1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_matcher.cpp.incl"
  27 
  28 OptoReg::Name OptoReg::c_frame_pointer;
  29 
  30 
  31 
  32 const int Matcher::base2reg[Type::lastype] = {
  33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  36   0, 0/*abio*/,
  37   Op_RegP /* Return address */, 0, /* the memories */
  38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  39   0  /*bottom*/
  40 };
  41 
  42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  44 RegMask Matcher::STACK_ONLY_mask;
  45 RegMask Matcher::c_frame_ptr_mask;
  46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  48 
  49 //---------------------------Matcher-------------------------------------------
  50 Matcher::Matcher( Node_List &proj_list ) :
  51   PhaseTransform( Phase::Ins_Select ),
  52 #ifdef ASSERT
  53   _old2new_map(C->comp_arena()),
  54   _new2old_map(C->comp_arena()),
  55 #endif
  56   _shared_nodes(C->comp_arena()),
  57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  58   _swallowed(swallowed),
  59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  61   _must_clone(must_clone), _proj_list(proj_list),
  62   _register_save_policy(register_save_policy),
  63   _c_reg_save_policy(c_reg_save_policy),
  64   _register_save_type(register_save_type),
  65   _ruleName(ruleName),
  66   _allocation_started(false),
  67   _states_arena(Chunk::medium_size),
  68   _visited(&_states_arena),
  69   _shared(&_states_arena),
  70   _dontcare(&_states_arena) {
  71   C->set_matcher(this);
  72 
  73   idealreg2spillmask[Op_RegI] = NULL;
  74   idealreg2spillmask[Op_RegN] = NULL;
  75   idealreg2spillmask[Op_RegL] = NULL;
  76   idealreg2spillmask[Op_RegF] = NULL;
  77   idealreg2spillmask[Op_RegD] = NULL;
  78   idealreg2spillmask[Op_RegP] = NULL;
  79 
  80   idealreg2debugmask[Op_RegI] = NULL;
  81   idealreg2debugmask[Op_RegN] = NULL;
  82   idealreg2debugmask[Op_RegL] = NULL;
  83   idealreg2debugmask[Op_RegF] = NULL;
  84   idealreg2debugmask[Op_RegD] = NULL;
  85   idealreg2debugmask[Op_RegP] = NULL;
  86   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
  87 }
  88 
  89 //------------------------------warp_incoming_stk_arg------------------------
  90 // This warps a VMReg into an OptoReg::Name
  91 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
  92   OptoReg::Name warped;
  93   if( reg->is_stack() ) {  // Stack slot argument?
  94     warped = OptoReg::add(_old_SP, reg->reg2stack() );
  95     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
  96     if( warped >= _in_arg_limit )
  97       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
  98     if (!RegMask::can_represent(warped)) {
  99       // the compiler cannot represent this method's calling sequence
 100       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 101       return OptoReg::Bad;
 102     }
 103     return warped;
 104   }
 105   return OptoReg::as_OptoReg(reg);
 106 }
 107 
 108 //---------------------------compute_old_SP------------------------------------
 109 OptoReg::Name Compile::compute_old_SP() {
 110   int fixed    = fixed_slots();
 111   int preserve = in_preserve_stack_slots();
 112   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 113 }
 114 
 115 
 116 
 117 #ifdef ASSERT
 118 void Matcher::verify_new_nodes_only(Node* xroot) {
 119   // Make sure that the new graph only references new nodes
 120   ResourceMark rm;
 121   Unique_Node_List worklist;
 122   VectorSet visited(Thread::current()->resource_area());
 123   worklist.push(xroot);
 124   while (worklist.size() > 0) {
 125     Node* n = worklist.pop();
 126     visited <<= n->_idx;
 127     assert(C->node_arena()->contains(n), "dead node");
 128     for (uint j = 0; j < n->req(); j++) {
 129       Node* in = n->in(j);
 130       if (in != NULL) {
 131         assert(C->node_arena()->contains(in), "dead node");
 132         if (!visited.test(in->_idx)) {
 133           worklist.push(in);
 134         }
 135       }
 136     }
 137   }
 138 }
 139 #endif
 140 
 141 
 142 //---------------------------match---------------------------------------------
 143 void Matcher::match( ) {
 144   if( MaxLabelRootDepth < 100 ) { // Too small?
 145     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 146     MaxLabelRootDepth = 100;
 147   }
 148   // One-time initialization of some register masks.
 149   init_spill_mask( C->root()->in(1) );
 150   _return_addr_mask = return_addr();
 151 #ifdef _LP64
 152   // Pointers take 2 slots in 64-bit land
 153   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 154 #endif
 155 
 156   // Map a Java-signature return type into return register-value
 157   // machine registers for 0, 1 and 2 returned values.
 158   const TypeTuple *range = C->tf()->range();
 159   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 160     // Get ideal-register return type
 161     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 162     // Get machine return register
 163     uint sop = C->start()->Opcode();
 164     OptoRegPair regs = return_value(ireg, false);
 165 
 166     // And mask for same
 167     _return_value_mask = RegMask(regs.first());
 168     if( OptoReg::is_valid(regs.second()) )
 169       _return_value_mask.Insert(regs.second());
 170   }
 171 
 172   // ---------------
 173   // Frame Layout
 174 
 175   // Need the method signature to determine the incoming argument types,
 176   // because the types determine which registers the incoming arguments are
 177   // in, and this affects the matched code.
 178   const TypeTuple *domain = C->tf()->domain();
 179   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 180   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 181   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 182   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 183   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 184   uint i;
 185   for( i = 0; i<argcnt; i++ ) {
 186     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 187   }
 188 
 189   // Pass array of ideal registers and length to USER code (from the AD file)
 190   // that will convert this to an array of register numbers.
 191   const StartNode *start = C->start();
 192   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 193 #ifdef ASSERT
 194   // Sanity check users' calling convention.  Real handy while trying to
 195   // get the initial port correct.
 196   { for (uint i = 0; i<argcnt; i++) {
 197       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 198         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 199         _parm_regs[i].set_bad();
 200         continue;
 201       }
 202       VMReg parm_reg = vm_parm_regs[i].first();
 203       assert(parm_reg->is_valid(), "invalid arg?");
 204       if (parm_reg->is_reg()) {
 205         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 206         assert(can_be_java_arg(opto_parm_reg) ||
 207                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 208                opto_parm_reg == inline_cache_reg(),
 209                "parameters in register must be preserved by runtime stubs");
 210       }
 211       for (uint j = 0; j < i; j++) {
 212         assert(parm_reg != vm_parm_regs[j].first(),
 213                "calling conv. must produce distinct regs");
 214       }
 215     }
 216   }
 217 #endif
 218 
 219   // Do some initial frame layout.
 220 
 221   // Compute the old incoming SP (may be called FP) as
 222   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 223   _old_SP = C->compute_old_SP();
 224   assert( is_even(_old_SP), "must be even" );
 225 
 226   // Compute highest incoming stack argument as
 227   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 228   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 229   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 230   for( i = 0; i < argcnt; i++ ) {
 231     // Permit args to have no register
 232     _calling_convention_mask[i].Clear();
 233     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 234       continue;
 235     }
 236     // calling_convention returns stack arguments as a count of
 237     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 238     // the allocators point of view, taking into account all the
 239     // preserve area, locks & pad2.
 240 
 241     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 242     if( OptoReg::is_valid(reg1))
 243       _calling_convention_mask[i].Insert(reg1);
 244 
 245     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 246     if( OptoReg::is_valid(reg2))
 247       _calling_convention_mask[i].Insert(reg2);
 248 
 249     // Saved biased stack-slot register number
 250     _parm_regs[i].set_pair(reg2, reg1);
 251   }
 252 
 253   // Finally, make sure the incoming arguments take up an even number of
 254   // words, in case the arguments or locals need to contain doubleword stack
 255   // slots.  The rest of the system assumes that stack slot pairs (in
 256   // particular, in the spill area) which look aligned will in fact be
 257   // aligned relative to the stack pointer in the target machine.  Double
 258   // stack slots will always be allocated aligned.
 259   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 260 
 261   // Compute highest outgoing stack argument as
 262   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 263   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 264   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 265 
 266   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 267     // the compiler cannot represent this method's calling sequence
 268     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 269   }
 270 
 271   if (C->failing())  return;  // bailed out on incoming arg failure
 272 
 273   // ---------------
 274   // Collect roots of matcher trees.  Every node for which
 275   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 276   // can be a valid interior of some tree.
 277   find_shared( C->root() );
 278   find_shared( C->top() );
 279 
 280   C->print_method("Before Matching");
 281 
 282   // Create new ideal node ConP #NULL even if it does exist in old space
 283   // to avoid false sharing if the corresponding mach node is not used.
 284   // The corresponding mach node is only used in rare cases for derived
 285   // pointers.
 286   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 287 
 288   // Swap out to old-space; emptying new-space
 289   Arena *old = C->node_arena()->move_contents(C->old_arena());
 290 
 291   // Save debug and profile information for nodes in old space:
 292   _old_node_note_array = C->node_note_array();
 293   if (_old_node_note_array != NULL) {
 294     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 295                            (C->comp_arena(), _old_node_note_array->length(),
 296                             0, NULL));
 297   }
 298 
 299   // Pre-size the new_node table to avoid the need for range checks.
 300   grow_new_node_array(C->unique());
 301 
 302   // Reset node counter so MachNodes start with _idx at 0
 303   int nodes = C->unique(); // save value
 304   C->set_unique(0);
 305 
 306   // Recursively match trees from old space into new space.
 307   // Correct leaves of new-space Nodes; they point to old-space.
 308   _visited.Clear();             // Clear visit bits for xform call
 309   C->set_cached_top_node(xform( C->top(), nodes ));
 310   if (!C->failing()) {
 311     Node* xroot =        xform( C->root(), 1 );
 312     if (xroot == NULL) {
 313       Matcher::soft_match_failure();  // recursive matching process failed
 314       C->record_method_not_compilable("instruction match failed");
 315     } else {
 316       // During matching shared constants were attached to C->root()
 317       // because xroot wasn't available yet, so transfer the uses to
 318       // the xroot.
 319       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 320         Node* n = C->root()->fast_out(j);
 321         if (C->node_arena()->contains(n)) {
 322           assert(n->in(0) == C->root(), "should be control user");
 323           n->set_req(0, xroot);
 324           --j;
 325           --jmax;
 326         }
 327       }
 328 
 329       // Generate new mach node for ConP #NULL
 330       assert(new_ideal_null != NULL, "sanity");
 331       _mach_null = match_tree(new_ideal_null);
 332       // Don't set control, it will confuse GCM since there are no uses.
 333       // The control will be set when this node is used first time
 334       // in find_base_for_derived().
 335       assert(_mach_null != NULL, "");
 336 
 337       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 338 
 339 #ifdef ASSERT
 340       verify_new_nodes_only(xroot);
 341 #endif
 342     }
 343   }
 344   if (C->top() == NULL || C->root() == NULL) {
 345     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 346   }
 347   if (C->failing()) {
 348     // delete old;
 349     old->destruct_contents();
 350     return;
 351   }
 352   assert( C->top(), "" );
 353   assert( C->root(), "" );
 354   validate_null_checks();
 355 
 356   // Now smoke old-space
 357   NOT_DEBUG( old->destruct_contents() );
 358 
 359   // ------------------------
 360   // Set up save-on-entry registers
 361   Fixup_Save_On_Entry( );
 362 }
 363 
 364 
 365 //------------------------------Fixup_Save_On_Entry----------------------------
 366 // The stated purpose of this routine is to take care of save-on-entry
 367 // registers.  However, the overall goal of the Match phase is to convert into
 368 // machine-specific instructions which have RegMasks to guide allocation.
 369 // So what this procedure really does is put a valid RegMask on each input
 370 // to the machine-specific variations of all Return, TailCall and Halt
 371 // instructions.  It also adds edgs to define the save-on-entry values (and of
 372 // course gives them a mask).
 373 
 374 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 375   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 376   // Do all the pre-defined register masks
 377   rms[TypeFunc::Control  ] = RegMask::Empty;
 378   rms[TypeFunc::I_O      ] = RegMask::Empty;
 379   rms[TypeFunc::Memory   ] = RegMask::Empty;
 380   rms[TypeFunc::ReturnAdr] = ret_adr;
 381   rms[TypeFunc::FramePtr ] = fp;
 382   return rms;
 383 }
 384 
 385 //---------------------------init_first_stack_mask-----------------------------
 386 // Create the initial stack mask used by values spilling to the stack.
 387 // Disallow any debug info in outgoing argument areas by setting the
 388 // initial mask accordingly.
 389 void Matcher::init_first_stack_mask() {
 390 
 391   // Allocate storage for spill masks as masks for the appropriate load type.
 392   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
 393   idealreg2spillmask[Op_RegN] = &rms[0];
 394   idealreg2spillmask[Op_RegI] = &rms[1];
 395   idealreg2spillmask[Op_RegL] = &rms[2];
 396   idealreg2spillmask[Op_RegF] = &rms[3];
 397   idealreg2spillmask[Op_RegD] = &rms[4];
 398   idealreg2spillmask[Op_RegP] = &rms[5];
 399   idealreg2debugmask[Op_RegN] = &rms[6];
 400   idealreg2debugmask[Op_RegI] = &rms[7];
 401   idealreg2debugmask[Op_RegL] = &rms[8];
 402   idealreg2debugmask[Op_RegF] = &rms[9];
 403   idealreg2debugmask[Op_RegD] = &rms[10];
 404   idealreg2debugmask[Op_RegP] = &rms[11];
 405 
 406   OptoReg::Name i;
 407 
 408   // At first, start with the empty mask
 409   C->FIRST_STACK_mask().Clear();
 410 
 411   // Add in the incoming argument area
 412   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 413   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 414     C->FIRST_STACK_mask().Insert(i);
 415 
 416   // Add in all bits past the outgoing argument area
 417   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 418             "must be able to represent all call arguments in reg mask");
 419   init = _out_arg_limit;
 420   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 421     C->FIRST_STACK_mask().Insert(i);
 422 
 423   // Finally, set the "infinite stack" bit.
 424   C->FIRST_STACK_mask().set_AllStack();
 425 
 426   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 427 #ifdef _LP64
 428   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 429    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 430 #endif
 431   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 432    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 433   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 434    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 435   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 436    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 437   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 438    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 439   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 440    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 441 
 442   // Make up debug masks.  Any spill slot plus callee-save registers.
 443   // Caller-save registers are assumed to be trashable by the various
 444   // inline-cache fixup routines.
 445   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 446   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 447   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 448   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 449   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 450   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 451 
 452   // Prevent stub compilations from attempting to reference
 453   // callee-saved registers from debug info
 454   bool exclude_soe = !Compile::current()->is_method_compilation();
 455 
 456   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 457     // registers the caller has to save do not work
 458     if( _register_save_policy[i] == 'C' ||
 459         _register_save_policy[i] == 'A' ||
 460         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 461       idealreg2debugmask[Op_RegN]->Remove(i);
 462       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
 463       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
 464       idealreg2debugmask[Op_RegF]->Remove(i); // masks
 465       idealreg2debugmask[Op_RegD]->Remove(i);
 466       idealreg2debugmask[Op_RegP]->Remove(i);
 467     }
 468   }
 469 }
 470 
 471 //---------------------------is_save_on_entry----------------------------------
 472 bool Matcher::is_save_on_entry( int reg ) {
 473   return
 474     _register_save_policy[reg] == 'E' ||
 475     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 476     // Also save argument registers in the trampolining stubs
 477     (C->save_argument_registers() && is_spillable_arg(reg));
 478 }
 479 
 480 //---------------------------Fixup_Save_On_Entry-------------------------------
 481 void Matcher::Fixup_Save_On_Entry( ) {
 482   init_first_stack_mask();
 483 
 484   Node *root = C->root();       // Short name for root
 485   // Count number of save-on-entry registers.
 486   uint soe_cnt = number_of_saved_registers();
 487   uint i;
 488 
 489   // Find the procedure Start Node
 490   StartNode *start = C->start();
 491   assert( start, "Expect a start node" );
 492 
 493   // Save argument registers in the trampolining stubs
 494   if( C->save_argument_registers() )
 495     for( i = 0; i < _last_Mach_Reg; i++ )
 496       if( is_spillable_arg(i) )
 497         soe_cnt++;
 498 
 499   // Input RegMask array shared by all Returns.
 500   // The type for doubles and longs has a count of 2, but
 501   // there is only 1 returned value
 502   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 503   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 504   // Returns have 0 or 1 returned values depending on call signature.
 505   // Return register is specified by return_value in the AD file.
 506   if (ret_edge_cnt > TypeFunc::Parms)
 507     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 508 
 509   // Input RegMask array shared by all Rethrows.
 510   uint reth_edge_cnt = TypeFunc::Parms+1;
 511   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 512   // Rethrow takes exception oop only, but in the argument 0 slot.
 513   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 514 #ifdef _LP64
 515   // Need two slots for ptrs in 64-bit land
 516   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 517 #endif
 518 
 519   // Input RegMask array shared by all TailCalls
 520   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 521   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 522 
 523   // Input RegMask array shared by all TailJumps
 524   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 525   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 526 
 527   // TailCalls have 2 returned values (target & moop), whose masks come
 528   // from the usual MachNode/MachOper mechanism.  Find a sample
 529   // TailCall to extract these masks and put the correct masks into
 530   // the tail_call_rms array.
 531   for( i=1; i < root->req(); i++ ) {
 532     MachReturnNode *m = root->in(i)->as_MachReturn();
 533     if( m->ideal_Opcode() == Op_TailCall ) {
 534       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 535       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 536       break;
 537     }
 538   }
 539 
 540   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 541   // from the usual MachNode/MachOper mechanism.  Find a sample
 542   // TailJump to extract these masks and put the correct masks into
 543   // the tail_jump_rms array.
 544   for( i=1; i < root->req(); i++ ) {
 545     MachReturnNode *m = root->in(i)->as_MachReturn();
 546     if( m->ideal_Opcode() == Op_TailJump ) {
 547       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 548       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 549       break;
 550     }
 551   }
 552 
 553   // Input RegMask array shared by all Halts
 554   uint halt_edge_cnt = TypeFunc::Parms;
 555   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 556 
 557   // Capture the return input masks into each exit flavor
 558   for( i=1; i < root->req(); i++ ) {
 559     MachReturnNode *exit = root->in(i)->as_MachReturn();
 560     switch( exit->ideal_Opcode() ) {
 561       case Op_Return   : exit->_in_rms = ret_rms;  break;
 562       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 563       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 564       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 565       case Op_Halt     : exit->_in_rms = halt_rms; break;
 566       default          : ShouldNotReachHere();
 567     }
 568   }
 569 
 570   // Next unused projection number from Start.
 571   int proj_cnt = C->tf()->domain()->cnt();
 572 
 573   // Do all the save-on-entry registers.  Make projections from Start for
 574   // them, and give them a use at the exit points.  To the allocator, they
 575   // look like incoming register arguments.
 576   for( i = 0; i < _last_Mach_Reg; i++ ) {
 577     if( is_save_on_entry(i) ) {
 578 
 579       // Add the save-on-entry to the mask array
 580       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 581       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 582       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 583       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 584       // Halts need the SOE registers, but only in the stack as debug info.
 585       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 586       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 587 
 588       Node *mproj;
 589 
 590       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 591       // into a single RegD.
 592       if( (i&1) == 0 &&
 593           _register_save_type[i  ] == Op_RegF &&
 594           _register_save_type[i+1] == Op_RegF &&
 595           is_save_on_entry(i+1) ) {
 596         // Add other bit for double
 597         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 598         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 599         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 600         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 601         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 602         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 603         proj_cnt += 2;          // Skip 2 for doubles
 604       }
 605       else if( (i&1) == 1 &&    // Else check for high half of double
 606                _register_save_type[i-1] == Op_RegF &&
 607                _register_save_type[i  ] == Op_RegF &&
 608                is_save_on_entry(i-1) ) {
 609         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 610         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 611         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 612         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 613         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 614         mproj = C->top();
 615       }
 616       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 617       // into a single RegL.
 618       else if( (i&1) == 0 &&
 619           _register_save_type[i  ] == Op_RegI &&
 620           _register_save_type[i+1] == Op_RegI &&
 621         is_save_on_entry(i+1) ) {
 622         // Add other bit for long
 623         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 624         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 625         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 626         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 627         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 628         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 629         proj_cnt += 2;          // Skip 2 for longs
 630       }
 631       else if( (i&1) == 1 &&    // Else check for high half of long
 632                _register_save_type[i-1] == Op_RegI &&
 633                _register_save_type[i  ] == Op_RegI &&
 634                is_save_on_entry(i-1) ) {
 635         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 636         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 637         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 638         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 639         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 640         mproj = C->top();
 641       } else {
 642         // Make a projection for it off the Start
 643         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 644       }
 645 
 646       ret_edge_cnt ++;
 647       reth_edge_cnt ++;
 648       tail_call_edge_cnt ++;
 649       tail_jump_edge_cnt ++;
 650       halt_edge_cnt ++;
 651 
 652       // Add a use of the SOE register to all exit paths
 653       for( uint j=1; j < root->req(); j++ )
 654         root->in(j)->add_req(mproj);
 655     } // End of if a save-on-entry register
 656   } // End of for all machine registers
 657 }
 658 
 659 //------------------------------init_spill_mask--------------------------------
 660 void Matcher::init_spill_mask( Node *ret ) {
 661   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 662 
 663   OptoReg::c_frame_pointer = c_frame_pointer();
 664   c_frame_ptr_mask = c_frame_pointer();
 665 #ifdef _LP64
 666   // pointers are twice as big
 667   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 668 #endif
 669 
 670   // Start at OptoReg::stack0()
 671   STACK_ONLY_mask.Clear();
 672   OptoReg::Name init = OptoReg::stack2reg(0);
 673   // STACK_ONLY_mask is all stack bits
 674   OptoReg::Name i;
 675   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 676     STACK_ONLY_mask.Insert(i);
 677   // Also set the "infinite stack" bit.
 678   STACK_ONLY_mask.set_AllStack();
 679 
 680   // Copy the register names over into the shared world
 681   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 682     // SharedInfo::regName[i] = regName[i];
 683     // Handy RegMasks per machine register
 684     mreg2regmask[i].Insert(i);
 685   }
 686 
 687   // Grab the Frame Pointer
 688   Node *fp  = ret->in(TypeFunc::FramePtr);
 689   Node *mem = ret->in(TypeFunc::Memory);
 690   const TypePtr* atp = TypePtr::BOTTOM;
 691   // Share frame pointer while making spill ops
 692   set_shared(fp);
 693 
 694   // Compute generic short-offset Loads
 695 #ifdef _LP64
 696   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 697 #endif
 698   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 699   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 700   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 701   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 702   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 703   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 704          spillD != NULL && spillP != NULL, "");
 705 
 706   // Get the ADLC notion of the right regmask, for each basic type.
 707 #ifdef _LP64
 708   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 709 #endif
 710   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 711   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 712   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 713   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 714   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 715 }
 716 
 717 #ifdef ASSERT
 718 static void match_alias_type(Compile* C, Node* n, Node* m) {
 719   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 720   const TypePtr* nat = n->adr_type();
 721   const TypePtr* mat = m->adr_type();
 722   int nidx = C->get_alias_index(nat);
 723   int midx = C->get_alias_index(mat);
 724   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 725   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 726     for (uint i = 1; i < n->req(); i++) {
 727       Node* n1 = n->in(i);
 728       const TypePtr* n1at = n1->adr_type();
 729       if (n1at != NULL) {
 730         nat = n1at;
 731         nidx = C->get_alias_index(n1at);
 732       }
 733     }
 734   }
 735   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 736   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 737     switch (n->Opcode()) {
 738     case Op_PrefetchRead:
 739     case Op_PrefetchWrite:
 740       nidx = Compile::AliasIdxRaw;
 741       nat = TypeRawPtr::BOTTOM;
 742       break;
 743     }
 744   }
 745   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 746     switch (n->Opcode()) {
 747     case Op_ClearArray:
 748       midx = Compile::AliasIdxRaw;
 749       mat = TypeRawPtr::BOTTOM;
 750       break;
 751     }
 752   }
 753   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 754     switch (n->Opcode()) {
 755     case Op_Return:
 756     case Op_Rethrow:
 757     case Op_Halt:
 758     case Op_TailCall:
 759     case Op_TailJump:
 760       nidx = Compile::AliasIdxBot;
 761       nat = TypePtr::BOTTOM;
 762       break;
 763     }
 764   }
 765   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 766     switch (n->Opcode()) {
 767     case Op_StrComp:
 768     case Op_StrEquals:
 769     case Op_StrIndexOf:
 770     case Op_AryEq:
 771     case Op_MemBarVolatile:
 772     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 773       nidx = Compile::AliasIdxTop;
 774       nat = NULL;
 775       break;
 776     }
 777   }
 778   if (nidx != midx) {
 779     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 780       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 781       n->dump();
 782       m->dump();
 783     }
 784     assert(C->subsume_loads() && C->must_alias(nat, midx),
 785            "must not lose alias info when matching");
 786   }
 787 }
 788 #endif
 789 
 790 
 791 //------------------------------MStack-----------------------------------------
 792 // State and MStack class used in xform() and find_shared() iterative methods.
 793 enum Node_State { Pre_Visit,  // node has to be pre-visited
 794                       Visit,  // visit node
 795                  Post_Visit,  // post-visit node
 796              Alt_Post_Visit   // alternative post-visit path
 797                 };
 798 
 799 class MStack: public Node_Stack {
 800   public:
 801     MStack(int size) : Node_Stack(size) { }
 802 
 803     void push(Node *n, Node_State ns) {
 804       Node_Stack::push(n, (uint)ns);
 805     }
 806     void push(Node *n, Node_State ns, Node *parent, int indx) {
 807       ++_inode_top;
 808       if ((_inode_top + 1) >= _inode_max) grow();
 809       _inode_top->node = parent;
 810       _inode_top->indx = (uint)indx;
 811       ++_inode_top;
 812       _inode_top->node = n;
 813       _inode_top->indx = (uint)ns;
 814     }
 815     Node *parent() {
 816       pop();
 817       return node();
 818     }
 819     Node_State state() const {
 820       return (Node_State)index();
 821     }
 822     void set_state(Node_State ns) {
 823       set_index((uint)ns);
 824     }
 825 };
 826 
 827 
 828 //------------------------------xform------------------------------------------
 829 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 830 // Node in new-space.  Given a new-space Node, recursively walk his children.
 831 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 832 Node *Matcher::xform( Node *n, int max_stack ) {
 833   // Use one stack to keep both: child's node/state and parent's node/index
 834   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 835   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 836 
 837   while (mstack.is_nonempty()) {
 838     n = mstack.node();          // Leave node on stack
 839     Node_State nstate = mstack.state();
 840     if (nstate == Visit) {
 841       mstack.set_state(Post_Visit);
 842       Node *oldn = n;
 843       // Old-space or new-space check
 844       if (!C->node_arena()->contains(n)) {
 845         // Old space!
 846         Node* m;
 847         if (has_new_node(n)) {  // Not yet Label/Reduced
 848           m = new_node(n);
 849         } else {
 850           if (!is_dontcare(n)) { // Matcher can match this guy
 851             // Calls match special.  They match alone with no children.
 852             // Their children, the incoming arguments, match normally.
 853             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 854             if (C->failing())  return NULL;
 855             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 856           } else {                  // Nothing the matcher cares about
 857             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 858               // Convert to machine-dependent projection
 859               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 860 #ifdef ASSERT
 861               _new2old_map.map(m->_idx, n);
 862 #endif
 863               if (m->in(0) != NULL) // m might be top
 864                 collect_null_checks(m, n);
 865             } else {                // Else just a regular 'ol guy
 866               m = n->clone();       // So just clone into new-space
 867 #ifdef ASSERT
 868               _new2old_map.map(m->_idx, n);
 869 #endif
 870               // Def-Use edges will be added incrementally as Uses
 871               // of this node are matched.
 872               assert(m->outcnt() == 0, "no Uses of this clone yet");
 873             }
 874           }
 875 
 876           set_new_node(n, m);       // Map old to new
 877           if (_old_node_note_array != NULL) {
 878             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 879                                                   n->_idx);
 880             C->set_node_notes_at(m->_idx, nn);
 881           }
 882           debug_only(match_alias_type(C, n, m));
 883         }
 884         n = m;    // n is now a new-space node
 885         mstack.set_node(n);
 886       }
 887 
 888       // New space!
 889       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 890 
 891       int i;
 892       // Put precedence edges on stack first (match them last).
 893       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 894         Node *m = oldn->in(i);
 895         if (m == NULL) break;
 896         // set -1 to call add_prec() instead of set_req() during Step1
 897         mstack.push(m, Visit, n, -1);
 898       }
 899 
 900       // For constant debug info, I'd rather have unmatched constants.
 901       int cnt = n->req();
 902       JVMState* jvms = n->jvms();
 903       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 904 
 905       // Now do only debug info.  Clone constants rather than matching.
 906       // Constants are represented directly in the debug info without
 907       // the need for executable machine instructions.
 908       // Monitor boxes are also represented directly.
 909       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 910         Node *m = n->in(i);          // Get input
 911         int op = m->Opcode();
 912         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 913         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 914             op == Op_ConF || op == Op_ConD || op == Op_ConL
 915             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
 916             ) {
 917           m = m->clone();
 918 #ifdef ASSERT
 919           _new2old_map.map(m->_idx, n);
 920 #endif
 921           mstack.push(m, Post_Visit, n, i); // Don't need to visit
 922           mstack.push(m->in(0), Visit, m, 0);
 923         } else {
 924           mstack.push(m, Visit, n, i);
 925         }
 926       }
 927 
 928       // And now walk his children, and convert his inputs to new-space.
 929       for( ; i >= 0; --i ) { // For all normal inputs do
 930         Node *m = n->in(i);  // Get input
 931         if(m != NULL)
 932           mstack.push(m, Visit, n, i);
 933       }
 934 
 935     }
 936     else if (nstate == Post_Visit) {
 937       // Set xformed input
 938       Node *p = mstack.parent();
 939       if (p != NULL) { // root doesn't have parent
 940         int i = (int)mstack.index();
 941         if (i >= 0)
 942           p->set_req(i, n); // required input
 943         else if (i == -1)
 944           p->add_prec(n);   // precedence input
 945         else
 946           ShouldNotReachHere();
 947       }
 948       mstack.pop(); // remove processed node from stack
 949     }
 950     else {
 951       ShouldNotReachHere();
 952     }
 953   } // while (mstack.is_nonempty())
 954   return n; // Return new-space Node
 955 }
 956 
 957 //------------------------------warp_outgoing_stk_arg------------------------
 958 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
 959   // Convert outgoing argument location to a pre-biased stack offset
 960   if (reg->is_stack()) {
 961     OptoReg::Name warped = reg->reg2stack();
 962     // Adjust the stack slot offset to be the register number used
 963     // by the allocator.
 964     warped = OptoReg::add(begin_out_arg_area, warped);
 965     // Keep track of the largest numbered stack slot used for an arg.
 966     // Largest used slot per call-site indicates the amount of stack
 967     // that is killed by the call.
 968     if( warped >= out_arg_limit_per_call )
 969       out_arg_limit_per_call = OptoReg::add(warped,1);
 970     if (!RegMask::can_represent(warped)) {
 971       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
 972       return OptoReg::Bad;
 973     }
 974     return warped;
 975   }
 976   return OptoReg::as_OptoReg(reg);
 977 }
 978 
 979 
 980 //------------------------------match_sfpt-------------------------------------
 981 // Helper function to match call instructions.  Calls match special.
 982 // They match alone with no children.  Their children, the incoming
 983 // arguments, match normally.
 984 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
 985   MachSafePointNode *msfpt = NULL;
 986   MachCallNode      *mcall = NULL;
 987   uint               cnt;
 988   // Split out case for SafePoint vs Call
 989   CallNode *call;
 990   const TypeTuple *domain;
 991   ciMethod*        method = NULL;
 992   if( sfpt->is_Call() ) {
 993     call = sfpt->as_Call();
 994     domain = call->tf()->domain();
 995     cnt = domain->cnt();
 996 
 997     // Match just the call, nothing else
 998     MachNode *m = match_tree(call);
 999     if (C->failing())  return NULL;
1000     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1001 
1002     // Copy data from the Ideal SafePoint to the machine version
1003     mcall = m->as_MachCall();
1004 
1005     mcall->set_tf(         call->tf());
1006     mcall->set_entry_point(call->entry_point());
1007     mcall->set_cnt(        call->cnt());
1008 
1009     if( mcall->is_MachCallJava() ) {
1010       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1011       const CallJavaNode *call_java =  call->as_CallJava();
1012       method = call_java->method();
1013       mcall_java->_method = method;
1014       mcall_java->_bci = call_java->_bci;
1015       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1016       if( mcall_java->is_MachCallStaticJava() )
1017         mcall_java->as_MachCallStaticJava()->_name =
1018          call_java->as_CallStaticJava()->_name;
1019       if( mcall_java->is_MachCallDynamicJava() )
1020         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1021          call_java->as_CallDynamicJava()->_vtable_index;
1022     }
1023     else if( mcall->is_MachCallRuntime() ) {
1024       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1025     }
1026     msfpt = mcall;
1027   }
1028   // This is a non-call safepoint
1029   else {
1030     call = NULL;
1031     domain = NULL;
1032     MachNode *mn = match_tree(sfpt);
1033     if (C->failing())  return NULL;
1034     msfpt = mn->as_MachSafePoint();
1035     cnt = TypeFunc::Parms;
1036   }
1037 
1038   // Advertise the correct memory effects (for anti-dependence computation).
1039   msfpt->set_adr_type(sfpt->adr_type());
1040 
1041   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1042   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1043   // Empty them all.
1044   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1045 
1046   // Do all the pre-defined non-Empty register masks
1047   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1048   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1049 
1050   // Place first outgoing argument can possibly be put.
1051   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1052   assert( is_even(begin_out_arg_area), "" );
1053   // Compute max outgoing register number per call site.
1054   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1055   // Calls to C may hammer extra stack slots above and beyond any arguments.
1056   // These are usually backing store for register arguments for varargs.
1057   if( call != NULL && call->is_CallRuntime() )
1058     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1059 
1060 
1061   // Do the normal argument list (parameters) register masks
1062   int argcnt = cnt - TypeFunc::Parms;
1063   if( argcnt > 0 ) {          // Skip it all if we have no args
1064     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1065     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1066     int i;
1067     for( i = 0; i < argcnt; i++ ) {
1068       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1069     }
1070     // V-call to pick proper calling convention
1071     call->calling_convention( sig_bt, parm_regs, argcnt );
1072 
1073 #ifdef ASSERT
1074     // Sanity check users' calling convention.  Really handy during
1075     // the initial porting effort.  Fairly expensive otherwise.
1076     { for (int i = 0; i<argcnt; i++) {
1077       if( !parm_regs[i].first()->is_valid() &&
1078           !parm_regs[i].second()->is_valid() ) continue;
1079       VMReg reg1 = parm_regs[i].first();
1080       VMReg reg2 = parm_regs[i].second();
1081       for (int j = 0; j < i; j++) {
1082         if( !parm_regs[j].first()->is_valid() &&
1083             !parm_regs[j].second()->is_valid() ) continue;
1084         VMReg reg3 = parm_regs[j].first();
1085         VMReg reg4 = parm_regs[j].second();
1086         if( !reg1->is_valid() ) {
1087           assert( !reg2->is_valid(), "valid halvsies" );
1088         } else if( !reg3->is_valid() ) {
1089           assert( !reg4->is_valid(), "valid halvsies" );
1090         } else {
1091           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1092           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1093           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1094           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1095           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1096           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1097         }
1098       }
1099     }
1100     }
1101 #endif
1102 
1103     // Visit each argument.  Compute its outgoing register mask.
1104     // Return results now can have 2 bits returned.
1105     // Compute max over all outgoing arguments both per call-site
1106     // and over the entire method.
1107     for( i = 0; i < argcnt; i++ ) {
1108       // Address of incoming argument mask to fill in
1109       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1110       if( !parm_regs[i].first()->is_valid() &&
1111           !parm_regs[i].second()->is_valid() ) {
1112         continue;               // Avoid Halves
1113       }
1114       // Grab first register, adjust stack slots and insert in mask.
1115       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1116       if (OptoReg::is_valid(reg1))
1117         rm->Insert( reg1 );
1118       // Grab second register (if any), adjust stack slots and insert in mask.
1119       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1120       if (OptoReg::is_valid(reg2))
1121         rm->Insert( reg2 );
1122     } // End of for all arguments
1123 
1124     // Compute number of stack slots needed to restore stack in case of
1125     // Pascal-style argument popping.
1126     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1127   }
1128 
1129   // Compute the max stack slot killed by any call.  These will not be
1130   // available for debug info, and will be used to adjust FIRST_STACK_mask
1131   // after all call sites have been visited.
1132   if( _out_arg_limit < out_arg_limit_per_call)
1133     _out_arg_limit = out_arg_limit_per_call;
1134 
1135   if (mcall) {
1136     // Kill the outgoing argument area, including any non-argument holes and
1137     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1138     // Since the max-per-method covers the max-per-call-site and debug info
1139     // is excluded on the max-per-method basis, debug info cannot land in
1140     // this killed area.
1141     uint r_cnt = mcall->tf()->range()->cnt();
1142     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1143     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1144       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1145     } else {
1146       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1147         proj->_rout.Insert(OptoReg::Name(i));
1148     }
1149     if( proj->_rout.is_NotEmpty() )
1150       _proj_list.push(proj);
1151   }
1152   // Transfer the safepoint information from the call to the mcall
1153   // Move the JVMState list
1154   msfpt->set_jvms(sfpt->jvms());
1155   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1156     jvms->set_map(sfpt);
1157   }
1158 
1159   // Debug inputs begin just after the last incoming parameter
1160   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1161           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1162 
1163   // Move the OopMap
1164   msfpt->_oop_map = sfpt->_oop_map;
1165 
1166   // Registers killed by the call are set in the local scheduling pass
1167   // of Global Code Motion.
1168   return msfpt;
1169 }
1170 
1171 //---------------------------match_tree----------------------------------------
1172 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1173 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1174 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1175 // a Load's result RegMask for memoization in idealreg2regmask[]
1176 MachNode *Matcher::match_tree( const Node *n ) {
1177   assert( n->Opcode() != Op_Phi, "cannot match" );
1178   assert( !n->is_block_start(), "cannot match" );
1179   // Set the mark for all locally allocated State objects.
1180   // When this call returns, the _states_arena arena will be reset
1181   // freeing all State objects.
1182   ResourceMark rm( &_states_arena );
1183 
1184   LabelRootDepth = 0;
1185 
1186   // StoreNodes require their Memory input to match any LoadNodes
1187   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1188 #ifdef ASSERT
1189   Node* save_mem_node = _mem_node;
1190   _mem_node = n->is_Store() ? (Node*)n : NULL;
1191 #endif
1192   // State object for root node of match tree
1193   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1194   State *s = new (&_states_arena) State;
1195   s->_kids[0] = NULL;
1196   s->_kids[1] = NULL;
1197   s->_leaf = (Node*)n;
1198   // Label the input tree, allocating labels from top-level arena
1199   Label_Root( n, s, n->in(0), mem );
1200   if (C->failing())  return NULL;
1201 
1202   // The minimum cost match for the whole tree is found at the root State
1203   uint mincost = max_juint;
1204   uint cost = max_juint;
1205   uint i;
1206   for( i = 0; i < NUM_OPERANDS; i++ ) {
1207     if( s->valid(i) &&                // valid entry and
1208         s->_cost[i] < cost &&         // low cost and
1209         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1210       cost = s->_cost[mincost=i];
1211   }
1212   if (mincost == max_juint) {
1213 #ifndef PRODUCT
1214     tty->print("No matching rule for:");
1215     s->dump();
1216 #endif
1217     Matcher::soft_match_failure();
1218     return NULL;
1219   }
1220   // Reduce input tree based upon the state labels to machine Nodes
1221   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1222 #ifdef ASSERT
1223   _old2new_map.map(n->_idx, m);
1224   _new2old_map.map(m->_idx, (Node*)n);
1225 #endif
1226 
1227   // Add any Matcher-ignored edges
1228   uint cnt = n->req();
1229   uint start = 1;
1230   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1231   if( n->is_AddP() ) {
1232     assert( mem == (Node*)1, "" );
1233     start = AddPNode::Base+1;
1234   }
1235   for( i = start; i < cnt; i++ ) {
1236     if( !n->match_edge(i) ) {
1237       if( i < m->req() )
1238         m->ins_req( i, n->in(i) );
1239       else
1240         m->add_req( n->in(i) );
1241     }
1242   }
1243 
1244   debug_only( _mem_node = save_mem_node; )
1245   return m;
1246 }
1247 
1248 
1249 //------------------------------match_into_reg---------------------------------
1250 // Choose to either match this Node in a register or part of the current
1251 // match tree.  Return true for requiring a register and false for matching
1252 // as part of the current match tree.
1253 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1254 
1255   const Type *t = m->bottom_type();
1256 
1257   if( t->singleton() ) {
1258     // Never force constants into registers.  Allow them to match as
1259     // constants or registers.  Copies of the same value will share
1260     // the same register.  See find_shared_node.
1261     return false;
1262   } else {                      // Not a constant
1263     // Stop recursion if they have different Controls.
1264     // Slot 0 of constants is not really a Control.
1265     if( control && m->in(0) && control != m->in(0) ) {
1266 
1267       // Actually, we can live with the most conservative control we
1268       // find, if it post-dominates the others.  This allows us to
1269       // pick up load/op/store trees where the load can float a little
1270       // above the store.
1271       Node *x = control;
1272       const uint max_scan = 6;   // Arbitrary scan cutoff
1273       uint j;
1274       for( j=0; j<max_scan; j++ ) {
1275         if( x->is_Region() )    // Bail out at merge points
1276           return true;
1277         x = x->in(0);
1278         if( x == m->in(0) )     // Does 'control' post-dominate
1279           break;                // m->in(0)?  If so, we can use it
1280       }
1281       if( j == max_scan )       // No post-domination before scan end?
1282         return true;            // Then break the match tree up
1283     }
1284     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
1285       // These are commonly used in address expressions and can
1286       // efficiently fold into them on X64 in some cases.
1287       return false;
1288     }
1289   }
1290 
1291   // Not forceable cloning.  If shared, put it into a register.
1292   return shared;
1293 }
1294 
1295 
1296 //------------------------------Instruction Selection--------------------------
1297 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1298 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1299 // things the Matcher does not match (e.g., Memory), and things with different
1300 // Controls (hence forced into different blocks).  We pass in the Control
1301 // selected for this entire State tree.
1302 
1303 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1304 // Store and the Load must have identical Memories (as well as identical
1305 // pointers).  Since the Matcher does not have anything for Memory (and
1306 // does not handle DAGs), I have to match the Memory input myself.  If the
1307 // Tree root is a Store, I require all Loads to have the identical memory.
1308 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1309   // Since Label_Root is a recursive function, its possible that we might run
1310   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1311   LabelRootDepth++;
1312   if (LabelRootDepth > MaxLabelRootDepth) {
1313     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1314     return NULL;
1315   }
1316   uint care = 0;                // Edges matcher cares about
1317   uint cnt = n->req();
1318   uint i = 0;
1319 
1320   // Examine children for memory state
1321   // Can only subsume a child into your match-tree if that child's memory state
1322   // is not modified along the path to another input.
1323   // It is unsafe even if the other inputs are separate roots.
1324   Node *input_mem = NULL;
1325   for( i = 1; i < cnt; i++ ) {
1326     if( !n->match_edge(i) ) continue;
1327     Node *m = n->in(i);         // Get ith input
1328     assert( m, "expect non-null children" );
1329     if( m->is_Load() ) {
1330       if( input_mem == NULL ) {
1331         input_mem = m->in(MemNode::Memory);
1332       } else if( input_mem != m->in(MemNode::Memory) ) {
1333         input_mem = NodeSentinel;
1334       }
1335     }
1336   }
1337 
1338   for( i = 1; i < cnt; i++ ){// For my children
1339     if( !n->match_edge(i) ) continue;
1340     Node *m = n->in(i);         // Get ith input
1341     // Allocate states out of a private arena
1342     State *s = new (&_states_arena) State;
1343     svec->_kids[care++] = s;
1344     assert( care <= 2, "binary only for now" );
1345 
1346     // Recursively label the State tree.
1347     s->_kids[0] = NULL;
1348     s->_kids[1] = NULL;
1349     s->_leaf = m;
1350 
1351     // Check for leaves of the State Tree; things that cannot be a part of
1352     // the current tree.  If it finds any, that value is matched as a
1353     // register operand.  If not, then the normal matching is used.
1354     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1355         //
1356         // Stop recursion if this is LoadNode and the root of this tree is a
1357         // StoreNode and the load & store have different memories.
1358         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1359         // Can NOT include the match of a subtree when its memory state
1360         // is used by any of the other subtrees
1361         (input_mem == NodeSentinel) ) {
1362 #ifndef PRODUCT
1363       // Print when we exclude matching due to different memory states at input-loads
1364       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1365         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1366         tty->print_cr("invalid input_mem");
1367       }
1368 #endif
1369       // Switch to a register-only opcode; this value must be in a register
1370       // and cannot be subsumed as part of a larger instruction.
1371       s->DFA( m->ideal_reg(), m );
1372 
1373     } else {
1374       // If match tree has no control and we do, adopt it for entire tree
1375       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1376         control = m->in(0);         // Pick up control
1377       // Else match as a normal part of the match tree.
1378       control = Label_Root(m,s,control,mem);
1379       if (C->failing()) return NULL;
1380     }
1381   }
1382 
1383 
1384   // Call DFA to match this node, and return
1385   svec->DFA( n->Opcode(), n );
1386 
1387 #ifdef ASSERT
1388   uint x;
1389   for( x = 0; x < _LAST_MACH_OPER; x++ )
1390     if( svec->valid(x) )
1391       break;
1392 
1393   if (x >= _LAST_MACH_OPER) {
1394     n->dump();
1395     svec->dump();
1396     assert( false, "bad AD file" );
1397   }
1398 #endif
1399   return control;
1400 }
1401 
1402 
1403 // Con nodes reduced using the same rule can share their MachNode
1404 // which reduces the number of copies of a constant in the final
1405 // program.  The register allocator is free to split uses later to
1406 // split live ranges.
1407 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1408   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1409 
1410   // See if this Con has already been reduced using this rule.
1411   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1412   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1413   if (last != NULL && rule == last->rule()) {
1414     // Don't expect control change for DecodeN
1415     if (leaf->is_DecodeN())
1416       return last;
1417     // Get the new space root.
1418     Node* xroot = new_node(C->root());
1419     if (xroot == NULL) {
1420       // This shouldn't happen give the order of matching.
1421       return NULL;
1422     }
1423 
1424     // Shared constants need to have their control be root so they
1425     // can be scheduled properly.
1426     Node* control = last->in(0);
1427     if (control != xroot) {
1428       if (control == NULL || control == C->root()) {
1429         last->set_req(0, xroot);
1430       } else {
1431         assert(false, "unexpected control");
1432         return NULL;
1433       }
1434     }
1435     return last;
1436   }
1437   return NULL;
1438 }
1439 
1440 
1441 //------------------------------ReduceInst-------------------------------------
1442 // Reduce a State tree (with given Control) into a tree of MachNodes.
1443 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1444 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1445 // Each MachNode has a number of complicated MachOper operands; each
1446 // MachOper also covers a further tree of Ideal Nodes.
1447 
1448 // The root of the Ideal match tree is always an instruction, so we enter
1449 // the recursion here.  After building the MachNode, we need to recurse
1450 // the tree checking for these cases:
1451 // (1) Child is an instruction -
1452 //     Build the instruction (recursively), add it as an edge.
1453 //     Build a simple operand (register) to hold the result of the instruction.
1454 // (2) Child is an interior part of an instruction -
1455 //     Skip over it (do nothing)
1456 // (3) Child is the start of a operand -
1457 //     Build the operand, place it inside the instruction
1458 //     Call ReduceOper.
1459 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1460   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1461 
1462   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1463   if (shared_node != NULL) {
1464     return shared_node;
1465   }
1466 
1467   // Build the object to represent this state & prepare for recursive calls
1468   MachNode *mach = s->MachNodeGenerator( rule, C );
1469   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1470   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1471   Node *leaf = s->_leaf;
1472   // Check for instruction or instruction chain rule
1473   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1474     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1475            "duplicating node that's already been matched");
1476     // Instruction
1477     mach->add_req( leaf->in(0) ); // Set initial control
1478     // Reduce interior of complex instruction
1479     ReduceInst_Interior( s, rule, mem, mach, 1 );
1480   } else {
1481     // Instruction chain rules are data-dependent on their inputs
1482     mach->add_req(0);             // Set initial control to none
1483     ReduceInst_Chain_Rule( s, rule, mem, mach );
1484   }
1485 
1486   // If a Memory was used, insert a Memory edge
1487   if( mem != (Node*)1 ) {
1488     mach->ins_req(MemNode::Memory,mem);
1489 #ifdef ASSERT
1490     // Verify adr type after matching memory operation
1491     const MachOper* oper = mach->memory_operand();
1492     if (oper != NULL && oper != (MachOper*)-1) {
1493       // It has a unique memory operand.  Find corresponding ideal mem node.
1494       Node* m = NULL;
1495       if (leaf->is_Mem()) {
1496         m = leaf;
1497       } else {
1498         m = _mem_node;
1499         assert(m != NULL && m->is_Mem(), "expecting memory node");
1500       }
1501       const Type* mach_at = mach->adr_type();
1502       // DecodeN node consumed by an address may have different type
1503       // then its input. Don't compare types for such case.
1504       if (m->adr_type() != mach_at &&
1505           (m->in(MemNode::Address)->is_DecodeN() ||
1506            m->in(MemNode::Address)->is_AddP() &&
1507            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1508            m->in(MemNode::Address)->is_AddP() &&
1509            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1510            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1511         mach_at = m->adr_type();
1512       }
1513       if (m->adr_type() != mach_at) {
1514         m->dump();
1515         tty->print_cr("mach:");
1516         mach->dump(1);
1517       }
1518       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1519     }
1520 #endif
1521   }
1522 
1523   // If the _leaf is an AddP, insert the base edge
1524   if( leaf->is_AddP() )
1525     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1526 
1527   uint num_proj = _proj_list.size();
1528 
1529   // Perform any 1-to-many expansions required
1530   MachNode *ex = mach->Expand(s,_proj_list);
1531   if( ex != mach ) {
1532     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1533     if( ex->in(1)->is_Con() )
1534       ex->in(1)->set_req(0, C->root());
1535     // Remove old node from the graph
1536     for( uint i=0; i<mach->req(); i++ ) {
1537       mach->set_req(i,NULL);
1538     }
1539 #ifdef ASSERT
1540     _new2old_map.map(ex->_idx, s->_leaf);
1541 #endif
1542   }
1543 
1544   // PhaseChaitin::fixup_spills will sometimes generate spill code
1545   // via the matcher.  By the time, nodes have been wired into the CFG,
1546   // and any further nodes generated by expand rules will be left hanging
1547   // in space, and will not get emitted as output code.  Catch this.
1548   // Also, catch any new register allocation constraints ("projections")
1549   // generated belatedly during spill code generation.
1550   if (_allocation_started) {
1551     guarantee(ex == mach, "no expand rules during spill generation");
1552     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1553   }
1554 
1555   if (leaf->is_Con() || leaf->is_DecodeN()) {
1556     // Record the con for sharing
1557     _shared_nodes.map(leaf->_idx, ex);
1558   }
1559 
1560   return ex;
1561 }
1562 
1563 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1564   // 'op' is what I am expecting to receive
1565   int op = _leftOp[rule];
1566   // Operand type to catch childs result
1567   // This is what my child will give me.
1568   int opnd_class_instance = s->_rule[op];
1569   // Choose between operand class or not.
1570   // This is what I will receive.
1571   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1572   // New rule for child.  Chase operand classes to get the actual rule.
1573   int newrule = s->_rule[catch_op];
1574 
1575   if( newrule < NUM_OPERANDS ) {
1576     // Chain from operand or operand class, may be output of shared node
1577     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1578             "Bad AD file: Instruction chain rule must chain from operand");
1579     // Insert operand into array of operands for this instruction
1580     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1581 
1582     ReduceOper( s, newrule, mem, mach );
1583   } else {
1584     // Chain from the result of an instruction
1585     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1586     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1587     Node *mem1 = (Node*)1;
1588     debug_only(Node *save_mem_node = _mem_node;)
1589     mach->add_req( ReduceInst(s, newrule, mem1) );
1590     debug_only(_mem_node = save_mem_node;)
1591   }
1592   return;
1593 }
1594 
1595 
1596 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1597   if( s->_leaf->is_Load() ) {
1598     Node *mem2 = s->_leaf->in(MemNode::Memory);
1599     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1600     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1601     mem = mem2;
1602   }
1603   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1604     if( mach->in(0) == NULL )
1605       mach->set_req(0, s->_leaf->in(0));
1606   }
1607 
1608   // Now recursively walk the state tree & add operand list.
1609   for( uint i=0; i<2; i++ ) {   // binary tree
1610     State *newstate = s->_kids[i];
1611     if( newstate == NULL ) break;      // Might only have 1 child
1612     // 'op' is what I am expecting to receive
1613     int op;
1614     if( i == 0 ) {
1615       op = _leftOp[rule];
1616     } else {
1617       op = _rightOp[rule];
1618     }
1619     // Operand type to catch childs result
1620     // This is what my child will give me.
1621     int opnd_class_instance = newstate->_rule[op];
1622     // Choose between operand class or not.
1623     // This is what I will receive.
1624     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1625     // New rule for child.  Chase operand classes to get the actual rule.
1626     int newrule = newstate->_rule[catch_op];
1627 
1628     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1629       // Operand/operandClass
1630       // Insert operand into array of operands for this instruction
1631       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1632       ReduceOper( newstate, newrule, mem, mach );
1633 
1634     } else {                    // Child is internal operand or new instruction
1635       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1636         // internal operand --> call ReduceInst_Interior
1637         // Interior of complex instruction.  Do nothing but recurse.
1638         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1639       } else {
1640         // instruction --> call build operand(  ) to catch result
1641         //             --> ReduceInst( newrule )
1642         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1643         Node *mem1 = (Node*)1;
1644         debug_only(Node *save_mem_node = _mem_node;)
1645         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1646         debug_only(_mem_node = save_mem_node;)
1647       }
1648     }
1649     assert( mach->_opnds[num_opnds-1], "" );
1650   }
1651   return num_opnds;
1652 }
1653 
1654 // This routine walks the interior of possible complex operands.
1655 // At each point we check our children in the match tree:
1656 // (1) No children -
1657 //     We are a leaf; add _leaf field as an input to the MachNode
1658 // (2) Child is an internal operand -
1659 //     Skip over it ( do nothing )
1660 // (3) Child is an instruction -
1661 //     Call ReduceInst recursively and
1662 //     and instruction as an input to the MachNode
1663 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1664   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1665   State *kid = s->_kids[0];
1666   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1667 
1668   // Leaf?  And not subsumed?
1669   if( kid == NULL && !_swallowed[rule] ) {
1670     mach->add_req( s->_leaf );  // Add leaf pointer
1671     return;                     // Bail out
1672   }
1673 
1674   if( s->_leaf->is_Load() ) {
1675     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1676     mem = s->_leaf->in(MemNode::Memory);
1677     debug_only(_mem_node = s->_leaf;)
1678   }
1679   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1680     if( !mach->in(0) )
1681       mach->set_req(0,s->_leaf->in(0));
1682     else {
1683       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1684     }
1685   }
1686 
1687   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1688     int newrule;
1689     if( i == 0 )
1690       newrule = kid->_rule[_leftOp[rule]];
1691     else
1692       newrule = kid->_rule[_rightOp[rule]];
1693 
1694     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1695       // Internal operand; recurse but do nothing else
1696       ReduceOper( kid, newrule, mem, mach );
1697 
1698     } else {                    // Child is a new instruction
1699       // Reduce the instruction, and add a direct pointer from this
1700       // machine instruction to the newly reduced one.
1701       Node *mem1 = (Node*)1;
1702       debug_only(Node *save_mem_node = _mem_node;)
1703       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1704       debug_only(_mem_node = save_mem_node;)
1705     }
1706   }
1707 }
1708 
1709 
1710 // -------------------------------------------------------------------------
1711 // Java-Java calling convention
1712 // (what you use when Java calls Java)
1713 
1714 //------------------------------find_receiver----------------------------------
1715 // For a given signature, return the OptoReg for parameter 0.
1716 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1717   VMRegPair regs;
1718   BasicType sig_bt = T_OBJECT;
1719   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1720   // Return argument 0 register.  In the LP64 build pointers
1721   // take 2 registers, but the VM wants only the 'main' name.
1722   return OptoReg::as_OptoReg(regs.first());
1723 }
1724 
1725 // A method-klass-holder may be passed in the inline_cache_reg
1726 // and then expanded into the inline_cache_reg and a method_oop register
1727 //   defined in ad_<arch>.cpp
1728 
1729 
1730 //------------------------------find_shared------------------------------------
1731 // Set bits if Node is shared or otherwise a root
1732 void Matcher::find_shared( Node *n ) {
1733   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1734   MStack mstack(C->unique() * 2);
1735   // Mark nodes as address_visited if they are inputs to an address expression
1736   VectorSet address_visited(Thread::current()->resource_area());
1737   mstack.push(n, Visit);     // Don't need to pre-visit root node
1738   while (mstack.is_nonempty()) {
1739     n = mstack.node();       // Leave node on stack
1740     Node_State nstate = mstack.state();
1741     uint nop = n->Opcode();
1742     if (nstate == Pre_Visit) {
1743       if (address_visited.test(n->_idx)) { // Visited in address already?
1744         // Flag as visited and shared now.
1745         set_visited(n);
1746       }
1747       if (is_visited(n)) {   // Visited already?
1748         // Node is shared and has no reason to clone.  Flag it as shared.
1749         // This causes it to match into a register for the sharing.
1750         set_shared(n);       // Flag as shared and
1751         mstack.pop();        // remove node from stack
1752         continue;
1753       }
1754       nstate = Visit; // Not already visited; so visit now
1755     }
1756     if (nstate == Visit) {
1757       mstack.set_state(Post_Visit);
1758       set_visited(n);   // Flag as visited now
1759       bool mem_op = false;
1760 
1761       switch( nop ) {  // Handle some opcodes special
1762       case Op_Phi:             // Treat Phis as shared roots
1763       case Op_Parm:
1764       case Op_Proj:            // All handled specially during matching
1765       case Op_SafePointScalarObject:
1766         set_shared(n);
1767         set_dontcare(n);
1768         break;
1769       case Op_If:
1770       case Op_CountedLoopEnd:
1771         mstack.set_state(Alt_Post_Visit); // Alternative way
1772         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1773         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1774         // Bool and CmpX side-by-side, because it can only get at constants
1775         // that are at the leaves of Match trees, and the Bool's condition acts
1776         // as a constant here.
1777         mstack.push(n->in(1), Visit);         // Clone the Bool
1778         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1779         continue; // while (mstack.is_nonempty())
1780       case Op_ConvI2D:         // These forms efficiently match with a prior
1781       case Op_ConvI2F:         //   Load but not a following Store
1782         if( n->in(1)->is_Load() &&        // Prior load
1783             n->outcnt() == 1 &&           // Not already shared
1784             n->unique_out()->is_Store() ) // Following store
1785           set_shared(n);       // Force it to be a root
1786         break;
1787       case Op_ReverseBytesI:
1788       case Op_ReverseBytesL:
1789         if( n->in(1)->is_Load() &&        // Prior load
1790             n->outcnt() == 1 )            // Not already shared
1791           set_shared(n);                  // Force it to be a root
1792         break;
1793       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1794       case Op_IfFalse:
1795       case Op_IfTrue:
1796       case Op_MachProj:
1797       case Op_MergeMem:
1798       case Op_Catch:
1799       case Op_CatchProj:
1800       case Op_CProj:
1801       case Op_JumpProj:
1802       case Op_JProj:
1803       case Op_NeverBranch:
1804         set_dontcare(n);
1805         break;
1806       case Op_Jump:
1807         mstack.push(n->in(1), Visit);         // Switch Value
1808         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1809         continue;                             // while (mstack.is_nonempty())
1810       case Op_StrComp:
1811       case Op_StrEquals:
1812       case Op_StrIndexOf:
1813       case Op_AryEq:
1814         set_shared(n); // Force result into register (it will be anyways)
1815         break;
1816       case Op_ConP: {  // Convert pointers above the centerline to NUL
1817         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1818         const TypePtr* tp = tn->type()->is_ptr();
1819         if (tp->_ptr == TypePtr::AnyNull) {
1820           tn->set_type(TypePtr::NULL_PTR);
1821         }
1822         break;
1823       }
1824       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1825         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1826         const TypePtr* tp = tn->type()->make_ptr();
1827         if (tp && tp->_ptr == TypePtr::AnyNull) {
1828           tn->set_type(TypeNarrowOop::NULL_PTR);
1829         }
1830         break;
1831       }
1832       case Op_Binary:         // These are introduced in the Post_Visit state.
1833         ShouldNotReachHere();
1834         break;
1835       case Op_StoreB:         // Do match these, despite no ideal reg
1836       case Op_StoreC:
1837       case Op_StoreCM:
1838       case Op_StoreD:
1839       case Op_StoreF:
1840       case Op_StoreI:
1841       case Op_StoreL:
1842       case Op_StoreP:
1843       case Op_StoreN:
1844       case Op_Store16B:
1845       case Op_Store8B:
1846       case Op_Store4B:
1847       case Op_Store8C:
1848       case Op_Store4C:
1849       case Op_Store2C:
1850       case Op_Store4I:
1851       case Op_Store2I:
1852       case Op_Store2L:
1853       case Op_Store4F:
1854       case Op_Store2F:
1855       case Op_Store2D:
1856       case Op_ClearArray:
1857       case Op_SafePoint:
1858         mem_op = true;
1859         break;
1860       case Op_LoadB:
1861       case Op_LoadUS:
1862       case Op_LoadD:
1863       case Op_LoadF:
1864       case Op_LoadI:
1865       case Op_LoadKlass:
1866       case Op_LoadNKlass:
1867       case Op_LoadL:
1868       case Op_LoadS:
1869       case Op_LoadP:
1870       case Op_LoadN:
1871       case Op_LoadRange:
1872       case Op_LoadD_unaligned:
1873       case Op_LoadL_unaligned:
1874       case Op_Load16B:
1875       case Op_Load8B:
1876       case Op_Load4B:
1877       case Op_Load4C:
1878       case Op_Load2C:
1879       case Op_Load8C:
1880       case Op_Load8S:
1881       case Op_Load4S:
1882       case Op_Load2S:
1883       case Op_Load4I:
1884       case Op_Load2I:
1885       case Op_Load2L:
1886       case Op_Load4F:
1887       case Op_Load2F:
1888       case Op_Load2D:
1889         mem_op = true;
1890         // Must be root of match tree due to prior load conflict
1891         if( C->subsume_loads() == false ) {
1892           set_shared(n);
1893         }
1894         // Fall into default case
1895       default:
1896         if( !n->ideal_reg() )
1897           set_dontcare(n);  // Unmatchable Nodes
1898       } // end_switch
1899 
1900       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1901         Node *m = n->in(i); // Get ith input
1902         if (m == NULL) continue;  // Ignore NULLs
1903         uint mop = m->Opcode();
1904 
1905         // Must clone all producers of flags, or we will not match correctly.
1906         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1907         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1908         // are also there, so we may match a float-branch to int-flags and
1909         // expect the allocator to haul the flags from the int-side to the
1910         // fp-side.  No can do.
1911         if( _must_clone[mop] ) {
1912           mstack.push(m, Visit);
1913           continue; // for(int i = ...)
1914         }
1915 
1916         // Clone addressing expressions as they are "free" in most instructions
1917         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1918           if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
1919             // Bases used in addresses must be shared but since
1920             // they are shared through a DecodeN they may appear
1921             // to have a single use so force sharing here.
1922             set_shared(m->in(AddPNode::Base)->in(1));
1923           }
1924 
1925           // Some inputs for address expression are not put on stack
1926           // to avoid marking them as shared and forcing them into register
1927           // if they are used only in address expressions.
1928           // But they should be marked as shared if there are other uses
1929           // besides address expressions.
1930 
1931           Node *off = m->in(AddPNode::Offset);
1932           if( off->is_Con() &&
1933               // When there are other uses besides address expressions
1934               // put it on stack and mark as shared.
1935               !is_visited(m) ) {
1936             address_visited.test_set(m->_idx); // Flag as address_visited
1937             Node *adr = m->in(AddPNode::Address);
1938 
1939             // Intel, ARM and friends can handle 2 adds in addressing mode
1940             if( clone_shift_expressions && adr->is_AddP() &&
1941                 // AtomicAdd is not an addressing expression.
1942                 // Cheap to find it by looking for screwy base.
1943                 !adr->in(AddPNode::Base)->is_top() &&
1944                 // Are there other uses besides address expressions?
1945                 !is_visited(adr) ) {
1946               address_visited.set(adr->_idx); // Flag as address_visited
1947               Node *shift = adr->in(AddPNode::Offset);
1948               // Check for shift by small constant as well
1949               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1950                   shift->in(2)->get_int() <= 3 &&
1951                   // Are there other uses besides address expressions?
1952                   !is_visited(shift) ) {
1953                 address_visited.set(shift->_idx); // Flag as address_visited
1954                 mstack.push(shift->in(2), Visit);
1955                 Node *conv = shift->in(1);
1956 #ifdef _LP64
1957                 // Allow Matcher to match the rule which bypass
1958                 // ConvI2L operation for an array index on LP64
1959                 // if the index value is positive.
1960                 if( conv->Opcode() == Op_ConvI2L &&
1961                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
1962                     // Are there other uses besides address expressions?
1963                     !is_visited(conv) ) {
1964                   address_visited.set(conv->_idx); // Flag as address_visited
1965                   mstack.push(conv->in(1), Pre_Visit);
1966                 } else
1967 #endif
1968                 mstack.push(conv, Pre_Visit);
1969               } else {
1970                 mstack.push(shift, Pre_Visit);
1971               }
1972               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1973               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1974             } else {  // Sparc, Alpha, PPC and friends
1975               mstack.push(adr, Pre_Visit);
1976             }
1977 
1978             // Clone X+offset as it also folds into most addressing expressions
1979             mstack.push(off, Visit);
1980             mstack.push(m->in(AddPNode::Base), Pre_Visit);
1981             continue; // for(int i = ...)
1982           } // if( off->is_Con() )
1983         }   // if( mem_op &&
1984         mstack.push(m, Pre_Visit);
1985       }     // for(int i = ...)
1986     }
1987     else if (nstate == Alt_Post_Visit) {
1988       mstack.pop(); // Remove node from stack
1989       // We cannot remove the Cmp input from the Bool here, as the Bool may be
1990       // shared and all users of the Bool need to move the Cmp in parallel.
1991       // This leaves both the Bool and the If pointing at the Cmp.  To
1992       // prevent the Matcher from trying to Match the Cmp along both paths
1993       // BoolNode::match_edge always returns a zero.
1994 
1995       // We reorder the Op_If in a pre-order manner, so we can visit without
1996       // accidentally sharing the Cmp (the Bool and the If make 2 users).
1997       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
1998     }
1999     else if (nstate == Post_Visit) {
2000       mstack.pop(); // Remove node from stack
2001 
2002       // Now hack a few special opcodes
2003       switch( n->Opcode() ) {       // Handle some opcodes special
2004       case Op_StorePConditional:
2005       case Op_StoreIConditional:
2006       case Op_StoreLConditional:
2007       case Op_CompareAndSwapI:
2008       case Op_CompareAndSwapL:
2009       case Op_CompareAndSwapP:
2010       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2011         Node *newval = n->in(MemNode::ValueIn );
2012         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2013         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2014         n->set_req(MemNode::ValueIn,pair);
2015         n->del_req(LoadStoreNode::ExpectedIn);
2016         break;
2017       }
2018       case Op_CMoveD:              // Convert trinary to binary-tree
2019       case Op_CMoveF:
2020       case Op_CMoveI:
2021       case Op_CMoveL:
2022       case Op_CMoveN:
2023       case Op_CMoveP: {
2024         // Restructure into a binary tree for Matching.  It's possible that
2025         // we could move this code up next to the graph reshaping for IfNodes
2026         // or vice-versa, but I do not want to debug this for Ladybird.
2027         // 10/2/2000 CNC.
2028         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2029         n->set_req(1,pair1);
2030         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2031         n->set_req(2,pair2);
2032         n->del_req(3);
2033         break;
2034       }
2035       default:
2036         break;
2037       }
2038     }
2039     else {
2040       ShouldNotReachHere();
2041     }
2042   } // end of while (mstack.is_nonempty())
2043 }
2044 
2045 #ifdef ASSERT
2046 // machine-independent root to machine-dependent root
2047 void Matcher::dump_old2new_map() {
2048   _old2new_map.dump();
2049 }
2050 #endif
2051 
2052 //---------------------------collect_null_checks-------------------------------
2053 // Find null checks in the ideal graph; write a machine-specific node for
2054 // it.  Used by later implicit-null-check handling.  Actually collects
2055 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2056 // value being tested.
2057 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2058   Node *iff = proj->in(0);
2059   if( iff->Opcode() == Op_If ) {
2060     // During matching If's have Bool & Cmp side-by-side
2061     BoolNode *b = iff->in(1)->as_Bool();
2062     Node *cmp = iff->in(2);
2063     int opc = cmp->Opcode();
2064     if (opc != Op_CmpP && opc != Op_CmpN) return;
2065 
2066     const Type* ct = cmp->in(2)->bottom_type();
2067     if (ct == TypePtr::NULL_PTR ||
2068         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2069 
2070       bool push_it = false;
2071       if( proj->Opcode() == Op_IfTrue ) {
2072         extern int all_null_checks_found;
2073         all_null_checks_found++;
2074         if( b->_test._test == BoolTest::ne ) {
2075           push_it = true;
2076         }
2077       } else {
2078         assert( proj->Opcode() == Op_IfFalse, "" );
2079         if( b->_test._test == BoolTest::eq ) {
2080           push_it = true;
2081         }
2082       }
2083       if( push_it ) {
2084         _null_check_tests.push(proj);
2085         Node* val = cmp->in(1);
2086 #ifdef _LP64
2087         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
2088             val->bottom_type()->isa_narrowoop()) {
2089           //
2090           // Look for DecodeN node which should be pinned to orig_proj.
2091           // On platforms (Sparc) which can not handle 2 adds
2092           // in addressing mode we have to keep a DecodeN node and
2093           // use it to do implicit NULL check in address.
2094           //
2095           // DecodeN node was pinned to non-null path (orig_proj) during
2096           // CastPP transformation in final_graph_reshaping_impl().
2097           //
2098           uint cnt = orig_proj->outcnt();
2099           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2100             Node* d = orig_proj->raw_out(i);
2101             if (d->is_DecodeN() && d->in(1) == val) {
2102               val = d;
2103               val->set_req(0, NULL); // Unpin now.
2104               break;
2105             }
2106           }
2107         }
2108 #endif
2109         _null_check_tests.push(val);
2110       }
2111     }
2112   }
2113 }
2114 
2115 //---------------------------validate_null_checks------------------------------
2116 // Its possible that the value being NULL checked is not the root of a match
2117 // tree.  If so, I cannot use the value in an implicit null check.
2118 void Matcher::validate_null_checks( ) {
2119   uint cnt = _null_check_tests.size();
2120   for( uint i=0; i < cnt; i+=2 ) {
2121     Node *test = _null_check_tests[i];
2122     Node *val = _null_check_tests[i+1];
2123     if (has_new_node(val)) {
2124       // Is a match-tree root, so replace with the matched value
2125       _null_check_tests.map(i+1, new_node(val));
2126     } else {
2127       // Yank from candidate list
2128       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2129       _null_check_tests.map(i,_null_check_tests[--cnt]);
2130       _null_check_tests.pop();
2131       _null_check_tests.pop();
2132       i-=2;
2133     }
2134   }
2135 }
2136 
2137 
2138 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2139 // acting as an Acquire and thus we don't need an Acquire here.  We
2140 // retain the Node to act as a compiler ordering barrier.
2141 bool Matcher::prior_fast_lock( const Node *acq ) {
2142   Node *r = acq->in(0);
2143   if( !r->is_Region() || r->req() <= 1 ) return false;
2144   Node *proj = r->in(1);
2145   if( !proj->is_Proj() ) return false;
2146   Node *call = proj->in(0);
2147   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2148     return false;
2149 
2150   return true;
2151 }
2152 
2153 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2154 // acting as a Release and thus we don't need a Release here.  We
2155 // retain the Node to act as a compiler ordering barrier.
2156 bool Matcher::post_fast_unlock( const Node *rel ) {
2157   Compile *C = Compile::current();
2158   assert( rel->Opcode() == Op_MemBarRelease, "" );
2159   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2160   DUIterator_Fast imax, i = mem->fast_outs(imax);
2161   Node *ctrl = NULL;
2162   while( true ) {
2163     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2164     assert( ctrl->is_Proj(), "only projections here" );
2165     ProjNode *proj = (ProjNode*)ctrl;
2166     if( proj->_con == TypeFunc::Control &&
2167         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2168       break;
2169     i++;
2170   }
2171   Node *iff = NULL;
2172   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2173     Node *x = ctrl->fast_out(j);
2174     if( x->is_If() && x->req() > 1 &&
2175         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2176       iff = x;
2177       break;
2178     }
2179   }
2180   if( !iff ) return false;
2181   Node *bol = iff->in(1);
2182   // The iff might be some random subclass of If or bol might be Con-Top
2183   if (!bol->is_Bool())  return false;
2184   assert( bol->req() > 1, "" );
2185   return (bol->in(1)->Opcode() == Op_FastUnlock);
2186 }
2187 
2188 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2189 // atomic instruction acting as a store_load barrier without any
2190 // intervening volatile load, and thus we don't need a barrier here.
2191 // We retain the Node to act as a compiler ordering barrier.
2192 bool Matcher::post_store_load_barrier(const Node *vmb) {
2193   Compile *C = Compile::current();
2194   assert( vmb->is_MemBar(), "" );
2195   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2196   const MemBarNode *mem = (const MemBarNode*)vmb;
2197 
2198   // Get the Proj node, ctrl, that can be used to iterate forward
2199   Node *ctrl = NULL;
2200   DUIterator_Fast imax, i = mem->fast_outs(imax);
2201   while( true ) {
2202     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2203     assert( ctrl->is_Proj(), "only projections here" );
2204     ProjNode *proj = (ProjNode*)ctrl;
2205     if( proj->_con == TypeFunc::Control &&
2206         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2207       break;
2208     i++;
2209   }
2210 
2211   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2212     Node *x = ctrl->fast_out(j);
2213     int xop = x->Opcode();
2214 
2215     // We don't need current barrier if we see another or a lock
2216     // before seeing volatile load.
2217     //
2218     // Op_Fastunlock previously appeared in the Op_* list below.
2219     // With the advent of 1-0 lock operations we're no longer guaranteed
2220     // that a monitor exit operation contains a serializing instruction.
2221 
2222     if (xop == Op_MemBarVolatile ||
2223         xop == Op_FastLock ||
2224         xop == Op_CompareAndSwapL ||
2225         xop == Op_CompareAndSwapP ||
2226         xop == Op_CompareAndSwapN ||
2227         xop == Op_CompareAndSwapI)
2228       return true;
2229 
2230     if (x->is_MemBar()) {
2231       // We must retain this membar if there is an upcoming volatile
2232       // load, which will be preceded by acquire membar.
2233       if (xop == Op_MemBarAcquire)
2234         return false;
2235       // For other kinds of barriers, check by pretending we
2236       // are them, and seeing if we can be removed.
2237       else
2238         return post_store_load_barrier((const MemBarNode*)x);
2239     }
2240 
2241     // Delicate code to detect case of an upcoming fastlock block
2242     if( x->is_If() && x->req() > 1 &&
2243         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2244       Node *iff = x;
2245       Node *bol = iff->in(1);
2246       // The iff might be some random subclass of If or bol might be Con-Top
2247       if (!bol->is_Bool())  return false;
2248       assert( bol->req() > 1, "" );
2249       return (bol->in(1)->Opcode() == Op_FastUnlock);
2250     }
2251     // probably not necessary to check for these
2252     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2253       return false;
2254   }
2255   return false;
2256 }
2257 
2258 //=============================================================================
2259 //---------------------------State---------------------------------------------
2260 State::State(void) {
2261 #ifdef ASSERT
2262   _id = 0;
2263   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2264   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2265   //memset(_cost, -1, sizeof(_cost));
2266   //memset(_rule, -1, sizeof(_rule));
2267 #endif
2268   memset(_valid, 0, sizeof(_valid));
2269 }
2270 
2271 #ifdef ASSERT
2272 State::~State() {
2273   _id = 99;
2274   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2275   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2276   memset(_cost, -3, sizeof(_cost));
2277   memset(_rule, -3, sizeof(_rule));
2278 }
2279 #endif
2280 
2281 #ifndef PRODUCT
2282 //---------------------------dump----------------------------------------------
2283 void State::dump() {
2284   tty->print("\n");
2285   dump(0);
2286 }
2287 
2288 void State::dump(int depth) {
2289   for( int j = 0; j < depth; j++ )
2290     tty->print("   ");
2291   tty->print("--N: ");
2292   _leaf->dump();
2293   uint i;
2294   for( i = 0; i < _LAST_MACH_OPER; i++ )
2295     // Check for valid entry
2296     if( valid(i) ) {
2297       for( int j = 0; j < depth; j++ )
2298         tty->print("   ");
2299         assert(_cost[i] != max_juint, "cost must be a valid value");
2300         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2301         tty->print_cr("%s  %d  %s",
2302                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2303       }
2304   tty->print_cr("");
2305 
2306   for( i=0; i<2; i++ )
2307     if( _kids[i] )
2308       _kids[i]->dump(depth+1);
2309 }
2310 #endif