1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_cfgnode.cpp.incl"
  31 
  32 //=============================================================================
  33 //------------------------------Value------------------------------------------
  34 // Compute the type of the RegionNode.
  35 const Type *RegionNode::Value( PhaseTransform *phase ) const {
  36   for( uint i=1; i<req(); ++i ) {       // For all paths in
  37     Node *n = in(i);            // Get Control source
  38     if( !n ) continue;          // Missing inputs are TOP
  39     if( phase->type(n) == Type::CONTROL )
  40       return Type::CONTROL;
  41   }
  42   return Type::TOP;             // All paths dead?  Then so are we
  43 }
  44 
  45 //------------------------------Identity---------------------------------------
  46 // Check for Region being Identity.
  47 Node *RegionNode::Identity( PhaseTransform *phase ) {
  48   // Cannot have Region be an identity, even if it has only 1 input.
  49   // Phi users cannot have their Region input folded away for them,
  50   // since they need to select the proper data input
  51   return this;
  52 }
  53 
  54 //------------------------------merge_region-----------------------------------
  55 // If a Region flows into a Region, merge into one big happy merge.  This is
  56 // hard to do if there is stuff that has to happen
  57 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  58   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  59     return NULL;
  60   Node *progress = NULL;        // Progress flag
  61   PhaseIterGVN *igvn = phase->is_IterGVN();
  62 
  63   uint rreq = region->req();
  64   for( uint i = 1; i < rreq; i++ ) {
  65     Node *r = region->in(i);
  66     if( r && r->Opcode() == Op_Region && // Found a region?
  67         r->in(0) == r &&        // Not already collapsed?
  68         r != region &&          // Avoid stupid situations
  69         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  70       assert(!r->as_Region()->has_phi(), "no phi users");
  71       if( !progress ) {         // No progress
  72         if (region->has_phi()) {
  73           return NULL;        // Only flatten if no Phi users
  74           // igvn->hash_delete( phi );
  75         }
  76         igvn->hash_delete( region );
  77         progress = region;      // Making progress
  78       }
  79       igvn->hash_delete( r );
  80 
  81       // Append inputs to 'r' onto 'region'
  82       for( uint j = 1; j < r->req(); j++ ) {
  83         // Move an input from 'r' to 'region'
  84         region->add_req(r->in(j));
  85         r->set_req(j, phase->C->top());
  86         // Update phis of 'region'
  87         //for( uint k = 0; k < max; k++ ) {
  88         //  Node *phi = region->out(k);
  89         //  if( phi->is_Phi() ) {
  90         //    phi->add_req(phi->in(i));
  91         //  }
  92         //}
  93 
  94         rreq++;                 // One more input to Region
  95       } // Found a region to merge into Region
  96       // Clobber pointer to the now dead 'r'
  97       region->set_req(i, phase->C->top());
  98     }
  99   }
 100 
 101   return progress;
 102 }
 103 
 104 
 105 
 106 //--------------------------------has_phi--------------------------------------
 107 // Helper function: Return any PhiNode that uses this region or NULL
 108 PhiNode* RegionNode::has_phi() const {
 109   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 110     Node* phi = fast_out(i);
 111     if (phi->is_Phi()) {   // Check for Phi users
 112       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 113       return phi->as_Phi();  // this one is good enough
 114     }
 115   }
 116 
 117   return NULL;
 118 }
 119 
 120 
 121 //-----------------------------has_unique_phi----------------------------------
 122 // Helper function: Return the only PhiNode that uses this region or NULL
 123 PhiNode* RegionNode::has_unique_phi() const {
 124   // Check that only one use is a Phi
 125   PhiNode* only_phi = NULL;
 126   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 127     Node* phi = fast_out(i);
 128     if (phi->is_Phi()) {   // Check for Phi users
 129       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 130       if (only_phi == NULL) {
 131         only_phi = phi->as_Phi();
 132       } else {
 133         return NULL;  // multiple phis
 134       }
 135     }
 136   }
 137 
 138   return only_phi;
 139 }
 140 
 141 
 142 //------------------------------check_phi_clipping-----------------------------
 143 // Helper function for RegionNode's identification of FP clipping
 144 // Check inputs to the Phi
 145 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 146   min     = NULL;
 147   max     = NULL;
 148   val     = NULL;
 149   min_idx = 0;
 150   max_idx = 0;
 151   val_idx = 0;
 152   uint  phi_max = phi->req();
 153   if( phi_max == 4 ) {
 154     for( uint j = 1; j < phi_max; ++j ) {
 155       Node *n = phi->in(j);
 156       int opcode = n->Opcode();
 157       switch( opcode ) {
 158       case Op_ConI:
 159         {
 160           if( min == NULL ) {
 161             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 162             min_idx = j;
 163           } else {
 164             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 165             max_idx = j;
 166             if( min->get_int() > max->get_int() ) {
 167               // Swap min and max
 168               ConNode *temp;
 169               uint     temp_idx;
 170               temp     = min;     min     = max;     max     = temp;
 171               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 172             }
 173           }
 174         }
 175         break;
 176       default:
 177         {
 178           val = n;
 179           val_idx = j;
 180         }
 181         break;
 182       }
 183     }
 184   }
 185   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 186 }
 187 
 188 
 189 //------------------------------check_if_clipping------------------------------
 190 // Helper function for RegionNode's identification of FP clipping
 191 // Check that inputs to Region come from two IfNodes,
 192 //
 193 //            If
 194 //      False    True
 195 //       If        |
 196 //  False  True    |
 197 //    |      |     |
 198 //  RegionNode_inputs
 199 //
 200 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 201   top_if = NULL;
 202   bot_if = NULL;
 203 
 204   // Check control structure above RegionNode for (if  ( if  ) )
 205   Node *in1 = region->in(1);
 206   Node *in2 = region->in(2);
 207   Node *in3 = region->in(3);
 208   // Check that all inputs are projections
 209   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 210     Node *in10 = in1->in(0);
 211     Node *in20 = in2->in(0);
 212     Node *in30 = in3->in(0);
 213     // Check that #1 and #2 are ifTrue and ifFalse from same If
 214     if( in10 != NULL && in10->is_If() &&
 215         in20 != NULL && in20->is_If() &&
 216         in30 != NULL && in30->is_If() && in10 == in20 &&
 217         (in1->Opcode() != in2->Opcode()) ) {
 218       Node  *in100 = in10->in(0);
 219       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 220       // Check that control for in10 comes from other branch of IF from in3
 221       if( in1000 != NULL && in1000->is_If() &&
 222           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 223         // Control pattern checks
 224         top_if = (IfNode*)in1000;
 225         bot_if = (IfNode*)in10;
 226       }
 227     }
 228   }
 229 
 230   return (top_if != NULL);
 231 }
 232 
 233 
 234 //------------------------------check_convf2i_clipping-------------------------
 235 // Helper function for RegionNode's identification of FP clipping
 236 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 237 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 238   convf2i = NULL;
 239 
 240   // Check for the RShiftNode
 241   Node *rshift = phi->in(idx);
 242   assert( rshift, "Previous checks ensure phi input is present");
 243   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 244 
 245   // Check for the LShiftNode
 246   Node *lshift = rshift->in(1);
 247   assert( lshift, "Previous checks ensure phi input is present");
 248   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 249 
 250   // Check for the ConvF2INode
 251   Node *conv = lshift->in(1);
 252   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 253 
 254   // Check that shift amounts are only to get sign bits set after F2I
 255   jint max_cutoff     = max->get_int();
 256   jint min_cutoff     = min->get_int();
 257   jint left_shift     = lshift->in(2)->get_int();
 258   jint right_shift    = rshift->in(2)->get_int();
 259   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 260   if( left_shift != right_shift ||
 261       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 262       max_post_shift < max_cutoff ||
 263       max_post_shift < -min_cutoff ) {
 264     // Shifts are necessary but current transformation eliminates them
 265     return false;
 266   }
 267 
 268   // OK to return the result of ConvF2I without shifting
 269   convf2i = (ConvF2INode*)conv;
 270   return true;
 271 }
 272 
 273 
 274 //------------------------------check_compare_clipping-------------------------
 275 // Helper function for RegionNode's identification of FP clipping
 276 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 277   Node *i1 = iff->in(1);
 278   if ( !i1->is_Bool() ) { return false; }
 279   BoolNode *bool1 = i1->as_Bool();
 280   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 281   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 282   const Node *cmpF = bool1->in(1);
 283   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 284   // Test that the float value being compared against
 285   // is equivalent to the int value used as a limit
 286   Node *nodef = cmpF->in(2);
 287   if( nodef->Opcode() != Op_ConF ) { return false; }
 288   jfloat conf = nodef->getf();
 289   jint   coni = limit->get_int();
 290   if( ((int)conf) != coni )        { return false; }
 291   input = cmpF->in(1);
 292   return true;
 293 }
 294 
 295 //------------------------------is_unreachable_region--------------------------
 296 // Find if the Region node is reachable from the root.
 297 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 298   assert(req() == 2, "");
 299 
 300   // First, cut the simple case of fallthrough region when NONE of
 301   // region's phis references itself directly or through a data node.
 302   uint max = outcnt();
 303   uint i;
 304   for (i = 0; i < max; i++) {
 305     Node* phi = raw_out(i);
 306     if (phi != NULL && phi->is_Phi()) {
 307       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 308       if (phi->outcnt() == 0)
 309         continue; // Safe case - no loops
 310       if (phi->outcnt() == 1) {
 311         Node* u = phi->raw_out(0);
 312         // Skip if only one use is an other Phi or Call or Uncommon trap.
 313         // It is safe to consider this case as fallthrough.
 314         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 315           continue;
 316       }
 317       // Check when phi references itself directly or through an other node.
 318       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 319         break; // Found possible unsafe data loop.
 320     }
 321   }
 322   if (i >= max)
 323     return false; // An unsafe case was NOT found - don't need graph walk.
 324 
 325   // Unsafe case - check if the Region node is reachable from root.
 326   ResourceMark rm;
 327 
 328   Arena *a = Thread::current()->resource_area();
 329   Node_List nstack(a);
 330   VectorSet visited(a);
 331 
 332   // Mark all control nodes reachable from root outputs
 333   Node *n = (Node*)phase->C->root();
 334   nstack.push(n);
 335   visited.set(n->_idx);
 336   while (nstack.size() != 0) {
 337     n = nstack.pop();
 338     uint max = n->outcnt();
 339     for (uint i = 0; i < max; i++) {
 340       Node* m = n->raw_out(i);
 341       if (m != NULL && m->is_CFG()) {
 342         if (phase->eqv(m, this)) {
 343           return false; // We reached the Region node - it is not dead.
 344         }
 345         if (!visited.test_set(m->_idx))
 346           nstack.push(m);
 347       }
 348     }
 349   }
 350 
 351   return true; // The Region node is unreachable - it is dead.
 352 }
 353 
 354 //------------------------------Ideal------------------------------------------
 355 // Return a node which is more "ideal" than the current node.  Must preserve
 356 // the CFG, but we can still strip out dead paths.
 357 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 358   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 359   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 360 
 361   // Check for RegionNode with no Phi users and both inputs come from either
 362   // arm of the same IF.  If found, then the control-flow split is useless.
 363   bool has_phis = false;
 364   if (can_reshape) {            // Need DU info to check for Phi users
 365     has_phis = (has_phi() != NULL);       // Cache result
 366     if (!has_phis) {            // No Phi users?  Nothing merging?
 367       for (uint i = 1; i < req()-1; i++) {
 368         Node *if1 = in(i);
 369         if( !if1 ) continue;
 370         Node *iff = if1->in(0);
 371         if( !iff || !iff->is_If() ) continue;
 372         for( uint j=i+1; j<req(); j++ ) {
 373           if( in(j) && in(j)->in(0) == iff &&
 374               if1->Opcode() != in(j)->Opcode() ) {
 375             // Add the IF Projections to the worklist. They (and the IF itself)
 376             // will be eliminated if dead.
 377             phase->is_IterGVN()->add_users_to_worklist(iff);
 378             set_req(i, iff->in(0));// Skip around the useless IF diamond
 379             set_req(j, NULL);
 380             return this;      // Record progress
 381           }
 382         }
 383       }
 384     }
 385   }
 386 
 387   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 388   // degrades to a copy.
 389   bool add_to_worklist = false;
 390   int cnt = 0;                  // Count of values merging
 391   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 392   int del_it = 0;               // The last input path we delete
 393   // For all inputs...
 394   for( uint i=1; i<req(); ++i ){// For all paths in
 395     Node *n = in(i);            // Get the input
 396     if( n != NULL ) {
 397       // Remove useless control copy inputs
 398       if( n->is_Region() && n->as_Region()->is_copy() ) {
 399         set_req(i, n->nonnull_req());
 400         i--;
 401         continue;
 402       }
 403       if( n->is_Proj() ) {      // Remove useless rethrows
 404         Node *call = n->in(0);
 405         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 406           set_req(i, call->in(0));
 407           i--;
 408           continue;
 409         }
 410       }
 411       if( phase->type(n) == Type::TOP ) {
 412         set_req(i, NULL);       // Ignore TOP inputs
 413         i--;
 414         continue;
 415       }
 416       cnt++;                    // One more value merging
 417 
 418     } else if (can_reshape) {   // Else found dead path with DU info
 419       PhaseIterGVN *igvn = phase->is_IterGVN();
 420       del_req(i);               // Yank path from self
 421       del_it = i;
 422       uint max = outcnt();
 423       DUIterator j;
 424       bool progress = true;
 425       while(progress) {         // Need to establish property over all users
 426         progress = false;
 427         for (j = outs(); has_out(j); j++) {
 428           Node *n = out(j);
 429           if( n->req() != req() && n->is_Phi() ) {
 430             assert( n->in(0) == this, "" );
 431             igvn->hash_delete(n); // Yank from hash before hacking edges
 432             n->set_req_X(i,NULL,igvn);// Correct DU info
 433             n->del_req(i);        // Yank path from Phis
 434             if( max != outcnt() ) {
 435               progress = true;
 436               j = refresh_out_pos(j);
 437               max = outcnt();
 438             }
 439           }
 440         }
 441       }
 442       add_to_worklist = true;
 443       i--;
 444     }
 445   }
 446 
 447   if (can_reshape && cnt == 1) {
 448     // Is it dead loop?
 449     // If it is LoopNopde it had 2 (+1 itself) inputs and
 450     // one of them was cut. The loop is dead if it was EntryContol.
 451     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
 452     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
 453        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 454       // Yes,  the region will be removed during the next step below.
 455       // Cut the backedge input and remove phis since no data paths left.
 456       // We don't cut outputs to other nodes here since we need to put them
 457       // on the worklist.
 458       del_req(1);
 459       cnt = 0;
 460       assert( req() == 1, "no more inputs expected" );
 461       uint max = outcnt();
 462       bool progress = true;
 463       Node *top = phase->C->top();
 464       PhaseIterGVN *igvn = phase->is_IterGVN();
 465       DUIterator j;
 466       while(progress) {
 467         progress = false;
 468         for (j = outs(); has_out(j); j++) {
 469           Node *n = out(j);
 470           if( n->is_Phi() ) {
 471             assert( igvn->eqv(n->in(0), this), "" );
 472             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 473             // Break dead loop data path.
 474             // Eagerly replace phis with top to avoid phis copies generation.
 475             igvn->add_users_to_worklist(n);
 476             igvn->hash_delete(n); // Yank from hash before hacking edges
 477             igvn->subsume_node(n, top);
 478             if( max != outcnt() ) {
 479               progress = true;
 480               j = refresh_out_pos(j);
 481               max = outcnt();
 482             }
 483           }
 484         }
 485       }
 486       add_to_worklist = true;
 487     }
 488   }
 489   if (add_to_worklist) {
 490     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 491   }
 492 
 493   if( cnt <= 1 ) {              // Only 1 path in?
 494     set_req(0, NULL);           // Null control input for region copy
 495     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 496       // No inputs or all inputs are NULL.
 497       return NULL;
 498     } else if (can_reshape) {   // Optimization phase - remove the node
 499       PhaseIterGVN *igvn = phase->is_IterGVN();
 500       Node *parent_ctrl;
 501       if( cnt == 0 ) {
 502         assert( req() == 1, "no inputs expected" );
 503         // During IGVN phase such region will be subsumed by TOP node
 504         // so region's phis will have TOP as control node.
 505         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 506         // Also set other user's input to top.
 507         parent_ctrl = phase->C->top();
 508       } else {
 509         // The fallthrough case since we already checked dead loops above.
 510         parent_ctrl = in(1);
 511         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 512         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 513       }
 514       if (!add_to_worklist)
 515         igvn->add_users_to_worklist(this); // Check for further allowed opts
 516       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 517         Node* n = last_out(i);
 518         igvn->hash_delete(n); // Remove from worklist before modifying edges
 519         if( n->is_Phi() ) {   // Collapse all Phis
 520           // Eagerly replace phis to avoid copies generation.
 521           igvn->add_users_to_worklist(n);
 522           igvn->hash_delete(n); // Yank from hash before hacking edges
 523           if( cnt == 0 ) {
 524             assert( n->req() == 1, "No data inputs expected" );
 525             igvn->subsume_node(n, parent_ctrl); // replaced by top
 526           } else {
 527             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 528             Node* in1 = n->in(1);               // replaced by unique input
 529             if( n->as_Phi()->is_unsafe_data_reference(in1) )
 530               in1 = phase->C->top();            // replaced by top
 531             igvn->subsume_node(n, in1);
 532           }
 533         }
 534         else if( n->is_Region() ) { // Update all incoming edges
 535           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 536           uint uses_found = 0;
 537           for( uint k=1; k < n->req(); k++ ) {
 538             if( n->in(k) == this ) {
 539               n->set_req(k, parent_ctrl);
 540               uses_found++;
 541             }
 542           }
 543           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 544             i -= (uses_found - 1);
 545           }
 546         }
 547         else {
 548           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 549           n->set_req(0, parent_ctrl);
 550         }
 551 #ifdef ASSERT
 552         for( uint k=0; k < n->req(); k++ ) {
 553           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 554         }
 555 #endif
 556       }
 557       // Remove the RegionNode itself from DefUse info
 558       igvn->remove_dead_node(this);
 559       return NULL;
 560     }
 561     return this;                // Record progress
 562   }
 563 
 564 
 565   // If a Region flows into a Region, merge into one big happy merge.
 566   if (can_reshape) {
 567     Node *m = merge_region(this, phase);
 568     if (m != NULL)  return m;
 569   }
 570 
 571   // Check if this region is the root of a clipping idiom on floats
 572   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 573     // Check that only one use is a Phi and that it simplifies to two constants +
 574     PhiNode* phi = has_unique_phi();
 575     if (phi != NULL) {          // One Phi user
 576       // Check inputs to the Phi
 577       ConNode *min;
 578       ConNode *max;
 579       Node    *val;
 580       uint     min_idx;
 581       uint     max_idx;
 582       uint     val_idx;
 583       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 584         IfNode *top_if;
 585         IfNode *bot_if;
 586         if( check_if_clipping( this, bot_if, top_if ) ) {
 587           // Control pattern checks, now verify compares
 588           Node   *top_in = NULL;   // value being compared against
 589           Node   *bot_in = NULL;
 590           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 591               check_compare_clipping( false, top_if, max, top_in ) ) {
 592             if( bot_in == top_in ) {
 593               PhaseIterGVN *gvn = phase->is_IterGVN();
 594               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 595               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 596 
 597               // Check for the ConvF2INode
 598               ConvF2INode *convf2i;
 599               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 600                 convf2i->in(1) == bot_in ) {
 601                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 602                 // max test
 603                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
 604                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
 605                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 606                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 607                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 608                 // min test
 609                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
 610                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
 611                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 612                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 613                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 614                 // update input edges to region node
 615                 set_req_X( min_idx, if_min, gvn );
 616                 set_req_X( max_idx, if_max, gvn );
 617                 set_req_X( val_idx, ifF,    gvn );
 618                 // remove unnecessary 'LShiftI; RShiftI' idiom
 619                 gvn->hash_delete(phi);
 620                 phi->set_req_X( val_idx, convf2i, gvn );
 621                 gvn->hash_find_insert(phi);
 622                 // Return transformed region node
 623                 return this;
 624               }
 625             }
 626           }
 627         }
 628       }
 629     }
 630   }
 631 
 632   return NULL;
 633 }
 634 
 635 
 636 
 637 const RegMask &RegionNode::out_RegMask() const {
 638   return RegMask::Empty;
 639 }
 640 
 641 // Find the one non-null required input.  RegionNode only
 642 Node *Node::nonnull_req() const {
 643   assert( is_Region(), "" );
 644   for( uint i = 1; i < _cnt; i++ )
 645     if( in(i) )
 646       return in(i);
 647   ShouldNotReachHere();
 648   return NULL;
 649 }
 650 
 651 
 652 //=============================================================================
 653 // note that these functions assume that the _adr_type field is flattened
 654 uint PhiNode::hash() const {
 655   const Type* at = _adr_type;
 656   return TypeNode::hash() + (at ? at->hash() : 0);
 657 }
 658 uint PhiNode::cmp( const Node &n ) const {
 659   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 660 }
 661 static inline
 662 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 663   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 664   return Compile::current()->alias_type(at)->adr_type();
 665 }
 666 
 667 //----------------------------make---------------------------------------------
 668 // create a new phi with edges matching r and set (initially) to x
 669 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 670   uint preds = r->req();   // Number of predecessor paths
 671   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 672   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
 673   for (uint j = 1; j < preds; j++) {
 674     // Fill in all inputs, except those which the region does not yet have
 675     if (r->in(j) != NULL)
 676       p->init_req(j, x);
 677   }
 678   return p;
 679 }
 680 PhiNode* PhiNode::make(Node* r, Node* x) {
 681   const Type*    t  = x->bottom_type();
 682   const TypePtr* at = NULL;
 683   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 684   return make(r, x, t, at);
 685 }
 686 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 687   const Type*    t  = x->bottom_type();
 688   const TypePtr* at = NULL;
 689   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 690   return new (Compile::current(), r->req()) PhiNode(r, t, at);
 691 }
 692 
 693 
 694 //------------------------slice_memory-----------------------------------------
 695 // create a new phi with narrowed memory type
 696 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 697   PhiNode* mem = (PhiNode*) clone();
 698   *(const TypePtr**)&mem->_adr_type = adr_type;
 699   // convert self-loops, or else we get a bad graph
 700   for (uint i = 1; i < req(); i++) {
 701     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 702   }
 703   mem->verify_adr_type();
 704   return mem;
 705 }
 706 
 707 //------------------------split_out_instance-----------------------------------
 708 // Split out an instance type from a bottom phi.
 709 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 710   const TypeOopPtr *t_oop = at->isa_oopptr();
 711   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 712   const TypePtr *t = adr_type();
 713   assert(type() == Type::MEMORY &&
 714          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 715           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 716           t->is_oopptr()->cast_to_exactness(true)
 717            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 718            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 719          "bottom or raw memory required");
 720 
 721   // Check if an appropriate node already exists.
 722   Node *region = in(0);
 723   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 724     Node* use = region->fast_out(k);
 725     if( use->is_Phi()) {
 726       PhiNode *phi2 = use->as_Phi();
 727       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 728         return phi2;
 729       }
 730     }
 731   }
 732   Compile *C = igvn->C;
 733   Arena *a = Thread::current()->resource_area();
 734   Node_Array node_map = new Node_Array(a);
 735   Node_Stack stack(a, C->unique() >> 4);
 736   PhiNode *nphi = slice_memory(at);
 737   igvn->register_new_node_with_optimizer( nphi );
 738   node_map.map(_idx, nphi);
 739   stack.push((Node *)this, 1);
 740   while(!stack.is_empty()) {
 741     PhiNode *ophi = stack.node()->as_Phi();
 742     uint i = stack.index();
 743     assert(i >= 1, "not control edge");
 744     stack.pop();
 745     nphi = node_map[ophi->_idx]->as_Phi();
 746     for (; i < ophi->req(); i++) {
 747       Node *in = ophi->in(i);
 748       if (in == NULL || igvn->type(in) == Type::TOP)
 749         continue;
 750       Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
 751       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 752       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 753         opt = node_map[optphi->_idx];
 754         if (opt == NULL) {
 755           stack.push(ophi, i);
 756           nphi = optphi->slice_memory(at);
 757           igvn->register_new_node_with_optimizer( nphi );
 758           node_map.map(optphi->_idx, nphi);
 759           ophi = optphi;
 760           i = 0; // will get incremented at top of loop
 761           continue;
 762         }
 763       }
 764       nphi->set_req(i, opt);
 765     }
 766   }
 767   return nphi;
 768 }
 769 
 770 //------------------------verify_adr_type--------------------------------------
 771 #ifdef ASSERT
 772 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 773   if (visited.test_set(_idx))  return;  //already visited
 774 
 775   // recheck constructor invariants:
 776   verify_adr_type(false);
 777 
 778   // recheck local phi/phi consistency:
 779   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 780          "adr_type must be consistent across phi nest");
 781 
 782   // walk around
 783   for (uint i = 1; i < req(); i++) {
 784     Node* n = in(i);
 785     if (n == NULL)  continue;
 786     const Node* np = in(i);
 787     if (np->is_Phi()) {
 788       np->as_Phi()->verify_adr_type(visited, at);
 789     } else if (n->bottom_type() == Type::TOP
 790                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 791       // ignore top inputs
 792     } else {
 793       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 794       // recheck phi/non-phi consistency at leaves:
 795       assert((nat != NULL) == (at != NULL), "");
 796       assert(nat == at || nat == TypePtr::BOTTOM,
 797              "adr_type must be consistent at leaves of phi nest");
 798     }
 799   }
 800 }
 801 
 802 // Verify a whole nest of phis rooted at this one.
 803 void PhiNode::verify_adr_type(bool recursive) const {
 804   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 805   if (Node::in_dump())      return;  // muzzle asserts when printing
 806 
 807   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 808 
 809   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 810 
 811   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 812          "Phi::adr_type must be pre-normalized");
 813 
 814   if (recursive) {
 815     VectorSet visited(Thread::current()->resource_area());
 816     verify_adr_type(visited, _adr_type);
 817   }
 818 }
 819 #endif
 820 
 821 
 822 //------------------------------Value------------------------------------------
 823 // Compute the type of the PhiNode
 824 const Type *PhiNode::Value( PhaseTransform *phase ) const {
 825   Node *r = in(0);              // RegionNode
 826   if( !r )                      // Copy or dead
 827     return in(1) ? phase->type(in(1)) : Type::TOP;
 828 
 829   // Note: During parsing, phis are often transformed before their regions.
 830   // This means we have to use type_or_null to defend against untyped regions.
 831   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 832     return Type::TOP;
 833 
 834   // Check for trip-counted loop.  If so, be smarter.
 835   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 836   if( l && l->can_be_counted_loop(phase) &&
 837       ((const Node*)l->phi() == this) ) { // Trip counted loop!
 838     // protect against init_trip() or limit() returning NULL
 839     const Node *init   = l->init_trip();
 840     const Node *limit  = l->limit();
 841     if( init != NULL && limit != NULL && l->stride_is_con() ) {
 842       const TypeInt *lo = init ->bottom_type()->isa_int();
 843       const TypeInt *hi = limit->bottom_type()->isa_int();
 844       if( lo && hi ) {            // Dying loops might have TOP here
 845         int stride = l->stride_con();
 846         if( stride < 0 ) {          // Down-counter loop
 847           const TypeInt *tmp = lo; lo = hi; hi = tmp;
 848           stride = -stride;
 849         }
 850         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
 851           return TypeInt::make(lo->_lo,hi->_hi,3);
 852       }
 853     }
 854   }
 855 
 856   // Until we have harmony between classes and interfaces in the type
 857   // lattice, we must tread carefully around phis which implicitly
 858   // convert the one to the other.
 859   const TypePtr* ttp = _type->make_ptr();
 860   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 861   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 862   bool is_intf = false;
 863   if (ttip != NULL) {
 864     ciKlass* k = ttip->klass();
 865     if (k->is_loaded() && k->is_interface())
 866       is_intf = true;
 867   }
 868   if (ttkp != NULL) {
 869     ciKlass* k = ttkp->klass();
 870     if (k->is_loaded() && k->is_interface())
 871       is_intf = true;
 872   }
 873 
 874   // Default case: merge all inputs
 875   const Type *t = Type::TOP;        // Merged type starting value
 876   for (uint i = 1; i < req(); ++i) {// For all paths in
 877     // Reachable control path?
 878     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 879       const Type* ti = phase->type(in(i));
 880       // We assume that each input of an interface-valued Phi is a true
 881       // subtype of that interface.  This might not be true of the meet
 882       // of all the input types.  The lattice is not distributive in
 883       // such cases.  Ward off asserts in type.cpp by refusing to do
 884       // meets between interfaces and proper classes.
 885       const TypePtr* tip = ti->make_ptr();
 886       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 887       if (tiip) {
 888         bool ti_is_intf = false;
 889         ciKlass* k = tiip->klass();
 890         if (k->is_loaded() && k->is_interface())
 891           ti_is_intf = true;
 892         if (is_intf != ti_is_intf)
 893           { t = _type; break; }
 894       }
 895       t = t->meet(ti);
 896     }
 897   }
 898 
 899   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 900   // That is, we expect that "t->higher_equal(_type)" holds true.
 901   // There are various exceptions:
 902   // - Inputs which are phis might in fact be widened unnecessarily.
 903   //   For example, an input might be a widened int while the phi is a short.
 904   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 905   //   and postCCP has removed the cast which encodes the result of the check.
 906   // - The type of this phi is an interface, and the inputs are classes.
 907   // - Value calls on inputs might produce fuzzy results.
 908   //   (Occurrences of this case suggest improvements to Value methods.)
 909   //
 910   // It is not possible to see Type::BOTTOM values as phi inputs,
 911   // because the ciTypeFlow pre-pass produces verifier-quality types.
 912   const Type* ft = t->filter(_type);  // Worst case type
 913 
 914 #ifdef ASSERT
 915   // The following logic has been moved into TypeOopPtr::filter.
 916   const Type* jt = t->join(_type);
 917   if( jt->empty() ) {           // Emptied out???
 918 
 919     // Check for evil case of 't' being a class and '_type' expecting an
 920     // interface.  This can happen because the bytecodes do not contain
 921     // enough type info to distinguish a Java-level interface variable
 922     // from a Java-level object variable.  If we meet 2 classes which
 923     // both implement interface I, but their meet is at 'j/l/O' which
 924     // doesn't implement I, we have no way to tell if the result should
 925     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 926     // into a Phi which "knows" it's an Interface type we'll have to
 927     // uplift the type.
 928     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
 929       { assert(ft == _type, ""); } // Uplift to interface
 930     else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
 931       { assert(ft == _type, ""); } // Uplift to interface
 932     // Otherwise it's something stupid like non-overlapping int ranges
 933     // found on dying counted loops.
 934     else
 935       { assert(ft == Type::TOP, ""); } // Canonical empty value
 936   }
 937 
 938   else {
 939 
 940     // If we have an interface-typed Phi and we narrow to a class type, the join
 941     // should report back the class.  However, if we have a J/L/Object
 942     // class-typed Phi and an interface flows in, it's possible that the meet &
 943     // join report an interface back out.  This isn't possible but happens
 944     // because the type system doesn't interact well with interfaces.
 945     const TypePtr *jtp = jt->make_ptr();
 946     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
 947     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
 948     if( jtip && ttip ) {
 949       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
 950           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
 951         // Happens in a CTW of rt.jar, 320-341, no extra flags
 952         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
 953                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
 954         jt = ft;
 955       }
 956     }
 957     if( jtkp && ttkp ) {
 958       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
 959           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
 960         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
 961                ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
 962         jt = ft;
 963       }
 964     }
 965     if (jt != ft && jt->base() == ft->base()) {
 966       if (jt->isa_int() &&
 967           jt->is_int()->_lo == ft->is_int()->_lo &&
 968           jt->is_int()->_hi == ft->is_int()->_hi)
 969         jt = ft;
 970       if (jt->isa_long() &&
 971           jt->is_long()->_lo == ft->is_long()->_lo &&
 972           jt->is_long()->_hi == ft->is_long()->_hi)
 973         jt = ft;
 974     }
 975     if (jt != ft) {
 976       tty->print("merge type:  "); t->dump(); tty->cr();
 977       tty->print("kill type:   "); _type->dump(); tty->cr();
 978       tty->print("join type:   "); jt->dump(); tty->cr();
 979       tty->print("filter type: "); ft->dump(); tty->cr();
 980     }
 981     assert(jt == ft, "");
 982   }
 983 #endif //ASSERT
 984 
 985   // Deal with conversion problems found in data loops.
 986   ft = phase->saturate(ft, phase->type_or_null(this), _type);
 987 
 988   return ft;
 989 }
 990 
 991 
 992 //------------------------------is_diamond_phi---------------------------------
 993 // Does this Phi represent a simple well-shaped diamond merge?  Return the
 994 // index of the true path or 0 otherwise.
 995 int PhiNode::is_diamond_phi() const {
 996   // Check for a 2-path merge
 997   Node *region = in(0);
 998   if( !region ) return 0;
 999   if( region->req() != 3 ) return 0;
1000   if(         req() != 3 ) return 0;
1001   // Check that both paths come from the same If
1002   Node *ifp1 = region->in(1);
1003   Node *ifp2 = region->in(2);
1004   if( !ifp1 || !ifp2 ) return 0;
1005   Node *iff = ifp1->in(0);
1006   if( !iff || !iff->is_If() ) return 0;
1007   if( iff != ifp2->in(0) ) return 0;
1008   // Check for a proper bool/cmp
1009   const Node *b = iff->in(1);
1010   if( !b->is_Bool() ) return 0;
1011   const Node *cmp = b->in(1);
1012   if( !cmp->is_Cmp() ) return 0;
1013 
1014   // Check for branching opposite expected
1015   if( ifp2->Opcode() == Op_IfTrue ) {
1016     assert( ifp1->Opcode() == Op_IfFalse, "" );
1017     return 2;
1018   } else {
1019     assert( ifp1->Opcode() == Op_IfTrue, "" );
1020     return 1;
1021   }
1022 }
1023 
1024 //----------------------------check_cmove_id-----------------------------------
1025 // Check for CMove'ing a constant after comparing against the constant.
1026 // Happens all the time now, since if we compare equality vs a constant in
1027 // the parser, we "know" the variable is constant on one path and we force
1028 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1029 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1030 // general in that we don't need constants.  Since CMove's are only inserted
1031 // in very special circumstances, we do it here on generic Phi's.
1032 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1033   assert(true_path !=0, "only diamond shape graph expected");
1034 
1035   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1036   // phi->region->if_proj->ifnode->bool->cmp
1037   Node*     region = in(0);
1038   Node*     iff    = region->in(1)->in(0);
1039   BoolNode* b      = iff->in(1)->as_Bool();
1040   Node*     cmp    = b->in(1);
1041   Node*     tval   = in(true_path);
1042   Node*     fval   = in(3-true_path);
1043   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1044   if (id == NULL)
1045     return NULL;
1046 
1047   // Either value might be a cast that depends on a branch of 'iff'.
1048   // Since the 'id' value will float free of the diamond, either
1049   // decast or return failure.
1050   Node* ctl = id->in(0);
1051   if (ctl != NULL && ctl->in(0) == iff) {
1052     if (id->is_ConstraintCast()) {
1053       return id->in(1);
1054     } else {
1055       // Don't know how to disentangle this value.
1056       return NULL;
1057     }
1058   }
1059 
1060   return id;
1061 }
1062 
1063 //------------------------------Identity---------------------------------------
1064 // Check for Region being Identity.
1065 Node *PhiNode::Identity( PhaseTransform *phase ) {
1066   // Check for no merging going on
1067   // (There used to be special-case code here when this->region->is_Loop.
1068   // It would check for a tributary phi on the backedge that the main phi
1069   // trivially, perhaps with a single cast.  The unique_input method
1070   // does all this and more, by reducing such tributaries to 'this'.)
1071   Node* uin = unique_input(phase);
1072   if (uin != NULL) {
1073     return uin;
1074   }
1075 
1076   int true_path = is_diamond_phi();
1077   if (true_path != 0) {
1078     Node* id = is_cmove_id(phase, true_path);
1079     if (id != NULL)  return id;
1080   }
1081 
1082   return this;                     // No identity
1083 }
1084 
1085 //-----------------------------unique_input------------------------------------
1086 // Find the unique value, discounting top, self-loops, and casts.
1087 // Return top if there are no inputs, and self if there are multiple.
1088 Node* PhiNode::unique_input(PhaseTransform* phase) {
1089   //  1) One unique direct input, or
1090   //  2) some of the inputs have an intervening ConstraintCast and
1091   //     the type of input is the same or sharper (more specific)
1092   //     than the phi's type.
1093   //  3) an input is a self loop
1094   //
1095   //  1) input   or   2) input     or   3) input __
1096   //     /   \           /   \               \  /  \
1097   //     \   /          |    cast             phi  cast
1098   //      phi            \   /               /  \  /
1099   //                      phi               /    --
1100 
1101   Node* r = in(0);                      // RegionNode
1102   if (r == NULL)  return in(1);         // Already degraded to a Copy
1103   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1104   Node* direct_input   = NULL; // The unique direct input
1105 
1106   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1107     Node* rc = r->in(i);
1108     if (rc == NULL || phase->type(rc) == Type::TOP)
1109       continue;                 // ignore unreachable control path
1110     Node* n = in(i);
1111     if (n == NULL)
1112       continue;
1113     Node* un = n->uncast();
1114     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1115       continue; // ignore if top, or in(i) and "this" are in a data cycle
1116     }
1117     // Check for a unique uncasted input
1118     if (uncasted_input == NULL) {
1119       uncasted_input = un;
1120     } else if (uncasted_input != un) {
1121       uncasted_input = NodeSentinel; // no unique uncasted input
1122     }
1123     // Check for a unique direct input
1124     if (direct_input == NULL) {
1125       direct_input = n;
1126     } else if (direct_input != n) {
1127       direct_input = NodeSentinel; // no unique direct input
1128     }
1129   }
1130   if (direct_input == NULL) {
1131     return phase->C->top();        // no inputs
1132   }
1133   assert(uncasted_input != NULL,"");
1134 
1135   if (direct_input != NodeSentinel) {
1136     return direct_input;           // one unique direct input
1137   }
1138   if (uncasted_input != NodeSentinel &&
1139       phase->type(uncasted_input)->higher_equal(type())) {
1140     return uncasted_input;         // one unique uncasted input
1141   }
1142 
1143   // Nothing.
1144   return NULL;
1145 }
1146 
1147 //------------------------------is_x2logic-------------------------------------
1148 // Check for simple convert-to-boolean pattern
1149 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1150 // Convert Phi to an ConvIB.
1151 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1152   assert(true_path !=0, "only diamond shape graph expected");
1153   // Convert the true/false index into an expected 0/1 return.
1154   // Map 2->0 and 1->1.
1155   int flipped = 2-true_path;
1156 
1157   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1158   // phi->region->if_proj->ifnode->bool->cmp
1159   Node *region = phi->in(0);
1160   Node *iff = region->in(1)->in(0);
1161   BoolNode *b = (BoolNode*)iff->in(1);
1162   const CmpNode *cmp = (CmpNode*)b->in(1);
1163 
1164   Node *zero = phi->in(1);
1165   Node *one  = phi->in(2);
1166   const Type *tzero = phase->type( zero );
1167   const Type *tone  = phase->type( one  );
1168 
1169   // Check for compare vs 0
1170   const Type *tcmp = phase->type(cmp->in(2));
1171   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1172     // Allow cmp-vs-1 if the other input is bounded by 0-1
1173     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1174       return NULL;
1175     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1176   }
1177 
1178   // Check for setting zero/one opposite expected
1179   if( tzero == TypeInt::ZERO ) {
1180     if( tone == TypeInt::ONE ) {
1181     } else return NULL;
1182   } else if( tzero == TypeInt::ONE ) {
1183     if( tone == TypeInt::ZERO ) {
1184       flipped = 1-flipped;
1185     } else return NULL;
1186   } else return NULL;
1187 
1188   // Check for boolean test backwards
1189   if( b->_test._test == BoolTest::ne ) {
1190   } else if( b->_test._test == BoolTest::eq ) {
1191     flipped = 1-flipped;
1192   } else return NULL;
1193 
1194   // Build int->bool conversion
1195   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
1196   if( flipped )
1197     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
1198 
1199   return n;
1200 }
1201 
1202 //------------------------------is_cond_add------------------------------------
1203 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1204 // To be profitable the control flow has to disappear; there can be no other
1205 // values merging here.  We replace the test-and-branch with:
1206 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1207 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1208 // Then convert Y to 0-or-Y and finally add.
1209 // This is a key transform for SpecJava _201_compress.
1210 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1211   assert(true_path !=0, "only diamond shape graph expected");
1212 
1213   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1214   // phi->region->if_proj->ifnode->bool->cmp
1215   RegionNode *region = (RegionNode*)phi->in(0);
1216   Node *iff = region->in(1)->in(0);
1217   BoolNode* b = iff->in(1)->as_Bool();
1218   const CmpNode *cmp = (CmpNode*)b->in(1);
1219 
1220   // Make sure only merging this one phi here
1221   if (region->has_unique_phi() != phi)  return NULL;
1222 
1223   // Make sure each arm of the diamond has exactly one output, which we assume
1224   // is the region.  Otherwise, the control flow won't disappear.
1225   if (region->in(1)->outcnt() != 1) return NULL;
1226   if (region->in(2)->outcnt() != 1) return NULL;
1227 
1228   // Check for "(P < Q)" of type signed int
1229   if (b->_test._test != BoolTest::lt)  return NULL;
1230   if (cmp->Opcode() != Op_CmpI)        return NULL;
1231 
1232   Node *p = cmp->in(1);
1233   Node *q = cmp->in(2);
1234   Node *n1 = phi->in(  true_path);
1235   Node *n2 = phi->in(3-true_path);
1236 
1237   int op = n1->Opcode();
1238   if( op != Op_AddI           // Need zero as additive identity
1239       /*&&op != Op_SubI &&
1240       op != Op_AddP &&
1241       op != Op_XorI &&
1242       op != Op_OrI*/ )
1243     return NULL;
1244 
1245   Node *x = n2;
1246   Node *y = n1->in(1);
1247   if( n2 == n1->in(1) ) {
1248     y = n1->in(2);
1249   } else if( n2 == n1->in(1) ) {
1250   } else return NULL;
1251 
1252   // Not so profitable if compare and add are constants
1253   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1254     return NULL;
1255 
1256   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
1257   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
1258   return new (phase->C, 3) AddINode(j_and,x);
1259 }
1260 
1261 //------------------------------is_absolute------------------------------------
1262 // Check for absolute value.
1263 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1264   assert(true_path !=0, "only diamond shape graph expected");
1265 
1266   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1267   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1268 
1269   // ABS ends with the merge of 2 control flow paths.
1270   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1271   int false_path = 3 - true_path;
1272 
1273   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1274   // phi->region->if_proj->ifnode->bool->cmp
1275   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1276 
1277   // Check bool sense
1278   switch( bol->_test._test ) {
1279   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1280   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1281   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1282   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1283   default:           return NULL;                              break;
1284   }
1285 
1286   // Test is next
1287   Node *cmp = bol->in(1);
1288   const Type *tzero = NULL;
1289   switch( cmp->Opcode() ) {
1290   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1291   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1292   default: return NULL;
1293   }
1294 
1295   // Find zero input of compare; the other input is being abs'd
1296   Node *x = NULL;
1297   bool flip = false;
1298   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1299     x = cmp->in(3 - cmp_zero_idx);
1300   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1301     // The test is inverted, we should invert the result...
1302     x = cmp->in(cmp_zero_idx);
1303     flip = true;
1304   } else {
1305     return NULL;
1306   }
1307 
1308   // Next get the 2 pieces being selected, one is the original value
1309   // and the other is the negated value.
1310   if( phi_root->in(phi_x_idx) != x ) return NULL;
1311 
1312   // Check other phi input for subtract node
1313   Node *sub = phi_root->in(3 - phi_x_idx);
1314 
1315   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1316   if( tzero == TypeF::ZERO ) {
1317     if( sub->Opcode() != Op_SubF ||
1318         sub->in(2) != x ||
1319         phase->type(sub->in(1)) != tzero ) return NULL;
1320     x = new (phase->C, 2) AbsFNode(x);
1321     if (flip) {
1322       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
1323     }
1324   } else {
1325     if( sub->Opcode() != Op_SubD ||
1326         sub->in(2) != x ||
1327         phase->type(sub->in(1)) != tzero ) return NULL;
1328     x = new (phase->C, 2) AbsDNode(x);
1329     if (flip) {
1330       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
1331     }
1332   }
1333 
1334   return x;
1335 }
1336 
1337 //------------------------------split_once-------------------------------------
1338 // Helper for split_flow_path
1339 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1340   igvn->hash_delete(n);         // Remove from hash before hacking edges
1341 
1342   uint j = 1;
1343   for( uint i = phi->req()-1; i > 0; i-- ) {
1344     if( phi->in(i) == val ) {   // Found a path with val?
1345       // Add to NEW Region/Phi, no DU info
1346       newn->set_req( j++, n->in(i) );
1347       // Remove from OLD Region/Phi
1348       n->del_req(i);
1349     }
1350   }
1351 
1352   // Register the new node but do not transform it.  Cannot transform until the
1353   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1354   igvn->register_new_node_with_optimizer( newn );
1355   // Now I can point to the new node.
1356   n->add_req(newn);
1357   igvn->_worklist.push(n);
1358 }
1359 
1360 //------------------------------split_flow_path--------------------------------
1361 // Check for merging identical values and split flow paths
1362 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1363   BasicType bt = phi->type()->basic_type();
1364   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1365     return NULL;                // Bail out on funny non-value stuff
1366   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1367     return NULL;                // third unequal input to be worth doing
1368 
1369   // Scan for a constant
1370   uint i;
1371   for( i = 1; i < phi->req()-1; i++ ) {
1372     Node *n = phi->in(i);
1373     if( !n ) return NULL;
1374     if( phase->type(n) == Type::TOP ) return NULL;
1375     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
1376       break;
1377   }
1378   if( i >= phi->req() )         // Only split for constants
1379     return NULL;
1380 
1381   Node *val = phi->in(i);       // Constant to split for
1382   uint hit = 0;                 // Number of times it occurs
1383 
1384   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1385     Node *n = phi->in(i);
1386     if( !n ) return NULL;
1387     if( phase->type(n) == Type::TOP ) return NULL;
1388     if( phi->in(i) == val )
1389       hit++;
1390   }
1391 
1392   if( hit <= 1 ||               // Make sure we find 2 or more
1393       hit == phi->req()-1 )     // and not ALL the same value
1394     return NULL;
1395 
1396   // Now start splitting out the flow paths that merge the same value.
1397   // Split first the RegionNode.
1398   PhaseIterGVN *igvn = phase->is_IterGVN();
1399   Node *r = phi->region();
1400   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
1401   split_once(igvn, phi, val, r, newr);
1402 
1403   // Now split all other Phis than this one
1404   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1405     Node* phi2 = r->fast_out(k);
1406     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1407       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1408       split_once(igvn, phi, val, phi2, newphi);
1409     }
1410   }
1411 
1412   // Clean up this guy
1413   igvn->hash_delete(phi);
1414   for( i = phi->req()-1; i > 0; i-- ) {
1415     if( phi->in(i) == val ) {
1416       phi->del_req(i);
1417     }
1418   }
1419   phi->add_req(val);
1420 
1421   return phi;
1422 }
1423 
1424 //=============================================================================
1425 //------------------------------simple_data_loop_check-------------------------
1426 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1427 //  Returns:
1428 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1429 // Safe       - safe case when the phi and it's inputs reference only safe data
1430 //              nodes;
1431 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1432 //              is no reference back to the phi - need a graph walk
1433 //              to determine if it is in a loop;
1434 // UnsafeLoop - unsafe case when the phi references itself directly or through
1435 //              unsafe data node.
1436 //  Note: a safe data node is a node which could/never reference itself during
1437 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1438 //  I mark Phi nodes as safe node not only because they can reference itself
1439 //  but also to prevent mistaking the fallthrough case inside an outer loop
1440 //  as dead loop when the phi references itselfs through an other phi.
1441 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1442   // It is unsafe loop if the phi node references itself directly.
1443   if (in == (Node*)this)
1444     return UnsafeLoop; // Unsafe loop
1445   // Unsafe loop if the phi node references itself through an unsafe data node.
1446   // Exclude cases with null inputs or data nodes which could reference
1447   // itself (safe for dead loops).
1448   if (in != NULL && !in->is_dead_loop_safe()) {
1449     // Check inputs of phi's inputs also.
1450     // It is much less expensive then full graph walk.
1451     uint cnt = in->req();
1452     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1453     for (; i < cnt; ++i) {
1454       Node* m = in->in(i);
1455       if (m == (Node*)this)
1456         return UnsafeLoop; // Unsafe loop
1457       if (m != NULL && !m->is_dead_loop_safe()) {
1458         // Check the most common case (about 30% of all cases):
1459         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1460         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1461         if (m1 == (Node*)this)
1462           return UnsafeLoop; // Unsafe loop
1463         if (m1 != NULL && m1 == m->in(2) &&
1464             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1465           continue; // Safe case
1466         }
1467         // The phi references an unsafe node - need full analysis.
1468         return Unsafe;
1469       }
1470     }
1471   }
1472   return Safe; // Safe case - we can optimize the phi node.
1473 }
1474 
1475 //------------------------------is_unsafe_data_reference-----------------------
1476 // If phi can be reached through the data input - it is data loop.
1477 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1478   assert(req() > 1, "");
1479   // First, check simple cases when phi references itself directly or
1480   // through an other node.
1481   LoopSafety safety = simple_data_loop_check(in);
1482   if (safety == UnsafeLoop)
1483     return true;  // phi references itself - unsafe loop
1484   else if (safety == Safe)
1485     return false; // Safe case - phi could be replaced with the unique input.
1486 
1487   // Unsafe case when we should go through data graph to determine
1488   // if the phi references itself.
1489 
1490   ResourceMark rm;
1491 
1492   Arena *a = Thread::current()->resource_area();
1493   Node_List nstack(a);
1494   VectorSet visited(a);
1495 
1496   nstack.push(in); // Start with unique input.
1497   visited.set(in->_idx);
1498   while (nstack.size() != 0) {
1499     Node* n = nstack.pop();
1500     uint cnt = n->req();
1501     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1502     for (; i < cnt; i++) {
1503       Node* m = n->in(i);
1504       if (m == (Node*)this) {
1505         return true;    // Data loop
1506       }
1507       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1508         if (!visited.test_set(m->_idx))
1509           nstack.push(m);
1510       }
1511     }
1512   }
1513   return false; // The phi is not reachable from its inputs
1514 }
1515 
1516 
1517 //------------------------------Ideal------------------------------------------
1518 // Return a node which is more "ideal" than the current node.  Must preserve
1519 // the CFG, but we can still strip out dead paths.
1520 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1521   // The next should never happen after 6297035 fix.
1522   if( is_copy() )               // Already degraded to a Copy ?
1523     return NULL;                // No change
1524 
1525   Node *r = in(0);              // RegionNode
1526   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1527 
1528   // Note: During parsing, phis are often transformed before their regions.
1529   // This means we have to use type_or_null to defend against untyped regions.
1530   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1531     return NULL;                // No change
1532 
1533   Node *top = phase->C->top();
1534 
1535   // The are 2 situations when only one valid phi's input is left
1536   // (in addition to Region input).
1537   // One: region is not loop - replace phi with this input.
1538   // Two: region is loop - replace phi with top since this data path is dead
1539   //                       and we need to break the dead data loop.
1540   Node* progress = NULL;        // Record if any progress made
1541   for( uint j = 1; j < req(); ++j ){ // For all paths in
1542     // Check unreachable control paths
1543     Node* rc = r->in(j);
1544     Node* n = in(j);            // Get the input
1545     if (rc == NULL || phase->type(rc) == Type::TOP) {
1546       if (n != top) {           // Not already top?
1547         set_req(j, top);        // Nuke it down
1548         progress = this;        // Record progress
1549       }
1550     }
1551   }
1552 
1553   Node* uin = unique_input(phase);
1554   if (uin == top) {             // Simplest case: no alive inputs.
1555     if (can_reshape)            // IGVN transformation
1556       return top;
1557     else
1558       return NULL;              // Identity will return TOP
1559   } else if (uin != NULL) {
1560     // Only one not-NULL unique input path is left.
1561     // Determine if this input is backedge of a loop.
1562     // (Skip new phis which have no uses and dead regions).
1563     if( outcnt() > 0 && r->in(0) != NULL ) {
1564       // First, take the short cut when we know it is a loop and
1565       // the EntryControl data path is dead.
1566       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
1567       // Then, check if there is a data loop when phi references itself directly
1568       // or through other data nodes.
1569       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
1570          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
1571         // Break this data loop to avoid creation of a dead loop.
1572         if (can_reshape) {
1573           return top;
1574         } else {
1575           // We can't return top if we are in Parse phase - cut inputs only
1576           // let Identity to handle the case.
1577           replace_edge(uin, top);
1578           return NULL;
1579         }
1580       }
1581     }
1582 
1583     // One unique input.
1584     debug_only(Node* ident = Identity(phase));
1585     // The unique input must eventually be detected by the Identity call.
1586 #ifdef ASSERT
1587     if (ident != uin && !ident->is_top()) {
1588       // print this output before failing assert
1589       r->dump(3);
1590       this->dump(3);
1591       ident->dump();
1592       uin->dump();
1593     }
1594 #endif
1595     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1596     return NULL;
1597   }
1598 
1599 
1600   Node* opt = NULL;
1601   int true_path = is_diamond_phi();
1602   if( true_path != 0 ) {
1603     // Check for CMove'ing identity. If it would be unsafe,
1604     // handle it here. In the safe case, let Identity handle it.
1605     Node* unsafe_id = is_cmove_id(phase, true_path);
1606     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1607       opt = unsafe_id;
1608 
1609     // Check for simple convert-to-boolean pattern
1610     if( opt == NULL )
1611       opt = is_x2logic(phase, this, true_path);
1612 
1613     // Check for absolute value
1614     if( opt == NULL )
1615       opt = is_absolute(phase, this, true_path);
1616 
1617     // Check for conditional add
1618     if( opt == NULL && can_reshape )
1619       opt = is_cond_add(phase, this, true_path);
1620 
1621     // These 4 optimizations could subsume the phi:
1622     // have to check for a dead data loop creation.
1623     if( opt != NULL ) {
1624       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1625         // Found dead loop.
1626         if( can_reshape )
1627           return top;
1628         // We can't return top if we are in Parse phase - cut inputs only
1629         // to stop further optimizations for this phi. Identity will return TOP.
1630         assert(req() == 3, "only diamond merge phi here");
1631         set_req(1, top);
1632         set_req(2, top);
1633         return NULL;
1634       } else {
1635         return opt;
1636       }
1637     }
1638   }
1639 
1640   // Check for merging identical values and split flow paths
1641   if (can_reshape) {
1642     opt = split_flow_path(phase, this);
1643     // This optimization only modifies phi - don't need to check for dead loop.
1644     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1645     if (opt != NULL)  return opt;
1646   }
1647 
1648   // Split phis through memory merges, so that the memory merges will go away.
1649   // Piggy-back this transformation on the search for a unique input....
1650   // It will be as if the merged memory is the unique value of the phi.
1651   // (Do not attempt this optimization unless parsing is complete.
1652   // It would make the parser's memory-merge logic sick.)
1653   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1654   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1655     // see if this phi should be sliced
1656     uint merge_width = 0;
1657     bool saw_self = false;
1658     for( uint i=1; i<req(); ++i ) {// For all paths in
1659       Node *ii = in(i);
1660       if (ii->is_MergeMem()) {
1661         MergeMemNode* n = ii->as_MergeMem();
1662         merge_width = MAX2(merge_width, n->req());
1663         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1664       }
1665     }
1666 
1667     // This restriction is temporarily necessary to ensure termination:
1668     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1669 
1670     if (merge_width > Compile::AliasIdxRaw) {
1671       // found at least one non-empty MergeMem
1672       const TypePtr* at = adr_type();
1673       if (at != TypePtr::BOTTOM) {
1674         // Patch the existing phi to select an input from the merge:
1675         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1676         //     Phi:AT1(...m1...)
1677         int alias_idx = phase->C->get_alias_index(at);
1678         for (uint i=1; i<req(); ++i) {
1679           Node *ii = in(i);
1680           if (ii->is_MergeMem()) {
1681             MergeMemNode* n = ii->as_MergeMem();
1682             // compress paths and change unreachable cycles to TOP
1683             // If not, we can update the input infinitely along a MergeMem cycle
1684             // Equivalent code is in MemNode::Ideal_common
1685             Node *m  = phase->transform(n);
1686             if (outcnt() == 0) {  // Above transform() may kill us!
1687               progress = phase->C->top();
1688               break;
1689             }
1690             // If transformed to a MergeMem, get the desired slice
1691             // Otherwise the returned node represents memory for every slice
1692             Node *new_mem = (m->is_MergeMem()) ?
1693                              m->as_MergeMem()->memory_at(alias_idx) : m;
1694             // Update input if it is progress over what we have now
1695             if (new_mem != ii) {
1696               set_req(i, new_mem);
1697               progress = this;
1698             }
1699           }
1700         }
1701       } else {
1702         // We know that at least one MergeMem->base_memory() == this
1703         // (saw_self == true). If all other inputs also references this phi
1704         // (directly or through data nodes) - it is dead loop.
1705         bool saw_safe_input = false;
1706         for (uint j = 1; j < req(); ++j) {
1707           Node *n = in(j);
1708           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1709             continue;              // skip known cases
1710           if (!is_unsafe_data_reference(n)) {
1711             saw_safe_input = true; // found safe input
1712             break;
1713           }
1714         }
1715         if (!saw_safe_input)
1716           return top; // all inputs reference back to this phi - dead loop
1717 
1718         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1719         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1720         PhaseIterGVN *igvn = phase->is_IterGVN();
1721         Node* hook = new (phase->C, 1) Node(1);
1722         PhiNode* new_base = (PhiNode*) clone();
1723         // Must eagerly register phis, since they participate in loops.
1724         if (igvn) {
1725           igvn->register_new_node_with_optimizer(new_base);
1726           hook->add_req(new_base);
1727         }
1728         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1729         for (uint i = 1; i < req(); ++i) {
1730           Node *ii = in(i);
1731           if (ii->is_MergeMem()) {
1732             MergeMemNode* n = ii->as_MergeMem();
1733             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1734               // If we have not seen this slice yet, make a phi for it.
1735               bool made_new_phi = false;
1736               if (mms.is_empty()) {
1737                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1738                 made_new_phi = true;
1739                 if (igvn) {
1740                   igvn->register_new_node_with_optimizer(new_phi);
1741                   hook->add_req(new_phi);
1742                 }
1743                 mms.set_memory(new_phi);
1744               }
1745               Node* phi = mms.memory();
1746               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1747               phi->set_req(i, mms.memory2());
1748             }
1749           }
1750         }
1751         // Distribute all self-loops.
1752         { // (Extra braces to hide mms.)
1753           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1754             Node* phi = mms.memory();
1755             for (uint i = 1; i < req(); ++i) {
1756               if (phi->in(i) == this)  phi->set_req(i, phi);
1757             }
1758           }
1759         }
1760         // now transform the new nodes, and return the mergemem
1761         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1762           Node* phi = mms.memory();
1763           mms.set_memory(phase->transform(phi));
1764         }
1765         if (igvn) { // Unhook.
1766           igvn->hash_delete(hook);
1767           for (uint i = 1; i < hook->req(); i++) {
1768             hook->set_req(i, NULL);
1769           }
1770         }
1771         // Replace self with the result.
1772         return result;
1773       }
1774     }
1775     //
1776     // Other optimizations on the memory chain
1777     //
1778     const TypePtr* at = adr_type();
1779     for( uint i=1; i<req(); ++i ) {// For all paths in
1780       Node *ii = in(i);
1781       Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
1782       if (ii != new_in ) {
1783         set_req(i, new_in);
1784         progress = this;
1785       }
1786     }
1787   }
1788 
1789 #ifdef _LP64
1790   // Push DecodeN down through phi.
1791   // The rest of phi graph will transform by split EncodeP node though phis up.
1792   if (UseCompressedOops && can_reshape && progress == NULL) {
1793     bool may_push = true;
1794     bool has_decodeN = false;
1795     Node* in_decodeN = NULL;
1796     for (uint i=1; i<req(); ++i) {// For all paths in
1797       Node *ii = in(i);
1798       if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
1799         // Note: in_decodeN is used only to define the type of new phi.
1800         // Find a non dead path otherwise phi type will be wrong.
1801         if (ii->in(1)->bottom_type() != Type::TOP) {
1802           has_decodeN = true;
1803           in_decodeN = ii->in(1);
1804         }
1805       } else if (!ii->is_Phi()) {
1806         may_push = false;
1807       }
1808     }
1809 
1810     if (has_decodeN && may_push) {
1811       PhaseIterGVN *igvn = phase->is_IterGVN();
1812       PhiNode *new_phi = PhiNode::make_blank(in(0), in_decodeN);
1813       uint orig_cnt = req();
1814       for (uint i=1; i<req(); ++i) {// For all paths in
1815         Node *ii = in(i);
1816         Node* new_ii = NULL;
1817         if (ii->is_DecodeN()) {
1818           assert(ii->bottom_type() == bottom_type(), "sanity");
1819           new_ii = ii->in(1);
1820         } else {
1821           assert(ii->is_Phi(), "sanity");
1822           if (ii->as_Phi() == this) {
1823             new_ii = new_phi;
1824           } else {
1825             new_ii = new (phase->C, 2) EncodePNode(ii, in_decodeN->bottom_type());
1826             igvn->register_new_node_with_optimizer(new_ii);
1827           }
1828         }
1829         new_phi->set_req(i, new_ii);
1830       }
1831       igvn->register_new_node_with_optimizer(new_phi, this);
1832       progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
1833     }
1834   }
1835 #endif
1836 
1837   return progress;              // Return any progress
1838 }
1839 
1840 //------------------------------is_tripcount-----------------------------------
1841 bool PhiNode::is_tripcount() const {
1842   return (in(0) != NULL && in(0)->is_CountedLoop() &&
1843           in(0)->as_CountedLoop()->phi() == this);
1844 }
1845 
1846 //------------------------------out_RegMask------------------------------------
1847 const RegMask &PhiNode::in_RegMask(uint i) const {
1848   return i ? out_RegMask() : RegMask::Empty;
1849 }
1850 
1851 const RegMask &PhiNode::out_RegMask() const {
1852   uint ideal_reg = Matcher::base2reg[_type->base()];
1853   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
1854   if( ideal_reg == 0 ) return RegMask::Empty;
1855   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
1856 }
1857 
1858 #ifndef PRODUCT
1859 void PhiNode::dump_spec(outputStream *st) const {
1860   TypeNode::dump_spec(st);
1861   if (is_tripcount()) {
1862     st->print(" #tripcount");
1863   }
1864 }
1865 #endif
1866 
1867 
1868 //=============================================================================
1869 const Type *GotoNode::Value( PhaseTransform *phase ) const {
1870   // If the input is reachable, then we are executed.
1871   // If the input is not reachable, then we are not executed.
1872   return phase->type(in(0));
1873 }
1874 
1875 Node *GotoNode::Identity( PhaseTransform *phase ) {
1876   return in(0);                // Simple copy of incoming control
1877 }
1878 
1879 const RegMask &GotoNode::out_RegMask() const {
1880   return RegMask::Empty;
1881 }
1882 
1883 //=============================================================================
1884 const RegMask &JumpNode::out_RegMask() const {
1885   return RegMask::Empty;
1886 }
1887 
1888 //=============================================================================
1889 const RegMask &JProjNode::out_RegMask() const {
1890   return RegMask::Empty;
1891 }
1892 
1893 //=============================================================================
1894 const RegMask &CProjNode::out_RegMask() const {
1895   return RegMask::Empty;
1896 }
1897 
1898 
1899 
1900 //=============================================================================
1901 
1902 uint PCTableNode::hash() const { return Node::hash() + _size; }
1903 uint PCTableNode::cmp( const Node &n ) const
1904 { return _size == ((PCTableNode&)n)._size; }
1905 
1906 const Type *PCTableNode::bottom_type() const {
1907   const Type** f = TypeTuple::fields(_size);
1908   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1909   return TypeTuple::make(_size, f);
1910 }
1911 
1912 //------------------------------Value------------------------------------------
1913 // Compute the type of the PCTableNode.  If reachable it is a tuple of
1914 // Control, otherwise the table targets are not reachable
1915 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
1916   if( phase->type(in(0)) == Type::CONTROL )
1917     return bottom_type();
1918   return Type::TOP;             // All paths dead?  Then so are we
1919 }
1920 
1921 //------------------------------Ideal------------------------------------------
1922 // Return a node which is more "ideal" than the current node.  Strip out
1923 // control copies
1924 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1925   return remove_dead_region(phase, can_reshape) ? this : NULL;
1926 }
1927 
1928 //=============================================================================
1929 uint JumpProjNode::hash() const {
1930   return Node::hash() + _dest_bci;
1931 }
1932 
1933 uint JumpProjNode::cmp( const Node &n ) const {
1934   return ProjNode::cmp(n) &&
1935     _dest_bci == ((JumpProjNode&)n)._dest_bci;
1936 }
1937 
1938 #ifndef PRODUCT
1939 void JumpProjNode::dump_spec(outputStream *st) const {
1940   ProjNode::dump_spec(st);
1941    st->print("@bci %d ",_dest_bci);
1942 }
1943 #endif
1944 
1945 //=============================================================================
1946 //------------------------------Value------------------------------------------
1947 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
1948 // have the default "fall_through_index" path.
1949 const Type *CatchNode::Value( PhaseTransform *phase ) const {
1950   // Unreachable?  Then so are all paths from here.
1951   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1952   // First assume all paths are reachable
1953   const Type** f = TypeTuple::fields(_size);
1954   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1955   // Identify cases that will always throw an exception
1956   // () rethrow call
1957   // () virtual or interface call with NULL receiver
1958   // () call is a check cast with incompatible arguments
1959   if( in(1)->is_Proj() ) {
1960     Node *i10 = in(1)->in(0);
1961     if( i10->is_Call() ) {
1962       CallNode *call = i10->as_Call();
1963       // Rethrows always throw exceptions, never return
1964       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
1965         f[CatchProjNode::fall_through_index] = Type::TOP;
1966       } else if( call->req() > TypeFunc::Parms ) {
1967         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
1968         // Check for null receiver to virtual or interface calls
1969         if( call->is_CallDynamicJava() &&
1970             arg0->higher_equal(TypePtr::NULL_PTR) ) {
1971           f[CatchProjNode::fall_through_index] = Type::TOP;
1972         }
1973       } // End of if not a runtime stub
1974     } // End of if have call above me
1975   } // End of slot 1 is not a projection
1976   return TypeTuple::make(_size, f);
1977 }
1978 
1979 //=============================================================================
1980 uint CatchProjNode::hash() const {
1981   return Node::hash() + _handler_bci;
1982 }
1983 
1984 
1985 uint CatchProjNode::cmp( const Node &n ) const {
1986   return ProjNode::cmp(n) &&
1987     _handler_bci == ((CatchProjNode&)n)._handler_bci;
1988 }
1989 
1990 
1991 //------------------------------Identity---------------------------------------
1992 // If only 1 target is possible, choose it if it is the main control
1993 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
1994   // If my value is control and no other value is, then treat as ID
1995   const TypeTuple *t = phase->type(in(0))->is_tuple();
1996   if (t->field_at(_con) != Type::CONTROL)  return this;
1997   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
1998   // also remove any exception table entry.  Thus we must know the call
1999   // feeding the Catch will not really throw an exception.  This is ok for
2000   // the main fall-thru control (happens when we know a call can never throw
2001   // an exception) or for "rethrow", because a further optimization will
2002   // yank the rethrow (happens when we inline a function that can throw an
2003   // exception and the caller has no handler).  Not legal, e.g., for passing
2004   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2005   // These cases MUST throw an exception via the runtime system, so the VM
2006   // will be looking for a table entry.
2007   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2008   CallNode *call;
2009   if (_con != TypeFunc::Control && // Bail out if not the main control.
2010       !(proj->is_Proj() &&      // AND NOT a rethrow
2011         proj->in(0)->is_Call() &&
2012         (call = proj->in(0)->as_Call()) &&
2013         call->entry_point() == OptoRuntime::rethrow_stub()))
2014     return this;
2015 
2016   // Search for any other path being control
2017   for (uint i = 0; i < t->cnt(); i++) {
2018     if (i != _con && t->field_at(i) == Type::CONTROL)
2019       return this;
2020   }
2021   // Only my path is possible; I am identity on control to the jump
2022   return in(0)->in(0);
2023 }
2024 
2025 
2026 #ifndef PRODUCT
2027 void CatchProjNode::dump_spec(outputStream *st) const {
2028   ProjNode::dump_spec(st);
2029   st->print("@bci %d ",_handler_bci);
2030 }
2031 #endif
2032 
2033 //=============================================================================
2034 //------------------------------Identity---------------------------------------
2035 // Check for CreateEx being Identity.
2036 Node *CreateExNode::Identity( PhaseTransform *phase ) {
2037   if( phase->type(in(1)) == Type::TOP ) return in(1);
2038   if( phase->type(in(0)) == Type::TOP ) return in(0);
2039   // We only come from CatchProj, unless the CatchProj goes away.
2040   // If the CatchProj is optimized away, then we just carry the
2041   // exception oop through.
2042   CallNode *call = in(1)->in(0)->as_Call();
2043 
2044   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2045     ? this
2046     : call->in(TypeFunc::Parms);
2047 }
2048 
2049 //=============================================================================
2050 //------------------------------Value------------------------------------------
2051 // Check for being unreachable.
2052 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2053   if (!in(0) || in(0)->is_top()) return Type::TOP;
2054   return bottom_type();
2055 }
2056 
2057 //------------------------------Ideal------------------------------------------
2058 // Check for no longer being part of a loop
2059 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2060   if (can_reshape && !in(0)->is_Loop()) {
2061     // Dead code elimination can sometimes delete this projection so
2062     // if it's not there, there's nothing to do.
2063     Node* fallthru = proj_out(0);
2064     if (fallthru != NULL) {
2065       phase->is_IterGVN()->subsume_node(fallthru, in(0));
2066     }
2067     return phase->C->top();
2068   }
2069   return NULL;
2070 }
2071 
2072 #ifndef PRODUCT
2073 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2074   st->print("%s", Name());
2075 }
2076 #endif