1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_assembler_sparc.cpp.incl"
  27 
  28 // Convert the raw encoding form into the form expected by the
  29 // constructor for Address.
  30 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  31   assert(scale == 0, "not supported");
  32   RelocationHolder rspec;
  33   if (disp_is_oop) {
  34     rspec = Relocation::spec_simple(relocInfo::oop_type);
  35   }
  36 
  37   Register rindex = as_Register(index);
  38   if (rindex != G0) {
  39     Address madr(as_Register(base), rindex);
  40     madr._rspec = rspec;
  41     return madr;
  42   } else {
  43     Address madr(as_Register(base), disp);
  44     madr._rspec = rspec;
  45     return madr;
  46   }
  47 }
  48 
  49 Address Argument::address_in_frame() const {
  50   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  51   //          op codes such as ld or ldx, only access disp() to get
  52   //          their simm13 argument.
  53   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  54   if (is_in())
  55     return Address(FP, disp); // In argument.
  56   else
  57     return Address(SP, disp); // Out argument.
  58 }
  59 
  60 static const char* argumentNames[][2] = {
  61   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  62   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  63   {"A(n>9)","P(n>9)"}
  64 };
  65 
  66 const char* Argument::name() const {
  67   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  68   int num = number();
  69   if (num >= nofArgs)  num = nofArgs - 1;
  70   return argumentNames[num][is_in() ? 1 : 0];
  71 }
  72 
  73 void Assembler::print_instruction(int inst) {
  74   const char* s;
  75   switch (inv_op(inst)) {
  76   default:         s = "????"; break;
  77   case call_op:    s = "call"; break;
  78   case branch_op:
  79     switch (inv_op2(inst)) {
  80       case bpr_op2:    s = "bpr";  break;
  81       case fb_op2:     s = "fb";   break;
  82       case fbp_op2:    s = "fbp";  break;
  83       case br_op2:     s = "br";   break;
  84       case bp_op2:     s = "bp";   break;
  85       case cb_op2:     s = "cb";   break;
  86       default:         s = "????"; break;
  87     }
  88   }
  89   ::tty->print("%s", s);
  90 }
  91 
  92 
  93 // Patch instruction inst at offset inst_pos to refer to dest_pos
  94 // and return the resulting instruction.
  95 // We should have pcs, not offsets, but since all is relative, it will work out
  96 // OK.
  97 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
  98 
  99   int m; // mask for displacement field
 100   int v; // new value for displacement field
 101   const int word_aligned_ones = -4;
 102   switch (inv_op(inst)) {
 103   default: ShouldNotReachHere();
 104   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 105   case branch_op:
 106     switch (inv_op2(inst)) {
 107       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
 108       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 109       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 110       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 111       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 112       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 113       default: ShouldNotReachHere();
 114     }
 115   }
 116   return  inst & ~m  |  v;
 117 }
 118 
 119 // Return the offset of the branch destionation of instruction inst
 120 // at offset pos.
 121 // Should have pcs, but since all is relative, it works out.
 122 int Assembler::branch_destination(int inst, int pos) {
 123   int r;
 124   switch (inv_op(inst)) {
 125   default: ShouldNotReachHere();
 126   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 127   case branch_op:
 128     switch (inv_op2(inst)) {
 129       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
 130       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 131       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 132       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 133       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 134       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 135       default: ShouldNotReachHere();
 136     }
 137   }
 138   return r;
 139 }
 140 
 141 int AbstractAssembler::code_fill_byte() {
 142   return 0x00;                  // illegal instruction 0x00000000
 143 }
 144 
 145 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
 146   switch (in) {
 147   case rc_z:   return equal;
 148   case rc_lez: return lessEqual;
 149   case rc_lz:  return less;
 150   case rc_nz:  return notEqual;
 151   case rc_gz:  return greater;
 152   case rc_gez: return greaterEqual;
 153   default:
 154     ShouldNotReachHere();
 155   }
 156   return equal;
 157 }
 158 
 159 // Generate a bunch 'o stuff (including v9's
 160 #ifndef PRODUCT
 161 void Assembler::test_v9() {
 162   add(    G0, G1, G2 );
 163   add(    G3,  0, G4 );
 164 
 165   addcc(  G5, G6, G7 );
 166   addcc(  I0,  1, I1 );
 167   addc(   I2, I3, I4 );
 168   addc(   I5, -1, I6 );
 169   addccc( I7, L0, L1 );
 170   addccc( L2, (1 << 12) - 2, L3 );
 171 
 172   Label lbl1, lbl2, lbl3;
 173 
 174   bind(lbl1);
 175 
 176   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
 177   delayed()->nop();
 178   bpr( rc_lez, false, pt, L5, lbl1);
 179   delayed()->nop();
 180 
 181   fb( f_never,     true, pc() + 4,  relocInfo::none);
 182   delayed()->nop();
 183   fb( f_notEqual, false, lbl2 );
 184   delayed()->nop();
 185 
 186   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
 187   delayed()->nop();
 188   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
 189   delayed()->nop();
 190 
 191   br( equal,  true, pc() + 1024, relocInfo::none);
 192   delayed()->nop();
 193   br( lessEqual, false, lbl1 );
 194   delayed()->nop();
 195   br( never, false, lbl1 );
 196   delayed()->nop();
 197 
 198   bp( less,               true, icc, pn, pc(), relocInfo::none);
 199   delayed()->nop();
 200   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
 201   delayed()->nop();
 202 
 203   call( pc(), relocInfo::none);
 204   delayed()->nop();
 205   call( lbl3 );
 206   delayed()->nop();
 207 
 208 
 209   casa(  L6, L7, O0 );
 210   casxa( O1, O2, O3, 0 );
 211 
 212   udiv(   O4, O5, O7 );
 213   udiv(   G0, (1 << 12) - 1, G1 );
 214   sdiv(   G1, G2, G3 );
 215   sdiv(   G4, -((1 << 12) - 1), G5 );
 216   udivcc( G6, G7, I0 );
 217   udivcc( I1, -((1 << 12) - 2), I2 );
 218   sdivcc( I3, I4, I5 );
 219   sdivcc( I6, -((1 << 12) - 0), I7 );
 220 
 221   done();
 222   retry();
 223 
 224   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
 225   fsub( FloatRegisterImpl::D, F34, F0, F62 );
 226 
 227   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
 228   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
 229 
 230   ftox( FloatRegisterImpl::D, F2, F4 );
 231   ftoi( FloatRegisterImpl::Q, F4, F8 );
 232 
 233   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
 234 
 235   fxtof( FloatRegisterImpl::S, F4, F5 );
 236   fitof( FloatRegisterImpl::D, F6, F8 );
 237 
 238   fmov( FloatRegisterImpl::Q, F16, F20 );
 239   fneg( FloatRegisterImpl::S, F6, F7 );
 240   fabs( FloatRegisterImpl::D, F10, F12 );
 241 
 242   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
 243   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
 244   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
 245 
 246   fsqrt( FloatRegisterImpl::S, F13, F14 );
 247 
 248   flush( L0, L1 );
 249   flush( L2, -1 );
 250 
 251   flushw();
 252 
 253   illtrap( (1 << 22) - 2);
 254 
 255   impdep1( 17, (1 << 19) - 1 );
 256   impdep2( 3,  0 );
 257 
 258   jmpl( L3, L4, L5 );
 259   delayed()->nop();
 260   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
 261   delayed()->nop();
 262 
 263 
 264   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
 265   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
 266 
 267 
 268   ldfsr(  O3, O4 );
 269   ldfsr(  O5, -1 );
 270   ldxfsr( O6, O7 );
 271   ldxfsr( I0, -1 );
 272 
 273   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
 274   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
 275 
 276   ldsb(  I4, I5, I6 );
 277   ldsb(  I7, -1, G0 );
 278   ldsh(  G1, G3, G4 );
 279   ldsh(  G5, -1, G6 );
 280   ldsw(  G7, L0, L1 );
 281   ldsw(  L2, -1, L3 );
 282   ldub(  L4, L5, L6 );
 283   ldub(  L7, -1, O0 );
 284   lduh(  O1, O2, O3 );
 285   lduh(  O4, -1, O5 );
 286   lduw(  O6, O7, G0 );
 287   lduw(  G1, -1, G2 );
 288   ldx(   G3, G4, G5 );
 289   ldx(   G6, -1, G7 );
 290   ldd(   I0, I1, I2 );
 291   ldd(   I3, -1, I4 );
 292 
 293   ldsba(  I5, I6, 2, I7 );
 294   ldsba(  L0, -1, L1 );
 295   ldsha(  L2, L3, 3, L4 );
 296   ldsha(  L5, -1, L6 );
 297   ldswa(  L7, O0, (1 << 8) - 1, O1 );
 298   ldswa(  O2, -1, O3 );
 299   lduba(  O4, O5, 0, O6 );
 300   lduba(  O7, -1, I0 );
 301   lduha(  I1, I2, 1, I3 );
 302   lduha(  I4, -1, I5 );
 303   lduwa(  I6, I7, 2, L0 );
 304   lduwa(  L1, -1, L2 );
 305   ldxa(   L3, L4, 3, L5 );
 306   ldxa(   L6, -1, L7 );
 307   ldda(   G0, G1, 4, G2 );
 308   ldda(   G3, -1, G4 );
 309 
 310   ldstub(  G5, G6, G7 );
 311   ldstub(  O0, -1, O1 );
 312 
 313   ldstuba( O2, O3, 5, O4 );
 314   ldstuba( O5, -1, O6 );
 315 
 316   and3(    I0, L0, O0 );
 317   and3(    G7, -1, O7 );
 318   andcc(   L2, I2, G2 );
 319   andcc(   L4, -1, G4 );
 320   andn(    I5, I6, I7 );
 321   andn(    I6, -1, I7 );
 322   andncc(  I5, I6, I7 );
 323   andncc(  I7, -1, I6 );
 324   or3(     I5, I6, I7 );
 325   or3(     I7, -1, I6 );
 326   orcc(    I5, I6, I7 );
 327   orcc(    I7, -1, I6 );
 328   orn(     I5, I6, I7 );
 329   orn(     I7, -1, I6 );
 330   orncc(   I5, I6, I7 );
 331   orncc(   I7, -1, I6 );
 332   xor3(    I5, I6, I7 );
 333   xor3(    I7, -1, I6 );
 334   xorcc(   I5, I6, I7 );
 335   xorcc(   I7, -1, I6 );
 336   xnor(    I5, I6, I7 );
 337   xnor(    I7, -1, I6 );
 338   xnorcc(  I5, I6, I7 );
 339   xnorcc(  I7, -1, I6 );
 340 
 341   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
 342   membar( StoreStore );
 343   membar( LoadStore );
 344   membar( StoreLoad );
 345   membar( LoadLoad );
 346   membar( Sync );
 347   membar( MemIssue );
 348   membar( Lookaside );
 349 
 350   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
 351   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
 352 
 353   movcc( overflowClear,  false, icc, I6, L4 );
 354   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
 355 
 356   movr( rc_nz, I5, I6, I7 );
 357   movr( rc_gz, L1, -1,  L2 );
 358 
 359   mulx(  I5, I6, I7 );
 360   mulx(  I7, -1, I6 );
 361   sdivx( I5, I6, I7 );
 362   sdivx( I7, -1, I6 );
 363   udivx( I5, I6, I7 );
 364   udivx( I7, -1, I6 );
 365 
 366   umul(   I5, I6, I7 );
 367   umul(   I7, -1, I6 );
 368   smul(   I5, I6, I7 );
 369   smul(   I7, -1, I6 );
 370   umulcc( I5, I6, I7 );
 371   umulcc( I7, -1, I6 );
 372   smulcc( I5, I6, I7 );
 373   smulcc( I7, -1, I6 );
 374 
 375   mulscc(   I5, I6, I7 );
 376   mulscc(   I7, -1, I6 );
 377 
 378   nop();
 379 
 380 
 381   popc( G0,  G1);
 382   popc( -1, G2);
 383 
 384   prefetch(   L1, L2,    severalReads );
 385   prefetch(   L3, -1,    oneRead );
 386   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
 387   prefetcha(  G2, -1,    oneWrite );
 388 
 389   rett( I7, I7);
 390   delayed()->nop();
 391   rett( G0, -1, relocInfo::none);
 392   delayed()->nop();
 393 
 394   save(    I5, I6, I7 );
 395   save(    I7, -1, I6 );
 396   restore( I5, I6, I7 );
 397   restore( I7, -1, I6 );
 398 
 399   saved();
 400   restored();
 401 
 402   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
 403 
 404   sll(  I5, I6, I7 );
 405   sll(  I7, 31, I6 );
 406   srl(  I5, I6, I7 );
 407   srl(  I7,  0, I6 );
 408   sra(  I5, I6, I7 );
 409   sra(  I7, 30, I6 );
 410   sllx( I5, I6, I7 );
 411   sllx( I7, 63, I6 );
 412   srlx( I5, I6, I7 );
 413   srlx( I7,  0, I6 );
 414   srax( I5, I6, I7 );
 415   srax( I7, 62, I6 );
 416 
 417   sir( -1 );
 418 
 419   stbar();
 420 
 421   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
 422   stf(    FloatRegisterImpl::S, F18, I3, -1 );
 423 
 424   stfsr(  L1, L2 );
 425   stfsr(  I7, -1 );
 426   stxfsr( I6, I5 );
 427   stxfsr( L4, -1 );
 428 
 429   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
 430   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
 431 
 432   stb(  L5, O2, I7 );
 433   stb(  I7, I6, -1 );
 434   sth(  L5, O2, I7 );
 435   sth(  I7, I6, -1 );
 436   stw(  L5, O2, I7 );
 437   stw(  I7, I6, -1 );
 438   stx(  L5, O2, I7 );
 439   stx(  I7, I6, -1 );
 440   std(  L5, O2, I7 );
 441   std(  I7, I6, -1 );
 442 
 443   stba(  L5, O2, I7, 8 );
 444   stba(  I7, I6, -1    );
 445   stha(  L5, O2, I7, 9 );
 446   stha(  I7, I6, -1    );
 447   stwa(  L5, O2, I7, 0 );
 448   stwa(  I7, I6, -1    );
 449   stxa(  L5, O2, I7, 11 );
 450   stxa(  I7, I6, -1     );
 451   stda(  L5, O2, I7, 12 );
 452   stda(  I7, I6, -1     );
 453 
 454   sub(    I5, I6, I7 );
 455   sub(    I7, -1, I6 );
 456   subcc(  I5, I6, I7 );
 457   subcc(  I7, -1, I6 );
 458   subc(   I5, I6, I7 );
 459   subc(   I7, -1, I6 );
 460   subccc( I5, I6, I7 );
 461   subccc( I7, -1, I6 );
 462 
 463   swap( I5, I6, I7 );
 464   swap( I7, -1, I6 );
 465 
 466   swapa(   G0, G1, 13, G2 );
 467   swapa(   I7, -1,     I6 );
 468 
 469   taddcc(    I5, I6, I7 );
 470   taddcc(    I7, -1, I6 );
 471   taddcctv(  I5, I6, I7 );
 472   taddcctv(  I7, -1, I6 );
 473 
 474   tsubcc(    I5, I6, I7 );
 475   tsubcc(    I7, -1, I6 );
 476   tsubcctv(  I5, I6, I7 );
 477   tsubcctv(  I7, -1, I6 );
 478 
 479   trap( overflowClear, xcc, G0, G1 );
 480   trap( lessEqual,     icc, I7, 17 );
 481 
 482   bind(lbl2);
 483   bind(lbl3);
 484 
 485   code()->decode();
 486 }
 487 
 488 // Generate a bunch 'o stuff unique to V8
 489 void Assembler::test_v8_onlys() {
 490   Label lbl1;
 491 
 492   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
 493   delayed()->nop();
 494   cb( cp_never,    true, lbl1);
 495   delayed()->nop();
 496 
 497   cpop1(1, 2, 3, 4);
 498   cpop2(5, 6, 7, 8);
 499 
 500   ldc( I0, I1, 31);
 501   ldc( I2, -1,  0);
 502 
 503   lddc( I4, I4, 30);
 504   lddc( I6,  0, 1 );
 505 
 506   ldcsr( L0, L1, 0);
 507   ldcsr( L1, (1 << 12) - 1, 17 );
 508 
 509   stc( 31, L4, L5);
 510   stc( 30, L6, -(1 << 12) );
 511 
 512   stdc( 0, L7, G0);
 513   stdc( 1, G1, 0 );
 514 
 515   stcsr( 16, G2, G3);
 516   stcsr( 17, G4, 1 );
 517 
 518   stdcq( 4, G5, G6);
 519   stdcq( 5, G7, -1 );
 520 
 521   bind(lbl1);
 522 
 523   code()->decode();
 524 }
 525 #endif
 526 
 527 // Implementation of MacroAssembler
 528 
 529 void MacroAssembler::null_check(Register reg, int offset) {
 530   if (needs_explicit_null_check((intptr_t)offset)) {
 531     // provoke OS NULL exception if reg = NULL by
 532     // accessing M[reg] w/o changing any registers
 533     ld_ptr(reg, 0, G0);
 534   }
 535   else {
 536     // nothing to do, (later) access of M[reg + offset]
 537     // will provoke OS NULL exception if reg = NULL
 538   }
 539 }
 540 
 541 // Ring buffer jumps
 542 
 543 #ifndef PRODUCT
 544 void MacroAssembler::ret(  bool trace )   { if (trace) {
 545                                                     mov(I7, O7); // traceable register
 546                                                     JMP(O7, 2 * BytesPerInstWord);
 547                                                   } else {
 548                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
 549                                                   }
 550                                                 }
 551 
 552 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
 553                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
 554 #endif /* PRODUCT */
 555 
 556 
 557 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 558   assert_not_delayed();
 559   // This can only be traceable if r1 & r2 are visible after a window save
 560   if (TraceJumps) {
 561 #ifndef PRODUCT
 562     save_frame(0);
 563     verify_thread();
 564     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 565     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 566     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 567     add(O2, O1, O1);
 568 
 569     add(r1->after_save(), r2->after_save(), O2);
 570     set((intptr_t)file, O3);
 571     set(line, O4);
 572     Label L;
 573     // get nearby pc, store jmp target
 574     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 575     delayed()->st(O2, O1, 0);
 576     bind(L);
 577 
 578     // store nearby pc
 579     st(O7, O1, sizeof(intptr_t));
 580     // store file
 581     st(O3, O1, 2*sizeof(intptr_t));
 582     // store line
 583     st(O4, O1, 3*sizeof(intptr_t));
 584     add(O0, 1, O0);
 585     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 586     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 587     restore();
 588 #endif /* PRODUCT */
 589   }
 590   jmpl(r1, r2, G0);
 591 }
 592 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 593   assert_not_delayed();
 594   // This can only be traceable if r1 is visible after a window save
 595   if (TraceJumps) {
 596 #ifndef PRODUCT
 597     save_frame(0);
 598     verify_thread();
 599     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 600     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 601     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 602     add(O2, O1, O1);
 603 
 604     add(r1->after_save(), offset, O2);
 605     set((intptr_t)file, O3);
 606     set(line, O4);
 607     Label L;
 608     // get nearby pc, store jmp target
 609     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 610     delayed()->st(O2, O1, 0);
 611     bind(L);
 612 
 613     // store nearby pc
 614     st(O7, O1, sizeof(intptr_t));
 615     // store file
 616     st(O3, O1, 2*sizeof(intptr_t));
 617     // store line
 618     st(O4, O1, 3*sizeof(intptr_t));
 619     add(O0, 1, O0);
 620     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 621     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 622     restore();
 623 #endif /* PRODUCT */
 624   }
 625   jmp(r1, offset);
 626 }
 627 
 628 // This code sequence is relocatable to any address, even on LP64.
 629 void MacroAssembler::jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 630   assert_not_delayed();
 631   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 632   // variable length instruction streams.
 633   patchable_sethi(addrlit, temp);
 634   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 635   if (TraceJumps) {
 636 #ifndef PRODUCT
 637     // Must do the add here so relocation can find the remainder of the
 638     // value to be relocated.
 639     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 640     save_frame(0);
 641     verify_thread();
 642     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 643     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 644     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 645     add(O2, O1, O1);
 646 
 647     set((intptr_t)file, O3);
 648     set(line, O4);
 649     Label L;
 650 
 651     // get nearby pc, store jmp target
 652     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 653     delayed()->st(a.base()->after_save(), O1, 0);
 654     bind(L);
 655 
 656     // store nearby pc
 657     st(O7, O1, sizeof(intptr_t));
 658     // store file
 659     st(O3, O1, 2*sizeof(intptr_t));
 660     // store line
 661     st(O4, O1, 3*sizeof(intptr_t));
 662     add(O0, 1, O0);
 663     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 664     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 665     restore();
 666     jmpl(a.base(), G0, d);
 667 #else
 668     jmpl(a.base(), a.disp(), d);
 669 #endif /* PRODUCT */
 670   } else {
 671     jmpl(a.base(), a.disp(), d);
 672   }
 673 }
 674 
 675 void MacroAssembler::jump(AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 676   jumpl(addrlit, temp, G0, offset, file, line);
 677 }
 678 
 679 
 680 // Convert to C varargs format
 681 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
 682   // spill register-resident args to their memory slots
 683   // (SPARC calling convention requires callers to have already preallocated these)
 684   // Note that the inArg might in fact be an outgoing argument,
 685   // if a leaf routine or stub does some tricky argument shuffling.
 686   // This routine must work even though one of the saved arguments
 687   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
 688   for (Argument savePtr = inArg;
 689        savePtr.is_register();
 690        savePtr = savePtr.successor()) {
 691     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
 692   }
 693   // return the address of the first memory slot
 694   Address a = inArg.address_in_frame();
 695   add(a.base(), a.disp(), d);
 696 }
 697 
 698 // Conditional breakpoint (for assertion checks in assembly code)
 699 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 700   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 701 }
 702 
 703 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 704 void MacroAssembler::breakpoint_trap() {
 705   trap(ST_RESERVED_FOR_USER_0);
 706 }
 707 
 708 // flush windows (except current) using flushw instruction if avail.
 709 void MacroAssembler::flush_windows() {
 710   if (VM_Version::v9_instructions_work())  flushw();
 711   else                                     flush_windows_trap();
 712 }
 713 
 714 // Write serialization page so VM thread can do a pseudo remote membar
 715 // We use the current thread pointer to calculate a thread specific
 716 // offset to write to within the page. This minimizes bus traffic
 717 // due to cache line collision.
 718 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 719   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 720   if (Assembler::is_simm13(os::vm_page_size())) {
 721     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 722   }
 723   else {
 724     set((os::vm_page_size() - sizeof(int)), tmp1);
 725     and3(tmp2, tmp1, tmp2);
 726   }
 727   set(os::get_memory_serialize_page(), tmp1);
 728   st(G0, tmp1, tmp2);
 729 }
 730 
 731 
 732 
 733 void MacroAssembler::enter() {
 734   Unimplemented();
 735 }
 736 
 737 void MacroAssembler::leave() {
 738   Unimplemented();
 739 }
 740 
 741 void MacroAssembler::mult(Register s1, Register s2, Register d) {
 742   if(VM_Version::v9_instructions_work()) {
 743     mulx (s1, s2, d);
 744   } else {
 745     smul (s1, s2, d);
 746   }
 747 }
 748 
 749 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
 750   if(VM_Version::v9_instructions_work()) {
 751     mulx (s1, simm13a, d);
 752   } else {
 753     smul (s1, simm13a, d);
 754   }
 755 }
 756 
 757 
 758 #ifdef ASSERT
 759 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
 760   const Register s1 = G3_scratch;
 761   const Register s2 = G4_scratch;
 762   Label get_psr_test;
 763   // Get the condition codes the V8 way.
 764   read_ccr_trap(s1);
 765   mov(ccr_save, s2);
 766   // This is a test of V8 which has icc but not xcc
 767   // so mask off the xcc bits
 768   and3(s2, 0xf, s2);
 769   // Compare condition codes from the V8 and V9 ways.
 770   subcc(s2, s1, G0);
 771   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
 772   delayed()->breakpoint_trap();
 773   bind(get_psr_test);
 774 }
 775 
 776 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
 777   const Register s1 = G3_scratch;
 778   const Register s2 = G4_scratch;
 779   Label set_psr_test;
 780   // Write out the saved condition codes the V8 way
 781   write_ccr_trap(ccr_save, s1, s2);
 782   // Read back the condition codes using the V9 instruction
 783   rdccr(s1);
 784   mov(ccr_save, s2);
 785   // This is a test of V8 which has icc but not xcc
 786   // so mask off the xcc bits
 787   and3(s2, 0xf, s2);
 788   and3(s1, 0xf, s1);
 789   // Compare the V8 way with the V9 way.
 790   subcc(s2, s1, G0);
 791   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
 792   delayed()->breakpoint_trap();
 793   bind(set_psr_test);
 794 }
 795 #else
 796 #define read_ccr_v8_assert(x)
 797 #define write_ccr_v8_assert(x)
 798 #endif // ASSERT
 799 
 800 void MacroAssembler::read_ccr(Register ccr_save) {
 801   if (VM_Version::v9_instructions_work()) {
 802     rdccr(ccr_save);
 803     // Test code sequence used on V8.  Do not move above rdccr.
 804     read_ccr_v8_assert(ccr_save);
 805   } else {
 806     read_ccr_trap(ccr_save);
 807   }
 808 }
 809 
 810 void MacroAssembler::write_ccr(Register ccr_save) {
 811   if (VM_Version::v9_instructions_work()) {
 812     // Test code sequence used on V8.  Do not move below wrccr.
 813     write_ccr_v8_assert(ccr_save);
 814     wrccr(ccr_save);
 815   } else {
 816     const Register temp_reg1 = G3_scratch;
 817     const Register temp_reg2 = G4_scratch;
 818     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
 819   }
 820 }
 821 
 822 
 823 // Calls to C land
 824 
 825 #ifdef ASSERT
 826 // a hook for debugging
 827 static Thread* reinitialize_thread() {
 828   return ThreadLocalStorage::thread();
 829 }
 830 #else
 831 #define reinitialize_thread ThreadLocalStorage::thread
 832 #endif
 833 
 834 #ifdef ASSERT
 835 address last_get_thread = NULL;
 836 #endif
 837 
 838 // call this when G2_thread is not known to be valid
 839 void MacroAssembler::get_thread() {
 840   save_frame(0);                // to avoid clobbering O0
 841   mov(G1, L0);                  // avoid clobbering G1
 842   mov(G5_method, L1);           // avoid clobbering G5
 843   mov(G3, L2);                  // avoid clobbering G3 also
 844   mov(G4, L5);                  // avoid clobbering G4
 845 #ifdef ASSERT
 846   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 847   set(last_get_thread_addrlit, L3);
 848   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
 849   st_ptr(L4, L3, 0);
 850 #endif
 851   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 852   delayed()->nop();
 853   mov(L0, G1);
 854   mov(L1, G5_method);
 855   mov(L2, G3);
 856   mov(L5, G4);
 857   restore(O0, 0, G2_thread);
 858 }
 859 
 860 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 861   Thread* correct_value = ThreadLocalStorage::thread();
 862   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 863   return correct_value;
 864 }
 865 
 866 void MacroAssembler::verify_thread() {
 867   if (VerifyThread) {
 868     // NOTE: this chops off the heads of the 64-bit O registers.
 869 #ifdef CC_INTERP
 870     save_frame(0);
 871 #else
 872     // make sure G2_thread contains the right value
 873     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 874     mov(G1, L1);                // avoid clobbering G1
 875     // G2 saved below
 876     mov(G3, L3);                // avoid clobbering G3
 877     mov(G4, L4);                // avoid clobbering G4
 878     mov(G5_method, L5);         // avoid clobbering G5_method
 879 #endif /* CC_INTERP */
 880 #if defined(COMPILER2) && !defined(_LP64)
 881     // Save & restore possible 64-bit Long arguments in G-regs
 882     srlx(G1,32,L0);
 883     srlx(G4,32,L6);
 884 #endif
 885     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 886     delayed()->mov(G2_thread, O0);
 887 
 888     mov(L1, G1);                // Restore G1
 889     // G2 restored below
 890     mov(L3, G3);                // restore G3
 891     mov(L4, G4);                // restore G4
 892     mov(L5, G5_method);         // restore G5_method
 893 #if defined(COMPILER2) && !defined(_LP64)
 894     // Save & restore possible 64-bit Long arguments in G-regs
 895     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 896     sllx(G1, 0,G1);             // Clear current high G1 bits
 897     or3 (G1,G2,G1);             // Recover 64-bit G1
 898     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 899     sllx(G4, 0,G4);             // Clear current high G4 bits
 900     or3 (G4,G2,G4);             // Recover 64-bit G4
 901 #endif
 902     restore(O0, 0, G2_thread);
 903   }
 904 }
 905 
 906 
 907 void MacroAssembler::save_thread(const Register thread_cache) {
 908   verify_thread();
 909   if (thread_cache->is_valid()) {
 910     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 911     mov(G2_thread, thread_cache);
 912   }
 913   if (VerifyThread) {
 914     // smash G2_thread, as if the VM were about to anyway
 915     set(0x67676767, G2_thread);
 916   }
 917 }
 918 
 919 
 920 void MacroAssembler::restore_thread(const Register thread_cache) {
 921   if (thread_cache->is_valid()) {
 922     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 923     mov(thread_cache, G2_thread);
 924     verify_thread();
 925   } else {
 926     // do it the slow way
 927     get_thread();
 928   }
 929 }
 930 
 931 
 932 // %%% maybe get rid of [re]set_last_Java_frame
 933 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 934   assert_not_delayed();
 935   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 936                            JavaFrameAnchor::flags_offset());
 937   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 938 
 939   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 940   // has_last_Java_frame is true and users will look at the rest of the fields.
 941   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 942 
 943 #ifdef ASSERT
 944   // Verify that flags was zeroed on return to Java
 945   Label PcOk;
 946   save_frame(0);                // to avoid clobbering O0
 947   ld_ptr(pc_addr, L0);
 948   tst(L0);
 949 #ifdef _LP64
 950   brx(Assembler::zero, false, Assembler::pt, PcOk);
 951 #else
 952   br(Assembler::zero, false, Assembler::pt, PcOk);
 953 #endif // _LP64
 954   delayed() -> nop();
 955   stop("last_Java_pc not zeroed before leaving Java");
 956   bind(PcOk);
 957 
 958   // Verify that flags was zeroed on return to Java
 959   Label FlagsOk;
 960   ld(flags, L0);
 961   tst(L0);
 962   br(Assembler::zero, false, Assembler::pt, FlagsOk);
 963   delayed() -> restore();
 964   stop("flags not zeroed before leaving Java");
 965   bind(FlagsOk);
 966 #endif /* ASSERT */
 967   //
 968   // When returning from calling out from Java mode the frame anchor's last_Java_pc
 969   // will always be set to NULL. It is set here so that if we are doing a call to
 970   // native (not VM) that we capture the known pc and don't have to rely on the
 971   // native call having a standard frame linkage where we can find the pc.
 972 
 973   if (last_Java_pc->is_valid()) {
 974     st_ptr(last_Java_pc, pc_addr);
 975   }
 976 
 977 #ifdef _LP64
 978 #ifdef ASSERT
 979   // Make sure that we have an odd stack
 980   Label StackOk;
 981   andcc(last_java_sp, 0x01, G0);
 982   br(Assembler::notZero, false, Assembler::pt, StackOk);
 983   delayed() -> nop();
 984   stop("Stack Not Biased in set_last_Java_frame");
 985   bind(StackOk);
 986 #endif // ASSERT
 987   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
 988   add( last_java_sp, STACK_BIAS, G4_scratch );
 989   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
 990 #else
 991   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
 992 #endif // _LP64
 993 }
 994 
 995 void MacroAssembler::reset_last_Java_frame(void) {
 996   assert_not_delayed();
 997 
 998   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
 999   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1000   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1001 
1002 #ifdef ASSERT
1003   // check that it WAS previously set
1004 #ifdef CC_INTERP
1005     save_frame(0);
1006 #else
1007     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1008 #endif /* CC_INTERP */
1009     ld_ptr(sp_addr, L0);
1010     tst(L0);
1011     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1012     restore();
1013 #endif // ASSERT
1014 
1015   st_ptr(G0, sp_addr);
1016   // Always return last_Java_pc to zero
1017   st_ptr(G0, pc_addr);
1018   // Always null flags after return to Java
1019   st(G0, flags);
1020 }
1021 
1022 
1023 void MacroAssembler::call_VM_base(
1024   Register        oop_result,
1025   Register        thread_cache,
1026   Register        last_java_sp,
1027   address         entry_point,
1028   int             number_of_arguments,
1029   bool            check_exceptions)
1030 {
1031   assert_not_delayed();
1032 
1033   // determine last_java_sp register
1034   if (!last_java_sp->is_valid()) {
1035     last_java_sp = SP;
1036   }
1037   // debugging support
1038   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1039 
1040   // 64-bit last_java_sp is biased!
1041   set_last_Java_frame(last_java_sp, noreg);
1042   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1043   save_thread(thread_cache);
1044   // do the call
1045   call(entry_point, relocInfo::runtime_call_type);
1046   if (!VerifyThread)
1047     delayed()->mov(G2_thread, O0);  // pass thread as first argument
1048   else
1049     delayed()->nop();             // (thread already passed)
1050   restore_thread(thread_cache);
1051   reset_last_Java_frame();
1052 
1053   // check for pending exceptions. use Gtemp as scratch register.
1054   if (check_exceptions) {
1055     check_and_forward_exception(Gtemp);
1056   }
1057 
1058   // get oop result if there is one and reset the value in the thread
1059   if (oop_result->is_valid()) {
1060     get_vm_result(oop_result);
1061   }
1062 }
1063 
1064 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1065 {
1066   Label L;
1067 
1068   check_and_handle_popframe(scratch_reg);
1069   check_and_handle_earlyret(scratch_reg);
1070 
1071   Address exception_addr(G2_thread, Thread::pending_exception_offset());
1072   ld_ptr(exception_addr, scratch_reg);
1073   br_null(scratch_reg,false,pt,L);
1074   delayed()->nop();
1075   // we use O7 linkage so that forward_exception_entry has the issuing PC
1076   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1077   delayed()->nop();
1078   bind(L);
1079 }
1080 
1081 
1082 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1083 }
1084 
1085 
1086 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1087 }
1088 
1089 
1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1091   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1092 }
1093 
1094 
1095 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1096   // O0 is reserved for the thread
1097   mov(arg_1, O1);
1098   call_VM(oop_result, entry_point, 1, check_exceptions);
1099 }
1100 
1101 
1102 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1103   // O0 is reserved for the thread
1104   mov(arg_1, O1);
1105   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1106   call_VM(oop_result, entry_point, 2, check_exceptions);
1107 }
1108 
1109 
1110 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1111   // O0 is reserved for the thread
1112   mov(arg_1, O1);
1113   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1114   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1115   call_VM(oop_result, entry_point, 3, check_exceptions);
1116 }
1117 
1118 
1119 
1120 // Note: The following call_VM overloadings are useful when a "save"
1121 // has already been performed by a stub, and the last Java frame is
1122 // the previous one.  In that case, last_java_sp must be passed as FP
1123 // instead of SP.
1124 
1125 
1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1127   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1128 }
1129 
1130 
1131 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1132   // O0 is reserved for the thread
1133   mov(arg_1, O1);
1134   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1135 }
1136 
1137 
1138 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1139   // O0 is reserved for the thread
1140   mov(arg_1, O1);
1141   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1142   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1143 }
1144 
1145 
1146 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1147   // O0 is reserved for the thread
1148   mov(arg_1, O1);
1149   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1150   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1151   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1152 }
1153 
1154 
1155 
1156 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1157   assert_not_delayed();
1158   save_thread(thread_cache);
1159   // do the call
1160   call(entry_point, relocInfo::runtime_call_type);
1161   delayed()->nop();
1162   restore_thread(thread_cache);
1163 }
1164 
1165 
1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1167   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1168 }
1169 
1170 
1171 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1172   mov(arg_1, O0);
1173   call_VM_leaf(thread_cache, entry_point, 1);
1174 }
1175 
1176 
1177 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1178   mov(arg_1, O0);
1179   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1180   call_VM_leaf(thread_cache, entry_point, 2);
1181 }
1182 
1183 
1184 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1185   mov(arg_1, O0);
1186   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1187   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1188   call_VM_leaf(thread_cache, entry_point, 3);
1189 }
1190 
1191 
1192 void MacroAssembler::get_vm_result(Register oop_result) {
1193   verify_thread();
1194   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1195   ld_ptr(    vm_result_addr, oop_result);
1196   st_ptr(G0, vm_result_addr);
1197   verify_oop(oop_result);
1198 }
1199 
1200 
1201 void MacroAssembler::get_vm_result_2(Register oop_result) {
1202   verify_thread();
1203   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1204   ld_ptr(vm_result_addr_2, oop_result);
1205   st_ptr(G0, vm_result_addr_2);
1206   verify_oop(oop_result);
1207 }
1208 
1209 
1210 // We require that C code which does not return a value in vm_result will
1211 // leave it undisturbed.
1212 void MacroAssembler::set_vm_result(Register oop_result) {
1213   verify_thread();
1214   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1215   verify_oop(oop_result);
1216 
1217 # ifdef ASSERT
1218     // Check that we are not overwriting any other oop.
1219 #ifdef CC_INTERP
1220     save_frame(0);
1221 #else
1222     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1223 #endif /* CC_INTERP */
1224     ld_ptr(vm_result_addr, L0);
1225     tst(L0);
1226     restore();
1227     breakpoint_trap(notZero, Assembler::ptr_cc);
1228     // }
1229 # endif
1230 
1231   st_ptr(oop_result, vm_result_addr);
1232 }
1233 
1234 
1235 void MacroAssembler::card_table_write(jbyte* byte_map_base,
1236                                       Register tmp, Register obj) {
1237 #ifdef _LP64
1238   srlx(obj, CardTableModRefBS::card_shift, obj);
1239 #else
1240   srl(obj, CardTableModRefBS::card_shift, obj);
1241 #endif
1242   assert(tmp != obj, "need separate temp reg");
1243   set((address) byte_map_base, tmp);
1244   stb(G0, tmp, obj);
1245 }
1246 
1247 
1248 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1249   address save_pc;
1250   int shiftcnt;
1251 #ifdef _LP64
1252 # ifdef CHECK_DELAY
1253   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1254 # endif
1255   v9_dep();
1256   save_pc = pc();
1257 
1258   int msb32 = (int) (addrlit.value() >> 32);
1259   int lsb32 = (int) (addrlit.value());
1260 
1261   if (msb32 == 0 && lsb32 >= 0) {
1262     Assembler::sethi(lsb32, d, addrlit.rspec());
1263   }
1264   else if (msb32 == -1) {
1265     Assembler::sethi(~lsb32, d, addrlit.rspec());
1266     xor3(d, ~low10(~0), d);
1267   }
1268   else {
1269     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
1270     if (msb32 & 0x3ff)                            // Any bits?
1271       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
1272     if (lsb32 & 0xFFFFFC00) {                     // done?
1273       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
1274         sllx(d, 12, d);                           // Make room for next 12 bits
1275         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
1276         shiftcnt = 0;                             // We already shifted
1277       }
1278       else
1279         shiftcnt = 12;
1280       if ((lsb32 >> 10) & 0x3ff) {
1281         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
1282         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
1283         shiftcnt = 0;
1284       }
1285       else
1286         shiftcnt = 10;
1287       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
1288     }
1289     else
1290       sllx(d, 32, d);
1291   }
1292   // Pad out the instruction sequence so it can be patched later.
1293   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1294                            addrlit.rtype() != relocInfo::runtime_call_type)) {
1295     while (pc() < (save_pc + (7 * BytesPerInstWord)))
1296       nop();
1297   }
1298 #else
1299   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1300 #endif
1301 }
1302 
1303 
1304 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1305   internal_sethi(addrlit, d, false);
1306 }
1307 
1308 
1309 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1310   internal_sethi(addrlit, d, true);
1311 }
1312 
1313 
1314 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1315 #ifdef _LP64
1316   if (worst_case) return 7;
1317   intptr_t iaddr = (intptr_t)a;
1318   int hi32 = (int)(iaddr >> 32);
1319   int lo32 = (int)(iaddr);
1320   int inst_count;
1321   if (hi32 == 0 && lo32 >= 0)
1322     inst_count = 1;
1323   else if (hi32 == -1)
1324     inst_count = 2;
1325   else {
1326     inst_count = 2;
1327     if ( hi32 & 0x3ff )
1328       inst_count++;
1329     if ( lo32 & 0xFFFFFC00 ) {
1330       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1331       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1332     }
1333   }
1334   return BytesPerInstWord * inst_count;
1335 #else
1336   return BytesPerInstWord;
1337 #endif
1338 }
1339 
1340 int MacroAssembler::worst_case_size_of_set() {
1341   return size_of_sethi(NULL, true) + 1;
1342 }
1343 
1344 
1345 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1346   intptr_t value = addrlit.value();
1347 
1348   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1349     // can optimize
1350     if (-4096 <= value && value <= 4095) {
1351       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1352       return;
1353     }
1354     if (inv_hi22(hi22(value)) == value) {
1355       sethi(addrlit, d);
1356       return;
1357     }
1358   }
1359   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1360   internal_sethi(addrlit, d, ForceRelocatable);
1361   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1362     add(d, addrlit.low10(), d, addrlit.rspec());
1363   }
1364 }
1365 
1366 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1367   internal_set(al, d, false);
1368 }
1369 
1370 void MacroAssembler::set(intptr_t value, Register d) {
1371   AddressLiteral al(value);
1372   internal_set(al, d, false);
1373 }
1374 
1375 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1376   AddressLiteral al(addr, rspec);
1377   internal_set(al, d, false);
1378 }
1379 
1380 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1381   internal_set(al, d, true);
1382 }
1383 
1384 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1385   AddressLiteral al(value);
1386   internal_set(al, d, true);
1387 }
1388 
1389 
1390 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1391   assert_not_delayed();
1392   v9_dep();
1393 
1394   int hi = (int)(value >> 32);
1395   int lo = (int)(value & ~0);
1396   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1397   if (Assembler::is_simm13(lo) && value == lo) {
1398     or3(G0, lo, d);
1399   } else if (hi == 0) {
1400     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1401     if (low10(lo) != 0)
1402       or3(d, low10(lo), d);
1403   }
1404   else if (hi == -1) {
1405     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1406     xor3(d, low10(lo) ^ ~low10(~0), d);
1407   }
1408   else if (lo == 0) {
1409     if (Assembler::is_simm13(hi)) {
1410       or3(G0, hi, d);
1411     } else {
1412       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1413       if (low10(hi) != 0)
1414         or3(d, low10(hi), d);
1415     }
1416     sllx(d, 32, d);
1417   }
1418   else {
1419     Assembler::sethi(hi, tmp);
1420     Assembler::sethi(lo,   d); // macro assembler version sign-extends
1421     if (low10(hi) != 0)
1422       or3 (tmp, low10(hi), tmp);
1423     if (low10(lo) != 0)
1424       or3 (  d, low10(lo),   d);
1425     sllx(tmp, 32, tmp);
1426     or3 (d, tmp, d);
1427   }
1428 }
1429 
1430 // compute size in bytes of sparc frame, given
1431 // number of extraWords
1432 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1433 
1434   int nWords = frame::memory_parameter_word_sp_offset;
1435 
1436   nWords += extraWords;
1437 
1438   if (nWords & 1) ++nWords; // round up to double-word
1439 
1440   return nWords * BytesPerWord;
1441 }
1442 
1443 
1444 // save_frame: given number of "extra" words in frame,
1445 // issue approp. save instruction (p 200, v8 manual)
1446 
1447 void MacroAssembler::save_frame(int extraWords = 0) {
1448   int delta = -total_frame_size_in_bytes(extraWords);
1449   if (is_simm13(delta)) {
1450     save(SP, delta, SP);
1451   } else {
1452     set(delta, G3_scratch);
1453     save(SP, G3_scratch, SP);
1454   }
1455 }
1456 
1457 
1458 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1459   if (is_simm13(-size_in_bytes)) {
1460     save(SP, -size_in_bytes, SP);
1461   } else {
1462     set(-size_in_bytes, G3_scratch);
1463     save(SP, G3_scratch, SP);
1464   }
1465 }
1466 
1467 
1468 void MacroAssembler::save_frame_and_mov(int extraWords,
1469                                         Register s1, Register d1,
1470                                         Register s2, Register d2) {
1471   assert_not_delayed();
1472 
1473   // The trick here is to use precisely the same memory word
1474   // that trap handlers also use to save the register.
1475   // This word cannot be used for any other purpose, but
1476   // it works fine to save the register's value, whether or not
1477   // an interrupt flushes register windows at any given moment!
1478   Address s1_addr;
1479   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1480     s1_addr = s1->address_in_saved_window();
1481     st_ptr(s1, s1_addr);
1482   }
1483 
1484   Address s2_addr;
1485   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1486     s2_addr = s2->address_in_saved_window();
1487     st_ptr(s2, s2_addr);
1488   }
1489 
1490   save_frame(extraWords);
1491 
1492   if (s1_addr.base() == SP) {
1493     ld_ptr(s1_addr.after_save(), d1);
1494   } else if (s1->is_valid()) {
1495     mov(s1->after_save(), d1);
1496   }
1497 
1498   if (s2_addr.base() == SP) {
1499     ld_ptr(s2_addr.after_save(), d2);
1500   } else if (s2->is_valid()) {
1501     mov(s2->after_save(), d2);
1502   }
1503 }
1504 
1505 
1506 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1507   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1508   int oop_index = oop_recorder()->allocate_index(obj);
1509   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1510 }
1511 
1512 
1513 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1514   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1515   int oop_index = oop_recorder()->find_index(obj);
1516   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1517 }
1518 
1519 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1520   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1521   int oop_index = oop_recorder()->find_index(obj);
1522   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1523 
1524   assert_not_delayed();
1525   // Relocation with special format (see relocInfo_sparc.hpp).
1526   relocate(rspec, 1);
1527   // Assembler::sethi(0x3fffff, d);
1528   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1529   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1530   add(d, 0x3ff, d);
1531 
1532 }
1533 
1534 
1535 void MacroAssembler::align(int modulus) {
1536   while (offset() % modulus != 0) nop();
1537 }
1538 
1539 
1540 void MacroAssembler::safepoint() {
1541   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1542 }
1543 
1544 
1545 void RegistersForDebugging::print(outputStream* s) {
1546   int j;
1547   for ( j = 0;  j < 8;  ++j )
1548     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1549     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1550   s->cr();
1551 
1552   for ( j = 0;  j < 8;  ++j )
1553     s->print_cr("l%d = 0x%.16lx", j, l[j]);
1554   s->cr();
1555 
1556   for ( j = 0;  j < 8;  ++j )
1557     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1558     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1559   s->cr();
1560 
1561   for ( j = 0;  j < 8;  ++j )
1562     s->print_cr("g%d = 0x%.16lx", j, g[j]);
1563   s->cr();
1564 
1565   // print out floats with compression
1566   for (j = 0; j < 32; ) {
1567     jfloat val = f[j];
1568     int last = j;
1569     for ( ;  last+1 < 32;  ++last ) {
1570       char b1[1024], b2[1024];
1571       sprintf(b1, "%f", val);
1572       sprintf(b2, "%f", f[last+1]);
1573       if (strcmp(b1, b2))
1574         break;
1575     }
1576     s->print("f%d", j);
1577     if ( j != last )  s->print(" - f%d", last);
1578     s->print(" = %f", val);
1579     s->fill_to(25);
1580     s->print_cr(" (0x%x)", val);
1581     j = last + 1;
1582   }
1583   s->cr();
1584 
1585   // and doubles (evens only)
1586   for (j = 0; j < 32; ) {
1587     jdouble val = d[j];
1588     int last = j;
1589     for ( ;  last+1 < 32;  ++last ) {
1590       char b1[1024], b2[1024];
1591       sprintf(b1, "%f", val);
1592       sprintf(b2, "%f", d[last+1]);
1593       if (strcmp(b1, b2))
1594         break;
1595     }
1596     s->print("d%d", 2 * j);
1597     if ( j != last )  s->print(" - d%d", last);
1598     s->print(" = %f", val);
1599     s->fill_to(30);
1600     s->print("(0x%x)", *(int*)&val);
1601     s->fill_to(42);
1602     s->print_cr("(0x%x)", *(1 + (int*)&val));
1603     j = last + 1;
1604   }
1605   s->cr();
1606 }
1607 
1608 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1609   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1610   a->flush_windows();
1611   int i;
1612   for (i = 0; i < 8; ++i) {
1613     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1614     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1615     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1616     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1617   }
1618   for (i = 0;  i < 32; ++i) {
1619     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1620   }
1621   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1622     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1623   }
1624 }
1625 
1626 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1627   for (int i = 1; i < 8;  ++i) {
1628     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1629   }
1630   for (int j = 0; j < 32; ++j) {
1631     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1632   }
1633   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1634     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1635   }
1636 }
1637 
1638 
1639 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1640 void MacroAssembler::push_fTOS() {
1641   // %%%%%% need to implement this
1642 }
1643 
1644 // pops double TOS element from CPU stack and pushes on FPU stack
1645 void MacroAssembler::pop_fTOS() {
1646   // %%%%%% need to implement this
1647 }
1648 
1649 void MacroAssembler::empty_FPU_stack() {
1650   // %%%%%% need to implement this
1651 }
1652 
1653 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1654   // plausibility check for oops
1655   if (!VerifyOops) return;
1656 
1657   if (reg == G0)  return;       // always NULL, which is always an oop
1658 
1659   char buffer[64];
1660 #ifdef COMPILER1
1661   if (CommentedAssembly) {
1662     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1663     block_comment(buffer);
1664   }
1665 #endif
1666 
1667   int len = strlen(file) + strlen(msg) + 1 + 4;
1668   sprintf(buffer, "%d", line);
1669   len += strlen(buffer);
1670   sprintf(buffer, " at offset %d ", offset());
1671   len += strlen(buffer);
1672   char * real_msg = new char[len];
1673   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1674 
1675   // Call indirectly to solve generation ordering problem
1676   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1677 
1678   // Make some space on stack above the current register window.
1679   // Enough to hold 8 64-bit registers.
1680   add(SP,-8*8,SP);
1681 
1682   // Save some 64-bit registers; a normal 'save' chops the heads off
1683   // of 64-bit longs in the 32-bit build.
1684   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1685   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1686   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1687   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1688 
1689   set((intptr_t)real_msg, O1);
1690   // Load address to call to into O7
1691   load_ptr_contents(a, O7);
1692   // Register call to verify_oop_subroutine
1693   callr(O7, G0);
1694   delayed()->nop();
1695   // recover frame size
1696   add(SP, 8*8,SP);
1697 }
1698 
1699 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1700   // plausibility check for oops
1701   if (!VerifyOops) return;
1702 
1703   char buffer[64];
1704   sprintf(buffer, "%d", line);
1705   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1706   sprintf(buffer, " at SP+%d ", addr.disp());
1707   len += strlen(buffer);
1708   char * real_msg = new char[len];
1709   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1710 
1711   // Call indirectly to solve generation ordering problem
1712   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1713 
1714   // Make some space on stack above the current register window.
1715   // Enough to hold 8 64-bit registers.
1716   add(SP,-8*8,SP);
1717 
1718   // Save some 64-bit registers; a normal 'save' chops the heads off
1719   // of 64-bit longs in the 32-bit build.
1720   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1721   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1722   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1723   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1724 
1725   set((intptr_t)real_msg, O1);
1726   // Load address to call to into O7
1727   load_ptr_contents(a, O7);
1728   // Register call to verify_oop_subroutine
1729   callr(O7, G0);
1730   delayed()->nop();
1731   // recover frame size
1732   add(SP, 8*8,SP);
1733 }
1734 
1735 // side-door communication with signalHandler in os_solaris.cpp
1736 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1737 
1738 // This macro is expanded just once; it creates shared code.  Contract:
1739 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1740 // registers, including flags.  May not use a register 'save', as this blows
1741 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1742 // call.
1743 void MacroAssembler::verify_oop_subroutine() {
1744   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1745 
1746   // Leaf call; no frame.
1747   Label succeed, fail, null_or_fail;
1748 
1749   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1750   // O0 is now the oop to be checked.  O7 is the return address.
1751   Register O0_obj = O0;
1752 
1753   // Save some more registers for temps.
1754   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1755   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1756   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1757   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1758 
1759   // Save flags
1760   Register O5_save_flags = O5;
1761   rdccr( O5_save_flags );
1762 
1763   { // count number of verifies
1764     Register O2_adr   = O2;
1765     Register O3_accum = O3;
1766     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1767   }
1768 
1769   Register O2_mask = O2;
1770   Register O3_bits = O3;
1771   Register O4_temp = O4;
1772 
1773   // mark lower end of faulting range
1774   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1775   _verify_oop_implicit_branch[0] = pc();
1776 
1777   // We can't check the mark oop because it could be in the process of
1778   // locking or unlocking while this is running.
1779   set(Universe::verify_oop_mask (), O2_mask);
1780   set(Universe::verify_oop_bits (), O3_bits);
1781 
1782   // assert((obj & oop_mask) == oop_bits);
1783   and3(O0_obj, O2_mask, O4_temp);
1784   cmp(O4_temp, O3_bits);
1785   brx(notEqual, false, pn, null_or_fail);
1786   delayed()->nop();
1787 
1788   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1789     // the null_or_fail case is useless; must test for null separately
1790     br_null(O0_obj, false, pn, succeed);
1791     delayed()->nop();
1792   }
1793 
1794   // Check the klassOop of this object for being in the right area of memory.
1795   // Cannot do the load in the delay above slot in case O0 is null
1796   load_klass(O0_obj, O0_obj);
1797   // assert((klass & klass_mask) == klass_bits);
1798   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1799     set(Universe::verify_klass_mask(), O2_mask);
1800   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1801     set(Universe::verify_klass_bits(), O3_bits);
1802   and3(O0_obj, O2_mask, O4_temp);
1803   cmp(O4_temp, O3_bits);
1804   brx(notEqual, false, pn, fail);
1805   delayed()->nop();
1806   // Check the klass's klass
1807   load_klass(O0_obj, O0_obj);
1808   and3(O0_obj, O2_mask, O4_temp);
1809   cmp(O4_temp, O3_bits);
1810   brx(notEqual, false, pn, fail);
1811   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1812 
1813   // mark upper end of faulting range
1814   _verify_oop_implicit_branch[1] = pc();
1815 
1816   //-----------------------
1817   // all tests pass
1818   bind(succeed);
1819 
1820   // Restore prior 64-bit registers
1821   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1822   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1823   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1824   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1825   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1826   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1827 
1828   retl();                       // Leaf return; restore prior O7 in delay slot
1829   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1830 
1831   //-----------------------
1832   bind(null_or_fail);           // nulls are less common but OK
1833   br_null(O0_obj, false, pt, succeed);
1834   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1835 
1836   //-----------------------
1837   // report failure:
1838   bind(fail);
1839   _verify_oop_implicit_branch[2] = pc();
1840 
1841   wrccr( O5_save_flags ); // Restore CCR's
1842 
1843   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1844 
1845   // stop_subroutine expects message pointer in I1.
1846   mov(I1, O1);
1847 
1848   // Restore prior 64-bit registers
1849   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1850   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1851   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1852   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1853   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1854   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1855 
1856   // factor long stop-sequence into subroutine to save space
1857   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1858 
1859   // call indirectly to solve generation ordering problem
1860   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1861   load_ptr_contents(al, O5);
1862   jmpl(O5, 0, O7);
1863   delayed()->nop();
1864 }
1865 
1866 
1867 void MacroAssembler::stop(const char* msg) {
1868   // save frame first to get O7 for return address
1869   // add one word to size in case struct is odd number of words long
1870   // It must be doubleword-aligned for storing doubles into it.
1871 
1872     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1873 
1874     // stop_subroutine expects message pointer in I1.
1875     set((intptr_t)msg, O1);
1876 
1877     // factor long stop-sequence into subroutine to save space
1878     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1879 
1880     // call indirectly to solve generation ordering problem
1881     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1882     load_ptr_contents(a, O5);
1883     jmpl(O5, 0, O7);
1884     delayed()->nop();
1885 
1886     breakpoint_trap();   // make stop actually stop rather than writing
1887                          // unnoticeable results in the output files.
1888 
1889     // restore(); done in callee to save space!
1890 }
1891 
1892 
1893 void MacroAssembler::warn(const char* msg) {
1894   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1895   RegistersForDebugging::save_registers(this);
1896   mov(O0, L0);
1897   set((intptr_t)msg, O0);
1898   call( CAST_FROM_FN_PTR(address, warning) );
1899   delayed()->nop();
1900 //  ret();
1901 //  delayed()->restore();
1902   RegistersForDebugging::restore_registers(this, L0);
1903   restore();
1904 }
1905 
1906 
1907 void MacroAssembler::untested(const char* what) {
1908   // We must be able to turn interactive prompting off
1909   // in order to run automated test scripts on the VM
1910   // Use the flag ShowMessageBoxOnError
1911 
1912   char* b = new char[1024];
1913   sprintf(b, "untested: %s", what);
1914 
1915   if ( ShowMessageBoxOnError )   stop(b);
1916   else                           warn(b);
1917 }
1918 
1919 
1920 void MacroAssembler::stop_subroutine() {
1921   RegistersForDebugging::save_registers(this);
1922 
1923   // for the sake of the debugger, stick a PC on the current frame
1924   // (this assumes that the caller has performed an extra "save")
1925   mov(I7, L7);
1926   add(O7, -7 * BytesPerInt, I7);
1927 
1928   save_frame(); // one more save to free up another O7 register
1929   mov(I0, O1); // addr of reg save area
1930 
1931   // We expect pointer to message in I1. Caller must set it up in O1
1932   mov(I1, O0); // get msg
1933   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1934   delayed()->nop();
1935 
1936   restore();
1937 
1938   RegistersForDebugging::restore_registers(this, O0);
1939 
1940   save_frame(0);
1941   call(CAST_FROM_FN_PTR(address,breakpoint));
1942   delayed()->nop();
1943   restore();
1944 
1945   mov(L7, I7);
1946   retl();
1947   delayed()->restore(); // see stop above
1948 }
1949 
1950 
1951 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1952   if ( ShowMessageBoxOnError ) {
1953       JavaThreadState saved_state = JavaThread::current()->thread_state();
1954       JavaThread::current()->set_thread_state(_thread_in_vm);
1955       {
1956         // In order to get locks work, we need to fake a in_VM state
1957         ttyLocker ttyl;
1958         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1959         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1960           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1961         }
1962         if (os::message_box(msg, "Execution stopped, print registers?"))
1963           regs->print(::tty);
1964       }
1965       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1966   }
1967   else
1968      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1969   assert(false, "error");
1970 }
1971 
1972 
1973 #ifndef PRODUCT
1974 void MacroAssembler::test() {
1975   ResourceMark rm;
1976 
1977   CodeBuffer cb("test", 10000, 10000);
1978   MacroAssembler* a = new MacroAssembler(&cb);
1979   VM_Version::allow_all();
1980   a->test_v9();
1981   a->test_v8_onlys();
1982   VM_Version::revert();
1983 
1984   StubRoutines::Sparc::test_stop_entry()();
1985 }
1986 #endif
1987 
1988 
1989 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1990   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1991   Label no_extras;
1992   br( negative, true, pt, no_extras ); // if neg, clear reg
1993   delayed()->set(0, Rresult);          // annuled, so only if taken
1994   bind( no_extras );
1995 }
1996 
1997 
1998 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1999 #ifdef _LP64
2000   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2001 #else
2002   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2003 #endif
2004   bclr(1, Rresult);
2005   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2006 }
2007 
2008 
2009 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2010   calc_frame_size(Rextra_words, Rresult);
2011   neg(Rresult);
2012   save(SP, Rresult, SP);
2013 }
2014 
2015 
2016 // ---------------------------------------------------------
2017 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2018   switch (c) {
2019     /*case zero: */
2020     case Assembler::equal:        return Assembler::rc_z;
2021     case Assembler::lessEqual:    return Assembler::rc_lez;
2022     case Assembler::less:         return Assembler::rc_lz;
2023     /*case notZero:*/
2024     case Assembler::notEqual:     return Assembler::rc_nz;
2025     case Assembler::greater:      return Assembler::rc_gz;
2026     case Assembler::greaterEqual: return Assembler::rc_gez;
2027   }
2028   ShouldNotReachHere();
2029   return Assembler::rc_z;
2030 }
2031 
2032 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2033 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2034   tst(s1);
2035   br (c, a, p, L);
2036 }
2037 
2038 
2039 // Compares a pointer register with zero and branches on null.
2040 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2041 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2042   assert_not_delayed();
2043 #ifdef _LP64
2044   bpr( rc_z, a, p, s1, L );
2045 #else
2046   tst(s1);
2047   br ( zero, a, p, L );
2048 #endif
2049 }
2050 
2051 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2052   assert_not_delayed();
2053 #ifdef _LP64
2054   bpr( rc_nz, a, p, s1, L );
2055 #else
2056   tst(s1);
2057   br ( notZero, a, p, L );
2058 #endif
2059 }
2060 
2061 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2062                                      Register s1, address d,
2063                                      relocInfo::relocType rt ) {
2064   if (VM_Version::v9_instructions_work()) {
2065     bpr(rc, a, p, s1, d, rt);
2066   } else {
2067     tst(s1);
2068     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
2069   }
2070 }
2071 
2072 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2073                                      Register s1, Label& L ) {
2074   if (VM_Version::v9_instructions_work()) {
2075     bpr(rc, a, p, s1, L);
2076   } else {
2077     tst(s1);
2078     br(reg_cond_to_cc_cond(rc), a, p, L);
2079   }
2080 }
2081 
2082 
2083 // instruction sequences factored across compiler & interpreter
2084 
2085 
2086 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2087                            Register Rb_hi, Register Rb_low,
2088                            Register Rresult) {
2089 
2090   Label check_low_parts, done;
2091 
2092   cmp(Ra_hi, Rb_hi );  // compare hi parts
2093   br(equal, true, pt, check_low_parts);
2094   delayed()->cmp(Ra_low, Rb_low); // test low parts
2095 
2096   // And, with an unsigned comparison, it does not matter if the numbers
2097   // are negative or not.
2098   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2099   // The second one is bigger (unsignedly).
2100 
2101   // Other notes:  The first move in each triplet can be unconditional
2102   // (and therefore probably prefetchable).
2103   // And the equals case for the high part does not need testing,
2104   // since that triplet is reached only after finding the high halves differ.
2105 
2106   if (VM_Version::v9_instructions_work()) {
2107 
2108                                     mov  (                     -1, Rresult);
2109     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2110   }
2111   else {
2112     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2113     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2114   }
2115 
2116   bind( check_low_parts );
2117 
2118   if (VM_Version::v9_instructions_work()) {
2119     mov(                               -1, Rresult);
2120     movcc(equal,           false, icc,  0, Rresult);
2121     movcc(greaterUnsigned, false, icc,  1, Rresult);
2122   }
2123   else {
2124                                                     set(-1, Rresult);
2125     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2126     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2127   }
2128   bind( done );
2129 }
2130 
2131 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2132   subcc(  G0, Rlow, Rlow );
2133   subc(   G0, Rhi,  Rhi  );
2134 }
2135 
2136 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2137                            Register Rcount,
2138                            Register Rout_high, Register Rout_low,
2139                            Register Rtemp ) {
2140 
2141 
2142   Register Ralt_count = Rtemp;
2143   Register Rxfer_bits = Rtemp;
2144 
2145   assert( Ralt_count != Rin_high
2146       &&  Ralt_count != Rin_low
2147       &&  Ralt_count != Rcount
2148       &&  Rxfer_bits != Rin_low
2149       &&  Rxfer_bits != Rin_high
2150       &&  Rxfer_bits != Rcount
2151       &&  Rxfer_bits != Rout_low
2152       &&  Rout_low   != Rin_high,
2153         "register alias checks");
2154 
2155   Label big_shift, done;
2156 
2157   // This code can be optimized to use the 64 bit shifts in V9.
2158   // Here we use the 32 bit shifts.
2159 
2160   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2161   subcc(Rcount,         31,             Ralt_count);
2162   br(greater, true, pn, big_shift);
2163   delayed()->
2164   dec(Ralt_count);
2165 
2166   // shift < 32 bits, Ralt_count = Rcount-31
2167 
2168   // We get the transfer bits by shifting right by 32-count the low
2169   // register. This is done by shifting right by 31-count and then by one
2170   // more to take care of the special (rare) case where count is zero
2171   // (shifting by 32 would not work).
2172 
2173   neg(  Ralt_count                                 );
2174 
2175   // The order of the next two instructions is critical in the case where
2176   // Rin and Rout are the same and should not be reversed.
2177 
2178   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2179   if (Rcount != Rout_low) {
2180     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2181   }
2182   sll(  Rin_high,       Rcount,         Rout_high  );
2183   if (Rcount == Rout_low) {
2184     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2185   }
2186   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2187   ba (false, done);
2188   delayed()->
2189   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2190 
2191   // shift >= 32 bits, Ralt_count = Rcount-32
2192   bind(big_shift);
2193   sll(  Rin_low,        Ralt_count,     Rout_high  );
2194   clr(  Rout_low                                   );
2195 
2196   bind(done);
2197 }
2198 
2199 
2200 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2201                            Register Rcount,
2202                            Register Rout_high, Register Rout_low,
2203                            Register Rtemp ) {
2204 
2205   Register Ralt_count = Rtemp;
2206   Register Rxfer_bits = Rtemp;
2207 
2208   assert( Ralt_count != Rin_high
2209       &&  Ralt_count != Rin_low
2210       &&  Ralt_count != Rcount
2211       &&  Rxfer_bits != Rin_low
2212       &&  Rxfer_bits != Rin_high
2213       &&  Rxfer_bits != Rcount
2214       &&  Rxfer_bits != Rout_high
2215       &&  Rout_high  != Rin_low,
2216         "register alias checks");
2217 
2218   Label big_shift, done;
2219 
2220   // This code can be optimized to use the 64 bit shifts in V9.
2221   // Here we use the 32 bit shifts.
2222 
2223   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2224   subcc(Rcount,         31,             Ralt_count);
2225   br(greater, true, pn, big_shift);
2226   delayed()->dec(Ralt_count);
2227 
2228   // shift < 32 bits, Ralt_count = Rcount-31
2229 
2230   // We get the transfer bits by shifting left by 32-count the high
2231   // register. This is done by shifting left by 31-count and then by one
2232   // more to take care of the special (rare) case where count is zero
2233   // (shifting by 32 would not work).
2234 
2235   neg(  Ralt_count                                  );
2236   if (Rcount != Rout_low) {
2237     srl(        Rin_low,        Rcount,         Rout_low    );
2238   }
2239 
2240   // The order of the next two instructions is critical in the case where
2241   // Rin and Rout are the same and should not be reversed.
2242 
2243   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2244   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2245   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2246   if (Rcount == Rout_low) {
2247     srl(        Rin_low,        Rcount,         Rout_low    );
2248   }
2249   ba (false, done);
2250   delayed()->
2251   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2252 
2253   // shift >= 32 bits, Ralt_count = Rcount-32
2254   bind(big_shift);
2255 
2256   sra(  Rin_high,       Ralt_count,     Rout_low    );
2257   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2258 
2259   bind( done );
2260 }
2261 
2262 
2263 
2264 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2265                             Register Rcount,
2266                             Register Rout_high, Register Rout_low,
2267                             Register Rtemp ) {
2268 
2269   Register Ralt_count = Rtemp;
2270   Register Rxfer_bits = Rtemp;
2271 
2272   assert( Ralt_count != Rin_high
2273       &&  Ralt_count != Rin_low
2274       &&  Ralt_count != Rcount
2275       &&  Rxfer_bits != Rin_low
2276       &&  Rxfer_bits != Rin_high
2277       &&  Rxfer_bits != Rcount
2278       &&  Rxfer_bits != Rout_high
2279       &&  Rout_high  != Rin_low,
2280         "register alias checks");
2281 
2282   Label big_shift, done;
2283 
2284   // This code can be optimized to use the 64 bit shifts in V9.
2285   // Here we use the 32 bit shifts.
2286 
2287   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2288   subcc(Rcount,         31,             Ralt_count);
2289   br(greater, true, pn, big_shift);
2290   delayed()->dec(Ralt_count);
2291 
2292   // shift < 32 bits, Ralt_count = Rcount-31
2293 
2294   // We get the transfer bits by shifting left by 32-count the high
2295   // register. This is done by shifting left by 31-count and then by one
2296   // more to take care of the special (rare) case where count is zero
2297   // (shifting by 32 would not work).
2298 
2299   neg(  Ralt_count                                  );
2300   if (Rcount != Rout_low) {
2301     srl(        Rin_low,        Rcount,         Rout_low    );
2302   }
2303 
2304   // The order of the next two instructions is critical in the case where
2305   // Rin and Rout are the same and should not be reversed.
2306 
2307   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2308   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2309   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2310   if (Rcount == Rout_low) {
2311     srl(        Rin_low,        Rcount,         Rout_low    );
2312   }
2313   ba (false, done);
2314   delayed()->
2315   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2316 
2317   // shift >= 32 bits, Ralt_count = Rcount-32
2318   bind(big_shift);
2319 
2320   srl(  Rin_high,       Ralt_count,     Rout_low    );
2321   clr(  Rout_high                                   );
2322 
2323   bind( done );
2324 }
2325 
2326 #ifdef _LP64
2327 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2328   cmp(Ra, Rb);
2329   mov(                       -1, Rresult);
2330   movcc(equal,   false, xcc,  0, Rresult);
2331   movcc(greater, false, xcc,  1, Rresult);
2332 }
2333 #endif
2334 
2335 
2336 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2337                                 FloatRegister Fa, FloatRegister Fb,
2338                                 Register Rresult) {
2339 
2340   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2341 
2342   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2343   Condition eq =                          f_equal;
2344   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2345 
2346   if (VM_Version::v9_instructions_work()) {
2347 
2348     mov(                   -1, Rresult );
2349     movcc( eq, true, fcc0,  0, Rresult );
2350     movcc( gt, true, fcc0,  1, Rresult );
2351 
2352   } else {
2353     Label done;
2354 
2355                                          set( -1, Rresult );
2356     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2357     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2358     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2359 
2360     bind (done);
2361   }
2362 }
2363 
2364 
2365 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2366 {
2367   if (VM_Version::v9_instructions_work()) {
2368     Assembler::fneg(w, s, d);
2369   } else {
2370     if (w == FloatRegisterImpl::S) {
2371       Assembler::fneg(w, s, d);
2372     } else if (w == FloatRegisterImpl::D) {
2373       // number() does a sanity check on the alignment.
2374       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2375         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2376 
2377       Assembler::fneg(FloatRegisterImpl::S, s, d);
2378       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2379     } else {
2380       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2381 
2382       // number() does a sanity check on the alignment.
2383       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2384         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2385 
2386       Assembler::fneg(FloatRegisterImpl::S, s, d);
2387       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2388       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2389       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2390     }
2391   }
2392 }
2393 
2394 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2395 {
2396   if (VM_Version::v9_instructions_work()) {
2397     Assembler::fmov(w, s, d);
2398   } else {
2399     if (w == FloatRegisterImpl::S) {
2400       Assembler::fmov(w, s, d);
2401     } else if (w == FloatRegisterImpl::D) {
2402       // number() does a sanity check on the alignment.
2403       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2404         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2405 
2406       Assembler::fmov(FloatRegisterImpl::S, s, d);
2407       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2408     } else {
2409       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2410 
2411       // number() does a sanity check on the alignment.
2412       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2413         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2414 
2415       Assembler::fmov(FloatRegisterImpl::S, s, d);
2416       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2417       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2418       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2419     }
2420   }
2421 }
2422 
2423 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2424 {
2425   if (VM_Version::v9_instructions_work()) {
2426     Assembler::fabs(w, s, d);
2427   } else {
2428     if (w == FloatRegisterImpl::S) {
2429       Assembler::fabs(w, s, d);
2430     } else if (w == FloatRegisterImpl::D) {
2431       // number() does a sanity check on the alignment.
2432       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2433         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2434 
2435       Assembler::fabs(FloatRegisterImpl::S, s, d);
2436       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2437     } else {
2438       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2439 
2440       // number() does a sanity check on the alignment.
2441       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2442        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2443 
2444       Assembler::fabs(FloatRegisterImpl::S, s, d);
2445       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2446       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2447       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2448     }
2449   }
2450 }
2451 
2452 void MacroAssembler::save_all_globals_into_locals() {
2453   mov(G1,L1);
2454   mov(G2,L2);
2455   mov(G3,L3);
2456   mov(G4,L4);
2457   mov(G5,L5);
2458   mov(G6,L6);
2459   mov(G7,L7);
2460 }
2461 
2462 void MacroAssembler::restore_globals_from_locals() {
2463   mov(L1,G1);
2464   mov(L2,G2);
2465   mov(L3,G3);
2466   mov(L4,G4);
2467   mov(L5,G5);
2468   mov(L6,G6);
2469   mov(L7,G7);
2470 }
2471 
2472 // Use for 64 bit operation.
2473 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2474 {
2475   // store ptr_reg as the new top value
2476 #ifdef _LP64
2477   casx(top_ptr_reg, top_reg, ptr_reg);
2478 #else
2479   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2480 #endif // _LP64
2481 }
2482 
2483 // [RGV] This routine does not handle 64 bit operations.
2484 //       use casx_under_lock() or casx directly!!!
2485 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2486 {
2487   // store ptr_reg as the new top value
2488   if (VM_Version::v9_instructions_work()) {
2489     cas(top_ptr_reg, top_reg, ptr_reg);
2490   } else {
2491 
2492     // If the register is not an out nor global, it is not visible
2493     // after the save.  Allocate a register for it, save its
2494     // value in the register save area (the save may not flush
2495     // registers to the save area).
2496 
2497     Register top_ptr_reg_after_save;
2498     Register top_reg_after_save;
2499     Register ptr_reg_after_save;
2500 
2501     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2502       top_ptr_reg_after_save = top_ptr_reg->after_save();
2503     } else {
2504       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2505       top_ptr_reg_after_save = L0;
2506       st(top_ptr_reg, reg_save_addr);
2507     }
2508 
2509     if (top_reg->is_out() || top_reg->is_global()) {
2510       top_reg_after_save = top_reg->after_save();
2511     } else {
2512       Address reg_save_addr = top_reg->address_in_saved_window();
2513       top_reg_after_save = L1;
2514       st(top_reg, reg_save_addr);
2515     }
2516 
2517     if (ptr_reg->is_out() || ptr_reg->is_global()) {
2518       ptr_reg_after_save = ptr_reg->after_save();
2519     } else {
2520       Address reg_save_addr = ptr_reg->address_in_saved_window();
2521       ptr_reg_after_save = L2;
2522       st(ptr_reg, reg_save_addr);
2523     }
2524 
2525     const Register& lock_reg = L3;
2526     const Register& lock_ptr_reg = L4;
2527     const Register& value_reg = L5;
2528     const Register& yield_reg = L6;
2529     const Register& yieldall_reg = L7;
2530 
2531     save_frame();
2532 
2533     if (top_ptr_reg_after_save == L0) {
2534       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2535     }
2536 
2537     if (top_reg_after_save == L1) {
2538       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2539     }
2540 
2541     if (ptr_reg_after_save == L2) {
2542       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2543     }
2544 
2545     Label(retry_get_lock);
2546     Label(not_same);
2547     Label(dont_yield);
2548 
2549     assert(lock_addr, "lock_address should be non null for v8");
2550     set((intptr_t)lock_addr, lock_ptr_reg);
2551     // Initialize yield counter
2552     mov(G0,yield_reg);
2553     mov(G0, yieldall_reg);
2554     set(StubRoutines::Sparc::locked, lock_reg);
2555 
2556     bind(retry_get_lock);
2557     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2558     br(Assembler::less, false, Assembler::pt, dont_yield);
2559     delayed()->nop();
2560 
2561     if(use_call_vm) {
2562       Untested("Need to verify global reg consistancy");
2563       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2564     } else {
2565       // Save the regs and make space for a C call
2566       save(SP, -96, SP);
2567       save_all_globals_into_locals();
2568       call(CAST_FROM_FN_PTR(address,os::yield_all));
2569       delayed()->mov(yieldall_reg, O0);
2570       restore_globals_from_locals();
2571       restore();
2572     }
2573 
2574     // reset the counter
2575     mov(G0,yield_reg);
2576     add(yieldall_reg, 1, yieldall_reg);
2577 
2578     bind(dont_yield);
2579     // try to get lock
2580     swap(lock_ptr_reg, 0, lock_reg);
2581 
2582     // did we get the lock?
2583     cmp(lock_reg, StubRoutines::Sparc::unlocked);
2584     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2585     delayed()->add(yield_reg,1,yield_reg);
2586 
2587     // yes, got lock.  do we have the same top?
2588     ld(top_ptr_reg_after_save, 0, value_reg);
2589     cmp(value_reg, top_reg_after_save);
2590     br(Assembler::notEqual, false, Assembler::pn, not_same);
2591     delayed()->nop();
2592 
2593     // yes, same top.
2594     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2595     membar(Assembler::StoreStore);
2596 
2597     bind(not_same);
2598     mov(value_reg, ptr_reg_after_save);
2599     st(lock_reg, lock_ptr_reg, 0); // unlock
2600 
2601     restore();
2602   }
2603 }
2604 
2605 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2606                                                       Register tmp,
2607                                                       int offset) {
2608   intptr_t value = *delayed_value_addr;
2609   if (value != 0)
2610     return RegisterOrConstant(value + offset);
2611 
2612   // load indirectly to solve generation ordering problem
2613   AddressLiteral a(delayed_value_addr);
2614   load_ptr_contents(a, tmp);
2615 
2616 #ifdef ASSERT
2617   tst(tmp);
2618   breakpoint_trap(zero, xcc);
2619 #endif
2620 
2621   if (offset != 0)
2622     add(tmp, offset, tmp);
2623 
2624   return RegisterOrConstant(tmp);
2625 }
2626 
2627 
2628 void MacroAssembler::regcon_inc_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
2629   assert(dest.register_or_noreg() != G0, "lost side effect");
2630   if ((src.is_constant() && src.as_constant() == 0) ||
2631       (src.is_register() && src.as_register() == G0)) {
2632     // do nothing
2633   } else if (dest.is_register()) {
2634     add(dest.as_register(), ensure_rs2(src, temp), dest.as_register());
2635   } else if (src.is_constant()) {
2636     intptr_t res = dest.as_constant() + src.as_constant();
2637     dest = RegisterOrConstant(res); // side effect seen by caller
2638   } else {
2639     assert(temp != noreg, "cannot handle constant += register");
2640     add(src.as_register(), ensure_rs2(dest, temp), temp);
2641     dest = RegisterOrConstant(temp); // side effect seen by caller
2642   }
2643 }
2644 
2645 void MacroAssembler::regcon_sll_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
2646   assert(dest.register_or_noreg() != G0, "lost side effect");
2647   if (!is_simm13(src.constant_or_zero()))
2648     src = (src.as_constant() & 0xFF);
2649   if ((src.is_constant() && src.as_constant() == 0) ||
2650       (src.is_register() && src.as_register() == G0)) {
2651     // do nothing
2652   } else if (dest.is_register()) {
2653     sll_ptr(dest.as_register(), src, dest.as_register());
2654   } else if (src.is_constant()) {
2655     intptr_t res = dest.as_constant() << src.as_constant();
2656     dest = RegisterOrConstant(res); // side effect seen by caller
2657   } else {
2658     assert(temp != noreg, "cannot handle constant <<= register");
2659     set(dest.as_constant(), temp);
2660     sll_ptr(temp, src, temp);
2661     dest = RegisterOrConstant(temp); // side effect seen by caller
2662   }
2663 }
2664 
2665 
2666 // Look up the method for a megamorphic invokeinterface call.
2667 // The target method is determined by <intf_klass, itable_index>.
2668 // The receiver klass is in recv_klass.
2669 // On success, the result will be in method_result, and execution falls through.
2670 // On failure, execution transfers to the given label.
2671 void MacroAssembler::lookup_interface_method(Register recv_klass,
2672                                              Register intf_klass,
2673                                              RegisterOrConstant itable_index,
2674                                              Register method_result,
2675                                              Register scan_temp,
2676                                              Register sethi_temp,
2677                                              Label& L_no_such_interface) {
2678   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2679   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2680          "caller must use same register for non-constant itable index as for method");
2681 
2682   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2683   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
2684   int scan_step   = itableOffsetEntry::size() * wordSize;
2685   int vte_size    = vtableEntry::size() * wordSize;
2686 
2687   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
2688   // %%% We should store the aligned, prescaled offset in the klassoop.
2689   // Then the next several instructions would fold away.
2690 
2691   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2692   int itb_offset = vtable_base;
2693   if (round_to_unit != 0) {
2694     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2695     itb_offset += round_to_unit - wordSize;
2696   }
2697   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2698   sll(scan_temp, itb_scale,  scan_temp);
2699   add(scan_temp, itb_offset, scan_temp);
2700   if (round_to_unit != 0) {
2701     // Round up to align_object_offset boundary
2702     // see code for instanceKlass::start_of_itable!
2703     // Was: round_to(scan_temp, BytesPerLong);
2704     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2705     and3(scan_temp, -round_to_unit, scan_temp);
2706   }
2707   add(recv_klass, scan_temp, scan_temp);
2708 
2709   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2710   RegisterOrConstant itable_offset = itable_index;
2711   regcon_sll_ptr(itable_offset, exact_log2(itableMethodEntry::size() * wordSize));
2712   regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes());
2713   add(recv_klass, ensure_rs2(itable_offset, sethi_temp), recv_klass);
2714 
2715   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2716   //   if (scan->interface() == intf) {
2717   //     result = (klass + scan->offset() + itable_index);
2718   //   }
2719   // }
2720   Label search, found_method;
2721 
2722   for (int peel = 1; peel >= 0; peel--) {
2723     // %%%% Could load both offset and interface in one ldx, if they were
2724     // in the opposite order.  This would save a load.
2725     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2726 
2727     // Check that this entry is non-null.  A null entry means that
2728     // the receiver class doesn't implement the interface, and wasn't the
2729     // same as when the caller was compiled.
2730     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
2731     delayed()->cmp(method_result, intf_klass);
2732 
2733     if (peel) {
2734       brx(Assembler::equal,    false, Assembler::pt, found_method);
2735     } else {
2736       brx(Assembler::notEqual, false, Assembler::pn, search);
2737       // (invert the test to fall through to found_method...)
2738     }
2739     delayed()->add(scan_temp, scan_step, scan_temp);
2740 
2741     if (!peel)  break;
2742 
2743     bind(search);
2744   }
2745 
2746   bind(found_method);
2747 
2748   // Got a hit.
2749   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2750   // scan_temp[-scan_step] points to the vtable offset we need
2751   ito_offset -= scan_step;
2752   lduw(scan_temp, ito_offset, scan_temp);
2753   ld_ptr(recv_klass, scan_temp, method_result);
2754 }
2755 
2756 
2757 void MacroAssembler::check_klass_subtype(Register sub_klass,
2758                                          Register super_klass,
2759                                          Register temp_reg,
2760                                          Register temp2_reg,
2761                                          Label& L_success) {
2762   Label L_failure, L_pop_to_failure;
2763   check_klass_subtype_fast_path(sub_klass, super_klass,
2764                                 temp_reg, temp2_reg,
2765                                 &L_success, &L_failure, NULL);
2766   Register sub_2 = sub_klass;
2767   Register sup_2 = super_klass;
2768   if (!sub_2->is_global())  sub_2 = L0;
2769   if (!sup_2->is_global())  sup_2 = L1;
2770 
2771   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2772   check_klass_subtype_slow_path(sub_2, sup_2,
2773                                 L2, L3, L4, L5,
2774                                 NULL, &L_pop_to_failure);
2775 
2776   // on success:
2777   restore();
2778   ba(false, L_success);
2779   delayed()->nop();
2780 
2781   // on failure:
2782   bind(L_pop_to_failure);
2783   restore();
2784   bind(L_failure);
2785 }
2786 
2787 
2788 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2789                                                    Register super_klass,
2790                                                    Register temp_reg,
2791                                                    Register temp2_reg,
2792                                                    Label* L_success,
2793                                                    Label* L_failure,
2794                                                    Label* L_slow_path,
2795                                         RegisterOrConstant super_check_offset,
2796                                         Register instanceof_hack) {
2797   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2798                    Klass::secondary_super_cache_offset_in_bytes());
2799   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2800                     Klass::super_check_offset_offset_in_bytes());
2801 
2802   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2803   bool need_slow_path = (must_load_sco ||
2804                          super_check_offset.constant_or_zero() == sco_offset);
2805 
2806   assert_different_registers(sub_klass, super_klass, temp_reg);
2807   if (super_check_offset.is_register()) {
2808     assert_different_registers(sub_klass, super_klass,
2809                                super_check_offset.as_register());
2810   } else if (must_load_sco) {
2811     assert(temp2_reg != noreg, "supply either a temp or a register offset");
2812   }
2813 
2814   Label L_fallthrough;
2815   int label_nulls = 0;
2816   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2817   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2818   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2819   assert(label_nulls <= 1 || instanceof_hack != noreg ||
2820          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2821          "at most one NULL in the batch, usually");
2822 
2823   // Support for the instanceof hack, which uses delay slots to
2824   // set a destination register to zero or one.
2825   bool do_bool_sets = (instanceof_hack != noreg);
2826 #define BOOL_SET(bool_value)                            \
2827   if (do_bool_sets && bool_value >= 0)                  \
2828     set(bool_value, instanceof_hack)
2829 #define DELAYED_BOOL_SET(bool_value)                    \
2830   if (do_bool_sets && bool_value >= 0)                  \
2831     delayed()->set(bool_value, instanceof_hack);        \
2832   else delayed()->nop()
2833   // Hacked ba(), which may only be used just before L_fallthrough.
2834 #define FINAL_JUMP(label, bool_value)                   \
2835   if (&(label) == &L_fallthrough) {                     \
2836     BOOL_SET(bool_value);                               \
2837   } else {                                              \
2838     ba((do_bool_sets && bool_value >= 0), label);       \
2839     DELAYED_BOOL_SET(bool_value);                       \
2840   }
2841 
2842   // If the pointers are equal, we are done (e.g., String[] elements).
2843   // This self-check enables sharing of secondary supertype arrays among
2844   // non-primary types such as array-of-interface.  Otherwise, each such
2845   // type would need its own customized SSA.
2846   // We move this check to the front of the fast path because many
2847   // type checks are in fact trivially successful in this manner,
2848   // so we get a nicely predicted branch right at the start of the check.
2849   cmp(super_klass, sub_klass);
2850   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2851   DELAYED_BOOL_SET(1);
2852 
2853   // Check the supertype display:
2854   if (must_load_sco) {
2855     // The super check offset is always positive...
2856     lduw(super_klass, sco_offset, temp2_reg);
2857     super_check_offset = RegisterOrConstant(temp2_reg);
2858   }
2859   ld_ptr(sub_klass, super_check_offset, temp_reg);
2860   cmp(super_klass, temp_reg);
2861 
2862   // This check has worked decisively for primary supers.
2863   // Secondary supers are sought in the super_cache ('super_cache_addr').
2864   // (Secondary supers are interfaces and very deeply nested subtypes.)
2865   // This works in the same check above because of a tricky aliasing
2866   // between the super_cache and the primary super display elements.
2867   // (The 'super_check_addr' can address either, as the case requires.)
2868   // Note that the cache is updated below if it does not help us find
2869   // what we need immediately.
2870   // So if it was a primary super, we can just fail immediately.
2871   // Otherwise, it's the slow path for us (no success at this point).
2872 
2873   if (super_check_offset.is_register()) {
2874     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2875     delayed(); if (do_bool_sets)  BOOL_SET(1);
2876     // if !do_bool_sets, sneak the next cmp into the delay slot:
2877     cmp(super_check_offset.as_register(), sc_offset);
2878 
2879     if (L_failure == &L_fallthrough) {
2880       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
2881       delayed()->nop();
2882       BOOL_SET(0);  // fallthrough on failure
2883     } else {
2884       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2885       DELAYED_BOOL_SET(0);
2886       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
2887     }
2888   } else if (super_check_offset.as_constant() == sc_offset) {
2889     // Need a slow path; fast failure is impossible.
2890     if (L_slow_path == &L_fallthrough) {
2891       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2892       DELAYED_BOOL_SET(1);
2893     } else {
2894       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2895       delayed()->nop();
2896       FINAL_JUMP(*L_success, 1);
2897     }
2898   } else {
2899     // No slow path; it's a fast decision.
2900     if (L_failure == &L_fallthrough) {
2901       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2902       DELAYED_BOOL_SET(1);
2903       BOOL_SET(0);
2904     } else {
2905       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2906       DELAYED_BOOL_SET(0);
2907       FINAL_JUMP(*L_success, 1);
2908     }
2909   }
2910 
2911   bind(L_fallthrough);
2912 
2913 #undef final_jump
2914 #undef bool_set
2915 #undef DELAYED_BOOL_SET
2916 #undef final_jump
2917 }
2918 
2919 
2920 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2921                                                    Register super_klass,
2922                                                    Register count_temp,
2923                                                    Register scan_temp,
2924                                                    Register scratch_reg,
2925                                                    Register coop_reg,
2926                                                    Label* L_success,
2927                                                    Label* L_failure) {
2928   assert_different_registers(sub_klass, super_klass,
2929                              count_temp, scan_temp, scratch_reg, coop_reg);
2930 
2931   Label L_fallthrough, L_loop;
2932   int label_nulls = 0;
2933   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2934   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2935   assert(label_nulls <= 1, "at most one NULL in the batch");
2936 
2937   // a couple of useful fields in sub_klass:
2938   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
2939                    Klass::secondary_supers_offset_in_bytes());
2940   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2941                    Klass::secondary_super_cache_offset_in_bytes());
2942 
2943   // Do a linear scan of the secondary super-klass chain.
2944   // This code is rarely used, so simplicity is a virtue here.
2945 
2946 #ifndef PRODUCT
2947   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2948   inc_counter((address) pst_counter, count_temp, scan_temp);
2949 #endif
2950 
2951   // We will consult the secondary-super array.
2952   ld_ptr(sub_klass, ss_offset, scan_temp);
2953 
2954   // Compress superclass if necessary.
2955   Register search_key = super_klass;
2956   bool decode_super_klass = false;
2957   if (UseCompressedOops) {
2958     if (coop_reg != noreg) {
2959       encode_heap_oop_not_null(super_klass, coop_reg);
2960       search_key = coop_reg;
2961     } else {
2962       encode_heap_oop_not_null(super_klass);
2963       decode_super_klass = true; // scarce temps!
2964     }
2965     // The superclass is never null; it would be a basic system error if a null
2966     // pointer were to sneak in here.  Note that we have already loaded the
2967     // Klass::super_check_offset from the super_klass in the fast path,
2968     // so if there is a null in that register, we are already in the afterlife.
2969   }
2970 
2971   // Load the array length.  (Positive movl does right thing on LP64.)
2972   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
2973 
2974   // Check for empty secondary super list
2975   tst(count_temp);
2976 
2977   // Top of search loop
2978   bind(L_loop);
2979   br(Assembler::equal, false, Assembler::pn, *L_failure);
2980   delayed()->add(scan_temp, heapOopSize, scan_temp);
2981   assert(heapOopSize != 0, "heapOopSize should be initialized");
2982 
2983   // Skip the array header in all array accesses.
2984   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
2985   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
2986 
2987   // Load next super to check
2988   if (UseCompressedOops) {
2989     // Don't use load_heap_oop; we don't want to decode the element.
2990     lduw(   scan_temp, elem_offset, scratch_reg );
2991   } else {
2992     ld_ptr( scan_temp, elem_offset, scratch_reg );
2993   }
2994 
2995   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2996   cmp(scratch_reg, search_key);
2997 
2998   // A miss means we are NOT a subtype and need to keep looping
2999   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3000   delayed()->deccc(count_temp); // decrement trip counter in delay slot
3001 
3002   // Falling out the bottom means we found a hit; we ARE a subtype
3003   if (decode_super_klass) decode_heap_oop(super_klass);
3004 
3005   // Success.  Cache the super we found and proceed in triumph.
3006   st_ptr(super_klass, sub_klass, sc_offset);
3007 
3008   if (L_success != &L_fallthrough) {
3009     ba(false, *L_success);
3010     delayed()->nop();
3011   }
3012 
3013   bind(L_fallthrough);
3014 }
3015 
3016 
3017 
3018 
3019 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
3020                                               Register temp_reg,
3021                                               Label& wrong_method_type) {
3022   assert_different_registers(mtype_reg, mh_reg, temp_reg);
3023   // compare method type against that of the receiver
3024   RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
3025   ld_ptr(mh_reg, mhtype_offset, temp_reg);
3026   cmp(temp_reg, mtype_reg);
3027   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
3028   delayed()->nop();
3029 }
3030 
3031 
3032 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
3033   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
3034   assert_different_registers(mh_reg, temp_reg);
3035 
3036   // pick out the interpreted side of the handler
3037   ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
3038 
3039   // off we go...
3040   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
3041   jmp(temp_reg, 0);
3042 
3043   // for the various stubs which take control at this point,
3044   // see MethodHandles::generate_method_handle_stub
3045 
3046   // (Can any caller use this delay slot?  If so, add an option for supression.)
3047   delayed()->nop();
3048 }
3049 
3050 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3051                                                    int extra_slot_offset) {
3052   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3053   int stackElementSize = Interpreter::stackElementWords() * wordSize;
3054   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
3055   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
3056   assert(offset1 - offset == stackElementSize, "correct arithmetic");
3057   if (arg_slot.is_constant()) {
3058     offset += arg_slot.as_constant() * stackElementSize;
3059     return offset;
3060   } else {
3061     Register temp = arg_slot.as_register();
3062     sll_ptr(temp, exact_log2(stackElementSize), temp);
3063     if (offset != 0)
3064       add(temp, offset, temp);
3065     return temp;
3066   }
3067 }
3068 
3069 
3070 
3071 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3072                                           Register temp_reg,
3073                                           Label& done, Label* slow_case,
3074                                           BiasedLockingCounters* counters) {
3075   assert(UseBiasedLocking, "why call this otherwise?");
3076 
3077   if (PrintBiasedLockingStatistics) {
3078     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3079     if (counters == NULL)
3080       counters = BiasedLocking::counters();
3081   }
3082 
3083   Label cas_label;
3084 
3085   // Biased locking
3086   // See whether the lock is currently biased toward our thread and
3087   // whether the epoch is still valid
3088   // Note that the runtime guarantees sufficient alignment of JavaThread
3089   // pointers to allow age to be placed into low bits
3090   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3091   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3092   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3093   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
3094   delayed()->nop();
3095 
3096   load_klass(obj_reg, temp_reg);
3097   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3098   or3(G2_thread, temp_reg, temp_reg);
3099   xor3(mark_reg, temp_reg, temp_reg);
3100   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3101   if (counters != NULL) {
3102     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3103     // Reload mark_reg as we may need it later
3104     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3105   }
3106   brx(Assembler::equal, true, Assembler::pt, done);
3107   delayed()->nop();
3108 
3109   Label try_revoke_bias;
3110   Label try_rebias;
3111   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3112   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3113 
3114   // At this point we know that the header has the bias pattern and
3115   // that we are not the bias owner in the current epoch. We need to
3116   // figure out more details about the state of the header in order to
3117   // know what operations can be legally performed on the object's
3118   // header.
3119 
3120   // If the low three bits in the xor result aren't clear, that means
3121   // the prototype header is no longer biased and we have to revoke
3122   // the bias on this object.
3123   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3124   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3125 
3126   // Biasing is still enabled for this data type. See whether the
3127   // epoch of the current bias is still valid, meaning that the epoch
3128   // bits of the mark word are equal to the epoch bits of the
3129   // prototype header. (Note that the prototype header's epoch bits
3130   // only change at a safepoint.) If not, attempt to rebias the object
3131   // toward the current thread. Note that we must be absolutely sure
3132   // that the current epoch is invalid in order to do this because
3133   // otherwise the manipulations it performs on the mark word are
3134   // illegal.
3135   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3136   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3137 
3138   // The epoch of the current bias is still valid but we know nothing
3139   // about the owner; it might be set or it might be clear. Try to
3140   // acquire the bias of the object using an atomic operation. If this
3141   // fails we will go in to the runtime to revoke the object's bias.
3142   // Note that we first construct the presumed unbiased header so we
3143   // don't accidentally blow away another thread's valid bias.
3144   delayed()->and3(mark_reg,
3145                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3146                   mark_reg);
3147   or3(G2_thread, mark_reg, temp_reg);
3148   casn(mark_addr.base(), mark_reg, temp_reg);
3149   // If the biasing toward our thread failed, this means that
3150   // another thread succeeded in biasing it toward itself and we
3151   // need to revoke that bias. The revocation will occur in the
3152   // interpreter runtime in the slow case.
3153   cmp(mark_reg, temp_reg);
3154   if (counters != NULL) {
3155     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3156   }
3157   if (slow_case != NULL) {
3158     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3159     delayed()->nop();
3160   }
3161   br(Assembler::always, false, Assembler::pt, done);
3162   delayed()->nop();
3163 
3164   bind(try_rebias);
3165   // At this point we know the epoch has expired, meaning that the
3166   // current "bias owner", if any, is actually invalid. Under these
3167   // circumstances _only_, we are allowed to use the current header's
3168   // value as the comparison value when doing the cas to acquire the
3169   // bias in the current epoch. In other words, we allow transfer of
3170   // the bias from one thread to another directly in this situation.
3171   //
3172   // FIXME: due to a lack of registers we currently blow away the age
3173   // bits in this situation. Should attempt to preserve them.
3174   load_klass(obj_reg, temp_reg);
3175   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3176   or3(G2_thread, temp_reg, temp_reg);
3177   casn(mark_addr.base(), mark_reg, temp_reg);
3178   // If the biasing toward our thread failed, this means that
3179   // another thread succeeded in biasing it toward itself and we
3180   // need to revoke that bias. The revocation will occur in the
3181   // interpreter runtime in the slow case.
3182   cmp(mark_reg, temp_reg);
3183   if (counters != NULL) {
3184     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3185   }
3186   if (slow_case != NULL) {
3187     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3188     delayed()->nop();
3189   }
3190   br(Assembler::always, false, Assembler::pt, done);
3191   delayed()->nop();
3192 
3193   bind(try_revoke_bias);
3194   // The prototype mark in the klass doesn't have the bias bit set any
3195   // more, indicating that objects of this data type are not supposed
3196   // to be biased any more. We are going to try to reset the mark of
3197   // this object to the prototype value and fall through to the
3198   // CAS-based locking scheme. Note that if our CAS fails, it means
3199   // that another thread raced us for the privilege of revoking the
3200   // bias of this particular object, so it's okay to continue in the
3201   // normal locking code.
3202   //
3203   // FIXME: due to a lack of registers we currently blow away the age
3204   // bits in this situation. Should attempt to preserve them.
3205   load_klass(obj_reg, temp_reg);
3206   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3207   casn(mark_addr.base(), mark_reg, temp_reg);
3208   // Fall through to the normal CAS-based lock, because no matter what
3209   // the result of the above CAS, some thread must have succeeded in
3210   // removing the bias bit from the object's header.
3211   if (counters != NULL) {
3212     cmp(mark_reg, temp_reg);
3213     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3214   }
3215 
3216   bind(cas_label);
3217 }
3218 
3219 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3220                                           bool allow_delay_slot_filling) {
3221   // Check for biased locking unlock case, which is a no-op
3222   // Note: we do not have to check the thread ID for two reasons.
3223   // First, the interpreter checks for IllegalMonitorStateException at
3224   // a higher level. Second, if the bias was revoked while we held the
3225   // lock, the object could not be rebiased toward another thread, so
3226   // the bias bit would be clear.
3227   ld_ptr(mark_addr, temp_reg);
3228   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3229   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3230   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3231   delayed();
3232   if (!allow_delay_slot_filling) {
3233     nop();
3234   }
3235 }
3236 
3237 
3238 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3239 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3240 
3241 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3242   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
3243 }
3244 
3245 
3246 
3247 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3248 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3249 // The code could be tightened up considerably.
3250 //
3251 // box->dhw disposition - post-conditions at DONE_LABEL.
3252 // -   Successful inflated lock:  box->dhw != 0.
3253 //     Any non-zero value suffices.
3254 //     Consider G2_thread, rsp, boxReg, or unused_mark()
3255 // -   Successful Stack-lock: box->dhw == mark.
3256 //     box->dhw must contain the displaced mark word value
3257 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3258 //     The slow-path fast_enter() and slow_enter() operators
3259 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3260 // -   Biased: box->dhw is undefined
3261 //
3262 // SPARC refworkload performance - specifically jetstream and scimark - are
3263 // extremely sensitive to the size of the code emitted by compiler_lock_object
3264 // and compiler_unlock_object.  Critically, the key factor is code size, not path
3265 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3266 // effect).
3267 
3268 
3269 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3270                                           Register Rbox, Register Rscratch,
3271                                           BiasedLockingCounters* counters,
3272                                           bool try_bias) {
3273    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3274 
3275    verify_oop(Roop);
3276    Label done ;
3277 
3278    if (counters != NULL) {
3279      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3280    }
3281 
3282    if (EmitSync & 1) {
3283      mov    (3, Rscratch) ;
3284      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3285      cmp    (SP, G0) ;
3286      return ;
3287    }
3288 
3289    if (EmitSync & 2) {
3290 
3291      // Fetch object's markword
3292      ld_ptr(mark_addr, Rmark);
3293 
3294      if (try_bias) {
3295         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3296      }
3297 
3298      // Save Rbox in Rscratch to be used for the cas operation
3299      mov(Rbox, Rscratch);
3300 
3301      // set Rmark to markOop | markOopDesc::unlocked_value
3302      or3(Rmark, markOopDesc::unlocked_value, Rmark);
3303 
3304      // Initialize the box.  (Must happen before we update the object mark!)
3305      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3306 
3307      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3308      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3309      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3310         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3311 
3312      // if compare/exchange succeeded we found an unlocked object and we now have locked it
3313      // hence we are done
3314      cmp(Rmark, Rscratch);
3315 #ifdef _LP64
3316      sub(Rscratch, STACK_BIAS, Rscratch);
3317 #endif
3318      brx(Assembler::equal, false, Assembler::pt, done);
3319      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3320 
3321      // we did not find an unlocked object so see if this is a recursive case
3322      // sub(Rscratch, SP, Rscratch);
3323      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3324      andcc(Rscratch, 0xfffff003, Rscratch);
3325      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3326      bind (done) ;
3327      return ;
3328    }
3329 
3330    Label Egress ;
3331 
3332    if (EmitSync & 256) {
3333       Label IsInflated ;
3334 
3335       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3336       // Triage: biased, stack-locked, neutral, inflated
3337       if (try_bias) {
3338         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3339         // Invariant: if control reaches this point in the emitted stream
3340         // then Rmark has not been modified.
3341       }
3342 
3343       // Store mark into displaced mark field in the on-stack basic-lock "box"
3344       // Critically, this must happen before the CAS
3345       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3346       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3347       andcc  (Rmark, 2, G0) ;
3348       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3349       delayed() ->
3350 
3351       // Try stack-lock acquisition.
3352       // Beware: the 1st instruction is in a delay slot
3353       mov    (Rbox,  Rscratch);
3354       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3355       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3356       casn   (mark_addr.base(), Rmark, Rscratch) ;
3357       cmp    (Rmark, Rscratch);
3358       brx    (Assembler::equal, false, Assembler::pt, done);
3359       delayed()->sub(Rscratch, SP, Rscratch);
3360 
3361       // Stack-lock attempt failed - check for recursive stack-lock.
3362       // See the comments below about how we might remove this case.
3363 #ifdef _LP64
3364       sub    (Rscratch, STACK_BIAS, Rscratch);
3365 #endif
3366       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3367       andcc  (Rscratch, 0xfffff003, Rscratch);
3368       br     (Assembler::always, false, Assembler::pt, done) ;
3369       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3370 
3371       bind   (IsInflated) ;
3372       if (EmitSync & 64) {
3373          // If m->owner != null goto IsLocked
3374          // Pessimistic form: Test-and-CAS vs CAS
3375          // The optimistic form avoids RTS->RTO cache line upgrades.
3376          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3377          andcc  (Rscratch, Rscratch, G0) ;
3378          brx    (Assembler::notZero, false, Assembler::pn, done) ;
3379          delayed()->nop() ;
3380          // m->owner == null : it's unlocked.
3381       }
3382 
3383       // Try to CAS m->owner from null to Self
3384       // Invariant: if we acquire the lock then _recursions should be 0.
3385       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3386       mov    (G2_thread, Rscratch) ;
3387       casn   (Rmark, G0, Rscratch) ;
3388       cmp    (Rscratch, G0) ;
3389       // Intentional fall-through into done
3390    } else {
3391       // Aggressively avoid the Store-before-CAS penalty
3392       // Defer the store into box->dhw until after the CAS
3393       Label IsInflated, Recursive ;
3394 
3395 // Anticipate CAS -- Avoid RTS->RTO upgrade
3396 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3397 
3398       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3399       // Triage: biased, stack-locked, neutral, inflated
3400 
3401       if (try_bias) {
3402         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3403         // Invariant: if control reaches this point in the emitted stream
3404         // then Rmark has not been modified.
3405       }
3406       andcc  (Rmark, 2, G0) ;
3407       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3408       delayed()->                         // Beware - dangling delay-slot
3409 
3410       // Try stack-lock acquisition.
3411       // Transiently install BUSY (0) encoding in the mark word.
3412       // if the CAS of 0 into the mark was successful then we execute:
3413       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3414       //   ST obj->mark = box    -- overwrite transient 0 value
3415       // This presumes TSO, of course.
3416 
3417       mov    (0, Rscratch) ;
3418       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3419       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3420       casn   (mark_addr.base(), Rmark, Rscratch) ;
3421 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3422       cmp    (Rscratch, Rmark) ;
3423       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
3424       delayed() ->
3425         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3426       if (counters != NULL) {
3427         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3428       }
3429       br     (Assembler::always, false, Assembler::pt, done);
3430       delayed() ->
3431         st_ptr (Rbox, mark_addr) ;
3432 
3433       bind   (Recursive) ;
3434       // Stack-lock attempt failed - check for recursive stack-lock.
3435       // Tests show that we can remove the recursive case with no impact
3436       // on refworkload 0.83.  If we need to reduce the size of the code
3437       // emitted by compiler_lock_object() the recursive case is perfect
3438       // candidate.
3439       //
3440       // A more extreme idea is to always inflate on stack-lock recursion.
3441       // This lets us eliminate the recursive checks in compiler_lock_object
3442       // and compiler_unlock_object and the (box->dhw == 0) encoding.
3443       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3444       // and showed a performance *increase*.  In the same experiment I eliminated
3445       // the fast-path stack-lock code from the interpreter and always passed
3446       // control to the "slow" operators in synchronizer.cpp.
3447 
3448       // RScratch contains the fetched obj->mark value from the failed CASN.
3449 #ifdef _LP64
3450       sub    (Rscratch, STACK_BIAS, Rscratch);
3451 #endif
3452       sub(Rscratch, SP, Rscratch);
3453       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3454       andcc  (Rscratch, 0xfffff003, Rscratch);
3455       if (counters != NULL) {
3456         // Accounting needs the Rscratch register
3457         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3458         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3459         br     (Assembler::always, false, Assembler::pt, done) ;
3460         delayed()->nop() ;
3461       } else {
3462         br     (Assembler::always, false, Assembler::pt, done) ;
3463         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3464       }
3465 
3466       bind   (IsInflated) ;
3467       if (EmitSync & 64) {
3468          // If m->owner != null goto IsLocked
3469          // Test-and-CAS vs CAS
3470          // Pessimistic form avoids futile (doomed) CAS attempts
3471          // The optimistic form avoids RTS->RTO cache line upgrades.
3472          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3473          andcc  (Rscratch, Rscratch, G0) ;
3474          brx    (Assembler::notZero, false, Assembler::pn, done) ;
3475          delayed()->nop() ;
3476          // m->owner == null : it's unlocked.
3477       }
3478 
3479       // Try to CAS m->owner from null to Self
3480       // Invariant: if we acquire the lock then _recursions should be 0.
3481       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3482       mov    (G2_thread, Rscratch) ;
3483       casn   (Rmark, G0, Rscratch) ;
3484       cmp    (Rscratch, G0) ;
3485       // ST box->displaced_header = NonZero.
3486       // Any non-zero value suffices:
3487       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3488       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3489       // Intentional fall-through into done
3490    }
3491 
3492    bind   (done) ;
3493 }
3494 
3495 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3496                                             Register Rbox, Register Rscratch,
3497                                             bool try_bias) {
3498    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3499 
3500    Label done ;
3501 
3502    if (EmitSync & 4) {
3503      cmp  (SP, G0) ;
3504      return ;
3505    }
3506 
3507    if (EmitSync & 8) {
3508      if (try_bias) {
3509         biased_locking_exit(mark_addr, Rscratch, done);
3510      }
3511 
3512      // Test first if it is a fast recursive unlock
3513      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3514      cmp(Rmark, G0);
3515      brx(Assembler::equal, false, Assembler::pt, done);
3516      delayed()->nop();
3517 
3518      // Check if it is still a light weight lock, this is is true if we see
3519      // the stack address of the basicLock in the markOop of the object
3520      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3521      casx_under_lock(mark_addr.base(), Rbox, Rmark,
3522        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3523      br (Assembler::always, false, Assembler::pt, done);
3524      delayed()->cmp(Rbox, Rmark);
3525      bind (done) ;
3526      return ;
3527    }
3528 
3529    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3530    // is too large performance rolls abruptly off a cliff.
3531    // This could be related to inlining policies, code cache management, or
3532    // I$ effects.
3533    Label LStacked ;
3534 
3535    if (try_bias) {
3536       // TODO: eliminate redundant LDs of obj->mark
3537       biased_locking_exit(mark_addr, Rscratch, done);
3538    }
3539 
3540    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3541    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3542    andcc  (Rscratch, Rscratch, G0);
3543    brx    (Assembler::zero, false, Assembler::pn, done);
3544    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3545    andcc  (Rmark, 2, G0) ;
3546    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3547    delayed()-> nop() ;
3548 
3549    // It's inflated
3550    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3551    // the ST of 0 into _owner which releases the lock.  This prevents loads
3552    // and stores within the critical section from reordering (floating)
3553    // past the store that releases the lock.  But TSO is a strong memory model
3554    // and that particular flavor of barrier is a noop, so we can safely elide it.
3555    // Note that we use 1-0 locking by default for the inflated case.  We
3556    // close the resultant (and rare) race by having contented threads in
3557    // monitorenter periodically poll _owner.
3558    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3559    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3560    xor3   (Rscratch, G2_thread, Rscratch) ;
3561    orcc   (Rbox, Rscratch, Rbox) ;
3562    brx    (Assembler::notZero, false, Assembler::pn, done) ;
3563    delayed()->
3564    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3565    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3566    orcc   (Rbox, Rscratch, G0) ;
3567    if (EmitSync & 65536) {
3568       Label LSucc ;
3569       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3570       delayed()->nop() ;
3571       br     (Assembler::always, false, Assembler::pt, done) ;
3572       delayed()->
3573       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3574 
3575       bind   (LSucc) ;
3576       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3577       if (os::is_MP()) { membar (StoreLoad) ; }
3578       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3579       andcc  (Rscratch, Rscratch, G0) ;
3580       brx    (Assembler::notZero, false, Assembler::pt, done) ;
3581       delayed()-> andcc (G0, G0, G0) ;
3582       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3583       mov    (G2_thread, Rscratch) ;
3584       casn   (Rmark, G0, Rscratch) ;
3585       cmp    (Rscratch, G0) ;
3586       // invert icc.zf and goto done
3587       brx    (Assembler::notZero, false, Assembler::pt, done) ;
3588       delayed() -> cmp (G0, G0) ;
3589       br     (Assembler::always, false, Assembler::pt, done);
3590       delayed() -> cmp (G0, 1) ;
3591    } else {
3592       brx    (Assembler::notZero, false, Assembler::pn, done) ;
3593       delayed()->nop() ;
3594       br     (Assembler::always, false, Assembler::pt, done) ;
3595       delayed()->
3596       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3597    }
3598 
3599    bind   (LStacked) ;
3600    // Consider: we could replace the expensive CAS in the exit
3601    // path with a simple ST of the displaced mark value fetched from
3602    // the on-stack basiclock box.  That admits a race where a thread T2
3603    // in the slow lock path -- inflating with monitor M -- could race a
3604    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3605    // More precisely T1 in the stack-lock unlock path could "stomp" the
3606    // inflated mark value M installed by T2, resulting in an orphan
3607    // object monitor M and T2 becoming stranded.  We can remedy that situation
3608    // by having T2 periodically poll the object's mark word using timed wait
3609    // operations.  If T2 discovers that a stomp has occurred it vacates
3610    // the monitor M and wakes any other threads stranded on the now-orphan M.
3611    // In addition the monitor scavenger, which performs deflation,
3612    // would also need to check for orpan monitors and stranded threads.
3613    //
3614    // Finally, inflation is also used when T2 needs to assign a hashCode
3615    // to O and O is stack-locked by T1.  The "stomp" race could cause
3616    // an assigned hashCode value to be lost.  We can avoid that condition
3617    // and provide the necessary hashCode stability invariants by ensuring
3618    // that hashCode generation is idempotent between copying GCs.
3619    // For example we could compute the hashCode of an object O as
3620    // O's heap address XOR some high quality RNG value that is refreshed
3621    // at GC-time.  The monitor scavenger would install the hashCode
3622    // found in any orphan monitors.  Again, the mechanism admits a
3623    // lost-update "stomp" WAW race but detects and recovers as needed.
3624    //
3625    // A prototype implementation showed excellent results, although
3626    // the scavenger and timeout code was rather involved.
3627 
3628    casn   (mark_addr.base(), Rbox, Rscratch) ;
3629    cmp    (Rbox, Rscratch);
3630    // Intentional fall through into done ...
3631 
3632    bind   (done) ;
3633 }
3634 
3635 
3636 
3637 void MacroAssembler::print_CPU_state() {
3638   // %%%%% need to implement this
3639 }
3640 
3641 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3642   // %%%%% need to implement this
3643 }
3644 
3645 void MacroAssembler::push_IU_state() {
3646   // %%%%% need to implement this
3647 }
3648 
3649 
3650 void MacroAssembler::pop_IU_state() {
3651   // %%%%% need to implement this
3652 }
3653 
3654 
3655 void MacroAssembler::push_FPU_state() {
3656   // %%%%% need to implement this
3657 }
3658 
3659 
3660 void MacroAssembler::pop_FPU_state() {
3661   // %%%%% need to implement this
3662 }
3663 
3664 
3665 void MacroAssembler::push_CPU_state() {
3666   // %%%%% need to implement this
3667 }
3668 
3669 
3670 void MacroAssembler::pop_CPU_state() {
3671   // %%%%% need to implement this
3672 }
3673 
3674 
3675 
3676 void MacroAssembler::verify_tlab() {
3677 #ifdef ASSERT
3678   if (UseTLAB && VerifyOops) {
3679     Label next, next2, ok;
3680     Register t1 = L0;
3681     Register t2 = L1;
3682     Register t3 = L2;
3683 
3684     save_frame(0);
3685     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3686     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3687     or3(t1, t2, t3);
3688     cmp(t1, t2);
3689     br(Assembler::greaterEqual, false, Assembler::pn, next);
3690     delayed()->nop();
3691     stop("assert(top >= start)");
3692     should_not_reach_here();
3693 
3694     bind(next);
3695     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3696     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3697     or3(t3, t2, t3);
3698     cmp(t1, t2);
3699     br(Assembler::lessEqual, false, Assembler::pn, next2);
3700     delayed()->nop();
3701     stop("assert(top <= end)");
3702     should_not_reach_here();
3703 
3704     bind(next2);
3705     and3(t3, MinObjAlignmentInBytesMask, t3);
3706     cmp(t3, 0);
3707     br(Assembler::lessEqual, false, Assembler::pn, ok);
3708     delayed()->nop();
3709     stop("assert(aligned)");
3710     should_not_reach_here();
3711 
3712     bind(ok);
3713     restore();
3714   }
3715 #endif
3716 }
3717 
3718 
3719 void MacroAssembler::eden_allocate(
3720   Register obj,                        // result: pointer to object after successful allocation
3721   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3722   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3723   Register t1,                         // temp register
3724   Register t2,                         // temp register
3725   Label&   slow_case                   // continuation point if fast allocation fails
3726 ){
3727   // make sure arguments make sense
3728   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3729   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3730   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3731 
3732   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3733     // No allocation in the shared eden.
3734     br(Assembler::always, false, Assembler::pt, slow_case);
3735     delayed()->nop();
3736   } else {
3737     // get eden boundaries
3738     // note: we need both top & top_addr!
3739     const Register top_addr = t1;
3740     const Register end      = t2;
3741 
3742     CollectedHeap* ch = Universe::heap();
3743     set((intx)ch->top_addr(), top_addr);
3744     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3745     ld_ptr(top_addr, delta, end);
3746     ld_ptr(top_addr, 0, obj);
3747 
3748     // try to allocate
3749     Label retry;
3750     bind(retry);
3751 #ifdef ASSERT
3752     // make sure eden top is properly aligned
3753     {
3754       Label L;
3755       btst(MinObjAlignmentInBytesMask, obj);
3756       br(Assembler::zero, false, Assembler::pt, L);
3757       delayed()->nop();
3758       stop("eden top is not properly aligned");
3759       bind(L);
3760     }
3761 #endif // ASSERT
3762     const Register free = end;
3763     sub(end, obj, free);                                   // compute amount of free space
3764     if (var_size_in_bytes->is_valid()) {
3765       // size is unknown at compile time
3766       cmp(free, var_size_in_bytes);
3767       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3768       delayed()->add(obj, var_size_in_bytes, end);
3769     } else {
3770       // size is known at compile time
3771       cmp(free, con_size_in_bytes);
3772       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3773       delayed()->add(obj, con_size_in_bytes, end);
3774     }
3775     // Compare obj with the value at top_addr; if still equal, swap the value of
3776     // end with the value at top_addr. If not equal, read the value at top_addr
3777     // into end.
3778     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3779     // if someone beat us on the allocation, try again, otherwise continue
3780     cmp(obj, end);
3781     brx(Assembler::notEqual, false, Assembler::pn, retry);
3782     delayed()->mov(end, obj);                              // nop if successfull since obj == end
3783 
3784 #ifdef ASSERT
3785     // make sure eden top is properly aligned
3786     {
3787       Label L;
3788       const Register top_addr = t1;
3789 
3790       set((intx)ch->top_addr(), top_addr);
3791       ld_ptr(top_addr, 0, top_addr);
3792       btst(MinObjAlignmentInBytesMask, top_addr);
3793       br(Assembler::zero, false, Assembler::pt, L);
3794       delayed()->nop();
3795       stop("eden top is not properly aligned");
3796       bind(L);
3797     }
3798 #endif // ASSERT
3799   }
3800 }
3801 
3802 
3803 void MacroAssembler::tlab_allocate(
3804   Register obj,                        // result: pointer to object after successful allocation
3805   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3806   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3807   Register t1,                         // temp register
3808   Label&   slow_case                   // continuation point if fast allocation fails
3809 ){
3810   // make sure arguments make sense
3811   assert_different_registers(obj, var_size_in_bytes, t1);
3812   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3813   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3814 
3815   const Register free  = t1;
3816 
3817   verify_tlab();
3818 
3819   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3820 
3821   // calculate amount of free space
3822   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3823   sub(free, obj, free);
3824 
3825   Label done;
3826   if (var_size_in_bytes == noreg) {
3827     cmp(free, con_size_in_bytes);
3828   } else {
3829     cmp(free, var_size_in_bytes);
3830   }
3831   br(Assembler::less, false, Assembler::pn, slow_case);
3832   // calculate the new top pointer
3833   if (var_size_in_bytes == noreg) {
3834     delayed()->add(obj, con_size_in_bytes, free);
3835   } else {
3836     delayed()->add(obj, var_size_in_bytes, free);
3837   }
3838 
3839   bind(done);
3840 
3841 #ifdef ASSERT
3842   // make sure new free pointer is properly aligned
3843   {
3844     Label L;
3845     btst(MinObjAlignmentInBytesMask, free);
3846     br(Assembler::zero, false, Assembler::pt, L);
3847     delayed()->nop();
3848     stop("updated TLAB free is not properly aligned");
3849     bind(L);
3850   }
3851 #endif // ASSERT
3852 
3853   // update the tlab top pointer
3854   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3855   verify_tlab();
3856 }
3857 
3858 
3859 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3860   Register top = O0;
3861   Register t1 = G1;
3862   Register t2 = G3;
3863   Register t3 = O1;
3864   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3865   Label do_refill, discard_tlab;
3866 
3867   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3868     // No allocation in the shared eden.
3869     br(Assembler::always, false, Assembler::pt, slow_case);
3870     delayed()->nop();
3871   }
3872 
3873   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3874   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3875   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3876 
3877   // calculate amount of free space
3878   sub(t1, top, t1);
3879   srl_ptr(t1, LogHeapWordSize, t1);
3880 
3881   // Retain tlab and allocate object in shared space if
3882   // the amount free in the tlab is too large to discard.
3883   cmp(t1, t2);
3884   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3885 
3886   // increment waste limit to prevent getting stuck on this slow path
3887   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3888   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3889   if (TLABStats) {
3890     // increment number of slow_allocations
3891     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3892     add(t2, 1, t2);
3893     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3894   }
3895   br(Assembler::always, false, Assembler::pt, try_eden);
3896   delayed()->nop();
3897 
3898   bind(discard_tlab);
3899   if (TLABStats) {
3900     // increment number of refills
3901     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3902     add(t2, 1, t2);
3903     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3904     // accumulate wastage
3905     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3906     add(t2, t1, t2);
3907     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3908   }
3909 
3910   // if tlab is currently allocated (top or end != null) then
3911   // fill [top, end + alignment_reserve) with array object
3912   br_null(top, false, Assembler::pn, do_refill);
3913   delayed()->nop();
3914 
3915   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3916   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3917   // set klass to intArrayKlass
3918   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3919   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3920   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3921   st(t1, top, arrayOopDesc::length_offset_in_bytes());
3922   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3923   ld_ptr(t2, 0, t2);
3924   // store klass last.  concurrent gcs assumes klass length is valid if
3925   // klass field is not null.
3926   store_klass(t2, top);
3927   verify_oop(top);
3928 
3929   // refill the tlab with an eden allocation
3930   bind(do_refill);
3931   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3932   sll_ptr(t1, LogHeapWordSize, t1);
3933   // add object_size ??
3934   eden_allocate(top, t1, 0, t2, t3, slow_case);
3935 
3936   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3937   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3938 #ifdef ASSERT
3939   // check that tlab_size (t1) is still valid
3940   {
3941     Label ok;
3942     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3943     sll_ptr(t2, LogHeapWordSize, t2);
3944     cmp(t1, t2);
3945     br(Assembler::equal, false, Assembler::pt, ok);
3946     delayed()->nop();
3947     stop("assert(t1 == tlab_size)");
3948     should_not_reach_here();
3949 
3950     bind(ok);
3951   }
3952 #endif // ASSERT
3953   add(top, t1, top); // t1 is tlab_size
3954   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3955   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3956   verify_tlab();
3957   br(Assembler::always, false, Assembler::pt, retry);
3958   delayed()->nop();
3959 }
3960 
3961 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3962   switch (cond) {
3963     // Note some conditions are synonyms for others
3964     case Assembler::never:                return Assembler::always;
3965     case Assembler::zero:                 return Assembler::notZero;
3966     case Assembler::lessEqual:            return Assembler::greater;
3967     case Assembler::less:                 return Assembler::greaterEqual;
3968     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3969     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3970     case Assembler::negative:             return Assembler::positive;
3971     case Assembler::overflowSet:          return Assembler::overflowClear;
3972     case Assembler::always:               return Assembler::never;
3973     case Assembler::notZero:              return Assembler::zero;
3974     case Assembler::greater:              return Assembler::lessEqual;
3975     case Assembler::greaterEqual:         return Assembler::less;
3976     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3977     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3978     case Assembler::positive:             return Assembler::negative;
3979     case Assembler::overflowClear:        return Assembler::overflowSet;
3980   }
3981 
3982   ShouldNotReachHere(); return Assembler::overflowClear;
3983 }
3984 
3985 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3986                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3987   Condition negated_cond = negate_condition(cond);
3988   Label L;
3989   brx(negated_cond, false, Assembler::pt, L);
3990   delayed()->nop();
3991   inc_counter(counter_ptr, Rtmp1, Rtmp2);
3992   bind(L);
3993 }
3994 
3995 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3996   AddressLiteral addrlit(counter_addr);
3997   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3998   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3999   ld(addr, Rtmp2);
4000   inc(Rtmp2);
4001   st(Rtmp2, addr);
4002 }
4003 
4004 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4005   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4006 }
4007 
4008 SkipIfEqual::SkipIfEqual(
4009     MacroAssembler* masm, Register temp, const bool* flag_addr,
4010     Assembler::Condition condition) {
4011   _masm = masm;
4012   AddressLiteral flag(flag_addr);
4013   _masm->sethi(flag, temp);
4014   _masm->ldub(temp, flag.low10(), temp);
4015   _masm->tst(temp);
4016   _masm->br(condition, false, Assembler::pt, _label);
4017   _masm->delayed()->nop();
4018 }
4019 
4020 SkipIfEqual::~SkipIfEqual() {
4021   _masm->bind(_label);
4022 }
4023 
4024 
4025 // Writes to stack successive pages until offset reached to check for
4026 // stack overflow + shadow pages.  This clobbers tsp and scratch.
4027 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4028                                      Register Rscratch) {
4029   // Use stack pointer in temp stack pointer
4030   mov(SP, Rtsp);
4031 
4032   // Bang stack for total size given plus stack shadow page size.
4033   // Bang one page at a time because a large size can overflow yellow and
4034   // red zones (the bang will fail but stack overflow handling can't tell that
4035   // it was a stack overflow bang vs a regular segv).
4036   int offset = os::vm_page_size();
4037   Register Roffset = Rscratch;
4038 
4039   Label loop;
4040   bind(loop);
4041   set((-offset)+STACK_BIAS, Rscratch);
4042   st(G0, Rtsp, Rscratch);
4043   set(offset, Roffset);
4044   sub(Rsize, Roffset, Rsize);
4045   cmp(Rsize, G0);
4046   br(Assembler::greater, false, Assembler::pn, loop);
4047   delayed()->sub(Rtsp, Roffset, Rtsp);
4048 
4049   // Bang down shadow pages too.
4050   // The -1 because we already subtracted 1 page.
4051   for (int i = 0; i< StackShadowPages-1; i++) {
4052     set((-i*offset)+STACK_BIAS, Rscratch);
4053     st(G0, Rtsp, Rscratch);
4054   }
4055 }
4056 
4057 ///////////////////////////////////////////////////////////////////////////////////
4058 #ifndef SERIALGC
4059 
4060 static uint num_stores = 0;
4061 static uint num_null_pre_stores = 0;
4062 
4063 static void count_null_pre_vals(void* pre_val) {
4064   num_stores++;
4065   if (pre_val == NULL) num_null_pre_stores++;
4066   if ((num_stores % 1000000) == 0) {
4067     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
4068                   num_stores, num_null_pre_stores,
4069                   100.0*(float)num_null_pre_stores/(float)num_stores);
4070   }
4071 }
4072 
4073 static address satb_log_enqueue_with_frame = 0;
4074 static u_char* satb_log_enqueue_with_frame_end = 0;
4075 
4076 static address satb_log_enqueue_frameless = 0;
4077 static u_char* satb_log_enqueue_frameless_end = 0;
4078 
4079 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4080 
4081 // The calls to this don't work.  We'd need to do a fair amount of work to
4082 // make it work.
4083 static void check_index(int ind) {
4084   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
4085          "Invariants.")
4086 }
4087 
4088 static void generate_satb_log_enqueue(bool with_frame) {
4089   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4090   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
4091   MacroAssembler masm(&buf);
4092   address start = masm.pc();
4093   Register pre_val;
4094 
4095   Label refill, restart;
4096   if (with_frame) {
4097     masm.save_frame(0);
4098     pre_val = I0;  // Was O0 before the save.
4099   } else {
4100     pre_val = O0;
4101   }
4102   int satb_q_index_byte_offset =
4103     in_bytes(JavaThread::satb_mark_queue_offset() +
4104              PtrQueue::byte_offset_of_index());
4105   int satb_q_buf_byte_offset =
4106     in_bytes(JavaThread::satb_mark_queue_offset() +
4107              PtrQueue::byte_offset_of_buf());
4108   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4109          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4110          "check sizes in assembly below");
4111 
4112   masm.bind(restart);
4113   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4114 
4115   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
4116   // If the branch is taken, no harm in executing this in the delay slot.
4117   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4118   masm.sub(L0, oopSize, L0);
4119 
4120   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4121   if (!with_frame) {
4122     // Use return-from-leaf
4123     masm.retl();
4124     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4125   } else {
4126     // Not delayed.
4127     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4128   }
4129   if (with_frame) {
4130     masm.ret();
4131     masm.delayed()->restore();
4132   }
4133   masm.bind(refill);
4134 
4135   address handle_zero =
4136     CAST_FROM_FN_PTR(address,
4137                      &SATBMarkQueueSet::handle_zero_index_for_thread);
4138   // This should be rare enough that we can afford to save all the
4139   // scratch registers that the calling context might be using.
4140   masm.mov(G1_scratch, L0);
4141   masm.mov(G3_scratch, L1);
4142   masm.mov(G4, L2);
4143   // We need the value of O0 above (for the write into the buffer), so we
4144   // save and restore it.
4145   masm.mov(O0, L3);
4146   // Since the call will overwrite O7, we save and restore that, as well.
4147   masm.mov(O7, L4);
4148   masm.call_VM_leaf(L5, handle_zero, G2_thread);
4149   masm.mov(L0, G1_scratch);
4150   masm.mov(L1, G3_scratch);
4151   masm.mov(L2, G4);
4152   masm.mov(L3, O0);
4153   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4154   masm.delayed()->mov(L4, O7);
4155 
4156   if (with_frame) {
4157     satb_log_enqueue_with_frame = start;
4158     satb_log_enqueue_with_frame_end = masm.pc();
4159   } else {
4160     satb_log_enqueue_frameless = start;
4161     satb_log_enqueue_frameless_end = masm.pc();
4162   }
4163 }
4164 
4165 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4166   if (with_frame) {
4167     if (satb_log_enqueue_with_frame == 0) {
4168       generate_satb_log_enqueue(with_frame);
4169       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4170       if (G1SATBPrintStubs) {
4171         tty->print_cr("Generated with-frame satb enqueue:");
4172         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4173                              satb_log_enqueue_with_frame_end,
4174                              tty);
4175       }
4176     }
4177   } else {
4178     if (satb_log_enqueue_frameless == 0) {
4179       generate_satb_log_enqueue(with_frame);
4180       assert(satb_log_enqueue_frameless != 0, "postcondition.");
4181       if (G1SATBPrintStubs) {
4182         tty->print_cr("Generated frameless satb enqueue:");
4183         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4184                              satb_log_enqueue_frameless_end,
4185                              tty);
4186       }
4187     }
4188   }
4189 }
4190 
4191 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
4192   assert(offset == 0 || index == noreg, "choose one");
4193 
4194   if (G1DisablePreBarrier) return;
4195   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
4196   Label filtered;
4197   // satb_log_barrier_work0(tmp, filtered);
4198   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4199     ld(G2,
4200        in_bytes(JavaThread::satb_mark_queue_offset() +
4201                 PtrQueue::byte_offset_of_active()),
4202        tmp);
4203   } else {
4204     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4205               "Assumption");
4206     ldsb(G2,
4207          in_bytes(JavaThread::satb_mark_queue_offset() +
4208                   PtrQueue::byte_offset_of_active()),
4209          tmp);
4210   }
4211 
4212   // Check on whether to annul.
4213   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4214   delayed() -> nop();
4215 
4216   // satb_log_barrier_work1(tmp, offset);
4217   if (index == noreg) {
4218     if (Assembler::is_simm13(offset)) {
4219       load_heap_oop(obj, offset, tmp);
4220     } else {
4221       set(offset, tmp);
4222       load_heap_oop(obj, tmp, tmp);
4223     }
4224   } else {
4225     load_heap_oop(obj, index, tmp);
4226   }
4227 
4228   // satb_log_barrier_work2(obj, tmp, offset);
4229 
4230   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
4231 
4232   const Register pre_val = tmp;
4233 
4234   if (G1SATBBarrierPrintNullPreVals) {
4235     save_frame(0);
4236     mov(pre_val, O0);
4237     // Save G-regs that target may use.
4238     mov(G1, L1);
4239     mov(G2, L2);
4240     mov(G3, L3);
4241     mov(G4, L4);
4242     mov(G5, L5);
4243     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
4244     delayed()->nop();
4245     // Restore G-regs that target may have used.
4246     mov(L1, G1);
4247     mov(L2, G2);
4248     mov(L3, G3);
4249     mov(L4, G4);
4250     mov(L5, G5);
4251     restore(G0, G0, G0);
4252   }
4253 
4254   // Check on whether to annul.
4255   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
4256   delayed() -> nop();
4257 
4258   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4259   // case, pre_val will be a scratch G-reg, but there's some cases in which
4260   // it's an O-reg.  In the first case, do a normal call.  In the latter,
4261   // do a save here and call the frameless version.
4262 
4263   guarantee(pre_val->is_global() || pre_val->is_out(),
4264             "Or we need to think harder.");
4265   if (pre_val->is_global() && !preserve_o_regs) {
4266     generate_satb_log_enqueue_if_necessary(true); // with frame.
4267     call(satb_log_enqueue_with_frame);
4268     delayed()->mov(pre_val, O0);
4269   } else {
4270     generate_satb_log_enqueue_if_necessary(false); // with frameless.
4271     save_frame(0);
4272     call(satb_log_enqueue_frameless);
4273     delayed()->mov(pre_val->after_save(), O0);
4274     restore();
4275   }
4276 
4277   bind(filtered);
4278 }
4279 
4280 static jint num_ct_writes = 0;
4281 static jint num_ct_writes_filtered_in_hr = 0;
4282 static jint num_ct_writes_filtered_null = 0;
4283 static G1CollectedHeap* g1 = NULL;
4284 
4285 static Thread* count_ct_writes(void* filter_val, void* new_val) {
4286   Atomic::inc(&num_ct_writes);
4287   if (filter_val == NULL) {
4288     Atomic::inc(&num_ct_writes_filtered_in_hr);
4289   } else if (new_val == NULL) {
4290     Atomic::inc(&num_ct_writes_filtered_null);
4291   } else {
4292     if (g1 == NULL) {
4293       g1 = G1CollectedHeap::heap();
4294     }
4295   }
4296   if ((num_ct_writes % 1000000) == 0) {
4297     jint num_ct_writes_filtered =
4298       num_ct_writes_filtered_in_hr +
4299       num_ct_writes_filtered_null;
4300 
4301     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
4302                   "   (%5.2f%% intra-HR, %5.2f%% null).",
4303                   num_ct_writes,
4304                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
4305                   100.0*(float)num_ct_writes_filtered_in_hr/
4306                   (float)num_ct_writes,
4307                   100.0*(float)num_ct_writes_filtered_null/
4308                   (float)num_ct_writes);
4309   }
4310   return Thread::current();
4311 }
4312 
4313 static address dirty_card_log_enqueue = 0;
4314 static u_char* dirty_card_log_enqueue_end = 0;
4315 
4316 // This gets to assume that o0 contains the object address.
4317 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4318   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4319   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
4320   MacroAssembler masm(&buf);
4321   address start = masm.pc();
4322 
4323   Label not_already_dirty, restart, refill;
4324 
4325 #ifdef _LP64
4326   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
4327 #else
4328   masm.srl(O0, CardTableModRefBS::card_shift, O0);
4329 #endif
4330   AddressLiteral addrlit(byte_map_base);
4331   masm.set(addrlit, O1); // O1 := <card table base>
4332   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
4333 
4334   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
4335                       O2, not_already_dirty);
4336   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
4337   // case, harmless if not.
4338   masm.delayed()->add(O0, O1, O3);
4339 
4340   // We didn't take the branch, so we're already dirty: return.
4341   // Use return-from-leaf
4342   masm.retl();
4343   masm.delayed()->nop();
4344 
4345   // Not dirty.
4346   masm.bind(not_already_dirty);
4347   // First, dirty it.
4348   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4349   int dirty_card_q_index_byte_offset =
4350     in_bytes(JavaThread::dirty_card_queue_offset() +
4351              PtrQueue::byte_offset_of_index());
4352   int dirty_card_q_buf_byte_offset =
4353     in_bytes(JavaThread::dirty_card_queue_offset() +
4354              PtrQueue::byte_offset_of_buf());
4355   masm.bind(restart);
4356   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4357 
4358   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
4359                       L0, refill);
4360   // If the branch is taken, no harm in executing this in the delay slot.
4361   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4362   masm.sub(L0, oopSize, L0);
4363 
4364   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
4365   // Use return-from-leaf
4366   masm.retl();
4367   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4368 
4369   masm.bind(refill);
4370   address handle_zero =
4371     CAST_FROM_FN_PTR(address,
4372                      &DirtyCardQueueSet::handle_zero_index_for_thread);
4373   // This should be rare enough that we can afford to save all the
4374   // scratch registers that the calling context might be using.
4375   masm.mov(G1_scratch, L3);
4376   masm.mov(G3_scratch, L5);
4377   // We need the value of O3 above (for the write into the buffer), so we
4378   // save and restore it.
4379   masm.mov(O3, L6);
4380   // Since the call will overwrite O7, we save and restore that, as well.
4381   masm.mov(O7, L4);
4382 
4383   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4384   masm.mov(L3, G1_scratch);
4385   masm.mov(L5, G3_scratch);
4386   masm.mov(L6, O3);
4387   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4388   masm.delayed()->mov(L4, O7);
4389 
4390   dirty_card_log_enqueue = start;
4391   dirty_card_log_enqueue_end = masm.pc();
4392   // XXX Should have a guarantee here about not going off the end!
4393   // Does it already do so?  Do an experiment...
4394 }
4395 
4396 static inline void
4397 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4398   if (dirty_card_log_enqueue == 0) {
4399     generate_dirty_card_log_enqueue(byte_map_base);
4400     assert(dirty_card_log_enqueue != 0, "postcondition.");
4401     if (G1SATBPrintStubs) {
4402       tty->print_cr("Generated dirty_card enqueue:");
4403       Disassembler::decode((u_char*)dirty_card_log_enqueue,
4404                            dirty_card_log_enqueue_end,
4405                            tty);
4406     }
4407   }
4408 }
4409 
4410 
4411 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4412 
4413   Label filtered;
4414   MacroAssembler* post_filter_masm = this;
4415 
4416   if (new_val == G0) return;
4417   if (G1DisablePostBarrier) return;
4418 
4419   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4420   assert(bs->kind() == BarrierSet::G1SATBCT ||
4421          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4422   if (G1RSBarrierRegionFilter) {
4423     xor3(store_addr, new_val, tmp);
4424 #ifdef _LP64
4425     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4426 #else
4427     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4428 #endif
4429     if (G1PrintCTFilterStats) {
4430       guarantee(tmp->is_global(), "Or stats won't work...");
4431       // This is a sleazy hack: I'm temporarily hijacking G2, which I
4432       // promise to restore.
4433       mov(new_val, G2);
4434       save_frame(0);
4435       mov(tmp, O0);
4436       mov(G2, O1);
4437       // Save G-regs that target may use.
4438       mov(G1, L1);
4439       mov(G2, L2);
4440       mov(G3, L3);
4441       mov(G4, L4);
4442       mov(G5, L5);
4443       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
4444       delayed()->nop();
4445       mov(O0, G2);
4446       // Restore G-regs that target may have used.
4447       mov(L1, G1);
4448       mov(L3, G3);
4449       mov(L4, G4);
4450       mov(L5, G5);
4451       restore(G0, G0, G0);
4452     }
4453     // XXX Should I predict this taken or not?  Does it mattern?
4454     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4455     delayed()->nop();
4456   }
4457 
4458   // If the "store_addr" register is an "in" or "local" register, move it to
4459   // a scratch reg so we can pass it as an argument.
4460   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4461   // Pick a scratch register different from "tmp".
4462   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4463   // Make sure we use up the delay slot!
4464   if (use_scr) {
4465     post_filter_masm->mov(store_addr, scr);
4466   } else {
4467     post_filter_masm->nop();
4468   }
4469   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4470   save_frame(0);
4471   call(dirty_card_log_enqueue);
4472   if (use_scr) {
4473     delayed()->mov(scr, O0);
4474   } else {
4475     delayed()->mov(store_addr->after_save(), O0);
4476   }
4477   restore();
4478 
4479   bind(filtered);
4480 
4481 }
4482 
4483 #endif  // SERIALGC
4484 ///////////////////////////////////////////////////////////////////////////////////
4485 
4486 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4487   // If we're writing constant NULL, we can skip the write barrier.
4488   if (new_val == G0) return;
4489   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4490   assert(bs->kind() == BarrierSet::CardTableModRef ||
4491          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4492   card_table_write(bs->byte_map_base, tmp, store_addr);
4493 }
4494 
4495 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4496   // The number of bytes in this code is used by
4497   // MachCallDynamicJavaNode::ret_addr_offset()
4498   // if this changes, change that.
4499   if (UseCompressedOops) {
4500     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4501     decode_heap_oop_not_null(klass);
4502   } else {
4503     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4504   }
4505 }
4506 
4507 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4508   if (UseCompressedOops) {
4509     assert(dst_oop != klass, "not enough registers");
4510     encode_heap_oop_not_null(klass);
4511     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4512   } else {
4513     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4514   }
4515 }
4516 
4517 void MacroAssembler::store_klass_gap(Register s, Register d) {
4518   if (UseCompressedOops) {
4519     assert(s != d, "not enough registers");
4520     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4521   }
4522 }
4523 
4524 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4525   if (UseCompressedOops) {
4526     lduw(s, d);
4527     decode_heap_oop(d);
4528   } else {
4529     ld_ptr(s, d);
4530   }
4531 }
4532 
4533 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4534    if (UseCompressedOops) {
4535     lduw(s1, s2, d);
4536     decode_heap_oop(d, d);
4537   } else {
4538     ld_ptr(s1, s2, d);
4539   }
4540 }
4541 
4542 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4543    if (UseCompressedOops) {
4544     lduw(s1, simm13a, d);
4545     decode_heap_oop(d, d);
4546   } else {
4547     ld_ptr(s1, simm13a, d);
4548   }
4549 }
4550 
4551 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4552   if (UseCompressedOops) {
4553     assert(s1 != d && s2 != d, "not enough registers");
4554     encode_heap_oop(d);
4555     st(d, s1, s2);
4556   } else {
4557     st_ptr(d, s1, s2);
4558   }
4559 }
4560 
4561 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4562   if (UseCompressedOops) {
4563     assert(s1 != d, "not enough registers");
4564     encode_heap_oop(d);
4565     st(d, s1, simm13a);
4566   } else {
4567     st_ptr(d, s1, simm13a);
4568   }
4569 }
4570 
4571 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4572   if (UseCompressedOops) {
4573     assert(a.base() != d, "not enough registers");
4574     encode_heap_oop(d);
4575     st(d, a, offset);
4576   } else {
4577     st_ptr(d, a, offset);
4578   }
4579 }
4580 
4581 
4582 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4583   assert (UseCompressedOops, "must be compressed");
4584   assert (Universe::heap() != NULL, "java heap should be initialized");
4585   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4586   verify_oop(src);
4587   if (Universe::narrow_oop_base() == NULL) {
4588     srlx(src, LogMinObjAlignmentInBytes, dst);
4589     return;
4590   }
4591   Label done;
4592   if (src == dst) {
4593     // optimize for frequent case src == dst
4594     bpr(rc_nz, true, Assembler::pt, src, done);
4595     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4596     bind(done);
4597     srlx(src, LogMinObjAlignmentInBytes, dst);
4598   } else {
4599     bpr(rc_z, false, Assembler::pn, src, done);
4600     delayed() -> mov(G0, dst);
4601     // could be moved before branch, and annulate delay,
4602     // but may add some unneeded work decoding null
4603     sub(src, G6_heapbase, dst);
4604     srlx(dst, LogMinObjAlignmentInBytes, dst);
4605     bind(done);
4606   }
4607 }
4608 
4609 
4610 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4611   assert (UseCompressedOops, "must be compressed");
4612   assert (Universe::heap() != NULL, "java heap should be initialized");
4613   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4614   verify_oop(r);
4615   if (Universe::narrow_oop_base() != NULL)
4616     sub(r, G6_heapbase, r);
4617   srlx(r, LogMinObjAlignmentInBytes, r);
4618 }
4619 
4620 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4621   assert (UseCompressedOops, "must be compressed");
4622   assert (Universe::heap() != NULL, "java heap should be initialized");
4623   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4624   verify_oop(src);
4625   if (Universe::narrow_oop_base() == NULL) {
4626     srlx(src, LogMinObjAlignmentInBytes, dst);
4627   } else {
4628     sub(src, G6_heapbase, dst);
4629     srlx(dst, LogMinObjAlignmentInBytes, dst);
4630   }
4631 }
4632 
4633 // Same algorithm as oops.inline.hpp decode_heap_oop.
4634 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4635   assert (UseCompressedOops, "must be compressed");
4636   assert (Universe::heap() != NULL, "java heap should be initialized");
4637   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4638   sllx(src, LogMinObjAlignmentInBytes, dst);
4639   if (Universe::narrow_oop_base() != NULL) {
4640     Label done;
4641     bpr(rc_nz, true, Assembler::pt, dst, done);
4642     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4643     bind(done);
4644   }
4645   verify_oop(dst);
4646 }
4647 
4648 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4649   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4650   // pd_code_size_limit.
4651   // Also do not verify_oop as this is called by verify_oop.
4652   assert (UseCompressedOops, "must be compressed");
4653   assert (Universe::heap() != NULL, "java heap should be initialized");
4654   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4655   sllx(r, LogMinObjAlignmentInBytes, r);
4656   if (Universe::narrow_oop_base() != NULL)
4657     add(r, G6_heapbase, r);
4658 }
4659 
4660 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4661   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4662   // pd_code_size_limit.
4663   // Also do not verify_oop as this is called by verify_oop.
4664   assert (UseCompressedOops, "must be compressed");
4665   assert (Universe::heap() != NULL, "java heap should be initialized");
4666   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4667   sllx(src, LogMinObjAlignmentInBytes, dst);
4668   if (Universe::narrow_oop_base() != NULL)
4669     add(dst, G6_heapbase, dst);
4670 }
4671 
4672 void MacroAssembler::reinit_heapbase() {
4673   if (UseCompressedOops) {
4674     // call indirectly to solve generation ordering problem
4675     AddressLiteral base(Universe::narrow_oop_base_addr());
4676     load_ptr_contents(base, G6_heapbase);
4677   }
4678 }
4679 
4680 // Compare char[] arrays aligned to 4 bytes.
4681 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4682                                         Register limit, Register result,
4683                                         Register chr1, Register chr2, Label& Ldone) {
4684   Label Lvector, Lloop;
4685   assert(chr1 == result, "should be the same");
4686 
4687   // Note: limit contains number of bytes (2*char_elements) != 0.
4688   andcc(limit, 0x2, chr1); // trailing character ?
4689   br(Assembler::zero, false, Assembler::pt, Lvector);
4690   delayed()->nop();
4691 
4692   // compare the trailing char
4693   sub(limit, sizeof(jchar), limit);
4694   lduh(ary1, limit, chr1);
4695   lduh(ary2, limit, chr2);
4696   cmp(chr1, chr2);
4697   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4698   delayed()->mov(G0, result);     // not equal
4699 
4700   // only one char ?
4701   br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
4702   delayed()->add(G0, 1, result); // zero-length arrays are equal
4703 
4704   // word by word compare, dont't need alignment check
4705   bind(Lvector);
4706   // Shift ary1 and ary2 to the end of the arrays, negate limit
4707   add(ary1, limit, ary1);
4708   add(ary2, limit, ary2);
4709   neg(limit, limit);
4710 
4711   lduw(ary1, limit, chr1);
4712   bind(Lloop);
4713   lduw(ary2, limit, chr2);
4714   cmp(chr1, chr2);
4715   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4716   delayed()->mov(G0, result);     // not equal
4717   inccc(limit, 2*sizeof(jchar));
4718   // annul LDUW if branch is not taken to prevent access past end of array
4719   br(Assembler::notZero, true, Assembler::pt, Lloop);
4720   delayed()->lduw(ary1, limit, chr1); // hoisted
4721 
4722   // Caller should set it:
4723   // add(G0, 1, result); // equals
4724 }
4725