1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 
  30 // This class defines a Type lattice.  The lattice is used in the constant
  31 // propagation algorithms, and for some type-checking of the iloc code.
  32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  33 // float & double precision constants, sets of data-labels and code-labels.
  34 // The complete lattice is described below.  Subtypes have no relationship to
  35 // up or down in the lattice; that is entirely determined by the behavior of
  36 // the MEET/JOIN functions.
  37 
  38 class Dict;
  39 class Type;
  40 class   TypeD;
  41 class   TypeF;
  42 class   TypeInt;
  43 class   TypeLong;
  44 class   TypeNarrowOop;
  45 class   TypeAry;
  46 class   TypeTuple;
  47 class   TypePtr;
  48 class     TypeRawPtr;
  49 class     TypeOopPtr;
  50 class       TypeInstPtr;
  51 class       TypeAryPtr;
  52 class       TypeKlassPtr;
  53 
  54 //------------------------------Type-------------------------------------------
  55 // Basic Type object, represents a set of primitive Values.
  56 // Types are hash-cons'd into a private class dictionary, so only one of each
  57 // different kind of Type exists.  Types are never modified after creation, so
  58 // all their interesting fields are constant.
  59 class Type {
  60 public:
  61   enum TYPES {
  62     Bad=0,                      // Type check
  63     Control,                    // Control of code (not in lattice)
  64     Top,                        // Top of the lattice
  65     Int,                        // Integer range (lo-hi)
  66     Long,                       // Long integer range (lo-hi)
  67     Half,                       // Placeholder half of doubleword
  68     NarrowOop,                  // Compressed oop pointer
  69 
  70     Tuple,                      // Method signature or object layout
  71     Array,                      // Array types
  72 
  73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  74     RawPtr,                     // Raw (non-oop) pointers
  75     OopPtr,                     // Any and all Java heap entities
  76     InstPtr,                    // Instance pointers (non-array objects)
  77     AryPtr,                     // Array pointers
  78     KlassPtr,                   // Klass pointers
  79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
  80 
  81     Function,                   // Function signature
  82     Abio,                       // Abstract I/O
  83     Return_Address,             // Subroutine return address
  84     Memory,                     // Abstract store
  85     FloatTop,                   // No float value
  86     FloatCon,                   // Floating point constant
  87     FloatBot,                   // Any float value
  88     DoubleTop,                  // No double value
  89     DoubleCon,                  // Double precision constant
  90     DoubleBot,                  // Any double value
  91     Bottom,                     // Bottom of lattice
  92     lastype                     // Bogus ending type (not in lattice)
  93   };
  94 
  95   // Signal values for offsets from a base pointer
  96   enum OFFSET_SIGNALS {
  97     OffsetTop = -2000000000,    // undefined offset
  98     OffsetBot = -2000000001     // any possible offset
  99   };
 100 
 101   // Min and max WIDEN values.
 102   enum WIDEN {
 103     WidenMin = 0,
 104     WidenMax = 3
 105   };
 106 
 107 private:
 108   // Dictionary of types shared among compilations.
 109   static Dict* _shared_type_dict;
 110 
 111   static int uhash( const Type *const t );
 112   // Structural equality check.  Assumes that cmp() has already compared
 113   // the _base types and thus knows it can cast 't' appropriately.
 114   virtual bool eq( const Type *t ) const;
 115 
 116   // Top-level hash-table of types
 117   static Dict *type_dict() {
 118     return Compile::current()->type_dict();
 119   }
 120 
 121   // DUAL operation: reflect around lattice centerline.  Used instead of
 122   // join to ensure my lattice is symmetric up and down.  Dual is computed
 123   // lazily, on demand, and cached in _dual.
 124   const Type *_dual;            // Cached dual value
 125   // Table for efficient dualing of base types
 126   static const TYPES dual_type[lastype];
 127 
 128 protected:
 129   // Each class of type is also identified by its base.
 130   const TYPES _base;            // Enum of Types type
 131 
 132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 133   // ~Type();                   // Use fast deallocation
 134   const Type *hashcons();       // Hash-cons the type
 135 
 136 public:
 137 
 138   inline void* operator new( size_t x ) {
 139     Compile* compile = Compile::current();
 140     compile->set_type_last_size(x);
 141     void *temp = compile->type_arena()->Amalloc_D(x);
 142     compile->set_type_hwm(temp);
 143     return temp;
 144   }
 145   inline void operator delete( void* ptr ) {
 146     Compile* compile = Compile::current();
 147     compile->type_arena()->Afree(ptr,compile->type_last_size());
 148   }
 149 
 150   // Initialize the type system for a particular compilation.
 151   static void Initialize(Compile* compile);
 152 
 153   // Initialize the types shared by all compilations.
 154   static void Initialize_shared(Compile* compile);
 155 
 156   TYPES base() const {
 157     assert(_base > Bad && _base < lastype, "sanity");
 158     return _base;
 159   }
 160 
 161   // Create a new hash-consd type
 162   static const Type *make(enum TYPES);
 163   // Test for equivalence of types
 164   static int cmp( const Type *const t1, const Type *const t2 );
 165   // Test for higher or equal in lattice
 166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
 167 
 168   // MEET operation; lower in lattice.
 169   const Type *meet( const Type *t ) const;
 170   // WIDEN: 'widens' for Ints and other range types
 171   virtual const Type *widen( const Type *old ) const { return this; }
 172   // NARROW: complement for widen, used by pessimistic phases
 173   virtual const Type *narrow( const Type *old ) const { return this; }
 174 
 175   // DUAL operation: reflect around lattice centerline.  Used instead of
 176   // join to ensure my lattice is symmetric up and down.
 177   const Type *dual() const { return _dual; }
 178 
 179   // Compute meet dependent on base type
 180   virtual const Type *xmeet( const Type *t ) const;
 181   virtual const Type *xdual() const;    // Compute dual right now.
 182 
 183   // JOIN operation; higher in lattice.  Done by finding the dual of the
 184   // meet of the dual of the 2 inputs.
 185   const Type *join( const Type *t ) const {
 186     return dual()->meet(t->dual())->dual(); }
 187 
 188   // Modified version of JOIN adapted to the needs Node::Value.
 189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 190   // Currently, it also works around limitations involving interface types.
 191   virtual const Type *filter( const Type *kills ) const;
 192 
 193 #ifdef ASSERT
 194   // One type is interface, the other is oop
 195   virtual bool interface_vs_oop(const Type *t) const;
 196 #endif
 197 
 198   // Returns true if this pointer points at memory which contains a
 199   // compressed oop references.
 200   bool is_ptr_to_narrowoop() const;
 201 
 202   // Convenience access
 203   float getf() const;
 204   double getd() const;
 205 
 206   const TypeInt    *is_int() const;
 207   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 208   const TypeLong   *is_long() const;
 209   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 210   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 211   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 212   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 213   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 214   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 215   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 216   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 217   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 218   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 219   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 220   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 221   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 222   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 223   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 224   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
 225   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
 226   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 227   const TypeInstPtr  *is_instptr() const;        // Instance
 228   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 229   const TypeAryPtr   *is_aryptr() const;         // Array oop
 230   virtual bool      is_finite() const;           // Has a finite value
 231   virtual bool      is_nan()    const;           // Is not a number (NaN)
 232 
 233   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 234   const TypePtr* make_ptr() const;
 235 
 236   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 237   // Asserts if the underlying type is not an oopptr or narrowoop.
 238   const TypeOopPtr* make_oopptr() const;
 239 
 240   // Returns this compressed pointer or the equivalent compressed version
 241   // of this pointer type.
 242   const TypeNarrowOop* make_narrowoop() const;
 243 
 244   // Special test for register pressure heuristic
 245   bool is_floatingpoint() const;        // True if Float or Double base type
 246 
 247   // Do you have memory, directly or through a tuple?
 248   bool has_memory( ) const;
 249 
 250   // Are you a pointer type or not?
 251   bool isa_oop_ptr() const;
 252 
 253   // TRUE if type is a singleton
 254   virtual bool singleton(void) const;
 255 
 256   // TRUE if type is above the lattice centerline, and is therefore vacuous
 257   virtual bool empty(void) const;
 258 
 259   // Return a hash for this type.  The hash function is public so ConNode
 260   // (constants) can hash on their constant, which is represented by a Type.
 261   virtual int hash() const;
 262 
 263   // Map ideal registers (machine types) to ideal types
 264   static const Type *mreg2type[];
 265 
 266   // Printing, statistics
 267   static const char * const msg[lastype]; // Printable strings
 268 #ifndef PRODUCT
 269   void         dump_on(outputStream *st) const;
 270   void         dump() const {
 271     dump_on(tty);
 272   }
 273   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 274   static  void dump_stats();
 275   static  void verify_lastype();          // Check that arrays match type enum
 276 #endif
 277   void typerr(const Type *t) const; // Mixing types error
 278 
 279   // Create basic type
 280   static const Type* get_const_basic_type(BasicType type) {
 281     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 282     return _const_basic_type[type];
 283   }
 284 
 285   // Mapping to the array element's basic type.
 286   BasicType array_element_basic_type() const;
 287 
 288   // Create standard type for a ciType:
 289   static const Type* get_const_type(ciType* type);
 290 
 291   // Create standard zero value:
 292   static const Type* get_zero_type(BasicType type) {
 293     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 294     return _zero_type[type];
 295   }
 296 
 297   // Report if this is a zero value (not top).
 298   bool is_zero_type() const {
 299     BasicType type = basic_type();
 300     if (type == T_VOID || type >= T_CONFLICT)
 301       return false;
 302     else
 303       return (this == _zero_type[type]);
 304   }
 305 
 306   // Convenience common pre-built types.
 307   static const Type *ABIO;
 308   static const Type *BOTTOM;
 309   static const Type *CONTROL;
 310   static const Type *DOUBLE;
 311   static const Type *FLOAT;
 312   static const Type *HALF;
 313   static const Type *MEMORY;
 314   static const Type *MULTI;
 315   static const Type *RETURN_ADDRESS;
 316   static const Type *TOP;
 317 
 318   // Mapping from compiler type to VM BasicType
 319   BasicType basic_type() const { return _basic_type[_base]; }
 320 
 321   // Mapping from CI type system to compiler type:
 322   static const Type* get_typeflow_type(ciType* type);
 323 
 324 private:
 325   // support arrays
 326   static const BasicType _basic_type[];
 327   static const Type*        _zero_type[T_CONFLICT+1];
 328   static const Type* _const_basic_type[T_CONFLICT+1];
 329 };
 330 
 331 //------------------------------TypeF------------------------------------------
 332 // Class of Float-Constant Types.
 333 class TypeF : public Type {
 334   TypeF( float f ) : Type(FloatCon), _f(f) {};
 335 public:
 336   virtual bool eq( const Type *t ) const;
 337   virtual int  hash() const;             // Type specific hashing
 338   virtual bool singleton(void) const;    // TRUE if type is a singleton
 339   virtual bool empty(void) const;        // TRUE if type is vacuous
 340 public:
 341   const float _f;               // Float constant
 342 
 343   static const TypeF *make(float f);
 344 
 345   virtual bool        is_finite() const;  // Has a finite value
 346   virtual bool        is_nan()    const;  // Is not a number (NaN)
 347 
 348   virtual const Type *xmeet( const Type *t ) const;
 349   virtual const Type *xdual() const;    // Compute dual right now.
 350   // Convenience common pre-built types.
 351   static const TypeF *ZERO; // positive zero only
 352   static const TypeF *ONE;
 353 #ifndef PRODUCT
 354   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 355 #endif
 356 };
 357 
 358 //------------------------------TypeD------------------------------------------
 359 // Class of Double-Constant Types.
 360 class TypeD : public Type {
 361   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 362 public:
 363   virtual bool eq( const Type *t ) const;
 364   virtual int  hash() const;             // Type specific hashing
 365   virtual bool singleton(void) const;    // TRUE if type is a singleton
 366   virtual bool empty(void) const;        // TRUE if type is vacuous
 367 public:
 368   const double _d;              // Double constant
 369 
 370   static const TypeD *make(double d);
 371 
 372   virtual bool        is_finite() const;  // Has a finite value
 373   virtual bool        is_nan()    const;  // Is not a number (NaN)
 374 
 375   virtual const Type *xmeet( const Type *t ) const;
 376   virtual const Type *xdual() const;    // Compute dual right now.
 377   // Convenience common pre-built types.
 378   static const TypeD *ZERO; // positive zero only
 379   static const TypeD *ONE;
 380 #ifndef PRODUCT
 381   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 382 #endif
 383 };
 384 
 385 //------------------------------TypeInt----------------------------------------
 386 // Class of integer ranges, the set of integers between a lower bound and an
 387 // upper bound, inclusive.
 388 class TypeInt : public Type {
 389   TypeInt( jint lo, jint hi, int w );
 390 public:
 391   virtual bool eq( const Type *t ) const;
 392   virtual int  hash() const;             // Type specific hashing
 393   virtual bool singleton(void) const;    // TRUE if type is a singleton
 394   virtual bool empty(void) const;        // TRUE if type is vacuous
 395 public:
 396   const jint _lo, _hi;          // Lower bound, upper bound
 397   const short _widen;           // Limit on times we widen this sucker
 398 
 399   static const TypeInt *make(jint lo);
 400   // must always specify w
 401   static const TypeInt *make(jint lo, jint hi, int w);
 402 
 403   // Check for single integer
 404   int is_con() const { return _lo==_hi; }
 405   bool is_con(int i) const { return is_con() && _lo == i; }
 406   jint get_con() const { assert( is_con(), "" );  return _lo; }
 407 
 408   virtual bool        is_finite() const;  // Has a finite value
 409 
 410   virtual const Type *xmeet( const Type *t ) const;
 411   virtual const Type *xdual() const;    // Compute dual right now.
 412   virtual const Type *widen( const Type *t ) const;
 413   virtual const Type *narrow( const Type *t ) const;
 414   // Do not kill _widen bits.
 415   virtual const Type *filter( const Type *kills ) const;
 416   // Convenience common pre-built types.
 417   static const TypeInt *MINUS_1;
 418   static const TypeInt *ZERO;
 419   static const TypeInt *ONE;
 420   static const TypeInt *BOOL;
 421   static const TypeInt *CC;
 422   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 423   static const TypeInt *CC_GT;  // [1]   == ONE
 424   static const TypeInt *CC_EQ;  // [0]   == ZERO
 425   static const TypeInt *CC_LE;  // [-1,0]
 426   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 427   static const TypeInt *BYTE;
 428   static const TypeInt *UBYTE;
 429   static const TypeInt *CHAR;
 430   static const TypeInt *SHORT;
 431   static const TypeInt *POS;
 432   static const TypeInt *POS1;
 433   static const TypeInt *INT;
 434   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 435 #ifndef PRODUCT
 436   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 437 #endif
 438 };
 439 
 440 
 441 //------------------------------TypeLong---------------------------------------
 442 // Class of long integer ranges, the set of integers between a lower bound and
 443 // an upper bound, inclusive.
 444 class TypeLong : public Type {
 445   TypeLong( jlong lo, jlong hi, int w );
 446 public:
 447   virtual bool eq( const Type *t ) const;
 448   virtual int  hash() const;             // Type specific hashing
 449   virtual bool singleton(void) const;    // TRUE if type is a singleton
 450   virtual bool empty(void) const;        // TRUE if type is vacuous
 451 public:
 452   const jlong _lo, _hi;         // Lower bound, upper bound
 453   const short _widen;           // Limit on times we widen this sucker
 454 
 455   static const TypeLong *make(jlong lo);
 456   // must always specify w
 457   static const TypeLong *make(jlong lo, jlong hi, int w);
 458 
 459   // Check for single integer
 460   int is_con() const { return _lo==_hi; }
 461   bool is_con(int i) const { return is_con() && _lo == i; }
 462   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 463 
 464   virtual bool        is_finite() const;  // Has a finite value
 465 
 466   virtual const Type *xmeet( const Type *t ) const;
 467   virtual const Type *xdual() const;    // Compute dual right now.
 468   virtual const Type *widen( const Type *t ) const;
 469   virtual const Type *narrow( const Type *t ) const;
 470   // Do not kill _widen bits.
 471   virtual const Type *filter( const Type *kills ) const;
 472   // Convenience common pre-built types.
 473   static const TypeLong *MINUS_1;
 474   static const TypeLong *ZERO;
 475   static const TypeLong *ONE;
 476   static const TypeLong *POS;
 477   static const TypeLong *LONG;
 478   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 479   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 480 #ifndef PRODUCT
 481   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 482 #endif
 483 };
 484 
 485 //------------------------------TypeTuple--------------------------------------
 486 // Class of Tuple Types, essentially type collections for function signatures
 487 // and class layouts.  It happens to also be a fast cache for the HotSpot
 488 // signature types.
 489 class TypeTuple : public Type {
 490   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 491 public:
 492   virtual bool eq( const Type *t ) const;
 493   virtual int  hash() const;             // Type specific hashing
 494   virtual bool singleton(void) const;    // TRUE if type is a singleton
 495   virtual bool empty(void) const;        // TRUE if type is vacuous
 496 
 497 public:
 498   const uint          _cnt;              // Count of fields
 499   const Type ** const _fields;           // Array of field types
 500 
 501   // Accessors:
 502   uint cnt() const { return _cnt; }
 503   const Type* field_at(uint i) const {
 504     assert(i < _cnt, "oob");
 505     return _fields[i];
 506   }
 507   void set_field_at(uint i, const Type* t) {
 508     assert(i < _cnt, "oob");
 509     _fields[i] = t;
 510   }
 511 
 512   static const TypeTuple *make( uint cnt, const Type **fields );
 513   static const TypeTuple *make_range(ciSignature *sig);
 514   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 515 
 516   // Subroutine call type with space allocated for argument types
 517   static const Type **fields( uint arg_cnt );
 518 
 519   virtual const Type *xmeet( const Type *t ) const;
 520   virtual const Type *xdual() const;    // Compute dual right now.
 521   // Convenience common pre-built types.
 522   static const TypeTuple *IFBOTH;
 523   static const TypeTuple *IFFALSE;
 524   static const TypeTuple *IFTRUE;
 525   static const TypeTuple *IFNEITHER;
 526   static const TypeTuple *LOOPBODY;
 527   static const TypeTuple *MEMBAR;
 528   static const TypeTuple *STORECONDITIONAL;
 529   static const TypeTuple *START_I2C;
 530   static const TypeTuple *INT_PAIR;
 531   static const TypeTuple *LONG_PAIR;
 532 #ifndef PRODUCT
 533   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 534 #endif
 535 };
 536 
 537 //------------------------------TypeAry----------------------------------------
 538 // Class of Array Types
 539 class TypeAry : public Type {
 540   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
 541     _elem(elem), _size(size) {}
 542 public:
 543   virtual bool eq( const Type *t ) const;
 544   virtual int  hash() const;             // Type specific hashing
 545   virtual bool singleton(void) const;    // TRUE if type is a singleton
 546   virtual bool empty(void) const;        // TRUE if type is vacuous
 547 
 548 private:
 549   const Type *_elem;            // Element type of array
 550   const TypeInt *_size;         // Elements in array
 551   friend class TypeAryPtr;
 552 
 553 public:
 554   static const TypeAry *make(  const Type *elem, const TypeInt *size);
 555 
 556   virtual const Type *xmeet( const Type *t ) const;
 557   virtual const Type *xdual() const;    // Compute dual right now.
 558   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 559 #ifdef ASSERT
 560   // One type is interface, the other is oop
 561   virtual bool interface_vs_oop(const Type *t) const;
 562 #endif
 563 #ifndef PRODUCT
 564   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 565 #endif
 566 };
 567 
 568 //------------------------------TypePtr----------------------------------------
 569 // Class of machine Pointer Types: raw data, instances or arrays.
 570 // If the _base enum is AnyPtr, then this refers to all of the above.
 571 // Otherwise the _base will indicate which subset of pointers is affected,
 572 // and the class will be inherited from.
 573 class TypePtr : public Type {
 574   friend class TypeNarrowOop;
 575 public:
 576   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 577 protected:
 578   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 579   virtual bool eq( const Type *t ) const;
 580   virtual int  hash() const;             // Type specific hashing
 581   static const PTR ptr_meet[lastPTR][lastPTR];
 582   static const PTR ptr_dual[lastPTR];
 583   static const char * const ptr_msg[lastPTR];
 584 
 585 public:
 586   const int _offset;            // Offset into oop, with TOP & BOT
 587   const PTR _ptr;               // Pointer equivalence class
 588 
 589   const int offset() const { return _offset; }
 590   const PTR ptr()    const { return _ptr; }
 591 
 592   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 593 
 594   // Return a 'ptr' version of this type
 595   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 596 
 597   virtual intptr_t get_con() const;
 598 
 599   int xadd_offset( intptr_t offset ) const;
 600   virtual const TypePtr *add_offset( intptr_t offset ) const;
 601 
 602   virtual bool singleton(void) const;    // TRUE if type is a singleton
 603   virtual bool empty(void) const;        // TRUE if type is vacuous
 604   virtual const Type *xmeet( const Type *t ) const;
 605   int meet_offset( int offset ) const;
 606   int dual_offset( ) const;
 607   virtual const Type *xdual() const;    // Compute dual right now.
 608 
 609   // meet, dual and join over pointer equivalence sets
 610   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 611   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 612 
 613   // This is textually confusing unless one recalls that
 614   // join(t) == dual()->meet(t->dual())->dual().
 615   PTR join_ptr( const PTR in_ptr ) const {
 616     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 617   }
 618 
 619   // Tests for relation to centerline of type lattice:
 620   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 621   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 622   // Convenience common pre-built types.
 623   static const TypePtr *NULL_PTR;
 624   static const TypePtr *NOTNULL;
 625   static const TypePtr *BOTTOM;
 626 #ifndef PRODUCT
 627   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 628 #endif
 629 };
 630 
 631 //------------------------------TypeRawPtr-------------------------------------
 632 // Class of raw pointers, pointers to things other than Oops.  Examples
 633 // include the stack pointer, top of heap, card-marking area, handles, etc.
 634 class TypeRawPtr : public TypePtr {
 635 protected:
 636   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 637 public:
 638   virtual bool eq( const Type *t ) const;
 639   virtual int  hash() const;     // Type specific hashing
 640 
 641   const address _bits;          // Constant value, if applicable
 642 
 643   static const TypeRawPtr *make( PTR ptr );
 644   static const TypeRawPtr *make( address bits );
 645 
 646   // Return a 'ptr' version of this type
 647   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 648 
 649   virtual intptr_t get_con() const;
 650 
 651   virtual const TypePtr *add_offset( intptr_t offset ) const;
 652 
 653   virtual const Type *xmeet( const Type *t ) const;
 654   virtual const Type *xdual() const;    // Compute dual right now.
 655   // Convenience common pre-built types.
 656   static const TypeRawPtr *BOTTOM;
 657   static const TypeRawPtr *NOTNULL;
 658 #ifndef PRODUCT
 659   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 660 #endif
 661 };
 662 
 663 //------------------------------TypeOopPtr-------------------------------------
 664 // Some kind of oop (Java pointer), either klass or instance or array.
 665 class TypeOopPtr : public TypePtr {
 666 protected:
 667   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 668 public:
 669   virtual bool eq( const Type *t ) const;
 670   virtual int  hash() const;             // Type specific hashing
 671   virtual bool singleton(void) const;    // TRUE if type is a singleton
 672   enum {
 673    InstanceTop = -1,   // undefined instance
 674    InstanceBot = 0     // any possible instance
 675   };
 676 protected:
 677 
 678   // Oop is NULL, unless this is a constant oop.
 679   ciObject*     _const_oop;   // Constant oop
 680   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 681   ciKlass*      _klass;       // Klass object
 682   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 683   bool          _klass_is_exact;
 684   bool          _is_ptr_to_narrowoop;
 685 
 686   // If not InstanceTop or InstanceBot, indicates that this is
 687   // a particular instance of this type which is distinct.
 688   // This is the the node index of the allocation node creating this instance.
 689   int           _instance_id;
 690 
 691   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 692 
 693   int dual_instance_id() const;
 694   int meet_instance_id(int uid) const;
 695 
 696 public:
 697   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 698   // Respects UseUniqueSubclasses.
 699   // If the klass is final, the resulting type will be exact.
 700   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 701     return make_from_klass_common(klass, true, false);
 702   }
 703   // Same as before, but will produce an exact type, even if
 704   // the klass is not final, as long as it has exactly one implementation.
 705   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 706     return make_from_klass_common(klass, true, true);
 707   }
 708   // Same as before, but does not respects UseUniqueSubclasses.
 709   // Use this only for creating array element types.
 710   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 711     return make_from_klass_common(klass, false, false);
 712   }
 713   // Creates a singleton type given an object.
 714   // If the object cannot be rendered as a constant,
 715   // may return a non-singleton type.
 716   // If require_constant, produce a NULL if a singleton is not possible.
 717   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
 718 
 719   // Make a generic (unclassed) pointer to an oop.
 720   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id = InstanceBot);
 721 
 722   ciObject* const_oop()    const { return _const_oop; }
 723   virtual ciKlass* klass() const { return _klass;     }
 724   bool klass_is_exact()    const { return _klass_is_exact; }
 725 
 726   // Returns true if this pointer points at memory which contains a
 727   // compressed oop references.
 728   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 729 
 730   bool is_known_instance()       const { return _instance_id > 0; }
 731   int  instance_id()             const { return _instance_id; }
 732   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 733 
 734   virtual intptr_t get_con() const;
 735 
 736   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 737 
 738   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 739 
 740   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 741 
 742   // corresponding pointer to klass, for a given instance
 743   const TypeKlassPtr* as_klass_type() const;
 744 
 745   virtual const TypePtr *add_offset( intptr_t offset ) const;
 746 
 747   virtual const Type *xmeet( const Type *t ) const;
 748   virtual const Type *xdual() const;    // Compute dual right now.
 749 
 750   // Do not allow interface-vs.-noninterface joins to collapse to top.
 751   virtual const Type *filter( const Type *kills ) const;
 752 
 753   // Convenience common pre-built type.
 754   static const TypeOopPtr *BOTTOM;
 755 #ifndef PRODUCT
 756   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 757 #endif
 758 };
 759 
 760 //------------------------------TypeInstPtr------------------------------------
 761 // Class of Java object pointers, pointing either to non-array Java instances
 762 // or to a klassOop (including array klasses).
 763 class TypeInstPtr : public TypeOopPtr {
 764   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 765   virtual bool eq( const Type *t ) const;
 766   virtual int  hash() const;             // Type specific hashing
 767 
 768   ciSymbol*  _name;        // class name
 769 
 770  public:
 771   ciSymbol* name()         const { return _name; }
 772 
 773   bool  is_loaded() const { return _klass->is_loaded(); }
 774 
 775   // Make a pointer to a constant oop.
 776   static const TypeInstPtr *make(ciObject* o) {
 777     return make(TypePtr::Constant, o->klass(), true, o, 0);
 778   }
 779 
 780   // Make a pointer to a constant oop with offset.
 781   static const TypeInstPtr *make(ciObject* o, int offset) {
 782     return make(TypePtr::Constant, o->klass(), true, o, offset);
 783   }
 784 
 785   // Make a pointer to some value of type klass.
 786   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 787     return make(ptr, klass, false, NULL, 0);
 788   }
 789 
 790   // Make a pointer to some non-polymorphic value of exactly type klass.
 791   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 792     return make(ptr, klass, true, NULL, 0);
 793   }
 794 
 795   // Make a pointer to some value of type klass with offset.
 796   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
 797     return make(ptr, klass, false, NULL, offset);
 798   }
 799 
 800   // Make a pointer to an oop.
 801   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
 802 
 803   // If this is a java.lang.Class constant, return the type for it or NULL.
 804   // Pass to Type::get_const_type to turn it to a type, which will usually
 805   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
 806   ciType* java_mirror_type() const;
 807 
 808   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 809 
 810   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 811 
 812   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 813 
 814   virtual const TypePtr *add_offset( intptr_t offset ) const;
 815 
 816   virtual const Type *xmeet( const Type *t ) const;
 817   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
 818   virtual const Type *xdual() const;    // Compute dual right now.
 819 
 820   // Convenience common pre-built types.
 821   static const TypeInstPtr *NOTNULL;
 822   static const TypeInstPtr *BOTTOM;
 823   static const TypeInstPtr *MIRROR;
 824   static const TypeInstPtr *MARK;
 825   static const TypeInstPtr *KLASS;
 826 #ifndef PRODUCT
 827   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 828 #endif
 829 };
 830 
 831 //------------------------------TypeAryPtr-------------------------------------
 832 // Class of Java array pointers
 833 class TypeAryPtr : public TypeOopPtr {
 834   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
 835   virtual bool eq( const Type *t ) const;
 836   virtual int hash() const;     // Type specific hashing
 837   const TypeAry *_ary;          // Array we point into
 838 
 839 public:
 840   // Accessors
 841   ciKlass* klass() const;
 842   const TypeAry* ary() const  { return _ary; }
 843   const Type*    elem() const { return _ary->_elem; }
 844   const TypeInt* size() const { return _ary->_size; }
 845 
 846   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 847   // Constant pointer to array
 848   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 849 
 850   // Convenience
 851   static const TypeAryPtr *make(ciObject* o);
 852 
 853   // Return a 'ptr' version of this type
 854   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 855 
 856   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 857 
 858   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 859 
 860   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
 861   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
 862 
 863   virtual bool empty(void) const;        // TRUE if type is vacuous
 864   virtual const TypePtr *add_offset( intptr_t offset ) const;
 865 
 866   virtual const Type *xmeet( const Type *t ) const;
 867   virtual const Type *xdual() const;    // Compute dual right now.
 868 
 869   // Convenience common pre-built types.
 870   static const TypeAryPtr *RANGE;
 871   static const TypeAryPtr *OOPS;
 872   static const TypeAryPtr *NARROWOOPS;
 873   static const TypeAryPtr *BYTES;
 874   static const TypeAryPtr *SHORTS;
 875   static const TypeAryPtr *CHARS;
 876   static const TypeAryPtr *INTS;
 877   static const TypeAryPtr *LONGS;
 878   static const TypeAryPtr *FLOATS;
 879   static const TypeAryPtr *DOUBLES;
 880   // selects one of the above:
 881   static const TypeAryPtr *get_array_body_type(BasicType elem) {
 882     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
 883     return _array_body_type[elem];
 884   }
 885   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
 886   // sharpen the type of an int which is used as an array size
 887 #ifdef ASSERT
 888   // One type is interface, the other is oop
 889   virtual bool interface_vs_oop(const Type *t) const;
 890 #endif
 891 #ifndef PRODUCT
 892   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 893 #endif
 894 };
 895 
 896 //------------------------------TypeKlassPtr-----------------------------------
 897 // Class of Java Klass pointers
 898 class TypeKlassPtr : public TypeOopPtr {
 899   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
 900 
 901   virtual bool eq( const Type *t ) const;
 902   virtual int hash() const;             // Type specific hashing
 903 
 904 public:
 905   ciSymbol* name()  const { return _klass->name(); }
 906 
 907   bool  is_loaded() const { return _klass->is_loaded(); }
 908 
 909   // ptr to klass 'k'
 910   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
 911   // ptr to klass 'k' with offset
 912   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
 913   // ptr to klass 'k' or sub-klass
 914   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
 915 
 916   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 917 
 918   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 919 
 920   // corresponding pointer to instance, for a given class
 921   const TypeOopPtr* as_instance_type() const;
 922 
 923   virtual const TypePtr *add_offset( intptr_t offset ) const;
 924   virtual const Type    *xmeet( const Type *t ) const;
 925   virtual const Type    *xdual() const;      // Compute dual right now.
 926 
 927   // Convenience common pre-built types.
 928   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
 929   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
 930 #ifndef PRODUCT
 931   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 932 #endif
 933 };
 934 
 935 //------------------------------TypeNarrowOop----------------------------------
 936 // A compressed reference to some kind of Oop.  This type wraps around
 937 // a preexisting TypeOopPtr and forwards most of it's operations to
 938 // the underlying type.  It's only real purpose is to track the
 939 // oopness of the compressed oop value when we expose the conversion
 940 // between the normal and the compressed form.
 941 class TypeNarrowOop : public Type {
 942 protected:
 943   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
 944 
 945   TypeNarrowOop( const TypePtr* ptrtype): Type(NarrowOop),
 946     _ptrtype(ptrtype) {
 947     assert(ptrtype->offset() == 0 ||
 948            ptrtype->offset() == OffsetBot ||
 949            ptrtype->offset() == OffsetTop, "no real offsets");
 950   }
 951 public:
 952   virtual bool eq( const Type *t ) const;
 953   virtual int  hash() const;             // Type specific hashing
 954   virtual bool singleton(void) const;    // TRUE if type is a singleton
 955 
 956   virtual const Type *xmeet( const Type *t ) const;
 957   virtual const Type *xdual() const;    // Compute dual right now.
 958 
 959   virtual intptr_t get_con() const;
 960 
 961   // Do not allow interface-vs.-noninterface joins to collapse to top.
 962   virtual const Type *filter( const Type *kills ) const;
 963 
 964   virtual bool empty(void) const;        // TRUE if type is vacuous
 965 
 966   static const TypeNarrowOop *make( const TypePtr* type);
 967 
 968   static const TypeNarrowOop* make_from_constant(ciObject* con) {
 969     return make(TypeOopPtr::make_from_constant(con));
 970   }
 971 
 972   // returns the equivalent ptr type for this compressed pointer
 973   const TypePtr *get_ptrtype() const {
 974     return _ptrtype;
 975   }
 976 
 977   static const TypeNarrowOop *BOTTOM;
 978   static const TypeNarrowOop *NULL_PTR;
 979 
 980 #ifndef PRODUCT
 981   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 982 #endif
 983 };
 984 
 985 //------------------------------TypeFunc---------------------------------------
 986 // Class of Array Types
 987 class TypeFunc : public Type {
 988   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
 989   virtual bool eq( const Type *t ) const;
 990   virtual int  hash() const;             // Type specific hashing
 991   virtual bool singleton(void) const;    // TRUE if type is a singleton
 992   virtual bool empty(void) const;        // TRUE if type is vacuous
 993 public:
 994   // Constants are shared among ADLC and VM
 995   enum { Control    = AdlcVMDeps::Control,
 996          I_O        = AdlcVMDeps::I_O,
 997          Memory     = AdlcVMDeps::Memory,
 998          FramePtr   = AdlcVMDeps::FramePtr,
 999          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1000          Parms      = AdlcVMDeps::Parms
1001   };
1002 
1003   const TypeTuple* const _domain;     // Domain of inputs
1004   const TypeTuple* const _range;      // Range of results
1005 
1006   // Accessors:
1007   const TypeTuple* domain() const { return _domain; }
1008   const TypeTuple* range()  const { return _range; }
1009 
1010   static const TypeFunc *make(ciMethod* method);
1011   static const TypeFunc *make(ciSignature signature, const Type* extra);
1012   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1013 
1014   virtual const Type *xmeet( const Type *t ) const;
1015   virtual const Type *xdual() const;    // Compute dual right now.
1016 
1017   BasicType return_type() const;
1018 
1019 #ifndef PRODUCT
1020   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1021   void print_flattened() const; // Print a 'flattened' signature
1022 #endif
1023   // Convenience common pre-built types.
1024 };
1025 
1026 //------------------------------accessors--------------------------------------
1027 inline bool Type::is_ptr_to_narrowoop() const {
1028 #ifdef _LP64
1029   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1030 #else
1031   return false;
1032 #endif
1033 }
1034 
1035 inline float Type::getf() const {
1036   assert( _base == FloatCon, "Not a FloatCon" );
1037   return ((TypeF*)this)->_f;
1038 }
1039 
1040 inline double Type::getd() const {
1041   assert( _base == DoubleCon, "Not a DoubleCon" );
1042   return ((TypeD*)this)->_d;
1043 }
1044 
1045 inline const TypeF *Type::is_float_constant() const {
1046   assert( _base == FloatCon, "Not a Float" );
1047   return (TypeF*)this;
1048 }
1049 
1050 inline const TypeF *Type::isa_float_constant() const {
1051   return ( _base == FloatCon ? (TypeF*)this : NULL);
1052 }
1053 
1054 inline const TypeD *Type::is_double_constant() const {
1055   assert( _base == DoubleCon, "Not a Double" );
1056   return (TypeD*)this;
1057 }
1058 
1059 inline const TypeD *Type::isa_double_constant() const {
1060   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1061 }
1062 
1063 inline const TypeInt *Type::is_int() const {
1064   assert( _base == Int, "Not an Int" );
1065   return (TypeInt*)this;
1066 }
1067 
1068 inline const TypeInt *Type::isa_int() const {
1069   return ( _base == Int ? (TypeInt*)this : NULL);
1070 }
1071 
1072 inline const TypeLong *Type::is_long() const {
1073   assert( _base == Long, "Not a Long" );
1074   return (TypeLong*)this;
1075 }
1076 
1077 inline const TypeLong *Type::isa_long() const {
1078   return ( _base == Long ? (TypeLong*)this : NULL);
1079 }
1080 
1081 inline const TypeTuple *Type::is_tuple() const {
1082   assert( _base == Tuple, "Not a Tuple" );
1083   return (TypeTuple*)this;
1084 }
1085 
1086 inline const TypeAry *Type::is_ary() const {
1087   assert( _base == Array , "Not an Array" );
1088   return (TypeAry*)this;
1089 }
1090 
1091 inline const TypePtr *Type::is_ptr() const {
1092   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1093   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1094   return (TypePtr*)this;
1095 }
1096 
1097 inline const TypePtr *Type::isa_ptr() const {
1098   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1099   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1100 }
1101 
1102 inline const TypeOopPtr *Type::is_oopptr() const {
1103   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1104   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
1105   return (TypeOopPtr*)this;
1106 }
1107 
1108 inline const TypeOopPtr *Type::isa_oopptr() const {
1109   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1110   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
1111 }
1112 
1113 inline const TypeRawPtr *Type::isa_rawptr() const {
1114   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1115 }
1116 
1117 inline const TypeRawPtr *Type::is_rawptr() const {
1118   assert( _base == RawPtr, "Not a raw pointer" );
1119   return (TypeRawPtr*)this;
1120 }
1121 
1122 inline const TypeInstPtr *Type::isa_instptr() const {
1123   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1124 }
1125 
1126 inline const TypeInstPtr *Type::is_instptr() const {
1127   assert( _base == InstPtr, "Not an object pointer" );
1128   return (TypeInstPtr*)this;
1129 }
1130 
1131 inline const TypeAryPtr *Type::isa_aryptr() const {
1132   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1133 }
1134 
1135 inline const TypeAryPtr *Type::is_aryptr() const {
1136   assert( _base == AryPtr, "Not an array pointer" );
1137   return (TypeAryPtr*)this;
1138 }
1139 
1140 inline const TypeNarrowOop *Type::is_narrowoop() const {
1141   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1142   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1143   return (TypeNarrowOop*)this;
1144 }
1145 
1146 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1147   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1148   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1149 }
1150 
1151 inline const TypeKlassPtr *Type::isa_klassptr() const {
1152   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1153 }
1154 
1155 inline const TypeKlassPtr *Type::is_klassptr() const {
1156   assert( _base == KlassPtr, "Not a klass pointer" );
1157   return (TypeKlassPtr*)this;
1158 }
1159 
1160 inline const TypePtr* Type::make_ptr() const {
1161   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1162                                 (isa_ptr() ? is_ptr() : NULL);
1163 }
1164 
1165 inline const TypeOopPtr* Type::make_oopptr() const {
1166   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1167 }
1168 
1169 inline const TypeNarrowOop* Type::make_narrowoop() const {
1170   return (_base == NarrowOop) ? is_narrowoop() :
1171                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1172 }
1173 
1174 inline bool Type::is_floatingpoint() const {
1175   if( (_base == FloatCon)  || (_base == FloatBot) ||
1176       (_base == DoubleCon) || (_base == DoubleBot) )
1177     return true;
1178   return false;
1179 }
1180 
1181 
1182 // ===============================================================
1183 // Things that need to be 64-bits in the 64-bit build but
1184 // 32-bits in the 32-bit build.  Done this way to get full
1185 // optimization AND strong typing.
1186 #ifdef _LP64
1187 
1188 // For type queries and asserts
1189 #define is_intptr_t  is_long
1190 #define isa_intptr_t isa_long
1191 #define find_intptr_t_type find_long_type
1192 #define find_intptr_t_con  find_long_con
1193 #define TypeX        TypeLong
1194 #define Type_X       Type::Long
1195 #define TypeX_X      TypeLong::LONG
1196 #define TypeX_ZERO   TypeLong::ZERO
1197 // For 'ideal_reg' machine registers
1198 #define Op_RegX      Op_RegL
1199 // For phase->intcon variants
1200 #define MakeConX     longcon
1201 #define ConXNode     ConLNode
1202 // For array index arithmetic
1203 #define MulXNode     MulLNode
1204 #define AndXNode     AndLNode
1205 #define OrXNode      OrLNode
1206 #define CmpXNode     CmpLNode
1207 #define SubXNode     SubLNode
1208 #define LShiftXNode  LShiftLNode
1209 // For object size computation:
1210 #define AddXNode     AddLNode
1211 #define RShiftXNode  RShiftLNode
1212 // For card marks and hashcodes
1213 #define URShiftXNode URShiftLNode
1214 // UseOptoBiasInlining
1215 #define XorXNode     XorLNode
1216 #define StoreXConditionalNode StoreLConditionalNode
1217 // Opcodes
1218 #define Op_LShiftX   Op_LShiftL
1219 #define Op_AndX      Op_AndL
1220 #define Op_AddX      Op_AddL
1221 #define Op_SubX      Op_SubL
1222 #define Op_XorX      Op_XorL
1223 #define Op_URShiftX  Op_URShiftL
1224 // conversions
1225 #define ConvI2X(x)   ConvI2L(x)
1226 #define ConvL2X(x)   (x)
1227 #define ConvX2I(x)   ConvL2I(x)
1228 #define ConvX2L(x)   (x)
1229 
1230 #else
1231 
1232 // For type queries and asserts
1233 #define is_intptr_t  is_int
1234 #define isa_intptr_t isa_int
1235 #define find_intptr_t_type find_int_type
1236 #define find_intptr_t_con  find_int_con
1237 #define TypeX        TypeInt
1238 #define Type_X       Type::Int
1239 #define TypeX_X      TypeInt::INT
1240 #define TypeX_ZERO   TypeInt::ZERO
1241 // For 'ideal_reg' machine registers
1242 #define Op_RegX      Op_RegI
1243 // For phase->intcon variants
1244 #define MakeConX     intcon
1245 #define ConXNode     ConINode
1246 // For array index arithmetic
1247 #define MulXNode     MulINode
1248 #define AndXNode     AndINode
1249 #define OrXNode      OrINode
1250 #define CmpXNode     CmpINode
1251 #define SubXNode     SubINode
1252 #define LShiftXNode  LShiftINode
1253 // For object size computation:
1254 #define AddXNode     AddINode
1255 #define RShiftXNode  RShiftINode
1256 // For card marks and hashcodes
1257 #define URShiftXNode URShiftINode
1258 // UseOptoBiasInlining
1259 #define XorXNode     XorINode
1260 #define StoreXConditionalNode StoreIConditionalNode
1261 // Opcodes
1262 #define Op_LShiftX   Op_LShiftI
1263 #define Op_AndX      Op_AndI
1264 #define Op_AddX      Op_AddI
1265 #define Op_SubX      Op_SubI
1266 #define Op_XorX      Op_XorI
1267 #define Op_URShiftX  Op_URShiftI
1268 // conversions
1269 #define ConvI2X(x)   (x)
1270 #define ConvL2X(x)   ConvL2I(x)
1271 #define ConvX2I(x)   (x)
1272 #define ConvX2L(x)   ConvI2L(x)
1273 
1274 #endif