar->in(TypeFunc::Control);
1643     mem  = membar->in(TypeFunc::Memory);
1644   }
1645 
1646   _igvn.hash_delete(fallthroughproj);
1647   _igvn.subsume_node(fallthroughproj, ctrl);
1648   _igvn.hash_delete(memproj_fallthrough);
1649   _igvn.subsume_node(memproj_fallthrough, mem);
1650   return true;
1651 }
1652 
1653 
1654 //------------------------------expand_lock_node----------------------
1655 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1656 
1657   Node* ctrl = lock->in(TypeFunc::Control);
1658   Node* mem = lock->in(TypeFunc::Memory);
1659   Node* obj = lock->obj_node();
1660   Node* box = lock->box_node();
1661   Node* flock = lock->fastlock_node();
1662 
1663   // Make the merge point
1664   Node *region;
1665   Node *mem_phi;
1666   Node *slow_path;
1667 
1668   if (UseOptoBiasInlining) {
1669     /*
1670      *  See the full descrition in MacroAssembler::biased_locking_enter().
1671      *
1672      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1673      *    // The object is biased.
1674      *    proto_node = klass->prototype_header;
1675      *    o_node = thread | proto_node;
1676      *    x_node = o_node ^ mark_word;
1677      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1678      *      // Done.
1679      *    } else {
1680      *      if( (x_node & biased_lock_mask) != 0 ) {
1681      *        // The klass's prototype header is no longer biased.
1682      *        cas(&mark_word, mark_word, proto_node)
1683      *        goto cas_lock;
1684      *      } else {
1685      *        // The klass's prototype header is still biased.
1686      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1687      *          old = mark_word;
1688      *          new = o_node;
1689      *        } else {
1690      *          // Different thread or anonymous biased.
1691      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1692      *          new = thread | old;
1693      *        }
1694      *        // Try to rebias.
1695      *        if( cas(&mark_word, old, new) == 0 ) {
1696      *          // Done.
1697      *        } else {
1698      *          goto slow_path; // Failed.
1699      *        }
1700      *      }
1701      *    }
1702      *  } else {
1703      *    // The object is not biased.
1704      *    cas_lock:
1705      *    if( FastLock(obj) == 0 ) {
1706      *      // Done.
1707      *    } else {
1708      *      slow_path:
1709      *      OptoRuntime::complete_monitor_locking_Java(obj);
1710      *    }
1711      *  }
1712      */
1713 
1714     region  = new (C, 5) RegionNode(5);
1715     // create a Phi for the memory state
1716     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1717 
1718     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1719     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1720 
1721     // First, check mark word for the biased lock pattern.
1722     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1723 
1724     // Get fast path - mark word has the biased lock pattern.
1725     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1726                          markOopDesc::biased_lock_mask_in_place,
1727                          markOopDesc::biased_lock_pattern, true);
1728     // fast_lock_region->in(1) is set to slow path.
1729     fast_lock_mem_phi->init_req(1, mem);
1730 
1731     // Now check that the lock is biased to the current thread and has
1732     // the same epoch and bias as Klass::_prototype_header.
1733 
1734     // Special-case a fresh allocation to avoid building nodes:
1735     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1736     if (klass_node == NULL) {
1737       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1738       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1739 #ifdef _LP64
1740       if (UseCompressedOops && klass_node->is_DecodeN()) {
1741         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1742         klass_node->in(1)->init_req(0, ctrl);
1743       } else
1744 #endif
1745       klass_node->init_req(0, ctrl);
1746     }
1747     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1748 
1749     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1750     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1751     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1752     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1753 
1754     // Get slow path - mark word does NOT match the value.
1755     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1756                                       (~markOopDesc::age_mask_in_place), 0);
1757     // region->in(3) is set to fast path - the object is biased to the current thread.
1758     mem_phi->init_req(3, mem);
1759 
1760 
1761     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1762 
1763 
1764     // First, check biased pattern.
1765     // Get fast path - _prototype_header has the same biased lock pattern.
1766     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1767                           markOopDesc::biased_lock_mask_in_place, 0, true);
1768 
1769     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1770     // fast_lock_region->in(2) - the prototype header is no longer biased
1771     // and we have to revoke the bias on this object.
1772     // We are going to try to reset the mark of this object to the prototype
1773     // value and fall through to the CAS-based locking scheme.
1774     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1775     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1776                                                  proto_node, mark_node);
1777     transform_later(cas);
1778     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1779     fast_lock_mem_phi->init_req(2, proj);
1780 
1781 
1782     // Second, check epoch bits.
1783     Node* rebiased_region  = new (C, 3) RegionNode(3);
1784     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1785     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1786 
1787     // Get slow path - mark word does NOT match epoch bits.
1788     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1789                                       markOopDesc::epoch_mask_in_place, 0);
1790     // The epoch of the current bias is not valid, attempt to rebias the object
1791     // toward the current thread.
1792     rebiased_region->init_req(2, epoch_ctrl);
1793     old_phi->init_req(2, mark_node);
1794     new_phi->init_req(2, o_node);
1795 
1796     // rebiased_region->in(1) is set to fast path.
1797     // The epoch of the current bias is still valid but we know
1798     // nothing about the owner; it might be set or it might be clear.
1799     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1800                              markOopDesc::age_mask_in_place |
1801                              markOopDesc::epoch_mask_in_place);
1802     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1803     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1804     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1805     old_phi->init_req(1, old);
1806     new_phi->init_req(1, new_mark);
1807 
1808     transform_later(rebiased_region);
1809     transform_later(old_phi);
1810     transform_later(new_phi);
1811 
1812     // Try to acquire the bias of the object using an atomic operation.
1813     // If this fails we will go in to the runtime to revoke the object's bias.
1814     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1815                                            new_phi, old_phi);
1816     transform_later(cas);
1817     proj = transform_later( new (C, 1) SCMemProjNode(cas));
1818 
1819     // Get slow path - Failed to CAS.
1820     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1821     mem_phi->init_req(4, proj);
1822     // region->in(4) is set to fast path - the object is rebiased to the current thread.
1823 
1824     // Failed to CAS.
1825     slow_path  = new (C, 3) RegionNode(3);
1826     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1827 
1828     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1829     slow_mem->init_req(1, proj);
1830 
1831     // Call CAS-based locking scheme (FastLock node).
1832 
1833     transform_later(fast_lock_region);
1834     transform_later(fast_lock_mem_phi);
1835 
1836     // Get slow path - FastLock failed to lock the object.
1837     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1838     mem_phi->init_req(2, fast_lock_mem_phi);
1839     // region->in(2) is set to fast path - the object is locked to the current thread.
1840 
1841     slow_path->init_req(2, ctrl); // Capture slow-control
1842     slow_mem->init_req(2, fast_lock_mem_phi);
1843 
1844     transform_later(slow_path);
1845     transform_later(slow_mem);
1846     // Reset lock's memory edge.
1847     lock->set_req(TypeFunc::Memory, slow_mem);
1848 
1849   } else {
1850     region  = new (C, 3) RegionNode(3);
1851     // create a Phi for the memory state
1852     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1853 
1854     // Optimize test; set region slot 2
1855     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
1856     mem_phi->init_req(2, mem);
1857   }
1858 
1859   // Make slow path call
1860   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
1861 
1862   extract_call_projections(call);
1863 
1864   // Slow path can only throw asynchronous exceptions, which are always
1865   // de-opted.  So the compiler thinks the slow-call can never throw an
1866   // exception.  If it DOES throw an exception we would need the debug
1867   // info removed first (since if it throws there is no monitor).
1868   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1869            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1870 
1871   // Capture slow path
1872   // disconnect fall-through projection from call and create a new one
1873   // hook up users of fall-through projection to region
1874   Node *slow_ctrl = _fallthroughproj->clone();
1875   transform_later(slow_ctrl);
1876   _igvn.hash_delete(_fallthroughproj);
1877   _fallthroughproj->disconnect_inputs(NULL);
1878   region->init_req(1, slow_ctrl);
1879   // region inputs are now complete
1880   transform_later(region);
1881   _igvn.subsume_node(_fallthroughproj, region);
1882 
1883   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
1884   mem_phi->init_req(1, memproj );
1885   transform_later(mem_phi);
1886   _igvn.hash_delete(_memproj_fallthrough);
1887   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
1888 }
1889 
1890 //------------------------------expand_unlock_node----------------------
1891 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
1892 
1893   Node* ctrl = unlock->in(TypeFunc::Control);
1894   Node* mem = unlock->in(TypeFunc::Memory);
1895   Node* obj = unlock->obj_node();
1896   Node* box = unlock->box_node();
1897 
1898   // No need for a null check on unlock
1899 
1900   // Make the merge point
1901   Node *region;
1902   Node *mem_phi;
1903 
1904   if (UseOptoBiasInlining) {
1905     // Check for biased locking unlock case, which is a no-op.
1906     // See the full descrition in MacroAssembler::biased_locking_exit().
1907     region  = new (C, 4) RegionNode(4);
1908     // create a Phi for the memory state
1909     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1910     mem_phi->init_req(3, mem);
1911 
1912     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1913     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
1914                          markOopDesc::biased_lock_mask_in_place,
1915                          markOopDesc::biased_lock_pattern);
1916   } else {
1917     region  = new (C, 3) RegionNode(3);
1918     // create a Phi for the memory state
1919     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1920   }
1921 
1922   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
1923   funlock = transform_later( funlock )->as_FastUnlock();
1924   // Optimize test; set region slot 2
1925   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
1926 
1927   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
1928 
1929   extract_call_projections(call);
1930 
1931   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1932            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1933 
1934   // No exceptions for unlocking
1935   // Capture slow path
1936   // disconnect fall-through projection from call and create a new one
1937   // hook up users of fall-through projection to region
1938   Node *slow_ctrl = _fallthroughproj->clone();
1939   transform_later(slow_ctrl);
1940   _igvn.hash_delete(_fallthroughproj);
1941   _fallthroughproj->disconnect_inputs(NULL);
1942   region->init_req(1, slow_ctrl);
1943   // region inputs are now complete
1944   transform_later(region);
1945   _igvn.subsume_node(_fallthroughproj, region);
1946 
1947   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
1948   mem_phi->init_req(1, memproj );
1949   mem_phi->init_req(2, mem);
1950   transform_later(mem_phi);
1951   _igvn.hash_delete(_memproj_fallthrough);
1952   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
1953 }
1954 
1955 //------------------------------expand_macro_nodes----------------------
1956 //  Returns true if a failure occurred.
1957 bool PhaseMacroExpand::expand_macro_nodes() {
1958   if (C->macro_count() == 0)
1959     return false;
1960   // First, attempt to eliminate locks
1961   bool progress = true;
1962   while (progress) {
1963     progress = false;
1964     for (int i = C->macro_count(); i > 0; i--) {
1965       Node * n = C->macro_node(i-1);
1966       bool success = false;
1967       debug_only(int old_macro_count = C->macro_count(););
1968       if (n->is_AbstractLock()) {
1969         success = eliminate_locking_node(n->as_AbstractLock());
1970       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
1971         _igvn.add_users_to_worklist(n);
1972         _igvn.hash_delete(n);
1973         _igvn.subsume_node(n, n->in(1));
1974         success = true;
1975       }
1976       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
1977       progress = progress || success;
1978     }
1979   }
1980   // Next, attempt to eliminate allocations
1981   progress = true;
1982   while (progress) {
1983     progress = false;
1984     for (int i = C->macro_count(); i > 0; i--) {
1985       Node * n = C->macro_node(i-1);
1986       bool success = false;
1987       debug_only(int old_macro_count = C->macro_count(););
1988       switch (n->class_id()) {
1989       case Node::Class_Allocate:
1990       case Node::Class_AllocateArray:
1991         success = eliminate_allocate_node(n->as_Allocate());
1992         break;
1993       case Node::Class_Lock:
1994       case Node::Class_Unlock:
1995         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
1996         break;
1997       default:
1998         assert(false, "unknown node type in macro list");
1999       }
2000       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2001       progress = progress || success;
2002     }
2003   }
2004   // Make sure expansion will not cause node limit to be exceeded.
2005   // Worst case is a macro node gets expanded into about 50 nodes.
2006   // Allow 50% more for optimization.
2007   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2008     return true;
2009 
2010   // expand "macro" nodes
2011   // nodes are removed from the macro list as they are processed
2012   while (C->macro_count() > 0) {
2013     int macro_count = C->macro_count();
2014     Node * n = C->macro_node(macro_count-1);
2015     assert(n->is_macro(), "only macro nodes expected here");
2016     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2017       // node is unreachable, so don't try to expand it
2018       C->remove_macro_node(n);
2019       continue;
2020     }
2021     switch (n->class_id()) {
2022     case Node::Class_Allocate:
2023       expand_allocate(n->as_Allocate());
2024       break;
2025     case Node::Class_AllocateArray:
2026       expand_allocate_array(n->as_AllocateArray());
2027       break;
2028     case Node::Class_Lock:
2029       expand_lock_node(n->as_Lock());
2030       break;
2031     case Node::Class_Unlock:
2032       expand_unlock_node(n->as_Unlock());
2033       break;
2034     default:
2035       assert(false, "unknown node type in macro list");
2036     }
2037     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2038     if (C->failing())  return true;
2039   }
2040 
2041   _igvn.set_delay_transform(false);
2042   _igvn.optimize();
2043   return false;
2044 }