1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_memnode.cpp.incl"
  31 
  32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  33 
  34 //=============================================================================
  35 uint MemNode::size_of() const { return sizeof(*this); }
  36 
  37 const TypePtr *MemNode::adr_type() const {
  38   Node* adr = in(Address);
  39   const TypePtr* cross_check = NULL;
  40   DEBUG_ONLY(cross_check = _adr_type);
  41   return calculate_adr_type(adr->bottom_type(), cross_check);
  42 }
  43 
  44 #ifndef PRODUCT
  45 void MemNode::dump_spec(outputStream *st) const {
  46   if (in(Address) == NULL)  return; // node is dead
  47 #ifndef ASSERT
  48   // fake the missing field
  49   const TypePtr* _adr_type = NULL;
  50   if (in(Address) != NULL)
  51     _adr_type = in(Address)->bottom_type()->isa_ptr();
  52 #endif
  53   dump_adr_type(this, _adr_type, st);
  54 
  55   Compile* C = Compile::current();
  56   if( C->alias_type(_adr_type)->is_volatile() )
  57     st->print(" Volatile!");
  58 }
  59 
  60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  61   st->print(" @");
  62   if (adr_type == NULL) {
  63     st->print("NULL");
  64   } else {
  65     adr_type->dump_on(st);
  66     Compile* C = Compile::current();
  67     Compile::AliasType* atp = NULL;
  68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  69     if (atp == NULL)
  70       st->print(", idx=?\?;");
  71     else if (atp->index() == Compile::AliasIdxBot)
  72       st->print(", idx=Bot;");
  73     else if (atp->index() == Compile::AliasIdxTop)
  74       st->print(", idx=Top;");
  75     else if (atp->index() == Compile::AliasIdxRaw)
  76       st->print(", idx=Raw;");
  77     else {
  78       ciField* field = atp->field();
  79       if (field) {
  80         st->print(", name=");
  81         field->print_name_on(st);
  82       }
  83       st->print(", idx=%d;", atp->index());
  84     }
  85   }
  86 }
  87 
  88 extern void print_alias_types();
  89 
  90 #endif
  91 
  92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
  93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
  94   if (tinst == NULL || !tinst->is_known_instance_field())
  95     return mchain;  // don't try to optimize non-instance types
  96   uint instance_id = tinst->instance_id();
  97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
  98   Node *prev = NULL;
  99   Node *result = mchain;
 100   while (prev != result) {
 101     prev = result;
 102     if (result == start_mem)
 103       break;  // hit one of our sentinels
 104     // skip over a call which does not affect this memory slice
 105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 106       Node *proj_in = result->in(0);
 107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 108         break;  // hit one of our sentinels
 109       } else if (proj_in->is_Call()) {
 110         CallNode *call = proj_in->as_Call();
 111         if (!call->may_modify(t_adr, phase)) {
 112           result = call->in(TypeFunc::Memory);
 113         }
 114       } else if (proj_in->is_Initialize()) {
 115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 116         // Stop if this is the initialization for the object instance which
 117         // which contains this memory slice, otherwise skip over it.
 118         if (alloc != NULL && alloc->_idx != instance_id) {
 119           result = proj_in->in(TypeFunc::Memory);
 120         }
 121       } else if (proj_in->is_MemBar()) {
 122         result = proj_in->in(TypeFunc::Memory);
 123       } else {
 124         assert(false, "unexpected projection");
 125       }
 126     } else if (result->is_MergeMem()) {
 127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 128     }
 129   }
 130   return result;
 131 }
 132 
 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 136   PhaseIterGVN *igvn = phase->is_IterGVN();
 137   Node *result = mchain;
 138   result = optimize_simple_memory_chain(result, t_adr, phase);
 139   if (is_instance && igvn != NULL  && result->is_Phi()) {
 140     PhiNode *mphi = result->as_Phi();
 141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 142     const TypePtr *t = mphi->adr_type();
 143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 145         t->is_oopptr()->cast_to_exactness(true)
 146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 148       // clone the Phi with our address type
 149       result = mphi->split_out_instance(t_adr, igvn);
 150     } else {
 151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 152     }
 153   }
 154   return result;
 155 }
 156 
 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 158   uint alias_idx = phase->C->get_alias_index(tp);
 159   Node *mem = mmem;
 160 #ifdef ASSERT
 161   {
 162     // Check that current type is consistent with the alias index used during graph construction
 163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 164     bool consistent =  adr_check == NULL || adr_check->empty() ||
 165                        phase->C->must_alias(adr_check, alias_idx );
 166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 173       // don't assert if it is dead code.
 174       consistent = true;
 175     }
 176     if( !consistent ) {
 177       st->print("alias_idx==%d, adr_check==", alias_idx);
 178       if( adr_check == NULL ) {
 179         st->print("NULL");
 180       } else {
 181         adr_check->dump();
 182       }
 183       st->cr();
 184       print_alias_types();
 185       assert(consistent, "adr_check must match alias idx");
 186     }
 187   }
 188 #endif
 189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 190   // means an array I have not precisely typed yet.  Do not do any
 191   // alias stuff with it any time soon.
 192   const TypeOopPtr *tinst = tp->isa_oopptr();
 193   if( tp->base() != Type::AnyPtr &&
 194       !(tinst &&
 195         tinst->klass()->is_java_lang_Object() &&
 196         tinst->offset() == Type::OffsetBot) ) {
 197     // compress paths and change unreachable cycles to TOP
 198     // If not, we can update the input infinitely along a MergeMem cycle
 199     // Equivalent code in PhiNode::Ideal
 200     Node* m  = phase->transform(mmem);
 201     // If transformed to a MergeMem, get the desired slice
 202     // Otherwise the returned node represents memory for every slice
 203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 204     // Update input if it is progress over what we have now
 205   }
 206   return mem;
 207 }
 208 
 209 //--------------------------Ideal_common---------------------------------------
 210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 213   // If our control input is a dead region, kill all below the region
 214   Node *ctl = in(MemNode::Control);
 215   if (ctl && remove_dead_region(phase, can_reshape))
 216     return this;
 217   ctl = in(MemNode::Control);
 218   // Don't bother trying to transform a dead node
 219   if( ctl && ctl->is_top() )  return NodeSentinel;
 220 
 221   PhaseIterGVN *igvn = phase->is_IterGVN();
 222   // Wait if control on the worklist.
 223   if (ctl && can_reshape && igvn != NULL) {
 224     Node* bol = NULL;
 225     Node* cmp = NULL;
 226     if (ctl->in(0)->is_If()) {
 227       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 228       bol = ctl->in(0)->in(1);
 229       if (bol->is_Bool())
 230         cmp = ctl->in(0)->in(1)->in(1);
 231     }
 232     if (igvn->_worklist.member(ctl) ||
 233         (bol != NULL && igvn->_worklist.member(bol)) ||
 234         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 235       // This control path may be dead.
 236       // Delay this memory node transformation until the control is processed.
 237       phase->is_IterGVN()->_worklist.push(this);
 238       return NodeSentinel; // caller will return NULL
 239     }
 240   }
 241   // Ignore if memory is dead, or self-loop
 242   Node *mem = in(MemNode::Memory);
 243   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 244   assert( mem != this, "dead loop in MemNode::Ideal" );
 245 
 246   Node *address = in(MemNode::Address);
 247   const Type *t_adr = phase->type( address );
 248   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 249 
 250   if( can_reshape && igvn != NULL &&
 251       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
 252     // The address's base and type may change when the address is processed.
 253     // Delay this mem node transformation until the address is processed.
 254     phase->is_IterGVN()->_worklist.push(this);
 255     return NodeSentinel; // caller will return NULL
 256   }
 257 
 258 #ifdef ASSERT
 259   Node* base = NULL;
 260   if (address->is_AddP())
 261     base = address->in(AddPNode::Base);
 262   assert(base == NULL || t_adr->isa_rawptr() ||
 263         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 264 #endif
 265 
 266   // Avoid independent memory operations
 267   Node* old_mem = mem;
 268 
 269   // The code which unhooks non-raw memories from complete (macro-expanded)
 270   // initializations was removed. After macro-expansion all stores catched
 271   // by Initialize node became raw stores and there is no information
 272   // which memory slices they modify. So it is unsafe to move any memory
 273   // operation above these stores. Also in most cases hooked non-raw memories
 274   // were already unhooked by using information from detect_ptr_independence()
 275   // and find_previous_store().
 276 
 277   if (mem->is_MergeMem()) {
 278     MergeMemNode* mmem = mem->as_MergeMem();
 279     const TypePtr *tp = t_adr->is_ptr();
 280 
 281     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 282   }
 283 
 284   if (mem != old_mem) {
 285     set_req(MemNode::Memory, mem);
 286     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 287     return this;
 288   }
 289 
 290   // let the subclass continue analyzing...
 291   return NULL;
 292 }
 293 
 294 // Helper function for proving some simple control dominations.
 295 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 296 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 297 // is not a constant (dominated by the method's StartNode).
 298 // Used by MemNode::find_previous_store to prove that the
 299 // control input of a memory operation predates (dominates)
 300 // an allocation it wants to look past.
 301 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 302   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 303     return false; // Conservative answer for dead code
 304 
 305   // Check 'dom'. Skip Proj and CatchProj nodes.
 306   dom = dom->find_exact_control(dom);
 307   if (dom == NULL || dom->is_top())
 308     return false; // Conservative answer for dead code
 309 
 310   if (dom == sub) {
 311     // For the case when, for example, 'sub' is Initialize and the original
 312     // 'dom' is Proj node of the 'sub'.
 313     return false;
 314   }
 315 
 316   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 317     return true;
 318 
 319   // 'dom' dominates 'sub' if its control edge and control edges
 320   // of all its inputs dominate or equal to sub's control edge.
 321 
 322   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 323   // Or Region for the check in LoadNode::Ideal();
 324   // 'sub' should have sub->in(0) != NULL.
 325   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 326          sub->is_Region(), "expecting only these nodes");
 327 
 328   // Get control edge of 'sub'.
 329   Node* orig_sub = sub;
 330   sub = sub->find_exact_control(sub->in(0));
 331   if (sub == NULL || sub->is_top())
 332     return false; // Conservative answer for dead code
 333 
 334   assert(sub->is_CFG(), "expecting control");
 335 
 336   if (sub == dom)
 337     return true;
 338 
 339   if (sub->is_Start() || sub->is_Root())
 340     return false;
 341 
 342   {
 343     // Check all control edges of 'dom'.
 344 
 345     ResourceMark rm;
 346     Arena* arena = Thread::current()->resource_area();
 347     Node_List nlist(arena);
 348     Unique_Node_List dom_list(arena);
 349 
 350     dom_list.push(dom);
 351     bool only_dominating_controls = false;
 352 
 353     for (uint next = 0; next < dom_list.size(); next++) {
 354       Node* n = dom_list.at(next);
 355       if (n == orig_sub)
 356         return false; // One of dom's inputs dominated by sub.
 357       if (!n->is_CFG() && n->pinned()) {
 358         // Check only own control edge for pinned non-control nodes.
 359         n = n->find_exact_control(n->in(0));
 360         if (n == NULL || n->is_top())
 361           return false; // Conservative answer for dead code
 362         assert(n->is_CFG(), "expecting control");
 363         dom_list.push(n);
 364       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 365         only_dominating_controls = true;
 366       } else if (n->is_CFG()) {
 367         if (n->dominates(sub, nlist))
 368           only_dominating_controls = true;
 369         else
 370           return false;
 371       } else {
 372         // First, own control edge.
 373         Node* m = n->find_exact_control(n->in(0));
 374         if (m != NULL) {
 375           if (m->is_top())
 376             return false; // Conservative answer for dead code
 377           dom_list.push(m);
 378         }
 379         // Now, the rest of edges.
 380         uint cnt = n->req();
 381         for (uint i = 1; i < cnt; i++) {
 382           m = n->find_exact_control(n->in(i));
 383           if (m == NULL || m->is_top())
 384             continue;
 385           dom_list.push(m);
 386         }
 387       }
 388     }
 389     return only_dominating_controls;
 390   }
 391 }
 392 
 393 //---------------------detect_ptr_independence---------------------------------
 394 // Used by MemNode::find_previous_store to prove that two base
 395 // pointers are never equal.
 396 // The pointers are accompanied by their associated allocations,
 397 // if any, which have been previously discovered by the caller.
 398 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 399                                       Node* p2, AllocateNode* a2,
 400                                       PhaseTransform* phase) {
 401   // Attempt to prove that these two pointers cannot be aliased.
 402   // They may both manifestly be allocations, and they should differ.
 403   // Or, if they are not both allocations, they can be distinct constants.
 404   // Otherwise, one is an allocation and the other a pre-existing value.
 405   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 406     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 407   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 408     return (a1 != a2);
 409   } else if (a1 != NULL) {                  // one allocation a1
 410     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 411     return all_controls_dominate(p2, a1);
 412   } else { //(a2 != NULL)                   // one allocation a2
 413     return all_controls_dominate(p1, a2);
 414   }
 415   return false;
 416 }
 417 
 418 
 419 // The logic for reordering loads and stores uses four steps:
 420 // (a) Walk carefully past stores and initializations which we
 421 //     can prove are independent of this load.
 422 // (b) Observe that the next memory state makes an exact match
 423 //     with self (load or store), and locate the relevant store.
 424 // (c) Ensure that, if we were to wire self directly to the store,
 425 //     the optimizer would fold it up somehow.
 426 // (d) Do the rewiring, and return, depending on some other part of
 427 //     the optimizer to fold up the load.
 428 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 429 // specific to loads and stores, so they are handled by the callers.
 430 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 431 //
 432 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 433   Node*         ctrl   = in(MemNode::Control);
 434   Node*         adr    = in(MemNode::Address);
 435   intptr_t      offset = 0;
 436   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 437   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 438 
 439   if (offset == Type::OffsetBot)
 440     return NULL;            // cannot unalias unless there are precise offsets
 441 
 442   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 443 
 444   intptr_t size_in_bytes = memory_size();
 445 
 446   Node* mem = in(MemNode::Memory);   // start searching here...
 447 
 448   int cnt = 50;             // Cycle limiter
 449   for (;;) {                // While we can dance past unrelated stores...
 450     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 451 
 452     if (mem->is_Store()) {
 453       Node* st_adr = mem->in(MemNode::Address);
 454       intptr_t st_offset = 0;
 455       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 456       if (st_base == NULL)
 457         break;              // inscrutable pointer
 458       if (st_offset != offset && st_offset != Type::OffsetBot) {
 459         const int MAX_STORE = BytesPerLong;
 460         if (st_offset >= offset + size_in_bytes ||
 461             st_offset <= offset - MAX_STORE ||
 462             st_offset <= offset - mem->as_Store()->memory_size()) {
 463           // Success:  The offsets are provably independent.
 464           // (You may ask, why not just test st_offset != offset and be done?
 465           // The answer is that stores of different sizes can co-exist
 466           // in the same sequence of RawMem effects.  We sometimes initialize
 467           // a whole 'tile' of array elements with a single jint or jlong.)
 468           mem = mem->in(MemNode::Memory);
 469           continue;           // (a) advance through independent store memory
 470         }
 471       }
 472       if (st_base != base &&
 473           detect_ptr_independence(base, alloc,
 474                                   st_base,
 475                                   AllocateNode::Ideal_allocation(st_base, phase),
 476                                   phase)) {
 477         // Success:  The bases are provably independent.
 478         mem = mem->in(MemNode::Memory);
 479         continue;           // (a) advance through independent store memory
 480       }
 481 
 482       // (b) At this point, if the bases or offsets do not agree, we lose,
 483       // since we have not managed to prove 'this' and 'mem' independent.
 484       if (st_base == base && st_offset == offset) {
 485         return mem;         // let caller handle steps (c), (d)
 486       }
 487 
 488     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 489       InitializeNode* st_init = mem->in(0)->as_Initialize();
 490       AllocateNode*  st_alloc = st_init->allocation();
 491       if (st_alloc == NULL)
 492         break;              // something degenerated
 493       bool known_identical = false;
 494       bool known_independent = false;
 495       if (alloc == st_alloc)
 496         known_identical = true;
 497       else if (alloc != NULL)
 498         known_independent = true;
 499       else if (all_controls_dominate(this, st_alloc))
 500         known_independent = true;
 501 
 502       if (known_independent) {
 503         // The bases are provably independent: Either they are
 504         // manifestly distinct allocations, or else the control
 505         // of this load dominates the store's allocation.
 506         int alias_idx = phase->C->get_alias_index(adr_type());
 507         if (alias_idx == Compile::AliasIdxRaw) {
 508           mem = st_alloc->in(TypeFunc::Memory);
 509         } else {
 510           mem = st_init->memory(alias_idx);
 511         }
 512         continue;           // (a) advance through independent store memory
 513       }
 514 
 515       // (b) at this point, if we are not looking at a store initializing
 516       // the same allocation we are loading from, we lose.
 517       if (known_identical) {
 518         // From caller, can_see_stored_value will consult find_captured_store.
 519         return mem;         // let caller handle steps (c), (d)
 520       }
 521 
 522     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 523       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 524       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 525         CallNode *call = mem->in(0)->as_Call();
 526         if (!call->may_modify(addr_t, phase)) {
 527           mem = call->in(TypeFunc::Memory);
 528           continue;         // (a) advance through independent call memory
 529         }
 530       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 531         mem = mem->in(0)->in(TypeFunc::Memory);
 532         continue;           // (a) advance through independent MemBar memory
 533       } else if (mem->is_MergeMem()) {
 534         int alias_idx = phase->C->get_alias_index(adr_type());
 535         mem = mem->as_MergeMem()->memory_at(alias_idx);
 536         continue;           // (a) advance through independent MergeMem memory
 537       }
 538     }
 539 
 540     // Unless there is an explicit 'continue', we must bail out here,
 541     // because 'mem' is an inscrutable memory state (e.g., a call).
 542     break;
 543   }
 544 
 545   return NULL;              // bail out
 546 }
 547 
 548 //----------------------calculate_adr_type-------------------------------------
 549 // Helper function.  Notices when the given type of address hits top or bottom.
 550 // Also, asserts a cross-check of the type against the expected address type.
 551 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 552   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 553   #ifdef PRODUCT
 554   cross_check = NULL;
 555   #else
 556   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 557   #endif
 558   const TypePtr* tp = t->isa_ptr();
 559   if (tp == NULL) {
 560     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 561     return TypePtr::BOTTOM;           // touches lots of memory
 562   } else {
 563     #ifdef ASSERT
 564     // %%%% [phh] We don't check the alias index if cross_check is
 565     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 566     if (cross_check != NULL &&
 567         cross_check != TypePtr::BOTTOM &&
 568         cross_check != TypeRawPtr::BOTTOM) {
 569       // Recheck the alias index, to see if it has changed (due to a bug).
 570       Compile* C = Compile::current();
 571       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 572              "must stay in the original alias category");
 573       // The type of the address must be contained in the adr_type,
 574       // disregarding "null"-ness.
 575       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 576       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 577       assert(cross_check->meet(tp_notnull) == cross_check,
 578              "real address must not escape from expected memory type");
 579     }
 580     #endif
 581     return tp;
 582   }
 583 }
 584 
 585 //------------------------adr_phi_is_loop_invariant----------------------------
 586 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 587 // loop is loop invariant. Make a quick traversal of Phi and associated
 588 // CastPP nodes, looking to see if they are a closed group within the loop.
 589 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 590   // The idea is that the phi-nest must boil down to only CastPP nodes
 591   // with the same data. This implies that any path into the loop already
 592   // includes such a CastPP, and so the original cast, whatever its input,
 593   // must be covered by an equivalent cast, with an earlier control input.
 594   ResourceMark rm;
 595 
 596   // The loop entry input of the phi should be the unique dominating
 597   // node for every Phi/CastPP in the loop.
 598   Unique_Node_List closure;
 599   closure.push(adr_phi->in(LoopNode::EntryControl));
 600 
 601   // Add the phi node and the cast to the worklist.
 602   Unique_Node_List worklist;
 603   worklist.push(adr_phi);
 604   if( cast != NULL ){
 605     if( !cast->is_ConstraintCast() ) return false;
 606     worklist.push(cast);
 607   }
 608 
 609   // Begin recursive walk of phi nodes.
 610   while( worklist.size() ){
 611     // Take a node off the worklist
 612     Node *n = worklist.pop();
 613     if( !closure.member(n) ){
 614       // Add it to the closure.
 615       closure.push(n);
 616       // Make a sanity check to ensure we don't waste too much time here.
 617       if( closure.size() > 20) return false;
 618       // This node is OK if:
 619       //  - it is a cast of an identical value
 620       //  - or it is a phi node (then we add its inputs to the worklist)
 621       // Otherwise, the node is not OK, and we presume the cast is not invariant
 622       if( n->is_ConstraintCast() ){
 623         worklist.push(n->in(1));
 624       } else if( n->is_Phi() ) {
 625         for( uint i = 1; i < n->req(); i++ ) {
 626           worklist.push(n->in(i));
 627         }
 628       } else {
 629         return false;
 630       }
 631     }
 632   }
 633 
 634   // Quit when the worklist is empty, and we've found no offending nodes.
 635   return true;
 636 }
 637 
 638 //------------------------------Ideal_DU_postCCP-------------------------------
 639 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 640 // going away in this pass and we need to make this memory op depend on the
 641 // gating null check.
 642 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 643   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 644 }
 645 
 646 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 647 // some sense; we get to keep around the knowledge that an oop is not-null
 648 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 649 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 650 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 651 // some of the more trivial cases in the optimizer.  Removing more useless
 652 // Phi's started allowing Loads to illegally float above null checks.  I gave
 653 // up on this approach.  CNC 10/20/2000
 654 // This static method may be called not from MemNode (EncodePNode calls it).
 655 // Only the control edge of the node 'n' might be updated.
 656 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 657   Node *skipped_cast = NULL;
 658   // Need a null check?  Regular static accesses do not because they are
 659   // from constant addresses.  Array ops are gated by the range check (which
 660   // always includes a NULL check).  Just check field ops.
 661   if( n->in(MemNode::Control) == NULL ) {
 662     // Scan upwards for the highest location we can place this memory op.
 663     while( true ) {
 664       switch( adr->Opcode() ) {
 665 
 666       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 667         adr = adr->in(AddPNode::Base);
 668         continue;
 669 
 670       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 671         adr = adr->in(1);
 672         continue;
 673 
 674       case Op_CastPP:
 675         // If the CastPP is useless, just peek on through it.
 676         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 677           // Remember the cast that we've peeked though. If we peek
 678           // through more than one, then we end up remembering the highest
 679           // one, that is, if in a loop, the one closest to the top.
 680           skipped_cast = adr;
 681           adr = adr->in(1);
 682           continue;
 683         }
 684         // CastPP is going away in this pass!  We need this memory op to be
 685         // control-dependent on the test that is guarding the CastPP.
 686         ccp->hash_delete(n);
 687         n->set_req(MemNode::Control, adr->in(0));
 688         ccp->hash_insert(n);
 689         return n;
 690 
 691       case Op_Phi:
 692         // Attempt to float above a Phi to some dominating point.
 693         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 694           // If we've already peeked through a Cast (which could have set the
 695           // control), we can't float above a Phi, because the skipped Cast
 696           // may not be loop invariant.
 697           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 698             adr = adr->in(1);
 699             continue;
 700           }
 701         }
 702 
 703         // Intentional fallthrough!
 704 
 705         // No obvious dominating point.  The mem op is pinned below the Phi
 706         // by the Phi itself.  If the Phi goes away (no true value is merged)
 707         // then the mem op can float, but not indefinitely.  It must be pinned
 708         // behind the controls leading to the Phi.
 709       case Op_CheckCastPP:
 710         // These usually stick around to change address type, however a
 711         // useless one can be elided and we still need to pick up a control edge
 712         if (adr->in(0) == NULL) {
 713           // This CheckCastPP node has NO control and is likely useless. But we
 714           // need check further up the ancestor chain for a control input to keep
 715           // the node in place. 4959717.
 716           skipped_cast = adr;
 717           adr = adr->in(1);
 718           continue;
 719         }
 720         ccp->hash_delete(n);
 721         n->set_req(MemNode::Control, adr->in(0));
 722         ccp->hash_insert(n);
 723         return n;
 724 
 725         // List of "safe" opcodes; those that implicitly block the memory
 726         // op below any null check.
 727       case Op_CastX2P:          // no null checks on native pointers
 728       case Op_Parm:             // 'this' pointer is not null
 729       case Op_LoadP:            // Loading from within a klass
 730       case Op_LoadN:            // Loading from within a klass
 731       case Op_LoadKlass:        // Loading from within a klass
 732       case Op_LoadNKlass:       // Loading from within a klass
 733       case Op_ConP:             // Loading from a klass
 734       case Op_ConN:             // Loading from a klass
 735       case Op_CreateEx:         // Sucking up the guts of an exception oop
 736       case Op_Con:              // Reading from TLS
 737       case Op_CMoveP:           // CMoveP is pinned
 738       case Op_CMoveN:           // CMoveN is pinned
 739         break;                  // No progress
 740 
 741       case Op_Proj:             // Direct call to an allocation routine
 742       case Op_SCMemProj:        // Memory state from store conditional ops
 743 #ifdef ASSERT
 744         {
 745           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 746           const Node* call = adr->in(0);
 747           if (call->is_CallJava()) {
 748             const CallJavaNode* call_java = call->as_CallJava();
 749             const TypeTuple *r = call_java->tf()->range();
 750             assert(r->cnt() > TypeFunc::Parms, "must return value");
 751             const Type* ret_type = r->field_at(TypeFunc::Parms);
 752             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 753             // We further presume that this is one of
 754             // new_instance_Java, new_array_Java, or
 755             // the like, but do not assert for this.
 756           } else if (call->is_Allocate()) {
 757             // similar case to new_instance_Java, etc.
 758           } else if (!call->is_CallLeaf()) {
 759             // Projections from fetch_oop (OSR) are allowed as well.
 760             ShouldNotReachHere();
 761           }
 762         }
 763 #endif
 764         break;
 765       default:
 766         ShouldNotReachHere();
 767       }
 768       break;
 769     }
 770   }
 771 
 772   return  NULL;               // No progress
 773 }
 774 
 775 
 776 //=============================================================================
 777 uint LoadNode::size_of() const { return sizeof(*this); }
 778 uint LoadNode::cmp( const Node &n ) const
 779 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 780 const Type *LoadNode::bottom_type() const { return _type; }
 781 uint LoadNode::ideal_reg() const {
 782   return Matcher::base2reg[_type->base()];
 783 }
 784 
 785 #ifndef PRODUCT
 786 void LoadNode::dump_spec(outputStream *st) const {
 787   MemNode::dump_spec(st);
 788   if( !Verbose && !WizardMode ) {
 789     // standard dump does this in Verbose and WizardMode
 790     st->print(" #"); _type->dump_on(st);
 791   }
 792 }
 793 #endif
 794 
 795 
 796 //----------------------------LoadNode::make-----------------------------------
 797 // Polymorphic factory method:
 798 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 799   Compile* C = gvn.C;
 800 
 801   // sanity check the alias category against the created node type
 802   assert(!(adr_type->isa_oopptr() &&
 803            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 804          "use LoadKlassNode instead");
 805   assert(!(adr_type->isa_aryptr() &&
 806            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 807          "use LoadRangeNode instead");
 808   switch (bt) {
 809   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 810   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 811   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 812   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 813   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 814   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 815   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 816   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 817   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 818   case T_OBJECT:
 819 #ifdef _LP64
 820     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 821       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 822       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 823     } else
 824 #endif
 825     {
 826       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 827       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 828     }
 829   }
 830   ShouldNotReachHere();
 831   return (LoadNode*)NULL;
 832 }
 833 
 834 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 835   bool require_atomic = true;
 836   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 837 }
 838 
 839 
 840 
 841 
 842 //------------------------------hash-------------------------------------------
 843 uint LoadNode::hash() const {
 844   // unroll addition of interesting fields
 845   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 846 }
 847 
 848 //---------------------------can_see_stored_value------------------------------
 849 // This routine exists to make sure this set of tests is done the same
 850 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 851 // will change the graph shape in a way which makes memory alive twice at the
 852 // same time (uses the Oracle model of aliasing), then some
 853 // LoadXNode::Identity will fold things back to the equivalence-class model
 854 // of aliasing.
 855 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 856   Node* ld_adr = in(MemNode::Address);
 857 
 858   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 859   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 860   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 861       atp->field() != NULL && !atp->field()->is_volatile()) {
 862     uint alias_idx = atp->index();
 863     bool final = atp->field()->is_final();
 864     Node* result = NULL;
 865     Node* current = st;
 866     // Skip through chains of MemBarNodes checking the MergeMems for
 867     // new states for the slice of this load.  Stop once any other
 868     // kind of node is encountered.  Loads from final memory can skip
 869     // through any kind of MemBar but normal loads shouldn't skip
 870     // through MemBarAcquire since the could allow them to move out of
 871     // a synchronized region.
 872     while (current->is_Proj()) {
 873       int opc = current->in(0)->Opcode();
 874       if ((final && opc == Op_MemBarAcquire) ||
 875           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 876         Node* mem = current->in(0)->in(TypeFunc::Memory);
 877         if (mem->is_MergeMem()) {
 878           MergeMemNode* merge = mem->as_MergeMem();
 879           Node* new_st = merge->memory_at(alias_idx);
 880           if (new_st == merge->base_memory()) {
 881             // Keep searching
 882             current = merge->base_memory();
 883             continue;
 884           }
 885           // Save the new memory state for the slice and fall through
 886           // to exit.
 887           result = new_st;
 888         }
 889       }
 890       break;
 891     }
 892     if (result != NULL) {
 893       st = result;
 894     }
 895   }
 896 
 897 
 898   // Loop around twice in the case Load -> Initialize -> Store.
 899   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 900   for (int trip = 0; trip <= 1; trip++) {
 901 
 902     if (st->is_Store()) {
 903       Node* st_adr = st->in(MemNode::Address);
 904       if (!phase->eqv(st_adr, ld_adr)) {
 905         // Try harder before giving up...  Match raw and non-raw pointers.
 906         intptr_t st_off = 0;
 907         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 908         if (alloc == NULL)       return NULL;
 909         intptr_t ld_off = 0;
 910         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 911         if (alloc != allo2)      return NULL;
 912         if (ld_off != st_off)    return NULL;
 913         // At this point we have proven something like this setup:
 914         //  A = Allocate(...)
 915         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 916         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 917         // (Actually, we haven't yet proven the Q's are the same.)
 918         // In other words, we are loading from a casted version of
 919         // the same pointer-and-offset that we stored to.
 920         // Thus, we are able to replace L by V.
 921       }
 922       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 923       if (store_Opcode() != st->Opcode())
 924         return NULL;
 925       return st->in(MemNode::ValueIn);
 926     }
 927 
 928     intptr_t offset = 0;  // scratch
 929 
 930     // A load from a freshly-created object always returns zero.
 931     // (This can happen after LoadNode::Ideal resets the load's memory input
 932     // to find_captured_store, which returned InitializeNode::zero_memory.)
 933     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 934         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 935         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 936       // return a zero value for the load's basic type
 937       // (This is one of the few places where a generic PhaseTransform
 938       // can create new nodes.  Think of it as lazily manifesting
 939       // virtually pre-existing constants.)
 940       return phase->zerocon(memory_type());
 941     }
 942 
 943     // A load from an initialization barrier can match a captured store.
 944     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 945       InitializeNode* init = st->in(0)->as_Initialize();
 946       AllocateNode* alloc = init->allocation();
 947       if (alloc != NULL &&
 948           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
 949         // examine a captured store value
 950         st = init->find_captured_store(offset, memory_size(), phase);
 951         if (st != NULL)
 952           continue;             // take one more trip around
 953       }
 954     }
 955 
 956     break;
 957   }
 958 
 959   return NULL;
 960 }
 961 
 962 //----------------------is_instance_field_load_with_local_phi------------------
 963 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
 964   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
 965       in(MemNode::Address)->is_AddP() ) {
 966     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
 967     // Only instances.
 968     if( t_oop != NULL && t_oop->is_known_instance_field() &&
 969         t_oop->offset() != Type::OffsetBot &&
 970         t_oop->offset() != Type::OffsetTop) {
 971       return true;
 972     }
 973   }
 974   return false;
 975 }
 976 
 977 //------------------------------Identity---------------------------------------
 978 // Loads are identity if previous store is to same address
 979 Node *LoadNode::Identity( PhaseTransform *phase ) {
 980   // If the previous store-maker is the right kind of Store, and the store is
 981   // to the same address, then we are equal to the value stored.
 982   Node* mem = in(MemNode::Memory);
 983   Node* value = can_see_stored_value(mem, phase);
 984   if( value ) {
 985     // byte, short & char stores truncate naturally.
 986     // A load has to load the truncated value which requires
 987     // some sort of masking operation and that requires an
 988     // Ideal call instead of an Identity call.
 989     if (memory_size() < BytesPerInt) {
 990       // If the input to the store does not fit with the load's result type,
 991       // it must be truncated via an Ideal call.
 992       if (!phase->type(value)->higher_equal(phase->type(this)))
 993         return this;
 994     }
 995     // (This works even when value is a Con, but LoadNode::Value
 996     // usually runs first, producing the singleton type of the Con.)
 997     return value;
 998   }
 999 
1000   // Search for an existing data phi which was generated before for the same
1001   // instance's field to avoid infinite generation of phis in a loop.
1002   Node *region = mem->in(0);
1003   if (is_instance_field_load_with_local_phi(region)) {
1004     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1005     int this_index  = phase->C->get_alias_index(addr_t);
1006     int this_offset = addr_t->offset();
1007     int this_id    = addr_t->is_oopptr()->instance_id();
1008     const Type* this_type = bottom_type();
1009     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1010       Node* phi = region->fast_out(i);
1011       if (phi->is_Phi() && phi != mem &&
1012           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1013         return phi;
1014       }
1015     }
1016   }
1017 
1018   return this;
1019 }
1020 
1021 
1022 // Returns true if the AliasType refers to the field that holds the
1023 // cached box array.  Currently only handles the IntegerCache case.
1024 static bool is_autobox_cache(Compile::AliasType* atp) {
1025   if (atp != NULL && atp->field() != NULL) {
1026     ciField* field = atp->field();
1027     ciSymbol* klass = field->holder()->name();
1028     if (field->name() == ciSymbol::cache_field_name() &&
1029         field->holder()->uses_default_loader() &&
1030         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1031       return true;
1032     }
1033   }
1034   return false;
1035 }
1036 
1037 // Fetch the base value in the autobox array
1038 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1039   if (atp != NULL && atp->field() != NULL) {
1040     ciField* field = atp->field();
1041     ciSymbol* klass = field->holder()->name();
1042     if (field->name() == ciSymbol::cache_field_name() &&
1043         field->holder()->uses_default_loader() &&
1044         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1045       assert(field->is_constant(), "what?");
1046       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1047       // Fetch the box object at the base of the array and get its value
1048       ciInstance* box = array->obj_at(0)->as_instance();
1049       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1050       if (ik->nof_nonstatic_fields() == 1) {
1051         // This should be true nonstatic_field_at requires calling
1052         // nof_nonstatic_fields so check it anyway
1053         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1054         cache_offset = c.as_int();
1055       }
1056       return true;
1057     }
1058   }
1059   return false;
1060 }
1061 
1062 // Returns true if the AliasType refers to the value field of an
1063 // autobox object.  Currently only handles Integer.
1064 static bool is_autobox_object(Compile::AliasType* atp) {
1065   if (atp != NULL && atp->field() != NULL) {
1066     ciField* field = atp->field();
1067     ciSymbol* klass = field->holder()->name();
1068     if (field->name() == ciSymbol::value_name() &&
1069         field->holder()->uses_default_loader() &&
1070         klass == ciSymbol::java_lang_Integer()) {
1071       return true;
1072     }
1073   }
1074   return false;
1075 }
1076 
1077 
1078 // We're loading from an object which has autobox behaviour.
1079 // If this object is result of a valueOf call we'll have a phi
1080 // merging a newly allocated object and a load from the cache.
1081 // We want to replace this load with the original incoming
1082 // argument to the valueOf call.
1083 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1084   Node* base = in(Address)->in(AddPNode::Base);
1085   if (base->is_Phi() && base->req() == 3) {
1086     AllocateNode* allocation = NULL;
1087     int allocation_index = -1;
1088     int load_index = -1;
1089     for (uint i = 1; i < base->req(); i++) {
1090       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1091       if (allocation != NULL) {
1092         allocation_index = i;
1093         load_index = 3 - allocation_index;
1094         break;
1095       }
1096     }
1097     bool has_load = ( allocation != NULL &&
1098                       (base->in(load_index)->is_Load() ||
1099                        base->in(load_index)->is_DecodeN() &&
1100                        base->in(load_index)->in(1)->is_Load()) );
1101     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1102       // Push the loads from the phi that comes from valueOf up
1103       // through it to allow elimination of the loads and the recovery
1104       // of the original value.
1105       Node* mem_phi = in(Memory);
1106       Node* offset = in(Address)->in(AddPNode::Offset);
1107       Node* region = base->in(0);
1108 
1109       Node* in1 = clone();
1110       Node* in1_addr = in1->in(Address)->clone();
1111       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1112       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1113       in1_addr->set_req(AddPNode::Offset, offset);
1114       in1->set_req(0, region->in(allocation_index));
1115       in1->set_req(Address, in1_addr);
1116       in1->set_req(Memory, mem_phi->in(allocation_index));
1117 
1118       Node* in2 = clone();
1119       Node* in2_addr = in2->in(Address)->clone();
1120       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1121       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1122       in2_addr->set_req(AddPNode::Offset, offset);
1123       in2->set_req(0, region->in(load_index));
1124       in2->set_req(Address, in2_addr);
1125       in2->set_req(Memory, mem_phi->in(load_index));
1126 
1127       in1_addr = phase->transform(in1_addr);
1128       in1 =      phase->transform(in1);
1129       in2_addr = phase->transform(in2_addr);
1130       in2 =      phase->transform(in2);
1131 
1132       PhiNode* result = PhiNode::make_blank(region, this);
1133       result->set_req(allocation_index, in1);
1134       result->set_req(load_index, in2);
1135       return result;
1136     }
1137   } else if (base->is_Load() ||
1138              base->is_DecodeN() && base->in(1)->is_Load()) {
1139     if (base->is_DecodeN()) {
1140       // Get LoadN node which loads cached Integer object
1141       base = base->in(1);
1142     }
1143     // Eliminate the load of Integer.value for integers from the cache
1144     // array by deriving the value from the index into the array.
1145     // Capture the offset of the load and then reverse the computation.
1146     Node* load_base = base->in(Address)->in(AddPNode::Base);
1147     if (load_base->is_DecodeN()) {
1148       // Get LoadN node which loads IntegerCache.cache field
1149       load_base = load_base->in(1);
1150     }
1151     if (load_base != NULL) {
1152       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1153       intptr_t cache_offset;
1154       int shift = -1;
1155       Node* cache = NULL;
1156       if (is_autobox_cache(atp)) {
1157         shift  = exact_log2(type2aelembytes(T_OBJECT));
1158         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1159       }
1160       if (cache != NULL && base->in(Address)->is_AddP()) {
1161         Node* elements[4];
1162         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1163         int cache_low;
1164         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1165           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1166           // Add up all the offsets making of the address of the load
1167           Node* result = elements[0];
1168           for (int i = 1; i < count; i++) {
1169             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1170           }
1171           // Remove the constant offset from the address and then
1172           // remove the scaling of the offset to recover the original index.
1173           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1174           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1175             // Peel the shift off directly but wrap it in a dummy node
1176             // since Ideal can't return existing nodes
1177             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1178           } else {
1179             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1180           }
1181 #ifdef _LP64
1182           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1183 #endif
1184           return result;
1185         }
1186       }
1187     }
1188   }
1189   return NULL;
1190 }
1191 
1192 //------------------------------split_through_phi------------------------------
1193 // Split instance field load through Phi.
1194 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1195   Node* mem     = in(MemNode::Memory);
1196   Node* address = in(MemNode::Address);
1197   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1198   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1199 
1200   assert(mem->is_Phi() && (t_oop != NULL) &&
1201          t_oop->is_known_instance_field(), "invalide conditions");
1202 
1203   Node *region = mem->in(0);
1204   if (region == NULL) {
1205     return NULL; // Wait stable graph
1206   }
1207   uint cnt = mem->req();
1208   for( uint i = 1; i < cnt; i++ ) {
1209     Node *in = mem->in(i);
1210     if( in == NULL ) {
1211       return NULL; // Wait stable graph
1212     }
1213   }
1214   // Check for loop invariant.
1215   if (cnt == 3) {
1216     for( uint i = 1; i < cnt; i++ ) {
1217       Node *in = mem->in(i);
1218       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1219       if (m == mem) {
1220         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1221         return this;
1222       }
1223     }
1224   }
1225   // Split through Phi (see original code in loopopts.cpp).
1226   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1227 
1228   // Do nothing here if Identity will find a value
1229   // (to avoid infinite chain of value phis generation).
1230   if ( !phase->eqv(this, this->Identity(phase)) )
1231     return NULL;
1232 
1233   // Skip the split if the region dominates some control edge of the address.
1234   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1235     return NULL;
1236 
1237   const Type* this_type = this->bottom_type();
1238   int this_index  = phase->C->get_alias_index(addr_t);
1239   int this_offset = addr_t->offset();
1240   int this_iid    = addr_t->is_oopptr()->instance_id();
1241   int wins = 0;
1242   PhaseIterGVN *igvn = phase->is_IterGVN();
1243   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1244   for( uint i = 1; i < region->req(); i++ ) {
1245     Node *x;
1246     Node* the_clone = NULL;
1247     if( region->in(i) == phase->C->top() ) {
1248       x = phase->C->top();      // Dead path?  Use a dead data op
1249     } else {
1250       x = this->clone();        // Else clone up the data op
1251       the_clone = x;            // Remember for possible deletion.
1252       // Alter data node to use pre-phi inputs
1253       if( this->in(0) == region ) {
1254         x->set_req( 0, region->in(i) );
1255       } else {
1256         x->set_req( 0, NULL );
1257       }
1258       for( uint j = 1; j < this->req(); j++ ) {
1259         Node *in = this->in(j);
1260         if( in->is_Phi() && in->in(0) == region )
1261           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1262       }
1263     }
1264     // Check for a 'win' on some paths
1265     const Type *t = x->Value(igvn);
1266 
1267     bool singleton = t->singleton();
1268 
1269     // See comments in PhaseIdealLoop::split_thru_phi().
1270     if( singleton && t == Type::TOP ) {
1271       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1272     }
1273 
1274     if( singleton ) {
1275       wins++;
1276       x = igvn->makecon(t);
1277     } else {
1278       // We now call Identity to try to simplify the cloned node.
1279       // Note that some Identity methods call phase->type(this).
1280       // Make sure that the type array is big enough for
1281       // our new node, even though we may throw the node away.
1282       // (This tweaking with igvn only works because x is a new node.)
1283       igvn->set_type(x, t);
1284       // If x is a TypeNode, capture any more-precise type permanently into Node
1285       // otherwise it will be not updated during igvn->transform since
1286       // igvn->type(x) is set to x->Value() already.
1287       x->raise_bottom_type(t);
1288       Node *y = x->Identity(igvn);
1289       if( y != x ) {
1290         wins++;
1291         x = y;
1292       } else {
1293         y = igvn->hash_find(x);
1294         if( y ) {
1295           wins++;
1296           x = y;
1297         } else {
1298           // Else x is a new node we are keeping
1299           // We do not need register_new_node_with_optimizer
1300           // because set_type has already been called.
1301           igvn->_worklist.push(x);
1302         }
1303       }
1304     }
1305     if (x != the_clone && the_clone != NULL)
1306       igvn->remove_dead_node(the_clone);
1307     phi->set_req(i, x);
1308   }
1309   if( wins > 0 ) {
1310     // Record Phi
1311     igvn->register_new_node_with_optimizer(phi);
1312     return phi;
1313   }
1314   igvn->remove_dead_node(phi);
1315   return NULL;
1316 }
1317 
1318 //------------------------------Ideal------------------------------------------
1319 // If the load is from Field memory and the pointer is non-null, we can
1320 // zero out the control input.
1321 // If the offset is constant and the base is an object allocation,
1322 // try to hook me up to the exact initializing store.
1323 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1324   Node* p = MemNode::Ideal_common(phase, can_reshape);
1325   if (p)  return (p == NodeSentinel) ? NULL : p;
1326 
1327   Node* ctrl    = in(MemNode::Control);
1328   Node* address = in(MemNode::Address);
1329 
1330   // Skip up past a SafePoint control.  Cannot do this for Stores because
1331   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1332   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1333       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1334     ctrl = ctrl->in(0);
1335     set_req(MemNode::Control,ctrl);
1336   }
1337 
1338   intptr_t ignore = 0;
1339   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1340   if (base != NULL
1341       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1342     // Check for useless control edge in some common special cases
1343     if (in(MemNode::Control) != NULL
1344         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1345         && all_controls_dominate(base, phase->C->start())) {
1346       // A method-invariant, non-null address (constant or 'this' argument).
1347       set_req(MemNode::Control, NULL);
1348     }
1349 
1350     if (EliminateAutoBox && can_reshape) {
1351       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1352       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1353       if (is_autobox_object(atp)) {
1354         Node* result = eliminate_autobox(phase);
1355         if (result != NULL) return result;
1356       }
1357     }
1358   }
1359 
1360   Node* mem = in(MemNode::Memory);
1361   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1362 
1363   if (addr_t != NULL) {
1364     // try to optimize our memory input
1365     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1366     if (opt_mem != mem) {
1367       set_req(MemNode::Memory, opt_mem);
1368       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1369       return this;
1370     }
1371     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1372     if (can_reshape && opt_mem->is_Phi() &&
1373         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1374       // Split instance field load through Phi.
1375       Node* result = split_through_phi(phase);
1376       if (result != NULL) return result;
1377     }
1378   }
1379 
1380   // Check for prior store with a different base or offset; make Load
1381   // independent.  Skip through any number of them.  Bail out if the stores
1382   // are in an endless dead cycle and report no progress.  This is a key
1383   // transform for Reflection.  However, if after skipping through the Stores
1384   // we can't then fold up against a prior store do NOT do the transform as
1385   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1386   // array memory alive twice: once for the hoisted Load and again after the
1387   // bypassed Store.  This situation only works if EVERYBODY who does
1388   // anti-dependence work knows how to bypass.  I.e. we need all
1389   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1390   // the alias index stuff.  So instead, peek through Stores and IFF we can
1391   // fold up, do so.
1392   Node* prev_mem = find_previous_store(phase);
1393   // Steps (a), (b):  Walk past independent stores to find an exact match.
1394   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1395     // (c) See if we can fold up on the spot, but don't fold up here.
1396     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1397     // just return a prior value, which is done by Identity calls.
1398     if (can_see_stored_value(prev_mem, phase)) {
1399       // Make ready for step (d):
1400       set_req(MemNode::Memory, prev_mem);
1401       return this;
1402     }
1403   }
1404 
1405   return NULL;                  // No further progress
1406 }
1407 
1408 // Helper to recognize certain Klass fields which are invariant across
1409 // some group of array types (e.g., int[] or all T[] where T < Object).
1410 const Type*
1411 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1412                                  ciKlass* klass) const {
1413   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1414     // The field is Klass::_modifier_flags.  Return its (constant) value.
1415     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1416     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1417     return TypeInt::make(klass->modifier_flags());
1418   }
1419   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1420     // The field is Klass::_access_flags.  Return its (constant) value.
1421     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1422     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1423     return TypeInt::make(klass->access_flags());
1424   }
1425   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1426     // The field is Klass::_layout_helper.  Return its constant value if known.
1427     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1428     return TypeInt::make(klass->layout_helper());
1429   }
1430 
1431   // No match.
1432   return NULL;
1433 }
1434 
1435 //------------------------------Value-----------------------------------------
1436 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1437   // Either input is TOP ==> the result is TOP
1438   Node* mem = in(MemNode::Memory);
1439   const Type *t1 = phase->type(mem);
1440   if (t1 == Type::TOP)  return Type::TOP;
1441   Node* adr = in(MemNode::Address);
1442   const TypePtr* tp = phase->type(adr)->isa_ptr();
1443   if (tp == NULL || tp->empty())  return Type::TOP;
1444   int off = tp->offset();
1445   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1446 
1447   // Try to guess loaded type from pointer type
1448   if (tp->base() == Type::AryPtr) {
1449     const Type *t = tp->is_aryptr()->elem();
1450     // Don't do this for integer types. There is only potential profit if
1451     // the element type t is lower than _type; that is, for int types, if _type is
1452     // more restrictive than t.  This only happens here if one is short and the other
1453     // char (both 16 bits), and in those cases we've made an intentional decision
1454     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1455     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1456     //
1457     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1458     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1459     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1460     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1461     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1462     // In fact, that could have been the original type of p1, and p1 could have
1463     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1464     // expression (LShiftL quux 3) independently optimized to the constant 8.
1465     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1466         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1467       // t might actually be lower than _type, if _type is a unique
1468       // concrete subclass of abstract class t.
1469       // Make sure the reference is not into the header, by comparing
1470       // the offset against the offset of the start of the array's data.
1471       // Different array types begin at slightly different offsets (12 vs. 16).
1472       // We choose T_BYTE as an example base type that is least restrictive
1473       // as to alignment, which will therefore produce the smallest
1474       // possible base offset.
1475       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1476       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1477         const Type* jt = t->join(_type);
1478         // In any case, do not allow the join, per se, to empty out the type.
1479         if (jt->empty() && !t->empty()) {
1480           // This can happen if a interface-typed array narrows to a class type.
1481           jt = _type;
1482         }
1483 
1484         if (EliminateAutoBox && adr->is_AddP()) {
1485           // The pointers in the autobox arrays are always non-null
1486           Node* base = adr->in(AddPNode::Base);
1487           if (base != NULL &&
1488               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1489             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1490             if (is_autobox_cache(atp)) {
1491               return jt->join(TypePtr::NOTNULL)->is_ptr();
1492             }
1493           }
1494         }
1495         return jt;
1496       }
1497     }
1498   } else if (tp->base() == Type::InstPtr) {
1499     assert( off != Type::OffsetBot ||
1500             // arrays can be cast to Objects
1501             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1502             // unsafe field access may not have a constant offset
1503             phase->C->has_unsafe_access(),
1504             "Field accesses must be precise" );
1505     // For oop loads, we expect the _type to be precise
1506   } else if (tp->base() == Type::KlassPtr) {
1507     assert( off != Type::OffsetBot ||
1508             // arrays can be cast to Objects
1509             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1510             // also allow array-loading from the primary supertype
1511             // array during subtype checks
1512             Opcode() == Op_LoadKlass,
1513             "Field accesses must be precise" );
1514     // For klass/static loads, we expect the _type to be precise
1515   }
1516 
1517   const TypeKlassPtr *tkls = tp->isa_klassptr();
1518   if (tkls != NULL && !StressReflectiveCode) {
1519     ciKlass* klass = tkls->klass();
1520     if (klass->is_loaded() && tkls->klass_is_exact()) {
1521       // We are loading a field from a Klass metaobject whose identity
1522       // is known at compile time (the type is "exact" or "precise").
1523       // Check for fields we know are maintained as constants by the VM.
1524       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1525         // The field is Klass::_super_check_offset.  Return its (constant) value.
1526         // (Folds up type checking code.)
1527         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1528         return TypeInt::make(klass->super_check_offset());
1529       }
1530       // Compute index into primary_supers array
1531       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1532       // Check for overflowing; use unsigned compare to handle the negative case.
1533       if( depth < ciKlass::primary_super_limit() ) {
1534         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1535         // (Folds up type checking code.)
1536         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1537         ciKlass *ss = klass->super_of_depth(depth);
1538         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1539       }
1540       const Type* aift = load_array_final_field(tkls, klass);
1541       if (aift != NULL)  return aift;
1542       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1543           && klass->is_array_klass()) {
1544         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1545         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1546         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1547         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1548       }
1549       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1550         // The field is Klass::_java_mirror.  Return its (constant) value.
1551         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1552         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1553         return TypeInstPtr::make(klass->java_mirror());
1554       }
1555     }
1556 
1557     // We can still check if we are loading from the primary_supers array at a
1558     // shallow enough depth.  Even though the klass is not exact, entries less
1559     // than or equal to its super depth are correct.
1560     if (klass->is_loaded() ) {
1561       ciType *inner = klass->klass();
1562       while( inner->is_obj_array_klass() )
1563         inner = inner->as_obj_array_klass()->base_element_type();
1564       if( inner->is_instance_klass() &&
1565           !inner->as_instance_klass()->flags().is_interface() ) {
1566         // Compute index into primary_supers array
1567         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1568         // Check for overflowing; use unsigned compare to handle the negative case.
1569         if( depth < ciKlass::primary_super_limit() &&
1570             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1571           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1572           // (Folds up type checking code.)
1573           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1574           ciKlass *ss = klass->super_of_depth(depth);
1575           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1576         }
1577       }
1578     }
1579 
1580     // If the type is enough to determine that the thing is not an array,
1581     // we can give the layout_helper a positive interval type.
1582     // This will help short-circuit some reflective code.
1583     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1584         && !klass->is_array_klass() // not directly typed as an array
1585         && !klass->is_interface()  // specifically not Serializable & Cloneable
1586         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1587         ) {
1588       // Note:  When interfaces are reliable, we can narrow the interface
1589       // test to (klass != Serializable && klass != Cloneable).
1590       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1591       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1592       // The key property of this type is that it folds up tests
1593       // for array-ness, since it proves that the layout_helper is positive.
1594       // Thus, a generic value like the basic object layout helper works fine.
1595       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1596     }
1597   }
1598 
1599   // If we are loading from a freshly-allocated object, produce a zero,
1600   // if the load is provably beyond the header of the object.
1601   // (Also allow a variable load from a fresh array to produce zero.)
1602   if (ReduceFieldZeroing) {
1603     Node* value = can_see_stored_value(mem,phase);
1604     if (value != NULL && value->is_Con())
1605       return value->bottom_type();
1606   }
1607 
1608   const TypeOopPtr *tinst = tp->isa_oopptr();
1609   if (tinst != NULL && tinst->is_known_instance_field()) {
1610     // If we have an instance type and our memory input is the
1611     // programs's initial memory state, there is no matching store,
1612     // so just return a zero of the appropriate type
1613     Node *mem = in(MemNode::Memory);
1614     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1615       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1616       return Type::get_zero_type(_type->basic_type());
1617     }
1618   }
1619   return _type;
1620 }
1621 
1622 //------------------------------match_edge-------------------------------------
1623 // Do we Match on this edge index or not?  Match only the address.
1624 uint LoadNode::match_edge(uint idx) const {
1625   return idx == MemNode::Address;
1626 }
1627 
1628 //--------------------------LoadBNode::Ideal--------------------------------------
1629 //
1630 //  If the previous store is to the same address as this load,
1631 //  and the value stored was larger than a byte, replace this load
1632 //  with the value stored truncated to a byte.  If no truncation is
1633 //  needed, the replacement is done in LoadNode::Identity().
1634 //
1635 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1636   Node* mem = in(MemNode::Memory);
1637   Node* value = can_see_stored_value(mem,phase);
1638   if( value && !phase->type(value)->higher_equal( _type ) ) {
1639     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1640     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1641   }
1642   // Identity call will handle the case where truncation is not needed.
1643   return LoadNode::Ideal(phase, can_reshape);
1644 }
1645 
1646 //--------------------------LoadUBNode::Ideal-------------------------------------
1647 //
1648 //  If the previous store is to the same address as this load,
1649 //  and the value stored was larger than a byte, replace this load
1650 //  with the value stored truncated to a byte.  If no truncation is
1651 //  needed, the replacement is done in LoadNode::Identity().
1652 //
1653 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1654   Node* mem = in(MemNode::Memory);
1655   Node* value = can_see_stored_value(mem, phase);
1656   if (value && !phase->type(value)->higher_equal(_type))
1657     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1658   // Identity call will handle the case where truncation is not needed.
1659   return LoadNode::Ideal(phase, can_reshape);
1660 }
1661 
1662 //--------------------------LoadUSNode::Ideal-------------------------------------
1663 //
1664 //  If the previous store is to the same address as this load,
1665 //  and the value stored was larger than a char, replace this load
1666 //  with the value stored truncated to a char.  If no truncation is
1667 //  needed, the replacement is done in LoadNode::Identity().
1668 //
1669 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1670   Node* mem = in(MemNode::Memory);
1671   Node* value = can_see_stored_value(mem,phase);
1672   if( value && !phase->type(value)->higher_equal( _type ) )
1673     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1674   // Identity call will handle the case where truncation is not needed.
1675   return LoadNode::Ideal(phase, can_reshape);
1676 }
1677 
1678 //--------------------------LoadSNode::Ideal--------------------------------------
1679 //
1680 //  If the previous store is to the same address as this load,
1681 //  and the value stored was larger than a short, replace this load
1682 //  with the value stored truncated to a short.  If no truncation is
1683 //  needed, the replacement is done in LoadNode::Identity().
1684 //
1685 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1686   Node* mem = in(MemNode::Memory);
1687   Node* value = can_see_stored_value(mem,phase);
1688   if( value && !phase->type(value)->higher_equal( _type ) ) {
1689     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1690     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1691   }
1692   // Identity call will handle the case where truncation is not needed.
1693   return LoadNode::Ideal(phase, can_reshape);
1694 }
1695 
1696 //=============================================================================
1697 //----------------------------LoadKlassNode::make------------------------------
1698 // Polymorphic factory method:
1699 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1700   Compile* C = gvn.C;
1701   Node *ctl = NULL;
1702   // sanity check the alias category against the created node type
1703   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1704   assert(adr_type != NULL, "expecting TypeOopPtr");
1705 #ifdef _LP64
1706   if (adr_type->is_ptr_to_narrowoop()) {
1707     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1708     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1709   }
1710 #endif
1711   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1712   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1713 }
1714 
1715 //------------------------------Value------------------------------------------
1716 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1717   return klass_value_common(phase);
1718 }
1719 
1720 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1721   // Either input is TOP ==> the result is TOP
1722   const Type *t1 = phase->type( in(MemNode::Memory) );
1723   if (t1 == Type::TOP)  return Type::TOP;
1724   Node *adr = in(MemNode::Address);
1725   const Type *t2 = phase->type( adr );
1726   if (t2 == Type::TOP)  return Type::TOP;
1727   const TypePtr *tp = t2->is_ptr();
1728   if (TypePtr::above_centerline(tp->ptr()) ||
1729       tp->ptr() == TypePtr::Null)  return Type::TOP;
1730 
1731   // Return a more precise klass, if possible
1732   const TypeInstPtr *tinst = tp->isa_instptr();
1733   if (tinst != NULL) {
1734     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1735     int offset = tinst->offset();
1736     if (ik == phase->C->env()->Class_klass()
1737         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1738             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1739       // We are loading a special hidden field from a Class mirror object,
1740       // the field which points to the VM's Klass metaobject.
1741       ciType* t = tinst->java_mirror_type();
1742       // java_mirror_type returns non-null for compile-time Class constants.
1743       if (t != NULL) {
1744         // constant oop => constant klass
1745         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1746           return TypeKlassPtr::make(ciArrayKlass::make(t));
1747         }
1748         if (!t->is_klass()) {
1749           // a primitive Class (e.g., int.class) has NULL for a klass field
1750           return TypePtr::NULL_PTR;
1751         }
1752         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1753         return TypeKlassPtr::make(t->as_klass());
1754       }
1755       // non-constant mirror, so we can't tell what's going on
1756     }
1757     if( !ik->is_loaded() )
1758       return _type;             // Bail out if not loaded
1759     if (offset == oopDesc::klass_offset_in_bytes()) {
1760       if (tinst->klass_is_exact()) {
1761         return TypeKlassPtr::make(ik);
1762       }
1763       // See if we can become precise: no subklasses and no interface
1764       // (Note:  We need to support verified interfaces.)
1765       if (!ik->is_interface() && !ik->has_subklass()) {
1766         //assert(!UseExactTypes, "this code should be useless with exact types");
1767         // Add a dependence; if any subclass added we need to recompile
1768         if (!ik->is_final()) {
1769           // %%% should use stronger assert_unique_concrete_subtype instead
1770           phase->C->dependencies()->assert_leaf_type(ik);
1771         }
1772         // Return precise klass
1773         return TypeKlassPtr::make(ik);
1774       }
1775 
1776       // Return root of possible klass
1777       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1778     }
1779   }
1780 
1781   // Check for loading klass from an array
1782   const TypeAryPtr *tary = tp->isa_aryptr();
1783   if( tary != NULL ) {
1784     ciKlass *tary_klass = tary->klass();
1785     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1786         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1787       if (tary->klass_is_exact()) {
1788         return TypeKlassPtr::make(tary_klass);
1789       }
1790       ciArrayKlass *ak = tary->klass()->as_array_klass();
1791       // If the klass is an object array, we defer the question to the
1792       // array component klass.
1793       if( ak->is_obj_array_klass() ) {
1794         assert( ak->is_loaded(), "" );
1795         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1796         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1797           ciInstanceKlass* ik = base_k->as_instance_klass();
1798           // See if we can become precise: no subklasses and no interface
1799           if (!ik->is_interface() && !ik->has_subklass()) {
1800             //assert(!UseExactTypes, "this code should be useless with exact types");
1801             // Add a dependence; if any subclass added we need to recompile
1802             if (!ik->is_final()) {
1803               phase->C->dependencies()->assert_leaf_type(ik);
1804             }
1805             // Return precise array klass
1806             return TypeKlassPtr::make(ak);
1807           }
1808         }
1809         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1810       } else {                  // Found a type-array?
1811         //assert(!UseExactTypes, "this code should be useless with exact types");
1812         assert( ak->is_type_array_klass(), "" );
1813         return TypeKlassPtr::make(ak); // These are always precise
1814       }
1815     }
1816   }
1817 
1818   // Check for loading klass from an array klass
1819   const TypeKlassPtr *tkls = tp->isa_klassptr();
1820   if (tkls != NULL && !StressReflectiveCode) {
1821     ciKlass* klass = tkls->klass();
1822     if( !klass->is_loaded() )
1823       return _type;             // Bail out if not loaded
1824     if( klass->is_obj_array_klass() &&
1825         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1826       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1827       // // Always returning precise element type is incorrect,
1828       // // e.g., element type could be object and array may contain strings
1829       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1830 
1831       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1832       // according to the element type's subclassing.
1833       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1834     }
1835     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1836         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1837       ciKlass* sup = klass->as_instance_klass()->super();
1838       // The field is Klass::_super.  Return its (constant) value.
1839       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1840       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1841     }
1842   }
1843 
1844   // Bailout case
1845   return LoadNode::Value(phase);
1846 }
1847 
1848 //------------------------------Identity---------------------------------------
1849 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1850 // Also feed through the klass in Allocate(...klass...)._klass.
1851 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1852   return klass_identity_common(phase);
1853 }
1854 
1855 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1856   Node* x = LoadNode::Identity(phase);
1857   if (x != this)  return x;
1858 
1859   // Take apart the address into an oop and and offset.
1860   // Return 'this' if we cannot.
1861   Node*    adr    = in(MemNode::Address);
1862   intptr_t offset = 0;
1863   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1864   if (base == NULL)     return this;
1865   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1866   if (toop == NULL)     return this;
1867 
1868   // We can fetch the klass directly through an AllocateNode.
1869   // This works even if the klass is not constant (clone or newArray).
1870   if (offset == oopDesc::klass_offset_in_bytes()) {
1871     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1872     if (allocated_klass != NULL) {
1873       return allocated_klass;
1874     }
1875   }
1876 
1877   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1878   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1879   // See inline_native_Class_query for occurrences of these patterns.
1880   // Java Example:  x.getClass().isAssignableFrom(y)
1881   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1882   //
1883   // This improves reflective code, often making the Class
1884   // mirror go completely dead.  (Current exception:  Class
1885   // mirrors may appear in debug info, but we could clean them out by
1886   // introducing a new debug info operator for klassOop.java_mirror).
1887   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1888       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1889           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1890     // We are loading a special hidden field from a Class mirror,
1891     // the field which points to its Klass or arrayKlass metaobject.
1892     if (base->is_Load()) {
1893       Node* adr2 = base->in(MemNode::Address);
1894       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1895       if (tkls != NULL && !tkls->empty()
1896           && (tkls->klass()->is_instance_klass() ||
1897               tkls->klass()->is_array_klass())
1898           && adr2->is_AddP()
1899           ) {
1900         int mirror_field = Klass::java_mirror_offset_in_bytes();
1901         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1902           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1903         }
1904         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1905           return adr2->in(AddPNode::Base);
1906         }
1907       }
1908     }
1909   }
1910 
1911   return this;
1912 }
1913 
1914 
1915 //------------------------------Value------------------------------------------
1916 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1917   const Type *t = klass_value_common(phase);
1918   if (t == Type::TOP)
1919     return t;
1920 
1921   return t->make_narrowoop();
1922 }
1923 
1924 //------------------------------Identity---------------------------------------
1925 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1926 // Also feed through the klass in Allocate(...klass...)._klass.
1927 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1928   Node *x = klass_identity_common(phase);
1929 
1930   const Type *t = phase->type( x );
1931   if( t == Type::TOP ) return x;
1932   if( t->isa_narrowoop()) return x;
1933 
1934   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1935 }
1936 
1937 //------------------------------Value-----------------------------------------
1938 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1939   // Either input is TOP ==> the result is TOP
1940   const Type *t1 = phase->type( in(MemNode::Memory) );
1941   if( t1 == Type::TOP ) return Type::TOP;
1942   Node *adr = in(MemNode::Address);
1943   const Type *t2 = phase->type( adr );
1944   if( t2 == Type::TOP ) return Type::TOP;
1945   const TypePtr *tp = t2->is_ptr();
1946   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1947   const TypeAryPtr *tap = tp->isa_aryptr();
1948   if( !tap ) return _type;
1949   return tap->size();
1950 }
1951 
1952 //-------------------------------Ideal---------------------------------------
1953 // Feed through the length in AllocateArray(...length...)._length.
1954 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1955   Node* p = MemNode::Ideal_common(phase, can_reshape);
1956   if (p)  return (p == NodeSentinel) ? NULL : p;
1957 
1958   // Take apart the address into an oop and and offset.
1959   // Return 'this' if we cannot.
1960   Node*    adr    = in(MemNode::Address);
1961   intptr_t offset = 0;
1962   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
1963   if (base == NULL)     return NULL;
1964   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1965   if (tary == NULL)     return NULL;
1966 
1967   // We can fetch the length directly through an AllocateArrayNode.
1968   // This works even if the length is not constant (clone or newArray).
1969   if (offset == arrayOopDesc::length_offset_in_bytes()) {
1970     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1971     if (alloc != NULL) {
1972       Node* allocated_length = alloc->Ideal_length();
1973       Node* len = alloc->make_ideal_length(tary, phase);
1974       if (allocated_length != len) {
1975         // New CastII improves on this.
1976         return len;
1977       }
1978     }
1979   }
1980 
1981   return NULL;
1982 }
1983 
1984 //------------------------------Identity---------------------------------------
1985 // Feed through the length in AllocateArray(...length...)._length.
1986 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1987   Node* x = LoadINode::Identity(phase);
1988   if (x != this)  return x;
1989 
1990   // Take apart the address into an oop and and offset.
1991   // Return 'this' if we cannot.
1992   Node*    adr    = in(MemNode::Address);
1993   intptr_t offset = 0;
1994   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1995   if (base == NULL)     return this;
1996   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1997   if (tary == NULL)     return this;
1998 
1999   // We can fetch the length directly through an AllocateArrayNode.
2000   // This works even if the length is not constant (clone or newArray).
2001   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2002     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2003     if (alloc != NULL) {
2004       Node* allocated_length = alloc->Ideal_length();
2005       // Do not allow make_ideal_length to allocate a CastII node.
2006       Node* len = alloc->make_ideal_length(tary, phase, false);
2007       if (allocated_length == len) {
2008         // Return allocated_length only if it would not be improved by a CastII.
2009         return allocated_length;
2010       }
2011     }
2012   }
2013 
2014   return this;
2015 
2016 }
2017 
2018 //=============================================================================
2019 //---------------------------StoreNode::make-----------------------------------
2020 // Polymorphic factory method:
2021 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2022   Compile* C = gvn.C;
2023 
2024   switch (bt) {
2025   case T_BOOLEAN:
2026   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2027   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2028   case T_CHAR:
2029   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2030   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2031   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2032   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2033   case T_ADDRESS:
2034   case T_OBJECT:
2035 #ifdef _LP64
2036     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2037         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2038          adr->bottom_type()->isa_rawptr())) {
2039       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2040       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2041     } else
2042 #endif
2043     {
2044       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2045     }
2046   }
2047   ShouldNotReachHere();
2048   return (StoreNode*)NULL;
2049 }
2050 
2051 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2052   bool require_atomic = true;
2053   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2054 }
2055 
2056 
2057 //--------------------------bottom_type----------------------------------------
2058 const Type *StoreNode::bottom_type() const {
2059   return Type::MEMORY;
2060 }
2061 
2062 //------------------------------hash-------------------------------------------
2063 uint StoreNode::hash() const {
2064   // unroll addition of interesting fields
2065   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2066 
2067   // Since they are not commoned, do not hash them:
2068   return NO_HASH;
2069 }
2070 
2071 //------------------------------Ideal------------------------------------------
2072 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2073 // When a store immediately follows a relevant allocation/initialization,
2074 // try to capture it into the initialization, or hoist it above.
2075 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2076   Node* p = MemNode::Ideal_common(phase, can_reshape);
2077   if (p)  return (p == NodeSentinel) ? NULL : p;
2078 
2079   Node* mem     = in(MemNode::Memory);
2080   Node* address = in(MemNode::Address);
2081 
2082   // Back-to-back stores to same address?  Fold em up.
2083   // Generally unsafe if I have intervening uses...
2084   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2085     // Looking at a dead closed cycle of memory?
2086     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2087 
2088     assert(Opcode() == mem->Opcode() ||
2089            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2090            "no mismatched stores, except on raw memory");
2091 
2092     if (mem->outcnt() == 1 &&           // check for intervening uses
2093         mem->as_Store()->memory_size() <= this->memory_size()) {
2094       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2095       // For example, 'mem' might be the final state at a conditional return.
2096       // Or, 'mem' might be used by some node which is live at the same time
2097       // 'this' is live, which might be unschedulable.  So, require exactly
2098       // ONE user, the 'this' store, until such time as we clone 'mem' for
2099       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2100       if (can_reshape) {  // (%%% is this an anachronism?)
2101         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2102                   phase->is_IterGVN());
2103       } else {
2104         // It's OK to do this in the parser, since DU info is always accurate,
2105         // and the parser always refers to nodes via SafePointNode maps.
2106         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2107       }
2108       return this;
2109     }
2110   }
2111 
2112   // Capture an unaliased, unconditional, simple store into an initializer.
2113   // Or, if it is independent of the allocation, hoist it above the allocation.
2114   if (ReduceFieldZeroing && /*can_reshape &&*/
2115       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2116     InitializeNode* init = mem->in(0)->as_Initialize();
2117     intptr_t offset = init->can_capture_store(this, phase);
2118     if (offset > 0) {
2119       Node* moved = init->capture_store(this, offset, phase);
2120       // If the InitializeNode captured me, it made a raw copy of me,
2121       // and I need to disappear.
2122       if (moved != NULL) {
2123         // %%% hack to ensure that Ideal returns a new node:
2124         mem = MergeMemNode::make(phase->C, mem);
2125         return mem;             // fold me away
2126       }
2127     }
2128   }
2129 
2130   return NULL;                  // No further progress
2131 }
2132 
2133 //------------------------------Value-----------------------------------------
2134 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2135   // Either input is TOP ==> the result is TOP
2136   const Type *t1 = phase->type( in(MemNode::Memory) );
2137   if( t1 == Type::TOP ) return Type::TOP;
2138   const Type *t2 = phase->type( in(MemNode::Address) );
2139   if( t2 == Type::TOP ) return Type::TOP;
2140   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2141   if( t3 == Type::TOP ) return Type::TOP;
2142   return Type::MEMORY;
2143 }
2144 
2145 //------------------------------Identity---------------------------------------
2146 // Remove redundant stores:
2147 //   Store(m, p, Load(m, p)) changes to m.
2148 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2149 Node *StoreNode::Identity( PhaseTransform *phase ) {
2150   Node* mem = in(MemNode::Memory);
2151   Node* adr = in(MemNode::Address);
2152   Node* val = in(MemNode::ValueIn);
2153 
2154   // Load then Store?  Then the Store is useless
2155   if (val->is_Load() &&
2156       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2157       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2158       val->as_Load()->store_Opcode() == Opcode()) {
2159     return mem;
2160   }
2161 
2162   // Two stores in a row of the same value?
2163   if (mem->is_Store() &&
2164       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2165       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2166       mem->Opcode() == Opcode()) {
2167     return mem;
2168   }
2169 
2170   // Store of zero anywhere into a freshly-allocated object?
2171   // Then the store is useless.
2172   // (It must already have been captured by the InitializeNode.)
2173   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2174     // a newly allocated object is already all-zeroes everywhere
2175     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2176       return mem;
2177     }
2178 
2179     // the store may also apply to zero-bits in an earlier object
2180     Node* prev_mem = find_previous_store(phase);
2181     // Steps (a), (b):  Walk past independent stores to find an exact match.
2182     if (prev_mem != NULL) {
2183       Node* prev_val = can_see_stored_value(prev_mem, phase);
2184       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2185         // prev_val and val might differ by a cast; it would be good
2186         // to keep the more informative of the two.
2187         return mem;
2188       }
2189     }
2190   }
2191 
2192   return this;
2193 }
2194 
2195 //------------------------------match_edge-------------------------------------
2196 // Do we Match on this edge index or not?  Match only memory & value
2197 uint StoreNode::match_edge(uint idx) const {
2198   return idx == MemNode::Address || idx == MemNode::ValueIn;
2199 }
2200 
2201 //------------------------------cmp--------------------------------------------
2202 // Do not common stores up together.  They generally have to be split
2203 // back up anyways, so do not bother.
2204 uint StoreNode::cmp( const Node &n ) const {
2205   return (&n == this);          // Always fail except on self
2206 }
2207 
2208 //------------------------------Ideal_masked_input-----------------------------
2209 // Check for a useless mask before a partial-word store
2210 // (StoreB ... (AndI valIn conIa) )
2211 // If (conIa & mask == mask) this simplifies to
2212 // (StoreB ... (valIn) )
2213 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2214   Node *val = in(MemNode::ValueIn);
2215   if( val->Opcode() == Op_AndI ) {
2216     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2217     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2218       set_req(MemNode::ValueIn, val->in(1));
2219       return this;
2220     }
2221   }
2222   return NULL;
2223 }
2224 
2225 
2226 //------------------------------Ideal_sign_extended_input----------------------
2227 // Check for useless sign-extension before a partial-word store
2228 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2229 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2230 // (StoreB ... (valIn) )
2231 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2232   Node *val = in(MemNode::ValueIn);
2233   if( val->Opcode() == Op_RShiftI ) {
2234     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2235     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2236       Node *shl = val->in(1);
2237       if( shl->Opcode() == Op_LShiftI ) {
2238         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2239         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2240           set_req(MemNode::ValueIn, shl->in(1));
2241           return this;
2242         }
2243       }
2244     }
2245   }
2246   return NULL;
2247 }
2248 
2249 //------------------------------value_never_loaded-----------------------------------
2250 // Determine whether there are any possible loads of the value stored.
2251 // For simplicity, we actually check if there are any loads from the
2252 // address stored to, not just for loads of the value stored by this node.
2253 //
2254 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2255   Node *adr = in(Address);
2256   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2257   if (adr_oop == NULL)
2258     return false;
2259   if (!adr_oop->is_known_instance_field())
2260     return false; // if not a distinct instance, there may be aliases of the address
2261   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2262     Node *use = adr->fast_out(i);
2263     int opc = use->Opcode();
2264     if (use->is_Load() || use->is_LoadStore()) {
2265       return false;
2266     }
2267   }
2268   return true;
2269 }
2270 
2271 //=============================================================================
2272 //------------------------------Ideal------------------------------------------
2273 // If the store is from an AND mask that leaves the low bits untouched, then
2274 // we can skip the AND operation.  If the store is from a sign-extension
2275 // (a left shift, then right shift) we can skip both.
2276 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2277   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2278   if( progress != NULL ) return progress;
2279 
2280   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2281   if( progress != NULL ) return progress;
2282 
2283   // Finally check the default case
2284   return StoreNode::Ideal(phase, can_reshape);
2285 }
2286 
2287 //=============================================================================
2288 //------------------------------Ideal------------------------------------------
2289 // If the store is from an AND mask that leaves the low bits untouched, then
2290 // we can skip the AND operation
2291 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2292   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2293   if( progress != NULL ) return progress;
2294 
2295   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2296   if( progress != NULL ) return progress;
2297 
2298   // Finally check the default case
2299   return StoreNode::Ideal(phase, can_reshape);
2300 }
2301 
2302 //=============================================================================
2303 //------------------------------Identity---------------------------------------
2304 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2305   // No need to card mark when storing a null ptr
2306   Node* my_store = in(MemNode::OopStore);
2307   if (my_store->is_Store()) {
2308     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2309     if( t1 == TypePtr::NULL_PTR ) {
2310       return in(MemNode::Memory);
2311     }
2312   }
2313   return this;
2314 }
2315 
2316 //------------------------------Value-----------------------------------------
2317 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2318   // Either input is TOP ==> the result is TOP
2319   const Type *t = phase->type( in(MemNode::Memory) );
2320   if( t == Type::TOP ) return Type::TOP;
2321   t = phase->type( in(MemNode::Address) );
2322   if( t == Type::TOP ) return Type::TOP;
2323   t = phase->type( in(MemNode::ValueIn) );
2324   if( t == Type::TOP ) return Type::TOP;
2325   // If extra input is TOP ==> the result is TOP
2326   t = phase->type( in(MemNode::OopStore) );
2327   if( t == Type::TOP ) return Type::TOP;
2328 
2329   return StoreNode::Value( phase );
2330 }
2331 
2332 
2333 //=============================================================================
2334 //----------------------------------SCMemProjNode------------------------------
2335 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2336 {
2337   return bottom_type();
2338 }
2339 
2340 //=============================================================================
2341 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2342   init_req(MemNode::Control, c  );
2343   init_req(MemNode::Memory , mem);
2344   init_req(MemNode::Address, adr);
2345   init_req(MemNode::ValueIn, val);
2346   init_req(         ExpectedIn, ex );
2347   init_class_id(Class_LoadStore);
2348 
2349 }
2350 
2351 //=============================================================================
2352 //-------------------------------adr_type--------------------------------------
2353 // Do we Match on this edge index or not?  Do not match memory
2354 const TypePtr* ClearArrayNode::adr_type() const {
2355   Node *adr = in(3);
2356   return MemNode::calculate_adr_type(adr->bottom_type());
2357 }
2358 
2359 //------------------------------match_edge-------------------------------------
2360 // Do we Match on this edge index or not?  Do not match memory
2361 uint ClearArrayNode::match_edge(uint idx) const {
2362   return idx > 1;
2363 }
2364 
2365 //------------------------------Identity---------------------------------------
2366 // Clearing a zero length array does nothing
2367 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2368   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2369 }
2370 
2371 //------------------------------Idealize---------------------------------------
2372 // Clearing a short array is faster with stores
2373 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2374   const int unit = BytesPerLong;
2375   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2376   if (!t)  return NULL;
2377   if (!t->is_con())  return NULL;
2378   intptr_t raw_count = t->get_con();
2379   intptr_t size = raw_count;
2380   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2381   // Clearing nothing uses the Identity call.
2382   // Negative clears are possible on dead ClearArrays
2383   // (see jck test stmt114.stmt11402.val).
2384   if (size <= 0 || size % unit != 0)  return NULL;
2385   intptr_t count = size / unit;
2386   // Length too long; use fast hardware clear
2387   if (size > Matcher::init_array_short_size)  return NULL;
2388   Node *mem = in(1);
2389   if( phase->type(mem)==Type::TOP ) return NULL;
2390   Node *adr = in(3);
2391   const Type* at = phase->type(adr);
2392   if( at==Type::TOP ) return NULL;
2393   const TypePtr* atp = at->isa_ptr();
2394   // adjust atp to be the correct array element address type
2395   if (atp == NULL)  atp = TypePtr::BOTTOM;
2396   else              atp = atp->add_offset(Type::OffsetBot);
2397   // Get base for derived pointer purposes
2398   if( adr->Opcode() != Op_AddP ) Unimplemented();
2399   Node *base = adr->in(1);
2400 
2401   Node *zero = phase->makecon(TypeLong::ZERO);
2402   Node *off  = phase->MakeConX(BytesPerLong);
2403   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2404   count--;
2405   while( count-- ) {
2406     mem = phase->transform(mem);
2407     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2408     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2409   }
2410   return mem;
2411 }
2412 
2413 //----------------------------clear_memory-------------------------------------
2414 // Generate code to initialize object storage to zero.
2415 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2416                                    intptr_t start_offset,
2417                                    Node* end_offset,
2418                                    PhaseGVN* phase) {
2419   Compile* C = phase->C;
2420   intptr_t offset = start_offset;
2421 
2422   int unit = BytesPerLong;
2423   if ((offset % unit) != 0) {
2424     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2425     adr = phase->transform(adr);
2426     const TypePtr* atp = TypeRawPtr::BOTTOM;
2427     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2428     mem = phase->transform(mem);
2429     offset += BytesPerInt;
2430   }
2431   assert((offset % unit) == 0, "");
2432 
2433   // Initialize the remaining stuff, if any, with a ClearArray.
2434   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2435 }
2436 
2437 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2438                                    Node* start_offset,
2439                                    Node* end_offset,
2440                                    PhaseGVN* phase) {
2441   if (start_offset == end_offset) {
2442     // nothing to do
2443     return mem;
2444   }
2445 
2446   Compile* C = phase->C;
2447   int unit = BytesPerLong;
2448   Node* zbase = start_offset;
2449   Node* zend  = end_offset;
2450 
2451   // Scale to the unit required by the CPU:
2452   if (!Matcher::init_array_count_is_in_bytes) {
2453     Node* shift = phase->intcon(exact_log2(unit));
2454     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2455     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2456   }
2457 
2458   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2459   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2460 
2461   // Bulk clear double-words
2462   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2463   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2464   return phase->transform(mem);
2465 }
2466 
2467 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2468                                    intptr_t start_offset,
2469                                    intptr_t end_offset,
2470                                    PhaseGVN* phase) {
2471   if (start_offset == end_offset) {
2472     // nothing to do
2473     return mem;
2474   }
2475 
2476   Compile* C = phase->C;
2477   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2478   intptr_t done_offset = end_offset;
2479   if ((done_offset % BytesPerLong) != 0) {
2480     done_offset -= BytesPerInt;
2481   }
2482   if (done_offset > start_offset) {
2483     mem = clear_memory(ctl, mem, dest,
2484                        start_offset, phase->MakeConX(done_offset), phase);
2485   }
2486   if (done_offset < end_offset) { // emit the final 32-bit store
2487     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2488     adr = phase->transform(adr);
2489     const TypePtr* atp = TypeRawPtr::BOTTOM;
2490     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2491     mem = phase->transform(mem);
2492     done_offset += BytesPerInt;
2493   }
2494   assert(done_offset == end_offset, "");
2495   return mem;
2496 }
2497 
2498 //=============================================================================
2499 // Do we match on this edge? No memory edges
2500 uint StrCompNode::match_edge(uint idx) const {
2501   return idx == 2 || idx == 3; // StrComp (Binary str1 str2) (Binary cnt1 cnt2)
2502 }
2503 
2504 //------------------------------Ideal------------------------------------------
2505 // Return a node which is more "ideal" than the current node.  Strip out
2506 // control copies
2507 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2508   return remove_dead_region(phase, can_reshape) ? this : NULL;
2509 }
2510 
2511 // Do we match on this edge? No memory edges
2512 uint StrEqualsNode::match_edge(uint idx) const {
2513   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
2514 }
2515 
2516 //------------------------------Ideal------------------------------------------
2517 // Return a node which is more "ideal" than the current node.  Strip out
2518 // control copies
2519 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2520   return remove_dead_region(phase, can_reshape) ? this : NULL;
2521 }
2522 
2523 //=============================================================================
2524 // Do we match on this edge? No memory edges
2525 uint StrIndexOfNode::match_edge(uint idx) const {
2526   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 str2) (Binary cnt1 cnt2)
2527 }
2528 
2529 //------------------------------Ideal------------------------------------------
2530 // Return a node which is more "ideal" than the current node.  Strip out
2531 // control copies
2532 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2533   return remove_dead_region(phase, can_reshape) ? this : NULL;
2534 }
2535 
2536 //------------------------------Ideal------------------------------------------
2537 // Return a node which is more "ideal" than the current node.  Strip out
2538 // control copies
2539 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2540   return remove_dead_region(phase, can_reshape) ? this : NULL;
2541 }
2542 
2543 //=============================================================================
2544 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2545   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2546     _adr_type(C->get_adr_type(alias_idx))
2547 {
2548   init_class_id(Class_MemBar);
2549   Node* top = C->top();
2550   init_req(TypeFunc::I_O,top);
2551   init_req(TypeFunc::FramePtr,top);
2552   init_req(TypeFunc::ReturnAdr,top);
2553   if (precedent != NULL)
2554     init_req(TypeFunc::Parms, precedent);
2555 }
2556 
2557 //------------------------------cmp--------------------------------------------
2558 uint MemBarNode::hash() const { return NO_HASH; }
2559 uint MemBarNode::cmp( const Node &n ) const {
2560   return (&n == this);          // Always fail except on self
2561 }
2562 
2563 //------------------------------make-------------------------------------------
2564 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2565   int len = Precedent + (pn == NULL? 0: 1);
2566   switch (opcode) {
2567   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2568   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2569   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2570   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2571   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2572   default:                 ShouldNotReachHere(); return NULL;
2573   }
2574 }
2575 
2576 //------------------------------Ideal------------------------------------------
2577 // Return a node which is more "ideal" than the current node.  Strip out
2578 // control copies
2579 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2580   return remove_dead_region(phase, can_reshape) ? this : NULL;
2581 }
2582 
2583 //------------------------------Value------------------------------------------
2584 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2585   if( !in(0) ) return Type::TOP;
2586   if( phase->type(in(0)) == Type::TOP )
2587     return Type::TOP;
2588   return TypeTuple::MEMBAR;
2589 }
2590 
2591 //------------------------------match------------------------------------------
2592 // Construct projections for memory.
2593 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2594   switch (proj->_con) {
2595   case TypeFunc::Control:
2596   case TypeFunc::Memory:
2597     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2598   }
2599   ShouldNotReachHere();
2600   return NULL;
2601 }
2602 
2603 //===========================InitializeNode====================================
2604 // SUMMARY:
2605 // This node acts as a memory barrier on raw memory, after some raw stores.
2606 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2607 // The Initialize can 'capture' suitably constrained stores as raw inits.
2608 // It can coalesce related raw stores into larger units (called 'tiles').
2609 // It can avoid zeroing new storage for memory units which have raw inits.
2610 // At macro-expansion, it is marked 'complete', and does not optimize further.
2611 //
2612 // EXAMPLE:
2613 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2614 //   ctl = incoming control; mem* = incoming memory
2615 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2616 // First allocate uninitialized memory and fill in the header:
2617 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2618 //   ctl := alloc.Control; mem* := alloc.Memory*
2619 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2620 // Then initialize to zero the non-header parts of the raw memory block:
2621 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2622 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2623 // After the initialize node executes, the object is ready for service:
2624 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2625 // Suppose its body is immediately initialized as {1,2}:
2626 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2627 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2628 //   mem.SLICE(#short[*]) := store2
2629 //
2630 // DETAILS:
2631 // An InitializeNode collects and isolates object initialization after
2632 // an AllocateNode and before the next possible safepoint.  As a
2633 // memory barrier (MemBarNode), it keeps critical stores from drifting
2634 // down past any safepoint or any publication of the allocation.
2635 // Before this barrier, a newly-allocated object may have uninitialized bits.
2636 // After this barrier, it may be treated as a real oop, and GC is allowed.
2637 //
2638 // The semantics of the InitializeNode include an implicit zeroing of
2639 // the new object from object header to the end of the object.
2640 // (The object header and end are determined by the AllocateNode.)
2641 //
2642 // Certain stores may be added as direct inputs to the InitializeNode.
2643 // These stores must update raw memory, and they must be to addresses
2644 // derived from the raw address produced by AllocateNode, and with
2645 // a constant offset.  They must be ordered by increasing offset.
2646 // The first one is at in(RawStores), the last at in(req()-1).
2647 // Unlike most memory operations, they are not linked in a chain,
2648 // but are displayed in parallel as users of the rawmem output of
2649 // the allocation.
2650 //
2651 // (See comments in InitializeNode::capture_store, which continue
2652 // the example given above.)
2653 //
2654 // When the associated Allocate is macro-expanded, the InitializeNode
2655 // may be rewritten to optimize collected stores.  A ClearArrayNode
2656 // may also be created at that point to represent any required zeroing.
2657 // The InitializeNode is then marked 'complete', prohibiting further
2658 // capturing of nearby memory operations.
2659 //
2660 // During macro-expansion, all captured initializations which store
2661 // constant values of 32 bits or smaller are coalesced (if advantageous)
2662 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2663 // initialized in fewer memory operations.  Memory words which are
2664 // covered by neither tiles nor non-constant stores are pre-zeroed
2665 // by explicit stores of zero.  (The code shape happens to do all
2666 // zeroing first, then all other stores, with both sequences occurring
2667 // in order of ascending offsets.)
2668 //
2669 // Alternatively, code may be inserted between an AllocateNode and its
2670 // InitializeNode, to perform arbitrary initialization of the new object.
2671 // E.g., the object copying intrinsics insert complex data transfers here.
2672 // The initialization must then be marked as 'complete' disable the
2673 // built-in zeroing semantics and the collection of initializing stores.
2674 //
2675 // While an InitializeNode is incomplete, reads from the memory state
2676 // produced by it are optimizable if they match the control edge and
2677 // new oop address associated with the allocation/initialization.
2678 // They return a stored value (if the offset matches) or else zero.
2679 // A write to the memory state, if it matches control and address,
2680 // and if it is to a constant offset, may be 'captured' by the
2681 // InitializeNode.  It is cloned as a raw memory operation and rewired
2682 // inside the initialization, to the raw oop produced by the allocation.
2683 // Operations on addresses which are provably distinct (e.g., to
2684 // other AllocateNodes) are allowed to bypass the initialization.
2685 //
2686 // The effect of all this is to consolidate object initialization
2687 // (both arrays and non-arrays, both piecewise and bulk) into a
2688 // single location, where it can be optimized as a unit.
2689 //
2690 // Only stores with an offset less than TrackedInitializationLimit words
2691 // will be considered for capture by an InitializeNode.  This puts a
2692 // reasonable limit on the complexity of optimized initializations.
2693 
2694 //---------------------------InitializeNode------------------------------------
2695 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2696   : _is_complete(false),
2697     MemBarNode(C, adr_type, rawoop)
2698 {
2699   init_class_id(Class_Initialize);
2700 
2701   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2702   assert(in(RawAddress) == rawoop, "proper init");
2703   // Note:  allocation() can be NULL, for secondary initialization barriers
2704 }
2705 
2706 // Since this node is not matched, it will be processed by the
2707 // register allocator.  Declare that there are no constraints
2708 // on the allocation of the RawAddress edge.
2709 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2710   // This edge should be set to top, by the set_complete.  But be conservative.
2711   if (idx == InitializeNode::RawAddress)
2712     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2713   return RegMask::Empty;
2714 }
2715 
2716 Node* InitializeNode::memory(uint alias_idx) {
2717   Node* mem = in(Memory);
2718   if (mem->is_MergeMem()) {
2719     return mem->as_MergeMem()->memory_at(alias_idx);
2720   } else {
2721     // incoming raw memory is not split
2722     return mem;
2723   }
2724 }
2725 
2726 bool InitializeNode::is_non_zero() {
2727   if (is_complete())  return false;
2728   remove_extra_zeroes();
2729   return (req() > RawStores);
2730 }
2731 
2732 void InitializeNode::set_complete(PhaseGVN* phase) {
2733   assert(!is_complete(), "caller responsibility");
2734   _is_complete = true;
2735 
2736   // After this node is complete, it contains a bunch of
2737   // raw-memory initializations.  There is no need for
2738   // it to have anything to do with non-raw memory effects.
2739   // Therefore, tell all non-raw users to re-optimize themselves,
2740   // after skipping the memory effects of this initialization.
2741   PhaseIterGVN* igvn = phase->is_IterGVN();
2742   if (igvn)  igvn->add_users_to_worklist(this);
2743 }
2744 
2745 // convenience function
2746 // return false if the init contains any stores already
2747 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2748   InitializeNode* init = initialization();
2749   if (init == NULL || init->is_complete())  return false;
2750   init->remove_extra_zeroes();
2751   // for now, if this allocation has already collected any inits, bail:
2752   if (init->is_non_zero())  return false;
2753   init->set_complete(phase);
2754   return true;
2755 }
2756 
2757 void InitializeNode::remove_extra_zeroes() {
2758   if (req() == RawStores)  return;
2759   Node* zmem = zero_memory();
2760   uint fill = RawStores;
2761   for (uint i = fill; i < req(); i++) {
2762     Node* n = in(i);
2763     if (n->is_top() || n == zmem)  continue;  // skip
2764     if (fill < i)  set_req(fill, n);          // compact
2765     ++fill;
2766   }
2767   // delete any empty spaces created:
2768   while (fill < req()) {
2769     del_req(fill);
2770   }
2771 }
2772 
2773 // Helper for remembering which stores go with which offsets.
2774 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2775   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2776   intptr_t offset = -1;
2777   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2778                                                phase, offset);
2779   if (base == NULL)     return -1;  // something is dead,
2780   if (offset < 0)       return -1;  //        dead, dead
2781   return offset;
2782 }
2783 
2784 // Helper for proving that an initialization expression is
2785 // "simple enough" to be folded into an object initialization.
2786 // Attempts to prove that a store's initial value 'n' can be captured
2787 // within the initialization without creating a vicious cycle, such as:
2788 //     { Foo p = new Foo(); p.next = p; }
2789 // True for constants and parameters and small combinations thereof.
2790 bool InitializeNode::detect_init_independence(Node* n,
2791                                               bool st_is_pinned,
2792                                               int& count) {
2793   if (n == NULL)      return true;   // (can this really happen?)
2794   if (n->is_Proj())   n = n->in(0);
2795   if (n == this)      return false;  // found a cycle
2796   if (n->is_Con())    return true;
2797   if (n->is_Start())  return true;   // params, etc., are OK
2798   if (n->is_Root())   return true;   // even better
2799 
2800   Node* ctl = n->in(0);
2801   if (ctl != NULL && !ctl->is_top()) {
2802     if (ctl->is_Proj())  ctl = ctl->in(0);
2803     if (ctl == this)  return false;
2804 
2805     // If we already know that the enclosing memory op is pinned right after
2806     // the init, then any control flow that the store has picked up
2807     // must have preceded the init, or else be equal to the init.
2808     // Even after loop optimizations (which might change control edges)
2809     // a store is never pinned *before* the availability of its inputs.
2810     if (!MemNode::all_controls_dominate(n, this))
2811       return false;                  // failed to prove a good control
2812 
2813   }
2814 
2815   // Check data edges for possible dependencies on 'this'.
2816   if ((count += 1) > 20)  return false;  // complexity limit
2817   for (uint i = 1; i < n->req(); i++) {
2818     Node* m = n->in(i);
2819     if (m == NULL || m == n || m->is_top())  continue;
2820     uint first_i = n->find_edge(m);
2821     if (i != first_i)  continue;  // process duplicate edge just once
2822     if (!detect_init_independence(m, st_is_pinned, count)) {
2823       return false;
2824     }
2825   }
2826 
2827   return true;
2828 }
2829 
2830 // Here are all the checks a Store must pass before it can be moved into
2831 // an initialization.  Returns zero if a check fails.
2832 // On success, returns the (constant) offset to which the store applies,
2833 // within the initialized memory.
2834 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2835   const int FAIL = 0;
2836   if (st->req() != MemNode::ValueIn + 1)
2837     return FAIL;                // an inscrutable StoreNode (card mark?)
2838   Node* ctl = st->in(MemNode::Control);
2839   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2840     return FAIL;                // must be unconditional after the initialization
2841   Node* mem = st->in(MemNode::Memory);
2842   if (!(mem->is_Proj() && mem->in(0) == this))
2843     return FAIL;                // must not be preceded by other stores
2844   Node* adr = st->in(MemNode::Address);
2845   intptr_t offset;
2846   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2847   if (alloc == NULL)
2848     return FAIL;                // inscrutable address
2849   if (alloc != allocation())
2850     return FAIL;                // wrong allocation!  (store needs to float up)
2851   Node* val = st->in(MemNode::ValueIn);
2852   int complexity_count = 0;
2853   if (!detect_init_independence(val, true, complexity_count))
2854     return FAIL;                // stored value must be 'simple enough'
2855 
2856   return offset;                // success
2857 }
2858 
2859 // Find the captured store in(i) which corresponds to the range
2860 // [start..start+size) in the initialized object.
2861 // If there is one, return its index i.  If there isn't, return the
2862 // negative of the index where it should be inserted.
2863 // Return 0 if the queried range overlaps an initialization boundary
2864 // or if dead code is encountered.
2865 // If size_in_bytes is zero, do not bother with overlap checks.
2866 int InitializeNode::captured_store_insertion_point(intptr_t start,
2867                                                    int size_in_bytes,
2868                                                    PhaseTransform* phase) {
2869   const int FAIL = 0, MAX_STORE = BytesPerLong;
2870 
2871   if (is_complete())
2872     return FAIL;                // arraycopy got here first; punt
2873 
2874   assert(allocation() != NULL, "must be present");
2875 
2876   // no negatives, no header fields:
2877   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2878 
2879   // after a certain size, we bail out on tracking all the stores:
2880   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2881   if (start >= ti_limit)  return FAIL;
2882 
2883   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2884     if (i >= limit)  return -(int)i; // not found; here is where to put it
2885 
2886     Node*    st     = in(i);
2887     intptr_t st_off = get_store_offset(st, phase);
2888     if (st_off < 0) {
2889       if (st != zero_memory()) {
2890         return FAIL;            // bail out if there is dead garbage
2891       }
2892     } else if (st_off > start) {
2893       // ...we are done, since stores are ordered
2894       if (st_off < start + size_in_bytes) {
2895         return FAIL;            // the next store overlaps
2896       }
2897       return -(int)i;           // not found; here is where to put it
2898     } else if (st_off < start) {
2899       if (size_in_bytes != 0 &&
2900           start < st_off + MAX_STORE &&
2901           start < st_off + st->as_Store()->memory_size()) {
2902         return FAIL;            // the previous store overlaps
2903       }
2904     } else {
2905       if (size_in_bytes != 0 &&
2906           st->as_Store()->memory_size() != size_in_bytes) {
2907         return FAIL;            // mismatched store size
2908       }
2909       return i;
2910     }
2911 
2912     ++i;
2913   }
2914 }
2915 
2916 // Look for a captured store which initializes at the offset 'start'
2917 // with the given size.  If there is no such store, and no other
2918 // initialization interferes, then return zero_memory (the memory
2919 // projection of the AllocateNode).
2920 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2921                                           PhaseTransform* phase) {
2922   assert(stores_are_sane(phase), "");
2923   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2924   if (i == 0) {
2925     return NULL;                // something is dead
2926   } else if (i < 0) {
2927     return zero_memory();       // just primordial zero bits here
2928   } else {
2929     Node* st = in(i);           // here is the store at this position
2930     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2931     return st;
2932   }
2933 }
2934 
2935 // Create, as a raw pointer, an address within my new object at 'offset'.
2936 Node* InitializeNode::make_raw_address(intptr_t offset,
2937                                        PhaseTransform* phase) {
2938   Node* addr = in(RawAddress);
2939   if (offset != 0) {
2940     Compile* C = phase->C;
2941     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2942                                                  phase->MakeConX(offset)) );
2943   }
2944   return addr;
2945 }
2946 
2947 // Clone the given store, converting it into a raw store
2948 // initializing a field or element of my new object.
2949 // Caller is responsible for retiring the original store,
2950 // with subsume_node or the like.
2951 //
2952 // From the example above InitializeNode::InitializeNode,
2953 // here are the old stores to be captured:
2954 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2955 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2956 //
2957 // Here is the changed code; note the extra edges on init:
2958 //   alloc = (Allocate ...)
2959 //   rawoop = alloc.RawAddress
2960 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2961 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2962 //   init = (Initialize alloc.Control alloc.Memory rawoop
2963 //                      rawstore1 rawstore2)
2964 //
2965 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2966                                     PhaseTransform* phase) {
2967   assert(stores_are_sane(phase), "");
2968 
2969   if (start < 0)  return NULL;
2970   assert(can_capture_store(st, phase) == start, "sanity");
2971 
2972   Compile* C = phase->C;
2973   int size_in_bytes = st->memory_size();
2974   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2975   if (i == 0)  return NULL;     // bail out
2976   Node* prev_mem = NULL;        // raw memory for the captured store
2977   if (i > 0) {
2978     prev_mem = in(i);           // there is a pre-existing store under this one
2979     set_req(i, C->top());       // temporarily disconnect it
2980     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2981   } else {
2982     i = -i;                     // no pre-existing store
2983     prev_mem = zero_memory();   // a slice of the newly allocated object
2984     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2985       set_req(--i, C->top());   // reuse this edge; it has been folded away
2986     else
2987       ins_req(i, C->top());     // build a new edge
2988   }
2989   Node* new_st = st->clone();
2990   new_st->set_req(MemNode::Control, in(Control));
2991   new_st->set_req(MemNode::Memory,  prev_mem);
2992   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2993   new_st = phase->transform(new_st);
2994 
2995   // At this point, new_st might have swallowed a pre-existing store
2996   // at the same offset, or perhaps new_st might have disappeared,
2997   // if it redundantly stored the same value (or zero to fresh memory).
2998 
2999   // In any case, wire it in:
3000   set_req(i, new_st);
3001 
3002   // The caller may now kill the old guy.
3003   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3004   assert(check_st == new_st || check_st == NULL, "must be findable");
3005   assert(!is_complete(), "");
3006   return new_st;
3007 }
3008 
3009 static bool store_constant(jlong* tiles, int num_tiles,
3010                            intptr_t st_off, int st_size,
3011                            jlong con) {
3012   if ((st_off & (st_size-1)) != 0)
3013     return false;               // strange store offset (assume size==2**N)
3014   address addr = (address)tiles + st_off;
3015   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3016   switch (st_size) {
3017   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3018   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3019   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3020   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3021   default: return false;        // strange store size (detect size!=2**N here)
3022   }
3023   return true;                  // return success to caller
3024 }
3025 
3026 // Coalesce subword constants into int constants and possibly
3027 // into long constants.  The goal, if the CPU permits,
3028 // is to initialize the object with a small number of 64-bit tiles.
3029 // Also, convert floating-point constants to bit patterns.
3030 // Non-constants are not relevant to this pass.
3031 //
3032 // In terms of the running example on InitializeNode::InitializeNode
3033 // and InitializeNode::capture_store, here is the transformation
3034 // of rawstore1 and rawstore2 into rawstore12:
3035 //   alloc = (Allocate ...)
3036 //   rawoop = alloc.RawAddress
3037 //   tile12 = 0x00010002
3038 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3039 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3040 //
3041 void
3042 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3043                                         Node* size_in_bytes,
3044                                         PhaseGVN* phase) {
3045   Compile* C = phase->C;
3046 
3047   assert(stores_are_sane(phase), "");
3048   // Note:  After this pass, they are not completely sane,
3049   // since there may be some overlaps.
3050 
3051   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3052 
3053   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3054   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3055   size_limit = MIN2(size_limit, ti_limit);
3056   size_limit = align_size_up(size_limit, BytesPerLong);
3057   int num_tiles = size_limit / BytesPerLong;
3058 
3059   // allocate space for the tile map:
3060   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3061   jlong  tiles_buf[small_len];
3062   Node*  nodes_buf[small_len];
3063   jlong  inits_buf[small_len];
3064   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3065                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3066   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3067                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3068   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3069                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3070   // tiles: exact bitwise model of all primitive constants
3071   // nodes: last constant-storing node subsumed into the tiles model
3072   // inits: which bytes (in each tile) are touched by any initializations
3073 
3074   //// Pass A: Fill in the tile model with any relevant stores.
3075 
3076   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3077   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3078   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3079   Node* zmem = zero_memory(); // initially zero memory state
3080   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3081     Node* st = in(i);
3082     intptr_t st_off = get_store_offset(st, phase);
3083 
3084     // Figure out the store's offset and constant value:
3085     if (st_off < header_size)             continue; //skip (ignore header)
3086     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3087     int st_size = st->as_Store()->memory_size();
3088     if (st_off + st_size > size_limit)    break;
3089 
3090     // Record which bytes are touched, whether by constant or not.
3091     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3092       continue;                 // skip (strange store size)
3093 
3094     const Type* val = phase->type(st->in(MemNode::ValueIn));
3095     if (!val->singleton())                continue; //skip (non-con store)
3096     BasicType type = val->basic_type();
3097 
3098     jlong con = 0;
3099     switch (type) {
3100     case T_INT:    con = val->is_int()->get_con();  break;
3101     case T_LONG:   con = val->is_long()->get_con(); break;
3102     case T_FLOAT:  con = jint_cast(val->getf());    break;
3103     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3104     default:                              continue; //skip (odd store type)
3105     }
3106 
3107     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3108         st->Opcode() == Op_StoreL) {
3109       continue;                 // This StoreL is already optimal.
3110     }
3111 
3112     // Store down the constant.
3113     store_constant(tiles, num_tiles, st_off, st_size, con);
3114 
3115     intptr_t j = st_off >> LogBytesPerLong;
3116 
3117     if (type == T_INT && st_size == BytesPerInt
3118         && (st_off & BytesPerInt) == BytesPerInt) {
3119       jlong lcon = tiles[j];
3120       if (!Matcher::isSimpleConstant64(lcon) &&
3121           st->Opcode() == Op_StoreI) {
3122         // This StoreI is already optimal by itself.
3123         jint* intcon = (jint*) &tiles[j];
3124         intcon[1] = 0;  // undo the store_constant()
3125 
3126         // If the previous store is also optimal by itself, back up and
3127         // undo the action of the previous loop iteration... if we can.
3128         // But if we can't, just let the previous half take care of itself.
3129         st = nodes[j];
3130         st_off -= BytesPerInt;
3131         con = intcon[0];
3132         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3133           assert(st_off >= header_size, "still ignoring header");
3134           assert(get_store_offset(st, phase) == st_off, "must be");
3135           assert(in(i-1) == zmem, "must be");
3136           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3137           assert(con == tcon->is_int()->get_con(), "must be");
3138           // Undo the effects of the previous loop trip, which swallowed st:
3139           intcon[0] = 0;        // undo store_constant()
3140           set_req(i-1, st);     // undo set_req(i, zmem)
3141           nodes[j] = NULL;      // undo nodes[j] = st
3142           --old_subword;        // undo ++old_subword
3143         }
3144         continue;               // This StoreI is already optimal.
3145       }
3146     }
3147 
3148     // This store is not needed.
3149     set_req(i, zmem);
3150     nodes[j] = st;              // record for the moment
3151     if (st_size < BytesPerLong) // something has changed
3152           ++old_subword;        // includes int/float, but who's counting...
3153     else  ++old_long;
3154   }
3155 
3156   if ((old_subword + old_long) == 0)
3157     return;                     // nothing more to do
3158 
3159   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3160   // Be sure to insert them before overlapping non-constant stores.
3161   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3162   for (int j = 0; j < num_tiles; j++) {
3163     jlong con  = tiles[j];
3164     jlong init = inits[j];
3165     if (con == 0)  continue;
3166     jint con0,  con1;           // split the constant, address-wise
3167     jint init0, init1;          // split the init map, address-wise
3168     { union { jlong con; jint intcon[2]; } u;
3169       u.con = con;
3170       con0  = u.intcon[0];
3171       con1  = u.intcon[1];
3172       u.con = init;
3173       init0 = u.intcon[0];
3174       init1 = u.intcon[1];
3175     }
3176 
3177     Node* old = nodes[j];
3178     assert(old != NULL, "need the prior store");
3179     intptr_t offset = (j * BytesPerLong);
3180 
3181     bool split = !Matcher::isSimpleConstant64(con);
3182 
3183     if (offset < header_size) {
3184       assert(offset + BytesPerInt >= header_size, "second int counts");
3185       assert(*(jint*)&tiles[j] == 0, "junk in header");
3186       split = true;             // only the second word counts
3187       // Example:  int a[] = { 42 ... }
3188     } else if (con0 == 0 && init0 == -1) {
3189       split = true;             // first word is covered by full inits
3190       // Example:  int a[] = { ... foo(), 42 ... }
3191     } else if (con1 == 0 && init1 == -1) {
3192       split = true;             // second word is covered by full inits
3193       // Example:  int a[] = { ... 42, foo() ... }
3194     }
3195 
3196     // Here's a case where init0 is neither 0 nor -1:
3197     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3198     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3199     // In this case the tile is not split; it is (jlong)42.
3200     // The big tile is stored down, and then the foo() value is inserted.
3201     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3202 
3203     Node* ctl = old->in(MemNode::Control);
3204     Node* adr = make_raw_address(offset, phase);
3205     const TypePtr* atp = TypeRawPtr::BOTTOM;
3206 
3207     // One or two coalesced stores to plop down.
3208     Node*    st[2];
3209     intptr_t off[2];
3210     int  nst = 0;
3211     if (!split) {
3212       ++new_long;
3213       off[nst] = offset;
3214       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3215                                   phase->longcon(con), T_LONG);
3216     } else {
3217       // Omit either if it is a zero.
3218       if (con0 != 0) {
3219         ++new_int;
3220         off[nst]  = offset;
3221         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3222                                     phase->intcon(con0), T_INT);
3223       }
3224       if (con1 != 0) {
3225         ++new_int;
3226         offset += BytesPerInt;
3227         adr = make_raw_address(offset, phase);
3228         off[nst]  = offset;
3229         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3230                                     phase->intcon(con1), T_INT);
3231       }
3232     }
3233 
3234     // Insert second store first, then the first before the second.
3235     // Insert each one just before any overlapping non-constant stores.
3236     while (nst > 0) {
3237       Node* st1 = st[--nst];
3238       C->copy_node_notes_to(st1, old);
3239       st1 = phase->transform(st1);
3240       offset = off[nst];
3241       assert(offset >= header_size, "do not smash header");
3242       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3243       guarantee(ins_idx != 0, "must re-insert constant store");
3244       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3245       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3246         set_req(--ins_idx, st1);
3247       else
3248         ins_req(ins_idx, st1);
3249     }
3250   }
3251 
3252   if (PrintCompilation && WizardMode)
3253     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3254                   old_subword, old_long, new_int, new_long);
3255   if (C->log() != NULL)
3256     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3257                    old_subword, old_long, new_int, new_long);
3258 
3259   // Clean up any remaining occurrences of zmem:
3260   remove_extra_zeroes();
3261 }
3262 
3263 // Explore forward from in(start) to find the first fully initialized
3264 // word, and return its offset.  Skip groups of subword stores which
3265 // together initialize full words.  If in(start) is itself part of a
3266 // fully initialized word, return the offset of in(start).  If there
3267 // are no following full-word stores, or if something is fishy, return
3268 // a negative value.
3269 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3270   int       int_map = 0;
3271   intptr_t  int_map_off = 0;
3272   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3273 
3274   for (uint i = start, limit = req(); i < limit; i++) {
3275     Node* st = in(i);
3276 
3277     intptr_t st_off = get_store_offset(st, phase);
3278     if (st_off < 0)  break;  // return conservative answer
3279 
3280     int st_size = st->as_Store()->memory_size();
3281     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3282       return st_off;            // we found a complete word init
3283     }
3284 
3285     // update the map:
3286 
3287     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3288     if (this_int_off != int_map_off) {
3289       // reset the map:
3290       int_map = 0;
3291       int_map_off = this_int_off;
3292     }
3293 
3294     int subword_off = st_off - this_int_off;
3295     int_map |= right_n_bits(st_size) << subword_off;
3296     if ((int_map & FULL_MAP) == FULL_MAP) {
3297       return this_int_off;      // we found a complete word init
3298     }
3299 
3300     // Did this store hit or cross the word boundary?
3301     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3302     if (next_int_off == this_int_off + BytesPerInt) {
3303       // We passed the current int, without fully initializing it.
3304       int_map_off = next_int_off;
3305       int_map >>= BytesPerInt;
3306     } else if (next_int_off > this_int_off + BytesPerInt) {
3307       // We passed the current and next int.
3308       return this_int_off + BytesPerInt;
3309     }
3310   }
3311 
3312   return -1;
3313 }
3314 
3315 
3316 // Called when the associated AllocateNode is expanded into CFG.
3317 // At this point, we may perform additional optimizations.
3318 // Linearize the stores by ascending offset, to make memory
3319 // activity as coherent as possible.
3320 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3321                                       intptr_t header_size,
3322                                       Node* size_in_bytes,
3323                                       PhaseGVN* phase) {
3324   assert(!is_complete(), "not already complete");
3325   assert(stores_are_sane(phase), "");
3326   assert(allocation() != NULL, "must be present");
3327 
3328   remove_extra_zeroes();
3329 
3330   if (ReduceFieldZeroing || ReduceBulkZeroing)
3331     // reduce instruction count for common initialization patterns
3332     coalesce_subword_stores(header_size, size_in_bytes, phase);
3333 
3334   Node* zmem = zero_memory();   // initially zero memory state
3335   Node* inits = zmem;           // accumulating a linearized chain of inits
3336   #ifdef ASSERT
3337   intptr_t first_offset = allocation()->minimum_header_size();
3338   intptr_t last_init_off = first_offset;  // previous init offset
3339   intptr_t last_init_end = first_offset;  // previous init offset+size
3340   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3341   #endif
3342   intptr_t zeroes_done = header_size;
3343 
3344   bool do_zeroing = true;       // we might give up if inits are very sparse
3345   int  big_init_gaps = 0;       // how many large gaps have we seen?
3346 
3347   if (ZeroTLAB)  do_zeroing = false;
3348   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3349 
3350   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3351     Node* st = in(i);
3352     intptr_t st_off = get_store_offset(st, phase);
3353     if (st_off < 0)
3354       break;                    // unknown junk in the inits
3355     if (st->in(MemNode::Memory) != zmem)
3356       break;                    // complicated store chains somehow in list
3357 
3358     int st_size = st->as_Store()->memory_size();
3359     intptr_t next_init_off = st_off + st_size;
3360 
3361     if (do_zeroing && zeroes_done < next_init_off) {
3362       // See if this store needs a zero before it or under it.
3363       intptr_t zeroes_needed = st_off;
3364 
3365       if (st_size < BytesPerInt) {
3366         // Look for subword stores which only partially initialize words.
3367         // If we find some, we must lay down some word-level zeroes first,
3368         // underneath the subword stores.
3369         //
3370         // Examples:
3371         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3372         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3373         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3374         //
3375         // Note:  coalesce_subword_stores may have already done this,
3376         // if it was prompted by constant non-zero subword initializers.
3377         // But this case can still arise with non-constant stores.
3378 
3379         intptr_t next_full_store = find_next_fullword_store(i, phase);
3380 
3381         // In the examples above:
3382         //   in(i)          p   q   r   s     x   y     z
3383         //   st_off        12  13  14  15    12  13    14
3384         //   st_size        1   1   1   1     1   1     1
3385         //   next_full_s.  12  16  16  16    16  16    16
3386         //   z's_done      12  16  16  16    12  16    12
3387         //   z's_needed    12  16  16  16    16  16    16
3388         //   zsize          0   0   0   0     4   0     4
3389         if (next_full_store < 0) {
3390           // Conservative tack:  Zero to end of current word.
3391           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3392         } else {
3393           // Zero to beginning of next fully initialized word.
3394           // Or, don't zero at all, if we are already in that word.
3395           assert(next_full_store >= zeroes_needed, "must go forward");
3396           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3397           zeroes_needed = next_full_store;
3398         }
3399       }
3400 
3401       if (zeroes_needed > zeroes_done) {
3402         intptr_t zsize = zeroes_needed - zeroes_done;
3403         // Do some incremental zeroing on rawmem, in parallel with inits.
3404         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3405         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3406                                               zeroes_done, zeroes_needed,
3407                                               phase);
3408         zeroes_done = zeroes_needed;
3409         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3410           do_zeroing = false;   // leave the hole, next time
3411       }
3412     }
3413 
3414     // Collect the store and move on:
3415     st->set_req(MemNode::Memory, inits);
3416     inits = st;                 // put it on the linearized chain
3417     set_req(i, zmem);           // unhook from previous position
3418 
3419     if (zeroes_done == st_off)
3420       zeroes_done = next_init_off;
3421 
3422     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3423 
3424     #ifdef ASSERT
3425     // Various order invariants.  Weaker than stores_are_sane because
3426     // a large constant tile can be filled in by smaller non-constant stores.
3427     assert(st_off >= last_init_off, "inits do not reverse");
3428     last_init_off = st_off;
3429     const Type* val = NULL;
3430     if (st_size >= BytesPerInt &&
3431         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3432         (int)val->basic_type() < (int)T_OBJECT) {
3433       assert(st_off >= last_tile_end, "tiles do not overlap");
3434       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3435       last_tile_end = MAX2(last_tile_end, next_init_off);
3436     } else {
3437       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3438       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3439       assert(st_off      >= last_init_end, "inits do not overlap");
3440       last_init_end = next_init_off;  // it's a non-tile
3441     }
3442     #endif //ASSERT
3443   }
3444 
3445   remove_extra_zeroes();        // clear out all the zmems left over
3446   add_req(inits);
3447 
3448   if (!ZeroTLAB) {
3449     // If anything remains to be zeroed, zero it all now.
3450     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3451     // if it is the last unused 4 bytes of an instance, forget about it
3452     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3453     if (zeroes_done + BytesPerLong >= size_limit) {
3454       assert(allocation() != NULL, "");
3455       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3456       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3457       if (zeroes_done == k->layout_helper())
3458         zeroes_done = size_limit;
3459     }
3460     if (zeroes_done < size_limit) {
3461       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3462                                             zeroes_done, size_in_bytes, phase);
3463     }
3464   }
3465 
3466   set_complete(phase);
3467   return rawmem;
3468 }
3469 
3470 
3471 #ifdef ASSERT
3472 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3473   if (is_complete())
3474     return true;                // stores could be anything at this point
3475   assert(allocation() != NULL, "must be present");
3476   intptr_t last_off = allocation()->minimum_header_size();
3477   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3478     Node* st = in(i);
3479     intptr_t st_off = get_store_offset(st, phase);
3480     if (st_off < 0)  continue;  // ignore dead garbage
3481     if (last_off > st_off) {
3482       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3483       this->dump(2);
3484       assert(false, "ascending store offsets");
3485       return false;
3486     }
3487     last_off = st_off + st->as_Store()->memory_size();
3488   }
3489   return true;
3490 }
3491 #endif //ASSERT
3492 
3493 
3494 
3495 
3496 //============================MergeMemNode=====================================
3497 //
3498 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3499 // contributing store or call operations.  Each contributor provides the memory
3500 // state for a particular "alias type" (see Compile::alias_type).  For example,
3501 // if a MergeMem has an input X for alias category #6, then any memory reference
3502 // to alias category #6 may use X as its memory state input, as an exact equivalent
3503 // to using the MergeMem as a whole.
3504 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3505 //
3506 // (Here, the <N> notation gives the index of the relevant adr_type.)
3507 //
3508 // In one special case (and more cases in the future), alias categories overlap.
3509 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3510 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3511 // it is exactly equivalent to that state W:
3512 //   MergeMem(<Bot>: W) <==> W
3513 //
3514 // Usually, the merge has more than one input.  In that case, where inputs
3515 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3516 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3517 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3518 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3519 //
3520 // A merge can take a "wide" memory state as one of its narrow inputs.
3521 // This simply means that the merge observes out only the relevant parts of
3522 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3523 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3524 //
3525 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3526 // and that memory slices "leak through":
3527 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3528 //
3529 // But, in such a cascade, repeated memory slices can "block the leak":
3530 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3531 //
3532 // In the last example, Y is not part of the combined memory state of the
3533 // outermost MergeMem.  The system must, of course, prevent unschedulable
3534 // memory states from arising, so you can be sure that the state Y is somehow
3535 // a precursor to state Y'.
3536 //
3537 //
3538 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3539 // of each MergeMemNode array are exactly the numerical alias indexes, including
3540 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3541 // Compile::alias_type (and kin) produce and manage these indexes.
3542 //
3543 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3544 // (Note that this provides quick access to the top node inside MergeMem methods,
3545 // without the need to reach out via TLS to Compile::current.)
3546 //
3547 // As a consequence of what was just described, a MergeMem that represents a full
3548 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3549 // containing all alias categories.
3550 //
3551 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3552 //
3553 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3554 // a memory state for the alias type <N>, or else the top node, meaning that
3555 // there is no particular input for that alias type.  Note that the length of
3556 // a MergeMem is variable, and may be extended at any time to accommodate new
3557 // memory states at larger alias indexes.  When merges grow, they are of course
3558 // filled with "top" in the unused in() positions.
3559 //
3560 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3561 // (Top was chosen because it works smoothly with passes like GCM.)
3562 //
3563 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3564 // the type of random VM bits like TLS references.)  Since it is always the
3565 // first non-Bot memory slice, some low-level loops use it to initialize an
3566 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3567 //
3568 //
3569 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3570 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3571 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3572 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3573 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3574 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3575 //
3576 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3577 // really that different from the other memory inputs.  An abbreviation called
3578 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3579 //
3580 //
3581 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3582 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3583 // that "emerges though" the base memory will be marked as excluding the alias types
3584 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3585 //
3586 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3587 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3588 //
3589 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3590 // (It is currently unimplemented.)  As you can see, the resulting merge is
3591 // actually a disjoint union of memory states, rather than an overlay.
3592 //
3593 
3594 //------------------------------MergeMemNode-----------------------------------
3595 Node* MergeMemNode::make_empty_memory() {
3596   Node* empty_memory = (Node*) Compile::current()->top();
3597   assert(empty_memory->is_top(), "correct sentinel identity");
3598   return empty_memory;
3599 }
3600 
3601 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3602   init_class_id(Class_MergeMem);
3603   // all inputs are nullified in Node::Node(int)
3604   // set_input(0, NULL);  // no control input
3605 
3606   // Initialize the edges uniformly to top, for starters.
3607   Node* empty_mem = make_empty_memory();
3608   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3609     init_req(i,empty_mem);
3610   }
3611   assert(empty_memory() == empty_mem, "");
3612 
3613   if( new_base != NULL && new_base->is_MergeMem() ) {
3614     MergeMemNode* mdef = new_base->as_MergeMem();
3615     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3616     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3617       mms.set_memory(mms.memory2());
3618     }
3619     assert(base_memory() == mdef->base_memory(), "");
3620   } else {
3621     set_base_memory(new_base);
3622   }
3623 }
3624 
3625 // Make a new, untransformed MergeMem with the same base as 'mem'.
3626 // If mem is itself a MergeMem, populate the result with the same edges.
3627 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3628   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3629 }
3630 
3631 //------------------------------cmp--------------------------------------------
3632 uint MergeMemNode::hash() const { return NO_HASH; }
3633 uint MergeMemNode::cmp( const Node &n ) const {
3634   return (&n == this);          // Always fail except on self
3635 }
3636 
3637 //------------------------------Identity---------------------------------------
3638 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3639   // Identity if this merge point does not record any interesting memory
3640   // disambiguations.
3641   Node* base_mem = base_memory();
3642   Node* empty_mem = empty_memory();
3643   if (base_mem != empty_mem) {  // Memory path is not dead?
3644     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3645       Node* mem = in(i);
3646       if (mem != empty_mem && mem != base_mem) {
3647         return this;            // Many memory splits; no change
3648       }
3649     }
3650   }
3651   return base_mem;              // No memory splits; ID on the one true input
3652 }
3653 
3654 //------------------------------Ideal------------------------------------------
3655 // This method is invoked recursively on chains of MergeMem nodes
3656 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3657   // Remove chain'd MergeMems
3658   //
3659   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3660   // relative to the "in(Bot)".  Since we are patching both at the same time,
3661   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3662   // but rewrite each "in(i)" relative to the new "in(Bot)".
3663   Node *progress = NULL;
3664 
3665 
3666   Node* old_base = base_memory();
3667   Node* empty_mem = empty_memory();
3668   if (old_base == empty_mem)
3669     return NULL; // Dead memory path.
3670 
3671   MergeMemNode* old_mbase;
3672   if (old_base != NULL && old_base->is_MergeMem())
3673     old_mbase = old_base->as_MergeMem();
3674   else
3675     old_mbase = NULL;
3676   Node* new_base = old_base;
3677 
3678   // simplify stacked MergeMems in base memory
3679   if (old_mbase)  new_base = old_mbase->base_memory();
3680 
3681   // the base memory might contribute new slices beyond my req()
3682   if (old_mbase)  grow_to_match(old_mbase);
3683 
3684   // Look carefully at the base node if it is a phi.
3685   PhiNode* phi_base;
3686   if (new_base != NULL && new_base->is_Phi())
3687     phi_base = new_base->as_Phi();
3688   else
3689     phi_base = NULL;
3690 
3691   Node*    phi_reg = NULL;
3692   uint     phi_len = (uint)-1;
3693   if (phi_base != NULL && !phi_base->is_copy()) {
3694     // do not examine phi if degraded to a copy
3695     phi_reg = phi_base->region();
3696     phi_len = phi_base->req();
3697     // see if the phi is unfinished
3698     for (uint i = 1; i < phi_len; i++) {
3699       if (phi_base->in(i) == NULL) {
3700         // incomplete phi; do not look at it yet!
3701         phi_reg = NULL;
3702         phi_len = (uint)-1;
3703         break;
3704       }
3705     }
3706   }
3707 
3708   // Note:  We do not call verify_sparse on entry, because inputs
3709   // can normalize to the base_memory via subsume_node or similar
3710   // mechanisms.  This method repairs that damage.
3711 
3712   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3713 
3714   // Look at each slice.
3715   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3716     Node* old_in = in(i);
3717     // calculate the old memory value
3718     Node* old_mem = old_in;
3719     if (old_mem == empty_mem)  old_mem = old_base;
3720     assert(old_mem == memory_at(i), "");
3721 
3722     // maybe update (reslice) the old memory value
3723 
3724     // simplify stacked MergeMems
3725     Node* new_mem = old_mem;
3726     MergeMemNode* old_mmem;
3727     if (old_mem != NULL && old_mem->is_MergeMem())
3728       old_mmem = old_mem->as_MergeMem();
3729     else
3730       old_mmem = NULL;
3731     if (old_mmem == this) {
3732       // This can happen if loops break up and safepoints disappear.
3733       // A merge of BotPtr (default) with a RawPtr memory derived from a
3734       // safepoint can be rewritten to a merge of the same BotPtr with
3735       // the BotPtr phi coming into the loop.  If that phi disappears
3736       // also, we can end up with a self-loop of the mergemem.
3737       // In general, if loops degenerate and memory effects disappear,
3738       // a mergemem can be left looking at itself.  This simply means
3739       // that the mergemem's default should be used, since there is
3740       // no longer any apparent effect on this slice.
3741       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3742       //       from start.  Update the input to TOP.
3743       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3744     }
3745     else if (old_mmem != NULL) {
3746       new_mem = old_mmem->memory_at(i);
3747     }
3748     // else preceding memory was not a MergeMem
3749 
3750     // replace equivalent phis (unfortunately, they do not GVN together)
3751     if (new_mem != NULL && new_mem != new_base &&
3752         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3753       if (new_mem->is_Phi()) {
3754         PhiNode* phi_mem = new_mem->as_Phi();
3755         for (uint i = 1; i < phi_len; i++) {
3756           if (phi_base->in(i) != phi_mem->in(i)) {
3757             phi_mem = NULL;
3758             break;
3759           }
3760         }
3761         if (phi_mem != NULL) {
3762           // equivalent phi nodes; revert to the def
3763           new_mem = new_base;
3764         }
3765       }
3766     }
3767 
3768     // maybe store down a new value
3769     Node* new_in = new_mem;
3770     if (new_in == new_base)  new_in = empty_mem;
3771 
3772     if (new_in != old_in) {
3773       // Warning:  Do not combine this "if" with the previous "if"
3774       // A memory slice might have be be rewritten even if it is semantically
3775       // unchanged, if the base_memory value has changed.
3776       set_req(i, new_in);
3777       progress = this;          // Report progress
3778     }
3779   }
3780 
3781   if (new_base != old_base) {
3782     set_req(Compile::AliasIdxBot, new_base);
3783     // Don't use set_base_memory(new_base), because we need to update du.
3784     assert(base_memory() == new_base, "");
3785     progress = this;
3786   }
3787 
3788   if( base_memory() == this ) {
3789     // a self cycle indicates this memory path is dead
3790     set_req(Compile::AliasIdxBot, empty_mem);
3791   }
3792 
3793   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3794   // Recursion must occur after the self cycle check above
3795   if( base_memory()->is_MergeMem() ) {
3796     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3797     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3798     if( m != NULL && (m->is_top() ||
3799         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3800       // propagate rollup of dead cycle to self
3801       set_req(Compile::AliasIdxBot, empty_mem);
3802     }
3803   }
3804 
3805   if( base_memory() == empty_mem ) {
3806     progress = this;
3807     // Cut inputs during Parse phase only.
3808     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3809     if( !can_reshape ) {
3810       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3811         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3812       }
3813     }
3814   }
3815 
3816   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3817     // Check if PhiNode::Ideal's "Split phis through memory merges"
3818     // transform should be attempted. Look for this->phi->this cycle.
3819     uint merge_width = req();
3820     if (merge_width > Compile::AliasIdxRaw) {
3821       PhiNode* phi = base_memory()->as_Phi();
3822       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3823         if (phi->in(i) == this) {
3824           phase->is_IterGVN()->_worklist.push(phi);
3825           break;
3826         }
3827       }
3828     }
3829   }
3830 
3831   assert(progress || verify_sparse(), "please, no dups of base");
3832   return progress;
3833 }
3834 
3835 //-------------------------set_base_memory-------------------------------------
3836 void MergeMemNode::set_base_memory(Node *new_base) {
3837   Node* empty_mem = empty_memory();
3838   set_req(Compile::AliasIdxBot, new_base);
3839   assert(memory_at(req()) == new_base, "must set default memory");
3840   // Clear out other occurrences of new_base:
3841   if (new_base != empty_mem) {
3842     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3843       if (in(i) == new_base)  set_req(i, empty_mem);
3844     }
3845   }
3846 }
3847 
3848 //------------------------------out_RegMask------------------------------------
3849 const RegMask &MergeMemNode::out_RegMask() const {
3850   return RegMask::Empty;
3851 }
3852 
3853 //------------------------------dump_spec--------------------------------------
3854 #ifndef PRODUCT
3855 void MergeMemNode::dump_spec(outputStream *st) const {
3856   st->print(" {");
3857   Node* base_mem = base_memory();
3858   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3859     Node* mem = memory_at(i);
3860     if (mem == base_mem) { st->print(" -"); continue; }
3861     st->print( " N%d:", mem->_idx );
3862     Compile::current()->get_adr_type(i)->dump_on(st);
3863   }
3864   st->print(" }");
3865 }
3866 #endif // !PRODUCT
3867 
3868 
3869 #ifdef ASSERT
3870 static bool might_be_same(Node* a, Node* b) {
3871   if (a == b)  return true;
3872   if (!(a->is_Phi() || b->is_Phi()))  return false;
3873   // phis shift around during optimization
3874   return true;  // pretty stupid...
3875 }
3876 
3877 // verify a narrow slice (either incoming or outgoing)
3878 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3879   if (!VerifyAliases)       return;  // don't bother to verify unless requested
3880   if (is_error_reported())  return;  // muzzle asserts when debugging an error
3881   if (Node::in_dump())      return;  // muzzle asserts when printing
3882   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3883   assert(n != NULL, "");
3884   // Elide intervening MergeMem's
3885   while (n->is_MergeMem()) {
3886     n = n->as_MergeMem()->memory_at(alias_idx);
3887   }
3888   Compile* C = Compile::current();
3889   const TypePtr* n_adr_type = n->adr_type();
3890   if (n == m->empty_memory()) {
3891     // Implicit copy of base_memory()
3892   } else if (n_adr_type != TypePtr::BOTTOM) {
3893     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3894     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3895   } else {
3896     // A few places like make_runtime_call "know" that VM calls are narrow,
3897     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3898     bool expected_wide_mem = false;
3899     if (n == m->base_memory()) {
3900       expected_wide_mem = true;
3901     } else if (alias_idx == Compile::AliasIdxRaw ||
3902                n == m->memory_at(Compile::AliasIdxRaw)) {
3903       expected_wide_mem = true;
3904     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3905       // memory can "leak through" calls on channels that
3906       // are write-once.  Allow this also.
3907       expected_wide_mem = true;
3908     }
3909     assert(expected_wide_mem, "expected narrow slice replacement");
3910   }
3911 }
3912 #else // !ASSERT
3913 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3914 #endif
3915 
3916 
3917 //-----------------------------memory_at---------------------------------------
3918 Node* MergeMemNode::memory_at(uint alias_idx) const {
3919   assert(alias_idx >= Compile::AliasIdxRaw ||
3920          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3921          "must avoid base_memory and AliasIdxTop");
3922 
3923   // Otherwise, it is a narrow slice.
3924   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3925   Compile *C = Compile::current();
3926   if (is_empty_memory(n)) {
3927     // the array is sparse; empty slots are the "top" node
3928     n = base_memory();
3929     assert(Node::in_dump()
3930            || n == NULL || n->bottom_type() == Type::TOP
3931            || n->adr_type() == TypePtr::BOTTOM
3932            || n->adr_type() == TypeRawPtr::BOTTOM
3933            || Compile::current()->AliasLevel() == 0,
3934            "must be a wide memory");
3935     // AliasLevel == 0 if we are organizing the memory states manually.
3936     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3937   } else {
3938     // make sure the stored slice is sane
3939     #ifdef ASSERT
3940     if (is_error_reported() || Node::in_dump()) {
3941     } else if (might_be_same(n, base_memory())) {
3942       // Give it a pass:  It is a mostly harmless repetition of the base.
3943       // This can arise normally from node subsumption during optimization.
3944     } else {
3945       verify_memory_slice(this, alias_idx, n);
3946     }
3947     #endif
3948   }
3949   return n;
3950 }
3951 
3952 //---------------------------set_memory_at-------------------------------------
3953 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3954   verify_memory_slice(this, alias_idx, n);
3955   Node* empty_mem = empty_memory();
3956   if (n == base_memory())  n = empty_mem;  // collapse default
3957   uint need_req = alias_idx+1;
3958   if (req() < need_req) {
3959     if (n == empty_mem)  return;  // already the default, so do not grow me
3960     // grow the sparse array
3961     do {
3962       add_req(empty_mem);
3963     } while (req() < need_req);
3964   }
3965   set_req( alias_idx, n );
3966 }
3967 
3968 
3969 
3970 //--------------------------iteration_setup------------------------------------
3971 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3972   if (other != NULL) {
3973     grow_to_match(other);
3974     // invariant:  the finite support of mm2 is within mm->req()
3975     #ifdef ASSERT
3976     for (uint i = req(); i < other->req(); i++) {
3977       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3978     }
3979     #endif
3980   }
3981   // Replace spurious copies of base_memory by top.
3982   Node* base_mem = base_memory();
3983   if (base_mem != NULL && !base_mem->is_top()) {
3984     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3985       if (in(i) == base_mem)
3986         set_req(i, empty_memory());
3987     }
3988   }
3989 }
3990 
3991 //---------------------------grow_to_match-------------------------------------
3992 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3993   Node* empty_mem = empty_memory();
3994   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3995   // look for the finite support of the other memory
3996   for (uint i = other->req(); --i >= req(); ) {
3997     if (other->in(i) != empty_mem) {
3998       uint new_len = i+1;
3999       while (req() < new_len)  add_req(empty_mem);
4000       break;
4001     }
4002   }
4003 }
4004 
4005 //---------------------------verify_sparse-------------------------------------
4006 #ifndef PRODUCT
4007 bool MergeMemNode::verify_sparse() const {
4008   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4009   Node* base_mem = base_memory();
4010   // The following can happen in degenerate cases, since empty==top.
4011   if (is_empty_memory(base_mem))  return true;
4012   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4013     assert(in(i) != NULL, "sane slice");
4014     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4015   }
4016   return true;
4017 }
4018 
4019 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4020   Node* n;
4021   n = mm->in(idx);
4022   if (mem == n)  return true;  // might be empty_memory()
4023   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4024   if (mem == n)  return true;
4025   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4026     if (mem == n)  return true;
4027     if (n == NULL)  break;
4028   }
4029   return false;
4030 }
4031 #endif // !PRODUCT