1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   bool inline_string_compareTo();
 137   bool inline_string_indexOf();
 138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 139   bool inline_string_equals();
 140   Node* pop_math_arg();
 141   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 142   bool inline_math_native(vmIntrinsics::ID id);
 143   bool inline_trig(vmIntrinsics::ID id);
 144   bool inline_trans(vmIntrinsics::ID id);
 145   bool inline_abs(vmIntrinsics::ID id);
 146   bool inline_sqrt(vmIntrinsics::ID id);
 147   bool inline_pow(vmIntrinsics::ID id);
 148   bool inline_exp(vmIntrinsics::ID id);
 149   bool inline_min_max(vmIntrinsics::ID id);
 150   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 151   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 152   int classify_unsafe_addr(Node* &base, Node* &offset);
 153   Node* make_unsafe_address(Node* base, Node* offset);
 154   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 155   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 156   bool inline_unsafe_allocate();
 157   bool inline_unsafe_copyMemory();
 158   bool inline_native_currentThread();
 159   bool inline_native_time_funcs(bool isNano);
 160   bool inline_native_isInterrupted();
 161   bool inline_native_Class_query(vmIntrinsics::ID id);
 162   bool inline_native_subtype_check();
 163 
 164   bool inline_native_newArray();
 165   bool inline_native_getLength();
 166   bool inline_array_copyOf(bool is_copyOfRange);
 167   bool inline_array_equals();
 168   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 169   bool inline_native_clone(bool is_virtual);
 170   bool inline_native_Reflection_getCallerClass();
 171   bool inline_native_AtomicLong_get();
 172   bool inline_native_AtomicLong_attemptUpdate();
 173   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 174   // Helper function for inlining native object hash method
 175   bool inline_native_hashcode(bool is_virtual, bool is_static);
 176   bool inline_native_getClass();
 177 
 178   // Helper functions for inlining arraycopy
 179   bool inline_arraycopy();
 180   void generate_arraycopy(const TypePtr* adr_type,
 181                           BasicType basic_elem_type,
 182                           Node* src,  Node* src_offset,
 183                           Node* dest, Node* dest_offset,
 184                           Node* copy_length,
 185                           bool disjoint_bases = false,
 186                           bool length_never_negative = false,
 187                           RegionNode* slow_region = NULL);
 188   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 189                                                 RegionNode* slow_region);
 190   void generate_clear_array(const TypePtr* adr_type,
 191                             Node* dest,
 192                             BasicType basic_elem_type,
 193                             Node* slice_off,
 194                             Node* slice_len,
 195                             Node* slice_end);
 196   bool generate_block_arraycopy(const TypePtr* adr_type,
 197                                 BasicType basic_elem_type,
 198                                 AllocateNode* alloc,
 199                                 Node* src,  Node* src_offset,
 200                                 Node* dest, Node* dest_offset,
 201                                 Node* dest_size);
 202   void generate_slow_arraycopy(const TypePtr* adr_type,
 203                                Node* src,  Node* src_offset,
 204                                Node* dest, Node* dest_offset,
 205                                Node* copy_length);
 206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 207                                      Node* dest_elem_klass,
 208                                      Node* src,  Node* src_offset,
 209                                      Node* dest, Node* dest_offset,
 210                                      Node* copy_length);
 211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 212                                    Node* src,  Node* src_offset,
 213                                    Node* dest, Node* dest_offset,
 214                                    Node* copy_length);
 215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 216                                     BasicType basic_elem_type,
 217                                     bool disjoint_bases,
 218                                     Node* src,  Node* src_offset,
 219                                     Node* dest, Node* dest_offset,
 220                                     Node* copy_length);
 221   bool inline_unsafe_CAS(BasicType type);
 222   bool inline_unsafe_ordered_store(BasicType type);
 223   bool inline_fp_conversions(vmIntrinsics::ID id);
 224   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 225   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 226   bool inline_bitCount(vmIntrinsics::ID id);
 227   bool inline_reverseBytes(vmIntrinsics::ID id);
 228 };
 229 
 230 
 231 //---------------------------make_vm_intrinsic----------------------------
 232 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 233   vmIntrinsics::ID id = m->intrinsic_id();
 234   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 235 
 236   if (DisableIntrinsic[0] != '\0'
 237       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 238     // disabled by a user request on the command line:
 239     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 240     return NULL;
 241   }
 242 
 243   if (!m->is_loaded()) {
 244     // do not attempt to inline unloaded methods
 245     return NULL;
 246   }
 247 
 248   // Only a few intrinsics implement a virtual dispatch.
 249   // They are expensive calls which are also frequently overridden.
 250   if (is_virtual) {
 251     switch (id) {
 252     case vmIntrinsics::_hashCode:
 253     case vmIntrinsics::_clone:
 254       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 255       break;
 256     default:
 257       return NULL;
 258     }
 259   }
 260 
 261   // -XX:-InlineNatives disables nearly all intrinsics:
 262   if (!InlineNatives) {
 263     switch (id) {
 264     case vmIntrinsics::_indexOf:
 265     case vmIntrinsics::_compareTo:
 266     case vmIntrinsics::_equals:
 267     case vmIntrinsics::_equalsC:
 268       break;  // InlineNatives does not control String.compareTo
 269     default:
 270       return NULL;
 271     }
 272   }
 273 
 274   switch (id) {
 275   case vmIntrinsics::_compareTo:
 276     if (!SpecialStringCompareTo)  return NULL;
 277     break;
 278   case vmIntrinsics::_indexOf:
 279     if (!SpecialStringIndexOf)  return NULL;
 280     break;
 281   case vmIntrinsics::_equals:
 282     if (!SpecialStringEquals)  return NULL;
 283     break;
 284   case vmIntrinsics::_equalsC:
 285     if (!SpecialArraysEquals)  return NULL;
 286     break;
 287   case vmIntrinsics::_arraycopy:
 288     if (!InlineArrayCopy)  return NULL;
 289     break;
 290   case vmIntrinsics::_copyMemory:
 291     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 292     if (!InlineArrayCopy)  return NULL;
 293     break;
 294   case vmIntrinsics::_hashCode:
 295     if (!InlineObjectHash)  return NULL;
 296     break;
 297   case vmIntrinsics::_clone:
 298   case vmIntrinsics::_copyOf:
 299   case vmIntrinsics::_copyOfRange:
 300     if (!InlineObjectCopy)  return NULL;
 301     // These also use the arraycopy intrinsic mechanism:
 302     if (!InlineArrayCopy)  return NULL;
 303     break;
 304   case vmIntrinsics::_checkIndex:
 305     // We do not intrinsify this.  The optimizer does fine with it.
 306     return NULL;
 307 
 308   case vmIntrinsics::_get_AtomicLong:
 309   case vmIntrinsics::_attemptUpdate:
 310     if (!InlineAtomicLong)  return NULL;
 311     break;
 312 
 313   case vmIntrinsics::_getCallerClass:
 314     if (!UseNewReflection)  return NULL;
 315     if (!InlineReflectionGetCallerClass)  return NULL;
 316     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 317     break;
 318 
 319   case vmIntrinsics::_bitCount_i:
 320   case vmIntrinsics::_bitCount_l:
 321     if (!UsePopCountInstruction)  return NULL;
 322     break;
 323 
 324  default:
 325     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 326     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 327     break;
 328   }
 329 
 330   // -XX:-InlineClassNatives disables natives from the Class class.
 331   // The flag applies to all reflective calls, notably Array.newArray
 332   // (visible to Java programmers as Array.newInstance).
 333   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 334       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 335     if (!InlineClassNatives)  return NULL;
 336   }
 337 
 338   // -XX:-InlineThreadNatives disables natives from the Thread class.
 339   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 340     if (!InlineThreadNatives)  return NULL;
 341   }
 342 
 343   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 344   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 345       m->holder()->name() == ciSymbol::java_lang_Float() ||
 346       m->holder()->name() == ciSymbol::java_lang_Double()) {
 347     if (!InlineMathNatives)  return NULL;
 348   }
 349 
 350   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 351   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 352     if (!InlineUnsafeOps)  return NULL;
 353   }
 354 
 355   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 356 }
 357 
 358 //----------------------register_library_intrinsics-----------------------
 359 // Initialize this file's data structures, for each Compile instance.
 360 void Compile::register_library_intrinsics() {
 361   // Nothing to do here.
 362 }
 363 
 364 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 365   LibraryCallKit kit(jvms, this);
 366   Compile* C = kit.C;
 367   int nodes = C->unique();
 368 #ifndef PRODUCT
 369   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 370     char buf[1000];
 371     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 372     tty->print_cr("Intrinsic %s", str);
 373   }
 374 #endif
 375   if (kit.try_to_inline()) {
 376     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 377       tty->print("Inlining intrinsic %s%s at bci:%d in",
 378                  vmIntrinsics::name_at(intrinsic_id()),
 379                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 380       kit.caller()->print_short_name(tty);
 381       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 382     }
 383     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 384     if (C->log()) {
 385       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 386                      vmIntrinsics::name_at(intrinsic_id()),
 387                      (is_virtual() ? " virtual='1'" : ""),
 388                      C->unique() - nodes);
 389     }
 390     return kit.transfer_exceptions_into_jvms();
 391   }
 392 
 393   if (PrintIntrinsics) {
 394     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 395                vmIntrinsics::name_at(intrinsic_id()),
 396                (is_virtual() ? " (virtual)" : ""), kit.bci());
 397     kit.caller()->print_short_name(tty);
 398     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 399   }
 400   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 401   return NULL;
 402 }
 403 
 404 bool LibraryCallKit::try_to_inline() {
 405   // Handle symbolic names for otherwise undistinguished boolean switches:
 406   const bool is_store       = true;
 407   const bool is_native_ptr  = true;
 408   const bool is_static      = true;
 409 
 410   switch (intrinsic_id()) {
 411   case vmIntrinsics::_hashCode:
 412     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 413   case vmIntrinsics::_identityHashCode:
 414     return inline_native_hashcode(/*!virtual*/ false, is_static);
 415   case vmIntrinsics::_getClass:
 416     return inline_native_getClass();
 417 
 418   case vmIntrinsics::_dsin:
 419   case vmIntrinsics::_dcos:
 420   case vmIntrinsics::_dtan:
 421   case vmIntrinsics::_dabs:
 422   case vmIntrinsics::_datan2:
 423   case vmIntrinsics::_dsqrt:
 424   case vmIntrinsics::_dexp:
 425   case vmIntrinsics::_dlog:
 426   case vmIntrinsics::_dlog10:
 427   case vmIntrinsics::_dpow:
 428     return inline_math_native(intrinsic_id());
 429 
 430   case vmIntrinsics::_min:
 431   case vmIntrinsics::_max:
 432     return inline_min_max(intrinsic_id());
 433 
 434   case vmIntrinsics::_arraycopy:
 435     return inline_arraycopy();
 436 
 437   case vmIntrinsics::_compareTo:
 438     return inline_string_compareTo();
 439   case vmIntrinsics::_indexOf:
 440     return inline_string_indexOf();
 441   case vmIntrinsics::_equals:
 442     return inline_string_equals();
 443 
 444   case vmIntrinsics::_getObject:
 445     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 446   case vmIntrinsics::_getBoolean:
 447     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 448   case vmIntrinsics::_getByte:
 449     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 450   case vmIntrinsics::_getShort:
 451     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 452   case vmIntrinsics::_getChar:
 453     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 454   case vmIntrinsics::_getInt:
 455     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 456   case vmIntrinsics::_getLong:
 457     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 458   case vmIntrinsics::_getFloat:
 459     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 460   case vmIntrinsics::_getDouble:
 461     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 462 
 463   case vmIntrinsics::_putObject:
 464     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 465   case vmIntrinsics::_putBoolean:
 466     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 467   case vmIntrinsics::_putByte:
 468     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 469   case vmIntrinsics::_putShort:
 470     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 471   case vmIntrinsics::_putChar:
 472     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 473   case vmIntrinsics::_putInt:
 474     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 475   case vmIntrinsics::_putLong:
 476     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 477   case vmIntrinsics::_putFloat:
 478     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 479   case vmIntrinsics::_putDouble:
 480     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 481 
 482   case vmIntrinsics::_getByte_raw:
 483     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 484   case vmIntrinsics::_getShort_raw:
 485     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 486   case vmIntrinsics::_getChar_raw:
 487     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 488   case vmIntrinsics::_getInt_raw:
 489     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 490   case vmIntrinsics::_getLong_raw:
 491     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 492   case vmIntrinsics::_getFloat_raw:
 493     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 494   case vmIntrinsics::_getDouble_raw:
 495     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 496   case vmIntrinsics::_getAddress_raw:
 497     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 498 
 499   case vmIntrinsics::_putByte_raw:
 500     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 501   case vmIntrinsics::_putShort_raw:
 502     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 503   case vmIntrinsics::_putChar_raw:
 504     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 505   case vmIntrinsics::_putInt_raw:
 506     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 507   case vmIntrinsics::_putLong_raw:
 508     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 509   case vmIntrinsics::_putFloat_raw:
 510     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 511   case vmIntrinsics::_putDouble_raw:
 512     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 513   case vmIntrinsics::_putAddress_raw:
 514     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 515 
 516   case vmIntrinsics::_getObjectVolatile:
 517     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 518   case vmIntrinsics::_getBooleanVolatile:
 519     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 520   case vmIntrinsics::_getByteVolatile:
 521     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 522   case vmIntrinsics::_getShortVolatile:
 523     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 524   case vmIntrinsics::_getCharVolatile:
 525     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 526   case vmIntrinsics::_getIntVolatile:
 527     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 528   case vmIntrinsics::_getLongVolatile:
 529     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 530   case vmIntrinsics::_getFloatVolatile:
 531     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 532   case vmIntrinsics::_getDoubleVolatile:
 533     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 534 
 535   case vmIntrinsics::_putObjectVolatile:
 536     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 537   case vmIntrinsics::_putBooleanVolatile:
 538     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 539   case vmIntrinsics::_putByteVolatile:
 540     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 541   case vmIntrinsics::_putShortVolatile:
 542     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 543   case vmIntrinsics::_putCharVolatile:
 544     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 545   case vmIntrinsics::_putIntVolatile:
 546     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 547   case vmIntrinsics::_putLongVolatile:
 548     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 549   case vmIntrinsics::_putFloatVolatile:
 550     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 551   case vmIntrinsics::_putDoubleVolatile:
 552     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 553 
 554   case vmIntrinsics::_prefetchRead:
 555     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 556   case vmIntrinsics::_prefetchWrite:
 557     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 558   case vmIntrinsics::_prefetchReadStatic:
 559     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 560   case vmIntrinsics::_prefetchWriteStatic:
 561     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 562 
 563   case vmIntrinsics::_compareAndSwapObject:
 564     return inline_unsafe_CAS(T_OBJECT);
 565   case vmIntrinsics::_compareAndSwapInt:
 566     return inline_unsafe_CAS(T_INT);
 567   case vmIntrinsics::_compareAndSwapLong:
 568     return inline_unsafe_CAS(T_LONG);
 569 
 570   case vmIntrinsics::_putOrderedObject:
 571     return inline_unsafe_ordered_store(T_OBJECT);
 572   case vmIntrinsics::_putOrderedInt:
 573     return inline_unsafe_ordered_store(T_INT);
 574   case vmIntrinsics::_putOrderedLong:
 575     return inline_unsafe_ordered_store(T_LONG);
 576 
 577   case vmIntrinsics::_currentThread:
 578     return inline_native_currentThread();
 579   case vmIntrinsics::_isInterrupted:
 580     return inline_native_isInterrupted();
 581 
 582   case vmIntrinsics::_currentTimeMillis:
 583     return inline_native_time_funcs(false);
 584   case vmIntrinsics::_nanoTime:
 585     return inline_native_time_funcs(true);
 586   case vmIntrinsics::_allocateInstance:
 587     return inline_unsafe_allocate();
 588   case vmIntrinsics::_copyMemory:
 589     return inline_unsafe_copyMemory();
 590   case vmIntrinsics::_newArray:
 591     return inline_native_newArray();
 592   case vmIntrinsics::_getLength:
 593     return inline_native_getLength();
 594   case vmIntrinsics::_copyOf:
 595     return inline_array_copyOf(false);
 596   case vmIntrinsics::_copyOfRange:
 597     return inline_array_copyOf(true);
 598   case vmIntrinsics::_equalsC:
 599     return inline_array_equals();
 600   case vmIntrinsics::_clone:
 601     return inline_native_clone(intrinsic()->is_virtual());
 602 
 603   case vmIntrinsics::_isAssignableFrom:
 604     return inline_native_subtype_check();
 605 
 606   case vmIntrinsics::_isInstance:
 607   case vmIntrinsics::_getModifiers:
 608   case vmIntrinsics::_isInterface:
 609   case vmIntrinsics::_isArray:
 610   case vmIntrinsics::_isPrimitive:
 611   case vmIntrinsics::_getSuperclass:
 612   case vmIntrinsics::_getComponentType:
 613   case vmIntrinsics::_getClassAccessFlags:
 614     return inline_native_Class_query(intrinsic_id());
 615 
 616   case vmIntrinsics::_floatToRawIntBits:
 617   case vmIntrinsics::_floatToIntBits:
 618   case vmIntrinsics::_intBitsToFloat:
 619   case vmIntrinsics::_doubleToRawLongBits:
 620   case vmIntrinsics::_doubleToLongBits:
 621   case vmIntrinsics::_longBitsToDouble:
 622     return inline_fp_conversions(intrinsic_id());
 623 
 624   case vmIntrinsics::_numberOfLeadingZeros_i:
 625   case vmIntrinsics::_numberOfLeadingZeros_l:
 626     return inline_numberOfLeadingZeros(intrinsic_id());
 627 
 628   case vmIntrinsics::_numberOfTrailingZeros_i:
 629   case vmIntrinsics::_numberOfTrailingZeros_l:
 630     return inline_numberOfTrailingZeros(intrinsic_id());
 631 
 632   case vmIntrinsics::_bitCount_i:
 633   case vmIntrinsics::_bitCount_l:
 634     return inline_bitCount(intrinsic_id());
 635 
 636   case vmIntrinsics::_reverseBytes_i:
 637   case vmIntrinsics::_reverseBytes_l:
 638     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 639 
 640   case vmIntrinsics::_get_AtomicLong:
 641     return inline_native_AtomicLong_get();
 642   case vmIntrinsics::_attemptUpdate:
 643     return inline_native_AtomicLong_attemptUpdate();
 644 
 645   case vmIntrinsics::_getCallerClass:
 646     return inline_native_Reflection_getCallerClass();
 647 
 648   default:
 649     // If you get here, it may be that someone has added a new intrinsic
 650     // to the list in vmSymbols.hpp without implementing it here.
 651 #ifndef PRODUCT
 652     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 653       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 654                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 655     }
 656 #endif
 657     return false;
 658   }
 659 }
 660 
 661 //------------------------------push_result------------------------------
 662 // Helper function for finishing intrinsics.
 663 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 664   record_for_igvn(region);
 665   set_control(_gvn.transform(region));
 666   BasicType value_type = value->type()->basic_type();
 667   push_node(value_type, _gvn.transform(value));
 668 }
 669 
 670 //------------------------------generate_guard---------------------------
 671 // Helper function for generating guarded fast-slow graph structures.
 672 // The given 'test', if true, guards a slow path.  If the test fails
 673 // then a fast path can be taken.  (We generally hope it fails.)
 674 // In all cases, GraphKit::control() is updated to the fast path.
 675 // The returned value represents the control for the slow path.
 676 // The return value is never 'top'; it is either a valid control
 677 // or NULL if it is obvious that the slow path can never be taken.
 678 // Also, if region and the slow control are not NULL, the slow edge
 679 // is appended to the region.
 680 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 681   if (stopped()) {
 682     // Already short circuited.
 683     return NULL;
 684   }
 685 
 686   // Build an if node and its projections.
 687   // If test is true we take the slow path, which we assume is uncommon.
 688   if (_gvn.type(test) == TypeInt::ZERO) {
 689     // The slow branch is never taken.  No need to build this guard.
 690     return NULL;
 691   }
 692 
 693   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 694 
 695   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 696   if (if_slow == top()) {
 697     // The slow branch is never taken.  No need to build this guard.
 698     return NULL;
 699   }
 700 
 701   if (region != NULL)
 702     region->add_req(if_slow);
 703 
 704   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 705   set_control(if_fast);
 706 
 707   return if_slow;
 708 }
 709 
 710 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 711   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 712 }
 713 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 714   return generate_guard(test, region, PROB_FAIR);
 715 }
 716 
 717 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 718                                                      Node* *pos_index) {
 719   if (stopped())
 720     return NULL;                // already stopped
 721   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 722     return NULL;                // index is already adequately typed
 723   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 724   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 725   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 726   if (is_neg != NULL && pos_index != NULL) {
 727     // Emulate effect of Parse::adjust_map_after_if.
 728     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 729     ccast->set_req(0, control());
 730     (*pos_index) = _gvn.transform(ccast);
 731   }
 732   return is_neg;
 733 }
 734 
 735 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 736                                                         Node* *pos_index) {
 737   if (stopped())
 738     return NULL;                // already stopped
 739   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 740     return NULL;                // index is already adequately typed
 741   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 742   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 743   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 744   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 745   if (is_notp != NULL && pos_index != NULL) {
 746     // Emulate effect of Parse::adjust_map_after_if.
 747     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 748     ccast->set_req(0, control());
 749     (*pos_index) = _gvn.transform(ccast);
 750   }
 751   return is_notp;
 752 }
 753 
 754 // Make sure that 'position' is a valid limit index, in [0..length].
 755 // There are two equivalent plans for checking this:
 756 //   A. (offset + copyLength)  unsigned<=  arrayLength
 757 //   B. offset  <=  (arrayLength - copyLength)
 758 // We require that all of the values above, except for the sum and
 759 // difference, are already known to be non-negative.
 760 // Plan A is robust in the face of overflow, if offset and copyLength
 761 // are both hugely positive.
 762 //
 763 // Plan B is less direct and intuitive, but it does not overflow at
 764 // all, since the difference of two non-negatives is always
 765 // representable.  Whenever Java methods must perform the equivalent
 766 // check they generally use Plan B instead of Plan A.
 767 // For the moment we use Plan A.
 768 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 769                                                   Node* subseq_length,
 770                                                   Node* array_length,
 771                                                   RegionNode* region) {
 772   if (stopped())
 773     return NULL;                // already stopped
 774   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 775   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 776     return NULL;                // common case of whole-array copy
 777   Node* last = subseq_length;
 778   if (!zero_offset)             // last += offset
 779     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 780   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 781   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 782   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 783   return is_over;
 784 }
 785 
 786 
 787 //--------------------------generate_current_thread--------------------
 788 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 789   ciKlass*    thread_klass = env()->Thread_klass();
 790   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 791   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 792   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 793   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 794   tls_output = thread;
 795   return threadObj;
 796 }
 797 
 798 
 799 //------------------------------inline_string_compareTo------------------------
 800 bool LibraryCallKit::inline_string_compareTo() {
 801 
 802   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 803 
 804   const int value_offset = java_lang_String::value_offset_in_bytes();
 805   const int count_offset = java_lang_String::count_offset_in_bytes();
 806   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 807 
 808   _sp += 2;
 809   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 810   Node *receiver = pop();
 811 
 812   // Null check on self without removing any arguments.  The argument
 813   // null check technically happens in the wrong place, which can lead to
 814   // invalid stack traces when string compare is inlined into a method
 815   // which handles NullPointerExceptions.
 816   _sp += 2;
 817   receiver = do_null_check(receiver, T_OBJECT);
 818   argument = do_null_check(argument, T_OBJECT);
 819   _sp -= 2;
 820   if (stopped()) {
 821     return true;
 822   }
 823 
 824   ciInstanceKlass* klass = env()->String_klass();
 825   const TypeInstPtr* string_type =
 826     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 827 
 828   Node* compare =
 829     _gvn.transform(new (C, 7) StrCompNode(
 830                         control(),
 831                         memory(TypeAryPtr::CHARS),
 832                         memory(string_type->add_offset(value_offset)),
 833                         memory(string_type->add_offset(count_offset)),
 834                         memory(string_type->add_offset(offset_offset)),
 835                         receiver,
 836                         argument));
 837   push(compare);
 838   return true;
 839 }
 840 
 841 //------------------------------inline_string_equals------------------------
 842 bool LibraryCallKit::inline_string_equals() {
 843 
 844   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 845 
 846   const int value_offset = java_lang_String::value_offset_in_bytes();
 847   const int count_offset = java_lang_String::count_offset_in_bytes();
 848   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 849 
 850   _sp += 2;
 851   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 852   Node* receiver = pop();
 853 
 854   // Null check on self without removing any arguments.  The argument
 855   // null check technically happens in the wrong place, which can lead to
 856   // invalid stack traces when string compare is inlined into a method
 857   // which handles NullPointerExceptions.
 858   _sp += 2;
 859   receiver = do_null_check(receiver, T_OBJECT);
 860   //should not do null check for argument for String.equals(), because spec
 861   //allows to specify NULL as argument.
 862   _sp -= 2;
 863 
 864   if (stopped()) {
 865     return true;
 866   }
 867 
 868   // get String klass for instanceOf
 869   ciInstanceKlass* klass = env()->String_klass();
 870 
 871   // two paths (plus control) merge
 872   RegionNode* region = new (C, 3) RegionNode(3);
 873   Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
 874 
 875   Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 876   Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 877   Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 878 
 879   IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
 880 
 881   Node* if_true  = _gvn.transform(new (C, 1) IfTrueNode(iff));
 882   set_control(if_true);
 883 
 884   const TypeInstPtr* string_type =
 885     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 886 
 887   // instanceOf == true
 888   Node* equals =
 889     _gvn.transform(new (C, 7) StrEqualsNode(
 890                         control(),
 891                         memory(TypeAryPtr::CHARS),
 892                         memory(string_type->add_offset(value_offset)),
 893                         memory(string_type->add_offset(count_offset)),
 894                         memory(string_type->add_offset(offset_offset)),
 895                         receiver,
 896                         argument));
 897 
 898   phi->init_req(1, _gvn.transform(equals));
 899   region->init_req(1, if_true);
 900 
 901   //instanceOf == false, fallthrough
 902   Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
 903   set_control(if_false);
 904 
 905   phi->init_req(2, _gvn.transform(intcon(0)));
 906   region->init_req(2, if_false);
 907 
 908   // post merge
 909   set_control(_gvn.transform(region));
 910   record_for_igvn(region);
 911 
 912   push(_gvn.transform(phi));
 913 
 914   return true;
 915 }
 916 
 917 //------------------------------inline_array_equals----------------------------
 918 bool LibraryCallKit::inline_array_equals() {
 919 
 920   if (!Matcher::has_match_rule(Op_AryEq)) return false;
 921 
 922   _sp += 2;
 923   Node *argument2 = pop();
 924   Node *argument1 = pop();
 925 
 926   Node* equals =
 927     _gvn.transform(new (C, 3) AryEqNode(control(),
 928                                         argument1,
 929                                         argument2)
 930                    );
 931   push(equals);
 932   return true;
 933 }
 934 
 935 // Java version of String.indexOf(constant string)
 936 // class StringDecl {
 937 //   StringDecl(char[] ca) {
 938 //     offset = 0;
 939 //     count = ca.length;
 940 //     value = ca;
 941 //   }
 942 //   int offset;
 943 //   int count;
 944 //   char[] value;
 945 // }
 946 //
 947 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
 948 //                             int targetOffset, int cache_i, int md2) {
 949 //   int cache = cache_i;
 950 //   int sourceOffset = string_object.offset;
 951 //   int sourceCount = string_object.count;
 952 //   int targetCount = target_object.length;
 953 //
 954 //   int targetCountLess1 = targetCount - 1;
 955 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
 956 //
 957 //   char[] source = string_object.value;
 958 //   char[] target = target_object;
 959 //   int lastChar = target[targetCountLess1];
 960 //
 961 //  outer_loop:
 962 //   for (int i = sourceOffset; i < sourceEnd; ) {
 963 //     int src = source[i + targetCountLess1];
 964 //     if (src == lastChar) {
 965 //       // With random strings and a 4-character alphabet,
 966 //       // reverse matching at this point sets up 0.8% fewer
 967 //       // frames, but (paradoxically) makes 0.3% more probes.
 968 //       // Since those probes are nearer the lastChar probe,
 969 //       // there is may be a net D$ win with reverse matching.
 970 //       // But, reversing loop inhibits unroll of inner loop
 971 //       // for unknown reason.  So, does running outer loop from
 972 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
 973 //       for (int j = 0; j < targetCountLess1; j++) {
 974 //         if (target[targetOffset + j] != source[i+j]) {
 975 //           if ((cache & (1 << source[i+j])) == 0) {
 976 //             if (md2 < j+1) {
 977 //               i += j+1;
 978 //               continue outer_loop;
 979 //             }
 980 //           }
 981 //           i += md2;
 982 //           continue outer_loop;
 983 //         }
 984 //       }
 985 //       return i - sourceOffset;
 986 //     }
 987 //     if ((cache & (1 << src)) == 0) {
 988 //       i += targetCountLess1;
 989 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
 990 //     i++;
 991 //   }
 992 //   return -1;
 993 // }
 994 
 995 //------------------------------string_indexOf------------------------
 996 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
 997                                      jint cache_i, jint md2_i) {
 998 
 999   Node* no_ctrl  = NULL;
1000   float likely   = PROB_LIKELY(0.9);
1001   float unlikely = PROB_UNLIKELY(0.9);
1002 
1003   const int value_offset  = java_lang_String::value_offset_in_bytes();
1004   const int count_offset  = java_lang_String::count_offset_in_bytes();
1005   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1006 
1007   ciInstanceKlass* klass = env()->String_klass();
1008   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1009   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1010 
1011   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1012   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1013   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1014   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1015   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1016   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1017 
1018   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1019   jint target_length = target_array->length();
1020   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1021   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1022 
1023   IdealKit kit(gvn(), control(), merged_memory(), false, true);
1024 #define __ kit.
1025   Node* zero             = __ ConI(0);
1026   Node* one              = __ ConI(1);
1027   Node* cache            = __ ConI(cache_i);
1028   Node* md2              = __ ConI(md2_i);
1029   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1030   Node* targetCount      = __ ConI(target_length);
1031   Node* targetCountLess1 = __ ConI(target_length - 1);
1032   Node* targetOffset     = __ ConI(targetOffset_i);
1033   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1034 
1035   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1036   Node* outer_loop = __ make_label(2 /* goto */);
1037   Node* return_    = __ make_label(1);
1038 
1039   __ set(rtn,__ ConI(-1));
1040   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1041        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1042        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1043        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1044        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1045          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1046               Node* tpj = __ AddI(targetOffset, __ value(j));
1047               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1048               Node* ipj  = __ AddI(__ value(i), __ value(j));
1049               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1050               __ if_then(targ, BoolTest::ne, src2); {
1051                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1052                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1053                     __ increment(i, __ AddI(__ value(j), one));
1054                     __ goto_(outer_loop);
1055                   } __ end_if(); __ dead(j);
1056                 }__ end_if(); __ dead(j);
1057                 __ increment(i, md2);
1058                 __ goto_(outer_loop);
1059               }__ end_if();
1060               __ increment(j, one);
1061          }__ end_loop(); __ dead(j);
1062          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1063          __ goto_(return_);
1064        }__ end_if();
1065        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1066          __ increment(i, targetCountLess1);
1067        }__ end_if();
1068        __ increment(i, one);
1069        __ bind(outer_loop);
1070   }__ end_loop(); __ dead(i);
1071   __ bind(return_);
1072 
1073   // Final sync IdealKit and GraphKit.
1074   sync_kit(kit);
1075   Node* result = __ value(rtn);
1076 #undef __
1077   C->set_has_loops(true);
1078   return result;
1079 }
1080 
1081 //------------------------------inline_string_indexOf------------------------
1082 bool LibraryCallKit::inline_string_indexOf() {
1083 
1084   const int value_offset  = java_lang_String::value_offset_in_bytes();
1085   const int count_offset  = java_lang_String::count_offset_in_bytes();
1086   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1087 
1088   _sp += 2;
1089   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1090   Node *receiver = pop();
1091 
1092   Node* alloc = NULL;
1093   if (DoEscapeAnalysis && argument->is_Con())
1094     alloc = AllocateNode::Ideal_allocation(receiver, &_gvn);
1095 
1096   Node* result;
1097   if (Matcher::has_match_rule(Op_StrIndexOf) && alloc == NULL &&
1098       UseSSE42Intrinsics) {
1099     // Generate SSE4.2 version of indexOf
1100     // We currently only have match rules that use SSE4.2
1101 
1102     // Null check on self without removing any arguments.  The argument
1103     // null check technically happens in the wrong place, which can lead to
1104     // invalid stack traces when string compare is inlined into a method
1105     // which handles NullPointerExceptions.
1106     _sp += 2;
1107     receiver = do_null_check(receiver, T_OBJECT);
1108     argument = do_null_check(argument, T_OBJECT);
1109     _sp -= 2;
1110 
1111     if (stopped()) {
1112       return true;
1113     }
1114 
1115     ciInstanceKlass* klass = env()->String_klass();
1116     const TypeInstPtr* string_type =
1117       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1118 
1119     result =
1120       _gvn.transform(new (C, 7)
1121                      StrIndexOfNode(control(),
1122                                     memory(TypeAryPtr::CHARS),
1123                                     memory(string_type->add_offset(value_offset)),
1124                                     memory(string_type->add_offset(count_offset)),
1125                                     memory(string_type->add_offset(offset_offset)),
1126                                     receiver,
1127                                     argument));
1128   } else { //Use LibraryCallKit::string_indexOf
1129     // don't intrinsify is argument isn't a constant string.
1130     if (!argument->is_Con()) {
1131      return false;
1132     }
1133     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1134     if (str_type == NULL) {
1135       return false;
1136     }
1137     ciInstanceKlass* klass = env()->String_klass();
1138     ciObject* str_const = str_type->const_oop();
1139     if (str_const == NULL || str_const->klass() != klass) {
1140       return false;
1141     }
1142     ciInstance* str = str_const->as_instance();
1143     assert(str != NULL, "must be instance");
1144 
1145     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1146     int       o = str->field_value_by_offset(offset_offset).as_int();
1147     int       c = str->field_value_by_offset(count_offset).as_int();
1148     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1149 
1150     // constant strings have no offset and count == length which
1151     // simplifies the resulting code somewhat so lets optimize for that.
1152     if (o != 0 || c != pat->length()) {
1153      return false;
1154     }
1155 
1156     // Null check on self without removing any arguments.  The argument
1157     // null check technically happens in the wrong place, which can lead to
1158     // invalid stack traces when string compare is inlined into a method
1159     // which handles NullPointerExceptions.
1160     _sp += 2;
1161     receiver = do_null_check(receiver, T_OBJECT);
1162     // No null check on the argument is needed since it's a constant String oop.
1163     _sp -= 2;
1164     if (stopped()) {
1165      return true;
1166     }
1167 
1168     // The null string as a pattern always returns 0 (match at beginning of string)
1169     if (c == 0) {
1170       push(intcon(0));
1171       return true;
1172     }
1173 
1174     // Generate default indexOf
1175     jchar lastChar = pat->char_at(o + (c - 1));
1176     int cache = 0;
1177     int i;
1178     for (i = 0; i < c - 1; i++) {
1179       assert(i < pat->length(), "out of range");
1180       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1181     }
1182 
1183     int md2 = c;
1184     for (i = 0; i < c - 1; i++) {
1185       assert(i < pat->length(), "out of range");
1186       if (pat->char_at(o + i) == lastChar) {
1187         md2 = (c - 1) - i;
1188       }
1189     }
1190 
1191     result = string_indexOf(receiver, pat, o, cache, md2);
1192   }
1193 
1194   push(result);
1195   return true;
1196 }
1197 
1198 //--------------------------pop_math_arg--------------------------------
1199 // Pop a double argument to a math function from the stack
1200 // rounding it if necessary.
1201 Node * LibraryCallKit::pop_math_arg() {
1202   Node *arg = pop_pair();
1203   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1204     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1205   return arg;
1206 }
1207 
1208 //------------------------------inline_trig----------------------------------
1209 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1210 // argument reduction which will turn into a fast/slow diamond.
1211 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1212   _sp += arg_size();            // restore stack pointer
1213   Node* arg = pop_math_arg();
1214   Node* trig = NULL;
1215 
1216   switch (id) {
1217   case vmIntrinsics::_dsin:
1218     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1219     break;
1220   case vmIntrinsics::_dcos:
1221     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1222     break;
1223   case vmIntrinsics::_dtan:
1224     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1225     break;
1226   default:
1227     assert(false, "bad intrinsic was passed in");
1228     return false;
1229   }
1230 
1231   // Rounding required?  Check for argument reduction!
1232   if( Matcher::strict_fp_requires_explicit_rounding ) {
1233 
1234     static const double     pi_4 =  0.7853981633974483;
1235     static const double neg_pi_4 = -0.7853981633974483;
1236     // pi/2 in 80-bit extended precision
1237     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1238     // -pi/2 in 80-bit extended precision
1239     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1240     // Cutoff value for using this argument reduction technique
1241     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1242     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1243 
1244     // Pseudocode for sin:
1245     // if (x <= Math.PI / 4.0) {
1246     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1247     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1248     // } else {
1249     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1250     // }
1251     // return StrictMath.sin(x);
1252 
1253     // Pseudocode for cos:
1254     // if (x <= Math.PI / 4.0) {
1255     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1256     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1257     // } else {
1258     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1259     // }
1260     // return StrictMath.cos(x);
1261 
1262     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1263     // requires a special machine instruction to load it.  Instead we'll try
1264     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1265     // probably do the math inside the SIN encoding.
1266 
1267     // Make the merge point
1268     RegionNode *r = new (C, 3) RegionNode(3);
1269     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1270 
1271     // Flatten arg so we need only 1 test
1272     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1273     // Node for PI/4 constant
1274     Node *pi4 = makecon(TypeD::make(pi_4));
1275     // Check PI/4 : abs(arg)
1276     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1277     // Check: If PI/4 < abs(arg) then go slow
1278     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1279     // Branch either way
1280     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1281     set_control(opt_iff(r,iff));
1282 
1283     // Set fast path result
1284     phi->init_req(2,trig);
1285 
1286     // Slow path - non-blocking leaf call
1287     Node* call = NULL;
1288     switch (id) {
1289     case vmIntrinsics::_dsin:
1290       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1291                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1292                                "Sin", NULL, arg, top());
1293       break;
1294     case vmIntrinsics::_dcos:
1295       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1296                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1297                                "Cos", NULL, arg, top());
1298       break;
1299     case vmIntrinsics::_dtan:
1300       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1301                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1302                                "Tan", NULL, arg, top());
1303       break;
1304     }
1305     assert(control()->in(0) == call, "");
1306     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1307     r->init_req(1,control());
1308     phi->init_req(1,slow_result);
1309 
1310     // Post-merge
1311     set_control(_gvn.transform(r));
1312     record_for_igvn(r);
1313     trig = _gvn.transform(phi);
1314 
1315     C->set_has_split_ifs(true); // Has chance for split-if optimization
1316   }
1317   // Push result back on JVM stack
1318   push_pair(trig);
1319   return true;
1320 }
1321 
1322 //------------------------------inline_sqrt-------------------------------------
1323 // Inline square root instruction, if possible.
1324 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1325   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1326   _sp += arg_size();        // restore stack pointer
1327   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1328   return true;
1329 }
1330 
1331 //------------------------------inline_abs-------------------------------------
1332 // Inline absolute value instruction, if possible.
1333 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1334   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1335   _sp += arg_size();        // restore stack pointer
1336   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1337   return true;
1338 }
1339 
1340 //------------------------------inline_exp-------------------------------------
1341 // Inline exp instructions, if possible.  The Intel hardware only misses
1342 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1343 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1344   assert(id == vmIntrinsics::_dexp, "Not exp");
1345 
1346   // If this inlining ever returned NaN in the past, we do not intrinsify it
1347   // every again.  NaN results requires StrictMath.exp handling.
1348   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1349 
1350   // Do not intrinsify on older platforms which lack cmove.
1351   if (ConditionalMoveLimit == 0)  return false;
1352 
1353   _sp += arg_size();        // restore stack pointer
1354   Node *x = pop_math_arg();
1355   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1356 
1357   //-------------------
1358   //result=(result.isNaN())? StrictMath::exp():result;
1359   // Check: If isNaN() by checking result!=result? then go to Strict Math
1360   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1361   // Build the boolean node
1362   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1363 
1364   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1365     // End the current control-flow path
1366     push_pair(x);
1367     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1368     // to handle.  Recompile without intrinsifying Math.exp
1369     uncommon_trap(Deoptimization::Reason_intrinsic,
1370                   Deoptimization::Action_make_not_entrant);
1371   }
1372 
1373   C->set_has_split_ifs(true); // Has chance for split-if optimization
1374 
1375   push_pair(result);
1376 
1377   return true;
1378 }
1379 
1380 //------------------------------inline_pow-------------------------------------
1381 // Inline power instructions, if possible.
1382 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1383   assert(id == vmIntrinsics::_dpow, "Not pow");
1384 
1385   // If this inlining ever returned NaN in the past, we do not intrinsify it
1386   // every again.  NaN results requires StrictMath.pow handling.
1387   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1388 
1389   // Do not intrinsify on older platforms which lack cmove.
1390   if (ConditionalMoveLimit == 0)  return false;
1391 
1392   // Pseudocode for pow
1393   // if (x <= 0.0) {
1394   //   if ((double)((int)y)==y) { // if y is int
1395   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1396   //   } else {
1397   //     result = NaN;
1398   //   }
1399   // } else {
1400   //   result = DPow(x,y);
1401   // }
1402   // if (result != result)?  {
1403   //   uncommon_trap();
1404   // }
1405   // return result;
1406 
1407   _sp += arg_size();        // restore stack pointer
1408   Node* y = pop_math_arg();
1409   Node* x = pop_math_arg();
1410 
1411   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1412 
1413   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1414   // inside of something) then skip the fancy tests and just check for
1415   // NaN result.
1416   Node *result = NULL;
1417   if( jvms()->depth() >= 1 ) {
1418     result = fast_result;
1419   } else {
1420 
1421     // Set the merge point for If node with condition of (x <= 0.0)
1422     // There are four possible paths to region node and phi node
1423     RegionNode *r = new (C, 4) RegionNode(4);
1424     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1425 
1426     // Build the first if node: if (x <= 0.0)
1427     // Node for 0 constant
1428     Node *zeronode = makecon(TypeD::ZERO);
1429     // Check x:0
1430     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1431     // Check: If (x<=0) then go complex path
1432     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1433     // Branch either way
1434     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1435     Node *opt_test = _gvn.transform(if1);
1436     //assert( opt_test->is_If(), "Expect an IfNode");
1437     IfNode *opt_if1 = (IfNode*)opt_test;
1438     // Fast path taken; set region slot 3
1439     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1440     r->init_req(3,fast_taken); // Capture fast-control
1441 
1442     // Fast path not-taken, i.e. slow path
1443     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1444 
1445     // Set fast path result
1446     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1447     phi->init_req(3, fast_result);
1448 
1449     // Complex path
1450     // Build the second if node (if y is int)
1451     // Node for (int)y
1452     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1453     // Node for (double)((int) y)
1454     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1455     // Check (double)((int) y) : y
1456     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1457     // Check if (y isn't int) then go to slow path
1458 
1459     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1460     // Branch either way
1461     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1462     Node *slow_path = opt_iff(r,if2); // Set region path 2
1463 
1464     // Calculate DPow(abs(x), y)*(1 & (int)y)
1465     // Node for constant 1
1466     Node *conone = intcon(1);
1467     // 1& (int)y
1468     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1469     // zero node
1470     Node *conzero = intcon(0);
1471     // Check (1&(int)y)==0?
1472     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1473     // Check if (1&(int)y)!=0?, if so the result is negative
1474     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1475     // abs(x)
1476     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1477     // abs(x)^y
1478     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1479     // -abs(x)^y
1480     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1481     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1482     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1483     // Set complex path fast result
1484     phi->init_req(2, signresult);
1485 
1486     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1487     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1488     r->init_req(1,slow_path);
1489     phi->init_req(1,slow_result);
1490 
1491     // Post merge
1492     set_control(_gvn.transform(r));
1493     record_for_igvn(r);
1494     result=_gvn.transform(phi);
1495   }
1496 
1497   //-------------------
1498   //result=(result.isNaN())? uncommon_trap():result;
1499   // Check: If isNaN() by checking result!=result? then go to Strict Math
1500   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1501   // Build the boolean node
1502   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1503 
1504   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1505     // End the current control-flow path
1506     push_pair(x);
1507     push_pair(y);
1508     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1509     // to handle.  Recompile without intrinsifying Math.pow.
1510     uncommon_trap(Deoptimization::Reason_intrinsic,
1511                   Deoptimization::Action_make_not_entrant);
1512   }
1513 
1514   C->set_has_split_ifs(true); // Has chance for split-if optimization
1515 
1516   push_pair(result);
1517 
1518   return true;
1519 }
1520 
1521 //------------------------------inline_trans-------------------------------------
1522 // Inline transcendental instructions, if possible.  The Intel hardware gets
1523 // these right, no funny corner cases missed.
1524 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1525   _sp += arg_size();        // restore stack pointer
1526   Node* arg = pop_math_arg();
1527   Node* trans = NULL;
1528 
1529   switch (id) {
1530   case vmIntrinsics::_dlog:
1531     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1532     break;
1533   case vmIntrinsics::_dlog10:
1534     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1535     break;
1536   default:
1537     assert(false, "bad intrinsic was passed in");
1538     return false;
1539   }
1540 
1541   // Push result back on JVM stack
1542   push_pair(trans);
1543   return true;
1544 }
1545 
1546 //------------------------------runtime_math-----------------------------
1547 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1548   Node* a = NULL;
1549   Node* b = NULL;
1550 
1551   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1552          "must be (DD)D or (D)D type");
1553 
1554   // Inputs
1555   _sp += arg_size();        // restore stack pointer
1556   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1557     b = pop_math_arg();
1558   }
1559   a = pop_math_arg();
1560 
1561   const TypePtr* no_memory_effects = NULL;
1562   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1563                                  no_memory_effects,
1564                                  a, top(), b, b ? top() : NULL);
1565   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1566 #ifdef ASSERT
1567   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1568   assert(value_top == top(), "second value must be top");
1569 #endif
1570 
1571   push_pair(value);
1572   return true;
1573 }
1574 
1575 //------------------------------inline_math_native-----------------------------
1576 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1577   switch (id) {
1578     // These intrinsics are not properly supported on all hardware
1579   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1580     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1581   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1582     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1583   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1584     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1585 
1586   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1587     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1588   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1589     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1590 
1591     // These intrinsics are supported on all hardware
1592   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1593   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1594 
1595     // These intrinsics don't work on X86.  The ad implementation doesn't
1596     // handle NaN's properly.  Instead of returning infinity, the ad
1597     // implementation returns a NaN on overflow. See bug: 6304089
1598     // Once the ad implementations are fixed, change the code below
1599     // to match the intrinsics above
1600 
1601   case vmIntrinsics::_dexp:  return
1602     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1603   case vmIntrinsics::_dpow:  return
1604     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1605 
1606    // These intrinsics are not yet correctly implemented
1607   case vmIntrinsics::_datan2:
1608     return false;
1609 
1610   default:
1611     ShouldNotReachHere();
1612     return false;
1613   }
1614 }
1615 
1616 static bool is_simple_name(Node* n) {
1617   return (n->req() == 1         // constant
1618           || (n->is_Type() && n->as_Type()->type()->singleton())
1619           || n->is_Proj()       // parameter or return value
1620           || n->is_Phi()        // local of some sort
1621           );
1622 }
1623 
1624 //----------------------------inline_min_max-----------------------------------
1625 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1626   push(generate_min_max(id, argument(0), argument(1)));
1627 
1628   return true;
1629 }
1630 
1631 Node*
1632 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1633   // These are the candidate return value:
1634   Node* xvalue = x0;
1635   Node* yvalue = y0;
1636 
1637   if (xvalue == yvalue) {
1638     return xvalue;
1639   }
1640 
1641   bool want_max = (id == vmIntrinsics::_max);
1642 
1643   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1644   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1645   if (txvalue == NULL || tyvalue == NULL)  return top();
1646   // This is not really necessary, but it is consistent with a
1647   // hypothetical MaxINode::Value method:
1648   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1649 
1650   // %%% This folding logic should (ideally) be in a different place.
1651   // Some should be inside IfNode, and there to be a more reliable
1652   // transformation of ?: style patterns into cmoves.  We also want
1653   // more powerful optimizations around cmove and min/max.
1654 
1655   // Try to find a dominating comparison of these guys.
1656   // It can simplify the index computation for Arrays.copyOf
1657   // and similar uses of System.arraycopy.
1658   // First, compute the normalized version of CmpI(x, y).
1659   int   cmp_op = Op_CmpI;
1660   Node* xkey = xvalue;
1661   Node* ykey = yvalue;
1662   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1663   if (ideal_cmpxy->is_Cmp()) {
1664     // E.g., if we have CmpI(length - offset, count),
1665     // it might idealize to CmpI(length, count + offset)
1666     cmp_op = ideal_cmpxy->Opcode();
1667     xkey = ideal_cmpxy->in(1);
1668     ykey = ideal_cmpxy->in(2);
1669   }
1670 
1671   // Start by locating any relevant comparisons.
1672   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1673   Node* cmpxy = NULL;
1674   Node* cmpyx = NULL;
1675   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1676     Node* cmp = start_from->fast_out(k);
1677     if (cmp->outcnt() > 0 &&            // must have prior uses
1678         cmp->in(0) == NULL &&           // must be context-independent
1679         cmp->Opcode() == cmp_op) {      // right kind of compare
1680       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1681       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1682     }
1683   }
1684 
1685   const int NCMPS = 2;
1686   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1687   int cmpn;
1688   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1689     if (cmps[cmpn] != NULL)  break;     // find a result
1690   }
1691   if (cmpn < NCMPS) {
1692     // Look for a dominating test that tells us the min and max.
1693     int depth = 0;                // Limit search depth for speed
1694     Node* dom = control();
1695     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1696       if (++depth >= 100)  break;
1697       Node* ifproj = dom;
1698       if (!ifproj->is_Proj())  continue;
1699       Node* iff = ifproj->in(0);
1700       if (!iff->is_If())  continue;
1701       Node* bol = iff->in(1);
1702       if (!bol->is_Bool())  continue;
1703       Node* cmp = bol->in(1);
1704       if (cmp == NULL)  continue;
1705       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1706         if (cmps[cmpn] == cmp)  break;
1707       if (cmpn == NCMPS)  continue;
1708       BoolTest::mask btest = bol->as_Bool()->_test._test;
1709       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1710       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1711       // At this point, we know that 'x btest y' is true.
1712       switch (btest) {
1713       case BoolTest::eq:
1714         // They are proven equal, so we can collapse the min/max.
1715         // Either value is the answer.  Choose the simpler.
1716         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1717           return yvalue;
1718         return xvalue;
1719       case BoolTest::lt:          // x < y
1720       case BoolTest::le:          // x <= y
1721         return (want_max ? yvalue : xvalue);
1722       case BoolTest::gt:          // x > y
1723       case BoolTest::ge:          // x >= y
1724         return (want_max ? xvalue : yvalue);
1725       }
1726     }
1727   }
1728 
1729   // We failed to find a dominating test.
1730   // Let's pick a test that might GVN with prior tests.
1731   Node*          best_bol   = NULL;
1732   BoolTest::mask best_btest = BoolTest::illegal;
1733   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1734     Node* cmp = cmps[cmpn];
1735     if (cmp == NULL)  continue;
1736     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1737       Node* bol = cmp->fast_out(j);
1738       if (!bol->is_Bool())  continue;
1739       BoolTest::mask btest = bol->as_Bool()->_test._test;
1740       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1741       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1742       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1743         best_bol   = bol->as_Bool();
1744         best_btest = btest;
1745       }
1746     }
1747   }
1748 
1749   Node* answer_if_true  = NULL;
1750   Node* answer_if_false = NULL;
1751   switch (best_btest) {
1752   default:
1753     if (cmpxy == NULL)
1754       cmpxy = ideal_cmpxy;
1755     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1756     // and fall through:
1757   case BoolTest::lt:          // x < y
1758   case BoolTest::le:          // x <= y
1759     answer_if_true  = (want_max ? yvalue : xvalue);
1760     answer_if_false = (want_max ? xvalue : yvalue);
1761     break;
1762   case BoolTest::gt:          // x > y
1763   case BoolTest::ge:          // x >= y
1764     answer_if_true  = (want_max ? xvalue : yvalue);
1765     answer_if_false = (want_max ? yvalue : xvalue);
1766     break;
1767   }
1768 
1769   jint hi, lo;
1770   if (want_max) {
1771     // We can sharpen the minimum.
1772     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1773     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1774   } else {
1775     // We can sharpen the maximum.
1776     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1777     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1778   }
1779 
1780   // Use a flow-free graph structure, to avoid creating excess control edges
1781   // which could hinder other optimizations.
1782   // Since Math.min/max is often used with arraycopy, we want
1783   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1784   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1785                                answer_if_false, answer_if_true,
1786                                TypeInt::make(lo, hi, widen));
1787 
1788   return _gvn.transform(cmov);
1789 
1790   /*
1791   // This is not as desirable as it may seem, since Min and Max
1792   // nodes do not have a full set of optimizations.
1793   // And they would interfere, anyway, with 'if' optimizations
1794   // and with CMoveI canonical forms.
1795   switch (id) {
1796   case vmIntrinsics::_min:
1797     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1798   case vmIntrinsics::_max:
1799     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1800   default:
1801     ShouldNotReachHere();
1802   }
1803   */
1804 }
1805 
1806 inline int
1807 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1808   const TypePtr* base_type = TypePtr::NULL_PTR;
1809   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1810   if (base_type == NULL) {
1811     // Unknown type.
1812     return Type::AnyPtr;
1813   } else if (base_type == TypePtr::NULL_PTR) {
1814     // Since this is a NULL+long form, we have to switch to a rawptr.
1815     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1816     offset = MakeConX(0);
1817     return Type::RawPtr;
1818   } else if (base_type->base() == Type::RawPtr) {
1819     return Type::RawPtr;
1820   } else if (base_type->isa_oopptr()) {
1821     // Base is never null => always a heap address.
1822     if (base_type->ptr() == TypePtr::NotNull) {
1823       return Type::OopPtr;
1824     }
1825     // Offset is small => always a heap address.
1826     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1827     if (offset_type != NULL &&
1828         base_type->offset() == 0 &&     // (should always be?)
1829         offset_type->_lo >= 0 &&
1830         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1831       return Type::OopPtr;
1832     }
1833     // Otherwise, it might either be oop+off or NULL+addr.
1834     return Type::AnyPtr;
1835   } else {
1836     // No information:
1837     return Type::AnyPtr;
1838   }
1839 }
1840 
1841 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1842   int kind = classify_unsafe_addr(base, offset);
1843   if (kind == Type::RawPtr) {
1844     return basic_plus_adr(top(), base, offset);
1845   } else {
1846     return basic_plus_adr(base, offset);
1847   }
1848 }
1849 
1850 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1851 // inline int Integer.numberOfLeadingZeros(int)
1852 // inline int Long.numberOfLeadingZeros(long)
1853 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1854   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1855   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1856   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1857   _sp += arg_size();  // restore stack pointer
1858   switch (id) {
1859   case vmIntrinsics::_numberOfLeadingZeros_i:
1860     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1861     break;
1862   case vmIntrinsics::_numberOfLeadingZeros_l:
1863     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1864     break;
1865   default:
1866     ShouldNotReachHere();
1867   }
1868   return true;
1869 }
1870 
1871 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1872 // inline int Integer.numberOfTrailingZeros(int)
1873 // inline int Long.numberOfTrailingZeros(long)
1874 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1875   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1876   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1877   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1878   _sp += arg_size();  // restore stack pointer
1879   switch (id) {
1880   case vmIntrinsics::_numberOfTrailingZeros_i:
1881     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1882     break;
1883   case vmIntrinsics::_numberOfTrailingZeros_l:
1884     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1885     break;
1886   default:
1887     ShouldNotReachHere();
1888   }
1889   return true;
1890 }
1891 
1892 //----------------------------inline_bitCount_int/long-----------------------
1893 // inline int Integer.bitCount(int)
1894 // inline int Long.bitCount(long)
1895 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
1896   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
1897   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
1898   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
1899   _sp += arg_size();  // restore stack pointer
1900   switch (id) {
1901   case vmIntrinsics::_bitCount_i:
1902     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
1903     break;
1904   case vmIntrinsics::_bitCount_l:
1905     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
1906     break;
1907   default:
1908     ShouldNotReachHere();
1909   }
1910   return true;
1911 }
1912 
1913 //----------------------------inline_reverseBytes_int/long-------------------
1914 // inline Integer.reverseBytes(int)
1915 // inline Long.reverseBytes(long)
1916 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
1917   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
1918   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
1919   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
1920   _sp += arg_size();        // restore stack pointer
1921   switch (id) {
1922   case vmIntrinsics::_reverseBytes_i:
1923     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
1924     break;
1925   case vmIntrinsics::_reverseBytes_l:
1926     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
1927     break;
1928   default:
1929     ;
1930   }
1931   return true;
1932 }
1933 
1934 //----------------------------inline_unsafe_access----------------------------
1935 
1936 const static BasicType T_ADDRESS_HOLDER = T_LONG;
1937 
1938 // Interpret Unsafe.fieldOffset cookies correctly:
1939 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
1940 
1941 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
1942   if (callee()->is_static())  return false;  // caller must have the capability!
1943 
1944 #ifndef PRODUCT
1945   {
1946     ResourceMark rm;
1947     // Check the signatures.
1948     ciSignature* sig = signature();
1949 #ifdef ASSERT
1950     if (!is_store) {
1951       // Object getObject(Object base, int/long offset), etc.
1952       BasicType rtype = sig->return_type()->basic_type();
1953       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
1954           rtype = T_ADDRESS;  // it is really a C void*
1955       assert(rtype == type, "getter must return the expected value");
1956       if (!is_native_ptr) {
1957         assert(sig->count() == 2, "oop getter has 2 arguments");
1958         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
1959         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
1960       } else {
1961         assert(sig->count() == 1, "native getter has 1 argument");
1962         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
1963       }
1964     } else {
1965       // void putObject(Object base, int/long offset, Object x), etc.
1966       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
1967       if (!is_native_ptr) {
1968         assert(sig->count() == 3, "oop putter has 3 arguments");
1969         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
1970         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
1971       } else {
1972         assert(sig->count() == 2, "native putter has 2 arguments");
1973         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
1974       }
1975       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
1976       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
1977         vtype = T_ADDRESS;  // it is really a C void*
1978       assert(vtype == type, "putter must accept the expected value");
1979     }
1980 #endif // ASSERT
1981  }
1982 #endif //PRODUCT
1983 
1984   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
1985 
1986   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
1987 
1988   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
1989   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
1990 
1991   debug_only(int saved_sp = _sp);
1992   _sp += nargs;
1993 
1994   Node* val;
1995   debug_only(val = (Node*)(uintptr_t)-1);
1996 
1997 
1998   if (is_store) {
1999     // Get the value being stored.  (Pop it first; it was pushed last.)
2000     switch (type) {
2001     case T_DOUBLE:
2002     case T_LONG:
2003     case T_ADDRESS:
2004       val = pop_pair();
2005       break;
2006     default:
2007       val = pop();
2008     }
2009   }
2010 
2011   // Build address expression.  See the code in inline_unsafe_prefetch.
2012   Node *adr;
2013   Node *heap_base_oop = top();
2014   if (!is_native_ptr) {
2015     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2016     Node* offset = pop_pair();
2017     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2018     Node* base   = pop();
2019     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2020     // to be plain byte offsets, which are also the same as those accepted
2021     // by oopDesc::field_base.
2022     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2023            "fieldOffset must be byte-scaled");
2024     // 32-bit machines ignore the high half!
2025     offset = ConvL2X(offset);
2026     adr = make_unsafe_address(base, offset);
2027     heap_base_oop = base;
2028   } else {
2029     Node* ptr = pop_pair();
2030     // Adjust Java long to machine word:
2031     ptr = ConvL2X(ptr);
2032     adr = make_unsafe_address(NULL, ptr);
2033   }
2034 
2035   // Pop receiver last:  it was pushed first.
2036   Node *receiver = pop();
2037 
2038   assert(saved_sp == _sp, "must have correct argument count");
2039 
2040   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2041 
2042   // First guess at the value type.
2043   const Type *value_type = Type::get_const_basic_type(type);
2044 
2045   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2046   // there was not enough information to nail it down.
2047   Compile::AliasType* alias_type = C->alias_type(adr_type);
2048   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2049 
2050   // We will need memory barriers unless we can determine a unique
2051   // alias category for this reference.  (Note:  If for some reason
2052   // the barriers get omitted and the unsafe reference begins to "pollute"
2053   // the alias analysis of the rest of the graph, either Compile::can_alias
2054   // or Compile::must_alias will throw a diagnostic assert.)
2055   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2056 
2057   if (!is_store && type == T_OBJECT) {
2058     // Attempt to infer a sharper value type from the offset and base type.
2059     ciKlass* sharpened_klass = NULL;
2060 
2061     // See if it is an instance field, with an object type.
2062     if (alias_type->field() != NULL) {
2063       assert(!is_native_ptr, "native pointer op cannot use a java address");
2064       if (alias_type->field()->type()->is_klass()) {
2065         sharpened_klass = alias_type->field()->type()->as_klass();
2066       }
2067     }
2068 
2069     // See if it is a narrow oop array.
2070     if (adr_type->isa_aryptr()) {
2071       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2072         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2073         if (elem_type != NULL) {
2074           sharpened_klass = elem_type->klass();
2075         }
2076       }
2077     }
2078 
2079     if (sharpened_klass != NULL) {
2080       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2081 
2082       // Sharpen the value type.
2083       value_type = tjp;
2084 
2085 #ifndef PRODUCT
2086       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2087         tty->print("  from base type:  ");   adr_type->dump();
2088         tty->print("  sharpened value: "); value_type->dump();
2089       }
2090 #endif
2091     }
2092   }
2093 
2094   // Null check on self without removing any arguments.  The argument
2095   // null check technically happens in the wrong place, which can lead to
2096   // invalid stack traces when the primitive is inlined into a method
2097   // which handles NullPointerExceptions.
2098   _sp += nargs;
2099   do_null_check(receiver, T_OBJECT);
2100   _sp -= nargs;
2101   if (stopped()) {
2102     return true;
2103   }
2104   // Heap pointers get a null-check from the interpreter,
2105   // as a courtesy.  However, this is not guaranteed by Unsafe,
2106   // and it is not possible to fully distinguish unintended nulls
2107   // from intended ones in this API.
2108 
2109   if (is_volatile) {
2110     // We need to emit leading and trailing CPU membars (see below) in
2111     // addition to memory membars when is_volatile. This is a little
2112     // too strong, but avoids the need to insert per-alias-type
2113     // volatile membars (for stores; compare Parse::do_put_xxx), which
2114     // we cannot do effectively here because we probably only have a
2115     // rough approximation of type.
2116     need_mem_bar = true;
2117     // For Stores, place a memory ordering barrier now.
2118     if (is_store)
2119       insert_mem_bar(Op_MemBarRelease);
2120   }
2121 
2122   // Memory barrier to prevent normal and 'unsafe' accesses from
2123   // bypassing each other.  Happens after null checks, so the
2124   // exception paths do not take memory state from the memory barrier,
2125   // so there's no problems making a strong assert about mixing users
2126   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2127   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2128   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2129 
2130   if (!is_store) {
2131     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2132     // load value and push onto stack
2133     switch (type) {
2134     case T_BOOLEAN:
2135     case T_CHAR:
2136     case T_BYTE:
2137     case T_SHORT:
2138     case T_INT:
2139     case T_FLOAT:
2140     case T_OBJECT:
2141       push( p );
2142       break;
2143     case T_ADDRESS:
2144       // Cast to an int type.
2145       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2146       p = ConvX2L(p);
2147       push_pair(p);
2148       break;
2149     case T_DOUBLE:
2150     case T_LONG:
2151       push_pair( p );
2152       break;
2153     default: ShouldNotReachHere();
2154     }
2155   } else {
2156     // place effect of store into memory
2157     switch (type) {
2158     case T_DOUBLE:
2159       val = dstore_rounding(val);
2160       break;
2161     case T_ADDRESS:
2162       // Repackage the long as a pointer.
2163       val = ConvL2X(val);
2164       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2165       break;
2166     }
2167 
2168     if (type != T_OBJECT ) {
2169       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2170     } else {
2171       // Possibly an oop being stored to Java heap or native memory
2172       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2173         // oop to Java heap.
2174         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2175       } else {
2176         // We can't tell at compile time if we are storing in the Java heap or outside
2177         // of it. So we need to emit code to conditionally do the proper type of
2178         // store.
2179 
2180         IdealKit ideal(gvn(), control(),  merged_memory());
2181 #define __ ideal.
2182         // QQQ who knows what probability is here??
2183         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2184           // Sync IdealKit and graphKit.
2185           set_all_memory( __ merged_memory());
2186           set_control(__ ctrl());
2187           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2188           // Update IdealKit memory.
2189           __ set_all_memory(merged_memory());
2190           __ set_ctrl(control());
2191         } __ else_(); {
2192           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2193         } __ end_if();
2194         // Final sync IdealKit and GraphKit.
2195         sync_kit(ideal);
2196 #undef __
2197       }
2198     }
2199   }
2200 
2201   if (is_volatile) {
2202     if (!is_store)
2203       insert_mem_bar(Op_MemBarAcquire);
2204     else
2205       insert_mem_bar(Op_MemBarVolatile);
2206   }
2207 
2208   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2209 
2210   return true;
2211 }
2212 
2213 //----------------------------inline_unsafe_prefetch----------------------------
2214 
2215 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2216 #ifndef PRODUCT
2217   {
2218     ResourceMark rm;
2219     // Check the signatures.
2220     ciSignature* sig = signature();
2221 #ifdef ASSERT
2222     // Object getObject(Object base, int/long offset), etc.
2223     BasicType rtype = sig->return_type()->basic_type();
2224     if (!is_native_ptr) {
2225       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2226       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2227       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2228     } else {
2229       assert(sig->count() == 1, "native prefetch has 1 argument");
2230       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2231     }
2232 #endif // ASSERT
2233   }
2234 #endif // !PRODUCT
2235 
2236   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2237 
2238   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2239   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2240 
2241   debug_only(int saved_sp = _sp);
2242   _sp += nargs;
2243 
2244   // Build address expression.  See the code in inline_unsafe_access.
2245   Node *adr;
2246   if (!is_native_ptr) {
2247     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2248     Node* offset = pop_pair();
2249     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2250     Node* base   = pop();
2251     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2252     // to be plain byte offsets, which are also the same as those accepted
2253     // by oopDesc::field_base.
2254     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2255            "fieldOffset must be byte-scaled");
2256     // 32-bit machines ignore the high half!
2257     offset = ConvL2X(offset);
2258     adr = make_unsafe_address(base, offset);
2259   } else {
2260     Node* ptr = pop_pair();
2261     // Adjust Java long to machine word:
2262     ptr = ConvL2X(ptr);
2263     adr = make_unsafe_address(NULL, ptr);
2264   }
2265 
2266   if (is_static) {
2267     assert(saved_sp == _sp, "must have correct argument count");
2268   } else {
2269     // Pop receiver last:  it was pushed first.
2270     Node *receiver = pop();
2271     assert(saved_sp == _sp, "must have correct argument count");
2272 
2273     // Null check on self without removing any arguments.  The argument
2274     // null check technically happens in the wrong place, which can lead to
2275     // invalid stack traces when the primitive is inlined into a method
2276     // which handles NullPointerExceptions.
2277     _sp += nargs;
2278     do_null_check(receiver, T_OBJECT);
2279     _sp -= nargs;
2280     if (stopped()) {
2281       return true;
2282     }
2283   }
2284 
2285   // Generate the read or write prefetch
2286   Node *prefetch;
2287   if (is_store) {
2288     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2289   } else {
2290     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2291   }
2292   prefetch->init_req(0, control());
2293   set_i_o(_gvn.transform(prefetch));
2294 
2295   return true;
2296 }
2297 
2298 //----------------------------inline_unsafe_CAS----------------------------
2299 
2300 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2301   // This basic scheme here is the same as inline_unsafe_access, but
2302   // differs in enough details that combining them would make the code
2303   // overly confusing.  (This is a true fact! I originally combined
2304   // them, but even I was confused by it!) As much code/comments as
2305   // possible are retained from inline_unsafe_access though to make
2306   // the correspondences clearer. - dl
2307 
2308   if (callee()->is_static())  return false;  // caller must have the capability!
2309 
2310 #ifndef PRODUCT
2311   {
2312     ResourceMark rm;
2313     // Check the signatures.
2314     ciSignature* sig = signature();
2315 #ifdef ASSERT
2316     BasicType rtype = sig->return_type()->basic_type();
2317     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2318     assert(sig->count() == 4, "CAS has 4 arguments");
2319     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2320     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2321 #endif // ASSERT
2322   }
2323 #endif //PRODUCT
2324 
2325   // number of stack slots per value argument (1 or 2)
2326   int type_words = type2size[type];
2327 
2328   // Cannot inline wide CAS on machines that don't support it natively
2329   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2330     return false;
2331 
2332   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2333 
2334   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2335   int nargs = 1 + 1 + 2  + type_words + type_words;
2336 
2337   // pop arguments: newval, oldval, offset, base, and receiver
2338   debug_only(int saved_sp = _sp);
2339   _sp += nargs;
2340   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2341   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2342   Node *offset   = pop_pair();
2343   Node *base     = pop();
2344   Node *receiver = pop();
2345   assert(saved_sp == _sp, "must have correct argument count");
2346 
2347   //  Null check receiver.
2348   _sp += nargs;
2349   do_null_check(receiver, T_OBJECT);
2350   _sp -= nargs;
2351   if (stopped()) {
2352     return true;
2353   }
2354 
2355   // Build field offset expression.
2356   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2357   // to be plain byte offsets, which are also the same as those accepted
2358   // by oopDesc::field_base.
2359   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2360   // 32-bit machines ignore the high half of long offsets
2361   offset = ConvL2X(offset);
2362   Node* adr = make_unsafe_address(base, offset);
2363   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2364 
2365   // (Unlike inline_unsafe_access, there seems no point in trying
2366   // to refine types. Just use the coarse types here.
2367   const Type *value_type = Type::get_const_basic_type(type);
2368   Compile::AliasType* alias_type = C->alias_type(adr_type);
2369   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2370   int alias_idx = C->get_alias_index(adr_type);
2371 
2372   // Memory-model-wise, a CAS acts like a little synchronized block,
2373   // so needs barriers on each side.  These don't translate into
2374   // actual barriers on most machines, but we still need rest of
2375   // compiler to respect ordering.
2376 
2377   insert_mem_bar(Op_MemBarRelease);
2378   insert_mem_bar(Op_MemBarCPUOrder);
2379 
2380   // 4984716: MemBars must be inserted before this
2381   //          memory node in order to avoid a false
2382   //          dependency which will confuse the scheduler.
2383   Node *mem = memory(alias_idx);
2384 
2385   // For now, we handle only those cases that actually exist: ints,
2386   // longs, and Object. Adding others should be straightforward.
2387   Node* cas;
2388   switch(type) {
2389   case T_INT:
2390     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2391     break;
2392   case T_LONG:
2393     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2394     break;
2395   case T_OBJECT:
2396      // reference stores need a store barrier.
2397     // (They don't if CAS fails, but it isn't worth checking.)
2398     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2399 #ifdef _LP64
2400     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2401       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2402       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2403       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2404                                                           newval_enc, oldval_enc));
2405     } else
2406 #endif
2407     {
2408       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2409     }
2410     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2411     break;
2412   default:
2413     ShouldNotReachHere();
2414     break;
2415   }
2416 
2417   // SCMemProjNodes represent the memory state of CAS. Their main
2418   // role is to prevent CAS nodes from being optimized away when their
2419   // results aren't used.
2420   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2421   set_memory(proj, alias_idx);
2422 
2423   // Add the trailing membar surrounding the access
2424   insert_mem_bar(Op_MemBarCPUOrder);
2425   insert_mem_bar(Op_MemBarAcquire);
2426 
2427   push(cas);
2428   return true;
2429 }
2430 
2431 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2432   // This is another variant of inline_unsafe_access, differing in
2433   // that it always issues store-store ("release") barrier and ensures
2434   // store-atomicity (which only matters for "long").
2435 
2436   if (callee()->is_static())  return false;  // caller must have the capability!
2437 
2438 #ifndef PRODUCT
2439   {
2440     ResourceMark rm;
2441     // Check the signatures.
2442     ciSignature* sig = signature();
2443 #ifdef ASSERT
2444     BasicType rtype = sig->return_type()->basic_type();
2445     assert(rtype == T_VOID, "must return void");
2446     assert(sig->count() == 3, "has 3 arguments");
2447     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2448     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2449 #endif // ASSERT
2450   }
2451 #endif //PRODUCT
2452 
2453   // number of stack slots per value argument (1 or 2)
2454   int type_words = type2size[type];
2455 
2456   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2457 
2458   // Argument words:  "this" plus oop plus offset plus value;
2459   int nargs = 1 + 1 + 2 + type_words;
2460 
2461   // pop arguments: val, offset, base, and receiver
2462   debug_only(int saved_sp = _sp);
2463   _sp += nargs;
2464   Node* val      = (type_words == 1) ? pop() : pop_pair();
2465   Node *offset   = pop_pair();
2466   Node *base     = pop();
2467   Node *receiver = pop();
2468   assert(saved_sp == _sp, "must have correct argument count");
2469 
2470   //  Null check receiver.
2471   _sp += nargs;
2472   do_null_check(receiver, T_OBJECT);
2473   _sp -= nargs;
2474   if (stopped()) {
2475     return true;
2476   }
2477 
2478   // Build field offset expression.
2479   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2480   // 32-bit machines ignore the high half of long offsets
2481   offset = ConvL2X(offset);
2482   Node* adr = make_unsafe_address(base, offset);
2483   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2484   const Type *value_type = Type::get_const_basic_type(type);
2485   Compile::AliasType* alias_type = C->alias_type(adr_type);
2486 
2487   insert_mem_bar(Op_MemBarRelease);
2488   insert_mem_bar(Op_MemBarCPUOrder);
2489   // Ensure that the store is atomic for longs:
2490   bool require_atomic_access = true;
2491   Node* store;
2492   if (type == T_OBJECT) // reference stores need a store barrier.
2493     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2494   else {
2495     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2496   }
2497   insert_mem_bar(Op_MemBarCPUOrder);
2498   return true;
2499 }
2500 
2501 bool LibraryCallKit::inline_unsafe_allocate() {
2502   if (callee()->is_static())  return false;  // caller must have the capability!
2503   int nargs = 1 + 1;
2504   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2505   null_check_receiver(callee());  // check then ignore argument(0)
2506   _sp += nargs;  // set original stack for use by uncommon_trap
2507   Node* cls = do_null_check(argument(1), T_OBJECT);
2508   _sp -= nargs;
2509   if (stopped())  return true;
2510 
2511   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2512   _sp += nargs;  // set original stack for use by uncommon_trap
2513   kls = do_null_check(kls, T_OBJECT);
2514   _sp -= nargs;
2515   if (stopped())  return true;  // argument was like int.class
2516 
2517   // Note:  The argument might still be an illegal value like
2518   // Serializable.class or Object[].class.   The runtime will handle it.
2519   // But we must make an explicit check for initialization.
2520   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2521   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2522   Node* bits = intcon(instanceKlass::fully_initialized);
2523   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2524   // The 'test' is non-zero if we need to take a slow path.
2525 
2526   Node* obj = new_instance(kls, test);
2527   push(obj);
2528 
2529   return true;
2530 }
2531 
2532 //------------------------inline_native_time_funcs--------------
2533 // inline code for System.currentTimeMillis() and System.nanoTime()
2534 // these have the same type and signature
2535 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2536   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2537                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2538   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2539   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2540   const TypePtr* no_memory_effects = NULL;
2541   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2542   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2543 #ifdef ASSERT
2544   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2545   assert(value_top == top(), "second value must be top");
2546 #endif
2547   push_pair(value);
2548   return true;
2549 }
2550 
2551 //------------------------inline_native_currentThread------------------
2552 bool LibraryCallKit::inline_native_currentThread() {
2553   Node* junk = NULL;
2554   push(generate_current_thread(junk));
2555   return true;
2556 }
2557 
2558 //------------------------inline_native_isInterrupted------------------
2559 bool LibraryCallKit::inline_native_isInterrupted() {
2560   const int nargs = 1+1;  // receiver + boolean
2561   assert(nargs == arg_size(), "sanity");
2562   // Add a fast path to t.isInterrupted(clear_int):
2563   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2564   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2565   // So, in the common case that the interrupt bit is false,
2566   // we avoid making a call into the VM.  Even if the interrupt bit
2567   // is true, if the clear_int argument is false, we avoid the VM call.
2568   // However, if the receiver is not currentThread, we must call the VM,
2569   // because there must be some locking done around the operation.
2570 
2571   // We only go to the fast case code if we pass two guards.
2572   // Paths which do not pass are accumulated in the slow_region.
2573   RegionNode* slow_region = new (C, 1) RegionNode(1);
2574   record_for_igvn(slow_region);
2575   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2576   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2577   enum { no_int_result_path   = 1,
2578          no_clear_result_path = 2,
2579          slow_result_path     = 3
2580   };
2581 
2582   // (a) Receiving thread must be the current thread.
2583   Node* rec_thr = argument(0);
2584   Node* tls_ptr = NULL;
2585   Node* cur_thr = generate_current_thread(tls_ptr);
2586   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2587   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2588 
2589   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2590   if (!known_current_thread)
2591     generate_slow_guard(bol_thr, slow_region);
2592 
2593   // (b) Interrupt bit on TLS must be false.
2594   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2595   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2596   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2597   // Set the control input on the field _interrupted read to prevent it floating up.
2598   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2599   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2600   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2601 
2602   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2603 
2604   // First fast path:  if (!TLS._interrupted) return false;
2605   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2606   result_rgn->init_req(no_int_result_path, false_bit);
2607   result_val->init_req(no_int_result_path, intcon(0));
2608 
2609   // drop through to next case
2610   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2611 
2612   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2613   Node* clr_arg = argument(1);
2614   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2615   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2616   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2617 
2618   // Second fast path:  ... else if (!clear_int) return true;
2619   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2620   result_rgn->init_req(no_clear_result_path, false_arg);
2621   result_val->init_req(no_clear_result_path, intcon(1));
2622 
2623   // drop through to next case
2624   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2625 
2626   // (d) Otherwise, go to the slow path.
2627   slow_region->add_req(control());
2628   set_control( _gvn.transform(slow_region) );
2629 
2630   if (stopped()) {
2631     // There is no slow path.
2632     result_rgn->init_req(slow_result_path, top());
2633     result_val->init_req(slow_result_path, top());
2634   } else {
2635     // non-virtual because it is a private non-static
2636     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2637 
2638     Node* slow_val = set_results_for_java_call(slow_call);
2639     // this->control() comes from set_results_for_java_call
2640 
2641     // If we know that the result of the slow call will be true, tell the optimizer!
2642     if (known_current_thread)  slow_val = intcon(1);
2643 
2644     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2645     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2646     // These two phis are pre-filled with copies of of the fast IO and Memory
2647     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2648     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2649 
2650     result_rgn->init_req(slow_result_path, control());
2651     io_phi    ->init_req(slow_result_path, i_o());
2652     mem_phi   ->init_req(slow_result_path, reset_memory());
2653     result_val->init_req(slow_result_path, slow_val);
2654 
2655     set_all_memory( _gvn.transform(mem_phi) );
2656     set_i_o(        _gvn.transform(io_phi) );
2657   }
2658 
2659   push_result(result_rgn, result_val);
2660   C->set_has_split_ifs(true); // Has chance for split-if optimization
2661 
2662   return true;
2663 }
2664 
2665 //---------------------------load_mirror_from_klass----------------------------
2666 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2667 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2668   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2669   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2670 }
2671 
2672 //-----------------------load_klass_from_mirror_common-------------------------
2673 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2674 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2675 // and branch to the given path on the region.
2676 // If never_see_null, take an uncommon trap on null, so we can optimistically
2677 // compile for the non-null case.
2678 // If the region is NULL, force never_see_null = true.
2679 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2680                                                     bool never_see_null,
2681                                                     int nargs,
2682                                                     RegionNode* region,
2683                                                     int null_path,
2684                                                     int offset) {
2685   if (region == NULL)  never_see_null = true;
2686   Node* p = basic_plus_adr(mirror, offset);
2687   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2688   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2689   _sp += nargs; // any deopt will start just before call to enclosing method
2690   Node* null_ctl = top();
2691   kls = null_check_oop(kls, &null_ctl, never_see_null);
2692   if (region != NULL) {
2693     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2694     region->init_req(null_path, null_ctl);
2695   } else {
2696     assert(null_ctl == top(), "no loose ends");
2697   }
2698   _sp -= nargs;
2699   return kls;
2700 }
2701 
2702 //--------------------(inline_native_Class_query helpers)---------------------
2703 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2704 // Fall through if (mods & mask) == bits, take the guard otherwise.
2705 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2706   // Branch around if the given klass has the given modifier bit set.
2707   // Like generate_guard, adds a new path onto the region.
2708   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2709   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2710   Node* mask = intcon(modifier_mask);
2711   Node* bits = intcon(modifier_bits);
2712   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2713   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2714   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2715   return generate_fair_guard(bol, region);
2716 }
2717 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2718   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2719 }
2720 
2721 //-------------------------inline_native_Class_query-------------------
2722 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2723   int nargs = 1+0;  // just the Class mirror, in most cases
2724   const Type* return_type = TypeInt::BOOL;
2725   Node* prim_return_value = top();  // what happens if it's a primitive class?
2726   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2727   bool expect_prim = false;     // most of these guys expect to work on refs
2728 
2729   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2730 
2731   switch (id) {
2732   case vmIntrinsics::_isInstance:
2733     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2734     // nothing is an instance of a primitive type
2735     prim_return_value = intcon(0);
2736     break;
2737   case vmIntrinsics::_getModifiers:
2738     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2739     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2740     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2741     break;
2742   case vmIntrinsics::_isInterface:
2743     prim_return_value = intcon(0);
2744     break;
2745   case vmIntrinsics::_isArray:
2746     prim_return_value = intcon(0);
2747     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2748     break;
2749   case vmIntrinsics::_isPrimitive:
2750     prim_return_value = intcon(1);
2751     expect_prim = true;  // obviously
2752     break;
2753   case vmIntrinsics::_getSuperclass:
2754     prim_return_value = null();
2755     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2756     break;
2757   case vmIntrinsics::_getComponentType:
2758     prim_return_value = null();
2759     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2760     break;
2761   case vmIntrinsics::_getClassAccessFlags:
2762     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2763     return_type = TypeInt::INT;  // not bool!  6297094
2764     break;
2765   default:
2766     ShouldNotReachHere();
2767   }
2768 
2769   Node* mirror =                      argument(0);
2770   Node* obj    = (nargs <= 1)? top(): argument(1);
2771 
2772   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2773   if (mirror_con == NULL)  return false;  // cannot happen?
2774 
2775 #ifndef PRODUCT
2776   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2777     ciType* k = mirror_con->java_mirror_type();
2778     if (k) {
2779       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2780       k->print_name();
2781       tty->cr();
2782     }
2783   }
2784 #endif
2785 
2786   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2787   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2788   record_for_igvn(region);
2789   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2790 
2791   // The mirror will never be null of Reflection.getClassAccessFlags, however
2792   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2793   // if it is. See bug 4774291.
2794 
2795   // For Reflection.getClassAccessFlags(), the null check occurs in
2796   // the wrong place; see inline_unsafe_access(), above, for a similar
2797   // situation.
2798   _sp += nargs;  // set original stack for use by uncommon_trap
2799   mirror = do_null_check(mirror, T_OBJECT);
2800   _sp -= nargs;
2801   // If mirror or obj is dead, only null-path is taken.
2802   if (stopped())  return true;
2803 
2804   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2805 
2806   // Now load the mirror's klass metaobject, and null-check it.
2807   // Side-effects region with the control path if the klass is null.
2808   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2809                                      region, _prim_path);
2810   // If kls is null, we have a primitive mirror.
2811   phi->init_req(_prim_path, prim_return_value);
2812   if (stopped()) { push_result(region, phi); return true; }
2813 
2814   Node* p;  // handy temp
2815   Node* null_ctl;
2816 
2817   // Now that we have the non-null klass, we can perform the real query.
2818   // For constant classes, the query will constant-fold in LoadNode::Value.
2819   Node* query_value = top();
2820   switch (id) {
2821   case vmIntrinsics::_isInstance:
2822     // nothing is an instance of a primitive type
2823     query_value = gen_instanceof(obj, kls);
2824     break;
2825 
2826   case vmIntrinsics::_getModifiers:
2827     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2828     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2829     break;
2830 
2831   case vmIntrinsics::_isInterface:
2832     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2833     if (generate_interface_guard(kls, region) != NULL)
2834       // A guard was added.  If the guard is taken, it was an interface.
2835       phi->add_req(intcon(1));
2836     // If we fall through, it's a plain class.
2837     query_value = intcon(0);
2838     break;
2839 
2840   case vmIntrinsics::_isArray:
2841     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2842     if (generate_array_guard(kls, region) != NULL)
2843       // A guard was added.  If the guard is taken, it was an array.
2844       phi->add_req(intcon(1));
2845     // If we fall through, it's a plain class.
2846     query_value = intcon(0);
2847     break;
2848 
2849   case vmIntrinsics::_isPrimitive:
2850     query_value = intcon(0); // "normal" path produces false
2851     break;
2852 
2853   case vmIntrinsics::_getSuperclass:
2854     // The rules here are somewhat unfortunate, but we can still do better
2855     // with random logic than with a JNI call.
2856     // Interfaces store null or Object as _super, but must report null.
2857     // Arrays store an intermediate super as _super, but must report Object.
2858     // Other types can report the actual _super.
2859     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2860     if (generate_interface_guard(kls, region) != NULL)
2861       // A guard was added.  If the guard is taken, it was an interface.
2862       phi->add_req(null());
2863     if (generate_array_guard(kls, region) != NULL)
2864       // A guard was added.  If the guard is taken, it was an array.
2865       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2866     // If we fall through, it's a plain class.  Get its _super.
2867     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2868     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2869     null_ctl = top();
2870     kls = null_check_oop(kls, &null_ctl);
2871     if (null_ctl != top()) {
2872       // If the guard is taken, Object.superClass is null (both klass and mirror).
2873       region->add_req(null_ctl);
2874       phi   ->add_req(null());
2875     }
2876     if (!stopped()) {
2877       query_value = load_mirror_from_klass(kls);
2878     }
2879     break;
2880 
2881   case vmIntrinsics::_getComponentType:
2882     if (generate_array_guard(kls, region) != NULL) {
2883       // Be sure to pin the oop load to the guard edge just created:
2884       Node* is_array_ctrl = region->in(region->req()-1);
2885       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
2886       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
2887       phi->add_req(cmo);
2888     }
2889     query_value = null();  // non-array case is null
2890     break;
2891 
2892   case vmIntrinsics::_getClassAccessFlags:
2893     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2894     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2895     break;
2896 
2897   default:
2898     ShouldNotReachHere();
2899   }
2900 
2901   // Fall-through is the normal case of a query to a real class.
2902   phi->init_req(1, query_value);
2903   region->init_req(1, control());
2904 
2905   push_result(region, phi);
2906   C->set_has_split_ifs(true); // Has chance for split-if optimization
2907 
2908   return true;
2909 }
2910 
2911 //--------------------------inline_native_subtype_check------------------------
2912 // This intrinsic takes the JNI calls out of the heart of
2913 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
2914 bool LibraryCallKit::inline_native_subtype_check() {
2915   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
2916 
2917   // Pull both arguments off the stack.
2918   Node* args[2];                // two java.lang.Class mirrors: superc, subc
2919   args[0] = argument(0);
2920   args[1] = argument(1);
2921   Node* klasses[2];             // corresponding Klasses: superk, subk
2922   klasses[0] = klasses[1] = top();
2923 
2924   enum {
2925     // A full decision tree on {superc is prim, subc is prim}:
2926     _prim_0_path = 1,           // {P,N} => false
2927                                 // {P,P} & superc!=subc => false
2928     _prim_same_path,            // {P,P} & superc==subc => true
2929     _prim_1_path,               // {N,P} => false
2930     _ref_subtype_path,          // {N,N} & subtype check wins => true
2931     _both_ref_path,             // {N,N} & subtype check loses => false
2932     PATH_LIMIT
2933   };
2934 
2935   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2936   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2937   record_for_igvn(region);
2938 
2939   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
2940   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2941   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
2942 
2943   // First null-check both mirrors and load each mirror's klass metaobject.
2944   int which_arg;
2945   for (which_arg = 0; which_arg <= 1; which_arg++) {
2946     Node* arg = args[which_arg];
2947     _sp += nargs;  // set original stack for use by uncommon_trap
2948     arg = do_null_check(arg, T_OBJECT);
2949     _sp -= nargs;
2950     if (stopped())  break;
2951     args[which_arg] = _gvn.transform(arg);
2952 
2953     Node* p = basic_plus_adr(arg, class_klass_offset);
2954     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
2955     klasses[which_arg] = _gvn.transform(kls);
2956   }
2957 
2958   // Having loaded both klasses, test each for null.
2959   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2960   for (which_arg = 0; which_arg <= 1; which_arg++) {
2961     Node* kls = klasses[which_arg];
2962     Node* null_ctl = top();
2963     _sp += nargs;  // set original stack for use by uncommon_trap
2964     kls = null_check_oop(kls, &null_ctl, never_see_null);
2965     _sp -= nargs;
2966     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
2967     region->init_req(prim_path, null_ctl);
2968     if (stopped())  break;
2969     klasses[which_arg] = kls;
2970   }
2971 
2972   if (!stopped()) {
2973     // now we have two reference types, in klasses[0..1]
2974     Node* subk   = klasses[1];  // the argument to isAssignableFrom
2975     Node* superk = klasses[0];  // the receiver
2976     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
2977     // now we have a successful reference subtype check
2978     region->set_req(_ref_subtype_path, control());
2979   }
2980 
2981   // If both operands are primitive (both klasses null), then
2982   // we must return true when they are identical primitives.
2983   // It is convenient to test this after the first null klass check.
2984   set_control(region->in(_prim_0_path)); // go back to first null check
2985   if (!stopped()) {
2986     // Since superc is primitive, make a guard for the superc==subc case.
2987     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
2988     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
2989     generate_guard(bol_eq, region, PROB_FAIR);
2990     if (region->req() == PATH_LIMIT+1) {
2991       // A guard was added.  If the added guard is taken, superc==subc.
2992       region->swap_edges(PATH_LIMIT, _prim_same_path);
2993       region->del_req(PATH_LIMIT);
2994     }
2995     region->set_req(_prim_0_path, control()); // Not equal after all.
2996   }
2997 
2998   // these are the only paths that produce 'true':
2999   phi->set_req(_prim_same_path,   intcon(1));
3000   phi->set_req(_ref_subtype_path, intcon(1));
3001 
3002   // pull together the cases:
3003   assert(region->req() == PATH_LIMIT, "sane region");
3004   for (uint i = 1; i < region->req(); i++) {
3005     Node* ctl = region->in(i);
3006     if (ctl == NULL || ctl == top()) {
3007       region->set_req(i, top());
3008       phi   ->set_req(i, top());
3009     } else if (phi->in(i) == NULL) {
3010       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3011     }
3012   }
3013 
3014   set_control(_gvn.transform(region));
3015   push(_gvn.transform(phi));
3016 
3017   return true;
3018 }
3019 
3020 //---------------------generate_array_guard_common------------------------
3021 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3022                                                   bool obj_array, bool not_array) {
3023   // If obj_array/non_array==false/false:
3024   // Branch around if the given klass is in fact an array (either obj or prim).
3025   // If obj_array/non_array==false/true:
3026   // Branch around if the given klass is not an array klass of any kind.
3027   // If obj_array/non_array==true/true:
3028   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3029   // If obj_array/non_array==true/false:
3030   // Branch around if the kls is an oop array (Object[] or subtype)
3031   //
3032   // Like generate_guard, adds a new path onto the region.
3033   jint  layout_con = 0;
3034   Node* layout_val = get_layout_helper(kls, layout_con);
3035   if (layout_val == NULL) {
3036     bool query = (obj_array
3037                   ? Klass::layout_helper_is_objArray(layout_con)
3038                   : Klass::layout_helper_is_javaArray(layout_con));
3039     if (query == not_array) {
3040       return NULL;                       // never a branch
3041     } else {                             // always a branch
3042       Node* always_branch = control();
3043       if (region != NULL)
3044         region->add_req(always_branch);
3045       set_control(top());
3046       return always_branch;
3047     }
3048   }
3049   // Now test the correct condition.
3050   jint  nval = (obj_array
3051                 ? ((jint)Klass::_lh_array_tag_type_value
3052                    <<    Klass::_lh_array_tag_shift)
3053                 : Klass::_lh_neutral_value);
3054   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3055   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3056   // invert the test if we are looking for a non-array
3057   if (not_array)  btest = BoolTest(btest).negate();
3058   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3059   return generate_fair_guard(bol, region);
3060 }
3061 
3062 
3063 //-----------------------inline_native_newArray--------------------------
3064 bool LibraryCallKit::inline_native_newArray() {
3065   int nargs = 2;
3066   Node* mirror    = argument(0);
3067   Node* count_val = argument(1);
3068 
3069   _sp += nargs;  // set original stack for use by uncommon_trap
3070   mirror = do_null_check(mirror, T_OBJECT);
3071   _sp -= nargs;
3072   // If mirror or obj is dead, only null-path is taken.
3073   if (stopped())  return true;
3074 
3075   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3076   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3077   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3078                                                       TypeInstPtr::NOTNULL);
3079   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3080   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3081                                                       TypePtr::BOTTOM);
3082 
3083   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3084   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3085                                                   nargs,
3086                                                   result_reg, _slow_path);
3087   Node* normal_ctl   = control();
3088   Node* no_array_ctl = result_reg->in(_slow_path);
3089 
3090   // Generate code for the slow case.  We make a call to newArray().
3091   set_control(no_array_ctl);
3092   if (!stopped()) {
3093     // Either the input type is void.class, or else the
3094     // array klass has not yet been cached.  Either the
3095     // ensuing call will throw an exception, or else it
3096     // will cache the array klass for next time.
3097     PreserveJVMState pjvms(this);
3098     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3099     Node* slow_result = set_results_for_java_call(slow_call);
3100     // this->control() comes from set_results_for_java_call
3101     result_reg->set_req(_slow_path, control());
3102     result_val->set_req(_slow_path, slow_result);
3103     result_io ->set_req(_slow_path, i_o());
3104     result_mem->set_req(_slow_path, reset_memory());
3105   }
3106 
3107   set_control(normal_ctl);
3108   if (!stopped()) {
3109     // Normal case:  The array type has been cached in the java.lang.Class.
3110     // The following call works fine even if the array type is polymorphic.
3111     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3112     Node* obj = new_array(klass_node, count_val, nargs);
3113     result_reg->init_req(_normal_path, control());
3114     result_val->init_req(_normal_path, obj);
3115     result_io ->init_req(_normal_path, i_o());
3116     result_mem->init_req(_normal_path, reset_memory());
3117   }
3118 
3119   // Return the combined state.
3120   set_i_o(        _gvn.transform(result_io)  );
3121   set_all_memory( _gvn.transform(result_mem) );
3122   push_result(result_reg, result_val);
3123   C->set_has_split_ifs(true); // Has chance for split-if optimization
3124 
3125   return true;
3126 }
3127 
3128 //----------------------inline_native_getLength--------------------------
3129 bool LibraryCallKit::inline_native_getLength() {
3130   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3131 
3132   int nargs = 1;
3133   Node* array = argument(0);
3134 
3135   _sp += nargs;  // set original stack for use by uncommon_trap
3136   array = do_null_check(array, T_OBJECT);
3137   _sp -= nargs;
3138 
3139   // If array is dead, only null-path is taken.
3140   if (stopped())  return true;
3141 
3142   // Deoptimize if it is a non-array.
3143   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3144 
3145   if (non_array != NULL) {
3146     PreserveJVMState pjvms(this);
3147     set_control(non_array);
3148     _sp += nargs;  // push the arguments back on the stack
3149     uncommon_trap(Deoptimization::Reason_intrinsic,
3150                   Deoptimization::Action_maybe_recompile);
3151   }
3152 
3153   // If control is dead, only non-array-path is taken.
3154   if (stopped())  return true;
3155 
3156   // The works fine even if the array type is polymorphic.
3157   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3158   push( load_array_length(array) );
3159 
3160   C->set_has_split_ifs(true); // Has chance for split-if optimization
3161 
3162   return true;
3163 }
3164 
3165 //------------------------inline_array_copyOf----------------------------
3166 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3167   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3168 
3169   // Restore the stack and pop off the arguments.
3170   int nargs = 3 + (is_copyOfRange? 1: 0);
3171   Node* original          = argument(0);
3172   Node* start             = is_copyOfRange? argument(1): intcon(0);
3173   Node* end               = is_copyOfRange? argument(2): argument(1);
3174   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3175 
3176   Node* newcopy;
3177 
3178   //set the original stack and the reexecute bit for the interpreter to reexecute
3179   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3180   { PreserveReexecuteState preexecs(this);
3181     _sp += nargs;
3182     jvms()->set_should_reexecute(true);
3183 
3184     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3185     original          = do_null_check(original, T_OBJECT);
3186 
3187     // Check if a null path was taken unconditionally.
3188     if (stopped())  return true;
3189 
3190     Node* orig_length = load_array_length(original);
3191 
3192     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3193                                               NULL, 0);
3194     klass_node = do_null_check(klass_node, T_OBJECT);
3195 
3196     RegionNode* bailout = new (C, 1) RegionNode(1);
3197     record_for_igvn(bailout);
3198 
3199     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3200     // Bail out if that is so.
3201     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3202     if (not_objArray != NULL) {
3203       // Improve the klass node's type from the new optimistic assumption:
3204       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3205       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3206       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3207       cast->init_req(0, control());
3208       klass_node = _gvn.transform(cast);
3209     }
3210 
3211     // Bail out if either start or end is negative.
3212     generate_negative_guard(start, bailout, &start);
3213     generate_negative_guard(end,   bailout, &end);
3214 
3215     Node* length = end;
3216     if (_gvn.type(start) != TypeInt::ZERO) {
3217       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3218     }
3219 
3220     // Bail out if length is negative.
3221     // ...Not needed, since the new_array will throw the right exception.
3222     //generate_negative_guard(length, bailout, &length);
3223 
3224     if (bailout->req() > 1) {
3225       PreserveJVMState pjvms(this);
3226       set_control( _gvn.transform(bailout) );
3227       uncommon_trap(Deoptimization::Reason_intrinsic,
3228                     Deoptimization::Action_maybe_recompile);
3229     }
3230 
3231     if (!stopped()) {
3232 
3233       // How many elements will we copy from the original?
3234       // The answer is MinI(orig_length - start, length).
3235       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3236       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3237 
3238       const bool raw_mem_only = true;
3239       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3240 
3241       // Generate a direct call to the right arraycopy function(s).
3242       // We know the copy is disjoint but we might not know if the
3243       // oop stores need checking.
3244       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3245       // This will fail a store-check if x contains any non-nulls.
3246       bool disjoint_bases = true;
3247       bool length_never_negative = true;
3248       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3249                          original, start, newcopy, intcon(0), moved,
3250                          disjoint_bases, length_never_negative);
3251     }
3252   } //original reexecute and sp are set back here
3253 
3254   if(!stopped()) {
3255     push(newcopy);
3256   }
3257 
3258   C->set_has_split_ifs(true); // Has chance for split-if optimization
3259 
3260   return true;
3261 }
3262 
3263 
3264 //----------------------generate_virtual_guard---------------------------
3265 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3266 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3267                                              RegionNode* slow_region) {
3268   ciMethod* method = callee();
3269   int vtable_index = method->vtable_index();
3270   // Get the methodOop out of the appropriate vtable entry.
3271   int entry_offset  = (instanceKlass::vtable_start_offset() +
3272                      vtable_index*vtableEntry::size()) * wordSize +
3273                      vtableEntry::method_offset_in_bytes();
3274   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3275   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3276 
3277   // Compare the target method with the expected method (e.g., Object.hashCode).
3278   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3279 
3280   Node* native_call = makecon(native_call_addr);
3281   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3282   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3283 
3284   return generate_slow_guard(test_native, slow_region);
3285 }
3286 
3287 //-----------------------generate_method_call----------------------------
3288 // Use generate_method_call to make a slow-call to the real
3289 // method if the fast path fails.  An alternative would be to
3290 // use a stub like OptoRuntime::slow_arraycopy_Java.
3291 // This only works for expanding the current library call,
3292 // not another intrinsic.  (E.g., don't use this for making an
3293 // arraycopy call inside of the copyOf intrinsic.)
3294 CallJavaNode*
3295 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3296   // When compiling the intrinsic method itself, do not use this technique.
3297   guarantee(callee() != C->method(), "cannot make slow-call to self");
3298 
3299   ciMethod* method = callee();
3300   // ensure the JVMS we have will be correct for this call
3301   guarantee(method_id == method->intrinsic_id(), "must match");
3302 
3303   const TypeFunc* tf = TypeFunc::make(method);
3304   int tfdc = tf->domain()->cnt();
3305   CallJavaNode* slow_call;
3306   if (is_static) {
3307     assert(!is_virtual, "");
3308     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3309                                 SharedRuntime::get_resolve_static_call_stub(),
3310                                 method, bci());
3311   } else if (is_virtual) {
3312     null_check_receiver(method);
3313     int vtable_index = methodOopDesc::invalid_vtable_index;
3314     if (UseInlineCaches) {
3315       // Suppress the vtable call
3316     } else {
3317       // hashCode and clone are not a miranda methods,
3318       // so the vtable index is fixed.
3319       // No need to use the linkResolver to get it.
3320        vtable_index = method->vtable_index();
3321     }
3322     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3323                                 SharedRuntime::get_resolve_virtual_call_stub(),
3324                                 method, vtable_index, bci());
3325   } else {  // neither virtual nor static:  opt_virtual
3326     null_check_receiver(method);
3327     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3328                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3329                                 method, bci());
3330     slow_call->set_optimized_virtual(true);
3331   }
3332   set_arguments_for_java_call(slow_call);
3333   set_edges_for_java_call(slow_call);
3334   return slow_call;
3335 }
3336 
3337 
3338 //------------------------------inline_native_hashcode--------------------
3339 // Build special case code for calls to hashCode on an object.
3340 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3341   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3342   assert(!(is_virtual && is_static), "either virtual, special, or static");
3343 
3344   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3345 
3346   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3347   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3348                                                       TypeInt::INT);
3349   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3350   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3351                                                       TypePtr::BOTTOM);
3352   Node* obj = NULL;
3353   if (!is_static) {
3354     // Check for hashing null object
3355     obj = null_check_receiver(callee());
3356     if (stopped())  return true;        // unconditionally null
3357     result_reg->init_req(_null_path, top());
3358     result_val->init_req(_null_path, top());
3359   } else {
3360     // Do a null check, and return zero if null.
3361     // System.identityHashCode(null) == 0
3362     obj = argument(0);
3363     Node* null_ctl = top();
3364     obj = null_check_oop(obj, &null_ctl);
3365     result_reg->init_req(_null_path, null_ctl);
3366     result_val->init_req(_null_path, _gvn.intcon(0));
3367   }
3368 
3369   // Unconditionally null?  Then return right away.
3370   if (stopped()) {
3371     set_control( result_reg->in(_null_path) );
3372     if (!stopped())
3373       push(      result_val ->in(_null_path) );
3374     return true;
3375   }
3376 
3377   // After null check, get the object's klass.
3378   Node* obj_klass = load_object_klass(obj);
3379 
3380   // This call may be virtual (invokevirtual) or bound (invokespecial).
3381   // For each case we generate slightly different code.
3382 
3383   // We only go to the fast case code if we pass a number of guards.  The
3384   // paths which do not pass are accumulated in the slow_region.
3385   RegionNode* slow_region = new (C, 1) RegionNode(1);
3386   record_for_igvn(slow_region);
3387 
3388   // If this is a virtual call, we generate a funny guard.  We pull out
3389   // the vtable entry corresponding to hashCode() from the target object.
3390   // If the target method which we are calling happens to be the native
3391   // Object hashCode() method, we pass the guard.  We do not need this
3392   // guard for non-virtual calls -- the caller is known to be the native
3393   // Object hashCode().
3394   if (is_virtual) {
3395     generate_virtual_guard(obj_klass, slow_region);
3396   }
3397 
3398   // Get the header out of the object, use LoadMarkNode when available
3399   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3400   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3401   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3402 
3403   // Test the header to see if it is unlocked.
3404   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3405   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3406   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3407   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3408   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3409 
3410   generate_slow_guard(test_unlocked, slow_region);
3411 
3412   // Get the hash value and check to see that it has been properly assigned.
3413   // We depend on hash_mask being at most 32 bits and avoid the use of
3414   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3415   // vm: see markOop.hpp.
3416   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3417   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3418   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3419   // This hack lets the hash bits live anywhere in the mark object now, as long
3420   // as the shift drops the relevant bits into the low 32 bits.  Note that
3421   // Java spec says that HashCode is an int so there's no point in capturing
3422   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3423   hshifted_header      = ConvX2I(hshifted_header);
3424   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3425 
3426   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3427   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3428   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3429 
3430   generate_slow_guard(test_assigned, slow_region);
3431 
3432   Node* init_mem = reset_memory();
3433   // fill in the rest of the null path:
3434   result_io ->init_req(_null_path, i_o());
3435   result_mem->init_req(_null_path, init_mem);
3436 
3437   result_val->init_req(_fast_path, hash_val);
3438   result_reg->init_req(_fast_path, control());
3439   result_io ->init_req(_fast_path, i_o());
3440   result_mem->init_req(_fast_path, init_mem);
3441 
3442   // Generate code for the slow case.  We make a call to hashCode().
3443   set_control(_gvn.transform(slow_region));
3444   if (!stopped()) {
3445     // No need for PreserveJVMState, because we're using up the present state.
3446     set_all_memory(init_mem);
3447     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3448     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3449     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3450     Node* slow_result = set_results_for_java_call(slow_call);
3451     // this->control() comes from set_results_for_java_call
3452     result_reg->init_req(_slow_path, control());
3453     result_val->init_req(_slow_path, slow_result);
3454     result_io  ->set_req(_slow_path, i_o());
3455     result_mem ->set_req(_slow_path, reset_memory());
3456   }
3457 
3458   // Return the combined state.
3459   set_i_o(        _gvn.transform(result_io)  );
3460   set_all_memory( _gvn.transform(result_mem) );
3461   push_result(result_reg, result_val);
3462 
3463   return true;
3464 }
3465 
3466 //---------------------------inline_native_getClass----------------------------
3467 // Build special case code for calls to getClass on an object.
3468 bool LibraryCallKit::inline_native_getClass() {
3469   Node* obj = null_check_receiver(callee());
3470   if (stopped())  return true;
3471   push( load_mirror_from_klass(load_object_klass(obj)) );
3472   return true;
3473 }
3474 
3475 //-----------------inline_native_Reflection_getCallerClass---------------------
3476 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3477 //
3478 // NOTE that this code must perform the same logic as
3479 // vframeStream::security_get_caller_frame in that it must skip
3480 // Method.invoke() and auxiliary frames.
3481 
3482 
3483 
3484 
3485 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3486   ciMethod*       method = callee();
3487 
3488 #ifndef PRODUCT
3489   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3490     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3491   }
3492 #endif
3493 
3494   debug_only(int saved_sp = _sp);
3495 
3496   // Argument words:  (int depth)
3497   int nargs = 1;
3498 
3499   _sp += nargs;
3500   Node* caller_depth_node = pop();
3501 
3502   assert(saved_sp == _sp, "must have correct argument count");
3503 
3504   // The depth value must be a constant in order for the runtime call
3505   // to be eliminated.
3506   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3507   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3508 #ifndef PRODUCT
3509     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3510       tty->print_cr("  Bailing out because caller depth was not a constant");
3511     }
3512 #endif
3513     return false;
3514   }
3515   // Note that the JVM state at this point does not include the
3516   // getCallerClass() frame which we are trying to inline. The
3517   // semantics of getCallerClass(), however, are that the "first"
3518   // frame is the getCallerClass() frame, so we subtract one from the
3519   // requested depth before continuing. We don't inline requests of
3520   // getCallerClass(0).
3521   int caller_depth = caller_depth_type->get_con() - 1;
3522   if (caller_depth < 0) {
3523 #ifndef PRODUCT
3524     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3525       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3526     }
3527 #endif
3528     return false;
3529   }
3530 
3531   if (!jvms()->has_method()) {
3532 #ifndef PRODUCT
3533     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3534       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3535     }
3536 #endif
3537     return false;
3538   }
3539   int _depth = jvms()->depth();  // cache call chain depth
3540 
3541   // Walk back up the JVM state to find the caller at the required
3542   // depth. NOTE that this code must perform the same logic as
3543   // vframeStream::security_get_caller_frame in that it must skip
3544   // Method.invoke() and auxiliary frames. Note also that depth is
3545   // 1-based (1 is the bottom of the inlining).
3546   int inlining_depth = _depth;
3547   JVMState* caller_jvms = NULL;
3548 
3549   if (inlining_depth > 0) {
3550     caller_jvms = jvms();
3551     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3552     do {
3553       // The following if-tests should be performed in this order
3554       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3555         // Skip a Method.invoke() or auxiliary frame
3556       } else if (caller_depth > 0) {
3557         // Skip real frame
3558         --caller_depth;
3559       } else {
3560         // We're done: reached desired caller after skipping.
3561         break;
3562       }
3563       caller_jvms = caller_jvms->caller();
3564       --inlining_depth;
3565     } while (inlining_depth > 0);
3566   }
3567 
3568   if (inlining_depth == 0) {
3569 #ifndef PRODUCT
3570     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3571       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3572       tty->print_cr("  JVM state at this point:");
3573       for (int i = _depth; i >= 1; i--) {
3574         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3575       }
3576     }
3577 #endif
3578     return false; // Reached end of inlining
3579   }
3580 
3581   // Acquire method holder as java.lang.Class
3582   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3583   ciInstance*      caller_mirror = caller_klass->java_mirror();
3584   // Push this as a constant
3585   push(makecon(TypeInstPtr::make(caller_mirror)));
3586 #ifndef PRODUCT
3587   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3588     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3589     tty->print_cr("  JVM state at this point:");
3590     for (int i = _depth; i >= 1; i--) {
3591       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3592     }
3593   }
3594 #endif
3595   return true;
3596 }
3597 
3598 // Helper routine for above
3599 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3600   // Is this the Method.invoke method itself?
3601   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
3602     return true;
3603 
3604   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3605   ciKlass* k = jvms->method()->holder();
3606   if (k->is_instance_klass()) {
3607     ciInstanceKlass* ik = k->as_instance_klass();
3608     for (; ik != NULL; ik = ik->super()) {
3609       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3610           ik == env()->find_system_klass(ik->name())) {
3611         return true;
3612       }
3613     }
3614   }
3615 
3616   return false;
3617 }
3618 
3619 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3620                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3621                                      // computing it since there is no lookup field by name function in the
3622                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3623                                      // Using a static variable here is safe even if we have multiple compilation
3624                                      // threads because the offset is constant.  At worst the same offset will be
3625                                      // computed and  stored multiple
3626 
3627 bool LibraryCallKit::inline_native_AtomicLong_get() {
3628   // Restore the stack and pop off the argument
3629   _sp+=1;
3630   Node *obj = pop();
3631 
3632   // get the offset of the "value" field. Since the CI interfaces
3633   // does not provide a way to look up a field by name, we scan the bytecodes
3634   // to get the field index.  We expect the first 2 instructions of the method
3635   // to be:
3636   //    0 aload_0
3637   //    1 getfield "value"
3638   ciMethod* method = callee();
3639   if (value_field_offset == -1)
3640   {
3641     ciField* value_field;
3642     ciBytecodeStream iter(method);
3643     Bytecodes::Code bc = iter.next();
3644 
3645     if ((bc != Bytecodes::_aload_0) &&
3646               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3647       return false;
3648     bc = iter.next();
3649     if (bc != Bytecodes::_getfield)
3650       return false;
3651     bool ignore;
3652     value_field = iter.get_field(ignore);
3653     value_field_offset = value_field->offset_in_bytes();
3654   }
3655 
3656   // Null check without removing any arguments.
3657   _sp++;
3658   obj = do_null_check(obj, T_OBJECT);
3659   _sp--;
3660   // Check for locking null object
3661   if (stopped()) return true;
3662 
3663   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3664   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3665   int alias_idx = C->get_alias_index(adr_type);
3666 
3667   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3668 
3669   push_pair(result);
3670 
3671   return true;
3672 }
3673 
3674 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3675   // Restore the stack and pop off the arguments
3676   _sp+=5;
3677   Node *newVal = pop_pair();
3678   Node *oldVal = pop_pair();
3679   Node *obj = pop();
3680 
3681   // we need the offset of the "value" field which was computed when
3682   // inlining the get() method.  Give up if we don't have it.
3683   if (value_field_offset == -1)
3684     return false;
3685 
3686   // Null check without removing any arguments.
3687   _sp+=5;
3688   obj = do_null_check(obj, T_OBJECT);
3689   _sp-=5;
3690   // Check for locking null object
3691   if (stopped()) return true;
3692 
3693   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3694   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3695   int alias_idx = C->get_alias_index(adr_type);
3696 
3697   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3698   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3699   set_memory(store_proj, alias_idx);
3700   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3701 
3702   Node *result;
3703   // CMove node is not used to be able fold a possible check code
3704   // after attemptUpdate() call. This code could be transformed
3705   // into CMove node by loop optimizations.
3706   {
3707     RegionNode *r = new (C, 3) RegionNode(3);
3708     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3709 
3710     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3711     Node *iftrue = opt_iff(r, iff);
3712     r->init_req(1, iftrue);
3713     result->init_req(1, intcon(1));
3714     result->init_req(2, intcon(0));
3715 
3716     set_control(_gvn.transform(r));
3717     record_for_igvn(r);
3718 
3719     C->set_has_split_ifs(true); // Has chance for split-if optimization
3720   }
3721 
3722   push(_gvn.transform(result));
3723   return true;
3724 }
3725 
3726 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3727   // restore the arguments
3728   _sp += arg_size();
3729 
3730   switch (id) {
3731   case vmIntrinsics::_floatToRawIntBits:
3732     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3733     break;
3734 
3735   case vmIntrinsics::_intBitsToFloat:
3736     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3737     break;
3738 
3739   case vmIntrinsics::_doubleToRawLongBits:
3740     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3741     break;
3742 
3743   case vmIntrinsics::_longBitsToDouble:
3744     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3745     break;
3746 
3747   case vmIntrinsics::_doubleToLongBits: {
3748     Node* value = pop_pair();
3749 
3750     // two paths (plus control) merge in a wood
3751     RegionNode *r = new (C, 3) RegionNode(3);
3752     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3753 
3754     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3755     // Build the boolean node
3756     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3757 
3758     // Branch either way.
3759     // NaN case is less traveled, which makes all the difference.
3760     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3761     Node *opt_isnan = _gvn.transform(ifisnan);
3762     assert( opt_isnan->is_If(), "Expect an IfNode");
3763     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3764     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3765 
3766     set_control(iftrue);
3767 
3768     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3769     Node *slow_result = longcon(nan_bits); // return NaN
3770     phi->init_req(1, _gvn.transform( slow_result ));
3771     r->init_req(1, iftrue);
3772 
3773     // Else fall through
3774     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3775     set_control(iffalse);
3776 
3777     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3778     r->init_req(2, iffalse);
3779 
3780     // Post merge
3781     set_control(_gvn.transform(r));
3782     record_for_igvn(r);
3783 
3784     Node* result = _gvn.transform(phi);
3785     assert(result->bottom_type()->isa_long(), "must be");
3786     push_pair(result);
3787 
3788     C->set_has_split_ifs(true); // Has chance for split-if optimization
3789 
3790     break;
3791   }
3792 
3793   case vmIntrinsics::_floatToIntBits: {
3794     Node* value = pop();
3795 
3796     // two paths (plus control) merge in a wood
3797     RegionNode *r = new (C, 3) RegionNode(3);
3798     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3799 
3800     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3801     // Build the boolean node
3802     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3803 
3804     // Branch either way.
3805     // NaN case is less traveled, which makes all the difference.
3806     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3807     Node *opt_isnan = _gvn.transform(ifisnan);
3808     assert( opt_isnan->is_If(), "Expect an IfNode");
3809     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3810     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3811 
3812     set_control(iftrue);
3813 
3814     static const jint nan_bits = 0x7fc00000;
3815     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3816     phi->init_req(1, _gvn.transform( slow_result ));
3817     r->init_req(1, iftrue);
3818 
3819     // Else fall through
3820     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3821     set_control(iffalse);
3822 
3823     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3824     r->init_req(2, iffalse);
3825 
3826     // Post merge
3827     set_control(_gvn.transform(r));
3828     record_for_igvn(r);
3829 
3830     Node* result = _gvn.transform(phi);
3831     assert(result->bottom_type()->isa_int(), "must be");
3832     push(result);
3833 
3834     C->set_has_split_ifs(true); // Has chance for split-if optimization
3835 
3836     break;
3837   }
3838 
3839   default:
3840     ShouldNotReachHere();
3841   }
3842 
3843   return true;
3844 }
3845 
3846 #ifdef _LP64
3847 #define XTOP ,top() /*additional argument*/
3848 #else  //_LP64
3849 #define XTOP        /*no additional argument*/
3850 #endif //_LP64
3851 
3852 //----------------------inline_unsafe_copyMemory-------------------------
3853 bool LibraryCallKit::inline_unsafe_copyMemory() {
3854   if (callee()->is_static())  return false;  // caller must have the capability!
3855   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3856   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3857   null_check_receiver(callee());  // check then ignore argument(0)
3858   if (stopped())  return true;
3859 
3860   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3861 
3862   Node* src_ptr = argument(1);
3863   Node* src_off = ConvL2X(argument(2));
3864   assert(argument(3)->is_top(), "2nd half of long");
3865   Node* dst_ptr = argument(4);
3866   Node* dst_off = ConvL2X(argument(5));
3867   assert(argument(6)->is_top(), "2nd half of long");
3868   Node* size    = ConvL2X(argument(7));
3869   assert(argument(8)->is_top(), "2nd half of long");
3870 
3871   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3872          "fieldOffset must be byte-scaled");
3873 
3874   Node* src = make_unsafe_address(src_ptr, src_off);
3875   Node* dst = make_unsafe_address(dst_ptr, dst_off);
3876 
3877   // Conservatively insert a memory barrier on all memory slices.
3878   // Do not let writes of the copy source or destination float below the copy.
3879   insert_mem_bar(Op_MemBarCPUOrder);
3880 
3881   // Call it.  Note that the length argument is not scaled.
3882   make_runtime_call(RC_LEAF|RC_NO_FP,
3883                     OptoRuntime::fast_arraycopy_Type(),
3884                     StubRoutines::unsafe_arraycopy(),
3885                     "unsafe_arraycopy",
3886                     TypeRawPtr::BOTTOM,
3887                     src, dst, size XTOP);
3888 
3889   // Do not let reads of the copy destination float above the copy.
3890   insert_mem_bar(Op_MemBarCPUOrder);
3891 
3892   return true;
3893 }
3894 
3895 //------------------------clone_coping-----------------------------------
3896 // Helper function for inline_native_clone.
3897 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
3898   assert(obj_size != NULL, "");
3899   Node* raw_obj = alloc_obj->in(1);
3900   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3901 
3902   if (ReduceBulkZeroing) {
3903     // We will be completely responsible for initializing this object -
3904     // mark Initialize node as complete.
3905     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3906     // The object was just allocated - there should be no any stores!
3907     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
3908   }
3909 
3910   // Cast to Object for arraycopy.
3911   // We can't use the original CheckCastPP since it should be moved
3912   // after the arraycopy to prevent stores flowing above it.
3913   Node* new_obj = new(C, 2) CheckCastPPNode(alloc_obj->in(0), raw_obj,
3914                                             TypeInstPtr::NOTNULL);
3915   new_obj = _gvn.transform(new_obj);
3916   // Substitute in the locally valid dest_oop.
3917   replace_in_map(alloc_obj, new_obj);
3918 
3919   // Copy the fastest available way.
3920   // TODO: generate fields copies for small objects instead.
3921   Node* src  = obj;
3922   Node* dest = new_obj;
3923   Node* size = _gvn.transform(obj_size);
3924 
3925   // Exclude the header but include array length to copy by 8 bytes words.
3926   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
3927   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
3928                             instanceOopDesc::base_offset_in_bytes();
3929   // base_off:
3930   // 8  - 32-bit VM
3931   // 12 - 64-bit VM, compressed oops
3932   // 16 - 64-bit VM, normal oops
3933   if (base_off % BytesPerLong != 0) {
3934     assert(UseCompressedOops, "");
3935     if (is_array) {
3936       // Exclude length to copy by 8 bytes words.
3937       base_off += sizeof(int);
3938     } else {
3939       // Include klass to copy by 8 bytes words.
3940       base_off = instanceOopDesc::klass_offset_in_bytes();
3941     }
3942     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
3943   }
3944   src  = basic_plus_adr(src,  base_off);
3945   dest = basic_plus_adr(dest, base_off);
3946 
3947   // Compute the length also, if needed:
3948   Node* countx = size;
3949   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
3950   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
3951 
3952   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
3953   bool disjoint_bases = true;
3954   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
3955                                src, NULL, dest, NULL, countx);
3956 
3957   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
3958   if (card_mark) {
3959     assert(!is_array, "");
3960     // Put in store barrier for any and all oops we are sticking
3961     // into this object.  (We could avoid this if we could prove
3962     // that the object type contains no oop fields at all.)
3963     Node* no_particular_value = NULL;
3964     Node* no_particular_field = NULL;
3965     int raw_adr_idx = Compile::AliasIdxRaw;
3966     post_barrier(control(),
3967                  memory(raw_adr_type),
3968                  new_obj,
3969                  no_particular_field,
3970                  raw_adr_idx,
3971                  no_particular_value,
3972                  T_OBJECT,
3973                  false);
3974   }
3975 
3976   // Move the original CheckCastPP after arraycopy.
3977   _gvn.hash_delete(alloc_obj);
3978   alloc_obj->set_req(0, control());
3979   // Replace raw memory edge with new CheckCastPP to have a live oop
3980   // at safepoints instead of raw value.
3981   assert(new_obj->is_CheckCastPP() && new_obj->in(1) == alloc_obj->in(1), "sanity");
3982   alloc_obj->set_req(1, new_obj);    // cast to the original type
3983   _gvn.hash_find_insert(alloc_obj);  // put back into GVN table
3984   // Restore in the locally valid dest_oop.
3985   replace_in_map(new_obj, alloc_obj);
3986 }
3987 
3988 //------------------------inline_native_clone----------------------------
3989 // Here are the simple edge cases:
3990 //  null receiver => normal trap
3991 //  virtual and clone was overridden => slow path to out-of-line clone
3992 //  not cloneable or finalizer => slow path to out-of-line Object.clone
3993 //
3994 // The general case has two steps, allocation and copying.
3995 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
3996 //
3997 // Copying also has two cases, oop arrays and everything else.
3998 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
3999 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4000 //
4001 // These steps fold up nicely if and when the cloned object's klass
4002 // can be sharply typed as an object array, a type array, or an instance.
4003 //
4004 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4005   int nargs = 1;
4006   PhiNode* result_val;
4007 
4008   //set the original stack and the reexecute bit for the interpreter to reexecute
4009   //the bytecode that invokes Object.clone if deoptimization happens
4010   { PreserveReexecuteState preexecs(this);
4011     jvms()->set_should_reexecute(true);
4012 
4013     //null_check_receiver will adjust _sp (push and pop)
4014     Node* obj = null_check_receiver(callee());
4015     if (stopped())  return true;
4016 
4017     _sp += nargs;
4018 
4019     Node* obj_klass = load_object_klass(obj);
4020     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4021     const TypeOopPtr*   toop   = ((tklass != NULL)
4022                                 ? tklass->as_instance_type()
4023                                 : TypeInstPtr::NOTNULL);
4024 
4025     // Conservatively insert a memory barrier on all memory slices.
4026     // Do not let writes into the original float below the clone.
4027     insert_mem_bar(Op_MemBarCPUOrder);
4028 
4029     // paths into result_reg:
4030     enum {
4031       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4032       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4033       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4034       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4035       PATH_LIMIT
4036     };
4037     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4038     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4039                                                         TypeInstPtr::NOTNULL);
4040     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4041     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4042                                                         TypePtr::BOTTOM);
4043     record_for_igvn(result_reg);
4044 
4045     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4046     int raw_adr_idx = Compile::AliasIdxRaw;
4047     const bool raw_mem_only = true;
4048 
4049 
4050     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4051     if (array_ctl != NULL) {
4052       // It's an array.
4053       PreserveJVMState pjvms(this);
4054       set_control(array_ctl);
4055       Node* obj_length = load_array_length(obj);
4056       Node* obj_size  = NULL;
4057       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4058                                   raw_mem_only, &obj_size);
4059 
4060       if (!use_ReduceInitialCardMarks()) {
4061         // If it is an oop array, it requires very special treatment,
4062         // because card marking is required on each card of the array.
4063         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4064         if (is_obja != NULL) {
4065           PreserveJVMState pjvms2(this);
4066           set_control(is_obja);
4067           // Generate a direct call to the right arraycopy function(s).
4068           bool disjoint_bases = true;
4069           bool length_never_negative = true;
4070           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4071                              obj, intcon(0), alloc_obj, intcon(0),
4072                              obj_length,
4073                              disjoint_bases, length_never_negative);
4074           result_reg->init_req(_objArray_path, control());
4075           result_val->init_req(_objArray_path, alloc_obj);
4076           result_i_o ->set_req(_objArray_path, i_o());
4077           result_mem ->set_req(_objArray_path, reset_memory());
4078         }
4079       }
4080       // We can dispense with card marks if we know the allocation
4081       // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4082       // causes the non-eden paths to simulate a fresh allocation,
4083       // insofar that no further card marks are required to initialize
4084       // the object.
4085 
4086       // Otherwise, there are no card marks to worry about.
4087 
4088       if (!stopped()) {
4089         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4090 
4091         // Present the results of the copy.
4092         result_reg->init_req(_array_path, control());
4093         result_val->init_req(_array_path, alloc_obj);
4094         result_i_o ->set_req(_array_path, i_o());
4095         result_mem ->set_req(_array_path, reset_memory());
4096       }
4097     }
4098 
4099     // We only go to the instance fast case code if we pass a number of guards.
4100     // The paths which do not pass are accumulated in the slow_region.
4101     RegionNode* slow_region = new (C, 1) RegionNode(1);
4102     record_for_igvn(slow_region);
4103     if (!stopped()) {
4104       // It's an instance (we did array above).  Make the slow-path tests.
4105       // If this is a virtual call, we generate a funny guard.  We grab
4106       // the vtable entry corresponding to clone() from the target object.
4107       // If the target method which we are calling happens to be the
4108       // Object clone() method, we pass the guard.  We do not need this
4109       // guard for non-virtual calls; the caller is known to be the native
4110       // Object clone().
4111       if (is_virtual) {
4112         generate_virtual_guard(obj_klass, slow_region);
4113       }
4114 
4115       // The object must be cloneable and must not have a finalizer.
4116       // Both of these conditions may be checked in a single test.
4117       // We could optimize the cloneable test further, but we don't care.
4118       generate_access_flags_guard(obj_klass,
4119                                   // Test both conditions:
4120                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4121                                   // Must be cloneable but not finalizer:
4122                                   JVM_ACC_IS_CLONEABLE,
4123                                   slow_region);
4124     }
4125 
4126     if (!stopped()) {
4127       // It's an instance, and it passed the slow-path tests.
4128       PreserveJVMState pjvms(this);
4129       Node* obj_size  = NULL;
4130       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4131 
4132       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4133 
4134       // Present the results of the slow call.
4135       result_reg->init_req(_instance_path, control());
4136       result_val->init_req(_instance_path, alloc_obj);
4137       result_i_o ->set_req(_instance_path, i_o());
4138       result_mem ->set_req(_instance_path, reset_memory());
4139     }
4140 
4141     // Generate code for the slow case.  We make a call to clone().
4142     set_control(_gvn.transform(slow_region));
4143     if (!stopped()) {
4144       PreserveJVMState pjvms(this);
4145       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4146       Node* slow_result = set_results_for_java_call(slow_call);
4147       // this->control() comes from set_results_for_java_call
4148       result_reg->init_req(_slow_path, control());
4149       result_val->init_req(_slow_path, slow_result);
4150       result_i_o ->set_req(_slow_path, i_o());
4151       result_mem ->set_req(_slow_path, reset_memory());
4152     }
4153 
4154     // Return the combined state.
4155     set_control(    _gvn.transform(result_reg) );
4156     set_i_o(        _gvn.transform(result_i_o) );
4157     set_all_memory( _gvn.transform(result_mem) );
4158   } //original reexecute and sp are set back here
4159 
4160   push(_gvn.transform(result_val));
4161 
4162   return true;
4163 }
4164 
4165 
4166 // constants for computing the copy function
4167 enum {
4168   COPYFUNC_UNALIGNED = 0,
4169   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4170   COPYFUNC_CONJOINT = 0,
4171   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4172 };
4173 
4174 // Note:  The condition "disjoint" applies also for overlapping copies
4175 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4176 static address
4177 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4178   int selector =
4179     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4180     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4181 
4182 #define RETURN_STUB(xxx_arraycopy) { \
4183   name = #xxx_arraycopy; \
4184   return StubRoutines::xxx_arraycopy(); }
4185 
4186   switch (t) {
4187   case T_BYTE:
4188   case T_BOOLEAN:
4189     switch (selector) {
4190     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4191     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4192     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4193     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4194     }
4195   case T_CHAR:
4196   case T_SHORT:
4197     switch (selector) {
4198     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4199     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4200     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4201     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4202     }
4203   case T_INT:
4204   case T_FLOAT:
4205     switch (selector) {
4206     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4207     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4208     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4209     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4210     }
4211   case T_DOUBLE:
4212   case T_LONG:
4213     switch (selector) {
4214     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4215     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4216     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4217     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4218     }
4219   case T_ARRAY:
4220   case T_OBJECT:
4221     switch (selector) {
4222     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4223     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4224     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4225     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4226     }
4227   default:
4228     ShouldNotReachHere();
4229     return NULL;
4230   }
4231 
4232 #undef RETURN_STUB
4233 }
4234 
4235 //------------------------------basictype2arraycopy----------------------------
4236 address LibraryCallKit::basictype2arraycopy(BasicType t,
4237                                             Node* src_offset,
4238                                             Node* dest_offset,
4239                                             bool disjoint_bases,
4240                                             const char* &name) {
4241   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4242   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4243 
4244   bool aligned = false;
4245   bool disjoint = disjoint_bases;
4246 
4247   // if the offsets are the same, we can treat the memory regions as
4248   // disjoint, because either the memory regions are in different arrays,
4249   // or they are identical (which we can treat as disjoint.)  We can also
4250   // treat a copy with a destination index  less that the source index
4251   // as disjoint since a low->high copy will work correctly in this case.
4252   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4253       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4254     // both indices are constants
4255     int s_offs = src_offset_inttype->get_con();
4256     int d_offs = dest_offset_inttype->get_con();
4257     int element_size = type2aelembytes(t);
4258     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4259               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4260     if (s_offs >= d_offs)  disjoint = true;
4261   } else if (src_offset == dest_offset && src_offset != NULL) {
4262     // This can occur if the offsets are identical non-constants.
4263     disjoint = true;
4264   }
4265 
4266   return select_arraycopy_function(t, aligned, disjoint, name);
4267 }
4268 
4269 
4270 //------------------------------inline_arraycopy-----------------------
4271 bool LibraryCallKit::inline_arraycopy() {
4272   // Restore the stack and pop off the arguments.
4273   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4274   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4275 
4276   Node *src         = argument(0);
4277   Node *src_offset  = argument(1);
4278   Node *dest        = argument(2);
4279   Node *dest_offset = argument(3);
4280   Node *length      = argument(4);
4281 
4282   // Compile time checks.  If any of these checks cannot be verified at compile time,
4283   // we do not make a fast path for this call.  Instead, we let the call remain as it
4284   // is.  The checks we choose to mandate at compile time are:
4285   //
4286   // (1) src and dest are arrays.
4287   const Type* src_type = src->Value(&_gvn);
4288   const Type* dest_type = dest->Value(&_gvn);
4289   const TypeAryPtr* top_src = src_type->isa_aryptr();
4290   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4291   if (top_src  == NULL || top_src->klass()  == NULL ||
4292       top_dest == NULL || top_dest->klass() == NULL) {
4293     // Conservatively insert a memory barrier on all memory slices.
4294     // Do not let writes into the source float below the arraycopy.
4295     insert_mem_bar(Op_MemBarCPUOrder);
4296 
4297     // Call StubRoutines::generic_arraycopy stub.
4298     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4299                        src, src_offset, dest, dest_offset, length);
4300 
4301     // Do not let reads from the destination float above the arraycopy.
4302     // Since we cannot type the arrays, we don't know which slices
4303     // might be affected.  We could restrict this barrier only to those
4304     // memory slices which pertain to array elements--but don't bother.
4305     if (!InsertMemBarAfterArraycopy)
4306       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4307       insert_mem_bar(Op_MemBarCPUOrder);
4308     return true;
4309   }
4310 
4311   // (2) src and dest arrays must have elements of the same BasicType
4312   // Figure out the size and type of the elements we will be copying.
4313   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4314   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4315   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4316   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4317 
4318   if (src_elem != dest_elem || dest_elem == T_VOID) {
4319     // The component types are not the same or are not recognized.  Punt.
4320     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4321     generate_slow_arraycopy(TypePtr::BOTTOM,
4322                             src, src_offset, dest, dest_offset, length);
4323     return true;
4324   }
4325 
4326   //---------------------------------------------------------------------------
4327   // We will make a fast path for this call to arraycopy.
4328 
4329   // We have the following tests left to perform:
4330   //
4331   // (3) src and dest must not be null.
4332   // (4) src_offset must not be negative.
4333   // (5) dest_offset must not be negative.
4334   // (6) length must not be negative.
4335   // (7) src_offset + length must not exceed length of src.
4336   // (8) dest_offset + length must not exceed length of dest.
4337   // (9) each element of an oop array must be assignable
4338 
4339   RegionNode* slow_region = new (C, 1) RegionNode(1);
4340   record_for_igvn(slow_region);
4341 
4342   // (3) operands must not be null
4343   // We currently perform our null checks with the do_null_check routine.
4344   // This means that the null exceptions will be reported in the caller
4345   // rather than (correctly) reported inside of the native arraycopy call.
4346   // This should be corrected, given time.  We do our null check with the
4347   // stack pointer restored.
4348   _sp += nargs;
4349   src  = do_null_check(src,  T_ARRAY);
4350   dest = do_null_check(dest, T_ARRAY);
4351   _sp -= nargs;
4352 
4353   // (4) src_offset must not be negative.
4354   generate_negative_guard(src_offset, slow_region);
4355 
4356   // (5) dest_offset must not be negative.
4357   generate_negative_guard(dest_offset, slow_region);
4358 
4359   // (6) length must not be negative (moved to generate_arraycopy()).
4360   // generate_negative_guard(length, slow_region);
4361 
4362   // (7) src_offset + length must not exceed length of src.
4363   generate_limit_guard(src_offset, length,
4364                        load_array_length(src),
4365                        slow_region);
4366 
4367   // (8) dest_offset + length must not exceed length of dest.
4368   generate_limit_guard(dest_offset, length,
4369                        load_array_length(dest),
4370                        slow_region);
4371 
4372   // (9) each element of an oop array must be assignable
4373   // The generate_arraycopy subroutine checks this.
4374 
4375   // This is where the memory effects are placed:
4376   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4377   generate_arraycopy(adr_type, dest_elem,
4378                      src, src_offset, dest, dest_offset, length,
4379                      false, false, slow_region);
4380 
4381   return true;
4382 }
4383 
4384 //-----------------------------generate_arraycopy----------------------
4385 // Generate an optimized call to arraycopy.
4386 // Caller must guard against non-arrays.
4387 // Caller must determine a common array basic-type for both arrays.
4388 // Caller must validate offsets against array bounds.
4389 // The slow_region has already collected guard failure paths
4390 // (such as out of bounds length or non-conformable array types).
4391 // The generated code has this shape, in general:
4392 //
4393 //     if (length == 0)  return   // via zero_path
4394 //     slowval = -1
4395 //     if (types unknown) {
4396 //       slowval = call generic copy loop
4397 //       if (slowval == 0)  return  // via checked_path
4398 //     } else if (indexes in bounds) {
4399 //       if ((is object array) && !(array type check)) {
4400 //         slowval = call checked copy loop
4401 //         if (slowval == 0)  return  // via checked_path
4402 //       } else {
4403 //         call bulk copy loop
4404 //         return  // via fast_path
4405 //       }
4406 //     }
4407 //     // adjust params for remaining work:
4408 //     if (slowval != -1) {
4409 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4410 //     }
4411 //   slow_region:
4412 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4413 //     return  // via slow_call_path
4414 //
4415 // This routine is used from several intrinsics:  System.arraycopy,
4416 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4417 //
4418 void
4419 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4420                                    BasicType basic_elem_type,
4421                                    Node* src,  Node* src_offset,
4422                                    Node* dest, Node* dest_offset,
4423                                    Node* copy_length,
4424                                    bool disjoint_bases,
4425                                    bool length_never_negative,
4426                                    RegionNode* slow_region) {
4427 
4428   if (slow_region == NULL) {
4429     slow_region = new(C,1) RegionNode(1);
4430     record_for_igvn(slow_region);
4431   }
4432 
4433   Node* original_dest      = dest;
4434   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4435   bool  must_clear_dest    = false;
4436 
4437   // See if this is the initialization of a newly-allocated array.
4438   // If so, we will take responsibility here for initializing it to zero.
4439   // (Note:  Because tightly_coupled_allocation performs checks on the
4440   // out-edges of the dest, we need to avoid making derived pointers
4441   // from it until we have checked its uses.)
4442   if (ReduceBulkZeroing
4443       && !ZeroTLAB              // pointless if already zeroed
4444       && basic_elem_type != T_CONFLICT // avoid corner case
4445       && !_gvn.eqv_uncast(src, dest)
4446       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4447           != NULL)
4448       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4449       && alloc->maybe_set_complete(&_gvn)) {
4450     // "You break it, you buy it."
4451     InitializeNode* init = alloc->initialization();
4452     assert(init->is_complete(), "we just did this");
4453     assert(dest->is_CheckCastPP(), "sanity");
4454     assert(dest->in(0)->in(0) == init, "dest pinned");
4455 
4456     // Cast to Object for arraycopy.
4457     // We can't use the original CheckCastPP since it should be moved
4458     // after the arraycopy to prevent stores flowing above it.
4459     Node* new_obj = new(C, 2) CheckCastPPNode(dest->in(0), dest->in(1),
4460                                               TypeInstPtr::NOTNULL);
4461     dest = _gvn.transform(new_obj);
4462     // Substitute in the locally valid dest_oop.
4463     replace_in_map(original_dest, dest);
4464     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4465     // From this point on, every exit path is responsible for
4466     // initializing any non-copied parts of the object to zero.
4467     must_clear_dest = true;
4468   } else {
4469     // No zeroing elimination here.
4470     alloc             = NULL;
4471     //original_dest   = dest;
4472     //must_clear_dest = false;
4473   }
4474 
4475   // Results are placed here:
4476   enum { fast_path        = 1,  // normal void-returning assembly stub
4477          checked_path     = 2,  // special assembly stub with cleanup
4478          slow_call_path   = 3,  // something went wrong; call the VM
4479          zero_path        = 4,  // bypass when length of copy is zero
4480          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4481          PATH_LIMIT       = 6
4482   };
4483   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4484   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4485   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4486   record_for_igvn(result_region);
4487   _gvn.set_type_bottom(result_i_o);
4488   _gvn.set_type_bottom(result_memory);
4489   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4490 
4491   // The slow_control path:
4492   Node* slow_control;
4493   Node* slow_i_o = i_o();
4494   Node* slow_mem = memory(adr_type);
4495   debug_only(slow_control = (Node*) badAddress);
4496 
4497   // Checked control path:
4498   Node* checked_control = top();
4499   Node* checked_mem     = NULL;
4500   Node* checked_i_o     = NULL;
4501   Node* checked_value   = NULL;
4502 
4503   if (basic_elem_type == T_CONFLICT) {
4504     assert(!must_clear_dest, "");
4505     Node* cv = generate_generic_arraycopy(adr_type,
4506                                           src, src_offset, dest, dest_offset,
4507                                           copy_length);
4508     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4509     checked_control = control();
4510     checked_i_o     = i_o();
4511     checked_mem     = memory(adr_type);
4512     checked_value   = cv;
4513     set_control(top());         // no fast path
4514   }
4515 
4516   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4517   if (not_pos != NULL) {
4518     PreserveJVMState pjvms(this);
4519     set_control(not_pos);
4520 
4521     // (6) length must not be negative.
4522     if (!length_never_negative) {
4523       generate_negative_guard(copy_length, slow_region);
4524     }
4525 
4526     // copy_length is 0.
4527     if (!stopped() && must_clear_dest) {
4528       Node* dest_length = alloc->in(AllocateNode::ALength);
4529       if (_gvn.eqv_uncast(copy_length, dest_length)
4530           || _gvn.find_int_con(dest_length, 1) <= 0) {
4531         // There is no zeroing to do. No need for a secondary raw memory barrier.
4532       } else {
4533         // Clear the whole thing since there are no source elements to copy.
4534         generate_clear_array(adr_type, dest, basic_elem_type,
4535                              intcon(0), NULL,
4536                              alloc->in(AllocateNode::AllocSize));
4537         // Use a secondary InitializeNode as raw memory barrier.
4538         // Currently it is needed only on this path since other
4539         // paths have stub or runtime calls as raw memory barriers.
4540         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4541                                                        Compile::AliasIdxRaw,
4542                                                        top())->as_Initialize();
4543         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4544       }
4545     }
4546 
4547     // Present the results of the fast call.
4548     result_region->init_req(zero_path, control());
4549     result_i_o   ->init_req(zero_path, i_o());
4550     result_memory->init_req(zero_path, memory(adr_type));
4551   }
4552 
4553   if (!stopped() && must_clear_dest) {
4554     // We have to initialize the *uncopied* part of the array to zero.
4555     // The copy destination is the slice dest[off..off+len].  The other slices
4556     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4557     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4558     Node* dest_length = alloc->in(AllocateNode::ALength);
4559     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4560                                                           copy_length) );
4561 
4562     // If there is a head section that needs zeroing, do it now.
4563     if (find_int_con(dest_offset, -1) != 0) {
4564       generate_clear_array(adr_type, dest, basic_elem_type,
4565                            intcon(0), dest_offset,
4566                            NULL);
4567     }
4568 
4569     // Next, perform a dynamic check on the tail length.
4570     // It is often zero, and we can win big if we prove this.
4571     // There are two wins:  Avoid generating the ClearArray
4572     // with its attendant messy index arithmetic, and upgrade
4573     // the copy to a more hardware-friendly word size of 64 bits.
4574     Node* tail_ctl = NULL;
4575     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4576       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4577       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4578       tail_ctl = generate_slow_guard(bol_lt, NULL);
4579       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4580     }
4581 
4582     // At this point, let's assume there is no tail.
4583     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4584       // There is no tail.  Try an upgrade to a 64-bit copy.
4585       bool didit = false;
4586       { PreserveJVMState pjvms(this);
4587         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4588                                          src, src_offset, dest, dest_offset,
4589                                          dest_size);
4590         if (didit) {
4591           // Present the results of the block-copying fast call.
4592           result_region->init_req(bcopy_path, control());
4593           result_i_o   ->init_req(bcopy_path, i_o());
4594           result_memory->init_req(bcopy_path, memory(adr_type));
4595         }
4596       }
4597       if (didit)
4598         set_control(top());     // no regular fast path
4599     }
4600 
4601     // Clear the tail, if any.
4602     if (tail_ctl != NULL) {
4603       Node* notail_ctl = stopped() ? NULL : control();
4604       set_control(tail_ctl);
4605       if (notail_ctl == NULL) {
4606         generate_clear_array(adr_type, dest, basic_elem_type,
4607                              dest_tail, NULL,
4608                              dest_size);
4609       } else {
4610         // Make a local merge.
4611         Node* done_ctl = new(C,3) RegionNode(3);
4612         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4613         done_ctl->init_req(1, notail_ctl);
4614         done_mem->init_req(1, memory(adr_type));
4615         generate_clear_array(adr_type, dest, basic_elem_type,
4616                              dest_tail, NULL,
4617                              dest_size);
4618         done_ctl->init_req(2, control());
4619         done_mem->init_req(2, memory(adr_type));
4620         set_control( _gvn.transform(done_ctl) );
4621         set_memory(  _gvn.transform(done_mem), adr_type );
4622       }
4623     }
4624   }
4625 
4626   BasicType copy_type = basic_elem_type;
4627   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4628   if (!stopped() && copy_type == T_OBJECT) {
4629     // If src and dest have compatible element types, we can copy bits.
4630     // Types S[] and D[] are compatible if D is a supertype of S.
4631     //
4632     // If they are not, we will use checked_oop_disjoint_arraycopy,
4633     // which performs a fast optimistic per-oop check, and backs off
4634     // further to JVM_ArrayCopy on the first per-oop check that fails.
4635     // (Actually, we don't move raw bits only; the GC requires card marks.)
4636 
4637     // Get the klassOop for both src and dest
4638     Node* src_klass  = load_object_klass(src);
4639     Node* dest_klass = load_object_klass(dest);
4640 
4641     // Generate the subtype check.
4642     // This might fold up statically, or then again it might not.
4643     //
4644     // Non-static example:  Copying List<String>.elements to a new String[].
4645     // The backing store for a List<String> is always an Object[],
4646     // but its elements are always type String, if the generic types
4647     // are correct at the source level.
4648     //
4649     // Test S[] against D[], not S against D, because (probably)
4650     // the secondary supertype cache is less busy for S[] than S.
4651     // This usually only matters when D is an interface.
4652     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4653     // Plug failing path into checked_oop_disjoint_arraycopy
4654     if (not_subtype_ctrl != top()) {
4655       PreserveJVMState pjvms(this);
4656       set_control(not_subtype_ctrl);
4657       // (At this point we can assume disjoint_bases, since types differ.)
4658       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4659       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4660       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4661       Node* dest_elem_klass = _gvn.transform(n1);
4662       Node* cv = generate_checkcast_arraycopy(adr_type,
4663                                               dest_elem_klass,
4664                                               src, src_offset, dest, dest_offset,
4665                                               copy_length);
4666       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4667       checked_control = control();
4668       checked_i_o     = i_o();
4669       checked_mem     = memory(adr_type);
4670       checked_value   = cv;
4671     }
4672     // At this point we know we do not need type checks on oop stores.
4673 
4674     // Let's see if we need card marks:
4675     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4676       // If we do not need card marks, copy using the jint or jlong stub.
4677       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4678       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4679              "sizes agree");
4680     }
4681   }
4682 
4683   if (!stopped()) {
4684     // Generate the fast path, if possible.
4685     PreserveJVMState pjvms(this);
4686     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4687                                  src, src_offset, dest, dest_offset,
4688                                  ConvI2X(copy_length));
4689 
4690     // Present the results of the fast call.
4691     result_region->init_req(fast_path, control());
4692     result_i_o   ->init_req(fast_path, i_o());
4693     result_memory->init_req(fast_path, memory(adr_type));
4694   }
4695 
4696   // Here are all the slow paths up to this point, in one bundle:
4697   slow_control = top();
4698   if (slow_region != NULL)
4699     slow_control = _gvn.transform(slow_region);
4700   debug_only(slow_region = (RegionNode*)badAddress);
4701 
4702   set_control(checked_control);
4703   if (!stopped()) {
4704     // Clean up after the checked call.
4705     // The returned value is either 0 or -1^K,
4706     // where K = number of partially transferred array elements.
4707     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4708     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4709     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4710 
4711     // If it is 0, we are done, so transfer to the end.
4712     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4713     result_region->init_req(checked_path, checks_done);
4714     result_i_o   ->init_req(checked_path, checked_i_o);
4715     result_memory->init_req(checked_path, checked_mem);
4716 
4717     // If it is not zero, merge into the slow call.
4718     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4719     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4720     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4721     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4722     record_for_igvn(slow_reg2);
4723     slow_reg2  ->init_req(1, slow_control);
4724     slow_i_o2  ->init_req(1, slow_i_o);
4725     slow_mem2  ->init_req(1, slow_mem);
4726     slow_reg2  ->init_req(2, control());
4727     slow_i_o2  ->init_req(2, checked_i_o);
4728     slow_mem2  ->init_req(2, checked_mem);
4729 
4730     slow_control = _gvn.transform(slow_reg2);
4731     slow_i_o     = _gvn.transform(slow_i_o2);
4732     slow_mem     = _gvn.transform(slow_mem2);
4733 
4734     if (alloc != NULL) {
4735       // We'll restart from the very beginning, after zeroing the whole thing.
4736       // This can cause double writes, but that's OK since dest is brand new.
4737       // So we ignore the low 31 bits of the value returned from the stub.
4738     } else {
4739       // We must continue the copy exactly where it failed, or else
4740       // another thread might see the wrong number of writes to dest.
4741       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4742       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4743       slow_offset->init_req(1, intcon(0));
4744       slow_offset->init_req(2, checked_offset);
4745       slow_offset  = _gvn.transform(slow_offset);
4746 
4747       // Adjust the arguments by the conditionally incoming offset.
4748       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4749       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4750       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4751 
4752       // Tweak the node variables to adjust the code produced below:
4753       src_offset  = src_off_plus;
4754       dest_offset = dest_off_plus;
4755       copy_length = length_minus;
4756     }
4757   }
4758 
4759   set_control(slow_control);
4760   if (!stopped()) {
4761     // Generate the slow path, if needed.
4762     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4763 
4764     set_memory(slow_mem, adr_type);
4765     set_i_o(slow_i_o);
4766 
4767     if (must_clear_dest) {
4768       generate_clear_array(adr_type, dest, basic_elem_type,
4769                            intcon(0), NULL,
4770                            alloc->in(AllocateNode::AllocSize));
4771     }
4772 
4773     generate_slow_arraycopy(adr_type,
4774                             src, src_offset, dest, dest_offset,
4775                             copy_length);
4776 
4777     result_region->init_req(slow_call_path, control());
4778     result_i_o   ->init_req(slow_call_path, i_o());
4779     result_memory->init_req(slow_call_path, memory(adr_type));
4780   }
4781 
4782   // Remove unused edges.
4783   for (uint i = 1; i < result_region->req(); i++) {
4784     if (result_region->in(i) == NULL)
4785       result_region->init_req(i, top());
4786   }
4787 
4788   // Finished; return the combined state.
4789   set_control( _gvn.transform(result_region) );
4790   set_i_o(     _gvn.transform(result_i_o)    );
4791   set_memory(  _gvn.transform(result_memory), adr_type );
4792 
4793   if (dest != original_dest) {
4794     // Pin the "finished" array node after the arraycopy/zeroing operations.
4795     _gvn.hash_delete(original_dest);
4796     original_dest->set_req(0, control());
4797     // Replace raw memory edge with new CheckCastPP to have a live oop
4798     // at safepoints instead of raw value.
4799     assert(dest->is_CheckCastPP() && dest->in(1) == original_dest->in(1), "sanity");
4800     original_dest->set_req(1, dest);       // cast to the original type
4801     _gvn.hash_find_insert(original_dest);  // put back into GVN table
4802     // Restore in the locally valid dest_oop.
4803     replace_in_map(dest, original_dest);
4804   }
4805   // The memory edges above are precise in order to model effects around
4806   // array copies accurately to allow value numbering of field loads around
4807   // arraycopy.  Such field loads, both before and after, are common in Java
4808   // collections and similar classes involving header/array data structures.
4809   //
4810   // But with low number of register or when some registers are used or killed
4811   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4812   // The next memory barrier is added to avoid it. If the arraycopy can be
4813   // optimized away (which it can, sometimes) then we can manually remove
4814   // the membar also.
4815   if (InsertMemBarAfterArraycopy)
4816     insert_mem_bar(Op_MemBarCPUOrder);
4817 }
4818 
4819 
4820 // Helper function which determines if an arraycopy immediately follows
4821 // an allocation, with no intervening tests or other escapes for the object.
4822 AllocateArrayNode*
4823 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4824                                            RegionNode* slow_region) {
4825   if (stopped())             return NULL;  // no fast path
4826   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4827 
4828   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4829   if (alloc == NULL)  return NULL;
4830 
4831   Node* rawmem = memory(Compile::AliasIdxRaw);
4832   // Is the allocation's memory state untouched?
4833   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4834     // Bail out if there have been raw-memory effects since the allocation.
4835     // (Example:  There might have been a call or safepoint.)
4836     return NULL;
4837   }
4838   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4839   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4840     return NULL;
4841   }
4842 
4843   // There must be no unexpected observers of this allocation.
4844   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4845     Node* obs = ptr->fast_out(i);
4846     if (obs != this->map()) {
4847       return NULL;
4848     }
4849   }
4850 
4851   // This arraycopy must unconditionally follow the allocation of the ptr.
4852   Node* alloc_ctl = ptr->in(0);
4853   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4854 
4855   Node* ctl = control();
4856   while (ctl != alloc_ctl) {
4857     // There may be guards which feed into the slow_region.
4858     // Any other control flow means that we might not get a chance
4859     // to finish initializing the allocated object.
4860     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4861       IfNode* iff = ctl->in(0)->as_If();
4862       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4863       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4864       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4865         ctl = iff->in(0);       // This test feeds the known slow_region.
4866         continue;
4867       }
4868       // One more try:  Various low-level checks bottom out in
4869       // uncommon traps.  If the debug-info of the trap omits
4870       // any reference to the allocation, as we've already
4871       // observed, then there can be no objection to the trap.
4872       bool found_trap = false;
4873       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4874         Node* obs = not_ctl->fast_out(j);
4875         if (obs->in(0) == not_ctl && obs->is_Call() &&
4876             (obs->as_Call()->entry_point() ==
4877              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4878           found_trap = true; break;
4879         }
4880       }
4881       if (found_trap) {
4882         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4883         continue;
4884       }
4885     }
4886     return NULL;
4887   }
4888 
4889   // If we get this far, we have an allocation which immediately
4890   // precedes the arraycopy, and we can take over zeroing the new object.
4891   // The arraycopy will finish the initialization, and provide
4892   // a new control state to which we will anchor the destination pointer.
4893 
4894   return alloc;
4895 }
4896 
4897 // Helper for initialization of arrays, creating a ClearArray.
4898 // It writes zero bits in [start..end), within the body of an array object.
4899 // The memory effects are all chained onto the 'adr_type' alias category.
4900 //
4901 // Since the object is otherwise uninitialized, we are free
4902 // to put a little "slop" around the edges of the cleared area,
4903 // as long as it does not go back into the array's header,
4904 // or beyond the array end within the heap.
4905 //
4906 // The lower edge can be rounded down to the nearest jint and the
4907 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4908 //
4909 // Arguments:
4910 //   adr_type           memory slice where writes are generated
4911 //   dest               oop of the destination array
4912 //   basic_elem_type    element type of the destination
4913 //   slice_idx          array index of first element to store
4914 //   slice_len          number of elements to store (or NULL)
4915 //   dest_size          total size in bytes of the array object
4916 //
4917 // Exactly one of slice_len or dest_size must be non-NULL.
4918 // If dest_size is non-NULL, zeroing extends to the end of the object.
4919 // If slice_len is non-NULL, the slice_idx value must be a constant.
4920 void
4921 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
4922                                      Node* dest,
4923                                      BasicType basic_elem_type,
4924                                      Node* slice_idx,
4925                                      Node* slice_len,
4926                                      Node* dest_size) {
4927   // one or the other but not both of slice_len and dest_size:
4928   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
4929   if (slice_len == NULL)  slice_len = top();
4930   if (dest_size == NULL)  dest_size = top();
4931 
4932   // operate on this memory slice:
4933   Node* mem = memory(adr_type); // memory slice to operate on
4934 
4935   // scaling and rounding of indexes:
4936   int scale = exact_log2(type2aelembytes(basic_elem_type));
4937   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4938   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
4939   int bump_bit  = (-1 << scale) & BytesPerInt;
4940 
4941   // determine constant starts and ends
4942   const intptr_t BIG_NEG = -128;
4943   assert(BIG_NEG + 2*abase < 0, "neg enough");
4944   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
4945   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
4946   if (slice_len_con == 0) {
4947     return;                     // nothing to do here
4948   }
4949   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
4950   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
4951   if (slice_idx_con >= 0 && slice_len_con >= 0) {
4952     assert(end_con < 0, "not two cons");
4953     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
4954                        BytesPerLong);
4955   }
4956 
4957   if (start_con >= 0 && end_con >= 0) {
4958     // Constant start and end.  Simple.
4959     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4960                                        start_con, end_con, &_gvn);
4961   } else if (start_con >= 0 && dest_size != top()) {
4962     // Constant start, pre-rounded end after the tail of the array.
4963     Node* end = dest_size;
4964     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4965                                        start_con, end, &_gvn);
4966   } else if (start_con >= 0 && slice_len != top()) {
4967     // Constant start, non-constant end.  End needs rounding up.
4968     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
4969     intptr_t end_base  = abase + (slice_idx_con << scale);
4970     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
4971     Node*    end       = ConvI2X(slice_len);
4972     if (scale != 0)
4973       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
4974     end_base += end_round;
4975     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
4976     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
4977     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4978                                        start_con, end, &_gvn);
4979   } else if (start_con < 0 && dest_size != top()) {
4980     // Non-constant start, pre-rounded end after the tail of the array.
4981     // This is almost certainly a "round-to-end" operation.
4982     Node* start = slice_idx;
4983     start = ConvI2X(start);
4984     if (scale != 0)
4985       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
4986     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
4987     if ((bump_bit | clear_low) != 0) {
4988       int to_clear = (bump_bit | clear_low);
4989       // Align up mod 8, then store a jint zero unconditionally
4990       // just before the mod-8 boundary.
4991       if (((abase + bump_bit) & ~to_clear) - bump_bit
4992           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
4993         bump_bit = 0;
4994         assert((abase & to_clear) == 0, "array base must be long-aligned");
4995       } else {
4996         // Bump 'start' up to (or past) the next jint boundary:
4997         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
4998         assert((abase & clear_low) == 0, "array base must be int-aligned");
4999       }
5000       // Round bumped 'start' down to jlong boundary in body of array.
5001       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5002       if (bump_bit != 0) {
5003         // Store a zero to the immediately preceding jint:
5004         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5005         Node* p1 = basic_plus_adr(dest, x1);
5006         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5007         mem = _gvn.transform(mem);
5008       }
5009     }
5010     Node* end = dest_size; // pre-rounded
5011     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5012                                        start, end, &_gvn);
5013   } else {
5014     // Non-constant start, unrounded non-constant end.
5015     // (Nobody zeroes a random midsection of an array using this routine.)
5016     ShouldNotReachHere();       // fix caller
5017   }
5018 
5019   // Done.
5020   set_memory(mem, adr_type);
5021 }
5022 
5023 
5024 bool
5025 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5026                                          BasicType basic_elem_type,
5027                                          AllocateNode* alloc,
5028                                          Node* src,  Node* src_offset,
5029                                          Node* dest, Node* dest_offset,
5030                                          Node* dest_size) {
5031   // See if there is an advantage from block transfer.
5032   int scale = exact_log2(type2aelembytes(basic_elem_type));
5033   if (scale >= LogBytesPerLong)
5034     return false;               // it is already a block transfer
5035 
5036   // Look at the alignment of the starting offsets.
5037   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5038   const intptr_t BIG_NEG = -128;
5039   assert(BIG_NEG + 2*abase < 0, "neg enough");
5040 
5041   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5042   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5043   if (src_off < 0 || dest_off < 0)
5044     // At present, we can only understand constants.
5045     return false;
5046 
5047   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5048     // Non-aligned; too bad.
5049     // One more chance:  Pick off an initial 32-bit word.
5050     // This is a common case, since abase can be odd mod 8.
5051     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5052         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5053       Node* sptr = basic_plus_adr(src,  src_off);
5054       Node* dptr = basic_plus_adr(dest, dest_off);
5055       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5056       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5057       src_off += BytesPerInt;
5058       dest_off += BytesPerInt;
5059     } else {
5060       return false;
5061     }
5062   }
5063   assert(src_off % BytesPerLong == 0, "");
5064   assert(dest_off % BytesPerLong == 0, "");
5065 
5066   // Do this copy by giant steps.
5067   Node* sptr  = basic_plus_adr(src,  src_off);
5068   Node* dptr  = basic_plus_adr(dest, dest_off);
5069   Node* countx = dest_size;
5070   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5071   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5072 
5073   bool disjoint_bases = true;   // since alloc != NULL
5074   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5075                                sptr, NULL, dptr, NULL, countx);
5076 
5077   return true;
5078 }
5079 
5080 
5081 // Helper function; generates code for the slow case.
5082 // We make a call to a runtime method which emulates the native method,
5083 // but without the native wrapper overhead.
5084 void
5085 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5086                                         Node* src,  Node* src_offset,
5087                                         Node* dest, Node* dest_offset,
5088                                         Node* copy_length) {
5089   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5090                                  OptoRuntime::slow_arraycopy_Type(),
5091                                  OptoRuntime::slow_arraycopy_Java(),
5092                                  "slow_arraycopy", adr_type,
5093                                  src, src_offset, dest, dest_offset,
5094                                  copy_length);
5095 
5096   // Handle exceptions thrown by this fellow:
5097   make_slow_call_ex(call, env()->Throwable_klass(), false);
5098 }
5099 
5100 // Helper function; generates code for cases requiring runtime checks.
5101 Node*
5102 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5103                                              Node* dest_elem_klass,
5104                                              Node* src,  Node* src_offset,
5105                                              Node* dest, Node* dest_offset,
5106                                              Node* copy_length) {
5107   if (stopped())  return NULL;
5108 
5109   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5110   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5111     return NULL;
5112   }
5113 
5114   // Pick out the parameters required to perform a store-check
5115   // for the target array.  This is an optimistic check.  It will
5116   // look in each non-null element's class, at the desired klass's
5117   // super_check_offset, for the desired klass.
5118   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5119   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5120   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5121   Node* check_offset = _gvn.transform(n3);
5122   Node* check_value  = dest_elem_klass;
5123 
5124   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5125   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5126 
5127   // (We know the arrays are never conjoint, because their types differ.)
5128   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5129                                  OptoRuntime::checkcast_arraycopy_Type(),
5130                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5131                                  // five arguments, of which two are
5132                                  // intptr_t (jlong in LP64)
5133                                  src_start, dest_start,
5134                                  copy_length XTOP,
5135                                  check_offset XTOP,
5136                                  check_value);
5137 
5138   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5139 }
5140 
5141 
5142 // Helper function; generates code for cases requiring runtime checks.
5143 Node*
5144 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5145                                            Node* src,  Node* src_offset,
5146                                            Node* dest, Node* dest_offset,
5147                                            Node* copy_length) {
5148   if (stopped())  return NULL;
5149 
5150   address copyfunc_addr = StubRoutines::generic_arraycopy();
5151   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5152     return NULL;
5153   }
5154 
5155   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5156                     OptoRuntime::generic_arraycopy_Type(),
5157                     copyfunc_addr, "generic_arraycopy", adr_type,
5158                     src, src_offset, dest, dest_offset, copy_length);
5159 
5160   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5161 }
5162 
5163 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5164 void
5165 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5166                                              BasicType basic_elem_type,
5167                                              bool disjoint_bases,
5168                                              Node* src,  Node* src_offset,
5169                                              Node* dest, Node* dest_offset,
5170                                              Node* copy_length) {
5171   if (stopped())  return;               // nothing to do
5172 
5173   Node* src_start  = src;
5174   Node* dest_start = dest;
5175   if (src_offset != NULL || dest_offset != NULL) {
5176     assert(src_offset != NULL && dest_offset != NULL, "");
5177     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5178     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5179   }
5180 
5181   // Figure out which arraycopy runtime method to call.
5182   const char* copyfunc_name = "arraycopy";
5183   address     copyfunc_addr =
5184       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5185                           disjoint_bases, copyfunc_name);
5186 
5187   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5188   make_runtime_call(RC_LEAF|RC_NO_FP,
5189                     OptoRuntime::fast_arraycopy_Type(),
5190                     copyfunc_addr, copyfunc_name, adr_type,
5191                     src_start, dest_start, copy_length XTOP);
5192 }