1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_type.cpp.incl"
  31 
  32 // Dictionary of types shared among compilations.
  33 Dict* Type::_shared_type_dict = NULL;
  34 
  35 // Array which maps compiler types to Basic Types
  36 const BasicType Type::_basic_type[Type::lastype] = {
  37   T_ILLEGAL,    // Bad
  38   T_ILLEGAL,    // Control
  39   T_VOID,       // Top
  40   T_INT,        // Int
  41   T_LONG,       // Long
  42   T_VOID,       // Half
  43   T_NARROWOOP,  // NarrowOop
  44 
  45   T_ILLEGAL,    // Tuple
  46   T_ARRAY,      // Array
  47 
  48   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
  49   T_ADDRESS,    // RawPtr
  50   T_OBJECT,     // OopPtr
  51   T_OBJECT,     // InstPtr
  52   T_OBJECT,     // AryPtr
  53   T_OBJECT,     // KlassPtr
  54 
  55   T_OBJECT,     // Function
  56   T_ILLEGAL,    // Abio
  57   T_ADDRESS,    // Return_Address
  58   T_ILLEGAL,    // Memory
  59   T_FLOAT,      // FloatTop
  60   T_FLOAT,      // FloatCon
  61   T_FLOAT,      // FloatBot
  62   T_DOUBLE,     // DoubleTop
  63   T_DOUBLE,     // DoubleCon
  64   T_DOUBLE,     // DoubleBot
  65   T_ILLEGAL,    // Bottom
  66 };
  67 
  68 // Map ideal registers (machine types) to ideal types
  69 const Type *Type::mreg2type[_last_machine_leaf];
  70 
  71 // Map basic types to canonical Type* pointers.
  72 const Type* Type::     _const_basic_type[T_CONFLICT+1];
  73 
  74 // Map basic types to constant-zero Types.
  75 const Type* Type::            _zero_type[T_CONFLICT+1];
  76 
  77 // Map basic types to array-body alias types.
  78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
  79 
  80 //=============================================================================
  81 // Convenience common pre-built types.
  82 const Type *Type::ABIO;         // State-of-machine only
  83 const Type *Type::BOTTOM;       // All values
  84 const Type *Type::CONTROL;      // Control only
  85 const Type *Type::DOUBLE;       // All doubles
  86 const Type *Type::FLOAT;        // All floats
  87 const Type *Type::HALF;         // Placeholder half of doublewide type
  88 const Type *Type::MEMORY;       // Abstract store only
  89 const Type *Type::RETURN_ADDRESS;
  90 const Type *Type::TOP;          // No values in set
  91 
  92 //------------------------------get_const_type---------------------------
  93 const Type* Type::get_const_type(ciType* type) {
  94   if (type == NULL) {
  95     return NULL;
  96   } else if (type->is_primitive_type()) {
  97     return get_const_basic_type(type->basic_type());
  98   } else {
  99     return TypeOopPtr::make_from_klass(type->as_klass());
 100   }
 101 }
 102 
 103 //---------------------------array_element_basic_type---------------------------------
 104 // Mapping to the array element's basic type.
 105 BasicType Type::array_element_basic_type() const {
 106   BasicType bt = basic_type();
 107   if (bt == T_INT) {
 108     if (this == TypeInt::INT)   return T_INT;
 109     if (this == TypeInt::CHAR)  return T_CHAR;
 110     if (this == TypeInt::BYTE)  return T_BYTE;
 111     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 112     if (this == TypeInt::SHORT) return T_SHORT;
 113     return T_VOID;
 114   }
 115   return bt;
 116 }
 117 
 118 //---------------------------get_typeflow_type---------------------------------
 119 // Import a type produced by ciTypeFlow.
 120 const Type* Type::get_typeflow_type(ciType* type) {
 121   switch (type->basic_type()) {
 122 
 123   case ciTypeFlow::StateVector::T_BOTTOM:
 124     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 125     return Type::BOTTOM;
 126 
 127   case ciTypeFlow::StateVector::T_TOP:
 128     assert(type == ciTypeFlow::StateVector::top_type(), "");
 129     return Type::TOP;
 130 
 131   case ciTypeFlow::StateVector::T_NULL:
 132     assert(type == ciTypeFlow::StateVector::null_type(), "");
 133     return TypePtr::NULL_PTR;
 134 
 135   case ciTypeFlow::StateVector::T_LONG2:
 136     // The ciTypeFlow pass pushes a long, then the half.
 137     // We do the same.
 138     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 139     return TypeInt::TOP;
 140 
 141   case ciTypeFlow::StateVector::T_DOUBLE2:
 142     // The ciTypeFlow pass pushes double, then the half.
 143     // Our convention is the same.
 144     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 145     return Type::TOP;
 146 
 147   case T_ADDRESS:
 148     assert(type->is_return_address(), "");
 149     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 150 
 151   default:
 152     // make sure we did not mix up the cases:
 153     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 154     assert(type != ciTypeFlow::StateVector::top_type(), "");
 155     assert(type != ciTypeFlow::StateVector::null_type(), "");
 156     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 157     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 158     assert(!type->is_return_address(), "");
 159 
 160     return Type::get_const_type(type);
 161   }
 162 }
 163 
 164 
 165 //------------------------------make-------------------------------------------
 166 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 167 // and look for an existing copy in the type dictionary.
 168 const Type *Type::make( enum TYPES t ) {
 169   return (new Type(t))->hashcons();
 170 }
 171 
 172 //------------------------------cmp--------------------------------------------
 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 174   if( t1->_base != t2->_base )
 175     return 1;                   // Missed badly
 176   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 177   return !t1->eq(t2);           // Return ZERO if equal
 178 }
 179 
 180 //------------------------------hash-------------------------------------------
 181 int Type::uhash( const Type *const t ) {
 182   return t->hash();
 183 }
 184 
 185 //--------------------------Initialize_shared----------------------------------
 186 void Type::Initialize_shared(Compile* current) {
 187   // This method does not need to be locked because the first system
 188   // compilations (stub compilations) occur serially.  If they are
 189   // changed to proceed in parallel, then this section will need
 190   // locking.
 191 
 192   Arena* save = current->type_arena();
 193   Arena* shared_type_arena = new Arena();
 194 
 195   current->set_type_arena(shared_type_arena);
 196   _shared_type_dict =
 197     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 198                                   shared_type_arena, 128 );
 199   current->set_type_dict(_shared_type_dict);
 200 
 201   // Make shared pre-built types.
 202   CONTROL = make(Control);      // Control only
 203   TOP     = make(Top);          // No values in set
 204   MEMORY  = make(Memory);       // Abstract store only
 205   ABIO    = make(Abio);         // State-of-machine only
 206   RETURN_ADDRESS=make(Return_Address);
 207   FLOAT   = make(FloatBot);     // All floats
 208   DOUBLE  = make(DoubleBot);    // All doubles
 209   BOTTOM  = make(Bottom);       // Everything
 210   HALF    = make(Half);         // Placeholder half of doublewide type
 211 
 212   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 213   TypeF::ONE  = TypeF::make(1.0); // Float 1
 214 
 215   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 216   TypeD::ONE  = TypeD::make(1.0); // Double 1
 217 
 218   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 219   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 220   TypeInt::ONE     = TypeInt::make( 1);  //  1
 221   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 222   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 223   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 224   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 225   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 226   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 227   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 228   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 229   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 230   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 231   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 232   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 233   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 234   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 235   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 236   // CmpL is overloaded both as the bytecode computation returning
 237   // a trinary (-1,0,+1) integer result AND as an efficient long
 238   // compare returning optimizer ideal-type flags.
 239   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 240   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 241   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 242   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 243 
 244   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 245   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 246   TypeLong::ONE     = TypeLong::make( 1);        //  1
 247   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 248   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 249   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 250   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 251 
 252   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 253   fboth[0] = Type::CONTROL;
 254   fboth[1] = Type::CONTROL;
 255   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 256 
 257   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 258   ffalse[0] = Type::CONTROL;
 259   ffalse[1] = Type::TOP;
 260   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 261 
 262   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 263   fneither[0] = Type::TOP;
 264   fneither[1] = Type::TOP;
 265   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 266 
 267   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 268   ftrue[0] = Type::TOP;
 269   ftrue[1] = Type::CONTROL;
 270   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 271 
 272   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 273   floop[0] = Type::CONTROL;
 274   floop[1] = TypeInt::INT;
 275   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 276 
 277   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 278   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 279   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 280 
 281   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 282   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 283 
 284   const Type **fmembar = TypeTuple::fields(0);
 285   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 286 
 287   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 288   fsc[0] = TypeInt::CC;
 289   fsc[1] = Type::MEMORY;
 290   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 291 
 292   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 293   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 294   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 295   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 296                                            false, 0, oopDesc::mark_offset_in_bytes());
 297   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 298                                            false, 0, oopDesc::klass_offset_in_bytes());
 299   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 300 
 301   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 302   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 303 
 304   mreg2type[Op_Node] = Type::BOTTOM;
 305   mreg2type[Op_Set ] = 0;
 306   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 307   mreg2type[Op_RegI] = TypeInt::INT;
 308   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 309   mreg2type[Op_RegF] = Type::FLOAT;
 310   mreg2type[Op_RegD] = Type::DOUBLE;
 311   mreg2type[Op_RegL] = TypeLong::LONG;
 312   mreg2type[Op_RegFlags] = TypeInt::CC;
 313 
 314   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
 315 
 316   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 317 
 318 #ifdef _LP64
 319   if (UseCompressedOops) {
 320     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 321   } else
 322 #endif
 323   {
 324     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 325     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 326   }
 327   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 328   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 329   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 330   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 331   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 332   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 333   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 334 
 335   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 336   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 337   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 338   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 339   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 340   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 341   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 342   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 343   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 344   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 345   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 346   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 347 
 348   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 349   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 350 
 351   const Type **fi2c = TypeTuple::fields(2);
 352   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
 353   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 354   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 355 
 356   const Type **intpair = TypeTuple::fields(2);
 357   intpair[0] = TypeInt::INT;
 358   intpair[1] = TypeInt::INT;
 359   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 360 
 361   const Type **longpair = TypeTuple::fields(2);
 362   longpair[0] = TypeLong::LONG;
 363   longpair[1] = TypeLong::LONG;
 364   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 365 
 366   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
 367   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
 368   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
 369   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
 370   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
 371   _const_basic_type[T_INT]     = TypeInt::INT;
 372   _const_basic_type[T_LONG]    = TypeLong::LONG;
 373   _const_basic_type[T_FLOAT]   = Type::FLOAT;
 374   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
 375   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
 376   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 377   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
 378   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 379   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
 380 
 381   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
 382   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
 383   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
 384   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
 385   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
 386   _zero_type[T_INT]     = TypeInt::ZERO;
 387   _zero_type[T_LONG]    = TypeLong::ZERO;
 388   _zero_type[T_FLOAT]   = TypeF::ZERO;
 389   _zero_type[T_DOUBLE]  = TypeD::ZERO;
 390   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
 391   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
 392   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
 393   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
 394 
 395   // get_zero_type() should not happen for T_CONFLICT
 396   _zero_type[T_CONFLICT]= NULL;
 397 
 398   // Restore working type arena.
 399   current->set_type_arena(save);
 400   current->set_type_dict(NULL);
 401 }
 402 
 403 //------------------------------Initialize-------------------------------------
 404 void Type::Initialize(Compile* current) {
 405   assert(current->type_arena() != NULL, "must have created type arena");
 406 
 407   if (_shared_type_dict == NULL) {
 408     Initialize_shared(current);
 409   }
 410 
 411   Arena* type_arena = current->type_arena();
 412 
 413   // Create the hash-cons'ing dictionary with top-level storage allocation
 414   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 415   current->set_type_dict(tdic);
 416 
 417   // Transfer the shared types.
 418   DictI i(_shared_type_dict);
 419   for( ; i.test(); ++i ) {
 420     Type* t = (Type*)i._value;
 421     tdic->Insert(t,t);  // New Type, insert into Type table
 422   }
 423 
 424 #ifdef ASSERT
 425   verify_lastype();
 426 #endif
 427 }
 428 
 429 //------------------------------hashcons---------------------------------------
 430 // Do the hash-cons trick.  If the Type already exists in the type table,
 431 // delete the current Type and return the existing Type.  Otherwise stick the
 432 // current Type in the Type table.
 433 const Type *Type::hashcons(void) {
 434   debug_only(base());           // Check the assertion in Type::base().
 435   // Look up the Type in the Type dictionary
 436   Dict *tdic = type_dict();
 437   Type* old = (Type*)(tdic->Insert(this, this, false));
 438   if( old ) {                   // Pre-existing Type?
 439     if( old != this )           // Yes, this guy is not the pre-existing?
 440       delete this;              // Yes, Nuke this guy
 441     assert( old->_dual, "" );
 442     return old;                 // Return pre-existing
 443   }
 444 
 445   // Every type has a dual (to make my lattice symmetric).
 446   // Since we just discovered a new Type, compute its dual right now.
 447   assert( !_dual, "" );         // No dual yet
 448   _dual = xdual();              // Compute the dual
 449   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 450     _dual = this;
 451     return this;
 452   }
 453   assert( !_dual->_dual, "" );  // No reverse dual yet
 454   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 455   // New Type, insert into Type table
 456   tdic->Insert((void*)_dual,(void*)_dual);
 457   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 458 #ifdef ASSERT
 459   Type *dual_dual = (Type*)_dual->xdual();
 460   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 461   delete dual_dual;
 462 #endif
 463   return this;                  // Return new Type
 464 }
 465 
 466 //------------------------------eq---------------------------------------------
 467 // Structural equality check for Type representations
 468 bool Type::eq( const Type * ) const {
 469   return true;                  // Nothing else can go wrong
 470 }
 471 
 472 //------------------------------hash-------------------------------------------
 473 // Type-specific hashing function.
 474 int Type::hash(void) const {
 475   return _base;
 476 }
 477 
 478 //------------------------------is_finite--------------------------------------
 479 // Has a finite value
 480 bool Type::is_finite() const {
 481   return false;
 482 }
 483 
 484 //------------------------------is_nan-----------------------------------------
 485 // Is not a number (NaN)
 486 bool Type::is_nan()    const {
 487   return false;
 488 }
 489 
 490 //----------------------interface_vs_oop---------------------------------------
 491 #ifdef ASSERT
 492 bool Type::interface_vs_oop(const Type *t) const {
 493   bool result = false;
 494 
 495   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 496   const TypePtr*    t_ptr =    t->make_ptr();
 497   if( this_ptr == NULL || t_ptr == NULL )
 498     return result;
 499 
 500   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 501   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 502   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 503     bool this_interface = this_inst->klass()->is_interface();
 504     bool    t_interface =    t_inst->klass()->is_interface();
 505     result = this_interface ^ t_interface;
 506   }
 507 
 508   return result;
 509 }
 510 #endif
 511 
 512 //------------------------------meet-------------------------------------------
 513 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 514 // commutative and the lattice is symmetric.
 515 const Type *Type::meet( const Type *t ) const {
 516   if (isa_narrowoop() && t->isa_narrowoop()) {
 517     const Type* result = make_ptr()->meet(t->make_ptr());
 518     return result->make_narrowoop();
 519   }
 520 
 521   const Type *mt = xmeet(t);
 522   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 523 #ifdef ASSERT
 524   assert( mt == t->xmeet(this), "meet not commutative" );
 525   const Type* dual_join = mt->_dual;
 526   const Type *t2t    = dual_join->xmeet(t->_dual);
 527   const Type *t2this = dual_join->xmeet(   _dual);
 528 
 529   // Interface meet Oop is Not Symmetric:
 530   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 531   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 532 
 533   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 534     tty->print_cr("=== Meet Not Symmetric ===");
 535     tty->print("t   =                   ");         t->dump(); tty->cr();
 536     tty->print("this=                   ");            dump(); tty->cr();
 537     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 538 
 539     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 540     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 541     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 542 
 543     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 544     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 545 
 546     fatal("meet not symmetric" );
 547   }
 548 #endif
 549   return mt;
 550 }
 551 
 552 //------------------------------xmeet------------------------------------------
 553 // Compute the MEET of two types.  It returns a new Type object.
 554 const Type *Type::xmeet( const Type *t ) const {
 555   // Perform a fast test for common case; meeting the same types together.
 556   if( this == t ) return this;  // Meeting same type-rep?
 557 
 558   // Meeting TOP with anything?
 559   if( _base == Top ) return t;
 560 
 561   // Meeting BOTTOM with anything?
 562   if( _base == Bottom ) return BOTTOM;
 563 
 564   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 565   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 566   switch (t->base()) {  // Switch on original type
 567 
 568   // Cut in half the number of cases I must handle.  Only need cases for when
 569   // the given enum "t->type" is less than or equal to the local enum "type".
 570   case FloatCon:
 571   case DoubleCon:
 572   case Int:
 573   case Long:
 574     return t->xmeet(this);
 575 
 576   case OopPtr:
 577     return t->xmeet(this);
 578 
 579   case InstPtr:
 580     return t->xmeet(this);
 581 
 582   case KlassPtr:
 583     return t->xmeet(this);
 584 
 585   case AryPtr:
 586     return t->xmeet(this);
 587 
 588   case NarrowOop:
 589     return t->xmeet(this);
 590 
 591   case Bad:                     // Type check
 592   default:                      // Bogus type not in lattice
 593     typerr(t);
 594     return Type::BOTTOM;
 595 
 596   case Bottom:                  // Ye Olde Default
 597     return t;
 598 
 599   case FloatTop:
 600     if( _base == FloatTop ) return this;
 601   case FloatBot:                // Float
 602     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 603     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 604     typerr(t);
 605     return Type::BOTTOM;
 606 
 607   case DoubleTop:
 608     if( _base == DoubleTop ) return this;
 609   case DoubleBot:               // Double
 610     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 611     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 612     typerr(t);
 613     return Type::BOTTOM;
 614 
 615   // These next few cases must match exactly or it is a compile-time error.
 616   case Control:                 // Control of code
 617   case Abio:                    // State of world outside of program
 618   case Memory:
 619     if( _base == t->_base )  return this;
 620     typerr(t);
 621     return Type::BOTTOM;
 622 
 623   case Top:                     // Top of the lattice
 624     return this;
 625   }
 626 
 627   // The type is unchanged
 628   return this;
 629 }
 630 
 631 //-----------------------------filter------------------------------------------
 632 const Type *Type::filter( const Type *kills ) const {
 633   const Type* ft = join(kills);
 634   if (ft->empty())
 635     return Type::TOP;           // Canonical empty value
 636   return ft;
 637 }
 638 
 639 //------------------------------xdual------------------------------------------
 640 // Compute dual right now.
 641 const Type::TYPES Type::dual_type[Type::lastype] = {
 642   Bad,          // Bad
 643   Control,      // Control
 644   Bottom,       // Top
 645   Bad,          // Int - handled in v-call
 646   Bad,          // Long - handled in v-call
 647   Half,         // Half
 648   Bad,          // NarrowOop - handled in v-call
 649 
 650   Bad,          // Tuple - handled in v-call
 651   Bad,          // Array - handled in v-call
 652 
 653   Bad,          // AnyPtr - handled in v-call
 654   Bad,          // RawPtr - handled in v-call
 655   Bad,          // OopPtr - handled in v-call
 656   Bad,          // InstPtr - handled in v-call
 657   Bad,          // AryPtr - handled in v-call
 658   Bad,          // KlassPtr - handled in v-call
 659 
 660   Bad,          // Function - handled in v-call
 661   Abio,         // Abio
 662   Return_Address,// Return_Address
 663   Memory,       // Memory
 664   FloatBot,     // FloatTop
 665   FloatCon,     // FloatCon
 666   FloatTop,     // FloatBot
 667   DoubleBot,    // DoubleTop
 668   DoubleCon,    // DoubleCon
 669   DoubleTop,    // DoubleBot
 670   Top           // Bottom
 671 };
 672 
 673 const Type *Type::xdual() const {
 674   // Note: the base() accessor asserts the sanity of _base.
 675   assert(dual_type[base()] != Bad, "implement with v-call");
 676   return new Type(dual_type[_base]);
 677 }
 678 
 679 //------------------------------has_memory-------------------------------------
 680 bool Type::has_memory() const {
 681   Type::TYPES tx = base();
 682   if (tx == Memory) return true;
 683   if (tx == Tuple) {
 684     const TypeTuple *t = is_tuple();
 685     for (uint i=0; i < t->cnt(); i++) {
 686       tx = t->field_at(i)->base();
 687       if (tx == Memory)  return true;
 688     }
 689   }
 690   return false;
 691 }
 692 
 693 #ifndef PRODUCT
 694 //------------------------------dump2------------------------------------------
 695 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 696   st->print(msg[_base]);
 697 }
 698 
 699 //------------------------------dump-------------------------------------------
 700 void Type::dump_on(outputStream *st) const {
 701   ResourceMark rm;
 702   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 703   dump2(d,1, st);
 704   if (is_ptr_to_narrowoop()) {
 705     st->print(" [narrow]");
 706   }
 707 }
 708 
 709 //------------------------------data-------------------------------------------
 710 const char * const Type::msg[Type::lastype] = {
 711   "bad","control","top","int:","long:","half", "narrowoop:",
 712   "tuple:", "aryptr",
 713   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
 714   "func", "abIO", "return_address", "memory",
 715   "float_top", "ftcon:", "float",
 716   "double_top", "dblcon:", "double",
 717   "bottom"
 718 };
 719 #endif
 720 
 721 //------------------------------singleton--------------------------------------
 722 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 723 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 724 bool Type::singleton(void) const {
 725   return _base == Top || _base == Half;
 726 }
 727 
 728 //------------------------------empty------------------------------------------
 729 // TRUE if Type is a type with no values, FALSE otherwise.
 730 bool Type::empty(void) const {
 731   switch (_base) {
 732   case DoubleTop:
 733   case FloatTop:
 734   case Top:
 735     return true;
 736 
 737   case Half:
 738   case Abio:
 739   case Return_Address:
 740   case Memory:
 741   case Bottom:
 742   case FloatBot:
 743   case DoubleBot:
 744     return false;  // never a singleton, therefore never empty
 745   }
 746 
 747   ShouldNotReachHere();
 748   return false;
 749 }
 750 
 751 //------------------------------dump_stats-------------------------------------
 752 // Dump collected statistics to stderr
 753 #ifndef PRODUCT
 754 void Type::dump_stats() {
 755   tty->print("Types made: %d\n", type_dict()->Size());
 756 }
 757 #endif
 758 
 759 //------------------------------typerr-----------------------------------------
 760 void Type::typerr( const Type *t ) const {
 761 #ifndef PRODUCT
 762   tty->print("\nError mixing types: ");
 763   dump();
 764   tty->print(" and ");
 765   t->dump();
 766   tty->print("\n");
 767 #endif
 768   ShouldNotReachHere();
 769 }
 770 
 771 //------------------------------isa_oop_ptr------------------------------------
 772 // Return true if type is an oop pointer type.  False for raw pointers.
 773 static char isa_oop_ptr_tbl[Type::lastype] = {
 774   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
 775   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
 776   0/*func*/,0,0/*return_address*/,0,
 777   /*floats*/0,0,0, /*doubles*/0,0,0,
 778   0
 779 };
 780 bool Type::isa_oop_ptr() const {
 781   return isa_oop_ptr_tbl[_base] != 0;
 782 }
 783 
 784 //------------------------------dump_stats-------------------------------------
 785 // // Check that arrays match type enum
 786 #ifndef PRODUCT
 787 void Type::verify_lastype() {
 788   // Check that arrays match enumeration
 789   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
 790   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
 791   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
 792   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
 793   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
 794 }
 795 #endif
 796 
 797 //=============================================================================
 798 // Convenience common pre-built types.
 799 const TypeF *TypeF::ZERO;       // Floating point zero
 800 const TypeF *TypeF::ONE;        // Floating point one
 801 
 802 //------------------------------make-------------------------------------------
 803 // Create a float constant
 804 const TypeF *TypeF::make(float f) {
 805   return (TypeF*)(new TypeF(f))->hashcons();
 806 }
 807 
 808 //------------------------------meet-------------------------------------------
 809 // Compute the MEET of two types.  It returns a new Type object.
 810 const Type *TypeF::xmeet( const Type *t ) const {
 811   // Perform a fast test for common case; meeting the same types together.
 812   if( this == t ) return this;  // Meeting same type-rep?
 813 
 814   // Current "this->_base" is FloatCon
 815   switch (t->base()) {          // Switch on original type
 816   case AnyPtr:                  // Mixing with oops happens when javac
 817   case RawPtr:                  // reuses local variables
 818   case OopPtr:
 819   case InstPtr:
 820   case KlassPtr:
 821   case AryPtr:
 822   case NarrowOop:
 823   case Int:
 824   case Long:
 825   case DoubleTop:
 826   case DoubleCon:
 827   case DoubleBot:
 828   case Bottom:                  // Ye Olde Default
 829     return Type::BOTTOM;
 830 
 831   case FloatBot:
 832     return t;
 833 
 834   default:                      // All else is a mistake
 835     typerr(t);
 836 
 837   case FloatCon:                // Float-constant vs Float-constant?
 838     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 839                                 // must compare bitwise as positive zero, negative zero and NaN have
 840                                 // all the same representation in C++
 841       return FLOAT;             // Return generic float
 842                                 // Equal constants
 843   case Top:
 844   case FloatTop:
 845     break;                      // Return the float constant
 846   }
 847   return this;                  // Return the float constant
 848 }
 849 
 850 //------------------------------xdual------------------------------------------
 851 // Dual: symmetric
 852 const Type *TypeF::xdual() const {
 853   return this;
 854 }
 855 
 856 //------------------------------eq---------------------------------------------
 857 // Structural equality check for Type representations
 858 bool TypeF::eq( const Type *t ) const {
 859   if( g_isnan(_f) ||
 860       g_isnan(t->getf()) ) {
 861     // One or both are NANs.  If both are NANs return true, else false.
 862     return (g_isnan(_f) && g_isnan(t->getf()));
 863   }
 864   if (_f == t->getf()) {
 865     // (NaN is impossible at this point, since it is not equal even to itself)
 866     if (_f == 0.0) {
 867       // difference between positive and negative zero
 868       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 869     }
 870     return true;
 871   }
 872   return false;
 873 }
 874 
 875 //------------------------------hash-------------------------------------------
 876 // Type-specific hashing function.
 877 int TypeF::hash(void) const {
 878   return *(int*)(&_f);
 879 }
 880 
 881 //------------------------------is_finite--------------------------------------
 882 // Has a finite value
 883 bool TypeF::is_finite() const {
 884   return g_isfinite(getf()) != 0;
 885 }
 886 
 887 //------------------------------is_nan-----------------------------------------
 888 // Is not a number (NaN)
 889 bool TypeF::is_nan()    const {
 890   return g_isnan(getf()) != 0;
 891 }
 892 
 893 //------------------------------dump2------------------------------------------
 894 // Dump float constant Type
 895 #ifndef PRODUCT
 896 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 897   Type::dump2(d,depth, st);
 898   st->print("%f", _f);
 899 }
 900 #endif
 901 
 902 //------------------------------singleton--------------------------------------
 903 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 904 // constants (Ldi nodes).  Singletons are integer, float or double constants
 905 // or a single symbol.
 906 bool TypeF::singleton(void) const {
 907   return true;                  // Always a singleton
 908 }
 909 
 910 bool TypeF::empty(void) const {
 911   return false;                 // always exactly a singleton
 912 }
 913 
 914 //=============================================================================
 915 // Convenience common pre-built types.
 916 const TypeD *TypeD::ZERO;       // Floating point zero
 917 const TypeD *TypeD::ONE;        // Floating point one
 918 
 919 //------------------------------make-------------------------------------------
 920 const TypeD *TypeD::make(double d) {
 921   return (TypeD*)(new TypeD(d))->hashcons();
 922 }
 923 
 924 //------------------------------meet-------------------------------------------
 925 // Compute the MEET of two types.  It returns a new Type object.
 926 const Type *TypeD::xmeet( const Type *t ) const {
 927   // Perform a fast test for common case; meeting the same types together.
 928   if( this == t ) return this;  // Meeting same type-rep?
 929 
 930   // Current "this->_base" is DoubleCon
 931   switch (t->base()) {          // Switch on original type
 932   case AnyPtr:                  // Mixing with oops happens when javac
 933   case RawPtr:                  // reuses local variables
 934   case OopPtr:
 935   case InstPtr:
 936   case KlassPtr:
 937   case AryPtr:
 938   case NarrowOop:
 939   case Int:
 940   case Long:
 941   case FloatTop:
 942   case FloatCon:
 943   case FloatBot:
 944   case Bottom:                  // Ye Olde Default
 945     return Type::BOTTOM;
 946 
 947   case DoubleBot:
 948     return t;
 949 
 950   default:                      // All else is a mistake
 951     typerr(t);
 952 
 953   case DoubleCon:               // Double-constant vs Double-constant?
 954     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
 955       return DOUBLE;            // Return generic double
 956   case Top:
 957   case DoubleTop:
 958     break;
 959   }
 960   return this;                  // Return the double constant
 961 }
 962 
 963 //------------------------------xdual------------------------------------------
 964 // Dual: symmetric
 965 const Type *TypeD::xdual() const {
 966   return this;
 967 }
 968 
 969 //------------------------------eq---------------------------------------------
 970 // Structural equality check for Type representations
 971 bool TypeD::eq( const Type *t ) const {
 972   if( g_isnan(_d) ||
 973       g_isnan(t->getd()) ) {
 974     // One or both are NANs.  If both are NANs return true, else false.
 975     return (g_isnan(_d) && g_isnan(t->getd()));
 976   }
 977   if (_d == t->getd()) {
 978     // (NaN is impossible at this point, since it is not equal even to itself)
 979     if (_d == 0.0) {
 980       // difference between positive and negative zero
 981       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
 982     }
 983     return true;
 984   }
 985   return false;
 986 }
 987 
 988 //------------------------------hash-------------------------------------------
 989 // Type-specific hashing function.
 990 int TypeD::hash(void) const {
 991   return *(int*)(&_d);
 992 }
 993 
 994 //------------------------------is_finite--------------------------------------
 995 // Has a finite value
 996 bool TypeD::is_finite() const {
 997   return g_isfinite(getd()) != 0;
 998 }
 999 
1000 //------------------------------is_nan-----------------------------------------
1001 // Is not a number (NaN)
1002 bool TypeD::is_nan()    const {
1003   return g_isnan(getd()) != 0;
1004 }
1005 
1006 //------------------------------dump2------------------------------------------
1007 // Dump double constant Type
1008 #ifndef PRODUCT
1009 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1010   Type::dump2(d,depth,st);
1011   st->print("%f", _d);
1012 }
1013 #endif
1014 
1015 //------------------------------singleton--------------------------------------
1016 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1017 // constants (Ldi nodes).  Singletons are integer, float or double constants
1018 // or a single symbol.
1019 bool TypeD::singleton(void) const {
1020   return true;                  // Always a singleton
1021 }
1022 
1023 bool TypeD::empty(void) const {
1024   return false;                 // always exactly a singleton
1025 }
1026 
1027 //=============================================================================
1028 // Convience common pre-built types.
1029 const TypeInt *TypeInt::MINUS_1;// -1
1030 const TypeInt *TypeInt::ZERO;   // 0
1031 const TypeInt *TypeInt::ONE;    // 1
1032 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1033 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1034 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1035 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1036 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1037 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1038 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1039 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1040 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1041 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1042 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1043 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1044 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1045 const TypeInt *TypeInt::INT;    // 32-bit integers
1046 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1047 
1048 //------------------------------TypeInt----------------------------------------
1049 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1050 }
1051 
1052 //------------------------------make-------------------------------------------
1053 const TypeInt *TypeInt::make( jint lo ) {
1054   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1055 }
1056 
1057 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
1058 
1059 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1060   // Certain normalizations keep us sane when comparing types.
1061   // The 'SMALLINT' covers constants and also CC and its relatives.
1062   assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
1063   if (lo <= hi) {
1064     if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1065     if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
1066   }
1067   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1068 }
1069 
1070 //------------------------------meet-------------------------------------------
1071 // Compute the MEET of two types.  It returns a new Type representation object
1072 // with reference count equal to the number of Types pointing at it.
1073 // Caller should wrap a Types around it.
1074 const Type *TypeInt::xmeet( const Type *t ) const {
1075   // Perform a fast test for common case; meeting the same types together.
1076   if( this == t ) return this;  // Meeting same type?
1077 
1078   // Currently "this->_base" is a TypeInt
1079   switch (t->base()) {          // Switch on original type
1080   case AnyPtr:                  // Mixing with oops happens when javac
1081   case RawPtr:                  // reuses local variables
1082   case OopPtr:
1083   case InstPtr:
1084   case KlassPtr:
1085   case AryPtr:
1086   case NarrowOop:
1087   case Long:
1088   case FloatTop:
1089   case FloatCon:
1090   case FloatBot:
1091   case DoubleTop:
1092   case DoubleCon:
1093   case DoubleBot:
1094   case Bottom:                  // Ye Olde Default
1095     return Type::BOTTOM;
1096   default:                      // All else is a mistake
1097     typerr(t);
1098   case Top:                     // No change
1099     return this;
1100   case Int:                     // Int vs Int?
1101     break;
1102   }
1103 
1104   // Expand covered set
1105   const TypeInt *r = t->is_int();
1106   // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
1107   return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
1108 }
1109 
1110 //------------------------------xdual------------------------------------------
1111 // Dual: reverse hi & lo; flip widen
1112 const Type *TypeInt::xdual() const {
1113   return new TypeInt(_hi,_lo,WidenMax-_widen);
1114 }
1115 
1116 //------------------------------widen------------------------------------------
1117 // Only happens for optimistic top-down optimizations.
1118 const Type *TypeInt::widen( const Type *old ) const {
1119   // Coming from TOP or such; no widening
1120   if( old->base() != Int ) return this;
1121   const TypeInt *ot = old->is_int();
1122 
1123   // If new guy is equal to old guy, no widening
1124   if( _lo == ot->_lo && _hi == ot->_hi )
1125     return old;
1126 
1127   // If new guy contains old, then we widened
1128   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1129     // New contains old
1130     // If new guy is already wider than old, no widening
1131     if( _widen > ot->_widen ) return this;
1132     // If old guy was a constant, do not bother
1133     if (ot->_lo == ot->_hi)  return this;
1134     // Now widen new guy.
1135     // Check for widening too far
1136     if (_widen == WidenMax) {
1137       if (min_jint < _lo && _hi < max_jint) {
1138         // If neither endpoint is extremal yet, push out the endpoint
1139         // which is closer to its respective limit.
1140         if (_lo >= 0 ||                 // easy common case
1141             (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
1142           // Try to widen to an unsigned range type of 31 bits:
1143           return make(_lo, max_jint, WidenMax);
1144         } else {
1145           return make(min_jint, _hi, WidenMax);
1146         }
1147       }
1148       return TypeInt::INT;
1149     }
1150     // Returned widened new guy
1151     return make(_lo,_hi,_widen+1);
1152   }
1153 
1154   // If old guy contains new, then we probably widened too far & dropped to
1155   // bottom.  Return the wider fellow.
1156   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1157     return old;
1158 
1159   //fatal("Integer value range is not subset");
1160   //return this;
1161   return TypeInt::INT;
1162 }
1163 
1164 //------------------------------narrow---------------------------------------
1165 // Only happens for pessimistic optimizations.
1166 const Type *TypeInt::narrow( const Type *old ) const {
1167   if (_lo >= _hi)  return this;   // already narrow enough
1168   if (old == NULL)  return this;
1169   const TypeInt* ot = old->isa_int();
1170   if (ot == NULL)  return this;
1171   jint olo = ot->_lo;
1172   jint ohi = ot->_hi;
1173 
1174   // If new guy is equal to old guy, no narrowing
1175   if (_lo == olo && _hi == ohi)  return old;
1176 
1177   // If old guy was maximum range, allow the narrowing
1178   if (olo == min_jint && ohi == max_jint)  return this;
1179 
1180   if (_lo < olo || _hi > ohi)
1181     return this;                // doesn't narrow; pretty wierd
1182 
1183   // The new type narrows the old type, so look for a "death march".
1184   // See comments on PhaseTransform::saturate.
1185   juint nrange = _hi - _lo;
1186   juint orange = ohi - olo;
1187   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1188     // Use the new type only if the range shrinks a lot.
1189     // We do not want the optimizer computing 2^31 point by point.
1190     return old;
1191   }
1192 
1193   return this;
1194 }
1195 
1196 //-----------------------------filter------------------------------------------
1197 const Type *TypeInt::filter( const Type *kills ) const {
1198   const TypeInt* ft = join(kills)->isa_int();
1199   if (ft == NULL || ft->_lo > ft->_hi)
1200     return Type::TOP;           // Canonical empty value
1201   if (ft->_widen < this->_widen) {
1202     // Do not allow the value of kill->_widen to affect the outcome.
1203     // The widen bits must be allowed to run freely through the graph.
1204     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1205   }
1206   return ft;
1207 }
1208 
1209 //------------------------------eq---------------------------------------------
1210 // Structural equality check for Type representations
1211 bool TypeInt::eq( const Type *t ) const {
1212   const TypeInt *r = t->is_int(); // Handy access
1213   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1214 }
1215 
1216 //------------------------------hash-------------------------------------------
1217 // Type-specific hashing function.
1218 int TypeInt::hash(void) const {
1219   return _lo+_hi+_widen+(int)Type::Int;
1220 }
1221 
1222 //------------------------------is_finite--------------------------------------
1223 // Has a finite value
1224 bool TypeInt::is_finite() const {
1225   return true;
1226 }
1227 
1228 //------------------------------dump2------------------------------------------
1229 // Dump TypeInt
1230 #ifndef PRODUCT
1231 static const char* intname(char* buf, jint n) {
1232   if (n == min_jint)
1233     return "min";
1234   else if (n < min_jint + 10000)
1235     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1236   else if (n == max_jint)
1237     return "max";
1238   else if (n > max_jint - 10000)
1239     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1240   else
1241     sprintf(buf, INT32_FORMAT, n);
1242   return buf;
1243 }
1244 
1245 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1246   char buf[40], buf2[40];
1247   if (_lo == min_jint && _hi == max_jint)
1248     st->print("int");
1249   else if (is_con())
1250     st->print("int:%s", intname(buf, get_con()));
1251   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1252     st->print("bool");
1253   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1254     st->print("byte");
1255   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1256     st->print("char");
1257   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1258     st->print("short");
1259   else if (_hi == max_jint)
1260     st->print("int:>=%s", intname(buf, _lo));
1261   else if (_lo == min_jint)
1262     st->print("int:<=%s", intname(buf, _hi));
1263   else
1264     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1265 
1266   if (_widen != 0 && this != TypeInt::INT)
1267     st->print(":%.*s", _widen, "wwww");
1268 }
1269 #endif
1270 
1271 //------------------------------singleton--------------------------------------
1272 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1273 // constants.
1274 bool TypeInt::singleton(void) const {
1275   return _lo >= _hi;
1276 }
1277 
1278 bool TypeInt::empty(void) const {
1279   return _lo > _hi;
1280 }
1281 
1282 //=============================================================================
1283 // Convenience common pre-built types.
1284 const TypeLong *TypeLong::MINUS_1;// -1
1285 const TypeLong *TypeLong::ZERO; // 0
1286 const TypeLong *TypeLong::ONE;  // 1
1287 const TypeLong *TypeLong::POS;  // >=0
1288 const TypeLong *TypeLong::LONG; // 64-bit integers
1289 const TypeLong *TypeLong::INT;  // 32-bit subrange
1290 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1291 
1292 //------------------------------TypeLong---------------------------------------
1293 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1294 }
1295 
1296 //------------------------------make-------------------------------------------
1297 const TypeLong *TypeLong::make( jlong lo ) {
1298   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1299 }
1300 
1301 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1302   // Certain normalizations keep us sane when comparing types.
1303   // The '1' covers constants.
1304   if (lo <= hi) {
1305     if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
1306     if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
1307   }
1308   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1309 }
1310 
1311 
1312 //------------------------------meet-------------------------------------------
1313 // Compute the MEET of two types.  It returns a new Type representation object
1314 // with reference count equal to the number of Types pointing at it.
1315 // Caller should wrap a Types around it.
1316 const Type *TypeLong::xmeet( const Type *t ) const {
1317   // Perform a fast test for common case; meeting the same types together.
1318   if( this == t ) return this;  // Meeting same type?
1319 
1320   // Currently "this->_base" is a TypeLong
1321   switch (t->base()) {          // Switch on original type
1322   case AnyPtr:                  // Mixing with oops happens when javac
1323   case RawPtr:                  // reuses local variables
1324   case OopPtr:
1325   case InstPtr:
1326   case KlassPtr:
1327   case AryPtr:
1328   case NarrowOop:
1329   case Int:
1330   case FloatTop:
1331   case FloatCon:
1332   case FloatBot:
1333   case DoubleTop:
1334   case DoubleCon:
1335   case DoubleBot:
1336   case Bottom:                  // Ye Olde Default
1337     return Type::BOTTOM;
1338   default:                      // All else is a mistake
1339     typerr(t);
1340   case Top:                     // No change
1341     return this;
1342   case Long:                    // Long vs Long?
1343     break;
1344   }
1345 
1346   // Expand covered set
1347   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1348   // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
1349   return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
1350 }
1351 
1352 //------------------------------xdual------------------------------------------
1353 // Dual: reverse hi & lo; flip widen
1354 const Type *TypeLong::xdual() const {
1355   return new TypeLong(_hi,_lo,WidenMax-_widen);
1356 }
1357 
1358 //------------------------------widen------------------------------------------
1359 // Only happens for optimistic top-down optimizations.
1360 const Type *TypeLong::widen( const Type *old ) const {
1361   // Coming from TOP or such; no widening
1362   if( old->base() != Long ) return this;
1363   const TypeLong *ot = old->is_long();
1364 
1365   // If new guy is equal to old guy, no widening
1366   if( _lo == ot->_lo && _hi == ot->_hi )
1367     return old;
1368 
1369   // If new guy contains old, then we widened
1370   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1371     // New contains old
1372     // If new guy is already wider than old, no widening
1373     if( _widen > ot->_widen ) return this;
1374     // If old guy was a constant, do not bother
1375     if (ot->_lo == ot->_hi)  return this;
1376     // Now widen new guy.
1377     // Check for widening too far
1378     if (_widen == WidenMax) {
1379       if (min_jlong < _lo && _hi < max_jlong) {
1380         // If neither endpoint is extremal yet, push out the endpoint
1381         // which is closer to its respective limit.
1382         if (_lo >= 0 ||                 // easy common case
1383             (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
1384           // Try to widen to an unsigned range type of 32/63 bits:
1385           if (_hi < max_juint)
1386             return make(_lo, max_juint, WidenMax);
1387           else
1388             return make(_lo, max_jlong, WidenMax);
1389         } else {
1390           return make(min_jlong, _hi, WidenMax);
1391         }
1392       }
1393       return TypeLong::LONG;
1394     }
1395     // Returned widened new guy
1396     return make(_lo,_hi,_widen+1);
1397   }
1398 
1399   // If old guy contains new, then we probably widened too far & dropped to
1400   // bottom.  Return the wider fellow.
1401   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1402     return old;
1403 
1404   //  fatal("Long value range is not subset");
1405   // return this;
1406   return TypeLong::LONG;
1407 }
1408 
1409 //------------------------------narrow----------------------------------------
1410 // Only happens for pessimistic optimizations.
1411 const Type *TypeLong::narrow( const Type *old ) const {
1412   if (_lo >= _hi)  return this;   // already narrow enough
1413   if (old == NULL)  return this;
1414   const TypeLong* ot = old->isa_long();
1415   if (ot == NULL)  return this;
1416   jlong olo = ot->_lo;
1417   jlong ohi = ot->_hi;
1418 
1419   // If new guy is equal to old guy, no narrowing
1420   if (_lo == olo && _hi == ohi)  return old;
1421 
1422   // If old guy was maximum range, allow the narrowing
1423   if (olo == min_jlong && ohi == max_jlong)  return this;
1424 
1425   if (_lo < olo || _hi > ohi)
1426     return this;                // doesn't narrow; pretty wierd
1427 
1428   // The new type narrows the old type, so look for a "death march".
1429   // See comments on PhaseTransform::saturate.
1430   julong nrange = _hi - _lo;
1431   julong orange = ohi - olo;
1432   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1433     // Use the new type only if the range shrinks a lot.
1434     // We do not want the optimizer computing 2^31 point by point.
1435     return old;
1436   }
1437 
1438   return this;
1439 }
1440 
1441 //-----------------------------filter------------------------------------------
1442 const Type *TypeLong::filter( const Type *kills ) const {
1443   const TypeLong* ft = join(kills)->isa_long();
1444   if (ft == NULL || ft->_lo > ft->_hi)
1445     return Type::TOP;           // Canonical empty value
1446   if (ft->_widen < this->_widen) {
1447     // Do not allow the value of kill->_widen to affect the outcome.
1448     // The widen bits must be allowed to run freely through the graph.
1449     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1450   }
1451   return ft;
1452 }
1453 
1454 //------------------------------eq---------------------------------------------
1455 // Structural equality check for Type representations
1456 bool TypeLong::eq( const Type *t ) const {
1457   const TypeLong *r = t->is_long(); // Handy access
1458   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1459 }
1460 
1461 //------------------------------hash-------------------------------------------
1462 // Type-specific hashing function.
1463 int TypeLong::hash(void) const {
1464   return (int)(_lo+_hi+_widen+(int)Type::Long);
1465 }
1466 
1467 //------------------------------is_finite--------------------------------------
1468 // Has a finite value
1469 bool TypeLong::is_finite() const {
1470   return true;
1471 }
1472 
1473 //------------------------------dump2------------------------------------------
1474 // Dump TypeLong
1475 #ifndef PRODUCT
1476 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1477   if (n > x) {
1478     if (n >= x + 10000)  return NULL;
1479     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
1480   } else if (n < x) {
1481     if (n <= x - 10000)  return NULL;
1482     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
1483   } else {
1484     return xname;
1485   }
1486   return buf;
1487 }
1488 
1489 static const char* longname(char* buf, jlong n) {
1490   const char* str;
1491   if (n == min_jlong)
1492     return "min";
1493   else if (n < min_jlong + 10000)
1494     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
1495   else if (n == max_jlong)
1496     return "max";
1497   else if (n > max_jlong - 10000)
1498     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
1499   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1500     return str;
1501   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1502     return str;
1503   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1504     return str;
1505   else
1506     sprintf(buf, INT64_FORMAT, n);
1507   return buf;
1508 }
1509 
1510 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1511   char buf[80], buf2[80];
1512   if (_lo == min_jlong && _hi == max_jlong)
1513     st->print("long");
1514   else if (is_con())
1515     st->print("long:%s", longname(buf, get_con()));
1516   else if (_hi == max_jlong)
1517     st->print("long:>=%s", longname(buf, _lo));
1518   else if (_lo == min_jlong)
1519     st->print("long:<=%s", longname(buf, _hi));
1520   else
1521     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1522 
1523   if (_widen != 0 && this != TypeLong::LONG)
1524     st->print(":%.*s", _widen, "wwww");
1525 }
1526 #endif
1527 
1528 //------------------------------singleton--------------------------------------
1529 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1530 // constants
1531 bool TypeLong::singleton(void) const {
1532   return _lo >= _hi;
1533 }
1534 
1535 bool TypeLong::empty(void) const {
1536   return _lo > _hi;
1537 }
1538 
1539 //=============================================================================
1540 // Convenience common pre-built types.
1541 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1542 const TypeTuple *TypeTuple::IFFALSE;
1543 const TypeTuple *TypeTuple::IFTRUE;
1544 const TypeTuple *TypeTuple::IFNEITHER;
1545 const TypeTuple *TypeTuple::LOOPBODY;
1546 const TypeTuple *TypeTuple::MEMBAR;
1547 const TypeTuple *TypeTuple::STORECONDITIONAL;
1548 const TypeTuple *TypeTuple::START_I2C;
1549 const TypeTuple *TypeTuple::INT_PAIR;
1550 const TypeTuple *TypeTuple::LONG_PAIR;
1551 
1552 
1553 //------------------------------make-------------------------------------------
1554 // Make a TypeTuple from the range of a method signature
1555 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1556   ciType* return_type = sig->return_type();
1557   uint total_fields = TypeFunc::Parms + return_type->size();
1558   const Type **field_array = fields(total_fields);
1559   switch (return_type->basic_type()) {
1560   case T_LONG:
1561     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1562     field_array[TypeFunc::Parms+1] = Type::HALF;
1563     break;
1564   case T_DOUBLE:
1565     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1566     field_array[TypeFunc::Parms+1] = Type::HALF;
1567     break;
1568   case T_OBJECT:
1569   case T_ARRAY:
1570   case T_BOOLEAN:
1571   case T_CHAR:
1572   case T_FLOAT:
1573   case T_BYTE:
1574   case T_SHORT:
1575   case T_INT:
1576     field_array[TypeFunc::Parms] = get_const_type(return_type);
1577     break;
1578   case T_VOID:
1579     break;
1580   default:
1581     ShouldNotReachHere();
1582   }
1583   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1584 }
1585 
1586 // Make a TypeTuple from the domain of a method signature
1587 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1588   uint total_fields = TypeFunc::Parms + sig->size();
1589 
1590   uint pos = TypeFunc::Parms;
1591   const Type **field_array;
1592   if (recv != NULL) {
1593     total_fields++;
1594     field_array = fields(total_fields);
1595     // Use get_const_type here because it respects UseUniqueSubclasses:
1596     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1597   } else {
1598     field_array = fields(total_fields);
1599   }
1600 
1601   int i = 0;
1602   while (pos < total_fields) {
1603     ciType* type = sig->type_at(i);
1604 
1605     switch (type->basic_type()) {
1606     case T_LONG:
1607       field_array[pos++] = TypeLong::LONG;
1608       field_array[pos++] = Type::HALF;
1609       break;
1610     case T_DOUBLE:
1611       field_array[pos++] = Type::DOUBLE;
1612       field_array[pos++] = Type::HALF;
1613       break;
1614     case T_OBJECT:
1615     case T_ARRAY:
1616     case T_BOOLEAN:
1617     case T_CHAR:
1618     case T_FLOAT:
1619     case T_BYTE:
1620     case T_SHORT:
1621     case T_INT:
1622       field_array[pos++] = get_const_type(type);
1623       break;
1624     default:
1625       ShouldNotReachHere();
1626     }
1627     i++;
1628   }
1629   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1630 }
1631 
1632 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1633   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1634 }
1635 
1636 //------------------------------fields-----------------------------------------
1637 // Subroutine call type with space allocated for argument types
1638 const Type **TypeTuple::fields( uint arg_cnt ) {
1639   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1640   flds[TypeFunc::Control  ] = Type::CONTROL;
1641   flds[TypeFunc::I_O      ] = Type::ABIO;
1642   flds[TypeFunc::Memory   ] = Type::MEMORY;
1643   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1644   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1645 
1646   return flds;
1647 }
1648 
1649 //------------------------------meet-------------------------------------------
1650 // Compute the MEET of two types.  It returns a new Type object.
1651 const Type *TypeTuple::xmeet( const Type *t ) const {
1652   // Perform a fast test for common case; meeting the same types together.
1653   if( this == t ) return this;  // Meeting same type-rep?
1654 
1655   // Current "this->_base" is Tuple
1656   switch (t->base()) {          // switch on original type
1657 
1658   case Bottom:                  // Ye Olde Default
1659     return t;
1660 
1661   default:                      // All else is a mistake
1662     typerr(t);
1663 
1664   case Tuple: {                 // Meeting 2 signatures?
1665     const TypeTuple *x = t->is_tuple();
1666     assert( _cnt == x->_cnt, "" );
1667     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1668     for( uint i=0; i<_cnt; i++ )
1669       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1670     return TypeTuple::make(_cnt,fields);
1671   }
1672   case Top:
1673     break;
1674   }
1675   return this;                  // Return the double constant
1676 }
1677 
1678 //------------------------------xdual------------------------------------------
1679 // Dual: compute field-by-field dual
1680 const Type *TypeTuple::xdual() const {
1681   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1682   for( uint i=0; i<_cnt; i++ )
1683     fields[i] = _fields[i]->dual();
1684   return new TypeTuple(_cnt,fields);
1685 }
1686 
1687 //------------------------------eq---------------------------------------------
1688 // Structural equality check for Type representations
1689 bool TypeTuple::eq( const Type *t ) const {
1690   const TypeTuple *s = (const TypeTuple *)t;
1691   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1692   for (uint i = 0; i < _cnt; i++)
1693     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1694       return false;             // Missed
1695   return true;
1696 }
1697 
1698 //------------------------------hash-------------------------------------------
1699 // Type-specific hashing function.
1700 int TypeTuple::hash(void) const {
1701   intptr_t sum = _cnt;
1702   for( uint i=0; i<_cnt; i++ )
1703     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1704   return sum;
1705 }
1706 
1707 //------------------------------dump2------------------------------------------
1708 // Dump signature Type
1709 #ifndef PRODUCT
1710 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1711   st->print("{");
1712   if( !depth || d[this] ) {     // Check for recursive print
1713     st->print("...}");
1714     return;
1715   }
1716   d.Insert((void*)this, (void*)this);   // Stop recursion
1717   if( _cnt ) {
1718     uint i;
1719     for( i=0; i<_cnt-1; i++ ) {
1720       st->print("%d:", i);
1721       _fields[i]->dump2(d, depth-1, st);
1722       st->print(", ");
1723     }
1724     st->print("%d:", i);
1725     _fields[i]->dump2(d, depth-1, st);
1726   }
1727   st->print("}");
1728 }
1729 #endif
1730 
1731 //------------------------------singleton--------------------------------------
1732 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1733 // constants (Ldi nodes).  Singletons are integer, float or double constants
1734 // or a single symbol.
1735 bool TypeTuple::singleton(void) const {
1736   return false;                 // Never a singleton
1737 }
1738 
1739 bool TypeTuple::empty(void) const {
1740   for( uint i=0; i<_cnt; i++ ) {
1741     if (_fields[i]->empty())  return true;
1742   }
1743   return false;
1744 }
1745 
1746 //=============================================================================
1747 // Convenience common pre-built types.
1748 
1749 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1750   // Certain normalizations keep us sane when comparing types.
1751   // We do not want arrayOop variables to differ only by the wideness
1752   // of their index types.  Pick minimum wideness, since that is the
1753   // forced wideness of small ranges anyway.
1754   if (size->_widen != Type::WidenMin)
1755     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1756   else
1757     return size;
1758 }
1759 
1760 //------------------------------make-------------------------------------------
1761 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1762   if (UseCompressedOops && elem->isa_oopptr()) {
1763     elem = elem->make_narrowoop();
1764   }
1765   size = normalize_array_size(size);
1766   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1767 }
1768 
1769 //------------------------------meet-------------------------------------------
1770 // Compute the MEET of two types.  It returns a new Type object.
1771 const Type *TypeAry::xmeet( const Type *t ) const {
1772   // Perform a fast test for common case; meeting the same types together.
1773   if( this == t ) return this;  // Meeting same type-rep?
1774 
1775   // Current "this->_base" is Ary
1776   switch (t->base()) {          // switch on original type
1777 
1778   case Bottom:                  // Ye Olde Default
1779     return t;
1780 
1781   default:                      // All else is a mistake
1782     typerr(t);
1783 
1784   case Array: {                 // Meeting 2 arrays?
1785     const TypeAry *a = t->is_ary();
1786     return TypeAry::make(_elem->meet(a->_elem),
1787                          _size->xmeet(a->_size)->is_int());
1788   }
1789   case Top:
1790     break;
1791   }
1792   return this;                  // Return the double constant
1793 }
1794 
1795 //------------------------------xdual------------------------------------------
1796 // Dual: compute field-by-field dual
1797 const Type *TypeAry::xdual() const {
1798   const TypeInt* size_dual = _size->dual()->is_int();
1799   size_dual = normalize_array_size(size_dual);
1800   return new TypeAry( _elem->dual(), size_dual);
1801 }
1802 
1803 //------------------------------eq---------------------------------------------
1804 // Structural equality check for Type representations
1805 bool TypeAry::eq( const Type *t ) const {
1806   const TypeAry *a = (const TypeAry*)t;
1807   return _elem == a->_elem &&
1808     _size == a->_size;
1809 }
1810 
1811 //------------------------------hash-------------------------------------------
1812 // Type-specific hashing function.
1813 int TypeAry::hash(void) const {
1814   return (intptr_t)_elem + (intptr_t)_size;
1815 }
1816 
1817 //----------------------interface_vs_oop---------------------------------------
1818 #ifdef ASSERT
1819 bool TypeAry::interface_vs_oop(const Type *t) const {
1820   const TypeAry* t_ary = t->is_ary();
1821   if (t_ary) {
1822     return _elem->interface_vs_oop(t_ary->_elem);
1823   }
1824   return false;
1825 }
1826 #endif
1827 
1828 //------------------------------dump2------------------------------------------
1829 #ifndef PRODUCT
1830 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1831   _elem->dump2(d, depth, st);
1832   st->print("[");
1833   _size->dump2(d, depth, st);
1834   st->print("]");
1835 }
1836 #endif
1837 
1838 //------------------------------singleton--------------------------------------
1839 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1840 // constants (Ldi nodes).  Singletons are integer, float or double constants
1841 // or a single symbol.
1842 bool TypeAry::singleton(void) const {
1843   return false;                 // Never a singleton
1844 }
1845 
1846 bool TypeAry::empty(void) const {
1847   return _elem->empty() || _size->empty();
1848 }
1849 
1850 //--------------------------ary_must_be_exact----------------------------------
1851 bool TypeAry::ary_must_be_exact() const {
1852   if (!UseExactTypes)       return false;
1853   // This logic looks at the element type of an array, and returns true
1854   // if the element type is either a primitive or a final instance class.
1855   // In such cases, an array built on this ary must have no subclasses.
1856   if (_elem == BOTTOM)      return false;  // general array not exact
1857   if (_elem == TOP   )      return false;  // inverted general array not exact
1858   const TypeOopPtr*  toop = NULL;
1859   if (UseCompressedOops && _elem->isa_narrowoop()) {
1860     toop = _elem->make_ptr()->isa_oopptr();
1861   } else {
1862     toop = _elem->isa_oopptr();
1863   }
1864   if (!toop)                return true;   // a primitive type, like int
1865   ciKlass* tklass = toop->klass();
1866   if (tklass == NULL)       return false;  // unloaded class
1867   if (!tklass->is_loaded()) return false;  // unloaded class
1868   const TypeInstPtr* tinst;
1869   if (_elem->isa_narrowoop())
1870     tinst = _elem->make_ptr()->isa_instptr();
1871   else
1872     tinst = _elem->isa_instptr();
1873   if (tinst)
1874     return tklass->as_instance_klass()->is_final();
1875   const TypeAryPtr*  tap;
1876   if (_elem->isa_narrowoop())
1877     tap = _elem->make_ptr()->isa_aryptr();
1878   else
1879     tap = _elem->isa_aryptr();
1880   if (tap)
1881     return tap->ary()->ary_must_be_exact();
1882   return false;
1883 }
1884 
1885 //=============================================================================
1886 // Convenience common pre-built types.
1887 const TypePtr *TypePtr::NULL_PTR;
1888 const TypePtr *TypePtr::NOTNULL;
1889 const TypePtr *TypePtr::BOTTOM;
1890 
1891 //------------------------------meet-------------------------------------------
1892 // Meet over the PTR enum
1893 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
1894   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
1895   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
1896   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
1897   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
1898   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
1899   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
1900   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
1901 };
1902 
1903 //------------------------------make-------------------------------------------
1904 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
1905   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
1906 }
1907 
1908 //------------------------------cast_to_ptr_type-------------------------------
1909 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
1910   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
1911   if( ptr == _ptr ) return this;
1912   return make(_base, ptr, _offset);
1913 }
1914 
1915 //------------------------------get_con----------------------------------------
1916 intptr_t TypePtr::get_con() const {
1917   assert( _ptr == Null, "" );
1918   return _offset;
1919 }
1920 
1921 //------------------------------meet-------------------------------------------
1922 // Compute the MEET of two types.  It returns a new Type object.
1923 const Type *TypePtr::xmeet( const Type *t ) const {
1924   // Perform a fast test for common case; meeting the same types together.
1925   if( this == t ) return this;  // Meeting same type-rep?
1926 
1927   // Current "this->_base" is AnyPtr
1928   switch (t->base()) {          // switch on original type
1929   case Int:                     // Mixing ints & oops happens when javac
1930   case Long:                    // reuses local variables
1931   case FloatTop:
1932   case FloatCon:
1933   case FloatBot:
1934   case DoubleTop:
1935   case DoubleCon:
1936   case DoubleBot:
1937   case NarrowOop:
1938   case Bottom:                  // Ye Olde Default
1939     return Type::BOTTOM;
1940   case Top:
1941     return this;
1942 
1943   case AnyPtr: {                // Meeting to AnyPtrs
1944     const TypePtr *tp = t->is_ptr();
1945     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
1946   }
1947   case RawPtr:                  // For these, flip the call around to cut down
1948   case OopPtr:
1949   case InstPtr:                 // on the cases I have to handle.
1950   case KlassPtr:
1951   case AryPtr:
1952     return t->xmeet(this);      // Call in reverse direction
1953   default:                      // All else is a mistake
1954     typerr(t);
1955 
1956   }
1957   return this;
1958 }
1959 
1960 //------------------------------meet_offset------------------------------------
1961 int TypePtr::meet_offset( int offset ) const {
1962   // Either is 'TOP' offset?  Return the other offset!
1963   if( _offset == OffsetTop ) return offset;
1964   if( offset == OffsetTop ) return _offset;
1965   // If either is different, return 'BOTTOM' offset
1966   if( _offset != offset ) return OffsetBot;
1967   return _offset;
1968 }
1969 
1970 //------------------------------dual_offset------------------------------------
1971 int TypePtr::dual_offset( ) const {
1972   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
1973   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
1974   return _offset;               // Map everything else into self
1975 }
1976 
1977 //------------------------------xdual------------------------------------------
1978 // Dual: compute field-by-field dual
1979 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
1980   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
1981 };
1982 const Type *TypePtr::xdual() const {
1983   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
1984 }
1985 
1986 //------------------------------xadd_offset------------------------------------
1987 int TypePtr::xadd_offset( intptr_t offset ) const {
1988   // Adding to 'TOP' offset?  Return 'TOP'!
1989   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
1990   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
1991   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
1992   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
1993   offset += (intptr_t)_offset;
1994   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
1995 
1996   // assert( _offset >= 0 && _offset+offset >= 0, "" );
1997   // It is possible to construct a negative offset during PhaseCCP
1998 
1999   return (int)offset;        // Sum valid offsets
2000 }
2001 
2002 //------------------------------add_offset-------------------------------------
2003 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2004   return make( AnyPtr, _ptr, xadd_offset(offset) );
2005 }
2006 
2007 //------------------------------eq---------------------------------------------
2008 // Structural equality check for Type representations
2009 bool TypePtr::eq( const Type *t ) const {
2010   const TypePtr *a = (const TypePtr*)t;
2011   return _ptr == a->ptr() && _offset == a->offset();
2012 }
2013 
2014 //------------------------------hash-------------------------------------------
2015 // Type-specific hashing function.
2016 int TypePtr::hash(void) const {
2017   return _ptr + _offset;
2018 }
2019 
2020 //------------------------------dump2------------------------------------------
2021 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2022   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2023 };
2024 
2025 #ifndef PRODUCT
2026 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2027   if( _ptr == Null ) st->print("NULL");
2028   else st->print("%s *", ptr_msg[_ptr]);
2029   if( _offset == OffsetTop ) st->print("+top");
2030   else if( _offset == OffsetBot ) st->print("+bot");
2031   else if( _offset ) st->print("+%d", _offset);
2032 }
2033 #endif
2034 
2035 //------------------------------singleton--------------------------------------
2036 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2037 // constants
2038 bool TypePtr::singleton(void) const {
2039   // TopPTR, Null, AnyNull, Constant are all singletons
2040   return (_offset != OffsetBot) && !below_centerline(_ptr);
2041 }
2042 
2043 bool TypePtr::empty(void) const {
2044   return (_offset == OffsetTop) || above_centerline(_ptr);
2045 }
2046 
2047 //=============================================================================
2048 // Convenience common pre-built types.
2049 const TypeRawPtr *TypeRawPtr::BOTTOM;
2050 const TypeRawPtr *TypeRawPtr::NOTNULL;
2051 
2052 //------------------------------make-------------------------------------------
2053 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2054   assert( ptr != Constant, "what is the constant?" );
2055   assert( ptr != Null, "Use TypePtr for NULL" );
2056   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2057 }
2058 
2059 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2060   assert( bits, "Use TypePtr for NULL" );
2061   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2062 }
2063 
2064 //------------------------------cast_to_ptr_type-------------------------------
2065 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2066   assert( ptr != Constant, "what is the constant?" );
2067   assert( ptr != Null, "Use TypePtr for NULL" );
2068   assert( _bits==0, "Why cast a constant address?");
2069   if( ptr == _ptr ) return this;
2070   return make(ptr);
2071 }
2072 
2073 //------------------------------get_con----------------------------------------
2074 intptr_t TypeRawPtr::get_con() const {
2075   assert( _ptr == Null || _ptr == Constant, "" );
2076   return (intptr_t)_bits;
2077 }
2078 
2079 //------------------------------meet-------------------------------------------
2080 // Compute the MEET of two types.  It returns a new Type object.
2081 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2082   // Perform a fast test for common case; meeting the same types together.
2083   if( this == t ) return this;  // Meeting same type-rep?
2084 
2085   // Current "this->_base" is RawPtr
2086   switch( t->base() ) {         // switch on original type
2087   case Bottom:                  // Ye Olde Default
2088     return t;
2089   case Top:
2090     return this;
2091   case AnyPtr:                  // Meeting to AnyPtrs
2092     break;
2093   case RawPtr: {                // might be top, bot, any/not or constant
2094     enum PTR tptr = t->is_ptr()->ptr();
2095     enum PTR ptr = meet_ptr( tptr );
2096     if( ptr == Constant ) {     // Cannot be equal constants, so...
2097       if( tptr == Constant && _ptr != Constant)  return t;
2098       if( _ptr == Constant && tptr != Constant)  return this;
2099       ptr = NotNull;            // Fall down in lattice
2100     }
2101     return make( ptr );
2102   }
2103 
2104   case OopPtr:
2105   case InstPtr:
2106   case KlassPtr:
2107   case AryPtr:
2108     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2109   default:                      // All else is a mistake
2110     typerr(t);
2111   }
2112 
2113   // Found an AnyPtr type vs self-RawPtr type
2114   const TypePtr *tp = t->is_ptr();
2115   switch (tp->ptr()) {
2116   case TypePtr::TopPTR:  return this;
2117   case TypePtr::BotPTR:  return t;
2118   case TypePtr::Null:
2119     if( _ptr == TypePtr::TopPTR ) return t;
2120     return TypeRawPtr::BOTTOM;
2121   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2122   case TypePtr::AnyNull:
2123     if( _ptr == TypePtr::Constant) return this;
2124     return make( meet_ptr(TypePtr::AnyNull) );
2125   default: ShouldNotReachHere();
2126   }
2127   return this;
2128 }
2129 
2130 //------------------------------xdual------------------------------------------
2131 // Dual: compute field-by-field dual
2132 const Type *TypeRawPtr::xdual() const {
2133   return new TypeRawPtr( dual_ptr(), _bits );
2134 }
2135 
2136 //------------------------------add_offset-------------------------------------
2137 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2138   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2139   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2140   if( offset == 0 ) return this; // No change
2141   switch (_ptr) {
2142   case TypePtr::TopPTR:
2143   case TypePtr::BotPTR:
2144   case TypePtr::NotNull:
2145     return this;
2146   case TypePtr::Null:
2147   case TypePtr::Constant:
2148     return make( _bits+offset );
2149   default:  ShouldNotReachHere();
2150   }
2151   return NULL;                  // Lint noise
2152 }
2153 
2154 //------------------------------eq---------------------------------------------
2155 // Structural equality check for Type representations
2156 bool TypeRawPtr::eq( const Type *t ) const {
2157   const TypeRawPtr *a = (const TypeRawPtr*)t;
2158   return _bits == a->_bits && TypePtr::eq(t);
2159 }
2160 
2161 //------------------------------hash-------------------------------------------
2162 // Type-specific hashing function.
2163 int TypeRawPtr::hash(void) const {
2164   return (intptr_t)_bits + TypePtr::hash();
2165 }
2166 
2167 //------------------------------dump2------------------------------------------
2168 #ifndef PRODUCT
2169 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2170   if( _ptr == Constant )
2171     st->print(INTPTR_FORMAT, _bits);
2172   else
2173     st->print("rawptr:%s", ptr_msg[_ptr]);
2174 }
2175 #endif
2176 
2177 //=============================================================================
2178 // Convenience common pre-built type.
2179 const TypeOopPtr *TypeOopPtr::BOTTOM;
2180 
2181 //------------------------------TypeOopPtr-------------------------------------
2182 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2183   : TypePtr(t, ptr, offset),
2184     _const_oop(o), _klass(k),
2185     _klass_is_exact(xk),
2186     _is_ptr_to_narrowoop(false),
2187     _instance_id(instance_id) {
2188 #ifdef _LP64
2189   if (UseCompressedOops && _offset != 0) {
2190     if (klass() == NULL) {
2191       assert(this->isa_aryptr(), "only arrays without klass");
2192       _is_ptr_to_narrowoop = true;
2193     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
2194       _is_ptr_to_narrowoop = true;
2195     } else if (this->isa_aryptr()) {
2196       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
2197                              _offset != arrayOopDesc::length_offset_in_bytes());
2198     } else if (klass() == ciEnv::current()->Class_klass() &&
2199                (_offset == java_lang_Class::klass_offset_in_bytes() ||
2200                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2201       // Special hidden fields from the Class.
2202       assert(this->isa_instptr(), "must be an instance ptr.");
2203       _is_ptr_to_narrowoop = true;
2204     } else if (klass()->is_instance_klass()) {
2205       ciInstanceKlass* ik = klass()->as_instance_klass();
2206       ciField* field = NULL;
2207       if (this->isa_klassptr()) {
2208         // Perm objects don't use compressed references, except for
2209         // static fields which are currently compressed.
2210         field = ik->get_field_by_offset(_offset, true);
2211         if (field != NULL) {
2212           BasicType basic_elem_type = field->layout_type();
2213           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2214                                   basic_elem_type == T_ARRAY);
2215         }
2216       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2217         // unsafe access
2218         _is_ptr_to_narrowoop = true;
2219       } else { // exclude unsafe ops
2220         assert(this->isa_instptr(), "must be an instance ptr.");
2221         // Field which contains a compressed oop references.
2222         field = ik->get_field_by_offset(_offset, false);
2223         if (field != NULL) {
2224           BasicType basic_elem_type = field->layout_type();
2225           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2226                                   basic_elem_type == T_ARRAY);
2227         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2228           // Compile::find_alias_type() cast exactness on all types to verify
2229           // that it does not affect alias type.
2230           _is_ptr_to_narrowoop = true;
2231         } else {
2232           // Type for the copy start in LibraryCallKit::inline_native_clone().
2233           assert(!klass_is_exact(), "only non-exact klass");
2234           _is_ptr_to_narrowoop = true;
2235         }
2236       }
2237     }
2238   }
2239 #endif
2240 }
2241 
2242 //------------------------------make-------------------------------------------
2243 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2244                                    int offset, int instance_id) {
2245   assert(ptr != Constant, "no constant generic pointers");
2246   ciKlass*  k = ciKlassKlass::make();
2247   bool      xk = false;
2248   ciObject* o = NULL;
2249   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2250 }
2251 
2252 
2253 //------------------------------cast_to_ptr_type-------------------------------
2254 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2255   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2256   if( ptr == _ptr ) return this;
2257   return make(ptr, _offset, _instance_id);
2258 }
2259 
2260 //-----------------------------cast_to_instance_id----------------------------
2261 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2262   // There are no instances of a general oop.
2263   // Return self unchanged.
2264   return this;
2265 }
2266 
2267 //-----------------------------cast_to_exactness-------------------------------
2268 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2269   // There is no such thing as an exact general oop.
2270   // Return self unchanged.
2271   return this;
2272 }
2273 
2274 
2275 //------------------------------as_klass_type----------------------------------
2276 // Return the klass type corresponding to this instance or array type.
2277 // It is the type that is loaded from an object of this type.
2278 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2279   ciKlass* k = klass();
2280   bool    xk = klass_is_exact();
2281   if (k == NULL || !k->is_java_klass())
2282     return TypeKlassPtr::OBJECT;
2283   else
2284     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2285 }
2286 
2287 
2288 //------------------------------meet-------------------------------------------
2289 // Compute the MEET of two types.  It returns a new Type object.
2290 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2291   // Perform a fast test for common case; meeting the same types together.
2292   if( this == t ) return this;  // Meeting same type-rep?
2293 
2294   // Current "this->_base" is OopPtr
2295   switch (t->base()) {          // switch on original type
2296 
2297   case Int:                     // Mixing ints & oops happens when javac
2298   case Long:                    // reuses local variables
2299   case FloatTop:
2300   case FloatCon:
2301   case FloatBot:
2302   case DoubleTop:
2303   case DoubleCon:
2304   case DoubleBot:
2305   case NarrowOop:
2306   case Bottom:                  // Ye Olde Default
2307     return Type::BOTTOM;
2308   case Top:
2309     return this;
2310 
2311   default:                      // All else is a mistake
2312     typerr(t);
2313 
2314   case RawPtr:
2315     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2316 
2317   case AnyPtr: {
2318     // Found an AnyPtr type vs self-OopPtr type
2319     const TypePtr *tp = t->is_ptr();
2320     int offset = meet_offset(tp->offset());
2321     PTR ptr = meet_ptr(tp->ptr());
2322     switch (tp->ptr()) {
2323     case Null:
2324       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2325       // else fall through:
2326     case TopPTR:
2327     case AnyNull: {
2328       int instance_id = meet_instance_id(InstanceTop);
2329       return make(ptr, offset, instance_id);
2330     }
2331     case BotPTR:
2332     case NotNull:
2333       return TypePtr::make(AnyPtr, ptr, offset);
2334     default: typerr(t);
2335     }
2336   }
2337 
2338   case OopPtr: {                 // Meeting to other OopPtrs
2339     const TypeOopPtr *tp = t->is_oopptr();
2340     int instance_id = meet_instance_id(tp->instance_id());
2341     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2342   }
2343 
2344   case InstPtr:                  // For these, flip the call around to cut down
2345   case KlassPtr:                 // on the cases I have to handle.
2346   case AryPtr:
2347     return t->xmeet(this);      // Call in reverse direction
2348 
2349   } // End of switch
2350   return this;                  // Return the double constant
2351 }
2352 
2353 
2354 //------------------------------xdual------------------------------------------
2355 // Dual of a pure heap pointer.  No relevant klass or oop information.
2356 const Type *TypeOopPtr::xdual() const {
2357   assert(klass() == ciKlassKlass::make(), "no klasses here");
2358   assert(const_oop() == NULL,             "no constants here");
2359   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2360 }
2361 
2362 //--------------------------make_from_klass_common-----------------------------
2363 // Computes the element-type given a klass.
2364 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2365   assert(klass->is_java_klass(), "must be java language klass");
2366   if (klass->is_instance_klass()) {
2367     Compile* C = Compile::current();
2368     Dependencies* deps = C->dependencies();
2369     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2370     // Element is an instance
2371     bool klass_is_exact = false;
2372     if (klass->is_loaded()) {
2373       // Try to set klass_is_exact.
2374       ciInstanceKlass* ik = klass->as_instance_klass();
2375       klass_is_exact = ik->is_final();
2376       if (!klass_is_exact && klass_change
2377           && deps != NULL && UseUniqueSubclasses) {
2378         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2379         if (sub != NULL) {
2380           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2381           klass = ik = sub;
2382           klass_is_exact = sub->is_final();
2383         }
2384       }
2385       if (!klass_is_exact && try_for_exact
2386           && deps != NULL && UseExactTypes) {
2387         if (!ik->is_interface() && !ik->has_subklass()) {
2388           // Add a dependence; if concrete subclass added we need to recompile
2389           deps->assert_leaf_type(ik);
2390           klass_is_exact = true;
2391         }
2392       }
2393     }
2394     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2395   } else if (klass->is_obj_array_klass()) {
2396     // Element is an object array. Recursively call ourself.
2397     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2398     bool xk = etype->klass_is_exact();
2399     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2400     // We used to pass NotNull in here, asserting that the sub-arrays
2401     // are all not-null.  This is not true in generally, as code can
2402     // slam NULLs down in the subarrays.
2403     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2404     return arr;
2405   } else if (klass->is_type_array_klass()) {
2406     // Element is an typeArray
2407     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2408     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2409     // We used to pass NotNull in here, asserting that the array pointer
2410     // is not-null. That was not true in general.
2411     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2412     return arr;
2413   } else {
2414     ShouldNotReachHere();
2415     return NULL;
2416   }
2417 }
2418 
2419 //------------------------------make_from_constant-----------------------------
2420 // Make a java pointer from an oop constant
2421 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2422   if (o->is_method_data() || o->is_method()) {
2423     // Treat much like a typeArray of bytes, like below, but fake the type...
2424     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
2425     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2426     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
2427     assert(o->can_be_constant(), "method data oops should be tenured");
2428     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2429     return arr;
2430   } else {
2431     assert(o->is_java_object(), "must be java language object");
2432     assert(!o->is_null_object(), "null object not yet handled here.");
2433     ciKlass *klass = o->klass();
2434     if (klass->is_instance_klass()) {
2435       // Element is an instance
2436       if (require_constant) {
2437         if (!o->can_be_constant())  return NULL;
2438       } else if (!o->should_be_constant()) {
2439         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2440       }
2441       return TypeInstPtr::make(o);
2442     } else if (klass->is_obj_array_klass()) {
2443       // Element is an object array. Recursively call ourself.
2444       const Type *etype =
2445         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2446       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2447       // We used to pass NotNull in here, asserting that the sub-arrays
2448       // are all not-null.  This is not true in generally, as code can
2449       // slam NULLs down in the subarrays.
2450       if (require_constant) {
2451         if (!o->can_be_constant())  return NULL;
2452       } else if (!o->should_be_constant()) {
2453         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2454       }
2455       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2456       return arr;
2457     } else if (klass->is_type_array_klass()) {
2458       // Element is an typeArray
2459       const Type* etype =
2460         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2461       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2462       // We used to pass NotNull in here, asserting that the array pointer
2463       // is not-null. That was not true in general.
2464       if (require_constant) {
2465         if (!o->can_be_constant())  return NULL;
2466       } else if (!o->should_be_constant()) {
2467         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2468       }
2469       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2470       return arr;
2471     }
2472   }
2473 
2474   ShouldNotReachHere();
2475   return NULL;
2476 }
2477 
2478 //------------------------------get_con----------------------------------------
2479 intptr_t TypeOopPtr::get_con() const {
2480   assert( _ptr == Null || _ptr == Constant, "" );
2481   assert( _offset >= 0, "" );
2482 
2483   if (_offset != 0) {
2484     // After being ported to the compiler interface, the compiler no longer
2485     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2486     // to a handle at compile time.  This handle is embedded in the generated
2487     // code and dereferenced at the time the nmethod is made.  Until that time,
2488     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2489     // have access to the addresses!).  This does not seem to currently happen,
2490     // but this assertion here is to help prevent its occurence.
2491     tty->print_cr("Found oop constant with non-zero offset");
2492     ShouldNotReachHere();
2493   }
2494 
2495   return (intptr_t)const_oop()->constant_encoding();
2496 }
2497 
2498 
2499 //-----------------------------filter------------------------------------------
2500 // Do not allow interface-vs.-noninterface joins to collapse to top.
2501 const Type *TypeOopPtr::filter( const Type *kills ) const {
2502 
2503   const Type* ft = join(kills);
2504   const TypeInstPtr* ftip = ft->isa_instptr();
2505   const TypeInstPtr* ktip = kills->isa_instptr();
2506   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2507   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2508 
2509   if (ft->empty()) {
2510     // Check for evil case of 'this' being a class and 'kills' expecting an
2511     // interface.  This can happen because the bytecodes do not contain
2512     // enough type info to distinguish a Java-level interface variable
2513     // from a Java-level object variable.  If we meet 2 classes which
2514     // both implement interface I, but their meet is at 'j/l/O' which
2515     // doesn't implement I, we have no way to tell if the result should
2516     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2517     // into a Phi which "knows" it's an Interface type we'll have to
2518     // uplift the type.
2519     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2520       return kills;             // Uplift to interface
2521     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2522       return kills;             // Uplift to interface
2523 
2524     return Type::TOP;           // Canonical empty value
2525   }
2526 
2527   // If we have an interface-typed Phi or cast and we narrow to a class type,
2528   // the join should report back the class.  However, if we have a J/L/Object
2529   // class-typed Phi and an interface flows in, it's possible that the meet &
2530   // join report an interface back out.  This isn't possible but happens
2531   // because the type system doesn't interact well with interfaces.
2532   if (ftip != NULL && ktip != NULL &&
2533       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2534       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2535     // Happens in a CTW of rt.jar, 320-341, no extra flags
2536     return ktip->cast_to_ptr_type(ftip->ptr());
2537   }
2538   if (ftkp != NULL && ktkp != NULL &&
2539       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2540       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2541     // Happens in a CTW of rt.jar, 320-341, no extra flags
2542     return ktkp->cast_to_ptr_type(ftkp->ptr());
2543   }
2544 
2545   return ft;
2546 }
2547 
2548 //------------------------------eq---------------------------------------------
2549 // Structural equality check for Type representations
2550 bool TypeOopPtr::eq( const Type *t ) const {
2551   const TypeOopPtr *a = (const TypeOopPtr*)t;
2552   if (_klass_is_exact != a->_klass_is_exact ||
2553       _instance_id != a->_instance_id)  return false;
2554   ciObject* one = const_oop();
2555   ciObject* two = a->const_oop();
2556   if (one == NULL || two == NULL) {
2557     return (one == two) && TypePtr::eq(t);
2558   } else {
2559     return one->equals(two) && TypePtr::eq(t);
2560   }
2561 }
2562 
2563 //------------------------------hash-------------------------------------------
2564 // Type-specific hashing function.
2565 int TypeOopPtr::hash(void) const {
2566   return
2567     (const_oop() ? const_oop()->hash() : 0) +
2568     _klass_is_exact +
2569     _instance_id +
2570     TypePtr::hash();
2571 }
2572 
2573 //------------------------------dump2------------------------------------------
2574 #ifndef PRODUCT
2575 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2576   st->print("oopptr:%s", ptr_msg[_ptr]);
2577   if( _klass_is_exact ) st->print(":exact");
2578   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2579   switch( _offset ) {
2580   case OffsetTop: st->print("+top"); break;
2581   case OffsetBot: st->print("+any"); break;
2582   case         0: break;
2583   default:        st->print("+%d",_offset); break;
2584   }
2585   if (_instance_id == InstanceTop)
2586     st->print(",iid=top");
2587   else if (_instance_id != InstanceBot)
2588     st->print(",iid=%d",_instance_id);
2589 }
2590 #endif
2591 
2592 //------------------------------singleton--------------------------------------
2593 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2594 // constants
2595 bool TypeOopPtr::singleton(void) const {
2596   // detune optimizer to not generate constant oop + constant offset as a constant!
2597   // TopPTR, Null, AnyNull, Constant are all singletons
2598   return (_offset == 0) && !below_centerline(_ptr);
2599 }
2600 
2601 //------------------------------add_offset-------------------------------------
2602 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2603   return make( _ptr, xadd_offset(offset), _instance_id);
2604 }
2605 
2606 //------------------------------meet_instance_id--------------------------------
2607 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2608   // Either is 'TOP' instance?  Return the other instance!
2609   if( _instance_id == InstanceTop ) return  instance_id;
2610   if(  instance_id == InstanceTop ) return _instance_id;
2611   // If either is different, return 'BOTTOM' instance
2612   if( _instance_id != instance_id ) return InstanceBot;
2613   return _instance_id;
2614 }
2615 
2616 //------------------------------dual_instance_id--------------------------------
2617 int TypeOopPtr::dual_instance_id( ) const {
2618   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2619   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2620   return _instance_id;              // Map everything else into self
2621 }
2622 
2623 
2624 //=============================================================================
2625 // Convenience common pre-built types.
2626 const TypeInstPtr *TypeInstPtr::NOTNULL;
2627 const TypeInstPtr *TypeInstPtr::BOTTOM;
2628 const TypeInstPtr *TypeInstPtr::MIRROR;
2629 const TypeInstPtr *TypeInstPtr::MARK;
2630 const TypeInstPtr *TypeInstPtr::KLASS;
2631 
2632 //------------------------------TypeInstPtr-------------------------------------
2633 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2634  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2635    assert(k != NULL &&
2636           (k->is_loaded() || o == NULL),
2637           "cannot have constants with non-loaded klass");
2638 };
2639 
2640 //------------------------------make-------------------------------------------
2641 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2642                                      ciKlass* k,
2643                                      bool xk,
2644                                      ciObject* o,
2645                                      int offset,
2646                                      int instance_id) {
2647   assert( !k->is_loaded() || k->is_instance_klass() ||
2648           k->is_method_klass(), "Must be for instance or method");
2649   // Either const_oop() is NULL or else ptr is Constant
2650   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2651           "constant pointers must have a value supplied" );
2652   // Ptr is never Null
2653   assert( ptr != Null, "NULL pointers are not typed" );
2654 
2655   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2656   if (!UseExactTypes)  xk = false;
2657   if (ptr == Constant) {
2658     // Note:  This case includes meta-object constants, such as methods.
2659     xk = true;
2660   } else if (k->is_loaded()) {
2661     ciInstanceKlass* ik = k->as_instance_klass();
2662     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2663     if (xk && ik->is_interface())  xk = false;  // no exact interface
2664   }
2665 
2666   // Now hash this baby
2667   TypeInstPtr *result =
2668     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2669 
2670   return result;
2671 }
2672 
2673 
2674 //------------------------------cast_to_ptr_type-------------------------------
2675 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2676   if( ptr == _ptr ) return this;
2677   // Reconstruct _sig info here since not a problem with later lazy
2678   // construction, _sig will show up on demand.
2679   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2680 }
2681 
2682 
2683 //-----------------------------cast_to_exactness-------------------------------
2684 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2685   if( klass_is_exact == _klass_is_exact ) return this;
2686   if (!UseExactTypes)  return this;
2687   if (!_klass->is_loaded())  return this;
2688   ciInstanceKlass* ik = _klass->as_instance_klass();
2689   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2690   if( ik->is_interface() )              return this;  // cannot set xk
2691   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2692 }
2693 
2694 //-----------------------------cast_to_instance_id----------------------------
2695 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2696   if( instance_id == _instance_id ) return this;
2697   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2698 }
2699 
2700 //------------------------------xmeet_unloaded---------------------------------
2701 // Compute the MEET of two InstPtrs when at least one is unloaded.
2702 // Assume classes are different since called after check for same name/class-loader
2703 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2704     int off = meet_offset(tinst->offset());
2705     PTR ptr = meet_ptr(tinst->ptr());
2706     int instance_id = meet_instance_id(tinst->instance_id());
2707 
2708     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2709     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2710     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2711       //
2712       // Meet unloaded class with java/lang/Object
2713       //
2714       // Meet
2715       //          |                     Unloaded Class
2716       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2717       //  ===================================================================
2718       //   TOP    | ..........................Unloaded......................|
2719       //  AnyNull |  U-AN    |................Unloaded......................|
2720       // Constant | ... O-NN .................................. |   O-BOT   |
2721       //  NotNull | ... O-NN .................................. |   O-BOT   |
2722       //  BOTTOM  | ........................Object-BOTTOM ..................|
2723       //
2724       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2725       //
2726       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2727       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2728       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2729       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2730         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2731         else                                      { return TypeInstPtr::NOTNULL; }
2732       }
2733       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2734 
2735       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2736     }
2737 
2738     // Both are unloaded, not the same class, not Object
2739     // Or meet unloaded with a different loaded class, not java/lang/Object
2740     if( ptr != TypePtr::BotPTR ) {
2741       return TypeInstPtr::NOTNULL;
2742     }
2743     return TypeInstPtr::BOTTOM;
2744 }
2745 
2746 
2747 //------------------------------meet-------------------------------------------
2748 // Compute the MEET of two types.  It returns a new Type object.
2749 const Type *TypeInstPtr::xmeet( const Type *t ) const {
2750   // Perform a fast test for common case; meeting the same types together.
2751   if( this == t ) return this;  // Meeting same type-rep?
2752 
2753   // Current "this->_base" is Pointer
2754   switch (t->base()) {          // switch on original type
2755 
2756   case Int:                     // Mixing ints & oops happens when javac
2757   case Long:                    // reuses local variables
2758   case FloatTop:
2759   case FloatCon:
2760   case FloatBot:
2761   case DoubleTop:
2762   case DoubleCon:
2763   case DoubleBot:
2764   case NarrowOop:
2765   case Bottom:                  // Ye Olde Default
2766     return Type::BOTTOM;
2767   case Top:
2768     return this;
2769 
2770   default:                      // All else is a mistake
2771     typerr(t);
2772 
2773   case RawPtr: return TypePtr::BOTTOM;
2774 
2775   case AryPtr: {                // All arrays inherit from Object class
2776     const TypeAryPtr *tp = t->is_aryptr();
2777     int offset = meet_offset(tp->offset());
2778     PTR ptr = meet_ptr(tp->ptr());
2779     int instance_id = meet_instance_id(tp->instance_id());
2780     switch (ptr) {
2781     case TopPTR:
2782     case AnyNull:                // Fall 'down' to dual of object klass
2783       if (klass()->equals(ciEnv::current()->Object_klass())) {
2784         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2785       } else {
2786         // cannot subclass, so the meet has to fall badly below the centerline
2787         ptr = NotNull;
2788         instance_id = InstanceBot;
2789         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2790       }
2791     case Constant:
2792     case NotNull:
2793     case BotPTR:                // Fall down to object klass
2794       // LCA is object_klass, but if we subclass from the top we can do better
2795       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2796         // If 'this' (InstPtr) is above the centerline and it is Object class
2797         // then we can subclass in the Java class hierarchy.
2798         if (klass()->equals(ciEnv::current()->Object_klass())) {
2799           // that is, tp's array type is a subtype of my klass
2800           return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2801         }
2802       }
2803       // The other case cannot happen, since I cannot be a subtype of an array.
2804       // The meet falls down to Object class below centerline.
2805       if( ptr == Constant )
2806          ptr = NotNull;
2807       instance_id = InstanceBot;
2808       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2809     default: typerr(t);
2810     }
2811   }
2812 
2813   case OopPtr: {                // Meeting to OopPtrs
2814     // Found a OopPtr type vs self-InstPtr type
2815     const TypeOopPtr *tp = t->is_oopptr();
2816     int offset = meet_offset(tp->offset());
2817     PTR ptr = meet_ptr(tp->ptr());
2818     switch (tp->ptr()) {
2819     case TopPTR:
2820     case AnyNull: {
2821       int instance_id = meet_instance_id(InstanceTop);
2822       return make(ptr, klass(), klass_is_exact(),
2823                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2824     }
2825     case NotNull:
2826     case BotPTR: {
2827       int instance_id = meet_instance_id(tp->instance_id());
2828       return TypeOopPtr::make(ptr, offset, instance_id);
2829     }
2830     default: typerr(t);
2831     }
2832   }
2833 
2834   case AnyPtr: {                // Meeting to AnyPtrs
2835     // Found an AnyPtr type vs self-InstPtr type
2836     const TypePtr *tp = t->is_ptr();
2837     int offset = meet_offset(tp->offset());
2838     PTR ptr = meet_ptr(tp->ptr());
2839     switch (tp->ptr()) {
2840     case Null:
2841       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
2842       // else fall through to AnyNull
2843     case TopPTR:
2844     case AnyNull: {
2845       int instance_id = meet_instance_id(InstanceTop);
2846       return make( ptr, klass(), klass_is_exact(),
2847                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2848     }
2849     case NotNull:
2850     case BotPTR:
2851       return TypePtr::make( AnyPtr, ptr, offset );
2852     default: typerr(t);
2853     }
2854   }
2855 
2856   /*
2857                  A-top         }
2858                /   |   \       }  Tops
2859            B-top A-any C-top   }
2860               | /  |  \ |      }  Any-nulls
2861            B-any   |   C-any   }
2862               |    |    |
2863            B-con A-con C-con   } constants; not comparable across classes
2864               |    |    |
2865            B-not   |   C-not   }
2866               | \  |  / |      }  not-nulls
2867            B-bot A-not C-bot   }
2868                \   |   /       }  Bottoms
2869                  A-bot         }
2870   */
2871 
2872   case InstPtr: {                // Meeting 2 Oops?
2873     // Found an InstPtr sub-type vs self-InstPtr type
2874     const TypeInstPtr *tinst = t->is_instptr();
2875     int off = meet_offset( tinst->offset() );
2876     PTR ptr = meet_ptr( tinst->ptr() );
2877     int instance_id = meet_instance_id(tinst->instance_id());
2878 
2879     // Check for easy case; klasses are equal (and perhaps not loaded!)
2880     // If we have constants, then we created oops so classes are loaded
2881     // and we can handle the constants further down.  This case handles
2882     // both-not-loaded or both-loaded classes
2883     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
2884       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
2885     }
2886 
2887     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
2888     ciKlass* tinst_klass = tinst->klass();
2889     ciKlass* this_klass  = this->klass();
2890     bool tinst_xk = tinst->klass_is_exact();
2891     bool this_xk  = this->klass_is_exact();
2892     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
2893       // One of these classes has not been loaded
2894       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
2895 #ifndef PRODUCT
2896       if( PrintOpto && Verbose ) {
2897         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
2898         tty->print("  this == "); this->dump(); tty->cr();
2899         tty->print(" tinst == "); tinst->dump(); tty->cr();
2900       }
2901 #endif
2902       return unloaded_meet;
2903     }
2904 
2905     // Handle mixing oops and interfaces first.
2906     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
2907       ciKlass *tmp = tinst_klass; // Swap interface around
2908       tinst_klass = this_klass;
2909       this_klass = tmp;
2910       bool tmp2 = tinst_xk;
2911       tinst_xk = this_xk;
2912       this_xk = tmp2;
2913     }
2914     if (tinst_klass->is_interface() &&
2915         !(this_klass->is_interface() ||
2916           // Treat java/lang/Object as an honorary interface,
2917           // because we need a bottom for the interface hierarchy.
2918           this_klass == ciEnv::current()->Object_klass())) {
2919       // Oop meets interface!
2920 
2921       // See if the oop subtypes (implements) interface.
2922       ciKlass *k;
2923       bool xk;
2924       if( this_klass->is_subtype_of( tinst_klass ) ) {
2925         // Oop indeed subtypes.  Now keep oop or interface depending
2926         // on whether we are both above the centerline or either is
2927         // below the centerline.  If we are on the centerline
2928         // (e.g., Constant vs. AnyNull interface), use the constant.
2929         k  = below_centerline(ptr) ? tinst_klass : this_klass;
2930         // If we are keeping this_klass, keep its exactness too.
2931         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
2932       } else {                  // Does not implement, fall to Object
2933         // Oop does not implement interface, so mixing falls to Object
2934         // just like the verifier does (if both are above the
2935         // centerline fall to interface)
2936         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
2937         xk = above_centerline(ptr) ? tinst_xk : false;
2938         // Watch out for Constant vs. AnyNull interface.
2939         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
2940         instance_id = InstanceBot;
2941       }
2942       ciObject* o = NULL;  // the Constant value, if any
2943       if (ptr == Constant) {
2944         // Find out which constant.
2945         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
2946       }
2947       return make( ptr, k, xk, o, off, instance_id );
2948     }
2949 
2950     // Either oop vs oop or interface vs interface or interface vs Object
2951 
2952     // !!! Here's how the symmetry requirement breaks down into invariants:
2953     // If we split one up & one down AND they subtype, take the down man.
2954     // If we split one up & one down AND they do NOT subtype, "fall hard".
2955     // If both are up and they subtype, take the subtype class.
2956     // If both are up and they do NOT subtype, "fall hard".
2957     // If both are down and they subtype, take the supertype class.
2958     // If both are down and they do NOT subtype, "fall hard".
2959     // Constants treated as down.
2960 
2961     // Now, reorder the above list; observe that both-down+subtype is also
2962     // "fall hard"; "fall hard" becomes the default case:
2963     // If we split one up & one down AND they subtype, take the down man.
2964     // If both are up and they subtype, take the subtype class.
2965 
2966     // If both are down and they subtype, "fall hard".
2967     // If both are down and they do NOT subtype, "fall hard".
2968     // If both are up and they do NOT subtype, "fall hard".
2969     // If we split one up & one down AND they do NOT subtype, "fall hard".
2970 
2971     // If a proper subtype is exact, and we return it, we return it exactly.
2972     // If a proper supertype is exact, there can be no subtyping relationship!
2973     // If both types are equal to the subtype, exactness is and-ed below the
2974     // centerline and or-ed above it.  (N.B. Constants are always exact.)
2975 
2976     // Check for subtyping:
2977     ciKlass *subtype = NULL;
2978     bool subtype_exact = false;
2979     if( tinst_klass->equals(this_klass) ) {
2980       subtype = this_klass;
2981       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
2982     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
2983       subtype = this_klass;     // Pick subtyping class
2984       subtype_exact = this_xk;
2985     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
2986       subtype = tinst_klass;    // Pick subtyping class
2987       subtype_exact = tinst_xk;
2988     }
2989 
2990     if( subtype ) {
2991       if( above_centerline(ptr) ) { // both are up?
2992         this_klass = tinst_klass = subtype;
2993         this_xk = tinst_xk = subtype_exact;
2994       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
2995         this_klass = tinst_klass; // tinst is down; keep down man
2996         this_xk = tinst_xk;
2997       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
2998         tinst_klass = this_klass; // this is down; keep down man
2999         tinst_xk = this_xk;
3000       } else {
3001         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3002       }
3003     }
3004 
3005     // Check for classes now being equal
3006     if (tinst_klass->equals(this_klass)) {
3007       // If the klasses are equal, the constants may still differ.  Fall to
3008       // NotNull if they do (neither constant is NULL; that is a special case
3009       // handled elsewhere).
3010       ciObject* o = NULL;             // Assume not constant when done
3011       ciObject* this_oop  = const_oop();
3012       ciObject* tinst_oop = tinst->const_oop();
3013       if( ptr == Constant ) {
3014         if (this_oop != NULL && tinst_oop != NULL &&
3015             this_oop->equals(tinst_oop) )
3016           o = this_oop;
3017         else if (above_centerline(this ->_ptr))
3018           o = tinst_oop;
3019         else if (above_centerline(tinst ->_ptr))
3020           o = this_oop;
3021         else
3022           ptr = NotNull;
3023       }
3024       return make( ptr, this_klass, this_xk, o, off, instance_id );
3025     } // Else classes are not equal
3026 
3027     // Since klasses are different, we require a LCA in the Java
3028     // class hierarchy - which means we have to fall to at least NotNull.
3029     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3030       ptr = NotNull;
3031     instance_id = InstanceBot;
3032 
3033     // Now we find the LCA of Java classes
3034     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3035     return make( ptr, k, false, NULL, off, instance_id );
3036   } // End of case InstPtr
3037 
3038   case KlassPtr:
3039     return TypeInstPtr::BOTTOM;
3040 
3041   } // End of switch
3042   return this;                  // Return the double constant
3043 }
3044 
3045 
3046 //------------------------java_mirror_type--------------------------------------
3047 ciType* TypeInstPtr::java_mirror_type() const {
3048   // must be a singleton type
3049   if( const_oop() == NULL )  return NULL;
3050 
3051   // must be of type java.lang.Class
3052   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3053 
3054   return const_oop()->as_instance()->java_mirror_type();
3055 }
3056 
3057 
3058 //------------------------------xdual------------------------------------------
3059 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3060 // inheritance mechanism.
3061 const Type *TypeInstPtr::xdual() const {
3062   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3063 }
3064 
3065 //------------------------------eq---------------------------------------------
3066 // Structural equality check for Type representations
3067 bool TypeInstPtr::eq( const Type *t ) const {
3068   const TypeInstPtr *p = t->is_instptr();
3069   return
3070     klass()->equals(p->klass()) &&
3071     TypeOopPtr::eq(p);          // Check sub-type stuff
3072 }
3073 
3074 //------------------------------hash-------------------------------------------
3075 // Type-specific hashing function.
3076 int TypeInstPtr::hash(void) const {
3077   int hash = klass()->hash() + TypeOopPtr::hash();
3078   return hash;
3079 }
3080 
3081 //------------------------------dump2------------------------------------------
3082 // Dump oop Type
3083 #ifndef PRODUCT
3084 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3085   // Print the name of the klass.
3086   klass()->print_name_on(st);
3087 
3088   switch( _ptr ) {
3089   case Constant:
3090     // TO DO: Make CI print the hex address of the underlying oop.
3091     if (WizardMode || Verbose) {
3092       const_oop()->print_oop(st);
3093     }
3094   case BotPTR:
3095     if (!WizardMode && !Verbose) {
3096       if( _klass_is_exact ) st->print(":exact");
3097       break;
3098     }
3099   case TopPTR:
3100   case AnyNull:
3101   case NotNull:
3102     st->print(":%s", ptr_msg[_ptr]);
3103     if( _klass_is_exact ) st->print(":exact");
3104     break;
3105   }
3106 
3107   if( _offset ) {               // Dump offset, if any
3108     if( _offset == OffsetBot )      st->print("+any");
3109     else if( _offset == OffsetTop ) st->print("+unknown");
3110     else st->print("+%d", _offset);
3111   }
3112 
3113   st->print(" *");
3114   if (_instance_id == InstanceTop)
3115     st->print(",iid=top");
3116   else if (_instance_id != InstanceBot)
3117     st->print(",iid=%d",_instance_id);
3118 }
3119 #endif
3120 
3121 //------------------------------add_offset-------------------------------------
3122 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3123   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3124 }
3125 
3126 //=============================================================================
3127 // Convenience common pre-built types.
3128 const TypeAryPtr *TypeAryPtr::RANGE;
3129 const TypeAryPtr *TypeAryPtr::OOPS;
3130 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3131 const TypeAryPtr *TypeAryPtr::BYTES;
3132 const TypeAryPtr *TypeAryPtr::SHORTS;
3133 const TypeAryPtr *TypeAryPtr::CHARS;
3134 const TypeAryPtr *TypeAryPtr::INTS;
3135 const TypeAryPtr *TypeAryPtr::LONGS;
3136 const TypeAryPtr *TypeAryPtr::FLOATS;
3137 const TypeAryPtr *TypeAryPtr::DOUBLES;
3138 
3139 //------------------------------make-------------------------------------------
3140 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3141   assert(!(k == NULL && ary->_elem->isa_int()),
3142          "integral arrays must be pre-equipped with a class");
3143   if (!xk)  xk = ary->ary_must_be_exact();
3144   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3145   if (!UseExactTypes)  xk = (ptr == Constant);
3146   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3147 }
3148 
3149 //------------------------------make-------------------------------------------
3150 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3151   assert(!(k == NULL && ary->_elem->isa_int()),
3152          "integral arrays must be pre-equipped with a class");
3153   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3154   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3155   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3156   if (!UseExactTypes)  xk = (ptr == Constant);
3157   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3158 }
3159 
3160 //------------------------------cast_to_ptr_type-------------------------------
3161 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3162   if( ptr == _ptr ) return this;
3163   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3164 }
3165 
3166 
3167 //-----------------------------cast_to_exactness-------------------------------
3168 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3169   if( klass_is_exact == _klass_is_exact ) return this;
3170   if (!UseExactTypes)  return this;
3171   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3172   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3173 }
3174 
3175 //-----------------------------cast_to_instance_id----------------------------
3176 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3177   if( instance_id == _instance_id ) return this;
3178   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3179 }
3180 
3181 //-----------------------------narrow_size_type-------------------------------
3182 // Local cache for arrayOopDesc::max_array_length(etype),
3183 // which is kind of slow (and cached elsewhere by other users).
3184 static jint max_array_length_cache[T_CONFLICT+1];
3185 static jint max_array_length(BasicType etype) {
3186   jint& cache = max_array_length_cache[etype];
3187   jint res = cache;
3188   if (res == 0) {
3189     switch (etype) {
3190     case T_NARROWOOP:
3191       etype = T_OBJECT;
3192       break;
3193     case T_CONFLICT:
3194     case T_ILLEGAL:
3195     case T_VOID:
3196       etype = T_BYTE;           // will produce conservatively high value
3197     }
3198     cache = res = arrayOopDesc::max_array_length(etype);
3199   }
3200   return res;
3201 }
3202 
3203 // Narrow the given size type to the index range for the given array base type.
3204 // Return NULL if the resulting int type becomes empty.
3205 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3206   jint hi = size->_hi;
3207   jint lo = size->_lo;
3208   jint min_lo = 0;
3209   jint max_hi = max_array_length(elem()->basic_type());
3210   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3211   bool chg = false;
3212   if (lo < min_lo) { lo = min_lo; chg = true; }
3213   if (hi > max_hi) { hi = max_hi; chg = true; }
3214   // Negative length arrays will produce weird intermediate dead fast-path code
3215   if (lo > hi)
3216     return TypeInt::ZERO;
3217   if (!chg)
3218     return size;
3219   return TypeInt::make(lo, hi, Type::WidenMin);
3220 }
3221 
3222 //-------------------------------cast_to_size----------------------------------
3223 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3224   assert(new_size != NULL, "");
3225   new_size = narrow_size_type(new_size);
3226   if (new_size == size())  return this;
3227   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3228   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3229 }
3230 
3231 
3232 //------------------------------eq---------------------------------------------
3233 // Structural equality check for Type representations
3234 bool TypeAryPtr::eq( const Type *t ) const {
3235   const TypeAryPtr *p = t->is_aryptr();
3236   return
3237     _ary == p->_ary &&  // Check array
3238     TypeOopPtr::eq(p);  // Check sub-parts
3239 }
3240 
3241 //------------------------------hash-------------------------------------------
3242 // Type-specific hashing function.
3243 int TypeAryPtr::hash(void) const {
3244   return (intptr_t)_ary + TypeOopPtr::hash();
3245 }
3246 
3247 //------------------------------meet-------------------------------------------
3248 // Compute the MEET of two types.  It returns a new Type object.
3249 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3250   // Perform a fast test for common case; meeting the same types together.
3251   if( this == t ) return this;  // Meeting same type-rep?
3252   // Current "this->_base" is Pointer
3253   switch (t->base()) {          // switch on original type
3254 
3255   // Mixing ints & oops happens when javac reuses local variables
3256   case Int:
3257   case Long:
3258   case FloatTop:
3259   case FloatCon:
3260   case FloatBot:
3261   case DoubleTop:
3262   case DoubleCon:
3263   case DoubleBot:
3264   case NarrowOop:
3265   case Bottom:                  // Ye Olde Default
3266     return Type::BOTTOM;
3267   case Top:
3268     return this;
3269 
3270   default:                      // All else is a mistake
3271     typerr(t);
3272 
3273   case OopPtr: {                // Meeting to OopPtrs
3274     // Found a OopPtr type vs self-AryPtr type
3275     const TypeOopPtr *tp = t->is_oopptr();
3276     int offset = meet_offset(tp->offset());
3277     PTR ptr = meet_ptr(tp->ptr());
3278     switch (tp->ptr()) {
3279     case TopPTR:
3280     case AnyNull: {
3281       int instance_id = meet_instance_id(InstanceTop);
3282       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3283                   _ary, _klass, _klass_is_exact, offset, instance_id);
3284     }
3285     case BotPTR:
3286     case NotNull: {
3287       int instance_id = meet_instance_id(tp->instance_id());
3288       return TypeOopPtr::make(ptr, offset, instance_id);
3289     }
3290     default: ShouldNotReachHere();
3291     }
3292   }
3293 
3294   case AnyPtr: {                // Meeting two AnyPtrs
3295     // Found an AnyPtr type vs self-AryPtr type
3296     const TypePtr *tp = t->is_ptr();
3297     int offset = meet_offset(tp->offset());
3298     PTR ptr = meet_ptr(tp->ptr());
3299     switch (tp->ptr()) {
3300     case TopPTR:
3301       return this;
3302     case BotPTR:
3303     case NotNull:
3304       return TypePtr::make(AnyPtr, ptr, offset);
3305     case Null:
3306       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3307       // else fall through to AnyNull
3308     case AnyNull: {
3309       int instance_id = meet_instance_id(InstanceTop);
3310       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3311                   _ary, _klass, _klass_is_exact, offset, instance_id);
3312     }
3313     default: ShouldNotReachHere();
3314     }
3315   }
3316 
3317   case RawPtr: return TypePtr::BOTTOM;
3318 
3319   case AryPtr: {                // Meeting 2 references?
3320     const TypeAryPtr *tap = t->is_aryptr();
3321     int off = meet_offset(tap->offset());
3322     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3323     PTR ptr = meet_ptr(tap->ptr());
3324     int instance_id = meet_instance_id(tap->instance_id());
3325     ciKlass* lazy_klass = NULL;
3326     if (tary->_elem->isa_int()) {
3327       // Integral array element types have irrelevant lattice relations.
3328       // It is the klass that determines array layout, not the element type.
3329       if (_klass == NULL)
3330         lazy_klass = tap->_klass;
3331       else if (tap->_klass == NULL || tap->_klass == _klass) {
3332         lazy_klass = _klass;
3333       } else {
3334         // Something like byte[int+] meets char[int+].
3335         // This must fall to bottom, not (int[-128..65535])[int+].
3336         instance_id = InstanceBot;
3337         tary = TypeAry::make(Type::BOTTOM, tary->_size);
3338       }
3339     }
3340     bool xk;
3341     switch (tap->ptr()) {
3342     case AnyNull:
3343     case TopPTR:
3344       // Compute new klass on demand, do not use tap->_klass
3345       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3346       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3347     case Constant: {
3348       ciObject* o = const_oop();
3349       if( _ptr == Constant ) {
3350         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3351           xk = (klass() == tap->klass());
3352           ptr = NotNull;
3353           o = NULL;
3354           instance_id = InstanceBot;
3355         } else {
3356           xk = true;
3357         }
3358       } else if( above_centerline(_ptr) ) {
3359         o = tap->const_oop();
3360         xk = true;
3361       } else {
3362         xk = this->_klass_is_exact;
3363       }
3364       return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
3365     }
3366     case NotNull:
3367     case BotPTR:
3368       // Compute new klass on demand, do not use tap->_klass
3369       if (above_centerline(this->_ptr))
3370             xk = tap->_klass_is_exact;
3371       else if (above_centerline(tap->_ptr))
3372             xk = this->_klass_is_exact;
3373       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3374               (klass() == tap->klass()); // Only precise for identical arrays
3375       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3376     default: ShouldNotReachHere();
3377     }
3378   }
3379 
3380   // All arrays inherit from Object class
3381   case InstPtr: {
3382     const TypeInstPtr *tp = t->is_instptr();
3383     int offset = meet_offset(tp->offset());
3384     PTR ptr = meet_ptr(tp->ptr());
3385     int instance_id = meet_instance_id(tp->instance_id());
3386     switch (ptr) {
3387     case TopPTR:
3388     case AnyNull:                // Fall 'down' to dual of object klass
3389       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3390         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3391       } else {
3392         // cannot subclass, so the meet has to fall badly below the centerline
3393         ptr = NotNull;
3394         instance_id = InstanceBot;
3395         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3396       }
3397     case Constant:
3398     case NotNull:
3399     case BotPTR:                // Fall down to object klass
3400       // LCA is object_klass, but if we subclass from the top we can do better
3401       if (above_centerline(tp->ptr())) {
3402         // If 'tp'  is above the centerline and it is Object class
3403         // then we can subclass in the Java class hierarchy.
3404         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3405           // that is, my array type is a subtype of 'tp' klass
3406           return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3407         }
3408       }
3409       // The other case cannot happen, since t cannot be a subtype of an array.
3410       // The meet falls down to Object class below centerline.
3411       if( ptr == Constant )
3412          ptr = NotNull;
3413       instance_id = InstanceBot;
3414       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3415     default: typerr(t);
3416     }
3417   }
3418 
3419   case KlassPtr:
3420     return TypeInstPtr::BOTTOM;
3421 
3422   }
3423   return this;                  // Lint noise
3424 }
3425 
3426 //------------------------------xdual------------------------------------------
3427 // Dual: compute field-by-field dual
3428 const Type *TypeAryPtr::xdual() const {
3429   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3430 }
3431 
3432 //----------------------interface_vs_oop---------------------------------------
3433 #ifdef ASSERT
3434 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3435   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3436   if (t_aryptr) {
3437     return _ary->interface_vs_oop(t_aryptr->_ary);
3438   }
3439   return false;
3440 }
3441 #endif
3442 
3443 //------------------------------dump2------------------------------------------
3444 #ifndef PRODUCT
3445 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3446   _ary->dump2(d,depth,st);
3447   switch( _ptr ) {
3448   case Constant:
3449     const_oop()->print(st);
3450     break;
3451   case BotPTR:
3452     if (!WizardMode && !Verbose) {
3453       if( _klass_is_exact ) st->print(":exact");
3454       break;
3455     }
3456   case TopPTR:
3457   case AnyNull:
3458   case NotNull:
3459     st->print(":%s", ptr_msg[_ptr]);
3460     if( _klass_is_exact ) st->print(":exact");
3461     break;
3462   }
3463 
3464   if( _offset != 0 ) {
3465     int header_size = objArrayOopDesc::header_size() * wordSize;
3466     if( _offset == OffsetTop )       st->print("+undefined");
3467     else if( _offset == OffsetBot )  st->print("+any");
3468     else if( _offset < header_size ) st->print("+%d", _offset);
3469     else {
3470       BasicType basic_elem_type = elem()->basic_type();
3471       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3472       int elem_size = type2aelembytes(basic_elem_type);
3473       st->print("[%d]", (_offset - array_base)/elem_size);
3474     }
3475   }
3476   st->print(" *");
3477   if (_instance_id == InstanceTop)
3478     st->print(",iid=top");
3479   else if (_instance_id != InstanceBot)
3480     st->print(",iid=%d",_instance_id);
3481 }
3482 #endif
3483 
3484 bool TypeAryPtr::empty(void) const {
3485   if (_ary->empty())       return true;
3486   return TypeOopPtr::empty();
3487 }
3488 
3489 //------------------------------add_offset-------------------------------------
3490 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3491   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3492 }
3493 
3494 
3495 //=============================================================================
3496 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3497 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3498 
3499 
3500 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3501   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3502 }
3503 
3504 //------------------------------hash-------------------------------------------
3505 // Type-specific hashing function.
3506 int TypeNarrowOop::hash(void) const {
3507   return _ptrtype->hash() + 7;
3508 }
3509 
3510 
3511 bool TypeNarrowOop::eq( const Type *t ) const {
3512   const TypeNarrowOop* tc = t->isa_narrowoop();
3513   if (tc != NULL) {
3514     if (_ptrtype->base() != tc->_ptrtype->base()) {
3515       return false;
3516     }
3517     return tc->_ptrtype->eq(_ptrtype);
3518   }
3519   return false;
3520 }
3521 
3522 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
3523   return _ptrtype->singleton();
3524 }
3525 
3526 bool TypeNarrowOop::empty(void) const {
3527   return _ptrtype->empty();
3528 }
3529 
3530 //------------------------------xmeet------------------------------------------
3531 // Compute the MEET of two types.  It returns a new Type object.
3532 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
3533   // Perform a fast test for common case; meeting the same types together.
3534   if( this == t ) return this;  // Meeting same type-rep?
3535 
3536 
3537   // Current "this->_base" is OopPtr
3538   switch (t->base()) {          // switch on original type
3539 
3540   case Int:                     // Mixing ints & oops happens when javac
3541   case Long:                    // reuses local variables
3542   case FloatTop:
3543   case FloatCon:
3544   case FloatBot:
3545   case DoubleTop:
3546   case DoubleCon:
3547   case DoubleBot:
3548   case AnyPtr:
3549   case RawPtr:
3550   case OopPtr:
3551   case InstPtr:
3552   case KlassPtr:
3553   case AryPtr:
3554 
3555   case Bottom:                  // Ye Olde Default
3556     return Type::BOTTOM;
3557   case Top:
3558     return this;
3559 
3560   case NarrowOop: {
3561     const Type* result = _ptrtype->xmeet(t->make_ptr());
3562     if (result->isa_ptr()) {
3563       return TypeNarrowOop::make(result->is_ptr());
3564     }
3565     return result;
3566   }
3567 
3568   default:                      // All else is a mistake
3569     typerr(t);
3570 
3571   } // End of switch
3572 
3573   return this;
3574 }
3575 
3576 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
3577   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3578   return new TypeNarrowOop(odual);
3579 }
3580 
3581 const Type *TypeNarrowOop::filter( const Type *kills ) const {
3582   if (kills->isa_narrowoop()) {
3583     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
3584     if (ft->empty())
3585       return Type::TOP;           // Canonical empty value
3586     if (ft->isa_ptr()) {
3587       return make(ft->isa_ptr());
3588     }
3589     return ft;
3590   } else if (kills->isa_ptr()) {
3591     const Type* ft = _ptrtype->join(kills);
3592     if (ft->empty())
3593       return Type::TOP;           // Canonical empty value
3594     return ft;
3595   } else {
3596     return Type::TOP;
3597   }
3598 }
3599 
3600 
3601 intptr_t TypeNarrowOop::get_con() const {
3602   return _ptrtype->get_con();
3603 }
3604 
3605 #ifndef PRODUCT
3606 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3607   st->print("narrowoop: ");
3608   _ptrtype->dump2(d, depth, st);
3609 }
3610 #endif
3611 
3612 
3613 //=============================================================================
3614 // Convenience common pre-built types.
3615 
3616 // Not-null object klass or below
3617 const TypeKlassPtr *TypeKlassPtr::OBJECT;
3618 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
3619 
3620 //------------------------------TypeKlasPtr------------------------------------
3621 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
3622   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
3623 }
3624 
3625 //------------------------------make-------------------------------------------
3626 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
3627 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
3628   assert( k != NULL, "Expect a non-NULL klass");
3629   assert(k->is_instance_klass() || k->is_array_klass() ||
3630          k->is_method_klass(), "Incorrect type of klass oop");
3631   TypeKlassPtr *r =
3632     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
3633 
3634   return r;
3635 }
3636 
3637 //------------------------------eq---------------------------------------------
3638 // Structural equality check for Type representations
3639 bool TypeKlassPtr::eq( const Type *t ) const {
3640   const TypeKlassPtr *p = t->is_klassptr();
3641   return
3642     klass()->equals(p->klass()) &&
3643     TypeOopPtr::eq(p);
3644 }
3645 
3646 //------------------------------hash-------------------------------------------
3647 // Type-specific hashing function.
3648 int TypeKlassPtr::hash(void) const {
3649   return klass()->hash() + TypeOopPtr::hash();
3650 }
3651 
3652 
3653 //------------------------------klass------------------------------------------
3654 // Return the defining klass for this class
3655 ciKlass* TypeAryPtr::klass() const {
3656   if( _klass ) return _klass;   // Return cached value, if possible
3657 
3658   // Oops, need to compute _klass and cache it
3659   ciKlass* k_ary = NULL;
3660   const TypeInstPtr *tinst;
3661   const TypeAryPtr *tary;
3662   const Type* el = elem();
3663   if (el->isa_narrowoop()) {
3664     el = el->make_ptr();
3665   }
3666 
3667   // Get element klass
3668   if ((tinst = el->isa_instptr()) != NULL) {
3669     // Compute array klass from element klass
3670     k_ary = ciObjArrayKlass::make(tinst->klass());
3671   } else if ((tary = el->isa_aryptr()) != NULL) {
3672     // Compute array klass from element klass
3673     ciKlass* k_elem = tary->klass();
3674     // If element type is something like bottom[], k_elem will be null.
3675     if (k_elem != NULL)
3676       k_ary = ciObjArrayKlass::make(k_elem);
3677   } else if ((el->base() == Type::Top) ||
3678              (el->base() == Type::Bottom)) {
3679     // element type of Bottom occurs from meet of basic type
3680     // and object; Top occurs when doing join on Bottom.
3681     // Leave k_ary at NULL.
3682   } else {
3683     // Cannot compute array klass directly from basic type,
3684     // since subtypes of TypeInt all have basic type T_INT.
3685     assert(!el->isa_int(),
3686            "integral arrays must be pre-equipped with a class");
3687     // Compute array klass directly from basic type
3688     k_ary = ciTypeArrayKlass::make(el->basic_type());
3689   }
3690 
3691   if( this != TypeAryPtr::OOPS ) {
3692     // The _klass field acts as a cache of the underlying
3693     // ciKlass for this array type.  In order to set the field,
3694     // we need to cast away const-ness.
3695     //
3696     // IMPORTANT NOTE: we *never* set the _klass field for the
3697     // type TypeAryPtr::OOPS.  This Type is shared between all
3698     // active compilations.  However, the ciKlass which represents
3699     // this Type is *not* shared between compilations, so caching
3700     // this value would result in fetching a dangling pointer.
3701     //
3702     // Recomputing the underlying ciKlass for each request is
3703     // a bit less efficient than caching, but calls to
3704     // TypeAryPtr::OOPS->klass() are not common enough to matter.
3705     ((TypeAryPtr*)this)->_klass = k_ary;
3706     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
3707         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
3708       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
3709     }
3710   }
3711   return k_ary;
3712 }
3713 
3714 
3715 //------------------------------add_offset-------------------------------------
3716 // Access internals of klass object
3717 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
3718   return make( _ptr, klass(), xadd_offset(offset) );
3719 }
3720 
3721 //------------------------------cast_to_ptr_type-------------------------------
3722 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
3723   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
3724   if( ptr == _ptr ) return this;
3725   return make(ptr, _klass, _offset);
3726 }
3727 
3728 
3729 //-----------------------------cast_to_exactness-------------------------------
3730 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
3731   if( klass_is_exact == _klass_is_exact ) return this;
3732   if (!UseExactTypes)  return this;
3733   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
3734 }
3735 
3736 
3737 //-----------------------------as_instance_type--------------------------------
3738 // Corresponding type for an instance of the given class.
3739 // It will be NotNull, and exact if and only if the klass type is exact.
3740 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
3741   ciKlass* k = klass();
3742   bool    xk = klass_is_exact();
3743   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
3744   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
3745   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3746   return toop->cast_to_exactness(xk)->is_oopptr();
3747 }
3748 
3749 
3750 //------------------------------xmeet------------------------------------------
3751 // Compute the MEET of two types, return a new Type object.
3752 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
3753   // Perform a fast test for common case; meeting the same types together.
3754   if( this == t ) return this;  // Meeting same type-rep?
3755 
3756   // Current "this->_base" is Pointer
3757   switch (t->base()) {          // switch on original type
3758 
3759   case Int:                     // Mixing ints & oops happens when javac
3760   case Long:                    // reuses local variables
3761   case FloatTop:
3762   case FloatCon:
3763   case FloatBot:
3764   case DoubleTop:
3765   case DoubleCon:
3766   case DoubleBot:
3767   case NarrowOop:
3768   case Bottom:                  // Ye Olde Default
3769     return Type::BOTTOM;
3770   case Top:
3771     return this;
3772 
3773   default:                      // All else is a mistake
3774     typerr(t);
3775 
3776   case RawPtr: return TypePtr::BOTTOM;
3777 
3778   case OopPtr: {                // Meeting to OopPtrs
3779     // Found a OopPtr type vs self-KlassPtr type
3780     const TypePtr *tp = t->is_oopptr();
3781     int offset = meet_offset(tp->offset());
3782     PTR ptr = meet_ptr(tp->ptr());
3783     switch (tp->ptr()) {
3784     case TopPTR:
3785     case AnyNull:
3786       return make(ptr, klass(), offset);
3787     case BotPTR:
3788     case NotNull:
3789       return TypePtr::make(AnyPtr, ptr, offset);
3790     default: typerr(t);
3791     }
3792   }
3793 
3794   case AnyPtr: {                // Meeting to AnyPtrs
3795     // Found an AnyPtr type vs self-KlassPtr type
3796     const TypePtr *tp = t->is_ptr();
3797     int offset = meet_offset(tp->offset());
3798     PTR ptr = meet_ptr(tp->ptr());
3799     switch (tp->ptr()) {
3800     case TopPTR:
3801       return this;
3802     case Null:
3803       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3804     case AnyNull:
3805       return make( ptr, klass(), offset );
3806     case BotPTR:
3807     case NotNull:
3808       return TypePtr::make(AnyPtr, ptr, offset);
3809     default: typerr(t);
3810     }
3811   }
3812 
3813   case AryPtr:                  // Meet with AryPtr
3814   case InstPtr:                 // Meet with InstPtr
3815     return TypeInstPtr::BOTTOM;
3816 
3817   //
3818   //             A-top         }
3819   //           /   |   \       }  Tops
3820   //       B-top A-any C-top   }
3821   //          | /  |  \ |      }  Any-nulls
3822   //       B-any   |   C-any   }
3823   //          |    |    |
3824   //       B-con A-con C-con   } constants; not comparable across classes
3825   //          |    |    |
3826   //       B-not   |   C-not   }
3827   //          | \  |  / |      }  not-nulls
3828   //       B-bot A-not C-bot   }
3829   //           \   |   /       }  Bottoms
3830   //             A-bot         }
3831   //
3832 
3833   case KlassPtr: {  // Meet two KlassPtr types
3834     const TypeKlassPtr *tkls = t->is_klassptr();
3835     int  off     = meet_offset(tkls->offset());
3836     PTR  ptr     = meet_ptr(tkls->ptr());
3837 
3838     // Check for easy case; klasses are equal (and perhaps not loaded!)
3839     // If we have constants, then we created oops so classes are loaded
3840     // and we can handle the constants further down.  This case handles
3841     // not-loaded classes
3842     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
3843       return make( ptr, klass(), off );
3844     }
3845 
3846     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3847     ciKlass* tkls_klass = tkls->klass();
3848     ciKlass* this_klass = this->klass();
3849     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
3850     assert( this_klass->is_loaded(), "This class should have been loaded.");
3851 
3852     // If 'this' type is above the centerline and is a superclass of the
3853     // other, we can treat 'this' as having the same type as the other.
3854     if ((above_centerline(this->ptr())) &&
3855         tkls_klass->is_subtype_of(this_klass)) {
3856       this_klass = tkls_klass;
3857     }
3858     // If 'tinst' type is above the centerline and is a superclass of the
3859     // other, we can treat 'tinst' as having the same type as the other.
3860     if ((above_centerline(tkls->ptr())) &&
3861         this_klass->is_subtype_of(tkls_klass)) {
3862       tkls_klass = this_klass;
3863     }
3864 
3865     // Check for classes now being equal
3866     if (tkls_klass->equals(this_klass)) {
3867       // If the klasses are equal, the constants may still differ.  Fall to
3868       // NotNull if they do (neither constant is NULL; that is a special case
3869       // handled elsewhere).
3870       ciObject* o = NULL;             // Assume not constant when done
3871       ciObject* this_oop = const_oop();
3872       ciObject* tkls_oop = tkls->const_oop();
3873       if( ptr == Constant ) {
3874         if (this_oop != NULL && tkls_oop != NULL &&
3875             this_oop->equals(tkls_oop) )
3876           o = this_oop;
3877         else if (above_centerline(this->ptr()))
3878           o = tkls_oop;
3879         else if (above_centerline(tkls->ptr()))
3880           o = this_oop;
3881         else
3882           ptr = NotNull;
3883       }
3884       return make( ptr, this_klass, off );
3885     } // Else classes are not equal
3886 
3887     // Since klasses are different, we require the LCA in the Java
3888     // class hierarchy - which means we have to fall to at least NotNull.
3889     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3890       ptr = NotNull;
3891     // Now we find the LCA of Java classes
3892     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
3893     return   make( ptr, k, off );
3894   } // End of case KlassPtr
3895 
3896   } // End of switch
3897   return this;                  // Return the double constant
3898 }
3899 
3900 //------------------------------xdual------------------------------------------
3901 // Dual: compute field-by-field dual
3902 const Type    *TypeKlassPtr::xdual() const {
3903   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
3904 }
3905 
3906 //------------------------------dump2------------------------------------------
3907 // Dump Klass Type
3908 #ifndef PRODUCT
3909 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3910   switch( _ptr ) {
3911   case Constant:
3912     st->print("precise ");
3913   case NotNull:
3914     {
3915       const char *name = klass()->name()->as_utf8();
3916       if( name ) {
3917         st->print("klass %s: " INTPTR_FORMAT, name, klass());
3918       } else {
3919         ShouldNotReachHere();
3920       }
3921     }
3922   case BotPTR:
3923     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
3924   case TopPTR:
3925   case AnyNull:
3926     st->print(":%s", ptr_msg[_ptr]);
3927     if( _klass_is_exact ) st->print(":exact");
3928     break;
3929   }
3930 
3931   if( _offset ) {               // Dump offset, if any
3932     if( _offset == OffsetBot )      { st->print("+any"); }
3933     else if( _offset == OffsetTop ) { st->print("+unknown"); }
3934     else                            { st->print("+%d", _offset); }
3935   }
3936 
3937   st->print(" *");
3938 }
3939 #endif
3940 
3941 
3942 
3943 //=============================================================================
3944 // Convenience common pre-built types.
3945 
3946 //------------------------------make-------------------------------------------
3947 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
3948   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
3949 }
3950 
3951 //------------------------------make-------------------------------------------
3952 const TypeFunc *TypeFunc::make(ciMethod* method) {
3953   Compile* C = Compile::current();
3954   const TypeFunc* tf = C->last_tf(method); // check cache
3955   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
3956   const TypeTuple *domain;
3957   if (method->flags().is_static()) {
3958     domain = TypeTuple::make_domain(NULL, method->signature());
3959   } else {
3960     domain = TypeTuple::make_domain(method->holder(), method->signature());
3961   }
3962   const TypeTuple *range  = TypeTuple::make_range(method->signature());
3963   tf = TypeFunc::make(domain, range);
3964   C->set_last_tf(method, tf);  // fill cache
3965   return tf;
3966 }
3967 
3968 //------------------------------meet-------------------------------------------
3969 // Compute the MEET of two types.  It returns a new Type object.
3970 const Type *TypeFunc::xmeet( const Type *t ) const {
3971   // Perform a fast test for common case; meeting the same types together.
3972   if( this == t ) return this;  // Meeting same type-rep?
3973 
3974   // Current "this->_base" is Func
3975   switch (t->base()) {          // switch on original type
3976 
3977   case Bottom:                  // Ye Olde Default
3978     return t;
3979 
3980   default:                      // All else is a mistake
3981     typerr(t);
3982 
3983   case Top:
3984     break;
3985   }
3986   return this;                  // Return the double constant
3987 }
3988 
3989 //------------------------------xdual------------------------------------------
3990 // Dual: compute field-by-field dual
3991 const Type *TypeFunc::xdual() const {
3992   return this;
3993 }
3994 
3995 //------------------------------eq---------------------------------------------
3996 // Structural equality check for Type representations
3997 bool TypeFunc::eq( const Type *t ) const {
3998   const TypeFunc *a = (const TypeFunc*)t;
3999   return _domain == a->_domain &&
4000     _range == a->_range;
4001 }
4002 
4003 //------------------------------hash-------------------------------------------
4004 // Type-specific hashing function.
4005 int TypeFunc::hash(void) const {
4006   return (intptr_t)_domain + (intptr_t)_range;
4007 }
4008 
4009 //------------------------------dump2------------------------------------------
4010 // Dump Function Type
4011 #ifndef PRODUCT
4012 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4013   if( _range->_cnt <= Parms )
4014     st->print("void");
4015   else {
4016     uint i;
4017     for (i = Parms; i < _range->_cnt-1; i++) {
4018       _range->field_at(i)->dump2(d,depth,st);
4019       st->print("/");
4020     }
4021     _range->field_at(i)->dump2(d,depth,st);
4022   }
4023   st->print(" ");
4024   st->print("( ");
4025   if( !depth || d[this] ) {     // Check for recursive dump
4026     st->print("...)");
4027     return;
4028   }
4029   d.Insert((void*)this,(void*)this);    // Stop recursion
4030   if (Parms < _domain->_cnt)
4031     _domain->field_at(Parms)->dump2(d,depth-1,st);
4032   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4033     st->print(", ");
4034     _domain->field_at(i)->dump2(d,depth-1,st);
4035   }
4036   st->print(" )");
4037 }
4038 
4039 //------------------------------print_flattened--------------------------------
4040 // Print a 'flattened' signature
4041 static const char * const flat_type_msg[Type::lastype] = {
4042   "bad","control","top","int","long","_", "narrowoop",
4043   "tuple:", "array:",
4044   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
4045   "func", "abIO", "return_address", "mem",
4046   "float_top", "ftcon:", "flt",
4047   "double_top", "dblcon:", "dbl",
4048   "bottom"
4049 };
4050 
4051 void TypeFunc::print_flattened() const {
4052   if( _range->_cnt <= Parms )
4053     tty->print("void");
4054   else {
4055     uint i;
4056     for (i = Parms; i < _range->_cnt-1; i++)
4057       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
4058     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
4059   }
4060   tty->print(" ( ");
4061   if (Parms < _domain->_cnt)
4062     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
4063   for (uint i = Parms+1; i < _domain->_cnt; i++)
4064     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
4065   tty->print(" )");
4066 }
4067 #endif
4068 
4069 //------------------------------singleton--------------------------------------
4070 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4071 // constants (Ldi nodes).  Singletons are integer, float or double constants
4072 // or a single symbol.
4073 bool TypeFunc::singleton(void) const {
4074   return false;                 // Never a singleton
4075 }
4076 
4077 bool TypeFunc::empty(void) const {
4078   return false;                 // Never empty
4079 }
4080 
4081 
4082 BasicType TypeFunc::return_type() const{
4083   if (range()->cnt() == TypeFunc::Parms) {
4084     return T_VOID;
4085   }
4086   return range()->field_at(TypeFunc::Parms)->basic_type();
4087 }