1 /*
   2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _node_map(C->comp_arena()) {
  90 
  91   _phantom_object = C->top()->_idx,
  92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  93 
  94   // Add ConP(#NULL) and ConN(#NULL) nodes.
  95   PhaseGVN* igvn = C->initial_gvn();
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   // compute max escape state of anything this node could point to
 211   VectorSet ptset(Thread::current()->resource_area());
 212   PointsTo(ptset, n, phase);
 213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 214     uint pt = i.elem;
 215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 216     if (pes > es)
 217       es = pes;
 218   }
 219   // cache the computed escape state
 220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 221   ptnode_adr(idx)->set_escape_state(es);
 222   return es;
 223 }
 224 
 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
 226   VectorSet visited(Thread::current()->resource_area());
 227   GrowableArray<uint>  worklist;
 228 
 229 #ifdef ASSERT
 230   Node *orig_n = n;
 231 #endif
 232 
 233   n = n->uncast();
 234   PointsToNode* npt = ptnode_adr(n->_idx);
 235 
 236   // If we have a JavaObject, return just that object
 237   if (npt->node_type() == PointsToNode::JavaObject) {
 238     ptset.set(n->_idx);
 239     return;
 240   }
 241 #ifdef ASSERT
 242   if (npt->_node == NULL) {
 243     if (orig_n != n)
 244       orig_n->dump();
 245     n->dump();
 246     assert(npt->_node != NULL, "unregistered node");
 247   }
 248 #endif
 249   worklist.push(n->_idx);
 250   while(worklist.length() > 0) {
 251     int ni = worklist.pop();
 252     if (visited.test_set(ni))
 253       continue;
 254 
 255     PointsToNode* pn = ptnode_adr(ni);
 256     // ensure that all inputs of a Phi have been processed
 257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 258 
 259     int edges_processed = 0;
 260     uint e_cnt = pn->edge_count();
 261     for (uint e = 0; e < e_cnt; e++) {
 262       uint etgt = pn->edge_target(e);
 263       PointsToNode::EdgeType et = pn->edge_type(e);
 264       if (et == PointsToNode::PointsToEdge) {
 265         ptset.set(etgt);
 266         edges_processed++;
 267       } else if (et == PointsToNode::DeferredEdge) {
 268         worklist.push(etgt);
 269         edges_processed++;
 270       } else {
 271         assert(false,"neither PointsToEdge or DeferredEdge");
 272       }
 273     }
 274     if (edges_processed == 0) {
 275       // no deferred or pointsto edges found.  Assume the value was set
 276       // outside this method.  Add the phantom object to the pointsto set.
 277       ptset.set(_phantom_object);
 278     }
 279   }
 280 }
 281 
 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 283   // This method is most expensive during ConnectionGraph construction.
 284   // Reuse vectorSet and an additional growable array for deferred edges.
 285   deferred_edges->clear();
 286   visited->Clear();
 287 
 288   visited->set(ni);
 289   PointsToNode *ptn = ptnode_adr(ni);
 290 
 291   // Mark current edges as visited and move deferred edges to separate array.
 292   for (uint i = 0; i < ptn->edge_count(); ) {
 293     uint t = ptn->edge_target(i);
 294 #ifdef ASSERT
 295     assert(!visited->test_set(t), "expecting no duplications");
 296 #else
 297     visited->set(t);
 298 #endif
 299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 301       deferred_edges->append(t);
 302     } else {
 303       i++;
 304     }
 305   }
 306   for (int next = 0; next < deferred_edges->length(); ++next) {
 307     uint t = deferred_edges->at(next);
 308     PointsToNode *ptt = ptnode_adr(t);
 309     uint e_cnt = ptt->edge_count();
 310     for (uint e = 0; e < e_cnt; e++) {
 311       uint etgt = ptt->edge_target(e);
 312       if (visited->test_set(etgt))
 313         continue;
 314 
 315       PointsToNode::EdgeType et = ptt->edge_type(e);
 316       if (et == PointsToNode::PointsToEdge) {
 317         add_pointsto_edge(ni, etgt);
 318         if(etgt == _phantom_object) {
 319           // Special case - field set outside (globally escaping).
 320           ptn->set_escape_state(PointsToNode::GlobalEscape);
 321         }
 322       } else if (et == PointsToNode::DeferredEdge) {
 323         deferred_edges->append(etgt);
 324       } else {
 325         assert(false,"invalid connection graph");
 326       }
 327     }
 328   }
 329 }
 330 
 331 
 332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 334 //  a pointsto edge is added if it is a JavaObject
 335 
 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 337   PointsToNode* an = ptnode_adr(adr_i);
 338   PointsToNode* to = ptnode_adr(to_i);
 339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 340 
 341   for (uint fe = 0; fe < an->edge_count(); fe++) {
 342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 343     int fi = an->edge_target(fe);
 344     PointsToNode* pf = ptnode_adr(fi);
 345     int po = pf->offset();
 346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 347       if (deferred)
 348         add_deferred_edge(fi, to_i);
 349       else
 350         add_pointsto_edge(fi, to_i);
 351     }
 352   }
 353 }
 354 
 355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 356 // whose offset matches "offset".
 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 358   PointsToNode* an = ptnode_adr(adr_i);
 359   for (uint fe = 0; fe < an->edge_count(); fe++) {
 360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 361     int fi = an->edge_target(fe);
 362     PointsToNode* pf = ptnode_adr(fi);
 363     int po = pf->offset();
 364     if (pf->edge_count() == 0) {
 365       // we have not seen any stores to this field, assume it was set outside this method
 366       add_pointsto_edge(fi, _phantom_object);
 367     }
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       add_deferred_edge(from_i, fi);
 370     }
 371   }
 372 }
 373 
 374 // Helper functions
 375 
 376 static Node* get_addp_base(Node *addp) {
 377   assert(addp->is_AddP(), "must be AddP");
 378   //
 379   // AddP cases for Base and Address inputs:
 380   // case #1. Direct object's field reference:
 381   //     Allocate
 382   //       |
 383   //     Proj #5 ( oop result )
 384   //       |
 385   //     CheckCastPP (cast to instance type)
 386   //      | |
 387   //     AddP  ( base == address )
 388   //
 389   // case #2. Indirect object's field reference:
 390   //      Phi
 391   //       |
 392   //     CastPP (cast to instance type)
 393   //      | |
 394   //     AddP  ( base == address )
 395   //
 396   // case #3. Raw object's field reference for Initialize node:
 397   //      Allocate
 398   //        |
 399   //      Proj #5 ( oop result )
 400   //  top   |
 401   //     \  |
 402   //     AddP  ( base == top )
 403   //
 404   // case #4. Array's element reference:
 405   //   {CheckCastPP | CastPP}
 406   //     |  | |
 407   //     |  AddP ( array's element offset )
 408   //     |  |
 409   //     AddP ( array's offset )
 410   //
 411   // case #5. Raw object's field reference for arraycopy stub call:
 412   //          The inline_native_clone() case when the arraycopy stub is called
 413   //          after the allocation before Initialize and CheckCastPP nodes.
 414   //      Allocate
 415   //        |
 416   //      Proj #5 ( oop result )
 417   //       | |
 418   //       AddP  ( base == address )
 419   //
 420   // case #6. Constant Pool, ThreadLocal, CastX2P or
 421   //          Raw object's field reference:
 422   //      {ConP, ThreadLocal, CastX2P, raw Load}
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #7. Klass's field reference.
 428   //      LoadKlass
 429   //       | |
 430   //       AddP  ( base == address )
 431   //
 432   // case #8. narrow Klass's field reference.
 433   //      LoadNKlass
 434   //       |
 435   //      DecodeN
 436   //       | |
 437   //       AddP  ( base == address )
 438   //
 439   Node *base = addp->in(AddPNode::Base)->uncast();
 440   if (base->is_top()) { // The AddP case #3 and #6.
 441     base = addp->in(AddPNode::Address)->uncast();
 442     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 443            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 444            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 445            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 446   }
 447   return base;
 448 }
 449 
 450 static Node* find_second_addp(Node* addp, Node* n) {
 451   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 452 
 453   Node* addp2 = addp->raw_out(0);
 454   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 455       addp2->in(AddPNode::Base) == n &&
 456       addp2->in(AddPNode::Address) == addp) {
 457 
 458     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 459     //
 460     // Find array's offset to push it on worklist first and
 461     // as result process an array's element offset first (pushed second)
 462     // to avoid CastPP for the array's offset.
 463     // Otherwise the inserted CastPP (LocalVar) will point to what
 464     // the AddP (Field) points to. Which would be wrong since
 465     // the algorithm expects the CastPP has the same point as
 466     // as AddP's base CheckCastPP (LocalVar).
 467     //
 468     //    ArrayAllocation
 469     //     |
 470     //    CheckCastPP
 471     //     |
 472     //    memProj (from ArrayAllocation CheckCastPP)
 473     //     |  ||
 474     //     |  ||   Int (element index)
 475     //     |  ||    |   ConI (log(element size))
 476     //     |  ||    |   /
 477     //     |  ||   LShift
 478     //     |  ||  /
 479     //     |  AddP (array's element offset)
 480     //     |  |
 481     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 482     //     | / /
 483     //     AddP (array's offset)
 484     //      |
 485     //     Load/Store (memory operation on array's element)
 486     //
 487     return addp2;
 488   }
 489   return NULL;
 490 }
 491 
 492 //
 493 // Adjust the type and inputs of an AddP which computes the
 494 // address of a field of an instance
 495 //
 496 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 497   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 498   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 499   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 500   if (t == NULL) {
 501     // We are computing a raw address for a store captured by an Initialize
 502     // compute an appropriate address type (cases #3 and #5).
 503     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 504     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 505     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 506     assert(offs != Type::OffsetBot, "offset must be a constant");
 507     t = base_t->add_offset(offs)->is_oopptr();
 508   }
 509   int inst_id =  base_t->instance_id();
 510   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 511                              "old type must be non-instance or match new type");
 512 
 513   // The type 't' could be subclass of 'base_t'.
 514   // As result t->offset() could be large then base_t's size and it will
 515   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 516   // constructor verifies correctness of the offset.
 517   //
 518   // It could happened on subclass's branch (from the type profiling
 519   // inlining) which was not eliminated during parsing since the exactness
 520   // of the allocation type was not propagated to the subclass type check.
 521   //
 522   // Do nothing for such AddP node and don't process its users since
 523   // this code branch will go away.
 524   //
 525   if (!t->is_known_instance() &&
 526       !t->klass()->equals(base_t->klass()) &&
 527       t->klass()->is_subtype_of(base_t->klass())) {
 528      return false; // bail out
 529   }
 530 
 531   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 532   // Do NOT remove the next call: ensure an new alias index is allocated
 533   // for the instance type
 534   int alias_idx = _compile->get_alias_index(tinst);
 535   igvn->set_type(addp, tinst);
 536   // record the allocation in the node map
 537   set_map(addp->_idx, get_map(base->_idx));
 538 
 539   // Set addp's Base and Address to 'base'.
 540   Node *abase = addp->in(AddPNode::Base);
 541   Node *adr   = addp->in(AddPNode::Address);
 542   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 543       adr->in(0)->_idx == (uint)inst_id) {
 544     // Skip AddP cases #3 and #5.
 545   } else {
 546     assert(!abase->is_top(), "sanity"); // AddP case #3
 547     if (abase != base) {
 548       igvn->hash_delete(addp);
 549       addp->set_req(AddPNode::Base, base);
 550       if (abase == adr) {
 551         addp->set_req(AddPNode::Address, base);
 552       } else {
 553         // AddP case #4 (adr is array's element offset AddP node)
 554 #ifdef ASSERT
 555         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 556         assert(adr->is_AddP() && atype != NULL &&
 557                atype->instance_id() == inst_id, "array's element offset should be processed first");
 558 #endif
 559       }
 560       igvn->hash_insert(addp);
 561     }
 562   }
 563   // Put on IGVN worklist since at least addp's type was changed above.
 564   record_for_optimizer(addp);
 565   return true;
 566 }
 567 
 568 //
 569 // Create a new version of orig_phi if necessary. Returns either the newly
 570 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 571 // phi was created.  Cache the last newly created phi in the node map.
 572 //
 573 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 574   Compile *C = _compile;
 575   new_created = false;
 576   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 577   // nothing to do if orig_phi is bottom memory or matches alias_idx
 578   if (phi_alias_idx == alias_idx) {
 579     return orig_phi;
 580   }
 581   // have we already created a Phi for this alias index?
 582   PhiNode *result = get_map_phi(orig_phi->_idx);
 583   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 584     return result;
 585   }
 586   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 587     if (C->do_escape_analysis() == true && !C->failing()) {
 588       // Retry compilation without escape analysis.
 589       // If this is the first failure, the sentinel string will "stick"
 590       // to the Compile object, and the C2Compiler will see it and retry.
 591       C->record_failure(C2Compiler::retry_no_escape_analysis());
 592     }
 593     return NULL;
 594   }
 595   orig_phi_worklist.append_if_missing(orig_phi);
 596   const TypePtr *atype = C->get_adr_type(alias_idx);
 597   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 598   set_map_phi(orig_phi->_idx, result);
 599   igvn->set_type(result, result->bottom_type());
 600   record_for_optimizer(result);
 601   new_created = true;
 602   return result;
 603 }
 604 
 605 //
 606 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 607 // specified alias index.
 608 //
 609 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 610 
 611   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 612   Compile *C = _compile;
 613   bool new_phi_created;
 614   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 615   if (!new_phi_created) {
 616     return result;
 617   }
 618 
 619   GrowableArray<PhiNode *>  phi_list;
 620   GrowableArray<uint>  cur_input;
 621 
 622   PhiNode *phi = orig_phi;
 623   uint idx = 1;
 624   bool finished = false;
 625   while(!finished) {
 626     while (idx < phi->req()) {
 627       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 628       if (mem != NULL && mem->is_Phi()) {
 629         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 630         if (new_phi_created) {
 631           // found an phi for which we created a new split, push current one on worklist and begin
 632           // processing new one
 633           phi_list.push(phi);
 634           cur_input.push(idx);
 635           phi = mem->as_Phi();
 636           result = newphi;
 637           idx = 1;
 638           continue;
 639         } else {
 640           mem = newphi;
 641         }
 642       }
 643       if (C->failing()) {
 644         return NULL;
 645       }
 646       result->set_req(idx++, mem);
 647     }
 648 #ifdef ASSERT
 649     // verify that the new Phi has an input for each input of the original
 650     assert( phi->req() == result->req(), "must have same number of inputs.");
 651     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 652 #endif
 653     // Check if all new phi's inputs have specified alias index.
 654     // Otherwise use old phi.
 655     for (uint i = 1; i < phi->req(); i++) {
 656       Node* in = result->in(i);
 657       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 658     }
 659     // we have finished processing a Phi, see if there are any more to do
 660     finished = (phi_list.length() == 0 );
 661     if (!finished) {
 662       phi = phi_list.pop();
 663       idx = cur_input.pop();
 664       PhiNode *prev_result = get_map_phi(phi->_idx);
 665       prev_result->set_req(idx++, result);
 666       result = prev_result;
 667     }
 668   }
 669   return result;
 670 }
 671 
 672 
 673 //
 674 // The next methods are derived from methods in MemNode.
 675 //
 676 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
 677   Node *mem = mmem;
 678   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 679   // means an array I have not precisely typed yet.  Do not do any
 680   // alias stuff with it any time soon.
 681   if( tinst->base() != Type::AnyPtr &&
 682       !(tinst->klass()->is_java_lang_Object() &&
 683         tinst->offset() == Type::OffsetBot) ) {
 684     mem = mmem->memory_at(alias_idx);
 685     // Update input if it is progress over what we have now
 686   }
 687   return mem;
 688 }
 689 
 690 //
 691 // Search memory chain of "mem" to find a MemNode whose address
 692 // is the specified alias index.
 693 //
 694 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 695   if (orig_mem == NULL)
 696     return orig_mem;
 697   Compile* C = phase->C;
 698   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
 699   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
 700   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 701   Node *prev = NULL;
 702   Node *result = orig_mem;
 703   while (prev != result) {
 704     prev = result;
 705     if (result == start_mem)
 706       break;  // hit one of our sentinels
 707     if (result->is_Mem()) {
 708       const Type *at = phase->type(result->in(MemNode::Address));
 709       if (at != Type::TOP) {
 710         assert (at->isa_ptr() != NULL, "pointer type required.");
 711         int idx = C->get_alias_index(at->is_ptr());
 712         if (idx == alias_idx)
 713           break;
 714       }
 715       result = result->in(MemNode::Memory);
 716     }
 717     if (!is_instance)
 718       continue;  // don't search further for non-instance types
 719     // skip over a call which does not affect this memory slice
 720     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 721       Node *proj_in = result->in(0);
 722       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
 723         break;  // hit one of our sentinels
 724       } else if (proj_in->is_Call()) {
 725         CallNode *call = proj_in->as_Call();
 726         if (!call->may_modify(tinst, phase)) {
 727           result = call->in(TypeFunc::Memory);
 728         }
 729       } else if (proj_in->is_Initialize()) {
 730         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 731         // Stop if this is the initialization for the object instance which
 732         // which contains this memory slice, otherwise skip over it.
 733         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
 734           result = proj_in->in(TypeFunc::Memory);
 735         }
 736       } else if (proj_in->is_MemBar()) {
 737         result = proj_in->in(TypeFunc::Memory);
 738       }
 739     } else if (result->is_MergeMem()) {
 740       MergeMemNode *mmem = result->as_MergeMem();
 741       result = step_through_mergemem(mmem, alias_idx, tinst);
 742       if (result == mmem->base_memory()) {
 743         // Didn't find instance memory, search through general slice recursively.
 744         result = mmem->memory_at(C->get_general_index(alias_idx));
 745         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 746         if (C->failing()) {
 747           return NULL;
 748         }
 749         mmem->set_memory_at(alias_idx, result);
 750       }
 751     } else if (result->is_Phi() &&
 752                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 753       Node *un = result->as_Phi()->unique_input(phase);
 754       if (un != NULL) {
 755         result = un;
 756       } else {
 757         break;
 758       }
 759     } else if (result->Opcode() == Op_SCMemProj) {
 760       assert(result->in(0)->is_LoadStore(), "sanity");
 761       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 762       if (at != Type::TOP) {
 763         assert (at->isa_ptr() != NULL, "pointer type required.");
 764         int idx = C->get_alias_index(at->is_ptr());
 765         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 766         break;
 767       }
 768       result = result->in(0)->in(MemNode::Memory);
 769     }
 770   }
 771   if (result->is_Phi()) {
 772     PhiNode *mphi = result->as_Phi();
 773     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 774     const TypePtr *t = mphi->adr_type();
 775     if (C->get_alias_index(t) != alias_idx) {
 776       // Create a new Phi with the specified alias index type.
 777       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 778     } else if (!is_instance) {
 779       // Push all non-instance Phis on the orig_phis worklist to update inputs
 780       // during Phase 4 if needed.
 781       orig_phis.append_if_missing(mphi);
 782     }
 783   }
 784   // the result is either MemNode, PhiNode, InitializeNode.
 785   return result;
 786 }
 787 
 788 
 789 //
 790 //  Convert the types of unescaped object to instance types where possible,
 791 //  propagate the new type information through the graph, and update memory
 792 //  edges and MergeMem inputs to reflect the new type.
 793 //
 794 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 795 //  The processing is done in 4 phases:
 796 //
 797 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 798 //            types for the CheckCastPP for allocations where possible.
 799 //            Propagate the the new types through users as follows:
 800 //               casts and Phi:  push users on alloc_worklist
 801 //               AddP:  cast Base and Address inputs to the instance type
 802 //                      push any AddP users on alloc_worklist and push any memnode
 803 //                      users onto memnode_worklist.
 804 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 805 //            search the Memory chain for a store with the appropriate type
 806 //            address type.  If a Phi is found, create a new version with
 807 //            the appropriate memory slices from each of the Phi inputs.
 808 //            For stores, process the users as follows:
 809 //               MemNode:  push on memnode_worklist
 810 //               MergeMem: push on mergemem_worklist
 811 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 812 //            moving the first node encountered of each  instance type to the
 813 //            the input corresponding to its alias index.
 814 //            appropriate memory slice.
 815 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 816 //
 817 // In the following example, the CheckCastPP nodes are the cast of allocation
 818 // results and the allocation of node 29 is unescaped and eligible to be an
 819 // instance type.
 820 //
 821 // We start with:
 822 //
 823 //     7 Parm #memory
 824 //    10  ConI  "12"
 825 //    19  CheckCastPP   "Foo"
 826 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 827 //    29  CheckCastPP   "Foo"
 828 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 829 //
 830 //    40  StoreP  25   7  20   ... alias_index=4
 831 //    50  StoreP  35  40  30   ... alias_index=4
 832 //    60  StoreP  45  50  20   ... alias_index=4
 833 //    70  LoadP    _  60  30   ... alias_index=4
 834 //    80  Phi     75  50  60   Memory alias_index=4
 835 //    90  LoadP    _  80  30   ... alias_index=4
 836 //   100  LoadP    _  80  20   ... alias_index=4
 837 //
 838 //
 839 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 840 // and creating a new alias index for node 30.  This gives:
 841 //
 842 //     7 Parm #memory
 843 //    10  ConI  "12"
 844 //    19  CheckCastPP   "Foo"
 845 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 846 //    29  CheckCastPP   "Foo"  iid=24
 847 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 848 //
 849 //    40  StoreP  25   7  20   ... alias_index=4
 850 //    50  StoreP  35  40  30   ... alias_index=6
 851 //    60  StoreP  45  50  20   ... alias_index=4
 852 //    70  LoadP    _  60  30   ... alias_index=6
 853 //    80  Phi     75  50  60   Memory alias_index=4
 854 //    90  LoadP    _  80  30   ... alias_index=6
 855 //   100  LoadP    _  80  20   ... alias_index=4
 856 //
 857 // In phase 2, new memory inputs are computed for the loads and stores,
 858 // And a new version of the phi is created.  In phase 4, the inputs to
 859 // node 80 are updated and then the memory nodes are updated with the
 860 // values computed in phase 2.  This results in:
 861 //
 862 //     7 Parm #memory
 863 //    10  ConI  "12"
 864 //    19  CheckCastPP   "Foo"
 865 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 866 //    29  CheckCastPP   "Foo"  iid=24
 867 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 868 //
 869 //    40  StoreP  25  7   20   ... alias_index=4
 870 //    50  StoreP  35  7   30   ... alias_index=6
 871 //    60  StoreP  45  40  20   ... alias_index=4
 872 //    70  LoadP    _  50  30   ... alias_index=6
 873 //    80  Phi     75  40  60   Memory alias_index=4
 874 //   120  Phi     75  50  50   Memory alias_index=6
 875 //    90  LoadP    _ 120  30   ... alias_index=6
 876 //   100  LoadP    _  80  20   ... alias_index=4
 877 //
 878 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 879   GrowableArray<Node *>  memnode_worklist;
 880   GrowableArray<Node *>  mergemem_worklist;
 881   GrowableArray<PhiNode *>  orig_phis;
 882   PhaseGVN  *igvn = _compile->initial_gvn();
 883   uint new_index_start = (uint) _compile->num_alias_types();
 884   VectorSet visited(Thread::current()->resource_area());
 885   VectorSet ptset(Thread::current()->resource_area());
 886 
 887 
 888   //  Phase 1:  Process possible allocations from alloc_worklist.
 889   //  Create instance types for the CheckCastPP for allocations where possible.
 890   //
 891   // (Note: don't forget to change the order of the second AddP node on
 892   //  the alloc_worklist if the order of the worklist processing is changed,
 893   //  see the comment in find_second_addp().)
 894   //
 895   while (alloc_worklist.length() != 0) {
 896     Node *n = alloc_worklist.pop();
 897     uint ni = n->_idx;
 898     const TypeOopPtr* tinst = NULL;
 899     if (n->is_Call()) {
 900       CallNode *alloc = n->as_Call();
 901       // copy escape information to call node
 902       PointsToNode* ptn = ptnode_adr(alloc->_idx);
 903       PointsToNode::EscapeState es = escape_state(alloc, igvn);
 904       // We have an allocation or call which returns a Java object,
 905       // see if it is unescaped.
 906       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
 907         continue;
 908 
 909       // Find CheckCastPP for the allocate or call return value
 910       n = alloc->result_cast();
 911       if (n == NULL) {            // No uses accept Initialize
 912         if (alloc->is_Allocate()) {
 913           // Set the scalar_replaceable flag for allocation
 914           // so it could be eliminated if it has no uses.
 915           alloc->as_Allocate()->_is_scalar_replaceable = true;
 916         }
 917         continue;
 918       }
 919       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
 920         assert(!alloc->is_Allocate(), "allocation should have unique type");
 921         continue;
 922       }
 923 
 924       // The inline code for Object.clone() casts the allocation result to
 925       // java.lang.Object and then to the actual type of the allocated
 926       // object. Detect this case and use the second cast.
 927       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
 928       // the allocation result is cast to java.lang.Object and then
 929       // to the actual Array type.
 930       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
 931           && (alloc->is_AllocateArray() ||
 932               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
 933         Node *cast2 = NULL;
 934         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 935           Node *use = n->fast_out(i);
 936           if (use->is_CheckCastPP()) {
 937             cast2 = use;
 938             break;
 939           }
 940         }
 941         if (cast2 != NULL) {
 942           n = cast2;
 943         } else {
 944           // Non-scalar replaceable if allocation does not have precise type (reflection allocation),
 945           // the object can't be restored during deoptimization without precise type.
 946           continue;
 947         }
 948       }
 949       if (alloc->is_Allocate()) {
 950         // Set the scalar_replaceable flag for allocation
 951         // so it could be eliminated.
 952         alloc->as_Allocate()->_is_scalar_replaceable = true;
 953       }
 954       set_escape_state(n->_idx, es);
 955       // in order for an object to be scalar-replaceable, it must be:
 956       //   - a direct allocation (not a call returning an object)
 957       //   - non-escaping
 958       //   - eligible to be a unique type
 959       //   - not determined to be ineligible by escape analysis
 960       set_map(alloc->_idx, n);
 961       set_map(n->_idx, alloc);
 962       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
 963       if (t == NULL)
 964         continue;  // not a TypeInstPtr
 965       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
 966       igvn->hash_delete(n);
 967       igvn->set_type(n,  tinst);
 968       n->raise_bottom_type(tinst);
 969       igvn->hash_insert(n);
 970       record_for_optimizer(n);
 971       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
 972           (t->isa_instptr() || t->isa_aryptr())) {
 973 
 974         // First, put on the worklist all Field edges from Connection Graph
 975         // which is more accurate then putting immediate users from Ideal Graph.
 976         for (uint e = 0; e < ptn->edge_count(); e++) {
 977           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
 978           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
 979                  "only AddP nodes are Field edges in CG");
 980           if (use->outcnt() > 0) { // Don't process dead nodes
 981             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
 982             if (addp2 != NULL) {
 983               assert(alloc->is_AllocateArray(),"array allocation was expected");
 984               alloc_worklist.append_if_missing(addp2);
 985             }
 986             alloc_worklist.append_if_missing(use);
 987           }
 988         }
 989 
 990         // An allocation may have an Initialize which has raw stores. Scan
 991         // the users of the raw allocation result and push AddP users
 992         // on alloc_worklist.
 993         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
 994         assert (raw_result != NULL, "must have an allocation result");
 995         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
 996           Node *use = raw_result->fast_out(i);
 997           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
 998             Node* addp2 = find_second_addp(use, raw_result);
 999             if (addp2 != NULL) {
1000               assert(alloc->is_AllocateArray(),"array allocation was expected");
1001               alloc_worklist.append_if_missing(addp2);
1002             }
1003             alloc_worklist.append_if_missing(use);
1004           } else if (use->is_Initialize()) {
1005             memnode_worklist.append_if_missing(use);
1006           }
1007         }
1008       }
1009     } else if (n->is_AddP()) {
1010       ptset.Clear();
1011       PointsTo(ptset, get_addp_base(n), igvn);
1012       assert(ptset.Size() == 1, "AddP address is unique");
1013       uint elem = ptset.getelem(); // Allocation node's index
1014       if (elem == _phantom_object)
1015         continue; // Assume the value was set outside this method.
1016       Node *base = get_map(elem);  // CheckCastPP node
1017       if (!split_AddP(n, base, igvn)) continue; // wrong type
1018       tinst = igvn->type(base)->isa_oopptr();
1019     } else if (n->is_Phi() ||
1020                n->is_CheckCastPP() ||
1021                n->is_EncodeP() ||
1022                n->is_DecodeN() ||
1023                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1024       if (visited.test_set(n->_idx)) {
1025         assert(n->is_Phi(), "loops only through Phi's");
1026         continue;  // already processed
1027       }
1028       ptset.Clear();
1029       PointsTo(ptset, n, igvn);
1030       if (ptset.Size() == 1) {
1031         uint elem = ptset.getelem(); // Allocation node's index
1032         if (elem == _phantom_object)
1033           continue; // Assume the value was set outside this method.
1034         Node *val = get_map(elem);   // CheckCastPP node
1035         TypeNode *tn = n->as_Type();
1036         tinst = igvn->type(val)->isa_oopptr();
1037         assert(tinst != NULL && tinst->is_known_instance() &&
1038                (uint)tinst->instance_id() == elem , "instance type expected.");
1039 
1040         const Type *tn_type = igvn->type(tn);
1041         const TypeOopPtr *tn_t;
1042         if (tn_type->isa_narrowoop()) {
1043           tn_t = tn_type->make_ptr()->isa_oopptr();
1044         } else {
1045           tn_t = tn_type->isa_oopptr();
1046         }
1047 
1048         if (tn_t != NULL &&
1049             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1050           if (tn_type->isa_narrowoop()) {
1051             tn_type = tinst->make_narrowoop();
1052           } else {
1053             tn_type = tinst;
1054           }
1055           igvn->hash_delete(tn);
1056           igvn->set_type(tn, tn_type);
1057           tn->set_type(tn_type);
1058           igvn->hash_insert(tn);
1059           record_for_optimizer(n);
1060         } else {
1061           continue; // wrong type
1062         }
1063       }
1064     } else {
1065       continue;
1066     }
1067     // push users on appropriate worklist
1068     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1069       Node *use = n->fast_out(i);
1070       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1071         memnode_worklist.append_if_missing(use);
1072       } else if (use->is_Initialize()) {
1073         memnode_worklist.append_if_missing(use);
1074       } else if (use->is_MergeMem()) {
1075         mergemem_worklist.append_if_missing(use);
1076       } else if (use->is_SafePoint() && tinst != NULL) {
1077         // Look for MergeMem nodes for calls which reference unique allocation
1078         // (through CheckCastPP nodes) even for debug info.
1079         Node* m = use->in(TypeFunc::Memory);
1080         uint iid = tinst->instance_id();
1081         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1082                m->in(0) != use && !m->in(0)->_idx != iid) {
1083           m = m->in(0)->in(TypeFunc::Memory);
1084         }
1085         if (m->is_MergeMem()) {
1086           mergemem_worklist.append_if_missing(m);
1087         }
1088       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1089         Node* addp2 = find_second_addp(use, n);
1090         if (addp2 != NULL) {
1091           alloc_worklist.append_if_missing(addp2);
1092         }
1093         alloc_worklist.append_if_missing(use);
1094       } else if (use->is_Phi() ||
1095                  use->is_CheckCastPP() ||
1096                  use->is_EncodeP() ||
1097                  use->is_DecodeN() ||
1098                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1099         alloc_worklist.append_if_missing(use);
1100       }
1101     }
1102 
1103   }
1104   // New alias types were created in split_AddP().
1105   uint new_index_end = (uint) _compile->num_alias_types();
1106 
1107   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1108   //            compute new values for Memory inputs  (the Memory inputs are not
1109   //            actually updated until phase 4.)
1110   if (memnode_worklist.length() == 0)
1111     return;  // nothing to do
1112 
1113   while (memnode_worklist.length() != 0) {
1114     Node *n = memnode_worklist.pop();
1115     if (visited.test_set(n->_idx))
1116       continue;
1117     if (n->is_Phi()) {
1118       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
1119       // we don't need to do anything, but the users must be pushed if we haven't processed
1120       // this Phi before
1121     } else if (n->is_Initialize()) {
1122       // we don't need to do anything, but the users of the memory projection must be pushed
1123       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
1124       if (n == NULL)
1125         continue;
1126     } else {
1127       assert(n->is_Mem(), "memory node required.");
1128       Node *addr = n->in(MemNode::Address);
1129       assert(addr->is_AddP(), "AddP required");
1130       const Type *addr_t = igvn->type(addr);
1131       if (addr_t == Type::TOP)
1132         continue;
1133       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1134       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1135       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1136       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1137       if (_compile->failing()) {
1138         return;
1139       }
1140       if (mem != n->in(MemNode::Memory)) {
1141         set_map(n->_idx, mem);
1142         ptnode_adr(n->_idx)->_node = n;
1143       }
1144       if (n->is_Load()) {
1145         continue;  // don't push users
1146       } else if (n->is_LoadStore()) {
1147         // get the memory projection
1148         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1149           Node *use = n->fast_out(i);
1150           if (use->Opcode() == Op_SCMemProj) {
1151             n = use;
1152             break;
1153           }
1154         }
1155         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1156       }
1157     }
1158     // push user on appropriate worklist
1159     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1160       Node *use = n->fast_out(i);
1161       if (use->is_Phi()) {
1162         memnode_worklist.append_if_missing(use);
1163       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1164         memnode_worklist.append_if_missing(use);
1165       } else if (use->is_Initialize()) {
1166         memnode_worklist.append_if_missing(use);
1167       } else if (use->is_MergeMem()) {
1168         mergemem_worklist.append_if_missing(use);
1169       }
1170     }
1171   }
1172 
1173   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1174   //            Walk each memory moving the first node encountered of each
1175   //            instance type to the the input corresponding to its alias index.
1176   while (mergemem_worklist.length() != 0) {
1177     Node *n = mergemem_worklist.pop();
1178     assert(n->is_MergeMem(), "MergeMem node required.");
1179     if (visited.test_set(n->_idx))
1180       continue;
1181     MergeMemNode *nmm = n->as_MergeMem();
1182     // Note: we don't want to use MergeMemStream here because we only want to
1183     //  scan inputs which exist at the start, not ones we add during processing.
1184     uint nslices = nmm->req();
1185     igvn->hash_delete(nmm);
1186     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1187       Node* mem = nmm->in(i);
1188       Node* cur = NULL;
1189       if (mem == NULL || mem->is_top())
1190         continue;
1191       while (mem->is_Mem()) {
1192         const Type *at = igvn->type(mem->in(MemNode::Address));
1193         if (at != Type::TOP) {
1194           assert (at->isa_ptr() != NULL, "pointer type required.");
1195           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1196           if (idx == i) {
1197             if (cur == NULL)
1198               cur = mem;
1199           } else {
1200             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1201               nmm->set_memory_at(idx, mem);
1202             }
1203           }
1204         }
1205         mem = mem->in(MemNode::Memory);
1206       }
1207       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1208       // Find any instance of the current type if we haven't encountered
1209       // a value of the instance along the chain.
1210       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1211         if((uint)_compile->get_general_index(ni) == i) {
1212           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1213           if (nmm->is_empty_memory(m)) {
1214             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1215             if (_compile->failing()) {
1216               return;
1217             }
1218             nmm->set_memory_at(ni, result);
1219           }
1220         }
1221       }
1222     }
1223     // Find the rest of instances values
1224     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1225       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
1226       Node* result = step_through_mergemem(nmm, ni, tinst);
1227       if (result == nmm->base_memory()) {
1228         // Didn't find instance memory, search through general slice recursively.
1229         result = nmm->memory_at(igvn->C->get_general_index(ni));
1230         result = find_inst_mem(result, ni, orig_phis, igvn);
1231         if (_compile->failing()) {
1232           return;
1233         }
1234         nmm->set_memory_at(ni, result);
1235       }
1236     }
1237     igvn->hash_insert(nmm);
1238     record_for_optimizer(nmm);
1239 
1240     // Propagate new memory slices to following MergeMem nodes.
1241     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1242       Node *use = n->fast_out(i);
1243       if (use->is_Call()) {
1244         CallNode* in = use->as_Call();
1245         if (in->proj_out(TypeFunc::Memory) != NULL) {
1246           Node* m = in->proj_out(TypeFunc::Memory);
1247           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1248             Node* mm = m->fast_out(j);
1249             if (mm->is_MergeMem()) {
1250               mergemem_worklist.append_if_missing(mm);
1251             }
1252           }
1253         }
1254         if (use->is_Allocate()) {
1255           use = use->as_Allocate()->initialization();
1256           if (use == NULL) {
1257             continue;
1258           }
1259         }
1260       }
1261       if (use->is_Initialize()) {
1262         InitializeNode* in = use->as_Initialize();
1263         if (in->proj_out(TypeFunc::Memory) != NULL) {
1264           Node* m = in->proj_out(TypeFunc::Memory);
1265           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1266             Node* mm = m->fast_out(j);
1267             if (mm->is_MergeMem()) {
1268               mergemem_worklist.append_if_missing(mm);
1269             }
1270           }
1271         }
1272       }
1273     }
1274   }
1275 
1276   //  Phase 4:  Update the inputs of non-instance memory Phis and
1277   //            the Memory input of memnodes
1278   // First update the inputs of any non-instance Phi's from
1279   // which we split out an instance Phi.  Note we don't have
1280   // to recursively process Phi's encounted on the input memory
1281   // chains as is done in split_memory_phi() since they  will
1282   // also be processed here.
1283   for (int j = 0; j < orig_phis.length(); j++) {
1284     PhiNode *phi = orig_phis.at(j);
1285     int alias_idx = _compile->get_alias_index(phi->adr_type());
1286     igvn->hash_delete(phi);
1287     for (uint i = 1; i < phi->req(); i++) {
1288       Node *mem = phi->in(i);
1289       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1290       if (_compile->failing()) {
1291         return;
1292       }
1293       if (mem != new_mem) {
1294         phi->set_req(i, new_mem);
1295       }
1296     }
1297     igvn->hash_insert(phi);
1298     record_for_optimizer(phi);
1299   }
1300 
1301   // Update the memory inputs of MemNodes with the value we computed
1302   // in Phase 2.
1303   for (uint i = 0; i < nodes_size(); i++) {
1304     Node *nmem = get_map(i);
1305     if (nmem != NULL) {
1306       Node *n = ptnode_adr(i)->_node;
1307       if (n != NULL && n->is_Mem()) {
1308         igvn->hash_delete(n);
1309         n->set_req(MemNode::Memory, nmem);
1310         igvn->hash_insert(n);
1311         record_for_optimizer(n);
1312       }
1313     }
1314   }
1315 }
1316 
1317 bool ConnectionGraph::has_candidates(Compile *C) {
1318   // EA brings benefits only when the code has allocations and/or locks which
1319   // are represented by ideal Macro nodes.
1320   int cnt = C->macro_count();
1321   for( int i=0; i < cnt; i++ ) {
1322     Node *n = C->macro_node(i);
1323     if ( n->is_Allocate() )
1324       return true;
1325     if( n->is_Lock() ) {
1326       Node* obj = n->as_Lock()->obj_node()->uncast();
1327       if( !(obj->is_Parm() || obj->is_Con()) )
1328         return true;
1329     }
1330   }
1331   return false;
1332 }
1333 
1334 bool ConnectionGraph::compute_escape() {
1335   Compile* C = _compile;
1336 
1337   // 1. Populate Connection Graph (CG) with Ideal nodes.
1338 
1339   Unique_Node_List worklist_init;
1340   worklist_init.map(C->unique(), NULL);  // preallocate space
1341 
1342   // Initialize worklist
1343   if (C->root() != NULL) {
1344     worklist_init.push(C->root());
1345   }
1346 
1347   GrowableArray<int> cg_worklist;
1348   PhaseGVN* igvn = C->initial_gvn();
1349   bool has_allocations = false;
1350 
1351   // Push all useful nodes onto CG list and set their type.
1352   for( uint next = 0; next < worklist_init.size(); ++next ) {
1353     Node* n = worklist_init.at(next);
1354     record_for_escape_analysis(n, igvn);
1355     // Only allocations and java static calls results are checked
1356     // for an escape status. See process_call_result() below.
1357     if (n->is_Allocate() || n->is_CallStaticJava() &&
1358         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1359       has_allocations = true;
1360     }
1361     if(n->is_AddP())
1362       cg_worklist.append(n->_idx);
1363     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1364       Node* m = n->fast_out(i);   // Get user
1365       worklist_init.push(m);
1366     }
1367   }
1368 
1369   if (!has_allocations) {
1370     _collecting = false;
1371     return false; // Nothing to do.
1372   }
1373 
1374   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1375   uint delayed_size = _delayed_worklist.size();
1376   for( uint next = 0; next < delayed_size; ++next ) {
1377     Node* n = _delayed_worklist.at(next);
1378     build_connection_graph(n, igvn);
1379   }
1380 
1381   // 3. Pass to create fields edges (Allocate -F-> AddP).
1382   uint cg_length = cg_worklist.length();
1383   for( uint next = 0; next < cg_length; ++next ) {
1384     int ni = cg_worklist.at(next);
1385     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1386   }
1387 
1388   cg_worklist.clear();
1389   cg_worklist.append(_phantom_object);
1390 
1391   // 4. Build Connection Graph which need
1392   //    to walk the connection graph.
1393   for (uint ni = 0; ni < nodes_size(); ni++) {
1394     PointsToNode* ptn = ptnode_adr(ni);
1395     Node *n = ptn->_node;
1396     if (n != NULL) { // Call, AddP, LoadP, StoreP
1397       build_connection_graph(n, igvn);
1398       if (ptn->node_type() != PointsToNode::UnknownType)
1399         cg_worklist.append(n->_idx); // Collect CG nodes
1400     }
1401   }
1402 
1403   VectorSet ptset(Thread::current()->resource_area());
1404   GrowableArray<uint>  deferred_edges;
1405   VectorSet visited(Thread::current()->resource_area());
1406 
1407   // 5. Remove deferred edges from the graph and collect
1408   //    information needed for type splitting.
1409   cg_length = cg_worklist.length();
1410   for( uint next = 0; next < cg_length; ++next ) {
1411     int ni = cg_worklist.at(next);
1412     PointsToNode* ptn = ptnode_adr(ni);
1413     PointsToNode::NodeType nt = ptn->node_type();
1414     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1415       remove_deferred(ni, &deferred_edges, &visited);
1416       Node *n = ptn->_node;
1417       if (n->is_AddP()) {
1418         // Search for objects which are not scalar replaceable.
1419         // Mark their escape state as ArgEscape to propagate the state
1420         // to referenced objects.
1421         // Note: currently there are no difference in compiler optimizations
1422         // for ArgEscape objects and NoEscape objects which are not
1423         // scalar replaceable.
1424 
1425         int offset = ptn->offset();
1426         Node *base = get_addp_base(n);
1427         ptset.Clear();
1428         PointsTo(ptset, base, igvn);
1429         int ptset_size = ptset.Size();
1430 
1431         // Check if a field's initializing value is recorded and add
1432         // a corresponding NULL field's value if it is not recorded.
1433         // Connection Graph does not record a default initialization by NULL
1434         // captured by Initialize node.
1435         //
1436         // Note: it will disable scalar replacement in some cases:
1437         //
1438         //    Point p[] = new Point[1];
1439         //    p[0] = new Point(); // Will be not scalar replaced
1440         //
1441         // but it will save us from incorrect optimizations in next cases:
1442         //
1443         //    Point p[] = new Point[1];
1444         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1445         //
1446         // Without a control flow analysis we can't distinguish above cases.
1447         //
1448         if (offset != Type::OffsetBot && ptset_size == 1) {
1449           uint elem = ptset.getelem(); // Allocation node's index
1450           // It does not matter if it is not Allocation node since
1451           // only non-escaping allocations are scalar replaced.
1452           if (ptnode_adr(elem)->_node->is_Allocate() &&
1453               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1454             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1455             InitializeNode* ini = alloc->initialization();
1456             Node* value = NULL;
1457             if (ini != NULL) {
1458               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1459               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
1460               if (store != NULL && store->is_Store())
1461                 value = store->in(MemNode::ValueIn);
1462             }
1463             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1464               // A field's initializing value was not recorded. Add NULL.
1465               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1466               add_pointsto_edge(ni, null_idx);
1467             }
1468           }
1469         }
1470 
1471         // An object is not scalar replaceable if the field which may point
1472         // to it has unknown offset (unknown element of an array of objects).
1473         //
1474         if (offset == Type::OffsetBot) {
1475           uint e_cnt = ptn->edge_count();
1476           for (uint ei = 0; ei < e_cnt; ei++) {
1477             uint npi = ptn->edge_target(ei);
1478             set_escape_state(npi, PointsToNode::ArgEscape);
1479             ptnode_adr(npi)->_scalar_replaceable = false;
1480           }
1481         }
1482 
1483         // Currently an object is not scalar replaceable if a LoadStore node
1484         // access its field since the field value is unknown after it.
1485         //
1486         bool has_LoadStore = false;
1487         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1488           Node *use = n->fast_out(i);
1489           if (use->is_LoadStore()) {
1490             has_LoadStore = true;
1491             break;
1492           }
1493         }
1494         // An object is not scalar replaceable if the address points
1495         // to unknown field (unknown element for arrays, offset is OffsetBot).
1496         //
1497         // Or the address may point to more then one object. This may produce
1498         // the false positive result (set scalar_replaceable to false)
1499         // since the flow-insensitive escape analysis can't separate
1500         // the case when stores overwrite the field's value from the case
1501         // when stores happened on different control branches.
1502         //
1503         if (ptset_size > 1 || ptset_size != 0 &&
1504             (has_LoadStore || offset == Type::OffsetBot)) {
1505           for( VectorSetI j(&ptset); j.test(); ++j ) {
1506             set_escape_state(j.elem, PointsToNode::ArgEscape);
1507             ptnode_adr(j.elem)->_scalar_replaceable = false;
1508           }
1509         }
1510       }
1511     }
1512   }
1513 
1514   // 6. Propagate escape states.
1515   GrowableArray<int>  worklist;
1516   bool has_non_escaping_obj = false;
1517 
1518   // push all GlobalEscape nodes on the worklist
1519   for( uint next = 0; next < cg_length; ++next ) {
1520     int nk = cg_worklist.at(next);
1521     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1522       worklist.push(nk);
1523   }
1524   // mark all nodes reachable from GlobalEscape nodes
1525   while(worklist.length() > 0) {
1526     PointsToNode* ptn = ptnode_adr(worklist.pop());
1527     uint e_cnt = ptn->edge_count();
1528     for (uint ei = 0; ei < e_cnt; ei++) {
1529       uint npi = ptn->edge_target(ei);
1530       PointsToNode *np = ptnode_adr(npi);
1531       if (np->escape_state() < PointsToNode::GlobalEscape) {
1532         np->set_escape_state(PointsToNode::GlobalEscape);
1533         worklist.push(npi);
1534       }
1535     }
1536   }
1537 
1538   // push all ArgEscape nodes on the worklist
1539   for( uint next = 0; next < cg_length; ++next ) {
1540     int nk = cg_worklist.at(next);
1541     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1542       worklist.push(nk);
1543   }
1544   // mark all nodes reachable from ArgEscape nodes
1545   while(worklist.length() > 0) {
1546     PointsToNode* ptn = ptnode_adr(worklist.pop());
1547     if (ptn->node_type() == PointsToNode::JavaObject)
1548       has_non_escaping_obj = true; // Non GlobalEscape
1549     uint e_cnt = ptn->edge_count();
1550     for (uint ei = 0; ei < e_cnt; ei++) {
1551       uint npi = ptn->edge_target(ei);
1552       PointsToNode *np = ptnode_adr(npi);
1553       if (np->escape_state() < PointsToNode::ArgEscape) {
1554         np->set_escape_state(PointsToNode::ArgEscape);
1555         worklist.push(npi);
1556       }
1557     }
1558   }
1559 
1560   GrowableArray<Node*> alloc_worklist;
1561 
1562   // push all NoEscape nodes on the worklist
1563   for( uint next = 0; next < cg_length; ++next ) {
1564     int nk = cg_worklist.at(next);
1565     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1566       worklist.push(nk);
1567   }
1568   // mark all nodes reachable from NoEscape nodes
1569   while(worklist.length() > 0) {
1570     PointsToNode* ptn = ptnode_adr(worklist.pop());
1571     if (ptn->node_type() == PointsToNode::JavaObject)
1572       has_non_escaping_obj = true; // Non GlobalEscape
1573     Node* n = ptn->_node;
1574     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1575       // Push scalar replaceable allocations on alloc_worklist
1576       // for processing in split_unique_types().
1577       alloc_worklist.append(n);
1578     }
1579     uint e_cnt = ptn->edge_count();
1580     for (uint ei = 0; ei < e_cnt; ei++) {
1581       uint npi = ptn->edge_target(ei);
1582       PointsToNode *np = ptnode_adr(npi);
1583       if (np->escape_state() < PointsToNode::NoEscape) {
1584         np->set_escape_state(PointsToNode::NoEscape);
1585         worklist.push(npi);
1586       }
1587     }
1588   }
1589 
1590   _collecting = false;
1591   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1592 
1593   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1594   if ( has_scalar_replaceable_candidates &&
1595        C->AliasLevel() >= 3 && EliminateAllocations ) {
1596 
1597     // Now use the escape information to create unique types for
1598     // scalar replaceable objects.
1599     split_unique_types(alloc_worklist);
1600 
1601     if (C->failing())  return false;
1602 
1603     // Clean up after split unique types.
1604     ResourceMark rm;
1605     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1606 
1607     C->print_method("After Escape Analysis", 2);
1608 
1609 #ifdef ASSERT
1610   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1611     tty->print("=== No allocations eliminated for ");
1612     C->method()->print_short_name();
1613     if(!EliminateAllocations) {
1614       tty->print(" since EliminateAllocations is off ===");
1615     } else if(!has_scalar_replaceable_candidates) {
1616       tty->print(" since there are no scalar replaceable candidates ===");
1617     } else if(C->AliasLevel() < 3) {
1618       tty->print(" since AliasLevel < 3 ===");
1619     }
1620     tty->cr();
1621 #endif
1622   }
1623   return has_non_escaping_obj;
1624 }
1625 
1626 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1627 
1628     switch (call->Opcode()) {
1629 #ifdef ASSERT
1630     case Op_Allocate:
1631     case Op_AllocateArray:
1632     case Op_Lock:
1633     case Op_Unlock:
1634       assert(false, "should be done already");
1635       break;
1636 #endif
1637     case Op_CallLeafNoFP:
1638     {
1639       // Stub calls, objects do not escape but they are not scale replaceable.
1640       // Adjust escape state for outgoing arguments.
1641       const TypeTuple * d = call->tf()->domain();
1642       VectorSet ptset(Thread::current()->resource_area());
1643       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1644         const Type* at = d->field_at(i);
1645         Node *arg = call->in(i)->uncast();
1646         const Type *aat = phase->type(arg);
1647         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1648           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1649                  aat->isa_ptr() != NULL, "expecting an Ptr");
1650           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1651           if (arg->is_AddP()) {
1652             //
1653             // The inline_native_clone() case when the arraycopy stub is called
1654             // after the allocation before Initialize and CheckCastPP nodes.
1655             //
1656             // Set AddP's base (Allocate) as not scalar replaceable since
1657             // pointer to the base (with offset) is passed as argument.
1658             //
1659             arg = get_addp_base(arg);
1660           }
1661           ptset.Clear();
1662           PointsTo(ptset, arg, phase);
1663           for( VectorSetI j(&ptset); j.test(); ++j ) {
1664             uint pt = j.elem;
1665             set_escape_state(pt, PointsToNode::ArgEscape);
1666           }
1667         }
1668       }
1669       break;
1670     }
1671 
1672     case Op_CallStaticJava:
1673     // For a static call, we know exactly what method is being called.
1674     // Use bytecode estimator to record the call's escape affects
1675     {
1676       ciMethod *meth = call->as_CallJava()->method();
1677       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1678       // fall-through if not a Java method or no analyzer information
1679       if (call_analyzer != NULL) {
1680         const TypeTuple * d = call->tf()->domain();
1681         VectorSet ptset(Thread::current()->resource_area());
1682         bool copy_dependencies = false;
1683         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1684           const Type* at = d->field_at(i);
1685           int k = i - TypeFunc::Parms;
1686 
1687           if (at->isa_oopptr() != NULL) {
1688             Node *arg = call->in(i)->uncast();
1689 
1690             bool global_escapes = false;
1691             bool fields_escapes = false;
1692             if (!call_analyzer->is_arg_stack(k)) {
1693               // The argument global escapes, mark everything it could point to
1694               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1695               global_escapes = true;
1696             } else {
1697               if (!call_analyzer->is_arg_local(k)) {
1698                 // The argument itself doesn't escape, but any fields might
1699                 fields_escapes = true;
1700               }
1701               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1702               copy_dependencies = true;
1703             }
1704 
1705             ptset.Clear();
1706             PointsTo(ptset, arg, phase);
1707             for( VectorSetI j(&ptset); j.test(); ++j ) {
1708               uint pt = j.elem;
1709               if (global_escapes) {
1710                 //The argument global escapes, mark everything it could point to
1711                 set_escape_state(pt, PointsToNode::GlobalEscape);
1712               } else {
1713                 if (fields_escapes) {
1714                   // The argument itself doesn't escape, but any fields might
1715                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1716                 }
1717                 set_escape_state(pt, PointsToNode::ArgEscape);
1718               }
1719             }
1720           }
1721         }
1722         if (copy_dependencies)
1723           call_analyzer->copy_dependencies(_compile->dependencies());
1724         break;
1725       }
1726     }
1727 
1728     default:
1729     // Fall-through here if not a Java method or no analyzer information
1730     // or some other type of call, assume the worst case: all arguments
1731     // globally escape.
1732     {
1733       // adjust escape state for  outgoing arguments
1734       const TypeTuple * d = call->tf()->domain();
1735       VectorSet ptset(Thread::current()->resource_area());
1736       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1737         const Type* at = d->field_at(i);
1738         if (at->isa_oopptr() != NULL) {
1739           Node *arg = call->in(i)->uncast();
1740           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1741           ptset.Clear();
1742           PointsTo(ptset, arg, phase);
1743           for( VectorSetI j(&ptset); j.test(); ++j ) {
1744             uint pt = j.elem;
1745             set_escape_state(pt, PointsToNode::GlobalEscape);
1746           }
1747         }
1748       }
1749     }
1750   }
1751 }
1752 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1753   CallNode   *call = resproj->in(0)->as_Call();
1754   uint    call_idx = call->_idx;
1755   uint resproj_idx = resproj->_idx;
1756 
1757   switch (call->Opcode()) {
1758     case Op_Allocate:
1759     {
1760       Node *k = call->in(AllocateNode::KlassNode);
1761       const TypeKlassPtr *kt;
1762       if (k->Opcode() == Op_LoadKlass) {
1763         kt = k->as_Load()->type()->isa_klassptr();
1764       } else {
1765         // Also works for DecodeN(LoadNKlass).
1766         kt = k->as_Type()->type()->isa_klassptr();
1767       }
1768       assert(kt != NULL, "TypeKlassPtr  required.");
1769       ciKlass* cik = kt->klass();
1770       ciInstanceKlass* ciik = cik->as_instance_klass();
1771 
1772       PointsToNode::EscapeState es;
1773       uint edge_to;
1774       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1775         es = PointsToNode::GlobalEscape;
1776         edge_to = _phantom_object; // Could not be worse
1777       } else {
1778         es = PointsToNode::NoEscape;
1779         edge_to = call_idx;
1780       }
1781       set_escape_state(call_idx, es);
1782       add_pointsto_edge(resproj_idx, edge_to);
1783       _processed.set(resproj_idx);
1784       break;
1785     }
1786 
1787     case Op_AllocateArray:
1788     {
1789       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1790       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1791         // Not scalar replaceable if the length is not constant or too big.
1792         ptnode_adr(call_idx)->_scalar_replaceable = false;
1793       }
1794       set_escape_state(call_idx, PointsToNode::NoEscape);
1795       add_pointsto_edge(resproj_idx, call_idx);
1796       _processed.set(resproj_idx);
1797       break;
1798     }
1799 
1800     case Op_CallStaticJava:
1801     // For a static call, we know exactly what method is being called.
1802     // Use bytecode estimator to record whether the call's return value escapes
1803     {
1804       bool done = true;
1805       const TypeTuple *r = call->tf()->range();
1806       const Type* ret_type = NULL;
1807 
1808       if (r->cnt() > TypeFunc::Parms)
1809         ret_type = r->field_at(TypeFunc::Parms);
1810 
1811       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1812       //        _multianewarray functions return a TypeRawPtr.
1813       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1814         _processed.set(resproj_idx);
1815         break;  // doesn't return a pointer type
1816       }
1817       ciMethod *meth = call->as_CallJava()->method();
1818       const TypeTuple * d = call->tf()->domain();
1819       if (meth == NULL) {
1820         // not a Java method, assume global escape
1821         set_escape_state(call_idx, PointsToNode::GlobalEscape);
1822         add_pointsto_edge(resproj_idx, _phantom_object);
1823       } else {
1824         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1825         bool copy_dependencies = false;
1826 
1827         if (call_analyzer->is_return_allocated()) {
1828           // Returns a newly allocated unescaped object, simply
1829           // update dependency information.
1830           // Mark it as NoEscape so that objects referenced by
1831           // it's fields will be marked as NoEscape at least.
1832           set_escape_state(call_idx, PointsToNode::NoEscape);
1833           add_pointsto_edge(resproj_idx, call_idx);
1834           copy_dependencies = true;
1835         } else if (call_analyzer->is_return_local()) {
1836           // determine whether any arguments are returned
1837           set_escape_state(call_idx, PointsToNode::NoEscape);
1838           bool ret_arg = false;
1839           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1840             const Type* at = d->field_at(i);
1841 
1842             if (at->isa_oopptr() != NULL) {
1843               Node *arg = call->in(i)->uncast();
1844 
1845               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1846                 ret_arg = true;
1847                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1848                 if (arg_esp->node_type() == PointsToNode::UnknownType)
1849                   done = false;
1850                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
1851                   add_pointsto_edge(resproj_idx, arg->_idx);
1852                 else
1853                   add_deferred_edge(resproj_idx, arg->_idx);
1854                 arg_esp->_hidden_alias = true;
1855               }
1856             }
1857           }
1858           if (done && !ret_arg) {
1859             // Returns unknown object.
1860             set_escape_state(call_idx, PointsToNode::GlobalEscape);
1861             add_pointsto_edge(resproj_idx, _phantom_object);
1862           }
1863           copy_dependencies = true;
1864         } else {
1865           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1866           add_pointsto_edge(resproj_idx, _phantom_object);
1867           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1868             const Type* at = d->field_at(i);
1869             if (at->isa_oopptr() != NULL) {
1870               Node *arg = call->in(i)->uncast();
1871               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1872               arg_esp->_hidden_alias = true;
1873             }
1874           }
1875         }
1876         if (copy_dependencies)
1877           call_analyzer->copy_dependencies(_compile->dependencies());
1878       }
1879       if (done)
1880         _processed.set(resproj_idx);
1881       break;
1882     }
1883 
1884     default:
1885     // Some other type of call, assume the worst case that the
1886     // returned value, if any, globally escapes.
1887     {
1888       const TypeTuple *r = call->tf()->range();
1889       if (r->cnt() > TypeFunc::Parms) {
1890         const Type* ret_type = r->field_at(TypeFunc::Parms);
1891 
1892         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1893         //        _multianewarray functions return a TypeRawPtr.
1894         if (ret_type->isa_ptr() != NULL) {
1895           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1896           add_pointsto_edge(resproj_idx, _phantom_object);
1897         }
1898       }
1899       _processed.set(resproj_idx);
1900     }
1901   }
1902 }
1903 
1904 // Populate Connection Graph with Ideal nodes and create simple
1905 // connection graph edges (do not need to check the node_type of inputs
1906 // or to call PointsTo() to walk the connection graph).
1907 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
1908   if (_processed.test(n->_idx))
1909     return; // No need to redefine node's state.
1910 
1911   if (n->is_Call()) {
1912     // Arguments to allocation and locking don't escape.
1913     if (n->is_Allocate()) {
1914       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
1915       record_for_optimizer(n);
1916     } else if (n->is_Lock() || n->is_Unlock()) {
1917       // Put Lock and Unlock nodes on IGVN worklist to process them during
1918       // the first IGVN optimization when escape information is still available.
1919       record_for_optimizer(n);
1920       _processed.set(n->_idx);
1921     } else {
1922       // Have to process call's arguments first.
1923       PointsToNode::NodeType nt = PointsToNode::UnknownType;
1924 
1925       // Check if a call returns an object.
1926       const TypeTuple *r = n->as_Call()->tf()->range();
1927       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
1928           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
1929         // Note:  use isa_ptr() instead of isa_oopptr() here because
1930         //        the _multianewarray functions return a TypeRawPtr.
1931         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
1932           nt = PointsToNode::JavaObject;
1933         }
1934       }
1935       add_node(n, nt, PointsToNode::UnknownEscape, false);
1936     }
1937     return;
1938   }
1939 
1940   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1941   // ThreadLocal has RawPrt type.
1942   switch (n->Opcode()) {
1943     case Op_AddP:
1944     {
1945       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
1946       break;
1947     }
1948     case Op_CastX2P:
1949     { // "Unsafe" memory access.
1950       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1951       break;
1952     }
1953     case Op_CastPP:
1954     case Op_CheckCastPP:
1955     case Op_EncodeP:
1956     case Op_DecodeN:
1957     {
1958       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
1959       int ti = n->in(1)->_idx;
1960       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
1961       if (nt == PointsToNode::UnknownType) {
1962         _delayed_worklist.push(n); // Process it later.
1963         break;
1964       } else if (nt == PointsToNode::JavaObject) {
1965         add_pointsto_edge(n->_idx, ti);
1966       } else {
1967         add_deferred_edge(n->_idx, ti);
1968       }
1969       _processed.set(n->_idx);
1970       break;
1971     }
1972     case Op_ConP:
1973     {
1974       // assume all pointer constants globally escape except for null
1975       PointsToNode::EscapeState es;
1976       if (phase->type(n) == TypePtr::NULL_PTR)
1977         es = PointsToNode::NoEscape;
1978       else
1979         es = PointsToNode::GlobalEscape;
1980 
1981       add_node(n, PointsToNode::JavaObject, es, true);
1982       break;
1983     }
1984     case Op_ConN:
1985     {
1986       // assume all narrow oop constants globally escape except for null
1987       PointsToNode::EscapeState es;
1988       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
1989         es = PointsToNode::NoEscape;
1990       else
1991         es = PointsToNode::GlobalEscape;
1992 
1993       add_node(n, PointsToNode::JavaObject, es, true);
1994       break;
1995     }
1996     case Op_CreateEx:
1997     {
1998       // assume that all exception objects globally escape
1999       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2000       break;
2001     }
2002     case Op_LoadKlass:
2003     case Op_LoadNKlass:
2004     {
2005       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2006       break;
2007     }
2008     case Op_LoadP:
2009     case Op_LoadN:
2010     {
2011       const Type *t = phase->type(n);
2012       if (t->make_ptr() == NULL) {
2013         _processed.set(n->_idx);
2014         return;
2015       }
2016       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2017       break;
2018     }
2019     case Op_Parm:
2020     {
2021       _processed.set(n->_idx); // No need to redefine it state.
2022       uint con = n->as_Proj()->_con;
2023       if (con < TypeFunc::Parms)
2024         return;
2025       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2026       if (t->isa_ptr() == NULL)
2027         return;
2028       // We have to assume all input parameters globally escape
2029       // (Note: passing 'false' since _processed is already set).
2030       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2031       break;
2032     }
2033     case Op_Phi:
2034     {
2035       const Type *t = n->as_Phi()->type();
2036       if (t->make_ptr() == NULL) {
2037         // nothing to do if not an oop or narrow oop
2038         _processed.set(n->_idx);
2039         return;
2040       }
2041       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2042       uint i;
2043       for (i = 1; i < n->req() ; i++) {
2044         Node* in = n->in(i);
2045         if (in == NULL)
2046           continue;  // ignore NULL
2047         in = in->uncast();
2048         if (in->is_top() || in == n)
2049           continue;  // ignore top or inputs which go back this node
2050         int ti = in->_idx;
2051         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2052         if (nt == PointsToNode::UnknownType) {
2053           break;
2054         } else if (nt == PointsToNode::JavaObject) {
2055           add_pointsto_edge(n->_idx, ti);
2056         } else {
2057           add_deferred_edge(n->_idx, ti);
2058         }
2059       }
2060       if (i >= n->req())
2061         _processed.set(n->_idx);
2062       else
2063         _delayed_worklist.push(n);
2064       break;
2065     }
2066     case Op_Proj:
2067     {
2068       // we are only interested in the result projection from a call
2069       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2070         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2071         process_call_result(n->as_Proj(), phase);
2072         if (!_processed.test(n->_idx)) {
2073           // The call's result may need to be processed later if the call
2074           // returns it's argument and the argument is not processed yet.
2075           _delayed_worklist.push(n);
2076         }
2077       } else {
2078         _processed.set(n->_idx);
2079       }
2080       break;
2081     }
2082     case Op_Return:
2083     {
2084       if( n->req() > TypeFunc::Parms &&
2085           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2086         // Treat Return value as LocalVar with GlobalEscape escape state.
2087         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2088         int ti = n->in(TypeFunc::Parms)->_idx;
2089         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2090         if (nt == PointsToNode::UnknownType) {
2091           _delayed_worklist.push(n); // Process it later.
2092           break;
2093         } else if (nt == PointsToNode::JavaObject) {
2094           add_pointsto_edge(n->_idx, ti);
2095         } else {
2096           add_deferred_edge(n->_idx, ti);
2097         }
2098       }
2099       _processed.set(n->_idx);
2100       break;
2101     }
2102     case Op_StoreP:
2103     case Op_StoreN:
2104     {
2105       const Type *adr_type = phase->type(n->in(MemNode::Address));
2106       adr_type = adr_type->make_ptr();
2107       if (adr_type->isa_oopptr()) {
2108         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2109       } else {
2110         Node* adr = n->in(MemNode::Address);
2111         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2112             adr->in(AddPNode::Address)->is_Proj() &&
2113             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2114           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2115           // We are computing a raw address for a store captured
2116           // by an Initialize compute an appropriate address type.
2117           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2118           assert(offs != Type::OffsetBot, "offset must be a constant");
2119         } else {
2120           _processed.set(n->_idx);
2121           return;
2122         }
2123       }
2124       break;
2125     }
2126     case Op_StorePConditional:
2127     case Op_CompareAndSwapP:
2128     case Op_CompareAndSwapN:
2129     {
2130       const Type *adr_type = phase->type(n->in(MemNode::Address));
2131       adr_type = adr_type->make_ptr();
2132       if (adr_type->isa_oopptr()) {
2133         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2134       } else {
2135         _processed.set(n->_idx);
2136         return;
2137       }
2138       break;
2139     }
2140     case Op_ThreadLocal:
2141     {
2142       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2143       break;
2144     }
2145     default:
2146       ;
2147       // nothing to do
2148   }
2149   return;
2150 }
2151 
2152 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2153   uint n_idx = n->_idx;
2154 
2155   // Don't set processed bit for AddP, LoadP, StoreP since
2156   // they may need more then one pass to process.
2157   if (_processed.test(n_idx))
2158     return; // No need to redefine node's state.
2159 
2160   if (n->is_Call()) {
2161     CallNode *call = n->as_Call();
2162     process_call_arguments(call, phase);
2163     _processed.set(n_idx);
2164     return;
2165   }
2166 
2167   switch (n->Opcode()) {
2168     case Op_AddP:
2169     {
2170       Node *base = get_addp_base(n);
2171       // Create a field edge to this node from everything base could point to.
2172       VectorSet ptset(Thread::current()->resource_area());
2173       PointsTo(ptset, base, phase);
2174       for( VectorSetI i(&ptset); i.test(); ++i ) {
2175         uint pt = i.elem;
2176         add_field_edge(pt, n_idx, address_offset(n, phase));
2177       }
2178       break;
2179     }
2180     case Op_CastX2P:
2181     {
2182       assert(false, "Op_CastX2P");
2183       break;
2184     }
2185     case Op_CastPP:
2186     case Op_CheckCastPP:
2187     case Op_EncodeP:
2188     case Op_DecodeN:
2189     {
2190       int ti = n->in(1)->_idx;
2191       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2192         add_pointsto_edge(n_idx, ti);
2193       } else {
2194         add_deferred_edge(n_idx, ti);
2195       }
2196       _processed.set(n_idx);
2197       break;
2198     }
2199     case Op_ConP:
2200     {
2201       assert(false, "Op_ConP");
2202       break;
2203     }
2204     case Op_ConN:
2205     {
2206       assert(false, "Op_ConN");
2207       break;
2208     }
2209     case Op_CreateEx:
2210     {
2211       assert(false, "Op_CreateEx");
2212       break;
2213     }
2214     case Op_LoadKlass:
2215     case Op_LoadNKlass:
2216     {
2217       assert(false, "Op_LoadKlass");
2218       break;
2219     }
2220     case Op_LoadP:
2221     case Op_LoadN:
2222     {
2223       const Type *t = phase->type(n);
2224 #ifdef ASSERT
2225       if (t->make_ptr() == NULL)
2226         assert(false, "Op_LoadP");
2227 #endif
2228 
2229       Node* adr = n->in(MemNode::Address)->uncast();
2230       const Type *adr_type = phase->type(adr);
2231       Node* adr_base;
2232       if (adr->is_AddP()) {
2233         adr_base = get_addp_base(adr);
2234       } else {
2235         adr_base = adr;
2236       }
2237 
2238       // For everything "adr_base" could point to, create a deferred edge from
2239       // this node to each field with the same offset.
2240       VectorSet ptset(Thread::current()->resource_area());
2241       PointsTo(ptset, adr_base, phase);
2242       int offset = address_offset(adr, phase);
2243       for( VectorSetI i(&ptset); i.test(); ++i ) {
2244         uint pt = i.elem;
2245         add_deferred_edge_to_fields(n_idx, pt, offset);
2246       }
2247       break;
2248     }
2249     case Op_Parm:
2250     {
2251       assert(false, "Op_Parm");
2252       break;
2253     }
2254     case Op_Phi:
2255     {
2256 #ifdef ASSERT
2257       const Type *t = n->as_Phi()->type();
2258       if (t->make_ptr() == NULL)
2259         assert(false, "Op_Phi");
2260 #endif
2261       for (uint i = 1; i < n->req() ; i++) {
2262         Node* in = n->in(i);
2263         if (in == NULL)
2264           continue;  // ignore NULL
2265         in = in->uncast();
2266         if (in->is_top() || in == n)
2267           continue;  // ignore top or inputs which go back this node
2268         int ti = in->_idx;
2269         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2270         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2271         if (nt == PointsToNode::JavaObject) {
2272           add_pointsto_edge(n_idx, ti);
2273         } else {
2274           add_deferred_edge(n_idx, ti);
2275         }
2276       }
2277       _processed.set(n_idx);
2278       break;
2279     }
2280     case Op_Proj:
2281     {
2282       // we are only interested in the result projection from a call
2283       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2284         process_call_result(n->as_Proj(), phase);
2285         assert(_processed.test(n_idx), "all call results should be processed");
2286       } else {
2287         assert(false, "Op_Proj");
2288       }
2289       break;
2290     }
2291     case Op_Return:
2292     {
2293 #ifdef ASSERT
2294       if( n->req() <= TypeFunc::Parms ||
2295           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2296         assert(false, "Op_Return");
2297       }
2298 #endif
2299       int ti = n->in(TypeFunc::Parms)->_idx;
2300       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2301         add_pointsto_edge(n_idx, ti);
2302       } else {
2303         add_deferred_edge(n_idx, ti);
2304       }
2305       _processed.set(n_idx);
2306       break;
2307     }
2308     case Op_StoreP:
2309     case Op_StoreN:
2310     case Op_StorePConditional:
2311     case Op_CompareAndSwapP:
2312     case Op_CompareAndSwapN:
2313     {
2314       Node *adr = n->in(MemNode::Address);
2315       const Type *adr_type = phase->type(adr)->make_ptr();
2316 #ifdef ASSERT
2317       if (!adr_type->isa_oopptr())
2318         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2319 #endif
2320 
2321       assert(adr->is_AddP(), "expecting an AddP");
2322       Node *adr_base = get_addp_base(adr);
2323       Node *val = n->in(MemNode::ValueIn)->uncast();
2324       // For everything "adr_base" could point to, create a deferred edge
2325       // to "val" from each field with the same offset.
2326       VectorSet ptset(Thread::current()->resource_area());
2327       PointsTo(ptset, adr_base, phase);
2328       for( VectorSetI i(&ptset); i.test(); ++i ) {
2329         uint pt = i.elem;
2330         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2331       }
2332       break;
2333     }
2334     case Op_ThreadLocal:
2335     {
2336       assert(false, "Op_ThreadLocal");
2337       break;
2338     }
2339     default:
2340       ;
2341       // nothing to do
2342   }
2343 }
2344 
2345 #ifndef PRODUCT
2346 void ConnectionGraph::dump() {
2347   PhaseGVN  *igvn = _compile->initial_gvn();
2348   bool first = true;
2349 
2350   uint size = nodes_size();
2351   for (uint ni = 0; ni < size; ni++) {
2352     PointsToNode *ptn = ptnode_adr(ni);
2353     PointsToNode::NodeType ptn_type = ptn->node_type();
2354 
2355     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2356       continue;
2357     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2358     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2359       if (first) {
2360         tty->cr();
2361         tty->print("======== Connection graph for ");
2362         _compile->method()->print_short_name();
2363         tty->cr();
2364         first = false;
2365       }
2366       tty->print("%6d ", ni);
2367       ptn->dump();
2368       // Print all locals which reference this allocation
2369       for (uint li = ni; li < size; li++) {
2370         PointsToNode *ptn_loc = ptnode_adr(li);
2371         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2372         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2373              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2374           ptnode_adr(li)->dump(false);
2375         }
2376       }
2377       if (Verbose) {
2378         // Print all fields which reference this allocation
2379         for (uint i = 0; i < ptn->edge_count(); i++) {
2380           uint ei = ptn->edge_target(i);
2381           ptnode_adr(ei)->dump(false);
2382         }
2383       }
2384       tty->cr();
2385     }
2386   }
2387 }
2388 #endif