1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime.cpp.incl"
  27 #include <math.h>
  28 
  29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  31                       char*, int, char*, int, char*, int);
  32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  33                       char*, int, char*, int, char*, int);
  34 
  35 // Implementation of SharedRuntime
  36 
  37 #ifndef PRODUCT
  38 // For statistics
  39 int SharedRuntime::_ic_miss_ctr = 0;
  40 int SharedRuntime::_wrong_method_ctr = 0;
  41 int SharedRuntime::_resolve_static_ctr = 0;
  42 int SharedRuntime::_resolve_virtual_ctr = 0;
  43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  44 int SharedRuntime::_implicit_null_throws = 0;
  45 int SharedRuntime::_implicit_div0_throws = 0;
  46 int SharedRuntime::_throw_null_ctr = 0;
  47 
  48 int SharedRuntime::_nof_normal_calls = 0;
  49 int SharedRuntime::_nof_optimized_calls = 0;
  50 int SharedRuntime::_nof_inlined_calls = 0;
  51 int SharedRuntime::_nof_megamorphic_calls = 0;
  52 int SharedRuntime::_nof_static_calls = 0;
  53 int SharedRuntime::_nof_inlined_static_calls = 0;
  54 int SharedRuntime::_nof_interface_calls = 0;
  55 int SharedRuntime::_nof_optimized_interface_calls = 0;
  56 int SharedRuntime::_nof_inlined_interface_calls = 0;
  57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
  58 int SharedRuntime::_nof_removable_exceptions = 0;
  59 
  60 int SharedRuntime::_new_instance_ctr=0;
  61 int SharedRuntime::_new_array_ctr=0;
  62 int SharedRuntime::_multi1_ctr=0;
  63 int SharedRuntime::_multi2_ctr=0;
  64 int SharedRuntime::_multi3_ctr=0;
  65 int SharedRuntime::_multi4_ctr=0;
  66 int SharedRuntime::_multi5_ctr=0;
  67 int SharedRuntime::_mon_enter_stub_ctr=0;
  68 int SharedRuntime::_mon_exit_stub_ctr=0;
  69 int SharedRuntime::_mon_enter_ctr=0;
  70 int SharedRuntime::_mon_exit_ctr=0;
  71 int SharedRuntime::_partial_subtype_ctr=0;
  72 int SharedRuntime::_jbyte_array_copy_ctr=0;
  73 int SharedRuntime::_jshort_array_copy_ctr=0;
  74 int SharedRuntime::_jint_array_copy_ctr=0;
  75 int SharedRuntime::_jlong_array_copy_ctr=0;
  76 int SharedRuntime::_oop_array_copy_ctr=0;
  77 int SharedRuntime::_checkcast_array_copy_ctr=0;
  78 int SharedRuntime::_unsafe_array_copy_ctr=0;
  79 int SharedRuntime::_generic_array_copy_ctr=0;
  80 int SharedRuntime::_slow_array_copy_ctr=0;
  81 int SharedRuntime::_find_handler_ctr=0;
  82 int SharedRuntime::_rethrow_ctr=0;
  83 
  84 int     SharedRuntime::_ICmiss_index                    = 0;
  85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
  86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
  87 
  88 void SharedRuntime::trace_ic_miss(address at) {
  89   for (int i = 0; i < _ICmiss_index; i++) {
  90     if (_ICmiss_at[i] == at) {
  91       _ICmiss_count[i]++;
  92       return;
  93     }
  94   }
  95   int index = _ICmiss_index++;
  96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
  97   _ICmiss_at[index] = at;
  98   _ICmiss_count[index] = 1;
  99 }
 100 
 101 void SharedRuntime::print_ic_miss_histogram() {
 102   if (ICMissHistogram) {
 103     tty->print_cr ("IC Miss Histogram:");
 104     int tot_misses = 0;
 105     for (int i = 0; i < _ICmiss_index; i++) {
 106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 107       tot_misses += _ICmiss_count[i];
 108     }
 109     tty->print_cr ("Total IC misses: %7d", tot_misses);
 110   }
 111 }
 112 #endif // PRODUCT
 113 
 114 #ifndef SERIALGC
 115 
 116 // G1 write-barrier pre: executed before a pointer store.
 117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 118   if (orig == NULL) {
 119     assert(false, "should be optimized out");
 120     return;
 121   }
 122   // store the original value that was in the field reference
 123   thread->satb_mark_queue().enqueue(orig);
 124 JRT_END
 125 
 126 // G1 write-barrier post: executed after a pointer store.
 127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 128   thread->dirty_card_queue().enqueue(card_addr);
 129 JRT_END
 130 
 131 #endif // !SERIALGC
 132 
 133 
 134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 135   return x * y;
 136 JRT_END
 137 
 138 
 139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 140   if (x == min_jlong && y == CONST64(-1)) {
 141     return x;
 142   } else {
 143     return x / y;
 144   }
 145 JRT_END
 146 
 147 
 148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 149   if (x == min_jlong && y == CONST64(-1)) {
 150     return 0;
 151   } else {
 152     return x % y;
 153   }
 154 JRT_END
 155 
 156 
 157 const juint  float_sign_mask  = 0x7FFFFFFF;
 158 const juint  float_infinity   = 0x7F800000;
 159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 160 const julong double_infinity  = CONST64(0x7FF0000000000000);
 161 
 162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 163 #ifdef _WIN64
 164   // 64-bit Windows on amd64 returns the wrong values for
 165   // infinity operands.
 166   union { jfloat f; juint i; } xbits, ybits;
 167   xbits.f = x;
 168   ybits.f = y;
 169   // x Mod Infinity == x unless x is infinity
 170   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 171        ((ybits.i & float_sign_mask) == float_infinity) ) {
 172     return x;
 173   }
 174 #endif
 175   return ((jfloat)fmod((double)x,(double)y));
 176 JRT_END
 177 
 178 
 179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 180 #ifdef _WIN64
 181   union { jdouble d; julong l; } xbits, ybits;
 182   xbits.d = x;
 183   ybits.d = y;
 184   // x Mod Infinity == x unless x is infinity
 185   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 186        ((ybits.l & double_sign_mask) == double_infinity) ) {
 187     return x;
 188   }
 189 #endif
 190   return ((jdouble)fmod((double)x,(double)y));
 191 JRT_END
 192 
 193 
 194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 195   if (g_isnan(x))
 196     return 0;
 197   if (x >= (jfloat) max_jint)
 198     return max_jint;
 199   if (x <= (jfloat) min_jint)
 200     return min_jint;
 201   return (jint) x;
 202 JRT_END
 203 
 204 
 205 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 206   if (g_isnan(x))
 207     return 0;
 208   if (x >= (jfloat) max_jlong)
 209     return max_jlong;
 210   if (x <= (jfloat) min_jlong)
 211     return min_jlong;
 212   return (jlong) x;
 213 JRT_END
 214 
 215 
 216 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 217   if (g_isnan(x))
 218     return 0;
 219   if (x >= (jdouble) max_jint)
 220     return max_jint;
 221   if (x <= (jdouble) min_jint)
 222     return min_jint;
 223   return (jint) x;
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 228   if (g_isnan(x))
 229     return 0;
 230   if (x >= (jdouble) max_jlong)
 231     return max_jlong;
 232   if (x <= (jdouble) min_jlong)
 233     return min_jlong;
 234   return (jlong) x;
 235 JRT_END
 236 
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 239   return (jfloat)x;
 240 JRT_END
 241 
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 244   return (jfloat)x;
 245 JRT_END
 246 
 247 
 248 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 249   return (jdouble)x;
 250 JRT_END
 251 
 252 // Exception handling accross interpreter/compiler boundaries
 253 //
 254 // exception_handler_for_return_address(...) returns the continuation address.
 255 // The continuation address is the entry point of the exception handler of the
 256 // previous frame depending on the return address.
 257 
 258 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
 259   assert(frame::verify_return_pc(return_address), "must be a return pc");
 260 
 261   // the fastest case first
 262   CodeBlob* blob = CodeCache::find_blob(return_address);
 263   if (blob != NULL && blob->is_nmethod()) {
 264     nmethod* code = (nmethod*)blob;
 265     assert(code != NULL, "nmethod must be present");
 266     // native nmethods don't have exception handlers
 267     assert(!code->is_native_method(), "no exception handler");
 268     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 269     if (code->is_deopt_pc(return_address)) {
 270       return SharedRuntime::deopt_blob()->unpack_with_exception();
 271     } else {
 272       return code->exception_begin();
 273     }
 274   }
 275 
 276   // Entry code
 277   if (StubRoutines::returns_to_call_stub(return_address)) {
 278     return StubRoutines::catch_exception_entry();
 279   }
 280   // Interpreted code
 281   if (Interpreter::contains(return_address)) {
 282     return Interpreter::rethrow_exception_entry();
 283   }
 284 
 285   // Compiled code
 286   if (CodeCache::contains(return_address)) {
 287     CodeBlob* blob = CodeCache::find_blob(return_address);
 288     if (blob->is_nmethod()) {
 289       nmethod* code = (nmethod*)blob;
 290       assert(code != NULL, "nmethod must be present");
 291       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 292       return code->exception_begin();
 293     }
 294     if (blob->is_runtime_stub()) {
 295       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 296     }
 297   }
 298   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 299 #ifndef PRODUCT
 300   { ResourceMark rm;
 301     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 302     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 303     tty->print_cr("b) other problem");
 304   }
 305 #endif // PRODUCT
 306   ShouldNotReachHere();
 307   return NULL;
 308 }
 309 
 310 
 311 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
 312   return raw_exception_handler_for_return_address(return_address);
 313 JRT_END
 314 
 315 address SharedRuntime::get_poll_stub(address pc) {
 316   address stub;
 317   // Look up the code blob
 318   CodeBlob *cb = CodeCache::find_blob(pc);
 319 
 320   // Should be an nmethod
 321   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 322 
 323   // Look up the relocation information
 324   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 325     "safepoint polling: type must be poll" );
 326 
 327   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 328     "Only polling locations are used for safepoint");
 329 
 330   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 331   if (at_poll_return) {
 332     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 333            "polling page return stub not created yet");
 334     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
 335   } else {
 336     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 337            "polling page safepoint stub not created yet");
 338     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
 339   }
 340 #ifndef PRODUCT
 341   if( TraceSafepoint ) {
 342     char buf[256];
 343     jio_snprintf(buf, sizeof(buf),
 344                  "... found polling page %s exception at pc = "
 345                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 346                  at_poll_return ? "return" : "loop",
 347                  (intptr_t)pc, (intptr_t)stub);
 348     tty->print_raw_cr(buf);
 349   }
 350 #endif // PRODUCT
 351   return stub;
 352 }
 353 
 354 
 355 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 356   assert(caller.is_interpreted_frame(), "");
 357   int args_size = ArgumentSizeComputer(sig).size() + 1;
 358   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 359   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 360   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 361   return result;
 362 }
 363 
 364 
 365 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 366   if (JvmtiExport::can_post_exceptions()) {
 367     vframeStream vfst(thread, true);
 368     methodHandle method = methodHandle(thread, vfst.method());
 369     address bcp = method()->bcp_from(vfst.bci());
 370     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 371   }
 372   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 373 }
 374 
 375 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 376   Handle h_exception = Exceptions::new_exception(thread, name, message);
 377   throw_and_post_jvmti_exception(thread, h_exception);
 378 }
 379 
 380 // The interpreter code to call this tracing function is only
 381 // called/generated when TraceRedefineClasses has the right bits
 382 // set. Since obsolete methods are never compiled, we don't have
 383 // to modify the compilers to generate calls to this function.
 384 //
 385 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 386     JavaThread* thread, methodOopDesc* method))
 387   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 388 
 389   if (method->is_obsolete()) {
 390     // We are calling an obsolete method, but this is not necessarily
 391     // an error. Our method could have been redefined just after we
 392     // fetched the methodOop from the constant pool.
 393 
 394     // RC_TRACE macro has an embedded ResourceMark
 395     RC_TRACE_WITH_THREAD(0x00001000, thread,
 396                          ("calling obsolete method '%s'",
 397                           method->name_and_sig_as_C_string()));
 398     if (RC_TRACE_ENABLED(0x00002000)) {
 399       // this option is provided to debug calls to obsolete methods
 400       guarantee(false, "faulting at call to an obsolete method.");
 401     }
 402   }
 403   return 0;
 404 JRT_END
 405 
 406 // ret_pc points into caller; we are returning caller's exception handler
 407 // for given exception
 408 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 409                                                     bool force_unwind, bool top_frame_only) {
 410   assert(nm != NULL, "must exist");
 411   ResourceMark rm;
 412 
 413   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 414   // determine handler bci, if any
 415   EXCEPTION_MARK;
 416 
 417   int handler_bci = -1;
 418   int scope_depth = 0;
 419   if (!force_unwind) {
 420     int bci = sd->bci();
 421     do {
 422       bool skip_scope_increment = false;
 423       // exception handler lookup
 424       KlassHandle ek (THREAD, exception->klass());
 425       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 426       if (HAS_PENDING_EXCEPTION) {
 427         // We threw an exception while trying to find the exception handler.
 428         // Transfer the new exception to the exception handle which will
 429         // be set into thread local storage, and do another lookup for an
 430         // exception handler for this exception, this time starting at the
 431         // BCI of the exception handler which caused the exception to be
 432         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 433         // argument to ensure that the correct exception is thrown (4870175).
 434         exception = Handle(THREAD, PENDING_EXCEPTION);
 435         CLEAR_PENDING_EXCEPTION;
 436         if (handler_bci >= 0) {
 437           bci = handler_bci;
 438           handler_bci = -1;
 439           skip_scope_increment = true;
 440         }
 441       }
 442       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 443         sd = sd->sender();
 444         if (sd != NULL) {
 445           bci = sd->bci();
 446         }
 447         ++scope_depth;
 448       }
 449     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 450   }
 451 
 452   // found handling method => lookup exception handler
 453   int catch_pco = ret_pc - nm->instructions_begin();
 454 
 455   ExceptionHandlerTable table(nm);
 456   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 457   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 458     // Allow abbreviated catch tables.  The idea is to allow a method
 459     // to materialize its exceptions without committing to the exact
 460     // routing of exceptions.  In particular this is needed for adding
 461     // a synthethic handler to unlock monitors when inlining
 462     // synchonized methods since the unlock path isn't represented in
 463     // the bytecodes.
 464     t = table.entry_for(catch_pco, -1, 0);
 465   }
 466 
 467 #ifdef COMPILER1
 468   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
 469     // Exception is not handled by this frame so unwind.  Note that
 470     // this is not the same as how C2 does this.  C2 emits a table
 471     // entry that dispatches to the unwind code in the nmethod.
 472     return NULL;
 473   }
 474 #endif /* COMPILER1 */
 475 
 476 
 477   if (t == NULL) {
 478     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 479     tty->print_cr("   Exception:");
 480     exception->print();
 481     tty->cr();
 482     tty->print_cr(" Compiled exception table :");
 483     table.print();
 484     nm->print_code();
 485     guarantee(false, "missing exception handler");
 486     return NULL;
 487   }
 488 
 489   return nm->instructions_begin() + t->pco();
 490 }
 491 
 492 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 493   // These errors occur only at call sites
 494   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 495 JRT_END
 496 
 497 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 498   // These errors occur only at call sites
 499   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 500 JRT_END
 501 
 502 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 503   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 504 JRT_END
 505 
 506 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 507   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 508 JRT_END
 509 
 510 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 511   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 512   // cache sites (when the callee activation is not yet set up) so we are at a call site
 513   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 514 JRT_END
 515 
 516 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 517   // We avoid using the normal exception construction in this case because
 518   // it performs an upcall to Java, and we're already out of stack space.
 519   klassOop k = SystemDictionary::StackOverflowError_klass();
 520   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 521   Handle exception (thread, exception_oop);
 522   if (StackTraceInThrowable) {
 523     java_lang_Throwable::fill_in_stack_trace(exception);
 524   }
 525   throw_and_post_jvmti_exception(thread, exception);
 526 JRT_END
 527 
 528 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 529                                                            address pc,
 530                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 531 {
 532   address target_pc = NULL;
 533 
 534   if (Interpreter::contains(pc)) {
 535 #ifdef CC_INTERP
 536     // C++ interpreter doesn't throw implicit exceptions
 537     ShouldNotReachHere();
 538 #else
 539     switch (exception_kind) {
 540       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 541       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 542       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 543       default:                      ShouldNotReachHere();
 544     }
 545 #endif // !CC_INTERP
 546   } else {
 547     switch (exception_kind) {
 548       case STACK_OVERFLOW: {
 549         // Stack overflow only occurs upon frame setup; the callee is
 550         // going to be unwound. Dispatch to a shared runtime stub
 551         // which will cause the StackOverflowError to be fabricated
 552         // and processed.
 553         // For stack overflow in deoptimization blob, cleanup thread.
 554         if (thread->deopt_mark() != NULL) {
 555           Deoptimization::cleanup_deopt_info(thread, NULL);
 556         }
 557         return StubRoutines::throw_StackOverflowError_entry();
 558       }
 559 
 560       case IMPLICIT_NULL: {
 561         if (VtableStubs::contains(pc)) {
 562           // We haven't yet entered the callee frame. Fabricate an
 563           // exception and begin dispatching it in the caller. Since
 564           // the caller was at a call site, it's safe to destroy all
 565           // caller-saved registers, as these entry points do.
 566           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 567 
 568           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 569           if (vt_stub == NULL) return NULL;
 570 
 571           if (vt_stub->is_abstract_method_error(pc)) {
 572             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 573             return StubRoutines::throw_AbstractMethodError_entry();
 574           } else {
 575             return StubRoutines::throw_NullPointerException_at_call_entry();
 576           }
 577         } else {
 578           CodeBlob* cb = CodeCache::find_blob(pc);
 579 
 580           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 581           if (cb == NULL) return NULL;
 582 
 583           // Exception happened in CodeCache. Must be either:
 584           // 1. Inline-cache check in C2I handler blob,
 585           // 2. Inline-cache check in nmethod, or
 586           // 3. Implict null exception in nmethod
 587 
 588           if (!cb->is_nmethod()) {
 589             guarantee(cb->is_adapter_blob(),
 590                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 591             // There is no handler here, so we will simply unwind.
 592             return StubRoutines::throw_NullPointerException_at_call_entry();
 593           }
 594 
 595           // Otherwise, it's an nmethod.  Consult its exception handlers.
 596           nmethod* nm = (nmethod*)cb;
 597           if (nm->inlinecache_check_contains(pc)) {
 598             // exception happened inside inline-cache check code
 599             // => the nmethod is not yet active (i.e., the frame
 600             // is not set up yet) => use return address pushed by
 601             // caller => don't push another return address
 602             return StubRoutines::throw_NullPointerException_at_call_entry();
 603           }
 604 
 605 #ifndef PRODUCT
 606           _implicit_null_throws++;
 607 #endif
 608           target_pc = nm->continuation_for_implicit_exception(pc);
 609           guarantee(target_pc != 0, "must have a continuation point");
 610         }
 611 
 612         break; // fall through
 613       }
 614 
 615 
 616       case IMPLICIT_DIVIDE_BY_ZERO: {
 617         nmethod* nm = CodeCache::find_nmethod(pc);
 618         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 619 #ifndef PRODUCT
 620         _implicit_div0_throws++;
 621 #endif
 622         target_pc = nm->continuation_for_implicit_exception(pc);
 623         guarantee(target_pc != 0, "must have a continuation point");
 624         break; // fall through
 625       }
 626 
 627       default: ShouldNotReachHere();
 628     }
 629 
 630     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
 631     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 632 
 633     // for AbortVMOnException flag
 634     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 635     if (exception_kind == IMPLICIT_NULL) {
 636       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 637     } else {
 638       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 639     }
 640     return target_pc;
 641   }
 642 
 643   ShouldNotReachHere();
 644   return NULL;
 645 }
 646 
 647 
 648 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 649 {
 650   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 651 }
 652 JNI_END
 653 
 654 
 655 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 656   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 657 }
 658 
 659 
 660 #ifndef PRODUCT
 661 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 662   const frame f = thread->last_frame();
 663   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 664 #ifndef PRODUCT
 665   methodHandle mh(THREAD, f.interpreter_frame_method());
 666   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 667 #endif // !PRODUCT
 668   return preserve_this_value;
 669 JRT_END
 670 #endif // !PRODUCT
 671 
 672 
 673 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 674   os::yield_all(attempts);
 675 JRT_END
 676 
 677 
 678 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 679   assert(obj->is_oop(), "must be a valid oop");
 680   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 681   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 682 JRT_END
 683 
 684 
 685 jlong SharedRuntime::get_java_tid(Thread* thread) {
 686   if (thread != NULL) {
 687     if (thread->is_Java_thread()) {
 688       oop obj = ((JavaThread*)thread)->threadObj();
 689       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 690     }
 691   }
 692   return 0;
 693 }
 694 
 695 /**
 696  * This function ought to be a void function, but cannot be because
 697  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 698  * 6254741.  Once that is fixed we can remove the dummy return value.
 699  */
 700 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 701   return dtrace_object_alloc_base(Thread::current(), o);
 702 }
 703 
 704 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 705   assert(DTraceAllocProbes, "wrong call");
 706   Klass* klass = o->blueprint();
 707   int size = o->size();
 708   symbolOop name = klass->name();
 709   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 710                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 711   return 0;
 712 }
 713 
 714 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 715     JavaThread* thread, methodOopDesc* method))
 716   assert(DTraceMethodProbes, "wrong call");
 717   symbolOop kname = method->klass_name();
 718   symbolOop name = method->name();
 719   symbolOop sig = method->signature();
 720   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 721       kname->bytes(), kname->utf8_length(),
 722       name->bytes(), name->utf8_length(),
 723       sig->bytes(), sig->utf8_length());
 724   return 0;
 725 JRT_END
 726 
 727 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 728     JavaThread* thread, methodOopDesc* method))
 729   assert(DTraceMethodProbes, "wrong call");
 730   symbolOop kname = method->klass_name();
 731   symbolOop name = method->name();
 732   symbolOop sig = method->signature();
 733   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 734       kname->bytes(), kname->utf8_length(),
 735       name->bytes(), name->utf8_length(),
 736       sig->bytes(), sig->utf8_length());
 737   return 0;
 738 JRT_END
 739 
 740 
 741 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 742 // for a call current in progress, i.e., arguments has been pushed on stack
 743 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 744 // vtable updates, etc.  Caller frame must be compiled.
 745 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 746   ResourceMark rm(THREAD);
 747 
 748   // last java frame on stack (which includes native call frames)
 749   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 750 
 751   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 752 }
 753 
 754 
 755 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 756 // for a call current in progress, i.e., arguments has been pushed on stack
 757 // but callee has not been invoked yet.  Caller frame must be compiled.
 758 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 759                                               vframeStream& vfst,
 760                                               Bytecodes::Code& bc,
 761                                               CallInfo& callinfo, TRAPS) {
 762   Handle receiver;
 763   Handle nullHandle;  //create a handy null handle for exception returns
 764 
 765   assert(!vfst.at_end(), "Java frame must exist");
 766 
 767   // Find caller and bci from vframe
 768   methodHandle caller (THREAD, vfst.method());
 769   int          bci    = vfst.bci();
 770 
 771   // Find bytecode
 772   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 773   bc = bytecode->adjusted_invoke_code();
 774   int bytecode_index = bytecode->index();
 775 
 776   // Find receiver for non-static call
 777   if (bc != Bytecodes::_invokestatic) {
 778     // This register map must be update since we need to find the receiver for
 779     // compiled frames. The receiver might be in a register.
 780     RegisterMap reg_map2(thread);
 781     frame stubFrame   = thread->last_frame();
 782     // Caller-frame is a compiled frame
 783     frame callerFrame = stubFrame.sender(&reg_map2);
 784 
 785     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 786     if (callee.is_null()) {
 787       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 788     }
 789     // Retrieve from a compiled argument list
 790     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 791 
 792     if (receiver.is_null()) {
 793       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 794     }
 795   }
 796 
 797   // Resolve method. This is parameterized by bytecode.
 798   constantPoolHandle constants (THREAD, caller->constants());
 799   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 800   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 801 
 802 #ifdef ASSERT
 803   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 804   if (bc != Bytecodes::_invokestatic) {
 805     assert(receiver.not_null(), "should have thrown exception");
 806     KlassHandle receiver_klass (THREAD, receiver->klass());
 807     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 808                             // klass is already loaded
 809     KlassHandle static_receiver_klass (THREAD, rk);
 810     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 811     if (receiver_klass->oop_is_instance()) {
 812       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 813         tty->print_cr("ERROR: Klass not yet initialized!!");
 814         receiver_klass.print();
 815       }
 816       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 817     }
 818   }
 819 #endif
 820 
 821   return receiver;
 822 }
 823 
 824 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 825   ResourceMark rm(THREAD);
 826   // We need first to check if any Java activations (compiled, interpreted)
 827   // exist on the stack since last JavaCall.  If not, we need
 828   // to get the target method from the JavaCall wrapper.
 829   vframeStream vfst(thread, true);  // Do not skip any javaCalls
 830   methodHandle callee_method;
 831   if (vfst.at_end()) {
 832     // No Java frames were found on stack since we did the JavaCall.
 833     // Hence the stack can only contain an entry_frame.  We need to
 834     // find the target method from the stub frame.
 835     RegisterMap reg_map(thread, false);
 836     frame fr = thread->last_frame();
 837     assert(fr.is_runtime_frame(), "must be a runtimeStub");
 838     fr = fr.sender(&reg_map);
 839     assert(fr.is_entry_frame(), "must be");
 840     // fr is now pointing to the entry frame.
 841     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
 842     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
 843   } else {
 844     Bytecodes::Code bc;
 845     CallInfo callinfo;
 846     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
 847     callee_method = callinfo.selected_method();
 848   }
 849   assert(callee_method()->is_method(), "must be");
 850   return callee_method;
 851 }
 852 
 853 // Resolves a call.
 854 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
 855                                            bool is_virtual,
 856                                            bool is_optimized, TRAPS) {
 857   methodHandle callee_method;
 858   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 859   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
 860     int retry_count = 0;
 861     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
 862            callee_method->method_holder() != SystemDictionary::object_klass()) {
 863       // If has a pending exception then there is no need to re-try to
 864       // resolve this method.
 865       // If the method has been redefined, we need to try again.
 866       // Hack: we have no way to update the vtables of arrays, so don't
 867       // require that java.lang.Object has been updated.
 868 
 869       // It is very unlikely that method is redefined more than 100 times
 870       // in the middle of resolve. If it is looping here more than 100 times
 871       // means then there could be a bug here.
 872       guarantee((retry_count++ < 100),
 873                 "Could not resolve to latest version of redefined method");
 874       // method is redefined in the middle of resolve so re-try.
 875       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
 876     }
 877   }
 878   return callee_method;
 879 }
 880 
 881 // Resolves a call.  The compilers generate code for calls that go here
 882 // and are patched with the real destination of the call.
 883 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
 884                                            bool is_virtual,
 885                                            bool is_optimized, TRAPS) {
 886 
 887   ResourceMark rm(thread);
 888   RegisterMap cbl_map(thread, false);
 889   frame caller_frame = thread->last_frame().sender(&cbl_map);
 890 
 891   CodeBlob* cb = caller_frame.cb();
 892   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
 893   // make sure caller is not getting deoptimized
 894   // and removed before we are done with it.
 895   // CLEANUP - with lazy deopt shouldn't need this lock
 896   nmethodLocker caller_lock((nmethod*)cb);
 897 
 898 
 899   // determine call info & receiver
 900   // note: a) receiver is NULL for static calls
 901   //       b) an exception is thrown if receiver is NULL for non-static calls
 902   CallInfo call_info;
 903   Bytecodes::Code invoke_code = Bytecodes::_illegal;
 904   Handle receiver = find_callee_info(thread, invoke_code,
 905                                      call_info, CHECK_(methodHandle()));
 906   methodHandle callee_method = call_info.selected_method();
 907 
 908   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
 909          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
 910 
 911 #ifndef PRODUCT
 912   // tracing/debugging/statistics
 913   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
 914                 (is_virtual) ? (&_resolve_virtual_ctr) :
 915                                (&_resolve_static_ctr);
 916   Atomic::inc(addr);
 917 
 918   if (TraceCallFixup) {
 919     ResourceMark rm(thread);
 920     tty->print("resolving %s%s (%s) call to",
 921       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
 922       Bytecodes::name(invoke_code));
 923     callee_method->print_short_name(tty);
 924     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
 925   }
 926 #endif
 927 
 928   // Compute entry points. This might require generation of C2I converter
 929   // frames, so we cannot be holding any locks here. Furthermore, the
 930   // computation of the entry points is independent of patching the call.  We
 931   // always return the entry-point, but we only patch the stub if the call has
 932   // not been deoptimized.  Return values: For a virtual call this is an
 933   // (cached_oop, destination address) pair. For a static call/optimized
 934   // virtual this is just a destination address.
 935 
 936   StaticCallInfo static_call_info;
 937   CompiledICInfo virtual_call_info;
 938 
 939 
 940   // Make sure the callee nmethod does not get deoptimized and removed before
 941   // we are done patching the code.
 942   nmethod* nm = callee_method->code();
 943   nmethodLocker nl_callee(nm);
 944 #ifdef ASSERT
 945   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
 946 #endif
 947 
 948   if (is_virtual) {
 949     assert(receiver.not_null(), "sanity check");
 950     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
 951     KlassHandle h_klass(THREAD, receiver->klass());
 952     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
 953                      is_optimized, static_bound, virtual_call_info,
 954                      CHECK_(methodHandle()));
 955   } else {
 956     // static call
 957     CompiledStaticCall::compute_entry(callee_method, static_call_info);
 958   }
 959 
 960   // grab lock, check for deoptimization and potentially patch caller
 961   {
 962     MutexLocker ml_patch(CompiledIC_lock);
 963 
 964     // Now that we are ready to patch if the methodOop was redefined then
 965     // don't update call site and let the caller retry.
 966 
 967     if (!callee_method->is_old()) {
 968 #ifdef ASSERT
 969       // We must not try to patch to jump to an already unloaded method.
 970       if (dest_entry_point != 0) {
 971         assert(CodeCache::find_blob(dest_entry_point) != NULL,
 972                "should not unload nmethod while locked");
 973       }
 974 #endif
 975       if (is_virtual) {
 976         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
 977         if (inline_cache->is_clean()) {
 978           inline_cache->set_to_monomorphic(virtual_call_info);
 979         }
 980       } else {
 981         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
 982         if (ssc->is_clean()) ssc->set(static_call_info);
 983       }
 984     }
 985 
 986   } // unlock CompiledIC_lock
 987 
 988   return callee_method;
 989 }
 990 
 991 
 992 // Inline caches exist only in compiled code
 993 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
 994 #ifdef ASSERT
 995   RegisterMap reg_map(thread, false);
 996   frame stub_frame = thread->last_frame();
 997   assert(stub_frame.is_runtime_frame(), "sanity check");
 998   frame caller_frame = stub_frame.sender(&reg_map);
 999   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1000 #endif /* ASSERT */
1001 
1002   methodHandle callee_method;
1003   JRT_BLOCK
1004     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1005     // Return methodOop through TLS
1006     thread->set_vm_result(callee_method());
1007   JRT_BLOCK_END
1008   // return compiled code entry point after potential safepoints
1009   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1010   return callee_method->verified_code_entry();
1011 JRT_END
1012 
1013 
1014 // Handle call site that has been made non-entrant
1015 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1016   // 6243940 We might end up in here if the callee is deoptimized
1017   // as we race to call it.  We don't want to take a safepoint if
1018   // the caller was interpreted because the caller frame will look
1019   // interpreted to the stack walkers and arguments are now
1020   // "compiled" so it is much better to make this transition
1021   // invisible to the stack walking code. The i2c path will
1022   // place the callee method in the callee_target. It is stashed
1023   // there because if we try and find the callee by normal means a
1024   // safepoint is possible and have trouble gc'ing the compiled args.
1025   RegisterMap reg_map(thread, false);
1026   frame stub_frame = thread->last_frame();
1027   assert(stub_frame.is_runtime_frame(), "sanity check");
1028   frame caller_frame = stub_frame.sender(&reg_map);
1029   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
1030     methodOop callee = thread->callee_target();
1031     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1032     thread->set_vm_result(callee);
1033     thread->set_callee_target(NULL);
1034     return callee->get_c2i_entry();
1035   }
1036 
1037   // Must be compiled to compiled path which is safe to stackwalk
1038   methodHandle callee_method;
1039   JRT_BLOCK
1040     // Force resolving of caller (if we called from compiled frame)
1041     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1042     thread->set_vm_result(callee_method());
1043   JRT_BLOCK_END
1044   // return compiled code entry point after potential safepoints
1045   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1046   return callee_method->verified_code_entry();
1047 JRT_END
1048 
1049 
1050 // resolve a static call and patch code
1051 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1052   methodHandle callee_method;
1053   JRT_BLOCK
1054     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1055     thread->set_vm_result(callee_method());
1056   JRT_BLOCK_END
1057   // return compiled code entry point after potential safepoints
1058   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1059   return callee_method->verified_code_entry();
1060 JRT_END
1061 
1062 
1063 // resolve virtual call and update inline cache to monomorphic
1064 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1065   methodHandle callee_method;
1066   JRT_BLOCK
1067     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1068     thread->set_vm_result(callee_method());
1069   JRT_BLOCK_END
1070   // return compiled code entry point after potential safepoints
1071   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1072   return callee_method->verified_code_entry();
1073 JRT_END
1074 
1075 
1076 // Resolve a virtual call that can be statically bound (e.g., always
1077 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1078 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1079   methodHandle callee_method;
1080   JRT_BLOCK
1081     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1082     thread->set_vm_result(callee_method());
1083   JRT_BLOCK_END
1084   // return compiled code entry point after potential safepoints
1085   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1086   return callee_method->verified_code_entry();
1087 JRT_END
1088 
1089 
1090 
1091 
1092 
1093 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1094   ResourceMark rm(thread);
1095   CallInfo call_info;
1096   Bytecodes::Code bc;
1097 
1098   // receiver is NULL for static calls. An exception is thrown for NULL
1099   // receivers for non-static calls
1100   Handle receiver = find_callee_info(thread, bc, call_info,
1101                                      CHECK_(methodHandle()));
1102   // Compiler1 can produce virtual call sites that can actually be statically bound
1103   // If we fell thru to below we would think that the site was going megamorphic
1104   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1105   // we'd try and do a vtable dispatch however methods that can be statically bound
1106   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1107   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1108   // plain ic_miss) and the site will be converted to an optimized virtual call site
1109   // never to miss again. I don't believe C2 will produce code like this but if it
1110   // did this would still be the correct thing to do for it too, hence no ifdef.
1111   //
1112   if (call_info.resolved_method()->can_be_statically_bound()) {
1113     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1114     if (TraceCallFixup) {
1115       RegisterMap reg_map(thread, false);
1116       frame caller_frame = thread->last_frame().sender(&reg_map);
1117       ResourceMark rm(thread);
1118       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1119       callee_method->print_short_name(tty);
1120       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1121       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1122     }
1123     return callee_method;
1124   }
1125 
1126   methodHandle callee_method = call_info.selected_method();
1127 
1128   bool should_be_mono = false;
1129 
1130 #ifndef PRODUCT
1131   Atomic::inc(&_ic_miss_ctr);
1132 
1133   // Statistics & Tracing
1134   if (TraceCallFixup) {
1135     ResourceMark rm(thread);
1136     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1137     callee_method->print_short_name(tty);
1138     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1139   }
1140 
1141   if (ICMissHistogram) {
1142     MutexLocker m(VMStatistic_lock);
1143     RegisterMap reg_map(thread, false);
1144     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1145     // produce statistics under the lock
1146     trace_ic_miss(f.pc());
1147   }
1148 #endif
1149 
1150   // install an event collector so that when a vtable stub is created the
1151   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1152   // event can't be posted when the stub is created as locks are held
1153   // - instead the event will be deferred until the event collector goes
1154   // out of scope.
1155   JvmtiDynamicCodeEventCollector event_collector;
1156 
1157   // Update inline cache to megamorphic. Skip update if caller has been
1158   // made non-entrant or we are called from interpreted.
1159   { MutexLocker ml_patch (CompiledIC_lock);
1160     RegisterMap reg_map(thread, false);
1161     frame caller_frame = thread->last_frame().sender(&reg_map);
1162     CodeBlob* cb = caller_frame.cb();
1163     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1164       // Not a non-entrant nmethod, so find inline_cache
1165       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1166       bool should_be_mono = false;
1167       if (inline_cache->is_optimized()) {
1168         if (TraceCallFixup) {
1169           ResourceMark rm(thread);
1170           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1171           callee_method->print_short_name(tty);
1172           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1173         }
1174         should_be_mono = true;
1175       } else {
1176         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1177         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1178 
1179           if (receiver()->klass() == ic_oop->holder_klass()) {
1180             // This isn't a real miss. We must have seen that compiled code
1181             // is now available and we want the call site converted to a
1182             // monomorphic compiled call site.
1183             // We can't assert for callee_method->code() != NULL because it
1184             // could have been deoptimized in the meantime
1185             if (TraceCallFixup) {
1186               ResourceMark rm(thread);
1187               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1188               callee_method->print_short_name(tty);
1189               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1190             }
1191             should_be_mono = true;
1192           }
1193         }
1194       }
1195 
1196       if (should_be_mono) {
1197 
1198         // We have a path that was monomorphic but was going interpreted
1199         // and now we have (or had) a compiled entry. We correct the IC
1200         // by using a new icBuffer.
1201         CompiledICInfo info;
1202         KlassHandle receiver_klass(THREAD, receiver()->klass());
1203         inline_cache->compute_monomorphic_entry(callee_method,
1204                                                 receiver_klass,
1205                                                 inline_cache->is_optimized(),
1206                                                 false,
1207                                                 info, CHECK_(methodHandle()));
1208         inline_cache->set_to_monomorphic(info);
1209       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1210         // Change to megamorphic
1211         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1212       } else {
1213         // Either clean or megamorphic
1214       }
1215     }
1216   } // Release CompiledIC_lock
1217 
1218   return callee_method;
1219 }
1220 
1221 //
1222 // Resets a call-site in compiled code so it will get resolved again.
1223 // This routines handles both virtual call sites, optimized virtual call
1224 // sites, and static call sites. Typically used to change a call sites
1225 // destination from compiled to interpreted.
1226 //
1227 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1228   ResourceMark rm(thread);
1229   RegisterMap reg_map(thread, false);
1230   frame stub_frame = thread->last_frame();
1231   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1232   frame caller = stub_frame.sender(&reg_map);
1233 
1234   // Do nothing if the frame isn't a live compiled frame.
1235   // nmethod could be deoptimized by the time we get here
1236   // so no update to the caller is needed.
1237 
1238   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1239 
1240     address pc = caller.pc();
1241     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1242 
1243     // Default call_addr is the location of the "basic" call.
1244     // Determine the address of the call we a reresolving. With
1245     // Inline Caches we will always find a recognizable call.
1246     // With Inline Caches disabled we may or may not find a
1247     // recognizable call. We will always find a call for static
1248     // calls and for optimized virtual calls. For vanilla virtual
1249     // calls it depends on the state of the UseInlineCaches switch.
1250     //
1251     // With Inline Caches disabled we can get here for a virtual call
1252     // for two reasons:
1253     //   1 - calling an abstract method. The vtable for abstract methods
1254     //       will run us thru handle_wrong_method and we will eventually
1255     //       end up in the interpreter to throw the ame.
1256     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1257     //       call and between the time we fetch the entry address and
1258     //       we jump to it the target gets deoptimized. Similar to 1
1259     //       we will wind up in the interprter (thru a c2i with c2).
1260     //
1261     address call_addr = NULL;
1262     {
1263       // Get call instruction under lock because another thread may be
1264       // busy patching it.
1265       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1266       // Location of call instruction
1267       if (NativeCall::is_call_before(pc)) {
1268         NativeCall *ncall = nativeCall_before(pc);
1269         call_addr = ncall->instruction_address();
1270       }
1271     }
1272 
1273     // Check for static or virtual call
1274     bool is_static_call = false;
1275     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1276     // Make sure nmethod doesn't get deoptimized and removed until
1277     // this is done with it.
1278     // CLEANUP - with lazy deopt shouldn't need this lock
1279     nmethodLocker nmlock(caller_nm);
1280 
1281     if (call_addr != NULL) {
1282       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1283       int ret = iter.next(); // Get item
1284       if (ret) {
1285         assert(iter.addr() == call_addr, "must find call");
1286         if (iter.type() == relocInfo::static_call_type) {
1287           is_static_call = true;
1288         } else {
1289           assert(iter.type() == relocInfo::virtual_call_type ||
1290                  iter.type() == relocInfo::opt_virtual_call_type
1291                 , "unexpected relocInfo. type");
1292         }
1293       } else {
1294         assert(!UseInlineCaches, "relocation info. must exist for this address");
1295       }
1296 
1297       // Cleaning the inline cache will force a new resolve. This is more robust
1298       // than directly setting it to the new destination, since resolving of calls
1299       // is always done through the same code path. (experience shows that it
1300       // leads to very hard to track down bugs, if an inline cache gets updated
1301       // to a wrong method). It should not be performance critical, since the
1302       // resolve is only done once.
1303 
1304       MutexLocker ml(CompiledIC_lock);
1305       //
1306       // We do not patch the call site if the nmethod has been made non-entrant
1307       // as it is a waste of time
1308       //
1309       if (caller_nm->is_in_use()) {
1310         if (is_static_call) {
1311           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1312           ssc->set_to_clean();
1313         } else {
1314           // compiled, dispatched call (which used to call an interpreted method)
1315           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1316           inline_cache->set_to_clean();
1317         }
1318       }
1319     }
1320 
1321   }
1322 
1323   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1324 
1325 
1326 #ifndef PRODUCT
1327   Atomic::inc(&_wrong_method_ctr);
1328 
1329   if (TraceCallFixup) {
1330     ResourceMark rm(thread);
1331     tty->print("handle_wrong_method reresolving call to");
1332     callee_method->print_short_name(tty);
1333     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1334   }
1335 #endif
1336 
1337   return callee_method;
1338 }
1339 
1340 // ---------------------------------------------------------------------------
1341 // We are calling the interpreter via a c2i. Normally this would mean that
1342 // we were called by a compiled method. However we could have lost a race
1343 // where we went int -> i2c -> c2i and so the caller could in fact be
1344 // interpreted. If the caller is compiled we attampt to patch the caller
1345 // so he no longer calls into the interpreter.
1346 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1347   methodOop moop(method);
1348 
1349   address entry_point = moop->from_compiled_entry();
1350 
1351   // It's possible that deoptimization can occur at a call site which hasn't
1352   // been resolved yet, in which case this function will be called from
1353   // an nmethod that has been patched for deopt and we can ignore the
1354   // request for a fixup.
1355   // Also it is possible that we lost a race in that from_compiled_entry
1356   // is now back to the i2c in that case we don't need to patch and if
1357   // we did we'd leap into space because the callsite needs to use
1358   // "to interpreter" stub in order to load up the methodOop. Don't
1359   // ask me how I know this...
1360   //
1361 
1362   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1363   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1364     return;
1365   }
1366 
1367   // There is a benign race here. We could be attempting to patch to a compiled
1368   // entry point at the same time the callee is being deoptimized. If that is
1369   // the case then entry_point may in fact point to a c2i and we'd patch the
1370   // call site with the same old data. clear_code will set code() to NULL
1371   // at the end of it. If we happen to see that NULL then we can skip trying
1372   // to patch. If we hit the window where the callee has a c2i in the
1373   // from_compiled_entry and the NULL isn't present yet then we lose the race
1374   // and patch the code with the same old data. Asi es la vida.
1375 
1376   if (moop->code() == NULL) return;
1377 
1378   if (((nmethod*)cb)->is_in_use()) {
1379 
1380     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1381     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1382     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1383       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1384       //
1385       // bug 6281185. We might get here after resolving a call site to a vanilla
1386       // virtual call. Because the resolvee uses the verified entry it may then
1387       // see compiled code and attempt to patch the site by calling us. This would
1388       // then incorrectly convert the call site to optimized and its downhill from
1389       // there. If you're lucky you'll get the assert in the bugid, if not you've
1390       // just made a call site that could be megamorphic into a monomorphic site
1391       // for the rest of its life! Just another racing bug in the life of
1392       // fixup_callers_callsite ...
1393       //
1394       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
1395       iter.next();
1396       assert(iter.has_current(), "must have a reloc at java call site");
1397       relocInfo::relocType typ = iter.reloc()->type();
1398       if ( typ != relocInfo::static_call_type &&
1399            typ != relocInfo::opt_virtual_call_type &&
1400            typ != relocInfo::static_stub_type) {
1401         return;
1402       }
1403       address destination = call->destination();
1404       if (destination != entry_point) {
1405         CodeBlob* callee = CodeCache::find_blob(destination);
1406         // callee == cb seems weird. It means calling interpreter thru stub.
1407         if (callee == cb || callee->is_adapter_blob()) {
1408           // static call or optimized virtual
1409           if (TraceCallFixup) {
1410             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1411             moop->print_short_name(tty);
1412             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1413           }
1414           call->set_destination_mt_safe(entry_point);
1415         } else {
1416           if (TraceCallFixup) {
1417             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1418             moop->print_short_name(tty);
1419             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1420           }
1421           // assert is too strong could also be resolve destinations.
1422           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1423         }
1424       } else {
1425           if (TraceCallFixup) {
1426             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1427             moop->print_short_name(tty);
1428             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1429           }
1430       }
1431     }
1432   }
1433 
1434 IRT_END
1435 
1436 
1437 // same as JVM_Arraycopy, but called directly from compiled code
1438 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1439                                                 oopDesc* dest, jint dest_pos,
1440                                                 jint length,
1441                                                 JavaThread* thread)) {
1442 #ifndef PRODUCT
1443   _slow_array_copy_ctr++;
1444 #endif
1445   // Check if we have null pointers
1446   if (src == NULL || dest == NULL) {
1447     THROW(vmSymbols::java_lang_NullPointerException());
1448   }
1449   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1450   // even though the copy_array API also performs dynamic checks to ensure
1451   // that src and dest are truly arrays (and are conformable).
1452   // The copy_array mechanism is awkward and could be removed, but
1453   // the compilers don't call this function except as a last resort,
1454   // so it probably doesn't matter.
1455   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1456                                         (arrayOopDesc*)dest, dest_pos,
1457                                         length, thread);
1458 }
1459 JRT_END
1460 
1461 char* SharedRuntime::generate_class_cast_message(
1462     JavaThread* thread, const char* objName) {
1463 
1464   // Get target class name from the checkcast instruction
1465   vframeStream vfst(thread, true);
1466   assert(!vfst.at_end(), "Java frame must exist");
1467   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1468     vfst.method()->bcp_from(vfst.bci()));
1469   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1470     cc->index(), thread));
1471   return generate_class_cast_message(objName, targetKlass->external_name());
1472 }
1473 
1474 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1475                                                         oopDesc* required,
1476                                                         oopDesc* actual) {
1477   assert(EnableMethodHandles, "");
1478   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1479   if (singleKlass != NULL) {
1480     const char* objName = "argument or return value";
1481     if (actual != NULL) {
1482       // be flexible about the junk passed in:
1483       klassOop ak = (actual->is_klass()
1484                      ? (klassOop)actual
1485                      : actual->klass());
1486       objName = Klass::cast(ak)->external_name();
1487     }
1488     Klass* targetKlass = Klass::cast(required->is_klass()
1489                                      ? (klassOop)required
1490                                      : java_lang_Class::as_klassOop(required));
1491     return generate_class_cast_message(objName, targetKlass->external_name());
1492   } else {
1493     // %%% need to get the MethodType string, without messing around too much
1494     // Get a signature from the invoke instruction
1495     const char* mhName = "method handle";
1496     const char* targetType = "the required signature";
1497     vframeStream vfst(thread, true);
1498     if (!vfst.at_end()) {
1499       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1500       methodHandle target;
1501       {
1502         EXCEPTION_MARK;
1503         target = call->static_target(THREAD);
1504         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1505       }
1506       if (target.not_null()
1507           && target->is_method_handle_invoke()
1508           && required == target->method_handle_type()) {
1509         targetType = target->signature()->as_C_string();
1510       }
1511     }
1512     klassOop kignore; int fignore;
1513     methodOop actual_method = MethodHandles::decode_method(actual,
1514                                                           kignore, fignore);
1515     if (actual_method != NULL) {
1516       if (actual_method->name() == vmSymbols::invoke_name())
1517         mhName = "$";
1518       else
1519         mhName = actual_method->signature()->as_C_string();
1520       if (mhName[0] == '$')
1521         mhName = actual_method->signature()->as_C_string();
1522     }
1523     return generate_class_cast_message(mhName, targetType,
1524                                        " cannot be called as ");
1525   }
1526 }
1527 
1528 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1529                                                             oopDesc* required) {
1530   if (required == NULL)  return NULL;
1531   if (required->klass() == SystemDictionary::class_klass())
1532     return required;
1533   if (required->is_klass())
1534     return Klass::cast(klassOop(required))->java_mirror();
1535   return NULL;
1536 }
1537 
1538 
1539 char* SharedRuntime::generate_class_cast_message(
1540     const char* objName, const char* targetKlassName, const char* desc) {
1541   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1542 
1543   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1544   if (NULL == message) {
1545     // Shouldn't happen, but don't cause even more problems if it does
1546     message = const_cast<char*>(objName);
1547   } else {
1548     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1549   }
1550   return message;
1551 }
1552 
1553 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1554   (void) JavaThread::current()->reguard_stack();
1555 JRT_END
1556 
1557 
1558 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1559 #ifndef PRODUCT
1560 int SharedRuntime::_monitor_enter_ctr=0;
1561 #endif
1562 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1563   oop obj(_obj);
1564 #ifndef PRODUCT
1565   _monitor_enter_ctr++;             // monitor enter slow
1566 #endif
1567   if (PrintBiasedLockingStatistics) {
1568     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1569   }
1570   Handle h_obj(THREAD, obj);
1571   if (UseBiasedLocking) {
1572     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1573     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1574   } else {
1575     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1576   }
1577   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1578 JRT_END
1579 
1580 #ifndef PRODUCT
1581 int SharedRuntime::_monitor_exit_ctr=0;
1582 #endif
1583 // Handles the uncommon cases of monitor unlocking in compiled code
1584 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1585    oop obj(_obj);
1586 #ifndef PRODUCT
1587   _monitor_exit_ctr++;              // monitor exit slow
1588 #endif
1589   Thread* THREAD = JavaThread::current();
1590   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1591   // testing was unable to ever fire the assert that guarded it so I have removed it.
1592   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1593 #undef MIGHT_HAVE_PENDING
1594 #ifdef MIGHT_HAVE_PENDING
1595   // Save and restore any pending_exception around the exception mark.
1596   // While the slow_exit must not throw an exception, we could come into
1597   // this routine with one set.
1598   oop pending_excep = NULL;
1599   const char* pending_file;
1600   int pending_line;
1601   if (HAS_PENDING_EXCEPTION) {
1602     pending_excep = PENDING_EXCEPTION;
1603     pending_file  = THREAD->exception_file();
1604     pending_line  = THREAD->exception_line();
1605     CLEAR_PENDING_EXCEPTION;
1606   }
1607 #endif /* MIGHT_HAVE_PENDING */
1608 
1609   {
1610     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1611     EXCEPTION_MARK;
1612     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1613   }
1614 
1615 #ifdef MIGHT_HAVE_PENDING
1616   if (pending_excep != NULL) {
1617     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1618   }
1619 #endif /* MIGHT_HAVE_PENDING */
1620 JRT_END
1621 
1622 #ifndef PRODUCT
1623 
1624 void SharedRuntime::print_statistics() {
1625   ttyLocker ttyl;
1626   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1627 
1628   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1629   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1630   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1631 
1632   SharedRuntime::print_ic_miss_histogram();
1633 
1634   if (CountRemovableExceptions) {
1635     if (_nof_removable_exceptions > 0) {
1636       Unimplemented(); // this counter is not yet incremented
1637       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1638     }
1639   }
1640 
1641   // Dump the JRT_ENTRY counters
1642   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1643   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1644   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1645   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1646   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1647   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1648   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1649 
1650   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1651   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1652   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1653   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1654   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1655 
1656   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1657   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1658   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1659   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1660   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1661   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1662   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1663   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1664   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1665   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1666   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1667   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1668   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1669   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1670   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1671   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1672 
1673   if (xtty != NULL)  xtty->tail("statistics");
1674 }
1675 
1676 inline double percent(int x, int y) {
1677   return 100.0 * x / MAX2(y, 1);
1678 }
1679 
1680 class MethodArityHistogram {
1681  public:
1682   enum { MAX_ARITY = 256 };
1683  private:
1684   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1685   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1686   static int _max_arity;                      // max. arity seen
1687   static int _max_size;                       // max. arg size seen
1688 
1689   static void add_method_to_histogram(nmethod* nm) {
1690     methodOop m = nm->method();
1691     ArgumentCount args(m->signature());
1692     int arity   = args.size() + (m->is_static() ? 0 : 1);
1693     int argsize = m->size_of_parameters();
1694     arity   = MIN2(arity, MAX_ARITY-1);
1695     argsize = MIN2(argsize, MAX_ARITY-1);
1696     int count = nm->method()->compiled_invocation_count();
1697     _arity_histogram[arity]  += count;
1698     _size_histogram[argsize] += count;
1699     _max_arity = MAX2(_max_arity, arity);
1700     _max_size  = MAX2(_max_size, argsize);
1701   }
1702 
1703   void print_histogram_helper(int n, int* histo, const char* name) {
1704     const int N = MIN2(5, n);
1705     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1706     double sum = 0;
1707     double weighted_sum = 0;
1708     int i;
1709     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1710     double rest = sum;
1711     double percent = sum / 100;
1712     for (i = 0; i <= N; i++) {
1713       rest -= histo[i];
1714       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1715     }
1716     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1717     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1718   }
1719 
1720   void print_histogram() {
1721     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1722     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1723     tty->print_cr("\nSame for parameter size (in words):");
1724     print_histogram_helper(_max_size, _size_histogram, "size");
1725     tty->cr();
1726   }
1727 
1728  public:
1729   MethodArityHistogram() {
1730     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1731     _max_arity = _max_size = 0;
1732     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1733     CodeCache::nmethods_do(add_method_to_histogram);
1734     print_histogram();
1735   }
1736 };
1737 
1738 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1739 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1740 int MethodArityHistogram::_max_arity;
1741 int MethodArityHistogram::_max_size;
1742 
1743 void SharedRuntime::print_call_statistics(int comp_total) {
1744   tty->print_cr("Calls from compiled code:");
1745   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1746   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1747   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1748   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1749   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1750   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1751   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1752   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1753   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1754   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1755   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1756   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1757   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1758   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1759   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1760   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1761   tty->cr();
1762   tty->print_cr("Note 1: counter updates are not MT-safe.");
1763   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1764   tty->print_cr("        %% in nested categories are relative to their category");
1765   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1766   tty->cr();
1767 
1768   MethodArityHistogram h;
1769 }
1770 #endif
1771 
1772 
1773 // ---------------------------------------------------------------------------
1774 // Implementation of AdapterHandlerLibrary
1775 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
1776 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
1777 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
1778 const int AdapterHandlerLibrary_size = 16*K;
1779 u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
1780 
1781 void AdapterHandlerLibrary::initialize() {
1782   if (_fingerprints != NULL) return;
1783   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
1784   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
1785   // Index 0 reserved for the slow path handler
1786   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1787   _handlers->append(NULL);
1788 
1789   // Create a special handler for abstract methods.  Abstract methods
1790   // are never compiled so an i2c entry is somewhat meaningless, but
1791   // fill it in with something appropriate just in case.  Pass handle
1792   // wrong method for the c2i transitions.
1793   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
1794   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
1795   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
1796   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
1797                                             wrong_method, wrong_method));
1798 }
1799 
1800 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
1801   // Use customized signature handler.  Need to lock around updates to the
1802   // _fingerprints array (it is not safe for concurrent readers and a single
1803   // writer: this can be fixed if it becomes a problem).
1804 
1805   // Get the address of the ic_miss handlers before we grab the
1806   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
1807   // was caused by the initialization of the stubs happening
1808   // while we held the lock and then notifying jvmti while
1809   // holding it. This just forces the initialization to be a little
1810   // earlier.
1811   address ic_miss = SharedRuntime::get_ic_miss_stub();
1812   assert(ic_miss != NULL, "must have handler");
1813 
1814   int result;
1815   BufferBlob *B = NULL;
1816   uint64_t fingerprint;
1817   {
1818     MutexLocker mu(AdapterHandlerLibrary_lock);
1819     // make sure data structure is initialized
1820     initialize();
1821 
1822     if (method->is_abstract()) {
1823       return AbstractMethodHandler;
1824     }
1825 
1826     // Lookup method signature's fingerprint
1827     fingerprint = Fingerprinter(method).fingerprint();
1828     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
1829     // Fingerprints are small fixed-size condensed representations of
1830     // signatures.  If the signature is too large, it won't fit in a
1831     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
1832     // adapter gen'd each time, instead of searching the cache for one.  This -1
1833     // game can be avoided if I compared signatures instead of using
1834     // fingerprints.  However, -1 fingerprints are very rare.
1835     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
1836       // Turns out i2c adapters do not care what the return value is.  Mask it
1837       // out so signatures that only differ in return type will share the same
1838       // adapter.
1839       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
1840       // Search for a prior existing i2c/c2i adapter
1841       int index = _fingerprints->find(fingerprint);
1842       if( index >= 0 ) return index; // Found existing handlers?
1843     } else {
1844       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
1845       // because I need a unique handler index.  It cannot be scanned for
1846       // because all -1's look alike.  Instead, the matching index is passed out
1847       // and immediately used to collect the 2 return values (the c2i and i2c
1848       // adapters).
1849     }
1850 
1851     // Create I2C & C2I handlers
1852     ResourceMark rm;
1853     // Improve alignment slightly
1854     u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1855     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1856     short buffer_locs[20];
1857     buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
1858                                            sizeof(buffer_locs)/sizeof(relocInfo));
1859     MacroAssembler _masm(&buffer);
1860 
1861     // Fill in the signature array, for the calling-convention call.
1862     int total_args_passed = method->size_of_parameters(); // All args on stack
1863 
1864     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1865     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1866     int i=0;
1867     if( !method->is_static() )  // Pass in receiver first
1868       sig_bt[i++] = T_OBJECT;
1869     for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
1870       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
1871       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
1872         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1873     }
1874     assert( i==total_args_passed, "" );
1875 
1876     // Now get the re-packed compiled-Java layout.
1877     int comp_args_on_stack;
1878 
1879     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
1880     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
1881 
1882     AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
1883                                                                         total_args_passed,
1884                                                                         comp_args_on_stack,
1885                                                                         sig_bt,
1886                                                                         regs);
1887 
1888     B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
1889     if (B == NULL) {
1890       // CodeCache is full, disable compilation
1891       // Ought to log this but compile log is only per compile thread
1892       // and we're some non descript Java thread.
1893       UseInterpreter = true;
1894       if (UseCompiler || AlwaysCompileLoopMethods ) {
1895 #ifndef PRODUCT
1896         warning("CodeCache is full. Compiler has been disabled");
1897         if (CompileTheWorld || ExitOnFullCodeCache) {
1898           before_exit(JavaThread::current());
1899           exit_globals(); // will delete tty
1900           vm_direct_exit(CompileTheWorld ? 0 : 1);
1901         }
1902 #endif
1903         UseCompiler               = false;
1904         AlwaysCompileLoopMethods  = false;
1905       }
1906       return 0; // Out of CodeCache space (_handlers[0] == NULL)
1907     }
1908     entry->relocate(B->instructions_begin());
1909 #ifndef PRODUCT
1910     // debugging suppport
1911     if (PrintAdapterHandlers) {
1912       tty->cr();
1913       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
1914                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
1915                     method->signature()->as_C_string(), fingerprint, buffer.code_size() );
1916       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
1917       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
1918     }
1919 #endif
1920 
1921     // add handlers to library
1922     _fingerprints->append(fingerprint);
1923     _handlers->append(entry);
1924     // set handler index
1925     assert(_fingerprints->length() == _handlers->length(), "sanity check");
1926     result = _fingerprints->length() - 1;
1927   }
1928   // Outside of the lock
1929   if (B != NULL) {
1930     char blob_id[256];
1931     jio_snprintf(blob_id,
1932                  sizeof(blob_id),
1933                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
1934                  AdapterHandlerEntry::name,
1935                  fingerprint,
1936                  B->instructions_begin());
1937     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1938     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
1939 
1940     if (JvmtiExport::should_post_dynamic_code_generated()) {
1941       JvmtiExport::post_dynamic_code_generated(blob_id,
1942                                                B->instructions_begin(),
1943                                                B->instructions_end());
1944     }
1945   }
1946   return result;
1947 }
1948 
1949 void AdapterHandlerEntry::relocate(address new_base) {
1950     ptrdiff_t delta = new_base - _i2c_entry;
1951     _i2c_entry += delta;
1952     _c2i_entry += delta;
1953     _c2i_unverified_entry += delta;
1954 }
1955 
1956 // Create a native wrapper for this native method.  The wrapper converts the
1957 // java compiled calling convention to the native convention, handlizes
1958 // arguments, and transitions to native.  On return from the native we transition
1959 // back to java blocking if a safepoint is in progress.
1960 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
1961   ResourceMark rm;
1962   nmethod* nm = NULL;
1963 
1964   if (PrintCompilation) {
1965     ttyLocker ttyl;
1966     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
1967     method->print_short_name(tty);
1968     if (method->is_static()) {
1969       tty->print(" (static)");
1970     }
1971     tty->cr();
1972   }
1973 
1974   assert(method->has_native_function(), "must have something valid to call!");
1975 
1976   {
1977     // perform the work while holding the lock, but perform any printing outside the lock
1978     MutexLocker mu(AdapterHandlerLibrary_lock);
1979     // See if somebody beat us to it
1980     nm = method->code();
1981     if (nm) {
1982       return nm;
1983     }
1984 
1985     // Improve alignment slightly
1986     u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
1987     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
1988     // Need a few relocation entries
1989     double locs_buf[20];
1990     buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
1991     MacroAssembler _masm(&buffer);
1992 
1993     // Fill in the signature array, for the calling-convention call.
1994     int total_args_passed = method->size_of_parameters();
1995 
1996     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
1997     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
1998     int i=0;
1999     if( !method->is_static() )  // Pass in receiver first
2000       sig_bt[i++] = T_OBJECT;
2001     SignatureStream ss(method->signature());
2002     for( ; !ss.at_return_type(); ss.next()) {
2003       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2004       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2005         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2006     }
2007     assert( i==total_args_passed, "" );
2008     BasicType ret_type = ss.type();
2009 
2010     // Now get the compiled-Java layout as input arguments
2011     int comp_args_on_stack;
2012     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2013 
2014     // Generate the compiled-to-native wrapper code
2015     nm = SharedRuntime::generate_native_wrapper(&_masm,
2016                                                 method,
2017                                                 total_args_passed,
2018                                                 comp_args_on_stack,
2019                                                 sig_bt,regs,
2020                                                 ret_type);
2021   }
2022 
2023   // Must unlock before calling set_code
2024   // Install the generated code.
2025   if (nm != NULL) {
2026     method->set_code(method, nm);
2027     nm->post_compiled_method_load_event();
2028   } else {
2029     // CodeCache is full, disable compilation
2030     // Ought to log this but compile log is only per compile thread
2031     // and we're some non descript Java thread.
2032     UseInterpreter = true;
2033     if (UseCompiler || AlwaysCompileLoopMethods ) {
2034 #ifndef PRODUCT
2035       warning("CodeCache is full. Compiler has been disabled");
2036       if (CompileTheWorld || ExitOnFullCodeCache) {
2037         before_exit(JavaThread::current());
2038         exit_globals(); // will delete tty
2039         vm_direct_exit(CompileTheWorld ? 0 : 1);
2040       }
2041 #endif
2042       UseCompiler               = false;
2043       AlwaysCompileLoopMethods  = false;
2044     }
2045   }
2046   return nm;
2047 }
2048 
2049 #ifdef HAVE_DTRACE_H
2050 // Create a dtrace nmethod for this method.  The wrapper converts the
2051 // java compiled calling convention to the native convention, makes a dummy call
2052 // (actually nops for the size of the call instruction, which become a trap if
2053 // probe is enabled). The returns to the caller. Since this all looks like a
2054 // leaf no thread transition is needed.
2055 
2056 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2057   ResourceMark rm;
2058   nmethod* nm = NULL;
2059 
2060   if (PrintCompilation) {
2061     ttyLocker ttyl;
2062     tty->print("---   n%s  ");
2063     method->print_short_name(tty);
2064     if (method->is_static()) {
2065       tty->print(" (static)");
2066     }
2067     tty->cr();
2068   }
2069 
2070   {
2071     // perform the work while holding the lock, but perform any printing
2072     // outside the lock
2073     MutexLocker mu(AdapterHandlerLibrary_lock);
2074     // See if somebody beat us to it
2075     nm = method->code();
2076     if (nm) {
2077       return nm;
2078     }
2079 
2080     // Improve alignment slightly
2081     u_char* buf = (u_char*)
2082         (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
2083     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
2084     // Need a few relocation entries
2085     double locs_buf[20];
2086     buffer.insts()->initialize_shared_locs(
2087         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2088     MacroAssembler _masm(&buffer);
2089 
2090     // Generate the compiled-to-native wrapper code
2091     nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2092   }
2093   return nm;
2094 }
2095 
2096 // the dtrace method needs to convert java lang string to utf8 string.
2097 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2098   typeArrayOop jlsValue  = java_lang_String::value(src);
2099   int          jlsOffset = java_lang_String::offset(src);
2100   int          jlsLen    = java_lang_String::length(src);
2101   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2102                                            jlsValue->char_at_addr(jlsOffset);
2103   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2104 }
2105 #endif // ndef HAVE_DTRACE_H
2106 
2107 // -------------------------------------------------------------------------
2108 // Java-Java calling convention
2109 // (what you use when Java calls Java)
2110 
2111 //------------------------------name_for_receiver----------------------------------
2112 // For a given signature, return the VMReg for parameter 0.
2113 VMReg SharedRuntime::name_for_receiver() {
2114   VMRegPair regs;
2115   BasicType sig_bt = T_OBJECT;
2116   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2117   // Return argument 0 register.  In the LP64 build pointers
2118   // take 2 registers, but the VM wants only the 'main' name.
2119   return regs.first();
2120 }
2121 
2122 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
2123   // This method is returning a data structure allocating as a
2124   // ResourceObject, so do not put any ResourceMarks in here.
2125   char *s = sig->as_C_string();
2126   int len = (int)strlen(s);
2127   *s++; len--;                  // Skip opening paren
2128   char *t = s+len;
2129   while( *(--t) != ')' ) ;      // Find close paren
2130 
2131   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2132   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2133   int cnt = 0;
2134   if (!is_static) {
2135     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2136   }
2137 
2138   while( s < t ) {
2139     switch( *s++ ) {            // Switch on signature character
2140     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2141     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2142     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2143     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2144     case 'I': sig_bt[cnt++] = T_INT;     break;
2145     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2146     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2147     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2148     case 'V': sig_bt[cnt++] = T_VOID;    break;
2149     case 'L':                   // Oop
2150       while( *s++ != ';'  ) ;   // Skip signature
2151       sig_bt[cnt++] = T_OBJECT;
2152       break;
2153     case '[': {                 // Array
2154       do {                      // Skip optional size
2155         while( *s >= '0' && *s <= '9' ) s++;
2156       } while( *s++ == '[' );   // Nested arrays?
2157       // Skip element type
2158       if( s[-1] == 'L' )
2159         while( *s++ != ';'  ) ; // Skip signature
2160       sig_bt[cnt++] = T_ARRAY;
2161       break;
2162     }
2163     default : ShouldNotReachHere();
2164     }
2165   }
2166   assert( cnt < 256, "grow table size" );
2167 
2168   int comp_args_on_stack;
2169   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2170 
2171   // the calling convention doesn't count out_preserve_stack_slots so
2172   // we must add that in to get "true" stack offsets.
2173 
2174   if (comp_args_on_stack) {
2175     for (int i = 0; i < cnt; i++) {
2176       VMReg reg1 = regs[i].first();
2177       if( reg1->is_stack()) {
2178         // Yuck
2179         reg1 = reg1->bias(out_preserve_stack_slots());
2180       }
2181       VMReg reg2 = regs[i].second();
2182       if( reg2->is_stack()) {
2183         // Yuck
2184         reg2 = reg2->bias(out_preserve_stack_slots());
2185       }
2186       regs[i].set_pair(reg2, reg1);
2187     }
2188   }
2189 
2190   // results
2191   *arg_size = cnt;
2192   return regs;
2193 }
2194 
2195 // OSR Migration Code
2196 //
2197 // This code is used convert interpreter frames into compiled frames.  It is
2198 // called from very start of a compiled OSR nmethod.  A temp array is
2199 // allocated to hold the interesting bits of the interpreter frame.  All
2200 // active locks are inflated to allow them to move.  The displaced headers and
2201 // active interpeter locals are copied into the temp buffer.  Then we return
2202 // back to the compiled code.  The compiled code then pops the current
2203 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2204 // copies the interpreter locals and displaced headers where it wants.
2205 // Finally it calls back to free the temp buffer.
2206 //
2207 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2208 
2209 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2210 
2211 #ifdef IA64
2212   ShouldNotReachHere(); // NYI
2213 #endif /* IA64 */
2214 
2215   //
2216   // This code is dependent on the memory layout of the interpreter local
2217   // array and the monitors. On all of our platforms the layout is identical
2218   // so this code is shared. If some platform lays the their arrays out
2219   // differently then this code could move to platform specific code or
2220   // the code here could be modified to copy items one at a time using
2221   // frame accessor methods and be platform independent.
2222 
2223   frame fr = thread->last_frame();
2224   assert( fr.is_interpreted_frame(), "" );
2225   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2226 
2227   // Figure out how many monitors are active.
2228   int active_monitor_count = 0;
2229   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2230        kptr < fr.interpreter_frame_monitor_begin();
2231        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2232     if( kptr->obj() != NULL ) active_monitor_count++;
2233   }
2234 
2235   // QQQ we could place number of active monitors in the array so that compiled code
2236   // could double check it.
2237 
2238   methodOop moop = fr.interpreter_frame_method();
2239   int max_locals = moop->max_locals();
2240   // Allocate temp buffer, 1 word per local & 2 per active monitor
2241   int buf_size_words = max_locals + active_monitor_count*2;
2242   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2243 
2244   // Copy the locals.  Order is preserved so that loading of longs works.
2245   // Since there's no GC I can copy the oops blindly.
2246   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2247   if (TaggedStackInterpreter) {
2248     for (int i = 0; i < max_locals; i++) {
2249       // copy only each local separately to the buffer avoiding the tag
2250       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
2251     }
2252   } else {
2253     Copy::disjoint_words(
2254                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2255                        (HeapWord*)&buf[0],
2256                        max_locals);
2257   }
2258 
2259   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2260   int i = max_locals;
2261   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2262        kptr2 < fr.interpreter_frame_monitor_begin();
2263        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2264     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2265       BasicLock *lock = kptr2->lock();
2266       // Inflate so the displaced header becomes position-independent
2267       if (lock->displaced_header()->is_unlocked())
2268         ObjectSynchronizer::inflate_helper(kptr2->obj());
2269       // Now the displaced header is free to move
2270       buf[i++] = (intptr_t)lock->displaced_header();
2271       buf[i++] = (intptr_t)kptr2->obj();
2272     }
2273   }
2274   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2275 
2276   return buf;
2277 JRT_END
2278 
2279 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2280   FREE_C_HEAP_ARRAY(intptr_t,buf);
2281 JRT_END
2282 
2283 #ifndef PRODUCT
2284 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2285 
2286   if (_handlers == NULL) return false;
2287 
2288   for (int i = 0 ; i < _handlers->length() ; i++) {
2289     AdapterHandlerEntry* a = get_entry(i);
2290     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2291   }
2292   return false;
2293 }
2294 
2295 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
2296 
2297   for (int i = 0 ; i < _handlers->length() ; i++) {
2298     AdapterHandlerEntry* a = get_entry(i);
2299     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2300       tty->print("Adapter for signature: ");
2301       // Fingerprinter::print(_fingerprints->at(i));
2302       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
2303       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2304                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2305 
2306       return;
2307     }
2308   }
2309   assert(false, "Should have found handler");
2310 }
2311 #endif /* PRODUCT */