1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_memnode.cpp.incl"
  31 
  32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  33 
  34 //=============================================================================
  35 uint MemNode::size_of() const { return sizeof(*this); }
  36 
  37 const TypePtr *MemNode::adr_type() const {
  38   Node* adr = in(Address);
  39   const TypePtr* cross_check = NULL;
  40   DEBUG_ONLY(cross_check = _adr_type);
  41   return calculate_adr_type(adr->bottom_type(), cross_check);
  42 }
  43 
  44 #ifndef PRODUCT
  45 void MemNode::dump_spec(outputStream *st) const {
  46   if (in(Address) == NULL)  return; // node is dead
  47 #ifndef ASSERT
  48   // fake the missing field
  49   const TypePtr* _adr_type = NULL;
  50   if (in(Address) != NULL)
  51     _adr_type = in(Address)->bottom_type()->isa_ptr();
  52 #endif
  53   dump_adr_type(this, _adr_type, st);
  54 
  55   Compile* C = Compile::current();
  56   if( C->alias_type(_adr_type)->is_volatile() )
  57     st->print(" Volatile!");
  58 }
  59 
  60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  61   st->print(" @");
  62   if (adr_type == NULL) {
  63     st->print("NULL");
  64   } else {
  65     adr_type->dump_on(st);
  66     Compile* C = Compile::current();
  67     Compile::AliasType* atp = NULL;
  68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  69     if (atp == NULL)
  70       st->print(", idx=?\?;");
  71     else if (atp->index() == Compile::AliasIdxBot)
  72       st->print(", idx=Bot;");
  73     else if (atp->index() == Compile::AliasIdxTop)
  74       st->print(", idx=Top;");
  75     else if (atp->index() == Compile::AliasIdxRaw)
  76       st->print(", idx=Raw;");
  77     else {
  78       ciField* field = atp->field();
  79       if (field) {
  80         st->print(", name=");
  81         field->print_name_on(st);
  82       }
  83       st->print(", idx=%d;", atp->index());
  84     }
  85   }
  86 }
  87 
  88 extern void print_alias_types();
  89 
  90 #endif
  91 
  92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
  93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
  94   if (tinst == NULL || !tinst->is_known_instance_field())
  95     return mchain;  // don't try to optimize non-instance types
  96   uint instance_id = tinst->instance_id();
  97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
  98   Node *prev = NULL;
  99   Node *result = mchain;
 100   while (prev != result) {
 101     prev = result;
 102     if (result == start_mem)
 103       break;  // hit one of our sentinels
 104     // skip over a call which does not affect this memory slice
 105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 106       Node *proj_in = result->in(0);
 107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 108         break;  // hit one of our sentinels
 109       } else if (proj_in->is_Call()) {
 110         CallNode *call = proj_in->as_Call();
 111         if (!call->may_modify(t_adr, phase)) {
 112           result = call->in(TypeFunc::Memory);
 113         }
 114       } else if (proj_in->is_Initialize()) {
 115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 116         // Stop if this is the initialization for the object instance which
 117         // which contains this memory slice, otherwise skip over it.
 118         if (alloc != NULL && alloc->_idx != instance_id) {
 119           result = proj_in->in(TypeFunc::Memory);
 120         }
 121       } else if (proj_in->is_MemBar()) {
 122         result = proj_in->in(TypeFunc::Memory);
 123       } else {
 124         assert(false, "unexpected projection");
 125       }
 126     } else if (result->is_MergeMem()) {
 127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 128     }
 129   }
 130   return result;
 131 }
 132 
 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 136   PhaseIterGVN *igvn = phase->is_IterGVN();
 137   Node *result = mchain;
 138   result = optimize_simple_memory_chain(result, t_adr, phase);
 139   if (is_instance && igvn != NULL  && result->is_Phi()) {
 140     PhiNode *mphi = result->as_Phi();
 141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 142     const TypePtr *t = mphi->adr_type();
 143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 145         t->is_oopptr()->cast_to_exactness(true)
 146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 148       // clone the Phi with our address type
 149       result = mphi->split_out_instance(t_adr, igvn);
 150     } else {
 151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 152     }
 153   }
 154   return result;
 155 }
 156 
 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 158   uint alias_idx = phase->C->get_alias_index(tp);
 159   Node *mem = mmem;
 160 #ifdef ASSERT
 161   {
 162     // Check that current type is consistent with the alias index used during graph construction
 163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 164     bool consistent =  adr_check == NULL || adr_check->empty() ||
 165                        phase->C->must_alias(adr_check, alias_idx );
 166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 173       // don't assert if it is dead code.
 174       consistent = true;
 175     }
 176     if( !consistent ) {
 177       st->print("alias_idx==%d, adr_check==", alias_idx);
 178       if( adr_check == NULL ) {
 179         st->print("NULL");
 180       } else {
 181         adr_check->dump();
 182       }
 183       st->cr();
 184       print_alias_types();
 185       assert(consistent, "adr_check must match alias idx");
 186     }
 187   }
 188 #endif
 189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 190   // means an array I have not precisely typed yet.  Do not do any
 191   // alias stuff with it any time soon.
 192   const TypeOopPtr *tinst = tp->isa_oopptr();
 193   if( tp->base() != Type::AnyPtr &&
 194       !(tinst &&
 195         tinst->klass()->is_java_lang_Object() &&
 196         tinst->offset() == Type::OffsetBot) ) {
 197     // compress paths and change unreachable cycles to TOP
 198     // If not, we can update the input infinitely along a MergeMem cycle
 199     // Equivalent code in PhiNode::Ideal
 200     Node* m  = phase->transform(mmem);
 201     // If transformed to a MergeMem, get the desired slice
 202     // Otherwise the returned node represents memory for every slice
 203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 204     // Update input if it is progress over what we have now
 205   }
 206   return mem;
 207 }
 208 
 209 //--------------------------Ideal_common---------------------------------------
 210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 213   // If our control input is a dead region, kill all below the region
 214   Node *ctl = in(MemNode::Control);
 215   if (ctl && remove_dead_region(phase, can_reshape))
 216     return this;
 217   ctl = in(MemNode::Control);
 218   // Don't bother trying to transform a dead node
 219   if( ctl && ctl->is_top() )  return NodeSentinel;
 220 
 221   PhaseIterGVN *igvn = phase->is_IterGVN();
 222   // Wait if control on the worklist.
 223   if (ctl && can_reshape && igvn != NULL) {
 224     Node* bol = NULL;
 225     Node* cmp = NULL;
 226     if (ctl->in(0)->is_If()) {
 227       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 228       bol = ctl->in(0)->in(1);
 229       if (bol->is_Bool())
 230         cmp = ctl->in(0)->in(1)->in(1);
 231     }
 232     if (igvn->_worklist.member(ctl) ||
 233         (bol != NULL && igvn->_worklist.member(bol)) ||
 234         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 235       // This control path may be dead.
 236       // Delay this memory node transformation until the control is processed.
 237       phase->is_IterGVN()->_worklist.push(this);
 238       return NodeSentinel; // caller will return NULL
 239     }
 240   }
 241   // Ignore if memory is dead, or self-loop
 242   Node *mem = in(MemNode::Memory);
 243   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 244   assert( mem != this, "dead loop in MemNode::Ideal" );
 245 
 246   Node *address = in(MemNode::Address);
 247   const Type *t_adr = phase->type( address );
 248   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 249 
 250   if( can_reshape && igvn != NULL &&
 251       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
 252     // The address's base and type may change when the address is processed.
 253     // Delay this mem node transformation until the address is processed.
 254     phase->is_IterGVN()->_worklist.push(this);
 255     return NodeSentinel; // caller will return NULL
 256   }
 257 
 258 #ifdef ASSERT
 259   Node* base = NULL;
 260   if (address->is_AddP())
 261     base = address->in(AddPNode::Base);
 262   assert(base == NULL || t_adr->isa_rawptr() ||
 263         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 264 #endif
 265 
 266   // Avoid independent memory operations
 267   Node* old_mem = mem;
 268 
 269   // The code which unhooks non-raw memories from complete (macro-expanded)
 270   // initializations was removed. After macro-expansion all stores catched
 271   // by Initialize node became raw stores and there is no information
 272   // which memory slices they modify. So it is unsafe to move any memory
 273   // operation above these stores. Also in most cases hooked non-raw memories
 274   // were already unhooked by using information from detect_ptr_independence()
 275   // and find_previous_store().
 276 
 277   if (mem->is_MergeMem()) {
 278     MergeMemNode* mmem = mem->as_MergeMem();
 279     const TypePtr *tp = t_adr->is_ptr();
 280 
 281     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 282   }
 283 
 284   if (mem != old_mem) {
 285     set_req(MemNode::Memory, mem);
 286     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 287     return this;
 288   }
 289 
 290   // let the subclass continue analyzing...
 291   return NULL;
 292 }
 293 
 294 // Helper function for proving some simple control dominations.
 295 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 296 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 297 // is not a constant (dominated by the method's StartNode).
 298 // Used by MemNode::find_previous_store to prove that the
 299 // control input of a memory operation predates (dominates)
 300 // an allocation it wants to look past.
 301 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 302   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 303     return false; // Conservative answer for dead code
 304 
 305   // Check 'dom'. Skip Proj and CatchProj nodes.
 306   dom = dom->find_exact_control(dom);
 307   if (dom == NULL || dom->is_top())
 308     return false; // Conservative answer for dead code
 309 
 310   if (dom == sub) {
 311     // For the case when, for example, 'sub' is Initialize and the original
 312     // 'dom' is Proj node of the 'sub'.
 313     return false;
 314   }
 315 
 316   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 317     return true;
 318 
 319   // 'dom' dominates 'sub' if its control edge and control edges
 320   // of all its inputs dominate or equal to sub's control edge.
 321 
 322   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 323   // Or Region for the check in LoadNode::Ideal();
 324   // 'sub' should have sub->in(0) != NULL.
 325   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 326          sub->is_Region(), "expecting only these nodes");
 327 
 328   // Get control edge of 'sub'.
 329   Node* orig_sub = sub;
 330   sub = sub->find_exact_control(sub->in(0));
 331   if (sub == NULL || sub->is_top())
 332     return false; // Conservative answer for dead code
 333 
 334   assert(sub->is_CFG(), "expecting control");
 335 
 336   if (sub == dom)
 337     return true;
 338 
 339   if (sub->is_Start() || sub->is_Root())
 340     return false;
 341 
 342   {
 343     // Check all control edges of 'dom'.
 344 
 345     ResourceMark rm;
 346     Arena* arena = Thread::current()->resource_area();
 347     Node_List nlist(arena);
 348     Unique_Node_List dom_list(arena);
 349 
 350     dom_list.push(dom);
 351     bool only_dominating_controls = false;
 352 
 353     for (uint next = 0; next < dom_list.size(); next++) {
 354       Node* n = dom_list.at(next);
 355       if (n == orig_sub)
 356         return false; // One of dom's inputs dominated by sub.
 357       if (!n->is_CFG() && n->pinned()) {
 358         // Check only own control edge for pinned non-control nodes.
 359         n = n->find_exact_control(n->in(0));
 360         if (n == NULL || n->is_top())
 361           return false; // Conservative answer for dead code
 362         assert(n->is_CFG(), "expecting control");
 363         dom_list.push(n);
 364       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 365         only_dominating_controls = true;
 366       } else if (n->is_CFG()) {
 367         if (n->dominates(sub, nlist))
 368           only_dominating_controls = true;
 369         else
 370           return false;
 371       } else {
 372         // First, own control edge.
 373         Node* m = n->find_exact_control(n->in(0));
 374         if (m != NULL) {
 375           if (m->is_top())
 376             return false; // Conservative answer for dead code
 377           dom_list.push(m);
 378         }
 379         // Now, the rest of edges.
 380         uint cnt = n->req();
 381         for (uint i = 1; i < cnt; i++) {
 382           m = n->find_exact_control(n->in(i));
 383           if (m == NULL || m->is_top())
 384             continue;
 385           dom_list.push(m);
 386         }
 387       }
 388     }
 389     return only_dominating_controls;
 390   }
 391 }
 392 
 393 //---------------------detect_ptr_independence---------------------------------
 394 // Used by MemNode::find_previous_store to prove that two base
 395 // pointers are never equal.
 396 // The pointers are accompanied by their associated allocations,
 397 // if any, which have been previously discovered by the caller.
 398 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 399                                       Node* p2, AllocateNode* a2,
 400                                       PhaseTransform* phase) {
 401   // Attempt to prove that these two pointers cannot be aliased.
 402   // They may both manifestly be allocations, and they should differ.
 403   // Or, if they are not both allocations, they can be distinct constants.
 404   // Otherwise, one is an allocation and the other a pre-existing value.
 405   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 406     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 407   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 408     return (a1 != a2);
 409   } else if (a1 != NULL) {                  // one allocation a1
 410     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 411     return all_controls_dominate(p2, a1);
 412   } else { //(a2 != NULL)                   // one allocation a2
 413     return all_controls_dominate(p1, a2);
 414   }
 415   return false;
 416 }
 417 
 418 
 419 // The logic for reordering loads and stores uses four steps:
 420 // (a) Walk carefully past stores and initializations which we
 421 //     can prove are independent of this load.
 422 // (b) Observe that the next memory state makes an exact match
 423 //     with self (load or store), and locate the relevant store.
 424 // (c) Ensure that, if we were to wire self directly to the store,
 425 //     the optimizer would fold it up somehow.
 426 // (d) Do the rewiring, and return, depending on some other part of
 427 //     the optimizer to fold up the load.
 428 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 429 // specific to loads and stores, so they are handled by the callers.
 430 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 431 //
 432 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 433   Node*         ctrl   = in(MemNode::Control);
 434   Node*         adr    = in(MemNode::Address);
 435   intptr_t      offset = 0;
 436   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 437   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 438 
 439   if (offset == Type::OffsetBot)
 440     return NULL;            // cannot unalias unless there are precise offsets
 441 
 442   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 443 
 444   intptr_t size_in_bytes = memory_size();
 445 
 446   Node* mem = in(MemNode::Memory);   // start searching here...
 447 
 448   int cnt = 50;             // Cycle limiter
 449   for (;;) {                // While we can dance past unrelated stores...
 450     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 451 
 452     if (mem->is_Store()) {
 453       Node* st_adr = mem->in(MemNode::Address);
 454       intptr_t st_offset = 0;
 455       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 456       if (st_base == NULL)
 457         break;              // inscrutable pointer
 458       if (st_offset != offset && st_offset != Type::OffsetBot) {
 459         const int MAX_STORE = BytesPerLong;
 460         if (st_offset >= offset + size_in_bytes ||
 461             st_offset <= offset - MAX_STORE ||
 462             st_offset <= offset - mem->as_Store()->memory_size()) {
 463           // Success:  The offsets are provably independent.
 464           // (You may ask, why not just test st_offset != offset and be done?
 465           // The answer is that stores of different sizes can co-exist
 466           // in the same sequence of RawMem effects.  We sometimes initialize
 467           // a whole 'tile' of array elements with a single jint or jlong.)
 468           mem = mem->in(MemNode::Memory);
 469           continue;           // (a) advance through independent store memory
 470         }
 471       }
 472       if (st_base != base &&
 473           detect_ptr_independence(base, alloc,
 474                                   st_base,
 475                                   AllocateNode::Ideal_allocation(st_base, phase),
 476                                   phase)) {
 477         // Success:  The bases are provably independent.
 478         mem = mem->in(MemNode::Memory);
 479         continue;           // (a) advance through independent store memory
 480       }
 481 
 482       // (b) At this point, if the bases or offsets do not agree, we lose,
 483       // since we have not managed to prove 'this' and 'mem' independent.
 484       if (st_base == base && st_offset == offset) {
 485         return mem;         // let caller handle steps (c), (d)
 486       }
 487 
 488     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 489       InitializeNode* st_init = mem->in(0)->as_Initialize();
 490       AllocateNode*  st_alloc = st_init->allocation();
 491       if (st_alloc == NULL)
 492         break;              // something degenerated
 493       bool known_identical = false;
 494       bool known_independent = false;
 495       if (alloc == st_alloc)
 496         known_identical = true;
 497       else if (alloc != NULL)
 498         known_independent = true;
 499       else if (all_controls_dominate(this, st_alloc))
 500         known_independent = true;
 501 
 502       if (known_independent) {
 503         // The bases are provably independent: Either they are
 504         // manifestly distinct allocations, or else the control
 505         // of this load dominates the store's allocation.
 506         int alias_idx = phase->C->get_alias_index(adr_type());
 507         if (alias_idx == Compile::AliasIdxRaw) {
 508           mem = st_alloc->in(TypeFunc::Memory);
 509         } else {
 510           mem = st_init->memory(alias_idx);
 511         }
 512         continue;           // (a) advance through independent store memory
 513       }
 514 
 515       // (b) at this point, if we are not looking at a store initializing
 516       // the same allocation we are loading from, we lose.
 517       if (known_identical) {
 518         // From caller, can_see_stored_value will consult find_captured_store.
 519         return mem;         // let caller handle steps (c), (d)
 520       }
 521 
 522     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 523       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 524       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 525         CallNode *call = mem->in(0)->as_Call();
 526         if (!call->may_modify(addr_t, phase)) {
 527           mem = call->in(TypeFunc::Memory);
 528           continue;         // (a) advance through independent call memory
 529         }
 530       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 531         mem = mem->in(0)->in(TypeFunc::Memory);
 532         continue;           // (a) advance through independent MemBar memory
 533       } else if (mem->is_MergeMem()) {
 534         int alias_idx = phase->C->get_alias_index(adr_type());
 535         mem = mem->as_MergeMem()->memory_at(alias_idx);
 536         continue;           // (a) advance through independent MergeMem memory
 537       }
 538     }
 539 
 540     // Unless there is an explicit 'continue', we must bail out here,
 541     // because 'mem' is an inscrutable memory state (e.g., a call).
 542     break;
 543   }
 544 
 545   return NULL;              // bail out
 546 }
 547 
 548 //----------------------calculate_adr_type-------------------------------------
 549 // Helper function.  Notices when the given type of address hits top or bottom.
 550 // Also, asserts a cross-check of the type against the expected address type.
 551 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 552   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 553   #ifdef PRODUCT
 554   cross_check = NULL;
 555   #else
 556   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 557   #endif
 558   const TypePtr* tp = t->isa_ptr();
 559   if (tp == NULL) {
 560     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 561     return TypePtr::BOTTOM;           // touches lots of memory
 562   } else {
 563     #ifdef ASSERT
 564     // %%%% [phh] We don't check the alias index if cross_check is
 565     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 566     if (cross_check != NULL &&
 567         cross_check != TypePtr::BOTTOM &&
 568         cross_check != TypeRawPtr::BOTTOM) {
 569       // Recheck the alias index, to see if it has changed (due to a bug).
 570       Compile* C = Compile::current();
 571       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 572              "must stay in the original alias category");
 573       // The type of the address must be contained in the adr_type,
 574       // disregarding "null"-ness.
 575       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 576       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 577       assert(cross_check->meet(tp_notnull) == cross_check,
 578              "real address must not escape from expected memory type");
 579     }
 580     #endif
 581     return tp;
 582   }
 583 }
 584 
 585 //------------------------adr_phi_is_loop_invariant----------------------------
 586 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 587 // loop is loop invariant. Make a quick traversal of Phi and associated
 588 // CastPP nodes, looking to see if they are a closed group within the loop.
 589 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 590   // The idea is that the phi-nest must boil down to only CastPP nodes
 591   // with the same data. This implies that any path into the loop already
 592   // includes such a CastPP, and so the original cast, whatever its input,
 593   // must be covered by an equivalent cast, with an earlier control input.
 594   ResourceMark rm;
 595 
 596   // The loop entry input of the phi should be the unique dominating
 597   // node for every Phi/CastPP in the loop.
 598   Unique_Node_List closure;
 599   closure.push(adr_phi->in(LoopNode::EntryControl));
 600 
 601   // Add the phi node and the cast to the worklist.
 602   Unique_Node_List worklist;
 603   worklist.push(adr_phi);
 604   if( cast != NULL ){
 605     if( !cast->is_ConstraintCast() ) return false;
 606     worklist.push(cast);
 607   }
 608 
 609   // Begin recursive walk of phi nodes.
 610   while( worklist.size() ){
 611     // Take a node off the worklist
 612     Node *n = worklist.pop();
 613     if( !closure.member(n) ){
 614       // Add it to the closure.
 615       closure.push(n);
 616       // Make a sanity check to ensure we don't waste too much time here.
 617       if( closure.size() > 20) return false;
 618       // This node is OK if:
 619       //  - it is a cast of an identical value
 620       //  - or it is a phi node (then we add its inputs to the worklist)
 621       // Otherwise, the node is not OK, and we presume the cast is not invariant
 622       if( n->is_ConstraintCast() ){
 623         worklist.push(n->in(1));
 624       } else if( n->is_Phi() ) {
 625         for( uint i = 1; i < n->req(); i++ ) {
 626           worklist.push(n->in(i));
 627         }
 628       } else {
 629         return false;
 630       }
 631     }
 632   }
 633 
 634   // Quit when the worklist is empty, and we've found no offending nodes.
 635   return true;
 636 }
 637 
 638 //------------------------------Ideal_DU_postCCP-------------------------------
 639 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 640 // going away in this pass and we need to make this memory op depend on the
 641 // gating null check.
 642 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 643   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 644 }
 645 
 646 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 647 // some sense; we get to keep around the knowledge that an oop is not-null
 648 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 649 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 650 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 651 // some of the more trivial cases in the optimizer.  Removing more useless
 652 // Phi's started allowing Loads to illegally float above null checks.  I gave
 653 // up on this approach.  CNC 10/20/2000
 654 // This static method may be called not from MemNode (EncodePNode calls it).
 655 // Only the control edge of the node 'n' might be updated.
 656 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 657   Node *skipped_cast = NULL;
 658   // Need a null check?  Regular static accesses do not because they are
 659   // from constant addresses.  Array ops are gated by the range check (which
 660   // always includes a NULL check).  Just check field ops.
 661   if( n->in(MemNode::Control) == NULL ) {
 662     // Scan upwards for the highest location we can place this memory op.
 663     while( true ) {
 664       switch( adr->Opcode() ) {
 665 
 666       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 667         adr = adr->in(AddPNode::Base);
 668         continue;
 669 
 670       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 671         adr = adr->in(1);
 672         continue;
 673 
 674       case Op_CastPP:
 675         // If the CastPP is useless, just peek on through it.
 676         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 677           // Remember the cast that we've peeked though. If we peek
 678           // through more than one, then we end up remembering the highest
 679           // one, that is, if in a loop, the one closest to the top.
 680           skipped_cast = adr;
 681           adr = adr->in(1);
 682           continue;
 683         }
 684         // CastPP is going away in this pass!  We need this memory op to be
 685         // control-dependent on the test that is guarding the CastPP.
 686         ccp->hash_delete(n);
 687         n->set_req(MemNode::Control, adr->in(0));
 688         ccp->hash_insert(n);
 689         return n;
 690 
 691       case Op_Phi:
 692         // Attempt to float above a Phi to some dominating point.
 693         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 694           // If we've already peeked through a Cast (which could have set the
 695           // control), we can't float above a Phi, because the skipped Cast
 696           // may not be loop invariant.
 697           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 698             adr = adr->in(1);
 699             continue;
 700           }
 701         }
 702 
 703         // Intentional fallthrough!
 704 
 705         // No obvious dominating point.  The mem op is pinned below the Phi
 706         // by the Phi itself.  If the Phi goes away (no true value is merged)
 707         // then the mem op can float, but not indefinitely.  It must be pinned
 708         // behind the controls leading to the Phi.
 709       case Op_CheckCastPP:
 710         // These usually stick around to change address type, however a
 711         // useless one can be elided and we still need to pick up a control edge
 712         if (adr->in(0) == NULL) {
 713           // This CheckCastPP node has NO control and is likely useless. But we
 714           // need check further up the ancestor chain for a control input to keep
 715           // the node in place. 4959717.
 716           skipped_cast = adr;
 717           adr = adr->in(1);
 718           continue;
 719         }
 720         ccp->hash_delete(n);
 721         n->set_req(MemNode::Control, adr->in(0));
 722         ccp->hash_insert(n);
 723         return n;
 724 
 725         // List of "safe" opcodes; those that implicitly block the memory
 726         // op below any null check.
 727       case Op_CastX2P:          // no null checks on native pointers
 728       case Op_Parm:             // 'this' pointer is not null
 729       case Op_LoadP:            // Loading from within a klass
 730       case Op_LoadN:            // Loading from within a klass
 731       case Op_LoadKlass:        // Loading from within a klass
 732       case Op_LoadNKlass:       // Loading from within a klass
 733       case Op_ConP:             // Loading from a klass
 734       case Op_ConN:             // Loading from a klass
 735       case Op_CreateEx:         // Sucking up the guts of an exception oop
 736       case Op_Con:              // Reading from TLS
 737       case Op_CMoveP:           // CMoveP is pinned
 738       case Op_CMoveN:           // CMoveN is pinned
 739         break;                  // No progress
 740 
 741       case Op_Proj:             // Direct call to an allocation routine
 742       case Op_SCMemProj:        // Memory state from store conditional ops
 743 #ifdef ASSERT
 744         {
 745           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 746           const Node* call = adr->in(0);
 747           if (call->is_CallJava()) {
 748             const CallJavaNode* call_java = call->as_CallJava();
 749             const TypeTuple *r = call_java->tf()->range();
 750             assert(r->cnt() > TypeFunc::Parms, "must return value");
 751             const Type* ret_type = r->field_at(TypeFunc::Parms);
 752             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 753             // We further presume that this is one of
 754             // new_instance_Java, new_array_Java, or
 755             // the like, but do not assert for this.
 756           } else if (call->is_Allocate()) {
 757             // similar case to new_instance_Java, etc.
 758           } else if (!call->is_CallLeaf()) {
 759             // Projections from fetch_oop (OSR) are allowed as well.
 760             ShouldNotReachHere();
 761           }
 762         }
 763 #endif
 764         break;
 765       default:
 766         ShouldNotReachHere();
 767       }
 768       break;
 769     }
 770   }
 771 
 772   return  NULL;               // No progress
 773 }
 774 
 775 
 776 //=============================================================================
 777 uint LoadNode::size_of() const { return sizeof(*this); }
 778 uint LoadNode::cmp( const Node &n ) const
 779 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 780 const Type *LoadNode::bottom_type() const { return _type; }
 781 uint LoadNode::ideal_reg() const {
 782   return Matcher::base2reg[_type->base()];
 783 }
 784 
 785 #ifndef PRODUCT
 786 void LoadNode::dump_spec(outputStream *st) const {
 787   MemNode::dump_spec(st);
 788   if( !Verbose && !WizardMode ) {
 789     // standard dump does this in Verbose and WizardMode
 790     st->print(" #"); _type->dump_on(st);
 791   }
 792 }
 793 #endif
 794 
 795 
 796 //----------------------------LoadNode::make-----------------------------------
 797 // Polymorphic factory method:
 798 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 799   Compile* C = gvn.C;
 800 
 801   // sanity check the alias category against the created node type
 802   assert(!(adr_type->isa_oopptr() &&
 803            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 804          "use LoadKlassNode instead");
 805   assert(!(adr_type->isa_aryptr() &&
 806            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 807          "use LoadRangeNode instead");
 808   switch (bt) {
 809   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 810   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 811   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 812   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 813   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 814   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 815   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 816   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 817   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 818   case T_OBJECT:
 819 #ifdef _LP64
 820     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 821       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 822       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 823     } else
 824 #endif
 825     {
 826       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 827       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 828     }
 829   }
 830   ShouldNotReachHere();
 831   return (LoadNode*)NULL;
 832 }
 833 
 834 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 835   bool require_atomic = true;
 836   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 837 }
 838 
 839 
 840 
 841 
 842 //------------------------------hash-------------------------------------------
 843 uint LoadNode::hash() const {
 844   // unroll addition of interesting fields
 845   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 846 }
 847 
 848 //---------------------------can_see_stored_value------------------------------
 849 // This routine exists to make sure this set of tests is done the same
 850 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 851 // will change the graph shape in a way which makes memory alive twice at the
 852 // same time (uses the Oracle model of aliasing), then some
 853 // LoadXNode::Identity will fold things back to the equivalence-class model
 854 // of aliasing.
 855 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 856   Node* ld_adr = in(MemNode::Address);
 857 
 858   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 859   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 860   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 861       atp->field() != NULL && !atp->field()->is_volatile()) {
 862     uint alias_idx = atp->index();
 863     bool final = atp->field()->is_final();
 864     Node* result = NULL;
 865     Node* current = st;
 866     // Skip through chains of MemBarNodes checking the MergeMems for
 867     // new states for the slice of this load.  Stop once any other
 868     // kind of node is encountered.  Loads from final memory can skip
 869     // through any kind of MemBar but normal loads shouldn't skip
 870     // through MemBarAcquire since the could allow them to move out of
 871     // a synchronized region.
 872     while (current->is_Proj()) {
 873       int opc = current->in(0)->Opcode();
 874       if ((final && opc == Op_MemBarAcquire) ||
 875           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 876         Node* mem = current->in(0)->in(TypeFunc::Memory);
 877         if (mem->is_MergeMem()) {
 878           MergeMemNode* merge = mem->as_MergeMem();
 879           Node* new_st = merge->memory_at(alias_idx);
 880           if (new_st == merge->base_memory()) {
 881             // Keep searching
 882             current = merge->base_memory();
 883             continue;
 884           }
 885           // Save the new memory state for the slice and fall through
 886           // to exit.
 887           result = new_st;
 888         }
 889       }
 890       break;
 891     }
 892     if (result != NULL) {
 893       st = result;
 894     }
 895   }
 896 
 897 
 898   // Loop around twice in the case Load -> Initialize -> Store.
 899   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 900   for (int trip = 0; trip <= 1; trip++) {
 901 
 902     if (st->is_Store()) {
 903       Node* st_adr = st->in(MemNode::Address);
 904       if (!phase->eqv(st_adr, ld_adr)) {
 905         // Try harder before giving up...  Match raw and non-raw pointers.
 906         intptr_t st_off = 0;
 907         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 908         if (alloc == NULL)       return NULL;
 909         intptr_t ld_off = 0;
 910         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 911         if (alloc != allo2)      return NULL;
 912         if (ld_off != st_off)    return NULL;
 913         // At this point we have proven something like this setup:
 914         //  A = Allocate(...)
 915         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 916         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 917         // (Actually, we haven't yet proven the Q's are the same.)
 918         // In other words, we are loading from a casted version of
 919         // the same pointer-and-offset that we stored to.
 920         // Thus, we are able to replace L by V.
 921       }
 922       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 923       if (store_Opcode() != st->Opcode())
 924         return NULL;
 925       return st->in(MemNode::ValueIn);
 926     }
 927 
 928     intptr_t offset = 0;  // scratch
 929 
 930     // A load from a freshly-created object always returns zero.
 931     // (This can happen after LoadNode::Ideal resets the load's memory input
 932     // to find_captured_store, which returned InitializeNode::zero_memory.)
 933     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 934         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 935         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 936       // return a zero value for the load's basic type
 937       // (This is one of the few places where a generic PhaseTransform
 938       // can create new nodes.  Think of it as lazily manifesting
 939       // virtually pre-existing constants.)
 940       return phase->zerocon(memory_type());
 941     }
 942 
 943     // A load from an initialization barrier can match a captured store.
 944     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 945       InitializeNode* init = st->in(0)->as_Initialize();
 946       AllocateNode* alloc = init->allocation();
 947       if (alloc != NULL &&
 948           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
 949         // examine a captured store value
 950         st = init->find_captured_store(offset, memory_size(), phase);
 951         if (st != NULL)
 952           continue;             // take one more trip around
 953       }
 954     }
 955 
 956     break;
 957   }
 958 
 959   return NULL;
 960 }
 961 
 962 //----------------------is_instance_field_load_with_local_phi------------------
 963 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
 964   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
 965       in(MemNode::Address)->is_AddP() ) {
 966     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
 967     // Only instances.
 968     if( t_oop != NULL && t_oop->is_known_instance_field() &&
 969         t_oop->offset() != Type::OffsetBot &&
 970         t_oop->offset() != Type::OffsetTop) {
 971       return true;
 972     }
 973   }
 974   return false;
 975 }
 976 
 977 //------------------------------Identity---------------------------------------
 978 // Loads are identity if previous store is to same address
 979 Node *LoadNode::Identity( PhaseTransform *phase ) {
 980   // If the previous store-maker is the right kind of Store, and the store is
 981   // to the same address, then we are equal to the value stored.
 982   Node* mem = in(MemNode::Memory);
 983   Node* value = can_see_stored_value(mem, phase);
 984   if( value ) {
 985     // byte, short & char stores truncate naturally.
 986     // A load has to load the truncated value which requires
 987     // some sort of masking operation and that requires an
 988     // Ideal call instead of an Identity call.
 989     if (memory_size() < BytesPerInt) {
 990       // If the input to the store does not fit with the load's result type,
 991       // it must be truncated via an Ideal call.
 992       if (!phase->type(value)->higher_equal(phase->type(this)))
 993         return this;
 994     }
 995     // (This works even when value is a Con, but LoadNode::Value
 996     // usually runs first, producing the singleton type of the Con.)
 997     return value;
 998   }
 999 
1000   // Search for an existing data phi which was generated before for the same
1001   // instance's field to avoid infinite generation of phis in a loop.
1002   Node *region = mem->in(0);
1003   if (is_instance_field_load_with_local_phi(region)) {
1004     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1005     int this_index  = phase->C->get_alias_index(addr_t);
1006     int this_offset = addr_t->offset();
1007     int this_id    = addr_t->is_oopptr()->instance_id();
1008     const Type* this_type = bottom_type();
1009     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1010       Node* phi = region->fast_out(i);
1011       if (phi->is_Phi() && phi != mem &&
1012           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1013         return phi;
1014       }
1015     }
1016   }
1017 
1018   return this;
1019 }
1020 
1021 
1022 // Returns true if the AliasType refers to the field that holds the
1023 // cached box array.  Currently only handles the IntegerCache case.
1024 static bool is_autobox_cache(Compile::AliasType* atp) {
1025   if (atp != NULL && atp->field() != NULL) {
1026     ciField* field = atp->field();
1027     ciSymbol* klass = field->holder()->name();
1028     if (field->name() == ciSymbol::cache_field_name() &&
1029         field->holder()->uses_default_loader() &&
1030         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1031       return true;
1032     }
1033   }
1034   return false;
1035 }
1036 
1037 // Fetch the base value in the autobox array
1038 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1039   if (atp != NULL && atp->field() != NULL) {
1040     ciField* field = atp->field();
1041     ciSymbol* klass = field->holder()->name();
1042     if (field->name() == ciSymbol::cache_field_name() &&
1043         field->holder()->uses_default_loader() &&
1044         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1045       assert(field->is_constant(), "what?");
1046       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1047       // Fetch the box object at the base of the array and get its value
1048       ciInstance* box = array->obj_at(0)->as_instance();
1049       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1050       if (ik->nof_nonstatic_fields() == 1) {
1051         // This should be true nonstatic_field_at requires calling
1052         // nof_nonstatic_fields so check it anyway
1053         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1054         cache_offset = c.as_int();
1055       }
1056       return true;
1057     }
1058   }
1059   return false;
1060 }
1061 
1062 // Returns true if the AliasType refers to the value field of an
1063 // autobox object.  Currently only handles Integer.
1064 static bool is_autobox_object(Compile::AliasType* atp) {
1065   if (atp != NULL && atp->field() != NULL) {
1066     ciField* field = atp->field();
1067     ciSymbol* klass = field->holder()->name();
1068     if (field->name() == ciSymbol::value_name() &&
1069         field->holder()->uses_default_loader() &&
1070         klass == ciSymbol::java_lang_Integer()) {
1071       return true;
1072     }
1073   }
1074   return false;
1075 }
1076 
1077 
1078 // We're loading from an object which has autobox behaviour.
1079 // If this object is result of a valueOf call we'll have a phi
1080 // merging a newly allocated object and a load from the cache.
1081 // We want to replace this load with the original incoming
1082 // argument to the valueOf call.
1083 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1084   Node* base = in(Address)->in(AddPNode::Base);
1085   if (base->is_Phi() && base->req() == 3) {
1086     AllocateNode* allocation = NULL;
1087     int allocation_index = -1;
1088     int load_index = -1;
1089     for (uint i = 1; i < base->req(); i++) {
1090       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1091       if (allocation != NULL) {
1092         allocation_index = i;
1093         load_index = 3 - allocation_index;
1094         break;
1095       }
1096     }
1097     bool has_load = ( allocation != NULL &&
1098                       (base->in(load_index)->is_Load() ||
1099                        base->in(load_index)->is_DecodeN() &&
1100                        base->in(load_index)->in(1)->is_Load()) );
1101     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1102       // Push the loads from the phi that comes from valueOf up
1103       // through it to allow elimination of the loads and the recovery
1104       // of the original value.
1105       Node* mem_phi = in(Memory);
1106       Node* offset = in(Address)->in(AddPNode::Offset);
1107       Node* region = base->in(0);
1108 
1109       Node* in1 = clone();
1110       Node* in1_addr = in1->in(Address)->clone();
1111       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1112       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1113       in1_addr->set_req(AddPNode::Offset, offset);
1114       in1->set_req(0, region->in(allocation_index));
1115       in1->set_req(Address, in1_addr);
1116       in1->set_req(Memory, mem_phi->in(allocation_index));
1117 
1118       Node* in2 = clone();
1119       Node* in2_addr = in2->in(Address)->clone();
1120       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1121       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1122       in2_addr->set_req(AddPNode::Offset, offset);
1123       in2->set_req(0, region->in(load_index));
1124       in2->set_req(Address, in2_addr);
1125       in2->set_req(Memory, mem_phi->in(load_index));
1126 
1127       in1_addr = phase->transform(in1_addr);
1128       in1 =      phase->transform(in1);
1129       in2_addr = phase->transform(in2_addr);
1130       in2 =      phase->transform(in2);
1131 
1132       PhiNode* result = PhiNode::make_blank(region, this);
1133       result->set_req(allocation_index, in1);
1134       result->set_req(load_index, in2);
1135       return result;
1136     }
1137   } else if (base->is_Load() ||
1138              base->is_DecodeN() && base->in(1)->is_Load()) {
1139     if (base->is_DecodeN()) {
1140       // Get LoadN node which loads cached Integer object
1141       base = base->in(1);
1142     }
1143     // Eliminate the load of Integer.value for integers from the cache
1144     // array by deriving the value from the index into the array.
1145     // Capture the offset of the load and then reverse the computation.
1146     Node* load_base = base->in(Address)->in(AddPNode::Base);
1147     if (load_base->is_DecodeN()) {
1148       // Get LoadN node which loads IntegerCache.cache field
1149       load_base = load_base->in(1);
1150     }
1151     if (load_base != NULL) {
1152       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1153       intptr_t cache_offset;
1154       int shift = -1;
1155       Node* cache = NULL;
1156       if (is_autobox_cache(atp)) {
1157         shift  = exact_log2(type2aelembytes(T_OBJECT));
1158         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1159       }
1160       if (cache != NULL && base->in(Address)->is_AddP()) {
1161         Node* elements[4];
1162         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1163         int cache_low;
1164         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1165           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1166           // Add up all the offsets making of the address of the load
1167           Node* result = elements[0];
1168           for (int i = 1; i < count; i++) {
1169             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1170           }
1171           // Remove the constant offset from the address and then
1172           // remove the scaling of the offset to recover the original index.
1173           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1174           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1175             // Peel the shift off directly but wrap it in a dummy node
1176             // since Ideal can't return existing nodes
1177             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1178           } else {
1179             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1180           }
1181 #ifdef _LP64
1182           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1183 #endif
1184           return result;
1185         }
1186       }
1187     }
1188   }
1189   return NULL;
1190 }
1191 
1192 //------------------------------split_through_phi------------------------------
1193 // Split instance field load through Phi.
1194 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1195   Node* mem     = in(MemNode::Memory);
1196   Node* address = in(MemNode::Address);
1197   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1198   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1199 
1200   assert(mem->is_Phi() && (t_oop != NULL) &&
1201          t_oop->is_known_instance_field(), "invalide conditions");
1202 
1203   Node *region = mem->in(0);
1204   if (region == NULL) {
1205     return NULL; // Wait stable graph
1206   }
1207   uint cnt = mem->req();
1208   for( uint i = 1; i < cnt; i++ ) {
1209     Node *in = mem->in(i);
1210     if( in == NULL ) {
1211       return NULL; // Wait stable graph
1212     }
1213   }
1214   // Check for loop invariant.
1215   if (cnt == 3) {
1216     for( uint i = 1; i < cnt; i++ ) {
1217       Node *in = mem->in(i);
1218       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1219       if (m == mem) {
1220         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1221         return this;
1222       }
1223     }
1224   }
1225   // Split through Phi (see original code in loopopts.cpp).
1226   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1227 
1228   // Do nothing here if Identity will find a value
1229   // (to avoid infinite chain of value phis generation).
1230   if ( !phase->eqv(this, this->Identity(phase)) )
1231     return NULL;
1232 
1233   // Skip the split if the region dominates some control edge of the address.
1234   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1235     return NULL;
1236 
1237   const Type* this_type = this->bottom_type();
1238   int this_index  = phase->C->get_alias_index(addr_t);
1239   int this_offset = addr_t->offset();
1240   int this_iid    = addr_t->is_oopptr()->instance_id();
1241   int wins = 0;
1242   PhaseIterGVN *igvn = phase->is_IterGVN();
1243   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1244   for( uint i = 1; i < region->req(); i++ ) {
1245     Node *x;
1246     Node* the_clone = NULL;
1247     if( region->in(i) == phase->C->top() ) {
1248       x = phase->C->top();      // Dead path?  Use a dead data op
1249     } else {
1250       x = this->clone();        // Else clone up the data op
1251       the_clone = x;            // Remember for possible deletion.
1252       // Alter data node to use pre-phi inputs
1253       if( this->in(0) == region ) {
1254         x->set_req( 0, region->in(i) );
1255       } else {
1256         x->set_req( 0, NULL );
1257       }
1258       for( uint j = 1; j < this->req(); j++ ) {
1259         Node *in = this->in(j);
1260         if( in->is_Phi() && in->in(0) == region )
1261           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1262       }
1263     }
1264     // Check for a 'win' on some paths
1265     const Type *t = x->Value(igvn);
1266 
1267     bool singleton = t->singleton();
1268 
1269     // See comments in PhaseIdealLoop::split_thru_phi().
1270     if( singleton && t == Type::TOP ) {
1271       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1272     }
1273 
1274     if( singleton ) {
1275       wins++;
1276       x = igvn->makecon(t);
1277     } else {
1278       // We now call Identity to try to simplify the cloned node.
1279       // Note that some Identity methods call phase->type(this).
1280       // Make sure that the type array is big enough for
1281       // our new node, even though we may throw the node away.
1282       // (This tweaking with igvn only works because x is a new node.)
1283       igvn->set_type(x, t);
1284       // If x is a TypeNode, capture any more-precise type permanently into Node
1285       // otherwise it will be not updated during igvn->transform since
1286       // igvn->type(x) is set to x->Value() already.
1287       x->raise_bottom_type(t);
1288       Node *y = x->Identity(igvn);
1289       if( y != x ) {
1290         wins++;
1291         x = y;
1292       } else {
1293         y = igvn->hash_find(x);
1294         if( y ) {
1295           wins++;
1296           x = y;
1297         } else {
1298           // Else x is a new node we are keeping
1299           // We do not need register_new_node_with_optimizer
1300           // because set_type has already been called.
1301           igvn->_worklist.push(x);
1302         }
1303       }
1304     }
1305     if (x != the_clone && the_clone != NULL)
1306       igvn->remove_dead_node(the_clone);
1307     phi->set_req(i, x);
1308   }
1309   if( wins > 0 ) {
1310     // Record Phi
1311     igvn->register_new_node_with_optimizer(phi);
1312     return phi;
1313   }
1314   igvn->remove_dead_node(phi);
1315   return NULL;
1316 }
1317 
1318 //------------------------------Ideal------------------------------------------
1319 // If the load is from Field memory and the pointer is non-null, we can
1320 // zero out the control input.
1321 // If the offset is constant and the base is an object allocation,
1322 // try to hook me up to the exact initializing store.
1323 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1324   Node* p = MemNode::Ideal_common(phase, can_reshape);
1325   if (p)  return (p == NodeSentinel) ? NULL : p;
1326 
1327   Node* ctrl    = in(MemNode::Control);
1328   Node* address = in(MemNode::Address);
1329 
1330   // Skip up past a SafePoint control.  Cannot do this for Stores because
1331   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1332   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1333       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1334     ctrl = ctrl->in(0);
1335     set_req(MemNode::Control,ctrl);
1336   }
1337 
1338   intptr_t ignore = 0;
1339   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1340   if (base != NULL
1341       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1342     // Check for useless control edge in some common special cases
1343     if (in(MemNode::Control) != NULL
1344         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1345         && all_controls_dominate(base, phase->C->start())) {
1346       // A method-invariant, non-null address (constant or 'this' argument).
1347       set_req(MemNode::Control, NULL);
1348     }
1349 
1350     if (EliminateAutoBox && can_reshape) {
1351       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1352       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1353       if (is_autobox_object(atp)) {
1354         Node* result = eliminate_autobox(phase);
1355         if (result != NULL) return result;
1356       }
1357     }
1358   }
1359 
1360   Node* mem = in(MemNode::Memory);
1361   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1362 
1363   if (addr_t != NULL) {
1364     // try to optimize our memory input
1365     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1366     if (opt_mem != mem) {
1367       set_req(MemNode::Memory, opt_mem);
1368       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1369       return this;
1370     }
1371     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1372     if (can_reshape && opt_mem->is_Phi() &&
1373         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1374       // Split instance field load through Phi.
1375       Node* result = split_through_phi(phase);
1376       if (result != NULL) return result;
1377     }
1378   }
1379 
1380   // Check for prior store with a different base or offset; make Load
1381   // independent.  Skip through any number of them.  Bail out if the stores
1382   // are in an endless dead cycle and report no progress.  This is a key
1383   // transform for Reflection.  However, if after skipping through the Stores
1384   // we can't then fold up against a prior store do NOT do the transform as
1385   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1386   // array memory alive twice: once for the hoisted Load and again after the
1387   // bypassed Store.  This situation only works if EVERYBODY who does
1388   // anti-dependence work knows how to bypass.  I.e. we need all
1389   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1390   // the alias index stuff.  So instead, peek through Stores and IFF we can
1391   // fold up, do so.
1392   Node* prev_mem = find_previous_store(phase);
1393   // Steps (a), (b):  Walk past independent stores to find an exact match.
1394   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1395     // (c) See if we can fold up on the spot, but don't fold up here.
1396     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1397     // just return a prior value, which is done by Identity calls.
1398     if (can_see_stored_value(prev_mem, phase)) {
1399       // Make ready for step (d):
1400       set_req(MemNode::Memory, prev_mem);
1401       return this;
1402     }
1403   }
1404 
1405   return NULL;                  // No further progress
1406 }
1407 
1408 // Helper to recognize certain Klass fields which are invariant across
1409 // some group of array types (e.g., int[] or all T[] where T < Object).
1410 const Type*
1411 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1412                                  ciKlass* klass) const {
1413   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1414     // The field is Klass::_modifier_flags.  Return its (constant) value.
1415     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1416     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1417     return TypeInt::make(klass->modifier_flags());
1418   }
1419   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1420     // The field is Klass::_access_flags.  Return its (constant) value.
1421     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1422     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1423     return TypeInt::make(klass->access_flags());
1424   }
1425   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1426     // The field is Klass::_layout_helper.  Return its constant value if known.
1427     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1428     return TypeInt::make(klass->layout_helper());
1429   }
1430 
1431   // No match.
1432   return NULL;
1433 }
1434 
1435 //------------------------------Value-----------------------------------------
1436 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1437   // Either input is TOP ==> the result is TOP
1438   Node* mem = in(MemNode::Memory);
1439   const Type *t1 = phase->type(mem);
1440   if (t1 == Type::TOP)  return Type::TOP;
1441   Node* adr = in(MemNode::Address);
1442   const TypePtr* tp = phase->type(adr)->isa_ptr();
1443   if (tp == NULL || tp->empty())  return Type::TOP;
1444   int off = tp->offset();
1445   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1446 
1447   // Try to guess loaded type from pointer type
1448   if (tp->base() == Type::AryPtr) {
1449     const Type *t = tp->is_aryptr()->elem();
1450     // Don't do this for integer types. There is only potential profit if
1451     // the element type t is lower than _type; that is, for int types, if _type is
1452     // more restrictive than t.  This only happens here if one is short and the other
1453     // char (both 16 bits), and in those cases we've made an intentional decision
1454     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1455     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1456     //
1457     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1458     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1459     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1460     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1461     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1462     // In fact, that could have been the original type of p1, and p1 could have
1463     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1464     // expression (LShiftL quux 3) independently optimized to the constant 8.
1465     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1466         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1467       // t might actually be lower than _type, if _type is a unique
1468       // concrete subclass of abstract class t.
1469       // Make sure the reference is not into the header, by comparing
1470       // the offset against the offset of the start of the array's data.
1471       // Different array types begin at slightly different offsets (12 vs. 16).
1472       // We choose T_BYTE as an example base type that is least restrictive
1473       // as to alignment, which will therefore produce the smallest
1474       // possible base offset.
1475       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1476       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1477         const Type* jt = t->join(_type);
1478         // In any case, do not allow the join, per se, to empty out the type.
1479         if (jt->empty() && !t->empty()) {
1480           // This can happen if a interface-typed array narrows to a class type.
1481           jt = _type;
1482         }
1483 
1484         if (EliminateAutoBox && adr->is_AddP()) {
1485           // The pointers in the autobox arrays are always non-null
1486           Node* base = adr->in(AddPNode::Base);
1487           if (base != NULL &&
1488               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1489             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1490             if (is_autobox_cache(atp)) {
1491               return jt->join(TypePtr::NOTNULL)->is_ptr();
1492             }
1493           }
1494         }
1495         return jt;
1496       }
1497     }
1498   } else if (tp->base() == Type::InstPtr) {
1499     assert( off != Type::OffsetBot ||
1500             // arrays can be cast to Objects
1501             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1502             // unsafe field access may not have a constant offset
1503             phase->C->has_unsafe_access(),
1504             "Field accesses must be precise" );
1505     // For oop loads, we expect the _type to be precise
1506   } else if (tp->base() == Type::KlassPtr) {
1507     assert( off != Type::OffsetBot ||
1508             // arrays can be cast to Objects
1509             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1510             // also allow array-loading from the primary supertype
1511             // array during subtype checks
1512             Opcode() == Op_LoadKlass,
1513             "Field accesses must be precise" );
1514     // For klass/static loads, we expect the _type to be precise
1515   }
1516 
1517   const TypeKlassPtr *tkls = tp->isa_klassptr();
1518   if (tkls != NULL && !StressReflectiveCode) {
1519     ciKlass* klass = tkls->klass();
1520     if (klass->is_loaded() && tkls->klass_is_exact()) {
1521       // We are loading a field from a Klass metaobject whose identity
1522       // is known at compile time (the type is "exact" or "precise").
1523       // Check for fields we know are maintained as constants by the VM.
1524       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1525         // The field is Klass::_super_check_offset.  Return its (constant) value.
1526         // (Folds up type checking code.)
1527         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1528         return TypeInt::make(klass->super_check_offset());
1529       }
1530       // Compute index into primary_supers array
1531       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1532       // Check for overflowing; use unsigned compare to handle the negative case.
1533       if( depth < ciKlass::primary_super_limit() ) {
1534         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1535         // (Folds up type checking code.)
1536         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1537         ciKlass *ss = klass->super_of_depth(depth);
1538         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1539       }
1540       const Type* aift = load_array_final_field(tkls, klass);
1541       if (aift != NULL)  return aift;
1542       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1543           && klass->is_array_klass()) {
1544         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1545         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1546         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1547         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1548       }
1549       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1550         // The field is Klass::_java_mirror.  Return its (constant) value.
1551         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1552         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1553         return TypeInstPtr::make(klass->java_mirror());
1554       }
1555     }
1556 
1557     // We can still check if we are loading from the primary_supers array at a
1558     // shallow enough depth.  Even though the klass is not exact, entries less
1559     // than or equal to its super depth are correct.
1560     if (klass->is_loaded() ) {
1561       ciType *inner = klass->klass();
1562       while( inner->is_obj_array_klass() )
1563         inner = inner->as_obj_array_klass()->base_element_type();
1564       if( inner->is_instance_klass() &&
1565           !inner->as_instance_klass()->flags().is_interface() ) {
1566         // Compute index into primary_supers array
1567         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1568         // Check for overflowing; use unsigned compare to handle the negative case.
1569         if( depth < ciKlass::primary_super_limit() &&
1570             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1571           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1572           // (Folds up type checking code.)
1573           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1574           ciKlass *ss = klass->super_of_depth(depth);
1575           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1576         }
1577       }
1578     }
1579 
1580     // If the type is enough to determine that the thing is not an array,
1581     // we can give the layout_helper a positive interval type.
1582     // This will help short-circuit some reflective code.
1583     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1584         && !klass->is_array_klass() // not directly typed as an array
1585         && !klass->is_interface()  // specifically not Serializable & Cloneable
1586         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1587         ) {
1588       // Note:  When interfaces are reliable, we can narrow the interface
1589       // test to (klass != Serializable && klass != Cloneable).
1590       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1591       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1592       // The key property of this type is that it folds up tests
1593       // for array-ness, since it proves that the layout_helper is positive.
1594       // Thus, a generic value like the basic object layout helper works fine.
1595       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1596     }
1597   }
1598 
1599   // If we are loading from a freshly-allocated object, produce a zero,
1600   // if the load is provably beyond the header of the object.
1601   // (Also allow a variable load from a fresh array to produce zero.)
1602   if (ReduceFieldZeroing) {
1603     Node* value = can_see_stored_value(mem,phase);
1604     if (value != NULL && value->is_Con())
1605       return value->bottom_type();
1606   }
1607 
1608   const TypeOopPtr *tinst = tp->isa_oopptr();
1609   if (tinst != NULL && tinst->is_known_instance_field()) {
1610     // If we have an instance type and our memory input is the
1611     // programs's initial memory state, there is no matching store,
1612     // so just return a zero of the appropriate type
1613     Node *mem = in(MemNode::Memory);
1614     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1615       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1616       return Type::get_zero_type(_type->basic_type());
1617     }
1618   }
1619   return _type;
1620 }
1621 
1622 //------------------------------match_edge-------------------------------------
1623 // Do we Match on this edge index or not?  Match only the address.
1624 uint LoadNode::match_edge(uint idx) const {
1625   return idx == MemNode::Address;
1626 }
1627 
1628 //--------------------------LoadBNode::Ideal--------------------------------------
1629 //
1630 //  If the previous store is to the same address as this load,
1631 //  and the value stored was larger than a byte, replace this load
1632 //  with the value stored truncated to a byte.  If no truncation is
1633 //  needed, the replacement is done in LoadNode::Identity().
1634 //
1635 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1636   Node* mem = in(MemNode::Memory);
1637   Node* value = can_see_stored_value(mem,phase);
1638   if( value && !phase->type(value)->higher_equal( _type ) ) {
1639     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1640     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1641   }
1642   // Identity call will handle the case where truncation is not needed.
1643   return LoadNode::Ideal(phase, can_reshape);
1644 }
1645 
1646 //--------------------------LoadUBNode::Ideal-------------------------------------
1647 //
1648 //  If the previous store is to the same address as this load,
1649 //  and the value stored was larger than a byte, replace this load
1650 //  with the value stored truncated to a byte.  If no truncation is
1651 //  needed, the replacement is done in LoadNode::Identity().
1652 //
1653 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1654   Node* mem = in(MemNode::Memory);
1655   Node* value = can_see_stored_value(mem, phase);
1656   if (value && !phase->type(value)->higher_equal(_type))
1657     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1658   // Identity call will handle the case where truncation is not needed.
1659   return LoadNode::Ideal(phase, can_reshape);
1660 }
1661 
1662 //--------------------------LoadUSNode::Ideal-------------------------------------
1663 //
1664 //  If the previous store is to the same address as this load,
1665 //  and the value stored was larger than a char, replace this load
1666 //  with the value stored truncated to a char.  If no truncation is
1667 //  needed, the replacement is done in LoadNode::Identity().
1668 //
1669 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1670   Node* mem = in(MemNode::Memory);
1671   Node* value = can_see_stored_value(mem,phase);
1672   if( value && !phase->type(value)->higher_equal( _type ) )
1673     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1674   // Identity call will handle the case where truncation is not needed.
1675   return LoadNode::Ideal(phase, can_reshape);
1676 }
1677 
1678 //--------------------------LoadSNode::Ideal--------------------------------------
1679 //
1680 //  If the previous store is to the same address as this load,
1681 //  and the value stored was larger than a short, replace this load
1682 //  with the value stored truncated to a short.  If no truncation is
1683 //  needed, the replacement is done in LoadNode::Identity().
1684 //
1685 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1686   Node* mem = in(MemNode::Memory);
1687   Node* value = can_see_stored_value(mem,phase);
1688   if( value && !phase->type(value)->higher_equal( _type ) ) {
1689     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1690     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1691   }
1692   // Identity call will handle the case where truncation is not needed.
1693   return LoadNode::Ideal(phase, can_reshape);
1694 }
1695 
1696 //=============================================================================
1697 //----------------------------LoadKlassNode::make------------------------------
1698 // Polymorphic factory method:
1699 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1700   Compile* C = gvn.C;
1701   Node *ctl = NULL;
1702   // sanity check the alias category against the created node type
1703   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1704   assert(adr_type != NULL, "expecting TypeOopPtr");
1705 #ifdef _LP64
1706   if (adr_type->is_ptr_to_narrowoop()) {
1707     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1708     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1709   }
1710 #endif
1711   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1712   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1713 }
1714 
1715 //------------------------------Value------------------------------------------
1716 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1717   return klass_value_common(phase);
1718 }
1719 
1720 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1721   // Either input is TOP ==> the result is TOP
1722   const Type *t1 = phase->type( in(MemNode::Memory) );
1723   if (t1 == Type::TOP)  return Type::TOP;
1724   Node *adr = in(MemNode::Address);
1725   const Type *t2 = phase->type( adr );
1726   if (t2 == Type::TOP)  return Type::TOP;
1727   const TypePtr *tp = t2->is_ptr();
1728   if (TypePtr::above_centerline(tp->ptr()) ||
1729       tp->ptr() == TypePtr::Null)  return Type::TOP;
1730 
1731   // Return a more precise klass, if possible
1732   const TypeInstPtr *tinst = tp->isa_instptr();
1733   if (tinst != NULL) {
1734     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1735     int offset = tinst->offset();
1736     if (ik == phase->C->env()->Class_klass()
1737         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1738             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1739       // We are loading a special hidden field from a Class mirror object,
1740       // the field which points to the VM's Klass metaobject.
1741       ciType* t = tinst->java_mirror_type();
1742       // java_mirror_type returns non-null for compile-time Class constants.
1743       if (t != NULL) {
1744         // constant oop => constant klass
1745         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1746           return TypeKlassPtr::make(ciArrayKlass::make(t));
1747         }
1748         if (!t->is_klass()) {
1749           // a primitive Class (e.g., int.class) has NULL for a klass field
1750           return TypePtr::NULL_PTR;
1751         }
1752         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1753         return TypeKlassPtr::make(t->as_klass());
1754       }
1755       // non-constant mirror, so we can't tell what's going on
1756     }
1757     if( !ik->is_loaded() )
1758       return _type;             // Bail out if not loaded
1759     if (offset == oopDesc::klass_offset_in_bytes()) {
1760       if (tinst->klass_is_exact()) {
1761         return TypeKlassPtr::make(ik);
1762       }
1763       // See if we can become precise: no subklasses and no interface
1764       // (Note:  We need to support verified interfaces.)
1765       if (!ik->is_interface() && !ik->has_subklass()) {
1766         //assert(!UseExactTypes, "this code should be useless with exact types");
1767         // Add a dependence; if any subclass added we need to recompile
1768         if (!ik->is_final()) {
1769           // %%% should use stronger assert_unique_concrete_subtype instead
1770           phase->C->dependencies()->assert_leaf_type(ik);
1771         }
1772         // Return precise klass
1773         return TypeKlassPtr::make(ik);
1774       }
1775 
1776       // Return root of possible klass
1777       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1778     }
1779   }
1780 
1781   // Check for loading klass from an array
1782   const TypeAryPtr *tary = tp->isa_aryptr();
1783   if( tary != NULL ) {
1784     ciKlass *tary_klass = tary->klass();
1785     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1786         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1787       if (tary->klass_is_exact()) {
1788         return TypeKlassPtr::make(tary_klass);
1789       }
1790       ciArrayKlass *ak = tary->klass()->as_array_klass();
1791       // If the klass is an object array, we defer the question to the
1792       // array component klass.
1793       if( ak->is_obj_array_klass() ) {
1794         assert( ak->is_loaded(), "" );
1795         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1796         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1797           ciInstanceKlass* ik = base_k->as_instance_klass();
1798           // See if we can become precise: no subklasses and no interface
1799           if (!ik->is_interface() && !ik->has_subklass()) {
1800             //assert(!UseExactTypes, "this code should be useless with exact types");
1801             // Add a dependence; if any subclass added we need to recompile
1802             if (!ik->is_final()) {
1803               phase->C->dependencies()->assert_leaf_type(ik);
1804             }
1805             // Return precise array klass
1806             return TypeKlassPtr::make(ak);
1807           }
1808         }
1809         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1810       } else {                  // Found a type-array?
1811         //assert(!UseExactTypes, "this code should be useless with exact types");
1812         assert( ak->is_type_array_klass(), "" );
1813         return TypeKlassPtr::make(ak); // These are always precise
1814       }
1815     }
1816   }
1817 
1818   // Check for loading klass from an array klass
1819   const TypeKlassPtr *tkls = tp->isa_klassptr();
1820   if (tkls != NULL && !StressReflectiveCode) {
1821     ciKlass* klass = tkls->klass();
1822     if( !klass->is_loaded() )
1823       return _type;             // Bail out if not loaded
1824     if( klass->is_obj_array_klass() &&
1825         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1826       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1827       // // Always returning precise element type is incorrect,
1828       // // e.g., element type could be object and array may contain strings
1829       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1830 
1831       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1832       // according to the element type's subclassing.
1833       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1834     }
1835     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1836         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1837       ciKlass* sup = klass->as_instance_klass()->super();
1838       // The field is Klass::_super.  Return its (constant) value.
1839       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1840       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1841     }
1842   }
1843 
1844   // Bailout case
1845   return LoadNode::Value(phase);
1846 }
1847 
1848 //------------------------------Identity---------------------------------------
1849 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1850 // Also feed through the klass in Allocate(...klass...)._klass.
1851 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1852   return klass_identity_common(phase);
1853 }
1854 
1855 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1856   Node* x = LoadNode::Identity(phase);
1857   if (x != this)  return x;
1858 
1859   // Take apart the address into an oop and and offset.
1860   // Return 'this' if we cannot.
1861   Node*    adr    = in(MemNode::Address);
1862   intptr_t offset = 0;
1863   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1864   if (base == NULL)     return this;
1865   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1866   if (toop == NULL)     return this;
1867 
1868   // We can fetch the klass directly through an AllocateNode.
1869   // This works even if the klass is not constant (clone or newArray).
1870   if (offset == oopDesc::klass_offset_in_bytes()) {
1871     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1872     if (allocated_klass != NULL) {
1873       return allocated_klass;
1874     }
1875   }
1876 
1877   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1878   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1879   // See inline_native_Class_query for occurrences of these patterns.
1880   // Java Example:  x.getClass().isAssignableFrom(y)
1881   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1882   //
1883   // This improves reflective code, often making the Class
1884   // mirror go completely dead.  (Current exception:  Class
1885   // mirrors may appear in debug info, but we could clean them out by
1886   // introducing a new debug info operator for klassOop.java_mirror).
1887   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1888       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1889           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1890     // We are loading a special hidden field from a Class mirror,
1891     // the field which points to its Klass or arrayKlass metaobject.
1892     if (base->is_Load()) {
1893       Node* adr2 = base->in(MemNode::Address);
1894       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1895       if (tkls != NULL && !tkls->empty()
1896           && (tkls->klass()->is_instance_klass() ||
1897               tkls->klass()->is_array_klass())
1898           && adr2->is_AddP()
1899           ) {
1900         int mirror_field = Klass::java_mirror_offset_in_bytes();
1901         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1902           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1903         }
1904         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1905           return adr2->in(AddPNode::Base);
1906         }
1907       }
1908     }
1909   }
1910 
1911   return this;
1912 }
1913 
1914 
1915 //------------------------------Value------------------------------------------
1916 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1917   const Type *t = klass_value_common(phase);
1918   if (t == Type::TOP)
1919     return t;
1920 
1921   return t->make_narrowoop();
1922 }
1923 
1924 //------------------------------Identity---------------------------------------
1925 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1926 // Also feed through the klass in Allocate(...klass...)._klass.
1927 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1928   Node *x = klass_identity_common(phase);
1929 
1930   const Type *t = phase->type( x );
1931   if( t == Type::TOP ) return x;
1932   if( t->isa_narrowoop()) return x;
1933 
1934   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1935 }
1936 
1937 //------------------------------Value-----------------------------------------
1938 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1939   // Either input is TOP ==> the result is TOP
1940   const Type *t1 = phase->type( in(MemNode::Memory) );
1941   if( t1 == Type::TOP ) return Type::TOP;
1942   Node *adr = in(MemNode::Address);
1943   const Type *t2 = phase->type( adr );
1944   if( t2 == Type::TOP ) return Type::TOP;
1945   const TypePtr *tp = t2->is_ptr();
1946   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1947   const TypeAryPtr *tap = tp->isa_aryptr();
1948   if( !tap ) return _type;
1949   return tap->size();
1950 }
1951 
1952 //-------------------------------Ideal---------------------------------------
1953 // Feed through the length in AllocateArray(...length...)._length.
1954 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1955   Node* p = MemNode::Ideal_common(phase, can_reshape);
1956   if (p)  return (p == NodeSentinel) ? NULL : p;
1957 
1958   // Take apart the address into an oop and and offset.
1959   // Return 'this' if we cannot.
1960   Node*    adr    = in(MemNode::Address);
1961   intptr_t offset = 0;
1962   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
1963   if (base == NULL)     return NULL;
1964   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1965   if (tary == NULL)     return NULL;
1966 
1967   // We can fetch the length directly through an AllocateArrayNode.
1968   // This works even if the length is not constant (clone or newArray).
1969   if (offset == arrayOopDesc::length_offset_in_bytes()) {
1970     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1971     if (alloc != NULL) {
1972       Node* allocated_length = alloc->Ideal_length();
1973       Node* len = alloc->make_ideal_length(tary, phase);
1974       if (allocated_length != len) {
1975         // New CastII improves on this.
1976         return len;
1977       }
1978     }
1979   }
1980 
1981   return NULL;
1982 }
1983 
1984 //------------------------------Identity---------------------------------------
1985 // Feed through the length in AllocateArray(...length...)._length.
1986 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1987   Node* x = LoadINode::Identity(phase);
1988   if (x != this)  return x;
1989 
1990   // Take apart the address into an oop and and offset.
1991   // Return 'this' if we cannot.
1992   Node*    adr    = in(MemNode::Address);
1993   intptr_t offset = 0;
1994   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1995   if (base == NULL)     return this;
1996   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1997   if (tary == NULL)     return this;
1998 
1999   // We can fetch the length directly through an AllocateArrayNode.
2000   // This works even if the length is not constant (clone or newArray).
2001   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2002     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2003     if (alloc != NULL) {
2004       Node* allocated_length = alloc->Ideal_length();
2005       // Do not allow make_ideal_length to allocate a CastII node.
2006       Node* len = alloc->make_ideal_length(tary, phase, false);
2007       if (allocated_length == len) {
2008         // Return allocated_length only if it would not be improved by a CastII.
2009         return allocated_length;
2010       }
2011     }
2012   }
2013 
2014   return this;
2015 
2016 }
2017 
2018 //=============================================================================
2019 //---------------------------StoreNode::make-----------------------------------
2020 // Polymorphic factory method:
2021 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2022   Compile* C = gvn.C;
2023 
2024   switch (bt) {
2025   case T_BOOLEAN:
2026   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2027   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2028   case T_CHAR:
2029   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2030   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2031   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2032   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2033   case T_ADDRESS:
2034   case T_OBJECT:
2035 #ifdef _LP64
2036     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2037         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2038          adr->bottom_type()->isa_rawptr())) {
2039       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2040       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2041     } else
2042 #endif
2043     {
2044       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2045     }
2046   }
2047   ShouldNotReachHere();
2048   return (StoreNode*)NULL;
2049 }
2050 
2051 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2052   bool require_atomic = true;
2053   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2054 }
2055 
2056 
2057 //--------------------------bottom_type----------------------------------------
2058 const Type *StoreNode::bottom_type() const {
2059   return Type::MEMORY;
2060 }
2061 
2062 //------------------------------hash-------------------------------------------
2063 uint StoreNode::hash() const {
2064   // unroll addition of interesting fields
2065   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2066 
2067   // Since they are not commoned, do not hash them:
2068   return NO_HASH;
2069 }
2070 
2071 //------------------------------Ideal------------------------------------------
2072 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2073 // When a store immediately follows a relevant allocation/initialization,
2074 // try to capture it into the initialization, or hoist it above.
2075 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2076   Node* p = MemNode::Ideal_common(phase, can_reshape);
2077   if (p)  return (p == NodeSentinel) ? NULL : p;
2078 
2079   Node* mem     = in(MemNode::Memory);
2080   Node* address = in(MemNode::Address);
2081 
2082   // Back-to-back stores to same address?  Fold em up.
2083   // Generally unsafe if I have intervening uses...
2084   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2085     // Looking at a dead closed cycle of memory?
2086     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2087 
2088     assert(Opcode() == mem->Opcode() ||
2089            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2090            "no mismatched stores, except on raw memory");
2091 
2092     if (mem->outcnt() == 1 &&           // check for intervening uses
2093         mem->as_Store()->memory_size() <= this->memory_size()) {
2094       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2095       // For example, 'mem' might be the final state at a conditional return.
2096       // Or, 'mem' might be used by some node which is live at the same time
2097       // 'this' is live, which might be unschedulable.  So, require exactly
2098       // ONE user, the 'this' store, until such time as we clone 'mem' for
2099       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2100       if (can_reshape) {  // (%%% is this an anachronism?)
2101         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2102                   phase->is_IterGVN());
2103       } else {
2104         // It's OK to do this in the parser, since DU info is always accurate,
2105         // and the parser always refers to nodes via SafePointNode maps.
2106         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2107       }
2108       return this;
2109     }
2110   }
2111 
2112   // Capture an unaliased, unconditional, simple store into an initializer.
2113   // Or, if it is independent of the allocation, hoist it above the allocation.
2114   if (ReduceFieldZeroing && /*can_reshape &&*/
2115       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2116     InitializeNode* init = mem->in(0)->as_Initialize();
2117     intptr_t offset = init->can_capture_store(this, phase);
2118     if (offset > 0) {
2119       Node* moved = init->capture_store(this, offset, phase);
2120       // If the InitializeNode captured me, it made a raw copy of me,
2121       // and I need to disappear.
2122       if (moved != NULL) {
2123         // %%% hack to ensure that Ideal returns a new node:
2124         mem = MergeMemNode::make(phase->C, mem);
2125         return mem;             // fold me away
2126       }
2127     }
2128   }
2129 
2130   return NULL;                  // No further progress
2131 }
2132 
2133 //------------------------------Value-----------------------------------------
2134 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2135   // Either input is TOP ==> the result is TOP
2136   const Type *t1 = phase->type( in(MemNode::Memory) );
2137   if( t1 == Type::TOP ) return Type::TOP;
2138   const Type *t2 = phase->type( in(MemNode::Address) );
2139   if( t2 == Type::TOP ) return Type::TOP;
2140   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2141   if( t3 == Type::TOP ) return Type::TOP;
2142   return Type::MEMORY;
2143 }
2144 
2145 //------------------------------Identity---------------------------------------
2146 // Remove redundant stores:
2147 //   Store(m, p, Load(m, p)) changes to m.
2148 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2149 Node *StoreNode::Identity( PhaseTransform *phase ) {
2150   Node* mem = in(MemNode::Memory);
2151   Node* adr = in(MemNode::Address);
2152   Node* val = in(MemNode::ValueIn);
2153 
2154   // Load then Store?  Then the Store is useless
2155   if (val->is_Load() &&
2156       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2157       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2158       val->as_Load()->store_Opcode() == Opcode()) {
2159     return mem;
2160   }
2161 
2162   // Two stores in a row of the same value?
2163   if (mem->is_Store() &&
2164       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2165       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2166       mem->Opcode() == Opcode()) {
2167     return mem;
2168   }
2169 
2170   // Store of zero anywhere into a freshly-allocated object?
2171   // Then the store is useless.
2172   // (It must already have been captured by the InitializeNode.)
2173   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2174     // a newly allocated object is already all-zeroes everywhere
2175     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2176       return mem;
2177     }
2178 
2179     // the store may also apply to zero-bits in an earlier object
2180     Node* prev_mem = find_previous_store(phase);
2181     // Steps (a), (b):  Walk past independent stores to find an exact match.
2182     if (prev_mem != NULL) {
2183       Node* prev_val = can_see_stored_value(prev_mem, phase);
2184       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2185         // prev_val and val might differ by a cast; it would be good
2186         // to keep the more informative of the two.
2187         return mem;
2188       }
2189     }
2190   }
2191 
2192   return this;
2193 }
2194 
2195 //------------------------------match_edge-------------------------------------
2196 // Do we Match on this edge index or not?  Match only memory & value
2197 uint StoreNode::match_edge(uint idx) const {
2198   return idx == MemNode::Address || idx == MemNode::ValueIn;
2199 }
2200 
2201 //------------------------------cmp--------------------------------------------
2202 // Do not common stores up together.  They generally have to be split
2203 // back up anyways, so do not bother.
2204 uint StoreNode::cmp( const Node &n ) const {
2205   return (&n == this);          // Always fail except on self
2206 }
2207 
2208 //------------------------------Ideal_masked_input-----------------------------
2209 // Check for a useless mask before a partial-word store
2210 // (StoreB ... (AndI valIn conIa) )
2211 // If (conIa & mask == mask) this simplifies to
2212 // (StoreB ... (valIn) )
2213 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2214   Node *val = in(MemNode::ValueIn);
2215   if( val->Opcode() == Op_AndI ) {
2216     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2217     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2218       set_req(MemNode::ValueIn, val->in(1));
2219       return this;
2220     }
2221   }
2222   return NULL;
2223 }
2224 
2225 
2226 //------------------------------Ideal_sign_extended_input----------------------
2227 // Check for useless sign-extension before a partial-word store
2228 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2229 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2230 // (StoreB ... (valIn) )
2231 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2232   Node *val = in(MemNode::ValueIn);
2233   if( val->Opcode() == Op_RShiftI ) {
2234     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2235     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2236       Node *shl = val->in(1);
2237       if( shl->Opcode() == Op_LShiftI ) {
2238         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2239         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2240           set_req(MemNode::ValueIn, shl->in(1));
2241           return this;
2242         }
2243       }
2244     }
2245   }
2246   return NULL;
2247 }
2248 
2249 //------------------------------value_never_loaded-----------------------------------
2250 // Determine whether there are any possible loads of the value stored.
2251 // For simplicity, we actually check if there are any loads from the
2252 // address stored to, not just for loads of the value stored by this node.
2253 //
2254 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2255   Node *adr = in(Address);
2256   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2257   if (adr_oop == NULL)
2258     return false;
2259   if (!adr_oop->is_known_instance_field())
2260     return false; // if not a distinct instance, there may be aliases of the address
2261   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2262     Node *use = adr->fast_out(i);
2263     int opc = use->Opcode();
2264     if (use->is_Load() || use->is_LoadStore()) {
2265       return false;
2266     }
2267   }
2268   return true;
2269 }
2270 
2271 //=============================================================================
2272 //------------------------------Ideal------------------------------------------
2273 // If the store is from an AND mask that leaves the low bits untouched, then
2274 // we can skip the AND operation.  If the store is from a sign-extension
2275 // (a left shift, then right shift) we can skip both.
2276 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2277   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2278   if( progress != NULL ) return progress;
2279 
2280   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2281   if( progress != NULL ) return progress;
2282 
2283   // Finally check the default case
2284   return StoreNode::Ideal(phase, can_reshape);
2285 }
2286 
2287 //=============================================================================
2288 //------------------------------Ideal------------------------------------------
2289 // If the store is from an AND mask that leaves the low bits untouched, then
2290 // we can skip the AND operation
2291 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2292   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2293   if( progress != NULL ) return progress;
2294 
2295   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2296   if( progress != NULL ) return progress;
2297 
2298   // Finally check the default case
2299   return StoreNode::Ideal(phase, can_reshape);
2300 }
2301 
2302 //=============================================================================
2303 //------------------------------Identity---------------------------------------
2304 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2305   // No need to card mark when storing a null ptr
2306   Node* my_store = in(MemNode::OopStore);
2307   if (my_store->is_Store()) {
2308     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2309     if( t1 == TypePtr::NULL_PTR ) {
2310       return in(MemNode::Memory);
2311     }
2312   }
2313   return this;
2314 }
2315 
2316 //------------------------------Value-----------------------------------------
2317 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2318   // Either input is TOP ==> the result is TOP
2319   const Type *t = phase->type( in(MemNode::Memory) );
2320   if( t == Type::TOP ) return Type::TOP;
2321   t = phase->type( in(MemNode::Address) );
2322   if( t == Type::TOP ) return Type::TOP;
2323   t = phase->type( in(MemNode::ValueIn) );
2324   if( t == Type::TOP ) return Type::TOP;
2325   // If extra input is TOP ==> the result is TOP
2326   t = phase->type( in(MemNode::OopStore) );
2327   if( t == Type::TOP ) return Type::TOP;
2328 
2329   return StoreNode::Value( phase );
2330 }
2331 
2332 
2333 //=============================================================================
2334 //----------------------------------SCMemProjNode------------------------------
2335 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2336 {
2337   return bottom_type();
2338 }
2339 
2340 //=============================================================================
2341 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2342   init_req(MemNode::Control, c  );
2343   init_req(MemNode::Memory , mem);
2344   init_req(MemNode::Address, adr);
2345   init_req(MemNode::ValueIn, val);
2346   init_req(         ExpectedIn, ex );
2347   init_class_id(Class_LoadStore);
2348 
2349 }
2350 
2351 //=============================================================================
2352 //-------------------------------adr_type--------------------------------------
2353 // Do we Match on this edge index or not?  Do not match memory
2354 const TypePtr* ClearArrayNode::adr_type() const {
2355   Node *adr = in(3);
2356   return MemNode::calculate_adr_type(adr->bottom_type());
2357 }
2358 
2359 //------------------------------match_edge-------------------------------------
2360 // Do we Match on this edge index or not?  Do not match memory
2361 uint ClearArrayNode::match_edge(uint idx) const {
2362   return idx > 1;
2363 }
2364 
2365 //------------------------------Identity---------------------------------------
2366 // Clearing a zero length array does nothing
2367 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2368   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2369 }
2370 
2371 //------------------------------Idealize---------------------------------------
2372 // Clearing a short array is faster with stores
2373 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2374   const int unit = BytesPerLong;
2375   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2376   if (!t)  return NULL;
2377   if (!t->is_con())  return NULL;
2378   intptr_t raw_count = t->get_con();
2379   intptr_t size = raw_count;
2380   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2381   // Clearing nothing uses the Identity call.
2382   // Negative clears are possible on dead ClearArrays
2383   // (see jck test stmt114.stmt11402.val).
2384   if (size <= 0 || size % unit != 0)  return NULL;
2385   intptr_t count = size / unit;
2386   // Length too long; use fast hardware clear
2387   if (size > Matcher::init_array_short_size)  return NULL;
2388   Node *mem = in(1);
2389   if( phase->type(mem)==Type::TOP ) return NULL;
2390   Node *adr = in(3);
2391   const Type* at = phase->type(adr);
2392   if( at==Type::TOP ) return NULL;
2393   const TypePtr* atp = at->isa_ptr();
2394   // adjust atp to be the correct array element address type
2395   if (atp == NULL)  atp = TypePtr::BOTTOM;
2396   else              atp = atp->add_offset(Type::OffsetBot);
2397   // Get base for derived pointer purposes
2398   if( adr->Opcode() != Op_AddP ) Unimplemented();
2399   Node *base = adr->in(1);
2400 
2401   Node *zero = phase->makecon(TypeLong::ZERO);
2402   Node *off  = phase->MakeConX(BytesPerLong);
2403   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2404   count--;
2405   while( count-- ) {
2406     mem = phase->transform(mem);
2407     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2408     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2409   }
2410   return mem;
2411 }
2412 
2413 //----------------------------clear_memory-------------------------------------
2414 // Generate code to initialize object storage to zero.
2415 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2416                                    intptr_t start_offset,
2417                                    Node* end_offset,
2418                                    PhaseGVN* phase) {
2419   Compile* C = phase->C;
2420   intptr_t offset = start_offset;
2421 
2422   int unit = BytesPerLong;
2423   if ((offset % unit) != 0) {
2424     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2425     adr = phase->transform(adr);
2426     const TypePtr* atp = TypeRawPtr::BOTTOM;
2427     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2428     mem = phase->transform(mem);
2429     offset += BytesPerInt;
2430   }
2431   assert((offset % unit) == 0, "");
2432 
2433   // Initialize the remaining stuff, if any, with a ClearArray.
2434   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2435 }
2436 
2437 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2438                                    Node* start_offset,
2439                                    Node* end_offset,
2440                                    PhaseGVN* phase) {
2441   if (start_offset == end_offset) {
2442     // nothing to do
2443     return mem;
2444   }
2445 
2446   Compile* C = phase->C;
2447   int unit = BytesPerLong;
2448   Node* zbase = start_offset;
2449   Node* zend  = end_offset;
2450 
2451   // Scale to the unit required by the CPU:
2452   if (!Matcher::init_array_count_is_in_bytes) {
2453     Node* shift = phase->intcon(exact_log2(unit));
2454     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2455     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2456   }
2457 
2458   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2459   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2460 
2461   // Bulk clear double-words
2462   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2463   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2464   return phase->transform(mem);
2465 }
2466 
2467 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2468                                    intptr_t start_offset,
2469                                    intptr_t end_offset,
2470                                    PhaseGVN* phase) {
2471   if (start_offset == end_offset) {
2472     // nothing to do
2473     return mem;
2474   }
2475 
2476   Compile* C = phase->C;
2477   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2478   intptr_t done_offset = end_offset;
2479   if ((done_offset % BytesPerLong) != 0) {
2480     done_offset -= BytesPerInt;
2481   }
2482   if (done_offset > start_offset) {
2483     mem = clear_memory(ctl, mem, dest,
2484                        start_offset, phase->MakeConX(done_offset), phase);
2485   }
2486   if (done_offset < end_offset) { // emit the final 32-bit store
2487     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2488     adr = phase->transform(adr);
2489     const TypePtr* atp = TypeRawPtr::BOTTOM;
2490     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2491     mem = phase->transform(mem);
2492     done_offset += BytesPerInt;
2493   }
2494   assert(done_offset == end_offset, "");
2495   return mem;
2496 }
2497 
2498 //=============================================================================
2499 // Do we match on this edge? No memory edges
2500 uint StrCompNode::match_edge(uint idx) const {
2501   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
2502 }
2503 
2504 //------------------------------Ideal------------------------------------------
2505 // Return a node which is more "ideal" than the current node.  Strip out
2506 // control copies
2507 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2508   return remove_dead_region(phase, can_reshape) ? this : NULL;
2509 }
2510 
2511 //=============================================================================
2512 // Do we match on this edge? No memory edges
2513 uint StrEqualsNode::match_edge(uint idx) const {
2514   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
2515 }
2516 
2517 //------------------------------Ideal------------------------------------------
2518 // Return a node which is more "ideal" than the current node.  Strip out
2519 // control copies
2520 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2521   return remove_dead_region(phase, can_reshape) ? this : NULL;
2522 }
2523 
2524 //=============================================================================
2525 // Do we match on this edge? No memory edges
2526 uint StrIndexOfNode::match_edge(uint idx) const {
2527   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
2528 }
2529 
2530 //------------------------------Ideal------------------------------------------
2531 // Return a node which is more "ideal" than the current node.  Strip out
2532 // control copies
2533 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2534   return remove_dead_region(phase, can_reshape) ? this : NULL;
2535 }
2536 
2537 //=============================================================================
2538 // Do we match on this edge? No memory edges
2539 uint AryEqNode::match_edge(uint idx) const {
2540   return idx == 2 || idx == 3; // StrEquals ary1 ary2
2541 }
2542 //------------------------------Ideal------------------------------------------
2543 // Return a node which is more "ideal" than the current node.  Strip out
2544 // control copies
2545 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2546   return remove_dead_region(phase, can_reshape) ? this : NULL;
2547 }
2548 
2549 //=============================================================================
2550 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2551   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2552     _adr_type(C->get_adr_type(alias_idx))
2553 {
2554   init_class_id(Class_MemBar);
2555   Node* top = C->top();
2556   init_req(TypeFunc::I_O,top);
2557   init_req(TypeFunc::FramePtr,top);
2558   init_req(TypeFunc::ReturnAdr,top);
2559   if (precedent != NULL)
2560     init_req(TypeFunc::Parms, precedent);
2561 }
2562 
2563 //------------------------------cmp--------------------------------------------
2564 uint MemBarNode::hash() const { return NO_HASH; }
2565 uint MemBarNode::cmp( const Node &n ) const {
2566   return (&n == this);          // Always fail except on self
2567 }
2568 
2569 //------------------------------make-------------------------------------------
2570 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2571   int len = Precedent + (pn == NULL? 0: 1);
2572   switch (opcode) {
2573   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2574   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2575   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2576   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2577   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2578   default:                 ShouldNotReachHere(); return NULL;
2579   }
2580 }
2581 
2582 //------------------------------Ideal------------------------------------------
2583 // Return a node which is more "ideal" than the current node.  Strip out
2584 // control copies
2585 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2586   return remove_dead_region(phase, can_reshape) ? this : NULL;
2587 }
2588 
2589 //------------------------------Value------------------------------------------
2590 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2591   if( !in(0) ) return Type::TOP;
2592   if( phase->type(in(0)) == Type::TOP )
2593     return Type::TOP;
2594   return TypeTuple::MEMBAR;
2595 }
2596 
2597 //------------------------------match------------------------------------------
2598 // Construct projections for memory.
2599 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2600   switch (proj->_con) {
2601   case TypeFunc::Control:
2602   case TypeFunc::Memory:
2603     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2604   }
2605   ShouldNotReachHere();
2606   return NULL;
2607 }
2608 
2609 //===========================InitializeNode====================================
2610 // SUMMARY:
2611 // This node acts as a memory barrier on raw memory, after some raw stores.
2612 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2613 // The Initialize can 'capture' suitably constrained stores as raw inits.
2614 // It can coalesce related raw stores into larger units (called 'tiles').
2615 // It can avoid zeroing new storage for memory units which have raw inits.
2616 // At macro-expansion, it is marked 'complete', and does not optimize further.
2617 //
2618 // EXAMPLE:
2619 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2620 //   ctl = incoming control; mem* = incoming memory
2621 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2622 // First allocate uninitialized memory and fill in the header:
2623 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2624 //   ctl := alloc.Control; mem* := alloc.Memory*
2625 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2626 // Then initialize to zero the non-header parts of the raw memory block:
2627 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2628 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2629 // After the initialize node executes, the object is ready for service:
2630 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2631 // Suppose its body is immediately initialized as {1,2}:
2632 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2633 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2634 //   mem.SLICE(#short[*]) := store2
2635 //
2636 // DETAILS:
2637 // An InitializeNode collects and isolates object initialization after
2638 // an AllocateNode and before the next possible safepoint.  As a
2639 // memory barrier (MemBarNode), it keeps critical stores from drifting
2640 // down past any safepoint or any publication of the allocation.
2641 // Before this barrier, a newly-allocated object may have uninitialized bits.
2642 // After this barrier, it may be treated as a real oop, and GC is allowed.
2643 //
2644 // The semantics of the InitializeNode include an implicit zeroing of
2645 // the new object from object header to the end of the object.
2646 // (The object header and end are determined by the AllocateNode.)
2647 //
2648 // Certain stores may be added as direct inputs to the InitializeNode.
2649 // These stores must update raw memory, and they must be to addresses
2650 // derived from the raw address produced by AllocateNode, and with
2651 // a constant offset.  They must be ordered by increasing offset.
2652 // The first one is at in(RawStores), the last at in(req()-1).
2653 // Unlike most memory operations, they are not linked in a chain,
2654 // but are displayed in parallel as users of the rawmem output of
2655 // the allocation.
2656 //
2657 // (See comments in InitializeNode::capture_store, which continue
2658 // the example given above.)
2659 //
2660 // When the associated Allocate is macro-expanded, the InitializeNode
2661 // may be rewritten to optimize collected stores.  A ClearArrayNode
2662 // may also be created at that point to represent any required zeroing.
2663 // The InitializeNode is then marked 'complete', prohibiting further
2664 // capturing of nearby memory operations.
2665 //
2666 // During macro-expansion, all captured initializations which store
2667 // constant values of 32 bits or smaller are coalesced (if advantageous)
2668 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2669 // initialized in fewer memory operations.  Memory words which are
2670 // covered by neither tiles nor non-constant stores are pre-zeroed
2671 // by explicit stores of zero.  (The code shape happens to do all
2672 // zeroing first, then all other stores, with both sequences occurring
2673 // in order of ascending offsets.)
2674 //
2675 // Alternatively, code may be inserted between an AllocateNode and its
2676 // InitializeNode, to perform arbitrary initialization of the new object.
2677 // E.g., the object copying intrinsics insert complex data transfers here.
2678 // The initialization must then be marked as 'complete' disable the
2679 // built-in zeroing semantics and the collection of initializing stores.
2680 //
2681 // While an InitializeNode is incomplete, reads from the memory state
2682 // produced by it are optimizable if they match the control edge and
2683 // new oop address associated with the allocation/initialization.
2684 // They return a stored value (if the offset matches) or else zero.
2685 // A write to the memory state, if it matches control and address,
2686 // and if it is to a constant offset, may be 'captured' by the
2687 // InitializeNode.  It is cloned as a raw memory operation and rewired
2688 // inside the initialization, to the raw oop produced by the allocation.
2689 // Operations on addresses which are provably distinct (e.g., to
2690 // other AllocateNodes) are allowed to bypass the initialization.
2691 //
2692 // The effect of all this is to consolidate object initialization
2693 // (both arrays and non-arrays, both piecewise and bulk) into a
2694 // single location, where it can be optimized as a unit.
2695 //
2696 // Only stores with an offset less than TrackedInitializationLimit words
2697 // will be considered for capture by an InitializeNode.  This puts a
2698 // reasonable limit on the complexity of optimized initializations.
2699 
2700 //---------------------------InitializeNode------------------------------------
2701 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2702   : _is_complete(false),
2703     MemBarNode(C, adr_type, rawoop)
2704 {
2705   init_class_id(Class_Initialize);
2706 
2707   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2708   assert(in(RawAddress) == rawoop, "proper init");
2709   // Note:  allocation() can be NULL, for secondary initialization barriers
2710 }
2711 
2712 // Since this node is not matched, it will be processed by the
2713 // register allocator.  Declare that there are no constraints
2714 // on the allocation of the RawAddress edge.
2715 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2716   // This edge should be set to top, by the set_complete.  But be conservative.
2717   if (idx == InitializeNode::RawAddress)
2718     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2719   return RegMask::Empty;
2720 }
2721 
2722 Node* InitializeNode::memory(uint alias_idx) {
2723   Node* mem = in(Memory);
2724   if (mem->is_MergeMem()) {
2725     return mem->as_MergeMem()->memory_at(alias_idx);
2726   } else {
2727     // incoming raw memory is not split
2728     return mem;
2729   }
2730 }
2731 
2732 bool InitializeNode::is_non_zero() {
2733   if (is_complete())  return false;
2734   remove_extra_zeroes();
2735   return (req() > RawStores);
2736 }
2737 
2738 void InitializeNode::set_complete(PhaseGVN* phase) {
2739   assert(!is_complete(), "caller responsibility");
2740   _is_complete = true;
2741 
2742   // After this node is complete, it contains a bunch of
2743   // raw-memory initializations.  There is no need for
2744   // it to have anything to do with non-raw memory effects.
2745   // Therefore, tell all non-raw users to re-optimize themselves,
2746   // after skipping the memory effects of this initialization.
2747   PhaseIterGVN* igvn = phase->is_IterGVN();
2748   if (igvn)  igvn->add_users_to_worklist(this);
2749 }
2750 
2751 // convenience function
2752 // return false if the init contains any stores already
2753 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2754   InitializeNode* init = initialization();
2755   if (init == NULL || init->is_complete())  return false;
2756   init->remove_extra_zeroes();
2757   // for now, if this allocation has already collected any inits, bail:
2758   if (init->is_non_zero())  return false;
2759   init->set_complete(phase);
2760   return true;
2761 }
2762 
2763 void InitializeNode::remove_extra_zeroes() {
2764   if (req() == RawStores)  return;
2765   Node* zmem = zero_memory();
2766   uint fill = RawStores;
2767   for (uint i = fill; i < req(); i++) {
2768     Node* n = in(i);
2769     if (n->is_top() || n == zmem)  continue;  // skip
2770     if (fill < i)  set_req(fill, n);          // compact
2771     ++fill;
2772   }
2773   // delete any empty spaces created:
2774   while (fill < req()) {
2775     del_req(fill);
2776   }
2777 }
2778 
2779 // Helper for remembering which stores go with which offsets.
2780 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2781   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2782   intptr_t offset = -1;
2783   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2784                                                phase, offset);
2785   if (base == NULL)     return -1;  // something is dead,
2786   if (offset < 0)       return -1;  //        dead, dead
2787   return offset;
2788 }
2789 
2790 // Helper for proving that an initialization expression is
2791 // "simple enough" to be folded into an object initialization.
2792 // Attempts to prove that a store's initial value 'n' can be captured
2793 // within the initialization without creating a vicious cycle, such as:
2794 //     { Foo p = new Foo(); p.next = p; }
2795 // True for constants and parameters and small combinations thereof.
2796 bool InitializeNode::detect_init_independence(Node* n,
2797                                               bool st_is_pinned,
2798                                               int& count) {
2799   if (n == NULL)      return true;   // (can this really happen?)
2800   if (n->is_Proj())   n = n->in(0);
2801   if (n == this)      return false;  // found a cycle
2802   if (n->is_Con())    return true;
2803   if (n->is_Start())  return true;   // params, etc., are OK
2804   if (n->is_Root())   return true;   // even better
2805 
2806   Node* ctl = n->in(0);
2807   if (ctl != NULL && !ctl->is_top()) {
2808     if (ctl->is_Proj())  ctl = ctl->in(0);
2809     if (ctl == this)  return false;
2810 
2811     // If we already know that the enclosing memory op is pinned right after
2812     // the init, then any control flow that the store has picked up
2813     // must have preceded the init, or else be equal to the init.
2814     // Even after loop optimizations (which might change control edges)
2815     // a store is never pinned *before* the availability of its inputs.
2816     if (!MemNode::all_controls_dominate(n, this))
2817       return false;                  // failed to prove a good control
2818 
2819   }
2820 
2821   // Check data edges for possible dependencies on 'this'.
2822   if ((count += 1) > 20)  return false;  // complexity limit
2823   for (uint i = 1; i < n->req(); i++) {
2824     Node* m = n->in(i);
2825     if (m == NULL || m == n || m->is_top())  continue;
2826     uint first_i = n->find_edge(m);
2827     if (i != first_i)  continue;  // process duplicate edge just once
2828     if (!detect_init_independence(m, st_is_pinned, count)) {
2829       return false;
2830     }
2831   }
2832 
2833   return true;
2834 }
2835 
2836 // Here are all the checks a Store must pass before it can be moved into
2837 // an initialization.  Returns zero if a check fails.
2838 // On success, returns the (constant) offset to which the store applies,
2839 // within the initialized memory.
2840 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2841   const int FAIL = 0;
2842   if (st->req() != MemNode::ValueIn + 1)
2843     return FAIL;                // an inscrutable StoreNode (card mark?)
2844   Node* ctl = st->in(MemNode::Control);
2845   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2846     return FAIL;                // must be unconditional after the initialization
2847   Node* mem = st->in(MemNode::Memory);
2848   if (!(mem->is_Proj() && mem->in(0) == this))
2849     return FAIL;                // must not be preceded by other stores
2850   Node* adr = st->in(MemNode::Address);
2851   intptr_t offset;
2852   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2853   if (alloc == NULL)
2854     return FAIL;                // inscrutable address
2855   if (alloc != allocation())
2856     return FAIL;                // wrong allocation!  (store needs to float up)
2857   Node* val = st->in(MemNode::ValueIn);
2858   int complexity_count = 0;
2859   if (!detect_init_independence(val, true, complexity_count))
2860     return FAIL;                // stored value must be 'simple enough'
2861 
2862   return offset;                // success
2863 }
2864 
2865 // Find the captured store in(i) which corresponds to the range
2866 // [start..start+size) in the initialized object.
2867 // If there is one, return its index i.  If there isn't, return the
2868 // negative of the index where it should be inserted.
2869 // Return 0 if the queried range overlaps an initialization boundary
2870 // or if dead code is encountered.
2871 // If size_in_bytes is zero, do not bother with overlap checks.
2872 int InitializeNode::captured_store_insertion_point(intptr_t start,
2873                                                    int size_in_bytes,
2874                                                    PhaseTransform* phase) {
2875   const int FAIL = 0, MAX_STORE = BytesPerLong;
2876 
2877   if (is_complete())
2878     return FAIL;                // arraycopy got here first; punt
2879 
2880   assert(allocation() != NULL, "must be present");
2881 
2882   // no negatives, no header fields:
2883   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2884 
2885   // after a certain size, we bail out on tracking all the stores:
2886   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2887   if (start >= ti_limit)  return FAIL;
2888 
2889   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2890     if (i >= limit)  return -(int)i; // not found; here is where to put it
2891 
2892     Node*    st     = in(i);
2893     intptr_t st_off = get_store_offset(st, phase);
2894     if (st_off < 0) {
2895       if (st != zero_memory()) {
2896         return FAIL;            // bail out if there is dead garbage
2897       }
2898     } else if (st_off > start) {
2899       // ...we are done, since stores are ordered
2900       if (st_off < start + size_in_bytes) {
2901         return FAIL;            // the next store overlaps
2902       }
2903       return -(int)i;           // not found; here is where to put it
2904     } else if (st_off < start) {
2905       if (size_in_bytes != 0 &&
2906           start < st_off + MAX_STORE &&
2907           start < st_off + st->as_Store()->memory_size()) {
2908         return FAIL;            // the previous store overlaps
2909       }
2910     } else {
2911       if (size_in_bytes != 0 &&
2912           st->as_Store()->memory_size() != size_in_bytes) {
2913         return FAIL;            // mismatched store size
2914       }
2915       return i;
2916     }
2917 
2918     ++i;
2919   }
2920 }
2921 
2922 // Look for a captured store which initializes at the offset 'start'
2923 // with the given size.  If there is no such store, and no other
2924 // initialization interferes, then return zero_memory (the memory
2925 // projection of the AllocateNode).
2926 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2927                                           PhaseTransform* phase) {
2928   assert(stores_are_sane(phase), "");
2929   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2930   if (i == 0) {
2931     return NULL;                // something is dead
2932   } else if (i < 0) {
2933     return zero_memory();       // just primordial zero bits here
2934   } else {
2935     Node* st = in(i);           // here is the store at this position
2936     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2937     return st;
2938   }
2939 }
2940 
2941 // Create, as a raw pointer, an address within my new object at 'offset'.
2942 Node* InitializeNode::make_raw_address(intptr_t offset,
2943                                        PhaseTransform* phase) {
2944   Node* addr = in(RawAddress);
2945   if (offset != 0) {
2946     Compile* C = phase->C;
2947     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2948                                                  phase->MakeConX(offset)) );
2949   }
2950   return addr;
2951 }
2952 
2953 // Clone the given store, converting it into a raw store
2954 // initializing a field or element of my new object.
2955 // Caller is responsible for retiring the original store,
2956 // with subsume_node or the like.
2957 //
2958 // From the example above InitializeNode::InitializeNode,
2959 // here are the old stores to be captured:
2960 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2961 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2962 //
2963 // Here is the changed code; note the extra edges on init:
2964 //   alloc = (Allocate ...)
2965 //   rawoop = alloc.RawAddress
2966 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2967 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2968 //   init = (Initialize alloc.Control alloc.Memory rawoop
2969 //                      rawstore1 rawstore2)
2970 //
2971 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2972                                     PhaseTransform* phase) {
2973   assert(stores_are_sane(phase), "");
2974 
2975   if (start < 0)  return NULL;
2976   assert(can_capture_store(st, phase) == start, "sanity");
2977 
2978   Compile* C = phase->C;
2979   int size_in_bytes = st->memory_size();
2980   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2981   if (i == 0)  return NULL;     // bail out
2982   Node* prev_mem = NULL;        // raw memory for the captured store
2983   if (i > 0) {
2984     prev_mem = in(i);           // there is a pre-existing store under this one
2985     set_req(i, C->top());       // temporarily disconnect it
2986     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2987   } else {
2988     i = -i;                     // no pre-existing store
2989     prev_mem = zero_memory();   // a slice of the newly allocated object
2990     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2991       set_req(--i, C->top());   // reuse this edge; it has been folded away
2992     else
2993       ins_req(i, C->top());     // build a new edge
2994   }
2995   Node* new_st = st->clone();
2996   new_st->set_req(MemNode::Control, in(Control));
2997   new_st->set_req(MemNode::Memory,  prev_mem);
2998   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2999   new_st = phase->transform(new_st);
3000 
3001   // At this point, new_st might have swallowed a pre-existing store
3002   // at the same offset, or perhaps new_st might have disappeared,
3003   // if it redundantly stored the same value (or zero to fresh memory).
3004 
3005   // In any case, wire it in:
3006   set_req(i, new_st);
3007 
3008   // The caller may now kill the old guy.
3009   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3010   assert(check_st == new_st || check_st == NULL, "must be findable");
3011   assert(!is_complete(), "");
3012   return new_st;
3013 }
3014 
3015 static bool store_constant(jlong* tiles, int num_tiles,
3016                            intptr_t st_off, int st_size,
3017                            jlong con) {
3018   if ((st_off & (st_size-1)) != 0)
3019     return false;               // strange store offset (assume size==2**N)
3020   address addr = (address)tiles + st_off;
3021   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3022   switch (st_size) {
3023   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3024   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3025   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3026   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3027   default: return false;        // strange store size (detect size!=2**N here)
3028   }
3029   return true;                  // return success to caller
3030 }
3031 
3032 // Coalesce subword constants into int constants and possibly
3033 // into long constants.  The goal, if the CPU permits,
3034 // is to initialize the object with a small number of 64-bit tiles.
3035 // Also, convert floating-point constants to bit patterns.
3036 // Non-constants are not relevant to this pass.
3037 //
3038 // In terms of the running example on InitializeNode::InitializeNode
3039 // and InitializeNode::capture_store, here is the transformation
3040 // of rawstore1 and rawstore2 into rawstore12:
3041 //   alloc = (Allocate ...)
3042 //   rawoop = alloc.RawAddress
3043 //   tile12 = 0x00010002
3044 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3045 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3046 //
3047 void
3048 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3049                                         Node* size_in_bytes,
3050                                         PhaseGVN* phase) {
3051   Compile* C = phase->C;
3052 
3053   assert(stores_are_sane(phase), "");
3054   // Note:  After this pass, they are not completely sane,
3055   // since there may be some overlaps.
3056 
3057   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3058 
3059   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3060   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3061   size_limit = MIN2(size_limit, ti_limit);
3062   size_limit = align_size_up(size_limit, BytesPerLong);
3063   int num_tiles = size_limit / BytesPerLong;
3064 
3065   // allocate space for the tile map:
3066   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3067   jlong  tiles_buf[small_len];
3068   Node*  nodes_buf[small_len];
3069   jlong  inits_buf[small_len];
3070   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3071                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3072   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3073                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3074   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3075                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3076   // tiles: exact bitwise model of all primitive constants
3077   // nodes: last constant-storing node subsumed into the tiles model
3078   // inits: which bytes (in each tile) are touched by any initializations
3079 
3080   //// Pass A: Fill in the tile model with any relevant stores.
3081 
3082   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3083   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3084   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3085   Node* zmem = zero_memory(); // initially zero memory state
3086   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3087     Node* st = in(i);
3088     intptr_t st_off = get_store_offset(st, phase);
3089 
3090     // Figure out the store's offset and constant value:
3091     if (st_off < header_size)             continue; //skip (ignore header)
3092     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3093     int st_size = st->as_Store()->memory_size();
3094     if (st_off + st_size > size_limit)    break;
3095 
3096     // Record which bytes are touched, whether by constant or not.
3097     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3098       continue;                 // skip (strange store size)
3099 
3100     const Type* val = phase->type(st->in(MemNode::ValueIn));
3101     if (!val->singleton())                continue; //skip (non-con store)
3102     BasicType type = val->basic_type();
3103 
3104     jlong con = 0;
3105     switch (type) {
3106     case T_INT:    con = val->is_int()->get_con();  break;
3107     case T_LONG:   con = val->is_long()->get_con(); break;
3108     case T_FLOAT:  con = jint_cast(val->getf());    break;
3109     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3110     default:                              continue; //skip (odd store type)
3111     }
3112 
3113     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3114         st->Opcode() == Op_StoreL) {
3115       continue;                 // This StoreL is already optimal.
3116     }
3117 
3118     // Store down the constant.
3119     store_constant(tiles, num_tiles, st_off, st_size, con);
3120 
3121     intptr_t j = st_off >> LogBytesPerLong;
3122 
3123     if (type == T_INT && st_size == BytesPerInt
3124         && (st_off & BytesPerInt) == BytesPerInt) {
3125       jlong lcon = tiles[j];
3126       if (!Matcher::isSimpleConstant64(lcon) &&
3127           st->Opcode() == Op_StoreI) {
3128         // This StoreI is already optimal by itself.
3129         jint* intcon = (jint*) &tiles[j];
3130         intcon[1] = 0;  // undo the store_constant()
3131 
3132         // If the previous store is also optimal by itself, back up and
3133         // undo the action of the previous loop iteration... if we can.
3134         // But if we can't, just let the previous half take care of itself.
3135         st = nodes[j];
3136         st_off -= BytesPerInt;
3137         con = intcon[0];
3138         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3139           assert(st_off >= header_size, "still ignoring header");
3140           assert(get_store_offset(st, phase) == st_off, "must be");
3141           assert(in(i-1) == zmem, "must be");
3142           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3143           assert(con == tcon->is_int()->get_con(), "must be");
3144           // Undo the effects of the previous loop trip, which swallowed st:
3145           intcon[0] = 0;        // undo store_constant()
3146           set_req(i-1, st);     // undo set_req(i, zmem)
3147           nodes[j] = NULL;      // undo nodes[j] = st
3148           --old_subword;        // undo ++old_subword
3149         }
3150         continue;               // This StoreI is already optimal.
3151       }
3152     }
3153 
3154     // This store is not needed.
3155     set_req(i, zmem);
3156     nodes[j] = st;              // record for the moment
3157     if (st_size < BytesPerLong) // something has changed
3158           ++old_subword;        // includes int/float, but who's counting...
3159     else  ++old_long;
3160   }
3161 
3162   if ((old_subword + old_long) == 0)
3163     return;                     // nothing more to do
3164 
3165   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3166   // Be sure to insert them before overlapping non-constant stores.
3167   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3168   for (int j = 0; j < num_tiles; j++) {
3169     jlong con  = tiles[j];
3170     jlong init = inits[j];
3171     if (con == 0)  continue;
3172     jint con0,  con1;           // split the constant, address-wise
3173     jint init0, init1;          // split the init map, address-wise
3174     { union { jlong con; jint intcon[2]; } u;
3175       u.con = con;
3176       con0  = u.intcon[0];
3177       con1  = u.intcon[1];
3178       u.con = init;
3179       init0 = u.intcon[0];
3180       init1 = u.intcon[1];
3181     }
3182 
3183     Node* old = nodes[j];
3184     assert(old != NULL, "need the prior store");
3185     intptr_t offset = (j * BytesPerLong);
3186 
3187     bool split = !Matcher::isSimpleConstant64(con);
3188 
3189     if (offset < header_size) {
3190       assert(offset + BytesPerInt >= header_size, "second int counts");
3191       assert(*(jint*)&tiles[j] == 0, "junk in header");
3192       split = true;             // only the second word counts
3193       // Example:  int a[] = { 42 ... }
3194     } else if (con0 == 0 && init0 == -1) {
3195       split = true;             // first word is covered by full inits
3196       // Example:  int a[] = { ... foo(), 42 ... }
3197     } else if (con1 == 0 && init1 == -1) {
3198       split = true;             // second word is covered by full inits
3199       // Example:  int a[] = { ... 42, foo() ... }
3200     }
3201 
3202     // Here's a case where init0 is neither 0 nor -1:
3203     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3204     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3205     // In this case the tile is not split; it is (jlong)42.
3206     // The big tile is stored down, and then the foo() value is inserted.
3207     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3208 
3209     Node* ctl = old->in(MemNode::Control);
3210     Node* adr = make_raw_address(offset, phase);
3211     const TypePtr* atp = TypeRawPtr::BOTTOM;
3212 
3213     // One or two coalesced stores to plop down.
3214     Node*    st[2];
3215     intptr_t off[2];
3216     int  nst = 0;
3217     if (!split) {
3218       ++new_long;
3219       off[nst] = offset;
3220       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3221                                   phase->longcon(con), T_LONG);
3222     } else {
3223       // Omit either if it is a zero.
3224       if (con0 != 0) {
3225         ++new_int;
3226         off[nst]  = offset;
3227         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3228                                     phase->intcon(con0), T_INT);
3229       }
3230       if (con1 != 0) {
3231         ++new_int;
3232         offset += BytesPerInt;
3233         adr = make_raw_address(offset, phase);
3234         off[nst]  = offset;
3235         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3236                                     phase->intcon(con1), T_INT);
3237       }
3238     }
3239 
3240     // Insert second store first, then the first before the second.
3241     // Insert each one just before any overlapping non-constant stores.
3242     while (nst > 0) {
3243       Node* st1 = st[--nst];
3244       C->copy_node_notes_to(st1, old);
3245       st1 = phase->transform(st1);
3246       offset = off[nst];
3247       assert(offset >= header_size, "do not smash header");
3248       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3249       guarantee(ins_idx != 0, "must re-insert constant store");
3250       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3251       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3252         set_req(--ins_idx, st1);
3253       else
3254         ins_req(ins_idx, st1);
3255     }
3256   }
3257 
3258   if (PrintCompilation && WizardMode)
3259     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3260                   old_subword, old_long, new_int, new_long);
3261   if (C->log() != NULL)
3262     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3263                    old_subword, old_long, new_int, new_long);
3264 
3265   // Clean up any remaining occurrences of zmem:
3266   remove_extra_zeroes();
3267 }
3268 
3269 // Explore forward from in(start) to find the first fully initialized
3270 // word, and return its offset.  Skip groups of subword stores which
3271 // together initialize full words.  If in(start) is itself part of a
3272 // fully initialized word, return the offset of in(start).  If there
3273 // are no following full-word stores, or if something is fishy, return
3274 // a negative value.
3275 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3276   int       int_map = 0;
3277   intptr_t  int_map_off = 0;
3278   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3279 
3280   for (uint i = start, limit = req(); i < limit; i++) {
3281     Node* st = in(i);
3282 
3283     intptr_t st_off = get_store_offset(st, phase);
3284     if (st_off < 0)  break;  // return conservative answer
3285 
3286     int st_size = st->as_Store()->memory_size();
3287     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3288       return st_off;            // we found a complete word init
3289     }
3290 
3291     // update the map:
3292 
3293     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3294     if (this_int_off != int_map_off) {
3295       // reset the map:
3296       int_map = 0;
3297       int_map_off = this_int_off;
3298     }
3299 
3300     int subword_off = st_off - this_int_off;
3301     int_map |= right_n_bits(st_size) << subword_off;
3302     if ((int_map & FULL_MAP) == FULL_MAP) {
3303       return this_int_off;      // we found a complete word init
3304     }
3305 
3306     // Did this store hit or cross the word boundary?
3307     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3308     if (next_int_off == this_int_off + BytesPerInt) {
3309       // We passed the current int, without fully initializing it.
3310       int_map_off = next_int_off;
3311       int_map >>= BytesPerInt;
3312     } else if (next_int_off > this_int_off + BytesPerInt) {
3313       // We passed the current and next int.
3314       return this_int_off + BytesPerInt;
3315     }
3316   }
3317 
3318   return -1;
3319 }
3320 
3321 
3322 // Called when the associated AllocateNode is expanded into CFG.
3323 // At this point, we may perform additional optimizations.
3324 // Linearize the stores by ascending offset, to make memory
3325 // activity as coherent as possible.
3326 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3327                                       intptr_t header_size,
3328                                       Node* size_in_bytes,
3329                                       PhaseGVN* phase) {
3330   assert(!is_complete(), "not already complete");
3331   assert(stores_are_sane(phase), "");
3332   assert(allocation() != NULL, "must be present");
3333 
3334   remove_extra_zeroes();
3335 
3336   if (ReduceFieldZeroing || ReduceBulkZeroing)
3337     // reduce instruction count for common initialization patterns
3338     coalesce_subword_stores(header_size, size_in_bytes, phase);
3339 
3340   Node* zmem = zero_memory();   // initially zero memory state
3341   Node* inits = zmem;           // accumulating a linearized chain of inits
3342   #ifdef ASSERT
3343   intptr_t first_offset = allocation()->minimum_header_size();
3344   intptr_t last_init_off = first_offset;  // previous init offset
3345   intptr_t last_init_end = first_offset;  // previous init offset+size
3346   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3347   #endif
3348   intptr_t zeroes_done = header_size;
3349 
3350   bool do_zeroing = true;       // we might give up if inits are very sparse
3351   int  big_init_gaps = 0;       // how many large gaps have we seen?
3352 
3353   if (ZeroTLAB)  do_zeroing = false;
3354   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3355 
3356   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3357     Node* st = in(i);
3358     intptr_t st_off = get_store_offset(st, phase);
3359     if (st_off < 0)
3360       break;                    // unknown junk in the inits
3361     if (st->in(MemNode::Memory) != zmem)
3362       break;                    // complicated store chains somehow in list
3363 
3364     int st_size = st->as_Store()->memory_size();
3365     intptr_t next_init_off = st_off + st_size;
3366 
3367     if (do_zeroing && zeroes_done < next_init_off) {
3368       // See if this store needs a zero before it or under it.
3369       intptr_t zeroes_needed = st_off;
3370 
3371       if (st_size < BytesPerInt) {
3372         // Look for subword stores which only partially initialize words.
3373         // If we find some, we must lay down some word-level zeroes first,
3374         // underneath the subword stores.
3375         //
3376         // Examples:
3377         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3378         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3379         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3380         //
3381         // Note:  coalesce_subword_stores may have already done this,
3382         // if it was prompted by constant non-zero subword initializers.
3383         // But this case can still arise with non-constant stores.
3384 
3385         intptr_t next_full_store = find_next_fullword_store(i, phase);
3386 
3387         // In the examples above:
3388         //   in(i)          p   q   r   s     x   y     z
3389         //   st_off        12  13  14  15    12  13    14
3390         //   st_size        1   1   1   1     1   1     1
3391         //   next_full_s.  12  16  16  16    16  16    16
3392         //   z's_done      12  16  16  16    12  16    12
3393         //   z's_needed    12  16  16  16    16  16    16
3394         //   zsize          0   0   0   0     4   0     4
3395         if (next_full_store < 0) {
3396           // Conservative tack:  Zero to end of current word.
3397           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3398         } else {
3399           // Zero to beginning of next fully initialized word.
3400           // Or, don't zero at all, if we are already in that word.
3401           assert(next_full_store >= zeroes_needed, "must go forward");
3402           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3403           zeroes_needed = next_full_store;
3404         }
3405       }
3406 
3407       if (zeroes_needed > zeroes_done) {
3408         intptr_t zsize = zeroes_needed - zeroes_done;
3409         // Do some incremental zeroing on rawmem, in parallel with inits.
3410         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3411         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3412                                               zeroes_done, zeroes_needed,
3413                                               phase);
3414         zeroes_done = zeroes_needed;
3415         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3416           do_zeroing = false;   // leave the hole, next time
3417       }
3418     }
3419 
3420     // Collect the store and move on:
3421     st->set_req(MemNode::Memory, inits);
3422     inits = st;                 // put it on the linearized chain
3423     set_req(i, zmem);           // unhook from previous position
3424 
3425     if (zeroes_done == st_off)
3426       zeroes_done = next_init_off;
3427 
3428     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3429 
3430     #ifdef ASSERT
3431     // Various order invariants.  Weaker than stores_are_sane because
3432     // a large constant tile can be filled in by smaller non-constant stores.
3433     assert(st_off >= last_init_off, "inits do not reverse");
3434     last_init_off = st_off;
3435     const Type* val = NULL;
3436     if (st_size >= BytesPerInt &&
3437         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3438         (int)val->basic_type() < (int)T_OBJECT) {
3439       assert(st_off >= last_tile_end, "tiles do not overlap");
3440       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3441       last_tile_end = MAX2(last_tile_end, next_init_off);
3442     } else {
3443       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3444       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3445       assert(st_off      >= last_init_end, "inits do not overlap");
3446       last_init_end = next_init_off;  // it's a non-tile
3447     }
3448     #endif //ASSERT
3449   }
3450 
3451   remove_extra_zeroes();        // clear out all the zmems left over
3452   add_req(inits);
3453 
3454   if (!ZeroTLAB) {
3455     // If anything remains to be zeroed, zero it all now.
3456     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3457     // if it is the last unused 4 bytes of an instance, forget about it
3458     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3459     if (zeroes_done + BytesPerLong >= size_limit) {
3460       assert(allocation() != NULL, "");
3461       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3462       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3463       if (zeroes_done == k->layout_helper())
3464         zeroes_done = size_limit;
3465     }
3466     if (zeroes_done < size_limit) {
3467       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3468                                             zeroes_done, size_in_bytes, phase);
3469     }
3470   }
3471 
3472   set_complete(phase);
3473   return rawmem;
3474 }
3475 
3476 
3477 #ifdef ASSERT
3478 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3479   if (is_complete())
3480     return true;                // stores could be anything at this point
3481   assert(allocation() != NULL, "must be present");
3482   intptr_t last_off = allocation()->minimum_header_size();
3483   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3484     Node* st = in(i);
3485     intptr_t st_off = get_store_offset(st, phase);
3486     if (st_off < 0)  continue;  // ignore dead garbage
3487     if (last_off > st_off) {
3488       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3489       this->dump(2);
3490       assert(false, "ascending store offsets");
3491       return false;
3492     }
3493     last_off = st_off + st->as_Store()->memory_size();
3494   }
3495   return true;
3496 }
3497 #endif //ASSERT
3498 
3499 
3500 
3501 
3502 //============================MergeMemNode=====================================
3503 //
3504 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3505 // contributing store or call operations.  Each contributor provides the memory
3506 // state for a particular "alias type" (see Compile::alias_type).  For example,
3507 // if a MergeMem has an input X for alias category #6, then any memory reference
3508 // to alias category #6 may use X as its memory state input, as an exact equivalent
3509 // to using the MergeMem as a whole.
3510 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3511 //
3512 // (Here, the <N> notation gives the index of the relevant adr_type.)
3513 //
3514 // In one special case (and more cases in the future), alias categories overlap.
3515 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3516 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3517 // it is exactly equivalent to that state W:
3518 //   MergeMem(<Bot>: W) <==> W
3519 //
3520 // Usually, the merge has more than one input.  In that case, where inputs
3521 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3522 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3523 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3524 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3525 //
3526 // A merge can take a "wide" memory state as one of its narrow inputs.
3527 // This simply means that the merge observes out only the relevant parts of
3528 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3529 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3530 //
3531 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3532 // and that memory slices "leak through":
3533 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3534 //
3535 // But, in such a cascade, repeated memory slices can "block the leak":
3536 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3537 //
3538 // In the last example, Y is not part of the combined memory state of the
3539 // outermost MergeMem.  The system must, of course, prevent unschedulable
3540 // memory states from arising, so you can be sure that the state Y is somehow
3541 // a precursor to state Y'.
3542 //
3543 //
3544 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3545 // of each MergeMemNode array are exactly the numerical alias indexes, including
3546 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3547 // Compile::alias_type (and kin) produce and manage these indexes.
3548 //
3549 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3550 // (Note that this provides quick access to the top node inside MergeMem methods,
3551 // without the need to reach out via TLS to Compile::current.)
3552 //
3553 // As a consequence of what was just described, a MergeMem that represents a full
3554 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3555 // containing all alias categories.
3556 //
3557 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3558 //
3559 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3560 // a memory state for the alias type <N>, or else the top node, meaning that
3561 // there is no particular input for that alias type.  Note that the length of
3562 // a MergeMem is variable, and may be extended at any time to accommodate new
3563 // memory states at larger alias indexes.  When merges grow, they are of course
3564 // filled with "top" in the unused in() positions.
3565 //
3566 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3567 // (Top was chosen because it works smoothly with passes like GCM.)
3568 //
3569 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3570 // the type of random VM bits like TLS references.)  Since it is always the
3571 // first non-Bot memory slice, some low-level loops use it to initialize an
3572 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3573 //
3574 //
3575 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3576 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3577 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3578 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3579 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3580 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3581 //
3582 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3583 // really that different from the other memory inputs.  An abbreviation called
3584 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3585 //
3586 //
3587 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3588 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3589 // that "emerges though" the base memory will be marked as excluding the alias types
3590 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3591 //
3592 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3593 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3594 //
3595 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3596 // (It is currently unimplemented.)  As you can see, the resulting merge is
3597 // actually a disjoint union of memory states, rather than an overlay.
3598 //
3599 
3600 //------------------------------MergeMemNode-----------------------------------
3601 Node* MergeMemNode::make_empty_memory() {
3602   Node* empty_memory = (Node*) Compile::current()->top();
3603   assert(empty_memory->is_top(), "correct sentinel identity");
3604   return empty_memory;
3605 }
3606 
3607 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3608   init_class_id(Class_MergeMem);
3609   // all inputs are nullified in Node::Node(int)
3610   // set_input(0, NULL);  // no control input
3611 
3612   // Initialize the edges uniformly to top, for starters.
3613   Node* empty_mem = make_empty_memory();
3614   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3615     init_req(i,empty_mem);
3616   }
3617   assert(empty_memory() == empty_mem, "");
3618 
3619   if( new_base != NULL && new_base->is_MergeMem() ) {
3620     MergeMemNode* mdef = new_base->as_MergeMem();
3621     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3622     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3623       mms.set_memory(mms.memory2());
3624     }
3625     assert(base_memory() == mdef->base_memory(), "");
3626   } else {
3627     set_base_memory(new_base);
3628   }
3629 }
3630 
3631 // Make a new, untransformed MergeMem with the same base as 'mem'.
3632 // If mem is itself a MergeMem, populate the result with the same edges.
3633 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3634   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3635 }
3636 
3637 //------------------------------cmp--------------------------------------------
3638 uint MergeMemNode::hash() const { return NO_HASH; }
3639 uint MergeMemNode::cmp( const Node &n ) const {
3640   return (&n == this);          // Always fail except on self
3641 }
3642 
3643 //------------------------------Identity---------------------------------------
3644 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3645   // Identity if this merge point does not record any interesting memory
3646   // disambiguations.
3647   Node* base_mem = base_memory();
3648   Node* empty_mem = empty_memory();
3649   if (base_mem != empty_mem) {  // Memory path is not dead?
3650     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3651       Node* mem = in(i);
3652       if (mem != empty_mem && mem != base_mem) {
3653         return this;            // Many memory splits; no change
3654       }
3655     }
3656   }
3657   return base_mem;              // No memory splits; ID on the one true input
3658 }
3659 
3660 //------------------------------Ideal------------------------------------------
3661 // This method is invoked recursively on chains of MergeMem nodes
3662 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3663   // Remove chain'd MergeMems
3664   //
3665   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3666   // relative to the "in(Bot)".  Since we are patching both at the same time,
3667   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3668   // but rewrite each "in(i)" relative to the new "in(Bot)".
3669   Node *progress = NULL;
3670 
3671 
3672   Node* old_base = base_memory();
3673   Node* empty_mem = empty_memory();
3674   if (old_base == empty_mem)
3675     return NULL; // Dead memory path.
3676 
3677   MergeMemNode* old_mbase;
3678   if (old_base != NULL && old_base->is_MergeMem())
3679     old_mbase = old_base->as_MergeMem();
3680   else
3681     old_mbase = NULL;
3682   Node* new_base = old_base;
3683 
3684   // simplify stacked MergeMems in base memory
3685   if (old_mbase)  new_base = old_mbase->base_memory();
3686 
3687   // the base memory might contribute new slices beyond my req()
3688   if (old_mbase)  grow_to_match(old_mbase);
3689 
3690   // Look carefully at the base node if it is a phi.
3691   PhiNode* phi_base;
3692   if (new_base != NULL && new_base->is_Phi())
3693     phi_base = new_base->as_Phi();
3694   else
3695     phi_base = NULL;
3696 
3697   Node*    phi_reg = NULL;
3698   uint     phi_len = (uint)-1;
3699   if (phi_base != NULL && !phi_base->is_copy()) {
3700     // do not examine phi if degraded to a copy
3701     phi_reg = phi_base->region();
3702     phi_len = phi_base->req();
3703     // see if the phi is unfinished
3704     for (uint i = 1; i < phi_len; i++) {
3705       if (phi_base->in(i) == NULL) {
3706         // incomplete phi; do not look at it yet!
3707         phi_reg = NULL;
3708         phi_len = (uint)-1;
3709         break;
3710       }
3711     }
3712   }
3713 
3714   // Note:  We do not call verify_sparse on entry, because inputs
3715   // can normalize to the base_memory via subsume_node or similar
3716   // mechanisms.  This method repairs that damage.
3717 
3718   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3719 
3720   // Look at each slice.
3721   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3722     Node* old_in = in(i);
3723     // calculate the old memory value
3724     Node* old_mem = old_in;
3725     if (old_mem == empty_mem)  old_mem = old_base;
3726     assert(old_mem == memory_at(i), "");
3727 
3728     // maybe update (reslice) the old memory value
3729 
3730     // simplify stacked MergeMems
3731     Node* new_mem = old_mem;
3732     MergeMemNode* old_mmem;
3733     if (old_mem != NULL && old_mem->is_MergeMem())
3734       old_mmem = old_mem->as_MergeMem();
3735     else
3736       old_mmem = NULL;
3737     if (old_mmem == this) {
3738       // This can happen if loops break up and safepoints disappear.
3739       // A merge of BotPtr (default) with a RawPtr memory derived from a
3740       // safepoint can be rewritten to a merge of the same BotPtr with
3741       // the BotPtr phi coming into the loop.  If that phi disappears
3742       // also, we can end up with a self-loop of the mergemem.
3743       // In general, if loops degenerate and memory effects disappear,
3744       // a mergemem can be left looking at itself.  This simply means
3745       // that the mergemem's default should be used, since there is
3746       // no longer any apparent effect on this slice.
3747       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3748       //       from start.  Update the input to TOP.
3749       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3750     }
3751     else if (old_mmem != NULL) {
3752       new_mem = old_mmem->memory_at(i);
3753     }
3754     // else preceding memory was not a MergeMem
3755 
3756     // replace equivalent phis (unfortunately, they do not GVN together)
3757     if (new_mem != NULL && new_mem != new_base &&
3758         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3759       if (new_mem->is_Phi()) {
3760         PhiNode* phi_mem = new_mem->as_Phi();
3761         for (uint i = 1; i < phi_len; i++) {
3762           if (phi_base->in(i) != phi_mem->in(i)) {
3763             phi_mem = NULL;
3764             break;
3765           }
3766         }
3767         if (phi_mem != NULL) {
3768           // equivalent phi nodes; revert to the def
3769           new_mem = new_base;
3770         }
3771       }
3772     }
3773 
3774     // maybe store down a new value
3775     Node* new_in = new_mem;
3776     if (new_in == new_base)  new_in = empty_mem;
3777 
3778     if (new_in != old_in) {
3779       // Warning:  Do not combine this "if" with the previous "if"
3780       // A memory slice might have be be rewritten even if it is semantically
3781       // unchanged, if the base_memory value has changed.
3782       set_req(i, new_in);
3783       progress = this;          // Report progress
3784     }
3785   }
3786 
3787   if (new_base != old_base) {
3788     set_req(Compile::AliasIdxBot, new_base);
3789     // Don't use set_base_memory(new_base), because we need to update du.
3790     assert(base_memory() == new_base, "");
3791     progress = this;
3792   }
3793 
3794   if( base_memory() == this ) {
3795     // a self cycle indicates this memory path is dead
3796     set_req(Compile::AliasIdxBot, empty_mem);
3797   }
3798 
3799   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3800   // Recursion must occur after the self cycle check above
3801   if( base_memory()->is_MergeMem() ) {
3802     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3803     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3804     if( m != NULL && (m->is_top() ||
3805         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3806       // propagate rollup of dead cycle to self
3807       set_req(Compile::AliasIdxBot, empty_mem);
3808     }
3809   }
3810 
3811   if( base_memory() == empty_mem ) {
3812     progress = this;
3813     // Cut inputs during Parse phase only.
3814     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3815     if( !can_reshape ) {
3816       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3817         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3818       }
3819     }
3820   }
3821 
3822   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3823     // Check if PhiNode::Ideal's "Split phis through memory merges"
3824     // transform should be attempted. Look for this->phi->this cycle.
3825     uint merge_width = req();
3826     if (merge_width > Compile::AliasIdxRaw) {
3827       PhiNode* phi = base_memory()->as_Phi();
3828       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3829         if (phi->in(i) == this) {
3830           phase->is_IterGVN()->_worklist.push(phi);
3831           break;
3832         }
3833       }
3834     }
3835   }
3836 
3837   assert(progress || verify_sparse(), "please, no dups of base");
3838   return progress;
3839 }
3840 
3841 //-------------------------set_base_memory-------------------------------------
3842 void MergeMemNode::set_base_memory(Node *new_base) {
3843   Node* empty_mem = empty_memory();
3844   set_req(Compile::AliasIdxBot, new_base);
3845   assert(memory_at(req()) == new_base, "must set default memory");
3846   // Clear out other occurrences of new_base:
3847   if (new_base != empty_mem) {
3848     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3849       if (in(i) == new_base)  set_req(i, empty_mem);
3850     }
3851   }
3852 }
3853 
3854 //------------------------------out_RegMask------------------------------------
3855 const RegMask &MergeMemNode::out_RegMask() const {
3856   return RegMask::Empty;
3857 }
3858 
3859 //------------------------------dump_spec--------------------------------------
3860 #ifndef PRODUCT
3861 void MergeMemNode::dump_spec(outputStream *st) const {
3862   st->print(" {");
3863   Node* base_mem = base_memory();
3864   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3865     Node* mem = memory_at(i);
3866     if (mem == base_mem) { st->print(" -"); continue; }
3867     st->print( " N%d:", mem->_idx );
3868     Compile::current()->get_adr_type(i)->dump_on(st);
3869   }
3870   st->print(" }");
3871 }
3872 #endif // !PRODUCT
3873 
3874 
3875 #ifdef ASSERT
3876 static bool might_be_same(Node* a, Node* b) {
3877   if (a == b)  return true;
3878   if (!(a->is_Phi() || b->is_Phi()))  return false;
3879   // phis shift around during optimization
3880   return true;  // pretty stupid...
3881 }
3882 
3883 // verify a narrow slice (either incoming or outgoing)
3884 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3885   if (!VerifyAliases)       return;  // don't bother to verify unless requested
3886   if (is_error_reported())  return;  // muzzle asserts when debugging an error
3887   if (Node::in_dump())      return;  // muzzle asserts when printing
3888   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3889   assert(n != NULL, "");
3890   // Elide intervening MergeMem's
3891   while (n->is_MergeMem()) {
3892     n = n->as_MergeMem()->memory_at(alias_idx);
3893   }
3894   Compile* C = Compile::current();
3895   const TypePtr* n_adr_type = n->adr_type();
3896   if (n == m->empty_memory()) {
3897     // Implicit copy of base_memory()
3898   } else if (n_adr_type != TypePtr::BOTTOM) {
3899     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3900     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3901   } else {
3902     // A few places like make_runtime_call "know" that VM calls are narrow,
3903     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3904     bool expected_wide_mem = false;
3905     if (n == m->base_memory()) {
3906       expected_wide_mem = true;
3907     } else if (alias_idx == Compile::AliasIdxRaw ||
3908                n == m->memory_at(Compile::AliasIdxRaw)) {
3909       expected_wide_mem = true;
3910     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3911       // memory can "leak through" calls on channels that
3912       // are write-once.  Allow this also.
3913       expected_wide_mem = true;
3914     }
3915     assert(expected_wide_mem, "expected narrow slice replacement");
3916   }
3917 }
3918 #else // !ASSERT
3919 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3920 #endif
3921 
3922 
3923 //-----------------------------memory_at---------------------------------------
3924 Node* MergeMemNode::memory_at(uint alias_idx) const {
3925   assert(alias_idx >= Compile::AliasIdxRaw ||
3926          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3927          "must avoid base_memory and AliasIdxTop");
3928 
3929   // Otherwise, it is a narrow slice.
3930   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3931   Compile *C = Compile::current();
3932   if (is_empty_memory(n)) {
3933     // the array is sparse; empty slots are the "top" node
3934     n = base_memory();
3935     assert(Node::in_dump()
3936            || n == NULL || n->bottom_type() == Type::TOP
3937            || n->adr_type() == TypePtr::BOTTOM
3938            || n->adr_type() == TypeRawPtr::BOTTOM
3939            || Compile::current()->AliasLevel() == 0,
3940            "must be a wide memory");
3941     // AliasLevel == 0 if we are organizing the memory states manually.
3942     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3943   } else {
3944     // make sure the stored slice is sane
3945     #ifdef ASSERT
3946     if (is_error_reported() || Node::in_dump()) {
3947     } else if (might_be_same(n, base_memory())) {
3948       // Give it a pass:  It is a mostly harmless repetition of the base.
3949       // This can arise normally from node subsumption during optimization.
3950     } else {
3951       verify_memory_slice(this, alias_idx, n);
3952     }
3953     #endif
3954   }
3955   return n;
3956 }
3957 
3958 //---------------------------set_memory_at-------------------------------------
3959 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3960   verify_memory_slice(this, alias_idx, n);
3961   Node* empty_mem = empty_memory();
3962   if (n == base_memory())  n = empty_mem;  // collapse default
3963   uint need_req = alias_idx+1;
3964   if (req() < need_req) {
3965     if (n == empty_mem)  return;  // already the default, so do not grow me
3966     // grow the sparse array
3967     do {
3968       add_req(empty_mem);
3969     } while (req() < need_req);
3970   }
3971   set_req( alias_idx, n );
3972 }
3973 
3974 
3975 
3976 //--------------------------iteration_setup------------------------------------
3977 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3978   if (other != NULL) {
3979     grow_to_match(other);
3980     // invariant:  the finite support of mm2 is within mm->req()
3981     #ifdef ASSERT
3982     for (uint i = req(); i < other->req(); i++) {
3983       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3984     }
3985     #endif
3986   }
3987   // Replace spurious copies of base_memory by top.
3988   Node* base_mem = base_memory();
3989   if (base_mem != NULL && !base_mem->is_top()) {
3990     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3991       if (in(i) == base_mem)
3992         set_req(i, empty_memory());
3993     }
3994   }
3995 }
3996 
3997 //---------------------------grow_to_match-------------------------------------
3998 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3999   Node* empty_mem = empty_memory();
4000   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4001   // look for the finite support of the other memory
4002   for (uint i = other->req(); --i >= req(); ) {
4003     if (other->in(i) != empty_mem) {
4004       uint new_len = i+1;
4005       while (req() < new_len)  add_req(empty_mem);
4006       break;
4007     }
4008   }
4009 }
4010 
4011 //---------------------------verify_sparse-------------------------------------
4012 #ifndef PRODUCT
4013 bool MergeMemNode::verify_sparse() const {
4014   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4015   Node* base_mem = base_memory();
4016   // The following can happen in degenerate cases, since empty==top.
4017   if (is_empty_memory(base_mem))  return true;
4018   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4019     assert(in(i) != NULL, "sane slice");
4020     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4021   }
4022   return true;
4023 }
4024 
4025 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4026   Node* n;
4027   n = mm->in(idx);
4028   if (mem == n)  return true;  // might be empty_memory()
4029   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4030   if (mem == n)  return true;
4031   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4032     if (mem == n)  return true;
4033     if (n == NULL)  break;
4034   }
4035   return false;
4036 }
4037 #endif // !PRODUCT