1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_gcm.cpp.incl"
  31 
  32 // To avoid float value underflow
  33 #define MIN_BLOCK_FREQUENCY 1.e-35f
  34 
  35 //----------------------------schedule_node_into_block-------------------------
  36 // Insert node n into block b. Look for projections of n and make sure they
  37 // are in b also.
  38 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  39   // Set basic block of n, Add n to b,
  40   _bbs.map(n->_idx, b);
  41   b->add_inst(n);
  42 
  43   // After Matching, nearly any old Node may have projections trailing it.
  44   // These are usually machine-dependent flags.  In any case, they might
  45   // float to another block below this one.  Move them up.
  46   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  47     Node*  use  = n->fast_out(i);
  48     if (use->is_Proj()) {
  49       Block* buse = _bbs[use->_idx];
  50       if (buse != b) {              // In wrong block?
  51         if (buse != NULL)
  52           buse->find_remove(use);   // Remove from wrong block
  53         _bbs.map(use->_idx, b);     // Re-insert in this block
  54         b->add_inst(use);
  55       }
  56     }
  57   }
  58 }
  59 
  60 //----------------------------replace_block_proj_ctrl-------------------------
  61 // Nodes that have is_block_proj() nodes as their control need to use
  62 // the appropriate Region for their actual block as their control since
  63 // the projection will be in a predecessor block.
  64 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  65   const Node *in0 = n->in(0);
  66   assert(in0 != NULL, "Only control-dependent");
  67   const Node *p = in0->is_block_proj();
  68   if (p != NULL && p != n) {    // Control from a block projection?
  69     assert(!n->pinned() || n->is_SafePointScalarObject(), "only SafePointScalarObject pinned node is expected here");
  70     // Find trailing Region
  71     Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
  72     uint j = 0;
  73     if (pb->_num_succs != 1) {  // More then 1 successor?
  74       // Search for successor
  75       uint max = pb->_nodes.size();
  76       assert( max > 1, "" );
  77       uint start = max - pb->_num_succs;
  78       // Find which output path belongs to projection
  79       for (j = start; j < max; j++) {
  80         if( pb->_nodes[j] == in0 )
  81           break;
  82       }
  83       assert( j < max, "must find" );
  84       // Change control to match head of successor basic block
  85       j -= start;
  86     }
  87     n->set_req(0, pb->_succs[j]->head());
  88   }
  89 }
  90 
  91 
  92 //------------------------------schedule_pinned_nodes--------------------------
  93 // Set the basic block for Nodes pinned into blocks
  94 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
  95   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
  96   GrowableArray <Node *> spstack(C->unique()+8);
  97   spstack.push(_root);
  98   while ( spstack.is_nonempty() ) {
  99     Node *n = spstack.pop();
 100     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
 101       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
 102         assert( n->in(0), "pinned Node must have Control" );
 103         // Before setting block replace block_proj control edge
 104         replace_block_proj_ctrl(n);
 105         Node *input = n->in(0);
 106         while( !input->is_block_start() )
 107           input = input->in(0);
 108         Block *b = _bbs[input->_idx];  // Basic block of controlling input
 109         schedule_node_into_block(n, b);
 110       }
 111       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
 112         if( n->in(i) != NULL )
 113           spstack.push(n->in(i));
 114       }
 115     }
 116   }
 117 }
 118 
 119 #ifdef ASSERT
 120 // Assert that new input b2 is dominated by all previous inputs.
 121 // Check this by by seeing that it is dominated by b1, the deepest
 122 // input observed until b2.
 123 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
 124   if (b1 == NULL)  return;
 125   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 126   Block* tmp = b2;
 127   while (tmp != b1 && tmp != NULL) {
 128     tmp = tmp->_idom;
 129   }
 130   if (tmp != b1) {
 131     // Detected an unschedulable graph.  Print some nice stuff and die.
 132     tty->print_cr("!!! Unschedulable graph !!!");
 133     for (uint j=0; j<n->len(); j++) { // For all inputs
 134       Node* inn = n->in(j); // Get input
 135       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 136       Block* inb = bbs[inn->_idx];
 137       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 138                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 139       inn->dump();
 140     }
 141     tty->print("Failing node: ");
 142     n->dump();
 143     assert(false, "unscheduable graph");
 144   }
 145 }
 146 #endif
 147 
 148 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 149   // Find the last input dominated by all other inputs.
 150   Block* deepb           = NULL;        // Deepest block so far
 151   int    deepb_dom_depth = 0;
 152   for (uint k = 0; k < n->len(); k++) { // For all inputs
 153     Node* inn = n->in(k);               // Get input
 154     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 155     Block* inb = bbs[inn->_idx];
 156     assert(inb != NULL, "must already have scheduled this input");
 157     if (deepb_dom_depth < (int) inb->_dom_depth) {
 158       // The new inb must be dominated by the previous deepb.
 159       // The various inputs must be linearly ordered in the dom
 160       // tree, or else there will not be a unique deepest block.
 161       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 162       deepb = inb;                      // Save deepest block
 163       deepb_dom_depth = deepb->_dom_depth;
 164     }
 165   }
 166   assert(deepb != NULL, "must be at least one input to n");
 167   return deepb;
 168 }
 169 
 170 
 171 //------------------------------schedule_early---------------------------------
 172 // Find the earliest Block any instruction can be placed in.  Some instructions
 173 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 174 // which all their inputs occur.
 175 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 176   // Allocate stack with enough space to avoid frequent realloc
 177   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 178   // roots.push(_root); _root will be processed among C->top() inputs
 179   roots.push(C->top());
 180   visited.set(C->top()->_idx);
 181 
 182   while (roots.size() != 0) {
 183     // Use local variables nstack_top_n & nstack_top_i to cache values
 184     // on stack's top.
 185     Node *nstack_top_n = roots.pop();
 186     uint  nstack_top_i = 0;
 187 //while_nstack_nonempty:
 188     while (true) {
 189       // Get parent node and next input's index from stack's top.
 190       Node *n = nstack_top_n;
 191       uint  i = nstack_top_i;
 192 
 193       if (i == 0) {
 194         // Fixup some control.  Constants without control get attached
 195         // to root and nodes that use is_block_proj() nodes should be attached
 196         // to the region that starts their block.
 197         const Node *in0 = n->in(0);
 198         if (in0 != NULL) {              // Control-dependent?
 199           replace_block_proj_ctrl(n);
 200         } else {               // n->in(0) == NULL
 201           if (n->req() == 1) { // This guy is a constant with NO inputs?
 202             n->set_req(0, _root);
 203           }
 204         }
 205       }
 206 
 207       // First, visit all inputs and force them to get a block.  If an
 208       // input is already in a block we quit following inputs (to avoid
 209       // cycles). Instead we put that Node on a worklist to be handled
 210       // later (since IT'S inputs may not have a block yet).
 211       bool done = true;              // Assume all n's inputs will be processed
 212       while (i < n->len()) {         // For all inputs
 213         Node *in = n->in(i);         // Get input
 214         ++i;
 215         if (in == NULL) continue;    // Ignore NULL, missing inputs
 216         int is_visited = visited.test_set(in->_idx);
 217         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 218           if (is_visited) {
 219             // assert( !visited.test(in->_idx), "did not schedule early" );
 220             return false;
 221           }
 222           nstack.push(n, i);         // Save parent node and next input's index.
 223           nstack_top_n = in;         // Process current input now.
 224           nstack_top_i = 0;
 225           done = false;              // Not all n's inputs processed.
 226           break; // continue while_nstack_nonempty;
 227         } else if (!is_visited) {    // Input not yet visited?
 228           roots.push(in);            // Visit this guy later, using worklist
 229         }
 230       }
 231       if (done) {
 232         // All of n's inputs have been processed, complete post-processing.
 233 
 234         // Some instructions are pinned into a block.  These include Region,
 235         // Phi, Start, Return, and other control-dependent instructions and
 236         // any projections which depend on them.
 237         if (!n->pinned()) {
 238           // Set earliest legal block.
 239           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 240         } else {
 241           assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge");
 242         }
 243 
 244         if (nstack.is_empty()) {
 245           // Finished all nodes on stack.
 246           // Process next node on the worklist 'roots'.
 247           break;
 248         }
 249         // Get saved parent node and next input's index.
 250         nstack_top_n = nstack.node();
 251         nstack_top_i = nstack.index();
 252         nstack.pop();
 253       } //    if (done)
 254     }   // while (true)
 255   }     // while (roots.size() != 0)
 256   return true;
 257 }
 258 
 259 //------------------------------dom_lca----------------------------------------
 260 // Find least common ancestor in dominator tree
 261 // LCA is a current notion of LCA, to be raised above 'this'.
 262 // As a convenient boundary condition, return 'this' if LCA is NULL.
 263 // Find the LCA of those two nodes.
 264 Block* Block::dom_lca(Block* LCA) {
 265   if (LCA == NULL || LCA == this)  return this;
 266 
 267   Block* anc = this;
 268   while (anc->_dom_depth > LCA->_dom_depth)
 269     anc = anc->_idom;           // Walk up till anc is as high as LCA
 270 
 271   while (LCA->_dom_depth > anc->_dom_depth)
 272     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 273 
 274   while (LCA != anc) {          // Walk both up till they are the same
 275     LCA = LCA->_idom;
 276     anc = anc->_idom;
 277   }
 278 
 279   return LCA;
 280 }
 281 
 282 //--------------------------raise_LCA_above_use--------------------------------
 283 // We are placing a definition, and have been given a def->use edge.
 284 // The definition must dominate the use, so move the LCA upward in the
 285 // dominator tree to dominate the use.  If the use is a phi, adjust
 286 // the LCA only with the phi input paths which actually use this def.
 287 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 288   Block* buse = bbs[use->_idx];
 289   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 290   if (!use->is_Phi())  return buse->dom_lca(LCA);
 291   uint pmax = use->req();       // Number of Phi inputs
 292   // Why does not this loop just break after finding the matching input to
 293   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 294   // chains.  Means I cannot distinguish, from the def-use direction, which
 295   // of many use-defs lead from the same use to the same def.  That is, this
 296   // Phi might have several uses of the same def.  Each use appears in a
 297   // different predecessor block.  But when I enter here, I cannot distinguish
 298   // which use-def edge I should find the predecessor block for.  So I find
 299   // them all.  Means I do a little extra work if a Phi uses the same value
 300   // more than once.
 301   for (uint j=1; j<pmax; j++) { // For all inputs
 302     if (use->in(j) == def) {    // Found matching input?
 303       Block* pred = bbs[buse->pred(j)->_idx];
 304       LCA = pred->dom_lca(LCA);
 305     }
 306   }
 307   return LCA;
 308 }
 309 
 310 //----------------------------raise_LCA_above_marks----------------------------
 311 // Return a new LCA that dominates LCA and any of its marked predecessors.
 312 // Search all my parents up to 'early' (exclusive), looking for predecessors
 313 // which are marked with the given index.  Return the LCA (in the dom tree)
 314 // of all marked blocks.  If there are none marked, return the original
 315 // LCA.
 316 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 317                                     Block* early, Block_Array &bbs) {
 318   Block_List worklist;
 319   worklist.push(LCA);
 320   while (worklist.size() > 0) {
 321     Block* mid = worklist.pop();
 322     if (mid == early)  continue;  // stop searching here
 323 
 324     // Test and set the visited bit.
 325     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 326 
 327     // Don't process the current LCA, otherwise the search may terminate early
 328     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 329       // Raise the LCA.
 330       LCA = mid->dom_lca(LCA);
 331       if (LCA == early)  break;   // stop searching everywhere
 332       assert(early->dominates(LCA), "early is high enough");
 333       // Resume searching at that point, skipping intermediate levels.
 334       worklist.push(LCA);
 335       if (LCA == mid)
 336         continue; // Don't mark as visited to avoid early termination.
 337     } else {
 338       // Keep searching through this block's predecessors.
 339       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 340         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 341         worklist.push(mid_parent);
 342       }
 343     }
 344     mid->set_raise_LCA_visited(mark);
 345   }
 346   return LCA;
 347 }
 348 
 349 //--------------------------memory_early_block--------------------------------
 350 // This is a variation of find_deepest_input, the heart of schedule_early.
 351 // Find the "early" block for a load, if we considered only memory and
 352 // address inputs, that is, if other data inputs were ignored.
 353 //
 354 // Because a subset of edges are considered, the resulting block will
 355 // be earlier (at a shallower dom_depth) than the true schedule_early
 356 // point of the node. We compute this earlier block as a more permissive
 357 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 358 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 359   Node* base;
 360   Node* index;
 361   Node* store = load->in(MemNode::Memory);
 362   load->as_Mach()->memory_inputs(base, index);
 363 
 364   assert(base != NodeSentinel && index != NodeSentinel,
 365          "unexpected base/index inputs");
 366 
 367   Node* mem_inputs[4];
 368   int mem_inputs_length = 0;
 369   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 370   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 371   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 372 
 373   // In the comparision below, add one to account for the control input,
 374   // which may be null, but always takes up a spot in the in array.
 375   if (mem_inputs_length + 1 < (int) load->req()) {
 376     // This "load" has more inputs than just the memory, base and index inputs.
 377     // For purposes of checking anti-dependences, we need to start
 378     // from the early block of only the address portion of the instruction,
 379     // and ignore other blocks that may have factored into the wider
 380     // schedule_early calculation.
 381     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 382 
 383     Block* deepb           = NULL;        // Deepest block so far
 384     int    deepb_dom_depth = 0;
 385     for (int i = 0; i < mem_inputs_length; i++) {
 386       Block* inb = bbs[mem_inputs[i]->_idx];
 387       if (deepb_dom_depth < (int) inb->_dom_depth) {
 388         // The new inb must be dominated by the previous deepb.
 389         // The various inputs must be linearly ordered in the dom
 390         // tree, or else there will not be a unique deepest block.
 391         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 392         deepb = inb;                      // Save deepest block
 393         deepb_dom_depth = deepb->_dom_depth;
 394       }
 395     }
 396     early = deepb;
 397   }
 398 
 399   return early;
 400 }
 401 
 402 //--------------------------insert_anti_dependences---------------------------
 403 // A load may need to witness memory that nearby stores can overwrite.
 404 // For each nearby store, either insert an "anti-dependence" edge
 405 // from the load to the store, or else move LCA upward to force the
 406 // load to (eventually) be scheduled in a block above the store.
 407 //
 408 // Do not add edges to stores on distinct control-flow paths;
 409 // only add edges to stores which might interfere.
 410 //
 411 // Return the (updated) LCA.  There will not be any possibly interfering
 412 // store between the load's "early block" and the updated LCA.
 413 // Any stores in the updated LCA will have new precedence edges
 414 // back to the load.  The caller is expected to schedule the load
 415 // in the LCA, in which case the precedence edges will make LCM
 416 // preserve anti-dependences.  The caller may also hoist the load
 417 // above the LCA, if it is not the early block.
 418 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 419   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 420   assert(LCA != NULL, "");
 421   DEBUG_ONLY(Block* LCA_orig = LCA);
 422 
 423   // Compute the alias index.  Loads and stores with different alias indices
 424   // do not need anti-dependence edges.
 425   uint load_alias_idx = C->get_alias_index(load->adr_type());
 426 #ifdef ASSERT
 427   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 428       (PrintOpto || VerifyAliases ||
 429        PrintMiscellaneous && (WizardMode || Verbose))) {
 430     // Load nodes should not consume all of memory.
 431     // Reporting a bottom type indicates a bug in adlc.
 432     // If some particular type of node validly consumes all of memory,
 433     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 434     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 435     load->dump(2);
 436     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 437   }
 438 #endif
 439   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 440          "String compare is only known 'load' that does not conflict with any stores");
 441   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 442          "String equals is a 'load' that does not conflict with any stores");
 443   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 444          "String indexOf is a 'load' that does not conflict with any stores");
 445   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 446          "Arrays equals is a 'load' that do not conflict with any stores");
 447 
 448   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 449     // It is impossible to spoil this load by putting stores before it,
 450     // because we know that the stores will never update the value
 451     // which 'load' must witness.
 452     return LCA;
 453   }
 454 
 455   node_idx_t load_index = load->_idx;
 456 
 457   // Note the earliest legal placement of 'load', as determined by
 458   // by the unique point in the dom tree where all memory effects
 459   // and other inputs are first available.  (Computed by schedule_early.)
 460   // For normal loads, 'early' is the shallowest place (dom graph wise)
 461   // to look for anti-deps between this load and any store.
 462   Block* early = _bbs[load_index];
 463 
 464   // If we are subsuming loads, compute an "early" block that only considers
 465   // memory or address inputs. This block may be different than the
 466   // schedule_early block in that it could be at an even shallower depth in the
 467   // dominator tree, and allow for a broader discovery of anti-dependences.
 468   if (C->subsume_loads()) {
 469     early = memory_early_block(load, early, _bbs);
 470   }
 471 
 472   ResourceArea *area = Thread::current()->resource_area();
 473   Node_List worklist_mem(area);     // prior memory state to store
 474   Node_List worklist_store(area);   // possible-def to explore
 475   Node_List worklist_visited(area); // visited mergemem nodes
 476   Node_List non_early_stores(area); // all relevant stores outside of early
 477   bool must_raise_LCA = false;
 478 
 479 #ifdef TRACK_PHI_INPUTS
 480   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 481   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 482   // original memory state.  This indicates a PhiNode for which should not
 483   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 484   // may be overly conservative.
 485   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 486   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 487 #endif
 488 
 489   // 'load' uses some memory state; look for users of the same state.
 490   // Recurse through MergeMem nodes to the stores that use them.
 491 
 492   // Each of these stores is a possible definition of memory
 493   // that 'load' needs to use.  We need to force 'load'
 494   // to occur before each such store.  When the store is in
 495   // the same block as 'load', we insert an anti-dependence
 496   // edge load->store.
 497 
 498   // The relevant stores "nearby" the load consist of a tree rooted
 499   // at initial_mem, with internal nodes of type MergeMem.
 500   // Therefore, the branches visited by the worklist are of this form:
 501   //    initial_mem -> (MergeMem ->)* store
 502   // The anti-dependence constraints apply only to the fringe of this tree.
 503 
 504   Node* initial_mem = load->in(MemNode::Memory);
 505   worklist_store.push(initial_mem);
 506   worklist_visited.push(initial_mem);
 507   worklist_mem.push(NULL);
 508   while (worklist_store.size() > 0) {
 509     // Examine a nearby store to see if it might interfere with our load.
 510     Node* mem   = worklist_mem.pop();
 511     Node* store = worklist_store.pop();
 512     uint op = store->Opcode();
 513 
 514     // MergeMems do not directly have anti-deps.
 515     // Treat them as internal nodes in a forward tree of memory states,
 516     // the leaves of which are each a 'possible-def'.
 517     if (store == initial_mem    // root (exclusive) of tree we are searching
 518         || op == Op_MergeMem    // internal node of tree we are searching
 519         ) {
 520       mem = store;   // It's not a possibly interfering store.
 521       if (store == initial_mem)
 522         initial_mem = NULL;  // only process initial memory once
 523 
 524       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 525         store = mem->fast_out(i);
 526         if (store->is_MergeMem()) {
 527           // Be sure we don't get into combinatorial problems.
 528           // (Allow phis to be repeated; they can merge two relevant states.)
 529           uint j = worklist_visited.size();
 530           for (; j > 0; j--) {
 531             if (worklist_visited.at(j-1) == store)  break;
 532           }
 533           if (j > 0)  continue; // already on work list; do not repeat
 534           worklist_visited.push(store);
 535         }
 536         worklist_mem.push(mem);
 537         worklist_store.push(store);
 538       }
 539       continue;
 540     }
 541 
 542     if (op == Op_MachProj || op == Op_Catch)   continue;
 543     if (store->needs_anti_dependence_check())  continue;  // not really a store
 544 
 545     // Compute the alias index.  Loads and stores with different alias
 546     // indices do not need anti-dependence edges.  Wide MemBar's are
 547     // anti-dependent on everything (except immutable memories).
 548     const TypePtr* adr_type = store->adr_type();
 549     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 550 
 551     // Most slow-path runtime calls do NOT modify Java memory, but
 552     // they can block and so write Raw memory.
 553     if (store->is_Mach()) {
 554       MachNode* mstore = store->as_Mach();
 555       if (load_alias_idx != Compile::AliasIdxRaw) {
 556         // Check for call into the runtime using the Java calling
 557         // convention (and from there into a wrapper); it has no
 558         // _method.  Can't do this optimization for Native calls because
 559         // they CAN write to Java memory.
 560         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 561           assert(mstore->is_MachSafePoint(), "");
 562           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 563           assert(ms->is_MachCallJava(), "");
 564           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 565           if (mcj->_method == NULL) {
 566             // These runtime calls do not write to Java visible memory
 567             // (other than Raw) and so do not require anti-dependence edges.
 568             continue;
 569           }
 570         }
 571         // Same for SafePoints: they read/write Raw but only read otherwise.
 572         // This is basically a workaround for SafePoints only defining control
 573         // instead of control + memory.
 574         if (mstore->ideal_Opcode() == Op_SafePoint)
 575           continue;
 576       } else {
 577         // Some raw memory, such as the load of "top" at an allocation,
 578         // can be control dependent on the previous safepoint. See
 579         // comments in GraphKit::allocate_heap() about control input.
 580         // Inserting an anti-dep between such a safepoint and a use
 581         // creates a cycle, and will cause a subsequent failure in
 582         // local scheduling.  (BugId 4919904)
 583         // (%%% How can a control input be a safepoint and not a projection??)
 584         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 585           continue;
 586       }
 587     }
 588 
 589     // Identify a block that the current load must be above,
 590     // or else observe that 'store' is all the way up in the
 591     // earliest legal block for 'load'.  In the latter case,
 592     // immediately insert an anti-dependence edge.
 593     Block* store_block = _bbs[store->_idx];
 594     assert(store_block != NULL, "unused killing projections skipped above");
 595 
 596     if (store->is_Phi()) {
 597       // 'load' uses memory which is one (or more) of the Phi's inputs.
 598       // It must be scheduled not before the Phi, but rather before
 599       // each of the relevant Phi inputs.
 600       //
 601       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 602       // we mark each corresponding predecessor block and do a combined
 603       // hoisting operation later (raise_LCA_above_marks).
 604       //
 605       // Do not assert(store_block != early, "Phi merging memory after access")
 606       // PhiNode may be at start of block 'early' with backedge to 'early'
 607       DEBUG_ONLY(bool found_match = false);
 608       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 609         if (store->in(j) == mem) {   // Found matching input?
 610           DEBUG_ONLY(found_match = true);
 611           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 612           if (pred_block != early) {
 613             // If any predecessor of the Phi matches the load's "early block",
 614             // we do not need a precedence edge between the Phi and 'load'
 615             // since the load will be forced into a block preceding the Phi.
 616             pred_block->set_raise_LCA_mark(load_index);
 617             assert(!LCA_orig->dominates(pred_block) ||
 618                    early->dominates(pred_block), "early is high enough");
 619             must_raise_LCA = true;
 620           }
 621         }
 622       }
 623       assert(found_match, "no worklist bug");
 624 #ifdef TRACK_PHI_INPUTS
 625 #ifdef ASSERT
 626       // This assert asks about correct handling of PhiNodes, which may not
 627       // have all input edges directly from 'mem'. See BugId 4621264
 628       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 629       // Increment by exactly one even if there are multiple copies of 'mem'
 630       // coming into the phi, because we will run this block several times
 631       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 632       phi_inputs.at_put(store->_idx, num_mem_inputs);
 633       assert(PhiNode::Input + num_mem_inputs < store->req(),
 634              "Expect at least one phi input will not be from original memory state");
 635 #endif //ASSERT
 636 #endif //TRACK_PHI_INPUTS
 637     } else if (store_block != early) {
 638       // 'store' is between the current LCA and earliest possible block.
 639       // Label its block, and decide later on how to raise the LCA
 640       // to include the effect on LCA of this store.
 641       // If this store's block gets chosen as the raised LCA, we
 642       // will find him on the non_early_stores list and stick him
 643       // with a precedence edge.
 644       // (But, don't bother if LCA is already raised all the way.)
 645       if (LCA != early) {
 646         store_block->set_raise_LCA_mark(load_index);
 647         must_raise_LCA = true;
 648         non_early_stores.push(store);
 649       }
 650     } else {
 651       // Found a possibly-interfering store in the load's 'early' block.
 652       // This means 'load' cannot sink at all in the dominator tree.
 653       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 654       assert(store != load->in(0), "dependence cycle found");
 655       if (verify) {
 656         assert(store->find_edge(load) != -1, "missing precedence edge");
 657       } else {
 658         store->add_prec(load);
 659       }
 660       LCA = early;
 661       // This turns off the process of gathering non_early_stores.
 662     }
 663   }
 664   // (Worklist is now empty; all nearby stores have been visited.)
 665 
 666   // Finished if 'load' must be scheduled in its 'early' block.
 667   // If we found any stores there, they have already been given
 668   // precedence edges.
 669   if (LCA == early)  return LCA;
 670 
 671   // We get here only if there are no possibly-interfering stores
 672   // in the load's 'early' block.  Move LCA up above all predecessors
 673   // which contain stores we have noted.
 674   //
 675   // The raised LCA block can be a home to such interfering stores,
 676   // but its predecessors must not contain any such stores.
 677   //
 678   // The raised LCA will be a lower bound for placing the load,
 679   // preventing the load from sinking past any block containing
 680   // a store that may invalidate the memory state required by 'load'.
 681   if (must_raise_LCA)
 682     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 683   if (LCA == early)  return LCA;
 684 
 685   // Insert anti-dependence edges from 'load' to each store
 686   // in the non-early LCA block.
 687   // Mine the non_early_stores list for such stores.
 688   if (LCA->raise_LCA_mark() == load_index) {
 689     while (non_early_stores.size() > 0) {
 690       Node* store = non_early_stores.pop();
 691       Block* store_block = _bbs[store->_idx];
 692       if (store_block == LCA) {
 693         // add anti_dependence from store to load in its own block
 694         assert(store != load->in(0), "dependence cycle found");
 695         if (verify) {
 696           assert(store->find_edge(load) != -1, "missing precedence edge");
 697         } else {
 698           store->add_prec(load);
 699         }
 700       } else {
 701         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 702         // Any other stores we found must be either inside the new LCA
 703         // or else outside the original LCA.  In the latter case, they
 704         // did not interfere with any use of 'load'.
 705         assert(LCA->dominates(store_block)
 706                || !LCA_orig->dominates(store_block), "no stray stores");
 707       }
 708     }
 709   }
 710 
 711   // Return the highest block containing stores; any stores
 712   // within that block have been given anti-dependence edges.
 713   return LCA;
 714 }
 715 
 716 // This class is used to iterate backwards over the nodes in the graph.
 717 
 718 class Node_Backward_Iterator {
 719 
 720 private:
 721   Node_Backward_Iterator();
 722 
 723 public:
 724   // Constructor for the iterator
 725   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 726 
 727   // Postincrement operator to iterate over the nodes
 728   Node *next();
 729 
 730 private:
 731   VectorSet   &_visited;
 732   Node_List   &_stack;
 733   Block_Array &_bbs;
 734 };
 735 
 736 // Constructor for the Node_Backward_Iterator
 737 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 738   : _visited(visited), _stack(stack), _bbs(bbs) {
 739   // The stack should contain exactly the root
 740   stack.clear();
 741   stack.push(root);
 742 
 743   // Clear the visited bits
 744   visited.Clear();
 745 }
 746 
 747 // Iterator for the Node_Backward_Iterator
 748 Node *Node_Backward_Iterator::next() {
 749 
 750   // If the _stack is empty, then just return NULL: finished.
 751   if ( !_stack.size() )
 752     return NULL;
 753 
 754   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 755   // made stateless, so I do not need to record the index 'i' on my _stack.
 756   // Instead I visit all users each time, scanning for unvisited users.
 757   // I visit unvisited not-anti-dependence users first, then anti-dependent
 758   // children next.
 759   Node *self = _stack.pop();
 760 
 761   // I cycle here when I am entering a deeper level of recursion.
 762   // The key variable 'self' was set prior to jumping here.
 763   while( 1 ) {
 764 
 765     _visited.set(self->_idx);
 766 
 767     // Now schedule all uses as late as possible.
 768     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 769     uint src_rpo = _bbs[src]->_rpo;
 770 
 771     // Schedule all nodes in a post-order visit
 772     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 773 
 774     // Scan for unvisited nodes
 775     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 776       // For all uses, schedule late
 777       Node* n = self->fast_out(i); // Use
 778 
 779       // Skip already visited children
 780       if ( _visited.test(n->_idx) )
 781         continue;
 782 
 783       // do not traverse backward control edges
 784       Node *use = n->is_Proj() ? n->in(0) : n;
 785       uint use_rpo = _bbs[use->_idx]->_rpo;
 786 
 787       if ( use_rpo < src_rpo )
 788         continue;
 789 
 790       // Phi nodes always precede uses in a basic block
 791       if ( use_rpo == src_rpo && use->is_Phi() )
 792         continue;
 793 
 794       unvisited = n;      // Found unvisited
 795 
 796       // Check for possible-anti-dependent
 797       if( !n->needs_anti_dependence_check() )
 798         break;            // Not visited, not anti-dep; schedule it NOW
 799     }
 800 
 801     // Did I find an unvisited not-anti-dependent Node?
 802     if ( !unvisited )
 803       break;                  // All done with children; post-visit 'self'
 804 
 805     // Visit the unvisited Node.  Contains the obvious push to
 806     // indicate I'm entering a deeper level of recursion.  I push the
 807     // old state onto the _stack and set a new state and loop (recurse).
 808     _stack.push(self);
 809     self = unvisited;
 810   } // End recursion loop
 811 
 812   return self;
 813 }
 814 
 815 //------------------------------ComputeLatenciesBackwards----------------------
 816 // Compute the latency of all the instructions.
 817 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 818 #ifndef PRODUCT
 819   if (trace_opto_pipelining())
 820     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 821 #endif
 822 
 823   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 824   Node *n;
 825 
 826   // Walk over all the nodes from last to first
 827   while (n = iter.next()) {
 828     // Set the latency for the definitions of this instruction
 829     partial_latency_of_defs(n);
 830   }
 831 } // end ComputeLatenciesBackwards
 832 
 833 //------------------------------partial_latency_of_defs------------------------
 834 // Compute the latency impact of this node on all defs.  This computes
 835 // a number that increases as we approach the beginning of the routine.
 836 void PhaseCFG::partial_latency_of_defs(Node *n) {
 837   // Set the latency for this instruction
 838 #ifndef PRODUCT
 839   if (trace_opto_pipelining()) {
 840     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 841                n->_idx, _node_latency.at_grow(n->_idx));
 842     dump();
 843   }
 844 #endif
 845 
 846   if (n->is_Proj())
 847     n = n->in(0);
 848 
 849   if (n->is_Root())
 850     return;
 851 
 852   uint nlen = n->len();
 853   uint use_latency = _node_latency.at_grow(n->_idx);
 854   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 855 
 856   for ( uint j=0; j<nlen; j++ ) {
 857     Node *def = n->in(j);
 858 
 859     if (!def || def == n)
 860       continue;
 861 
 862     // Walk backwards thru projections
 863     if (def->is_Proj())
 864       def = def->in(0);
 865 
 866 #ifndef PRODUCT
 867     if (trace_opto_pipelining()) {
 868       tty->print("#    in(%2d): ", j);
 869       def->dump();
 870     }
 871 #endif
 872 
 873     // If the defining block is not known, assume it is ok
 874     Block *def_block = _bbs[def->_idx];
 875     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 876 
 877     if ( (use_pre_order <  def_pre_order) ||
 878          (use_pre_order == def_pre_order && n->is_Phi()) )
 879       continue;
 880 
 881     uint delta_latency = n->latency(j);
 882     uint current_latency = delta_latency + use_latency;
 883 
 884     if (_node_latency.at_grow(def->_idx) < current_latency) {
 885       _node_latency.at_put_grow(def->_idx, current_latency);
 886     }
 887 
 888 #ifndef PRODUCT
 889     if (trace_opto_pipelining()) {
 890       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 891                     use_latency, j, delta_latency, current_latency, def->_idx,
 892                     _node_latency.at_grow(def->_idx));
 893     }
 894 #endif
 895   }
 896 }
 897 
 898 //------------------------------latency_from_use-------------------------------
 899 // Compute the latency of a specific use
 900 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 901   // If self-reference, return no latency
 902   if (use == n || use->is_Root())
 903     return 0;
 904 
 905   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 906   uint latency = 0;
 907 
 908   // If the use is not a projection, then it is simple...
 909   if (!use->is_Proj()) {
 910 #ifndef PRODUCT
 911     if (trace_opto_pipelining()) {
 912       tty->print("#    out(): ");
 913       use->dump();
 914     }
 915 #endif
 916 
 917     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 918 
 919     if (use_pre_order < def_pre_order)
 920       return 0;
 921 
 922     if (use_pre_order == def_pre_order && use->is_Phi())
 923       return 0;
 924 
 925     uint nlen = use->len();
 926     uint nl = _node_latency.at_grow(use->_idx);
 927 
 928     for ( uint j=0; j<nlen; j++ ) {
 929       if (use->in(j) == n) {
 930         // Change this if we want local latencies
 931         uint ul = use->latency(j);
 932         uint  l = ul + nl;
 933         if (latency < l) latency = l;
 934 #ifndef PRODUCT
 935         if (trace_opto_pipelining()) {
 936           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 937                         nl, j, ul, l, latency);
 938         }
 939 #endif
 940       }
 941     }
 942   } else {
 943     // This is a projection, just grab the latency of the use(s)
 944     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 945       uint l = latency_from_use(use, def, use->fast_out(j));
 946       if (latency < l) latency = l;
 947     }
 948   }
 949 
 950   return latency;
 951 }
 952 
 953 //------------------------------latency_from_uses------------------------------
 954 // Compute the latency of this instruction relative to all of it's uses.
 955 // This computes a number that increases as we approach the beginning of the
 956 // routine.
 957 void PhaseCFG::latency_from_uses(Node *n) {
 958   // Set the latency for this instruction
 959 #ifndef PRODUCT
 960   if (trace_opto_pipelining()) {
 961     tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
 962                n->_idx, _node_latency.at_grow(n->_idx));
 963     dump();
 964   }
 965 #endif
 966   uint latency=0;
 967   const Node *def = n->is_Proj() ? n->in(0): n;
 968 
 969   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 970     uint l = latency_from_use(n, def, n->fast_out(i));
 971 
 972     if (latency < l) latency = l;
 973   }
 974 
 975   _node_latency.at_put_grow(n->_idx, latency);
 976 }
 977 
 978 //------------------------------hoist_to_cheaper_block-------------------------
 979 // Pick a block for node self, between early and LCA, that is a cheaper
 980 // alternative to LCA.
 981 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
 982   const double delta = 1+PROB_UNLIKELY_MAG(4);
 983   Block* least       = LCA;
 984   double least_freq  = least->_freq;
 985   uint target        = _node_latency.at_grow(self->_idx);
 986   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
 987   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
 988   bool in_latency    = (target <= start_latency);
 989   const Block* root_block = _bbs[_root->_idx];
 990 
 991   // Turn off latency scheduling if scheduling is just plain off
 992   if (!C->do_scheduling())
 993     in_latency = true;
 994 
 995   // Do not hoist (to cover latency) instructions which target a
 996   // single register.  Hoisting stretches the live range of the
 997   // single register and may force spilling.
 998   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
 999   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1000     in_latency = true;
1001 
1002 #ifndef PRODUCT
1003   if (trace_opto_pipelining()) {
1004     tty->print("# Find cheaper block for latency %d: ",
1005       _node_latency.at_grow(self->_idx));
1006     self->dump();
1007     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1008       LCA->_pre_order,
1009       LCA->_nodes[0]->_idx,
1010       start_latency,
1011       LCA->_nodes[LCA->end_idx()]->_idx,
1012       end_latency,
1013       least_freq);
1014   }
1015 #endif
1016 
1017   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1018   // the earliest legal location.  Capture the least execution frequency.
1019   while (LCA != early) {
1020     LCA = LCA->_idom;         // Follow up the dominator tree
1021 
1022     if (LCA == NULL) {
1023       // Bailout without retry
1024       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1025       return least;
1026     }
1027 
1028     // Don't hoist machine instructions to the root basic block
1029     if (mach && LCA == root_block)
1030       break;
1031 
1032     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1033     uint end_idx   = LCA->end_idx();
1034     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1035     double LCA_freq = LCA->_freq;
1036 #ifndef PRODUCT
1037     if (trace_opto_pipelining()) {
1038       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1039         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1040     }
1041 #endif
1042     if (LCA_freq < least_freq              || // Better Frequency
1043         ( !in_latency                   &&    // No block containing latency
1044           LCA_freq < least_freq * delta &&    // No worse frequency
1045           target >= end_lat             &&    // within latency range
1046           !self->is_iteratively_computed() )  // But don't hoist IV increments
1047              // because they may end up above other uses of their phi forcing
1048              // their result register to be different from their input.
1049        ) {
1050       least = LCA;            // Found cheaper block
1051       least_freq = LCA_freq;
1052       start_latency = start_lat;
1053       end_latency = end_lat;
1054       if (target <= start_lat)
1055         in_latency = true;
1056     }
1057   }
1058 
1059 #ifndef PRODUCT
1060   if (trace_opto_pipelining()) {
1061     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1062       least->_pre_order, start_latency, least_freq);
1063   }
1064 #endif
1065 
1066   // See if the latency needs to be updated
1067   if (target < end_latency) {
1068 #ifndef PRODUCT
1069     if (trace_opto_pipelining()) {
1070       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1071     }
1072 #endif
1073     _node_latency.at_put_grow(self->_idx, end_latency);
1074     partial_latency_of_defs(self);
1075   }
1076 
1077   return least;
1078 }
1079 
1080 
1081 //------------------------------schedule_late-----------------------------------
1082 // Now schedule all codes as LATE as possible.  This is the LCA in the
1083 // dominator tree of all USES of a value.  Pick the block with the least
1084 // loop nesting depth that is lowest in the dominator tree.
1085 extern const char must_clone[];
1086 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1087 #ifndef PRODUCT
1088   if (trace_opto_pipelining())
1089     tty->print("\n#---- schedule_late ----\n");
1090 #endif
1091 
1092   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1093   Node *self;
1094 
1095   // Walk over all the nodes from last to first
1096   while (self = iter.next()) {
1097     Block* early = _bbs[self->_idx];   // Earliest legal placement
1098 
1099     if (self->is_top()) {
1100       // Top node goes in bb #2 with other constants.
1101       // It must be special-cased, because it has no out edges.
1102       early->add_inst(self);
1103       continue;
1104     }
1105 
1106     // No uses, just terminate
1107     if (self->outcnt() == 0) {
1108       assert(self->Opcode() == Op_MachProj, "sanity");
1109       continue;                   // Must be a dead machine projection
1110     }
1111 
1112     // If node is pinned in the block, then no scheduling can be done.
1113     if( self->pinned() )          // Pinned in block?
1114       continue;
1115 
1116     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1117     if (mach) {
1118       switch (mach->ideal_Opcode()) {
1119       case Op_CreateEx:
1120         // Don't move exception creation
1121         early->add_inst(self);
1122         continue;
1123         break;
1124       case Op_CheckCastPP:
1125         // Don't move CheckCastPP nodes away from their input, if the input
1126         // is a rawptr (5071820).
1127         Node *def = self->in(1);
1128         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1129           early->add_inst(self);
1130           continue;
1131         }
1132         break;
1133       }
1134     }
1135 
1136     // Gather LCA of all uses
1137     Block *LCA = NULL;
1138     {
1139       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1140         // For all uses, find LCA
1141         Node* use = self->fast_out(i);
1142         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1143       }
1144     }  // (Hide defs of imax, i from rest of block.)
1145 
1146     // Place temps in the block of their use.  This isn't a
1147     // requirement for correctness but it reduces useless
1148     // interference between temps and other nodes.
1149     if (mach != NULL && mach->is_MachTemp()) {
1150       _bbs.map(self->_idx, LCA);
1151       LCA->add_inst(self);
1152       continue;
1153     }
1154 
1155     // Check if 'self' could be anti-dependent on memory
1156     if (self->needs_anti_dependence_check()) {
1157       // Hoist LCA above possible-defs and insert anti-dependences to
1158       // defs in new LCA block.
1159       LCA = insert_anti_dependences(LCA, self);
1160     }
1161 
1162     if (early->_dom_depth > LCA->_dom_depth) {
1163       // Somehow the LCA has moved above the earliest legal point.
1164       // (One way this can happen is via memory_early_block.)
1165       if (C->subsume_loads() == true && !C->failing()) {
1166         // Retry with subsume_loads == false
1167         // If this is the first failure, the sentinel string will "stick"
1168         // to the Compile object, and the C2Compiler will see it and retry.
1169         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1170       } else {
1171         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1172         C->record_method_not_compilable("late schedule failed: incorrect graph");
1173       }
1174       return;
1175     }
1176 
1177     // If there is no opportunity to hoist, then we're done.
1178     bool try_to_hoist = (LCA != early);
1179 
1180     // Must clone guys stay next to use; no hoisting allowed.
1181     // Also cannot hoist guys that alter memory or are otherwise not
1182     // allocatable (hoisting can make a value live longer, leading to
1183     // anti and output dependency problems which are normally resolved
1184     // by the register allocator giving everyone a different register).
1185     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1186       try_to_hoist = false;
1187 
1188     Block* late = NULL;
1189     if (try_to_hoist) {
1190       // Now find the block with the least execution frequency.
1191       // Start at the latest schedule and work up to the earliest schedule
1192       // in the dominator tree.  Thus the Node will dominate all its uses.
1193       late = hoist_to_cheaper_block(LCA, early, self);
1194     } else {
1195       // Just use the LCA of the uses.
1196       late = LCA;
1197     }
1198 
1199     // Put the node into target block
1200     schedule_node_into_block(self, late);
1201 
1202 #ifdef ASSERT
1203     if (self->needs_anti_dependence_check()) {
1204       // since precedence edges are only inserted when we're sure they
1205       // are needed make sure that after placement in a block we don't
1206       // need any new precedence edges.
1207       verify_anti_dependences(late, self);
1208     }
1209 #endif
1210   } // Loop until all nodes have been visited
1211 
1212 } // end ScheduleLate
1213 
1214 //------------------------------GlobalCodeMotion-------------------------------
1215 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1216   ResourceMark rm;
1217 
1218 #ifndef PRODUCT
1219   if (trace_opto_pipelining()) {
1220     tty->print("\n---- Start GlobalCodeMotion ----\n");
1221   }
1222 #endif
1223 
1224   // Initialize the bbs.map for things on the proj_list
1225   uint i;
1226   for( i=0; i < proj_list.size(); i++ )
1227     _bbs.map(proj_list[i]->_idx, NULL);
1228 
1229   // Set the basic block for Nodes pinned into blocks
1230   Arena *a = Thread::current()->resource_area();
1231   VectorSet visited(a);
1232   schedule_pinned_nodes( visited );
1233 
1234   // Find the earliest Block any instruction can be placed in.  Some
1235   // instructions are pinned into Blocks.  Unpinned instructions can
1236   // appear in last block in which all their inputs occur.
1237   visited.Clear();
1238   Node_List stack(a);
1239   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1240   if (!schedule_early(visited, stack)) {
1241     // Bailout without retry
1242     C->record_method_not_compilable("early schedule failed");
1243     return;
1244   }
1245 
1246   // Build Def-Use edges.
1247   proj_list.push(_root);        // Add real root as another root
1248   proj_list.pop();
1249 
1250   // Compute the latency information (via backwards walk) for all the
1251   // instructions in the graph
1252   GrowableArray<uint> node_latency;
1253   _node_latency = node_latency;
1254 
1255   if( C->do_scheduling() )
1256     ComputeLatenciesBackwards(visited, stack);
1257 
1258   // Now schedule all codes as LATE as possible.  This is the LCA in the
1259   // dominator tree of all USES of a value.  Pick the block with the least
1260   // loop nesting depth that is lowest in the dominator tree.
1261   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1262   schedule_late(visited, stack);
1263   if( C->failing() ) {
1264     // schedule_late fails only when graph is incorrect.
1265     assert(!VerifyGraphEdges, "verification should have failed");
1266     return;
1267   }
1268 
1269   unique = C->unique();
1270 
1271 #ifndef PRODUCT
1272   if (trace_opto_pipelining()) {
1273     tty->print("\n---- Detect implicit null checks ----\n");
1274   }
1275 #endif
1276 
1277   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1278   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1279   // I can generate a memory op if there is not one nearby.
1280   if (C->is_method_compilation()) {
1281     // Don't do it for natives, adapters, or runtime stubs
1282     int allowed_reasons = 0;
1283     // ...and don't do it when there have been too many traps, globally.
1284     for (int reason = (int)Deoptimization::Reason_none+1;
1285          reason < Compile::trapHistLength; reason++) {
1286       assert(reason < BitsPerInt, "recode bit map");
1287       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1288         allowed_reasons |= nth_bit(reason);
1289     }
1290     // By reversing the loop direction we get a very minor gain on mpegaudio.
1291     // Feel free to revert to a forward loop for clarity.
1292     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1293     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1294       Node *proj = matcher._null_check_tests[i  ];
1295       Node *val  = matcher._null_check_tests[i+1];
1296       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1297       // The implicit_null_check will only perform the transformation
1298       // if the null branch is truly uncommon, *and* it leads to an
1299       // uncommon trap.  Combined with the too_many_traps guards
1300       // above, this prevents SEGV storms reported in 6366351,
1301       // by recompiling offending methods without this optimization.
1302     }
1303   }
1304 
1305 #ifndef PRODUCT
1306   if (trace_opto_pipelining()) {
1307     tty->print("\n---- Start Local Scheduling ----\n");
1308   }
1309 #endif
1310 
1311   // Schedule locally.  Right now a simple topological sort.
1312   // Later, do a real latency aware scheduler.
1313   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1314   memset( ready_cnt, -1, C->unique() * sizeof(int) );
1315   visited.Clear();
1316   for (i = 0; i < _num_blocks; i++) {
1317     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1318       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1319         C->record_method_not_compilable("local schedule failed");
1320       }
1321       return;
1322     }
1323   }
1324 
1325   // If we inserted any instructions between a Call and his CatchNode,
1326   // clone the instructions on all paths below the Catch.
1327   for( i=0; i < _num_blocks; i++ )
1328     _blocks[i]->call_catch_cleanup(_bbs);
1329 
1330 #ifndef PRODUCT
1331   if (trace_opto_pipelining()) {
1332     tty->print("\n---- After GlobalCodeMotion ----\n");
1333     for (uint i = 0; i < _num_blocks; i++) {
1334       _blocks[i]->dump();
1335     }
1336   }
1337 #endif
1338 }
1339 
1340 
1341 //------------------------------Estimate_Block_Frequency-----------------------
1342 // Estimate block frequencies based on IfNode probabilities.
1343 void PhaseCFG::Estimate_Block_Frequency() {
1344 
1345   // Force conditional branches leading to uncommon traps to be unlikely,
1346   // not because we get to the uncommon_trap with less relative frequency,
1347   // but because an uncommon_trap typically causes a deopt, so we only get
1348   // there once.
1349   if (C->do_freq_based_layout()) {
1350     Block_List worklist;
1351     Block* root_blk = _blocks[0];
1352     for (uint i = 1; i < root_blk->num_preds(); i++) {
1353       Block *pb = _bbs[root_blk->pred(i)->_idx];
1354       if (pb->has_uncommon_code()) {
1355         worklist.push(pb);
1356       }
1357     }
1358     while (worklist.size() > 0) {
1359       Block* uct = worklist.pop();
1360       if (uct == _broot) continue;
1361       for (uint i = 1; i < uct->num_preds(); i++) {
1362         Block *pb = _bbs[uct->pred(i)->_idx];
1363         if (pb->_num_succs == 1) {
1364           worklist.push(pb);
1365         } else if (pb->num_fall_throughs() == 2) {
1366           pb->update_uncommon_branch(uct);
1367         }
1368       }
1369     }
1370   }
1371 
1372   // Create the loop tree and calculate loop depth.
1373   _root_loop = create_loop_tree();
1374   _root_loop->compute_loop_depth(0);
1375 
1376   // Compute block frequency of each block, relative to a single loop entry.
1377   _root_loop->compute_freq();
1378 
1379   // Adjust all frequencies to be relative to a single method entry
1380   _root_loop->_freq = 1.0;
1381   _root_loop->scale_freq();
1382 
1383   // Save outmost loop frequency for LRG frequency threshold
1384   _outer_loop_freq = _root_loop->outer_loop_freq();
1385 
1386   // force paths ending at uncommon traps to be infrequent
1387   if (!C->do_freq_based_layout()) {
1388     Block_List worklist;
1389     Block* root_blk = _blocks[0];
1390     for (uint i = 1; i < root_blk->num_preds(); i++) {
1391       Block *pb = _bbs[root_blk->pred(i)->_idx];
1392       if (pb->has_uncommon_code()) {
1393         worklist.push(pb);
1394       }
1395     }
1396     while (worklist.size() > 0) {
1397       Block* uct = worklist.pop();
1398       uct->_freq = PROB_MIN;
1399       for (uint i = 1; i < uct->num_preds(); i++) {
1400         Block *pb = _bbs[uct->pred(i)->_idx];
1401         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1402           worklist.push(pb);
1403         }
1404       }
1405     }
1406   }
1407 
1408 #ifdef ASSERT
1409   for (uint i = 0; i < _num_blocks; i++ ) {
1410     Block *b = _blocks[i];
1411     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1412   }
1413 #endif
1414 
1415 #ifndef PRODUCT
1416   if (PrintCFGBlockFreq) {
1417     tty->print_cr("CFG Block Frequencies");
1418     _root_loop->dump_tree();
1419     if (Verbose) {
1420       tty->print_cr("PhaseCFG dump");
1421       dump();
1422       tty->print_cr("Node dump");
1423       _root->dump(99999);
1424     }
1425   }
1426 #endif
1427 }
1428 
1429 //----------------------------create_loop_tree--------------------------------
1430 // Create a loop tree from the CFG
1431 CFGLoop* PhaseCFG::create_loop_tree() {
1432 
1433 #ifdef ASSERT
1434   assert( _blocks[0] == _broot, "" );
1435   for (uint i = 0; i < _num_blocks; i++ ) {
1436     Block *b = _blocks[i];
1437     // Check that _loop field are clear...we could clear them if not.
1438     assert(b->_loop == NULL, "clear _loop expected");
1439     // Sanity check that the RPO numbering is reflected in the _blocks array.
1440     // It doesn't have to be for the loop tree to be built, but if it is not,
1441     // then the blocks have been reordered since dom graph building...which
1442     // may question the RPO numbering
1443     assert(b->_rpo == i, "unexpected reverse post order number");
1444   }
1445 #endif
1446 
1447   int idct = 0;
1448   CFGLoop* root_loop = new CFGLoop(idct++);
1449 
1450   Block_List worklist;
1451 
1452   // Assign blocks to loops
1453   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1454     Block *b = _blocks[i];
1455 
1456     if (b->head()->is_Loop()) {
1457       Block* loop_head = b;
1458       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1459       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1460       Block* tail = _bbs[tail_n->_idx];
1461 
1462       // Defensively filter out Loop nodes for non-single-entry loops.
1463       // For all reasonable loops, the head occurs before the tail in RPO.
1464       if (i <= tail->_rpo) {
1465 
1466         // The tail and (recursive) predecessors of the tail
1467         // are made members of a new loop.
1468 
1469         assert(worklist.size() == 0, "nonempty worklist");
1470         CFGLoop* nloop = new CFGLoop(idct++);
1471         assert(loop_head->_loop == NULL, "just checking");
1472         loop_head->_loop = nloop;
1473         // Add to nloop so push_pred() will skip over inner loops
1474         nloop->add_member(loop_head);
1475         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1476 
1477         while (worklist.size() > 0) {
1478           Block* member = worklist.pop();
1479           if (member != loop_head) {
1480             for (uint j = 1; j < member->num_preds(); j++) {
1481               nloop->push_pred(member, j, worklist, _bbs);
1482             }
1483           }
1484         }
1485       }
1486     }
1487   }
1488 
1489   // Create a member list for each loop consisting
1490   // of both blocks and (immediate child) loops.
1491   for (uint i = 0; i < _num_blocks; i++) {
1492     Block *b = _blocks[i];
1493     CFGLoop* lp = b->_loop;
1494     if (lp == NULL) {
1495       // Not assigned to a loop. Add it to the method's pseudo loop.
1496       b->_loop = root_loop;
1497       lp = root_loop;
1498     }
1499     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1500       lp->add_member(b);
1501     }
1502     if (lp != root_loop) {
1503       if (lp->parent() == NULL) {
1504         // Not a nested loop. Make it a child of the method's pseudo loop.
1505         root_loop->add_nested_loop(lp);
1506       }
1507       if (b == lp->head()) {
1508         // Add nested loop to member list of parent loop.
1509         lp->parent()->add_member(lp);
1510       }
1511     }
1512   }
1513 
1514   return root_loop;
1515 }
1516 
1517 //------------------------------push_pred--------------------------------------
1518 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1519   Node* pred_n = blk->pred(i);
1520   Block* pred = node_to_blk[pred_n->_idx];
1521   CFGLoop *pred_loop = pred->_loop;
1522   if (pred_loop == NULL) {
1523     // Filter out blocks for non-single-entry loops.
1524     // For all reasonable loops, the head occurs before the tail in RPO.
1525     if (pred->_rpo > head()->_rpo) {
1526       pred->_loop = this;
1527       worklist.push(pred);
1528     }
1529   } else if (pred_loop != this) {
1530     // Nested loop.
1531     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1532       pred_loop = pred_loop->_parent;
1533     }
1534     // Make pred's loop be a child
1535     if (pred_loop->_parent == NULL) {
1536       add_nested_loop(pred_loop);
1537       // Continue with loop entry predecessor.
1538       Block* pred_head = pred_loop->head();
1539       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1540       assert(pred_head != head(), "loop head in only one loop");
1541       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1542     } else {
1543       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1544     }
1545   }
1546 }
1547 
1548 //------------------------------add_nested_loop--------------------------------
1549 // Make cl a child of the current loop in the loop tree.
1550 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1551   assert(_parent == NULL, "no parent yet");
1552   assert(cl != this, "not my own parent");
1553   cl->_parent = this;
1554   CFGLoop* ch = _child;
1555   if (ch == NULL) {
1556     _child = cl;
1557   } else {
1558     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1559     ch->_sibling = cl;
1560   }
1561 }
1562 
1563 //------------------------------compute_loop_depth-----------------------------
1564 // Store the loop depth in each CFGLoop object.
1565 // Recursively walk the children to do the same for them.
1566 void CFGLoop::compute_loop_depth(int depth) {
1567   _depth = depth;
1568   CFGLoop* ch = _child;
1569   while (ch != NULL) {
1570     ch->compute_loop_depth(depth + 1);
1571     ch = ch->_sibling;
1572   }
1573 }
1574 
1575 //------------------------------compute_freq-----------------------------------
1576 // Compute the frequency of each block and loop, relative to a single entry
1577 // into the dominating loop head.
1578 void CFGLoop::compute_freq() {
1579   // Bottom up traversal of loop tree (visit inner loops first.)
1580   // Set loop head frequency to 1.0, then transitively
1581   // compute frequency for all successors in the loop,
1582   // as well as for each exit edge.  Inner loops are
1583   // treated as single blocks with loop exit targets
1584   // as the successor blocks.
1585 
1586   // Nested loops first
1587   CFGLoop* ch = _child;
1588   while (ch != NULL) {
1589     ch->compute_freq();
1590     ch = ch->_sibling;
1591   }
1592   assert (_members.length() > 0, "no empty loops");
1593   Block* hd = head();
1594   hd->_freq = 1.0f;
1595   for (int i = 0; i < _members.length(); i++) {
1596     CFGElement* s = _members.at(i);
1597     float freq = s->_freq;
1598     if (s->is_block()) {
1599       Block* b = s->as_Block();
1600       for (uint j = 0; j < b->_num_succs; j++) {
1601         Block* sb = b->_succs[j];
1602         update_succ_freq(sb, freq * b->succ_prob(j));
1603       }
1604     } else {
1605       CFGLoop* lp = s->as_CFGLoop();
1606       assert(lp->_parent == this, "immediate child");
1607       for (int k = 0; k < lp->_exits.length(); k++) {
1608         Block* eb = lp->_exits.at(k).get_target();
1609         float prob = lp->_exits.at(k).get_prob();
1610         update_succ_freq(eb, freq * prob);
1611       }
1612     }
1613   }
1614 
1615   // For all loops other than the outer, "method" loop,
1616   // sum and normalize the exit probability. The "method" loop
1617   // should keep the initial exit probability of 1, so that
1618   // inner blocks do not get erroneously scaled.
1619   if (_depth != 0) {
1620     // Total the exit probabilities for this loop.
1621     float exits_sum = 0.0f;
1622     for (int i = 0; i < _exits.length(); i++) {
1623       exits_sum += _exits.at(i).get_prob();
1624     }
1625 
1626     // Normalize the exit probabilities. Until now, the
1627     // probabilities estimate the possibility of exit per
1628     // a single loop iteration; afterward, they estimate
1629     // the probability of exit per loop entry.
1630     for (int i = 0; i < _exits.length(); i++) {
1631       Block* et = _exits.at(i).get_target();
1632       float new_prob = 0.0f;
1633       if (_exits.at(i).get_prob() > 0.0f) {
1634         new_prob = _exits.at(i).get_prob() / exits_sum;
1635       }
1636       BlockProbPair bpp(et, new_prob);
1637       _exits.at_put(i, bpp);
1638     }
1639 
1640     // Save the total, but guard against unreasonable probability,
1641     // as the value is used to estimate the loop trip count.
1642     // An infinite trip count would blur relative block
1643     // frequencies.
1644     if (exits_sum > 1.0f) exits_sum = 1.0;
1645     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1646     _exit_prob = exits_sum;
1647   }
1648 }
1649 
1650 //------------------------------succ_prob-------------------------------------
1651 // Determine the probability of reaching successor 'i' from the receiver block.
1652 float Block::succ_prob(uint i) {
1653   int eidx = end_idx();
1654   Node *n = _nodes[eidx];  // Get ending Node
1655 
1656   int op = n->Opcode();
1657   if (n->is_Mach()) {
1658     if (n->is_MachNullCheck()) {
1659       // Can only reach here if called after lcm. The original Op_If is gone,
1660       // so we attempt to infer the probability from one or both of the
1661       // successor blocks.
1662       assert(_num_succs == 2, "expecting 2 successors of a null check");
1663       // If either successor has only one predecessor, then the
1664       // probability estimate can be derived using the
1665       // relative frequency of the successor and this block.
1666       if (_succs[i]->num_preds() == 2) {
1667         return _succs[i]->_freq / _freq;
1668       } else if (_succs[1-i]->num_preds() == 2) {
1669         return 1 - (_succs[1-i]->_freq / _freq);
1670       } else {
1671         // Estimate using both successor frequencies
1672         float freq = _succs[i]->_freq;
1673         return freq / (freq + _succs[1-i]->_freq);
1674       }
1675     }
1676     op = n->as_Mach()->ideal_Opcode();
1677   }
1678 
1679 
1680   // Switch on branch type
1681   switch( op ) {
1682   case Op_CountedLoopEnd:
1683   case Op_If: {
1684     assert (i < 2, "just checking");
1685     // Conditionals pass on only part of their frequency
1686     float prob  = n->as_MachIf()->_prob;
1687     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1688     // If succ[i] is the FALSE branch, invert path info
1689     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1690       return 1.0f - prob; // not taken
1691     } else {
1692       return prob; // taken
1693     }
1694   }
1695 
1696   case Op_Jump:
1697     // Divide the frequency between all successors evenly
1698     return 1.0f/_num_succs;
1699 
1700   case Op_Catch: {
1701     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1702     if (ci->_con == CatchProjNode::fall_through_index) {
1703       // Fall-thru path gets the lion's share.
1704       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1705     } else {
1706       // Presume exceptional paths are equally unlikely
1707       return PROB_UNLIKELY_MAG(5);
1708     }
1709   }
1710 
1711   case Op_Root:
1712   case Op_Goto:
1713     // Pass frequency straight thru to target
1714     return 1.0f;
1715 
1716   case Op_NeverBranch:
1717     return 0.0f;
1718 
1719   case Op_TailCall:
1720   case Op_TailJump:
1721   case Op_Return:
1722   case Op_Halt:
1723   case Op_Rethrow:
1724     // Do not push out freq to root block
1725     return 0.0f;
1726 
1727   default:
1728     ShouldNotReachHere();
1729   }
1730 
1731   return 0.0f;
1732 }
1733 
1734 //------------------------------num_fall_throughs-----------------------------
1735 // Return the number of fall-through candidates for a block
1736 int Block::num_fall_throughs() {
1737   int eidx = end_idx();
1738   Node *n = _nodes[eidx];  // Get ending Node
1739 
1740   int op = n->Opcode();
1741   if (n->is_Mach()) {
1742     if (n->is_MachNullCheck()) {
1743       // In theory, either side can fall-thru, for simplicity sake,
1744       // let's say only the false branch can now.
1745       return 1;
1746     }
1747     op = n->as_Mach()->ideal_Opcode();
1748   }
1749 
1750   // Switch on branch type
1751   switch( op ) {
1752   case Op_CountedLoopEnd:
1753   case Op_If:
1754     return 2;
1755 
1756   case Op_Root:
1757   case Op_Goto:
1758     return 1;
1759 
1760   case Op_Catch: {
1761     for (uint i = 0; i < _num_succs; i++) {
1762       const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1763       if (ci->_con == CatchProjNode::fall_through_index) {
1764         return 1;
1765       }
1766     }
1767     return 0;
1768   }
1769 
1770   case Op_Jump:
1771   case Op_NeverBranch:
1772   case Op_TailCall:
1773   case Op_TailJump:
1774   case Op_Return:
1775   case Op_Halt:
1776   case Op_Rethrow:
1777     return 0;
1778 
1779   default:
1780     ShouldNotReachHere();
1781   }
1782 
1783   return 0;
1784 }
1785 
1786 //------------------------------succ_fall_through-----------------------------
1787 // Return true if a specific successor could be fall-through target.
1788 bool Block::succ_fall_through(uint i) {
1789   int eidx = end_idx();
1790   Node *n = _nodes[eidx];  // Get ending Node
1791 
1792   int op = n->Opcode();
1793   if (n->is_Mach()) {
1794     if (n->is_MachNullCheck()) {
1795       // In theory, either side can fall-thru, for simplicity sake,
1796       // let's say only the false branch can now.
1797       return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
1798     }
1799     op = n->as_Mach()->ideal_Opcode();
1800   }
1801 
1802   // Switch on branch type
1803   switch( op ) {
1804   case Op_CountedLoopEnd:
1805   case Op_If:
1806   case Op_Root:
1807   case Op_Goto:
1808     return true;
1809 
1810   case Op_Catch: {
1811     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1812     return ci->_con == CatchProjNode::fall_through_index;
1813   }
1814 
1815   case Op_Jump:
1816   case Op_NeverBranch:
1817   case Op_TailCall:
1818   case Op_TailJump:
1819   case Op_Return:
1820   case Op_Halt:
1821   case Op_Rethrow:
1822     return false;
1823 
1824   default:
1825     ShouldNotReachHere();
1826   }
1827 
1828   return false;
1829 }
1830 
1831 //------------------------------update_uncommon_branch------------------------
1832 // Update the probability of a two-branch to be uncommon
1833 void Block::update_uncommon_branch(Block* ub) {
1834   int eidx = end_idx();
1835   Node *n = _nodes[eidx];  // Get ending Node
1836 
1837   int op = n->as_Mach()->ideal_Opcode();
1838 
1839   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
1840   assert(num_fall_throughs() == 2, "must be a two way branch block");
1841 
1842   // Which successor is ub?
1843   uint s;
1844   for (s = 0; s <_num_succs; s++) {
1845     if (_succs[s] == ub) break;
1846   }
1847   assert(s < 2, "uncommon successor must be found");
1848 
1849   // If ub is the true path, make the proability small, else
1850   // ub is the false path, and make the probability large
1851   bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
1852 
1853   // Get existing probability
1854   float p = n->as_MachIf()->_prob;
1855 
1856   if (invert) p = 1.0 - p;
1857   if (p > PROB_MIN) {
1858     p = PROB_MIN;
1859   }
1860   if (invert) p = 1.0 - p;
1861 
1862   n->as_MachIf()->_prob = p;
1863 }
1864 
1865 //------------------------------update_succ_freq-------------------------------
1866 // Update the appropriate frequency associated with block 'b', a successor of
1867 // a block in this loop.
1868 void CFGLoop::update_succ_freq(Block* b, float freq) {
1869   if (b->_loop == this) {
1870     if (b == head()) {
1871       // back branch within the loop
1872       // Do nothing now, the loop carried frequency will be
1873       // adjust later in scale_freq().
1874     } else {
1875       // simple branch within the loop
1876       b->_freq += freq;
1877     }
1878   } else if (!in_loop_nest(b)) {
1879     // branch is exit from this loop
1880     BlockProbPair bpp(b, freq);
1881     _exits.append(bpp);
1882   } else {
1883     // branch into nested loop
1884     CFGLoop* ch = b->_loop;
1885     ch->_freq += freq;
1886   }
1887 }
1888 
1889 //------------------------------in_loop_nest-----------------------------------
1890 // Determine if block b is in the receiver's loop nest.
1891 bool CFGLoop::in_loop_nest(Block* b) {
1892   int depth = _depth;
1893   CFGLoop* b_loop = b->_loop;
1894   int b_depth = b_loop->_depth;
1895   if (depth == b_depth) {
1896     return true;
1897   }
1898   while (b_depth > depth) {
1899     b_loop = b_loop->_parent;
1900     b_depth = b_loop->_depth;
1901   }
1902   return b_loop == this;
1903 }
1904 
1905 //------------------------------scale_freq-------------------------------------
1906 // Scale frequency of loops and blocks by trip counts from outer loops
1907 // Do a top down traversal of loop tree (visit outer loops first.)
1908 void CFGLoop::scale_freq() {
1909   float loop_freq = _freq * trip_count();
1910   _freq = loop_freq;
1911   for (int i = 0; i < _members.length(); i++) {
1912     CFGElement* s = _members.at(i);
1913     float block_freq = s->_freq * loop_freq;
1914     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
1915       block_freq = MIN_BLOCK_FREQUENCY;
1916     s->_freq = block_freq;
1917   }
1918   CFGLoop* ch = _child;
1919   while (ch != NULL) {
1920     ch->scale_freq();
1921     ch = ch->_sibling;
1922   }
1923 }
1924 
1925 // Frequency of outer loop
1926 float CFGLoop::outer_loop_freq() const {
1927   if (_child != NULL) {
1928     return _child->_freq;
1929   }
1930   return _freq;
1931 }
1932 
1933 #ifndef PRODUCT
1934 //------------------------------dump_tree--------------------------------------
1935 void CFGLoop::dump_tree() const {
1936   dump();
1937   if (_child != NULL)   _child->dump_tree();
1938   if (_sibling != NULL) _sibling->dump_tree();
1939 }
1940 
1941 //------------------------------dump-------------------------------------------
1942 void CFGLoop::dump() const {
1943   for (int i = 0; i < _depth; i++) tty->print("   ");
1944   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1945              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1946   for (int i = 0; i < _depth; i++) tty->print("   ");
1947   tty->print("         members:", _id);
1948   int k = 0;
1949   for (int i = 0; i < _members.length(); i++) {
1950     if (k++ >= 6) {
1951       tty->print("\n              ");
1952       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1953       k = 0;
1954     }
1955     CFGElement *s = _members.at(i);
1956     if (s->is_block()) {
1957       Block *b = s->as_Block();
1958       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1959     } else {
1960       CFGLoop* lp = s->as_CFGLoop();
1961       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1962     }
1963   }
1964   tty->print("\n");
1965   for (int i = 0; i < _depth; i++) tty->print("   ");
1966   tty->print("         exits:  ");
1967   k = 0;
1968   for (int i = 0; i < _exits.length(); i++) {
1969     if (k++ >= 7) {
1970       tty->print("\n              ");
1971       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1972       k = 0;
1973     }
1974     Block *blk = _exits.at(i).get_target();
1975     float prob = _exits.at(i).get_prob();
1976     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1977   }
1978   tty->print("\n");
1979 }
1980 #endif