1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Optimization - Graph Style
  26 
  27 #include "incls/_precompiled.incl"
  28 #include "incls/_block.cpp.incl"
  29 
  30 
  31 //-----------------------------------------------------------------------------
  32 void Block_Array::grow( uint i ) {
  33   assert(i >= Max(), "must be an overflow");
  34   debug_only(_limit = i+1);
  35   if( i < _size )  return;
  36   if( !_size ) {
  37     _size = 1;
  38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  39     _blocks[0] = NULL;
  40   }
  41   uint old = _size;
  42   while( i >= _size ) _size <<= 1;      // Double to fit
  43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  45 }
  46 
  47 //=============================================================================
  48 void Block_List::remove(uint i) {
  49   assert(i < _cnt, "index out of bounds");
  50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  51   pop(); // shrink list by one block
  52 }
  53 
  54 void Block_List::insert(uint i, Block *b) {
  55   push(b); // grow list by one block
  56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  57   _blocks[i] = b;
  58 }
  59 
  60 #ifndef PRODUCT
  61 void Block_List::print() {
  62   for (uint i=0; i < size(); i++) {
  63     tty->print("B%d ", _blocks[i]->_pre_order);
  64   }
  65   tty->print("size = %d\n", size());
  66 }
  67 #endif
  68 
  69 //=============================================================================
  70 
  71 uint Block::code_alignment() {
  72   // Check for Root block
  73   if( _pre_order == 0 ) return CodeEntryAlignment;
  74   // Check for Start block
  75   if( _pre_order == 1 ) return InteriorEntryAlignment;
  76   // Check for loop alignment
  77   if (has_loop_alignment())  return loop_alignment();
  78 
  79   return 1;                     // no particular alignment
  80 }
  81 
  82 uint Block::compute_loop_alignment() {
  83   Node *h = head();
  84   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
  85     // Pre- and post-loops have low trip count so do not bother with
  86     // NOPs for align loop head.  The constants are hidden from tuning
  87     // but only because my "divide by 4" heuristic surely gets nearly
  88     // all possible gain (a "do not align at all" heuristic has a
  89     // chance of getting a really tiny gain).
  90     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  91                                 h->as_CountedLoop()->is_post_loop()) )
  92       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
  93     // Loops with low backedge frequency should not be aligned.
  94     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
  95     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
  96       return 1;             // Loop does not loop, more often than not!
  97     }
  98     return OptoLoopAlignment; // Otherwise align loop head
  99   }
 100 
 101   return 1;                     // no particular alignment
 102 }
 103 
 104 //-----------------------------------------------------------------------------
 105 // Compute the size of first 'inst_cnt' instructions in this block.
 106 // Return the number of instructions left to compute if the block has
 107 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 108 // exceeds OptoLoopAlignment.
 109 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 110                                     PhaseRegAlloc* ra) {
 111   uint last_inst = _nodes.size();
 112   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 113     uint inst_size = _nodes[j]->size(ra);
 114     if( inst_size > 0 ) {
 115       inst_cnt--;
 116       uint sz = sum_size + inst_size;
 117       if( sz <= (uint)OptoLoopAlignment ) {
 118         // Compute size of instructions which fit into fetch buffer only
 119         // since all inst_cnt instructions will not fit even if we align them.
 120         sum_size = sz;
 121       } else {
 122         return 0;
 123       }
 124     }
 125   }
 126   return inst_cnt;
 127 }
 128 
 129 //-----------------------------------------------------------------------------
 130 uint Block::find_node( const Node *n ) const {
 131   for( uint i = 0; i < _nodes.size(); i++ ) {
 132     if( _nodes[i] == n )
 133       return i;
 134   }
 135   ShouldNotReachHere();
 136   return 0;
 137 }
 138 
 139 // Find and remove n from block list
 140 void Block::find_remove( const Node *n ) {
 141   _nodes.remove(find_node(n));
 142 }
 143 
 144 //------------------------------is_Empty---------------------------------------
 145 // Return empty status of a block.  Empty blocks contain only the head, other
 146 // ideal nodes, and an optional trailing goto.
 147 int Block::is_Empty() const {
 148 
 149   // Root or start block is not considered empty
 150   if (head()->is_Root() || head()->is_Start()) {
 151     return not_empty;
 152   }
 153 
 154   int success_result = completely_empty;
 155   int end_idx = _nodes.size()-1;
 156 
 157   // Check for ending goto
 158   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
 159     success_result = empty_with_goto;
 160     end_idx--;
 161   }
 162 
 163   // Unreachable blocks are considered empty
 164   if (num_preds() <= 1) {
 165     return success_result;
 166   }
 167 
 168   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 169   // turn directly into code, because only MachNodes have non-trivial
 170   // emit() functions.
 171   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
 172     end_idx--;
 173   }
 174 
 175   // No room for any interesting instructions?
 176   if (end_idx == 0) {
 177     return success_result;
 178   }
 179 
 180   return not_empty;
 181 }
 182 
 183 //------------------------------has_uncommon_code------------------------------
 184 // Return true if the block's code implies that it is likely to be
 185 // executed infrequently.  Check to see if the block ends in a Halt or
 186 // a low probability call.
 187 bool Block::has_uncommon_code() const {
 188   Node* en = end();
 189 
 190   if (en->is_Goto())
 191     en = en->in(0);
 192   if (en->is_Catch())
 193     en = en->in(0);
 194   if (en->is_Proj() && en->in(0)->is_MachCall()) {
 195     MachCallNode* call = en->in(0)->as_MachCall();
 196     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 197       // This is true for slow-path stubs like new_{instance,array},
 198       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 199       // The magic number corresponds to the probability of an uncommon_trap,
 200       // even though it is a count not a probability.
 201       return true;
 202     }
 203   }
 204 
 205   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 206   return op == Op_Halt;
 207 }
 208 
 209 //------------------------------is_uncommon------------------------------------
 210 // True if block is low enough frequency or guarded by a test which
 211 // mostly does not go here.
 212 bool Block::is_uncommon( Block_Array &bbs ) const {
 213   // Initial blocks must never be moved, so are never uncommon.
 214   if (head()->is_Root() || head()->is_Start())  return false;
 215 
 216   // Check for way-low freq
 217   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 218 
 219   // Look for code shape indicating uncommon_trap or slow path
 220   if (has_uncommon_code()) return true;
 221 
 222   const float epsilon = 0.05f;
 223   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 224   uint uncommon_preds = 0;
 225   uint freq_preds = 0;
 226   uint uncommon_for_freq_preds = 0;
 227 
 228   for( uint i=1; i<num_preds(); i++ ) {
 229     Block* guard = bbs[pred(i)->_idx];
 230     // Check to see if this block follows its guard 1 time out of 10000
 231     // or less.
 232     //
 233     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 234     // we intend to be "uncommon", such as slow-path TLE allocation,
 235     // predicted call failure, and uncommon trap triggers.
 236     //
 237     // Use an epsilon value of 5% to allow for variability in frequency
 238     // predictions and floating point calculations. The net effect is
 239     // that guard_factor is set to 9500.
 240     //
 241     // Ignore low-frequency blocks.
 242     // The next check is (guard->_freq < 1.e-5 * 9500.).
 243     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 244       uncommon_preds++;
 245     } else {
 246       freq_preds++;
 247       if( _freq < guard->_freq * guard_factor ) {
 248         uncommon_for_freq_preds++;
 249       }
 250     }
 251   }
 252   if( num_preds() > 1 &&
 253       // The block is uncommon if all preds are uncommon or
 254       (uncommon_preds == (num_preds()-1) ||
 255       // it is uncommon for all frequent preds.
 256        uncommon_for_freq_preds == freq_preds) ) {
 257     return true;
 258   }
 259   return false;
 260 }
 261 
 262 //------------------------------dump-------------------------------------------
 263 #ifndef PRODUCT
 264 void Block::dump_bidx(const Block* orig) const {
 265   if (_pre_order) tty->print("B%d",_pre_order);
 266   else tty->print("N%d", head()->_idx);
 267 
 268   if (Verbose && orig != this) {
 269     // Dump the original block's idx
 270     tty->print(" (");
 271     orig->dump_bidx(orig);
 272     tty->print(")");
 273   }
 274 }
 275 
 276 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
 277   if (is_connector()) {
 278     for (uint i=1; i<num_preds(); i++) {
 279       Block *p = ((*bbs)[pred(i)->_idx]);
 280       p->dump_pred(bbs, orig);
 281     }
 282   } else {
 283     dump_bidx(orig);
 284     tty->print(" ");
 285   }
 286 }
 287 
 288 void Block::dump_head( const Block_Array *bbs ) const {
 289   // Print the basic block
 290   dump_bidx(this);
 291   tty->print(": #\t");
 292 
 293   // Print the incoming CFG edges and the outgoing CFG edges
 294   for( uint i=0; i<_num_succs; i++ ) {
 295     non_connector_successor(i)->dump_bidx(_succs[i]);
 296     tty->print(" ");
 297   }
 298   tty->print("<- ");
 299   if( head()->is_block_start() ) {
 300     for (uint i=1; i<num_preds(); i++) {
 301       Node *s = pred(i);
 302       if (bbs) {
 303         Block *p = (*bbs)[s->_idx];
 304         p->dump_pred(bbs, p);
 305       } else {
 306         while (!s->is_block_start())
 307           s = s->in(0);
 308         tty->print("N%d ", s->_idx );
 309       }
 310     }
 311   } else
 312     tty->print("BLOCK HEAD IS JUNK  ");
 313 
 314   // Print loop, if any
 315   const Block *bhead = this;    // Head of self-loop
 316   Node *bh = bhead->head();
 317   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
 318     LoopNode *loop = bh->as_Loop();
 319     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
 320     while (bx->is_connector()) {
 321       bx = (*bbs)[bx->pred(1)->_idx];
 322     }
 323     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 324     // Dump any loop-specific bits, especially for CountedLoops.
 325     loop->dump_spec(tty);
 326   } else if (has_loop_alignment()) {
 327     tty->print(" top-of-loop");
 328   }
 329   tty->print(" Freq: %g",_freq);
 330   if( Verbose || WizardMode ) {
 331     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 332     tty->print(" RegPressure: %d",_reg_pressure);
 333     tty->print(" IHRP Index: %d",_ihrp_index);
 334     tty->print(" FRegPressure: %d",_freg_pressure);
 335     tty->print(" FHRP Index: %d",_fhrp_index);
 336   }
 337   tty->print_cr("");
 338 }
 339 
 340 void Block::dump() const { dump(0); }
 341 
 342 void Block::dump( const Block_Array *bbs ) const {
 343   dump_head(bbs);
 344   uint cnt = _nodes.size();
 345   for( uint i=0; i<cnt; i++ )
 346     _nodes[i]->dump();
 347   tty->print("\n");
 348 }
 349 #endif
 350 
 351 //=============================================================================
 352 //------------------------------PhaseCFG---------------------------------------
 353 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
 354   Phase(CFG),
 355   _bbs(a),
 356   _root(r)
 357 #ifndef PRODUCT
 358   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 359 #endif
 360 #ifdef ASSERT
 361   , _raw_oops(a)
 362 #endif
 363 {
 364   ResourceMark rm;
 365   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 366   // then Match it into a machine-specific Node.  Then clone the machine
 367   // Node on demand.
 368   Node *x = new (C, 1) GotoNode(NULL);
 369   x->init_req(0, x);
 370   _goto = m.match_tree(x);
 371   assert(_goto != NULL, "");
 372   _goto->set_req(0,_goto);
 373 
 374   // Build the CFG in Reverse Post Order
 375   _num_blocks = build_cfg();
 376   _broot = _bbs[_root->_idx];
 377 }
 378 
 379 //------------------------------build_cfg--------------------------------------
 380 // Build a proper looking CFG.  Make every block begin with either a StartNode
 381 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 382 // The RootNode both starts and ends it's own block.  Do this with a recursive
 383 // backwards walk over the control edges.
 384 uint PhaseCFG::build_cfg() {
 385   Arena *a = Thread::current()->resource_area();
 386   VectorSet visited(a);
 387 
 388   // Allocate stack with enough space to avoid frequent realloc
 389   Node_Stack nstack(a, C->unique() >> 1);
 390   nstack.push(_root, 0);
 391   uint sum = 0;                 // Counter for blocks
 392 
 393   while (nstack.is_nonempty()) {
 394     // node and in's index from stack's top
 395     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 396     // only nodes which point to the start of basic block (see below).
 397     Node *np = nstack.node();
 398     // idx > 0, except for the first node (_root) pushed on stack
 399     // at the beginning when idx == 0.
 400     // We will use the condition (idx == 0) later to end the build.
 401     uint idx = nstack.index();
 402     Node *proj = np->in(idx);
 403     const Node *x = proj->is_block_proj();
 404     // Does the block end with a proper block-ending Node?  One of Return,
 405     // If or Goto? (This check should be done for visited nodes also).
 406     if (x == NULL) {                    // Does not end right...
 407       Node *g = _goto->clone(); // Force it to end in a Goto
 408       g->set_req(0, proj);
 409       np->set_req(idx, g);
 410       x = proj = g;
 411     }
 412     if (!visited.test_set(x->_idx)) { // Visit this block once
 413       // Skip any control-pinned middle'in stuff
 414       Node *p = proj;
 415       do {
 416         proj = p;                   // Update pointer to last Control
 417         p = p->in(0);               // Move control forward
 418       } while( !p->is_block_proj() &&
 419                !p->is_block_start() );
 420       // Make the block begin with one of Region or StartNode.
 421       if( !p->is_block_start() ) {
 422         RegionNode *r = new (C, 2) RegionNode( 2 );
 423         r->init_req(1, p);         // Insert RegionNode in the way
 424         proj->set_req(0, r);        // Insert RegionNode in the way
 425         p = r;
 426       }
 427       // 'p' now points to the start of this basic block
 428 
 429       // Put self in array of basic blocks
 430       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
 431       _bbs.map(p->_idx,bb);
 432       _bbs.map(x->_idx,bb);
 433       if( x != p )                  // Only for root is x == p
 434         bb->_nodes.push((Node*)x);
 435 
 436       // Now handle predecessors
 437       ++sum;                        // Count 1 for self block
 438       uint cnt = bb->num_preds();
 439       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 440         Node *prevproj = p->in(i);  // Get prior input
 441         assert( !prevproj->is_Con(), "dead input not removed" );
 442         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 443         // i.e., it splits at the source (via an IF or SWITCH) and merges
 444         // at the destination (via a many-input Region).
 445         // This breaks critical edges.  The RegionNode to start the block
 446         // will be added when <p,i> is pulled off the node stack
 447         if ( cnt > 2 ) {             // Merging many things?
 448           assert( prevproj== bb->pred(i),"");
 449           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 450             // Force a block on the control-dependent edge
 451             Node *g = _goto->clone();       // Force it to end in a Goto
 452             g->set_req(0,prevproj);
 453             p->set_req(i,g);
 454           }
 455         }
 456         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 457       }
 458     } else { // Post-processing visited nodes
 459       nstack.pop();                 // remove node from stack
 460       // Check if it the fist node pushed on stack at the beginning.
 461       if (idx == 0) break;          // end of the build
 462       // Find predecessor basic block
 463       Block *pb = _bbs[x->_idx];
 464       // Insert into nodes array, if not already there
 465       if( !_bbs.lookup(proj->_idx) ) {
 466         assert( x != proj, "" );
 467         // Map basic block of projection
 468         _bbs.map(proj->_idx,pb);
 469         pb->_nodes.push(proj);
 470       }
 471       // Insert self as a child of my predecessor block
 472       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
 473       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
 474               "too many control users, not a CFG?" );
 475     }
 476   }
 477   // Return number of basic blocks for all children and self
 478   return sum;
 479 }
 480 
 481 //------------------------------insert_goto_at---------------------------------
 482 // Inserts a goto & corresponding basic block between
 483 // block[block_no] and its succ_no'th successor block
 484 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 485   // get block with block_no
 486   assert(block_no < _num_blocks, "illegal block number");
 487   Block* in  = _blocks[block_no];
 488   // get successor block succ_no
 489   assert(succ_no < in->_num_succs, "illegal successor number");
 490   Block* out = in->_succs[succ_no];
 491   // Compute frequency of the new block. Do this before inserting
 492   // new block in case succ_prob() needs to infer the probability from
 493   // surrounding blocks.
 494   float freq = in->_freq * in->succ_prob(succ_no);
 495   // get ProjNode corresponding to the succ_no'th successor of the in block
 496   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
 497   // create region for basic block
 498   RegionNode* region = new (C, 2) RegionNode(2);
 499   region->init_req(1, proj);
 500   // setup corresponding basic block
 501   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
 502   _bbs.map(region->_idx, block);
 503   C->regalloc()->set_bad(region->_idx);
 504   // add a goto node
 505   Node* gto = _goto->clone(); // get a new goto node
 506   gto->set_req(0, region);
 507   // add it to the basic block
 508   block->_nodes.push(gto);
 509   _bbs.map(gto->_idx, block);
 510   C->regalloc()->set_bad(gto->_idx);
 511   // hook up successor block
 512   block->_succs.map(block->_num_succs++, out);
 513   // remap successor's predecessors if necessary
 514   for (uint i = 1; i < out->num_preds(); i++) {
 515     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 516   }
 517   // remap predecessor's successor to new block
 518   in->_succs.map(succ_no, block);
 519   // Set the frequency of the new block
 520   block->_freq = freq;
 521   // add new basic block to basic block list
 522   _blocks.insert(block_no + 1, block);
 523   _num_blocks++;
 524 }
 525 
 526 //------------------------------no_flip_branch---------------------------------
 527 // Does this block end in a multiway branch that cannot have the default case
 528 // flipped for another case?
 529 static bool no_flip_branch( Block *b ) {
 530   int branch_idx = b->_nodes.size() - b->_num_succs-1;
 531   if( branch_idx < 1 ) return false;
 532   Node *bra = b->_nodes[branch_idx];
 533   if( bra->is_Catch() )
 534     return true;
 535   if( bra->is_Mach() ) {
 536     if( bra->is_MachNullCheck() )
 537       return true;
 538     int iop = bra->as_Mach()->ideal_Opcode();
 539     if( iop == Op_FastLock || iop == Op_FastUnlock )
 540       return true;
 541   }
 542   return false;
 543 }
 544 
 545 //------------------------------convert_NeverBranch_to_Goto--------------------
 546 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 547 // true target.  NeverBranch are treated as a conditional branch that always
 548 // goes the same direction for most of the optimizer and are used to give a
 549 // fake exit path to infinite loops.  At this late stage they need to turn
 550 // into Goto's so that when you enter the infinite loop you indeed hang.
 551 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 552   // Find true target
 553   int end_idx = b->end_idx();
 554   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
 555   Block *succ = b->_succs[idx];
 556   Node* gto = _goto->clone(); // get a new goto node
 557   gto->set_req(0, b->head());
 558   Node *bp = b->_nodes[end_idx];
 559   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
 560   _bbs.map(gto->_idx, b);
 561   C->regalloc()->set_bad(gto->_idx);
 562   b->_nodes.pop();              // Yank projections
 563   b->_nodes.pop();              // Yank projections
 564   b->_succs.map(0,succ);        // Map only successor
 565   b->_num_succs = 1;
 566   // remap successor's predecessors if necessary
 567   uint j;
 568   for( j = 1; j < succ->num_preds(); j++)
 569     if( succ->pred(j)->in(0) == bp )
 570       succ->head()->set_req(j, gto);
 571   // Kill alternate exit path
 572   Block *dead = b->_succs[1-idx];
 573   for( j = 1; j < dead->num_preds(); j++)
 574     if( dead->pred(j)->in(0) == bp )
 575       break;
 576   // Scan through block, yanking dead path from
 577   // all regions and phis.
 578   dead->head()->del_req(j);
 579   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
 580     dead->_nodes[k]->del_req(j);
 581 }
 582 
 583 //------------------------------move_to_next-----------------------------------
 584 // Helper function to move block bx to the slot following b_index. Return
 585 // true if the move is successful, otherwise false
 586 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 587   if (bx == NULL) return false;
 588 
 589   // Return false if bx is already scheduled.
 590   uint bx_index = bx->_pre_order;
 591   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
 592     return false;
 593   }
 594 
 595   // Find the current index of block bx on the block list
 596   bx_index = b_index + 1;
 597   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
 598   assert(_blocks[bx_index] == bx, "block not found");
 599 
 600   // If the previous block conditionally falls into bx, return false,
 601   // because moving bx will create an extra jump.
 602   for(uint k = 1; k < bx->num_preds(); k++ ) {
 603     Block* pred = _bbs[bx->pred(k)->_idx];
 604     if (pred == _blocks[bx_index-1]) {
 605       if (pred->_num_succs != 1) {
 606         return false;
 607       }
 608     }
 609   }
 610 
 611   // Reinsert bx just past block 'b'
 612   _blocks.remove(bx_index);
 613   _blocks.insert(b_index + 1, bx);
 614   return true;
 615 }
 616 
 617 //------------------------------move_to_end------------------------------------
 618 // Move empty and uncommon blocks to the end.
 619 void PhaseCFG::move_to_end(Block *b, uint i) {
 620   int e = b->is_Empty();
 621   if (e != Block::not_empty) {
 622     if (e == Block::empty_with_goto) {
 623       // Remove the goto, but leave the block.
 624       b->_nodes.pop();
 625     }
 626     // Mark this block as a connector block, which will cause it to be
 627     // ignored in certain functions such as non_connector_successor().
 628     b->set_connector();
 629   }
 630   // Move the empty block to the end, and don't recheck.
 631   _blocks.remove(i);
 632   _blocks.push(b);
 633 }
 634 
 635 //---------------------------set_loop_alignment--------------------------------
 636 // Set loop alignment for every block
 637 void PhaseCFG::set_loop_alignment() {
 638   uint last = _num_blocks;
 639   assert( _blocks[0] == _broot, "" );
 640 
 641   for (uint i = 1; i < last; i++ ) {
 642     Block *b = _blocks[i];
 643     if (b->head()->is_Loop()) {
 644       b->set_loop_alignment(b);
 645     }
 646   }
 647 }
 648 
 649 //-----------------------------remove_empty------------------------------------
 650 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 651 // to the end.
 652 void PhaseCFG::remove_empty() {
 653   // Move uncommon blocks to the end
 654   uint last = _num_blocks;
 655   assert( _blocks[0] == _broot, "" );
 656 
 657   for (uint i = 1; i < last; i++) {
 658     Block *b = _blocks[i];
 659     if (b->is_connector()) break;
 660 
 661     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 662     // true target.  NeverBranch are treated as a conditional branch that
 663     // always goes the same direction for most of the optimizer and are used
 664     // to give a fake exit path to infinite loops.  At this late stage they
 665     // need to turn into Goto's so that when you enter the infinite loop you
 666     // indeed hang.
 667     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
 668       convert_NeverBranch_to_Goto(b);
 669 
 670     // Look for uncommon blocks and move to end.
 671     if (!C->do_freq_based_layout()) {
 672       if( b->is_uncommon(_bbs) ) {
 673         move_to_end(b, i);
 674         last--;                   // No longer check for being uncommon!
 675         if( no_flip_branch(b) ) { // Fall-thru case must follow?
 676           b = _blocks[i];         // Find the fall-thru block
 677           move_to_end(b, i);
 678           last--;
 679         }
 680         i--;                      // backup block counter post-increment
 681       }
 682     }
 683   }
 684 
 685   // Move empty blocks to the end
 686   last = _num_blocks;
 687   for (uint i = 1; i < last; i++) {
 688     Block *b = _blocks[i];
 689     if (b->is_Empty() != Block::not_empty) {
 690       move_to_end(b, i);
 691       last--;
 692       i--;
 693     }
 694   } // End of for all blocks
 695 }
 696 
 697 //-----------------------------fixup_flow--------------------------------------
 698 // Fix up the final control flow for basic blocks.
 699 void PhaseCFG::fixup_flow() {
 700   // Fixup final control flow for the blocks.  Remove jump-to-next
 701   // block.  If neither arm of a IF follows the conditional branch, we
 702   // have to add a second jump after the conditional.  We place the
 703   // TRUE branch target in succs[0] for both GOTOs and IFs.
 704   for (uint i=0; i < _num_blocks; i++) {
 705     Block *b = _blocks[i];
 706     b->_pre_order = i;          // turn pre-order into block-index
 707 
 708     // Connector blocks need no further processing.
 709     if (b->is_connector()) {
 710       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
 711              "All connector blocks should sink to the end");
 712       continue;
 713     }
 714     assert(b->is_Empty() != Block::completely_empty,
 715            "Empty blocks should be connectors");
 716 
 717     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
 718     Block *bs0 = b->non_connector_successor(0);
 719 
 720     // Check for multi-way branches where I cannot negate the test to
 721     // exchange the true and false targets.
 722     if( no_flip_branch( b ) ) {
 723       // Find fall through case - if must fall into its target
 724       int branch_idx = b->_nodes.size() - b->_num_succs;
 725       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
 726         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
 727         if (p->_con == 0) {
 728           // successor j2 is fall through case
 729           if (b->non_connector_successor(j2) != bnext) {
 730             // but it is not the next block => insert a goto
 731             insert_goto_at(i, j2);
 732           }
 733           // Put taken branch in slot 0
 734           if( j2 == 0 && b->_num_succs == 2) {
 735             // Flip targets in succs map
 736             Block *tbs0 = b->_succs[0];
 737             Block *tbs1 = b->_succs[1];
 738             b->_succs.map( 0, tbs1 );
 739             b->_succs.map( 1, tbs0 );
 740           }
 741           break;
 742         }
 743       }
 744       // Remove all CatchProjs
 745       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
 746 
 747     } else if (b->_num_succs == 1) {
 748       // Block ends in a Goto?
 749       if (bnext == bs0) {
 750         // We fall into next block; remove the Goto
 751         b->_nodes.pop();
 752       }
 753 
 754     } else if( b->_num_succs == 2 ) { // Block ends in a If?
 755       // Get opcode of 1st projection (matches _succs[0])
 756       // Note: Since this basic block has 2 exits, the last 2 nodes must
 757       //       be projections (in any order), the 3rd last node must be
 758       //       the IfNode (we have excluded other 2-way exits such as
 759       //       CatchNodes already).
 760       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
 761       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
 762       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
 763 
 764       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 765       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
 766       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
 767 
 768       Block *bs1 = b->non_connector_successor(1);
 769 
 770       // Check for neither successor block following the current
 771       // block ending in a conditional. If so, move one of the
 772       // successors after the current one, provided that the
 773       // successor was previously unscheduled, but moveable
 774       // (i.e., all paths to it involve a branch).
 775       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
 776         // Choose the more common successor based on the probability
 777         // of the conditional branch.
 778         Block *bx = bs0;
 779         Block *by = bs1;
 780 
 781         // _prob is the probability of taking the true path. Make
 782         // p the probability of taking successor #1.
 783         float p = iff->as_MachIf()->_prob;
 784         if( proj0->Opcode() == Op_IfTrue ) {
 785           p = 1.0 - p;
 786         }
 787 
 788         // Prefer successor #1 if p > 0.5
 789         if (p > PROB_FAIR) {
 790           bx = bs1;
 791           by = bs0;
 792         }
 793 
 794         // Attempt the more common successor first
 795         if (move_to_next(bx, i)) {
 796           bnext = bx;
 797         } else if (move_to_next(by, i)) {
 798           bnext = by;
 799         }
 800       }
 801 
 802       // Check for conditional branching the wrong way.  Negate
 803       // conditional, if needed, so it falls into the following block
 804       // and branches to the not-following block.
 805 
 806       // Check for the next block being in succs[0].  We are going to branch
 807       // to succs[0], so we want the fall-thru case as the next block in
 808       // succs[1].
 809       if (bnext == bs0) {
 810         // Fall-thru case in succs[0], so flip targets in succs map
 811         Block *tbs0 = b->_succs[0];
 812         Block *tbs1 = b->_succs[1];
 813         b->_succs.map( 0, tbs1 );
 814         b->_succs.map( 1, tbs0 );
 815         // Flip projection for each target
 816         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
 817 
 818       } else if( bnext != bs1 ) {
 819         // Need a double-branch
 820         // The existing conditional branch need not change.
 821         // Add a unconditional branch to the false target.
 822         // Alas, it must appear in its own block and adding a
 823         // block this late in the game is complicated.  Sigh.
 824         insert_goto_at(i, 1);
 825       }
 826 
 827       // Make sure we TRUE branch to the target
 828       if( proj0->Opcode() == Op_IfFalse ) {
 829         iff->negate();
 830       }
 831 
 832       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
 833       b->_nodes.pop();
 834 
 835     } else {
 836       // Multi-exit block, e.g. a switch statement
 837       // But we don't need to do anything here
 838     }
 839   } // End of for all blocks
 840 }
 841 
 842 
 843 //------------------------------dump-------------------------------------------
 844 #ifndef PRODUCT
 845 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
 846   const Node *x = end->is_block_proj();
 847   assert( x, "not a CFG" );
 848 
 849   // Do not visit this block again
 850   if( visited.test_set(x->_idx) ) return;
 851 
 852   // Skip through this block
 853   const Node *p = x;
 854   do {
 855     p = p->in(0);               // Move control forward
 856     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
 857   } while( !p->is_block_start() );
 858 
 859   // Recursively visit
 860   for( uint i=1; i<p->req(); i++ )
 861     _dump_cfg(p->in(i),visited);
 862 
 863   // Dump the block
 864   _bbs[p->_idx]->dump(&_bbs);
 865 }
 866 
 867 void PhaseCFG::dump( ) const {
 868   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
 869   if( _blocks.size() ) {        // Did we do basic-block layout?
 870     for( uint i=0; i<_num_blocks; i++ )
 871       _blocks[i]->dump(&_bbs);
 872   } else {                      // Else do it with a DFS
 873     VectorSet visited(_bbs._arena);
 874     _dump_cfg(_root,visited);
 875   }
 876 }
 877 
 878 void PhaseCFG::dump_headers() {
 879   for( uint i = 0; i < _num_blocks; i++ ) {
 880     if( _blocks[i] == NULL ) continue;
 881     _blocks[i]->dump_head(&_bbs);
 882   }
 883 }
 884 
 885 void PhaseCFG::verify( ) const {
 886 #ifdef ASSERT
 887   // Verify sane CFG
 888   for( uint i = 0; i < _num_blocks; i++ ) {
 889     Block *b = _blocks[i];
 890     uint cnt = b->_nodes.size();
 891     uint j;
 892     for( j = 0; j < cnt; j++ ) {
 893       Node *n = b->_nodes[j];
 894       assert( _bbs[n->_idx] == b, "" );
 895       if( j >= 1 && n->is_Mach() &&
 896           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 897         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
 898                 "CreateEx must be first instruction in block" );
 899       }
 900       for( uint k = 0; k < n->req(); k++ ) {
 901         Node *def = n->in(k);
 902         if( def && def != n ) {
 903           assert( _bbs[def->_idx] || def->is_Con(),
 904                   "must have block; constants for debug info ok" );
 905           // Verify that instructions in the block is in correct order.
 906           // Uses must follow their definition if they are at the same block.
 907           // Mostly done to check that MachSpillCopy nodes are placed correctly
 908           // when CreateEx node is moved in build_ifg_physical().
 909           if( _bbs[def->_idx] == b &&
 910               !(b->head()->is_Loop() && n->is_Phi()) &&
 911               // See (+++) comment in reg_split.cpp
 912               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
 913             bool is_loop = false;
 914             if (n->is_Phi()) {
 915               for( uint l = 0; l < def->req(); l++ ) {
 916                 if (n == def->in(l)) {
 917                   is_loop = true;
 918                   break; // Some kind of loop
 919                 }
 920               }
 921             }
 922             assert( is_loop || b->find_node(def) < j, "uses must follow definitions" );
 923           }
 924           if( def->is_SafePointScalarObject() ) {
 925             assert(_bbs[def->_idx] == b, "SafePointScalarObject Node should be at the same block as its SafePoint node");
 926             assert(_bbs[def->_idx] == _bbs[def->in(0)->_idx], "SafePointScalarObject Node should be at the same block as its control edge");
 927           }
 928         }
 929       }
 930     }
 931 
 932     j = b->end_idx();
 933     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
 934     assert( bp, "last instruction must be a block proj" );
 935     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
 936     if( bp->is_Catch() ) {
 937       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
 938       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
 939     }
 940     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
 941       assert( b->_num_succs == 2, "Conditional branch must have two targets");
 942     }
 943   }
 944 #endif
 945 }
 946 #endif
 947 
 948 //=============================================================================
 949 //------------------------------UnionFind--------------------------------------
 950 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
 951   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
 952 }
 953 
 954 void UnionFind::extend( uint from_idx, uint to_idx ) {
 955   _nesting.check();
 956   if( from_idx >= _max ) {
 957     uint size = 16;
 958     while( size <= from_idx ) size <<=1;
 959     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
 960     _max = size;
 961   }
 962   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
 963   _indices[from_idx] = to_idx;
 964 }
 965 
 966 void UnionFind::reset( uint max ) {
 967   assert( max <= max_uint, "Must fit within uint" );
 968   // Force the Union-Find mapping to be at least this large
 969   extend(max,0);
 970   // Initialize to be the ID mapping.
 971   for( uint i=0; i<max; i++ ) map(i,i);
 972 }
 973 
 974 //------------------------------Find_compress----------------------------------
 975 // Straight out of Tarjan's union-find algorithm
 976 uint UnionFind::Find_compress( uint idx ) {
 977   uint cur  = idx;
 978   uint next = lookup(cur);
 979   while( next != cur ) {        // Scan chain of equivalences
 980     assert( next < cur, "always union smaller" );
 981     cur = next;                 // until find a fixed-point
 982     next = lookup(cur);
 983   }
 984   // Core of union-find algorithm: update chain of
 985   // equivalences to be equal to the root.
 986   while( idx != next ) {
 987     uint tmp = lookup(idx);
 988     map(idx, next);
 989     idx = tmp;
 990   }
 991   return idx;
 992 }
 993 
 994 //------------------------------Find_const-------------------------------------
 995 // Like Find above, but no path compress, so bad asymptotic behavior
 996 uint UnionFind::Find_const( uint idx ) const {
 997   if( idx == 0 ) return idx;    // Ignore the zero idx
 998   // Off the end?  This can happen during debugging dumps
 999   // when data structures have not finished being updated.
1000   if( idx >= _max ) return idx;
1001   uint next = lookup(idx);
1002   while( next != idx ) {        // Scan chain of equivalences
1003     idx = next;                 // until find a fixed-point
1004     next = lookup(idx);
1005   }
1006   return next;
1007 }
1008 
1009 //------------------------------Union------------------------------------------
1010 // union 2 sets together.
1011 void UnionFind::Union( uint idx1, uint idx2 ) {
1012   uint src = Find(idx1);
1013   uint dst = Find(idx2);
1014   assert( src, "" );
1015   assert( dst, "" );
1016   assert( src < _max, "oob" );
1017   assert( dst < _max, "oob" );
1018   assert( src < dst, "always union smaller" );
1019   map(dst,src);
1020 }
1021 
1022 #ifndef PRODUCT
1023 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
1024   tty->print_cr("---- Edges ----");
1025   for (int i = 0; i < edges->length(); i++) {
1026     CFGEdge *e = edges->at(i);
1027     if (e != NULL) {
1028       edges->at(i)->dump();
1029     }
1030   }
1031 }
1032 
1033 static void trace_dump(Trace *traces[], int count) {
1034   tty->print_cr("---- Traces ----");
1035   for (int i = 0; i < count; i++) {
1036     Trace *tr = traces[i];
1037     if (tr != NULL) {
1038       tr->dump();
1039     }
1040   }
1041 }
1042 
1043 void Trace::dump( ) const {
1044   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1045   for (Block *b = first_block(); b != NULL; b = next(b)) {
1046     tty->print("  B%d", b->_pre_order);
1047     if (b->head()->is_Loop()) {
1048       tty->print(" (L%d)", b->compute_loop_alignment());
1049     }
1050     if (b->has_loop_alignment()) {
1051       tty->print(" (T%d)", b->code_alignment());
1052     }
1053   }
1054   tty->cr();
1055 }
1056 
1057 void CFGEdge::dump( ) const {
1058   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1059              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1060   switch(state()) {
1061   case connected:
1062     tty->print("connected");
1063     break;
1064   case open:
1065     tty->print("open");
1066     break;
1067   case interior:
1068     tty->print("interior");
1069     break;
1070   }
1071   if (infrequent()) {
1072     tty->print("  infrequent");
1073   }
1074   tty->cr();
1075 }
1076 #endif
1077 
1078 //=============================================================================
1079 
1080 //------------------------------edge_order-------------------------------------
1081 // Comparison function for edges
1082 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1083   float freq0 = (*e0)->freq();
1084   float freq1 = (*e1)->freq();
1085   if (freq0 != freq1) {
1086     return freq0 > freq1 ? -1 : 1;
1087   }
1088 
1089   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1090   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1091 
1092   return dist1 - dist0;
1093 }
1094 
1095 //------------------------------trace_frequency_order--------------------------
1096 // Comparison function for edges
1097 static int trace_frequency_order(const void *p0, const void *p1) {
1098   Trace *tr0 = *(Trace **) p0;
1099   Trace *tr1 = *(Trace **) p1;
1100   Block *b0 = tr0->first_block();
1101   Block *b1 = tr1->first_block();
1102 
1103   // The trace of connector blocks goes at the end;
1104   // we only expect one such trace
1105   if (b0->is_connector() != b1->is_connector()) {
1106     return b1->is_connector() ? -1 : 1;
1107   }
1108 
1109   // Pull more frequently executed blocks to the beginning
1110   float freq0 = b0->_freq;
1111   float freq1 = b1->_freq;
1112   if (freq0 != freq1) {
1113     return freq0 > freq1 ? -1 : 1;
1114   }
1115 
1116   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1117 
1118   return diff;
1119 }
1120 
1121 //------------------------------find_edges-------------------------------------
1122 // Find edges of interest, i.e, those which can fall through. Presumes that
1123 // edges which don't fall through are of low frequency and can be generally
1124 // ignored.  Initialize the list of traces.
1125 void PhaseBlockLayout::find_edges()
1126 {
1127   // Walk the blocks, creating edges and Traces
1128   uint i;
1129   Trace *tr = NULL;
1130   for (i = 0; i < _cfg._num_blocks; i++) {
1131     Block *b = _cfg._blocks[i];
1132     tr = new Trace(b, next, prev);
1133     traces[tr->id()] = tr;
1134 
1135     // All connector blocks should be at the end of the list
1136     if (b->is_connector()) break;
1137 
1138     // If this block and the next one have a one-to-one successor
1139     // predecessor relationship, simply append the next block
1140     int nfallthru = b->num_fall_throughs();
1141     while (nfallthru == 1 &&
1142            b->succ_fall_through(0)) {
1143       Block *n = b->_succs[0];
1144 
1145       // Skip over single-entry connector blocks, we don't want to
1146       // add them to the trace.
1147       while (n->is_connector() && n->num_preds() == 1) {
1148         n = n->_succs[0];
1149       }
1150 
1151       // We see a merge point, so stop search for the next block
1152       if (n->num_preds() != 1) break;
1153 
1154       i++;
1155       assert(n = _cfg._blocks[i], "expecting next block");
1156       tr->append(n);
1157       uf->map(n->_pre_order, tr->id());
1158       traces[n->_pre_order] = NULL;
1159       nfallthru = b->num_fall_throughs();
1160       b = n;
1161     }
1162 
1163     if (nfallthru > 0) {
1164       // Create a CFGEdge for each outgoing
1165       // edge that could be a fall-through.
1166       for (uint j = 0; j < b->_num_succs; j++ ) {
1167         if (b->succ_fall_through(j)) {
1168           Block *target = b->non_connector_successor(j);
1169           float freq = b->_freq * b->succ_prob(j);
1170           int from_pct = (int) ((100 * freq) / b->_freq);
1171           int to_pct = (int) ((100 * freq) / target->_freq);
1172           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1173         }
1174       }
1175     }
1176   }
1177 
1178   // Group connector blocks into one trace
1179   for (i++; i < _cfg._num_blocks; i++) {
1180     Block *b = _cfg._blocks[i];
1181     assert(b->is_connector(), "connector blocks at the end");
1182     tr->append(b);
1183     uf->map(b->_pre_order, tr->id());
1184     traces[b->_pre_order] = NULL;
1185   }
1186 }
1187 
1188 //------------------------------union_traces----------------------------------
1189 // Union two traces together in uf, and null out the trace in the list
1190 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1191 {
1192   uint old_id = old_trace->id();
1193   uint updated_id = updated_trace->id();
1194 
1195   uint lo_id = updated_id;
1196   uint hi_id = old_id;
1197 
1198   // If from is greater than to, swap values to meet
1199   // UnionFind guarantee.
1200   if (updated_id > old_id) {
1201     lo_id = old_id;
1202     hi_id = updated_id;
1203 
1204     // Fix up the trace ids
1205     traces[lo_id] = traces[updated_id];
1206     updated_trace->set_id(lo_id);
1207   }
1208 
1209   // Union the lower with the higher and remove the pointer
1210   // to the higher.
1211   uf->Union(lo_id, hi_id);
1212   traces[hi_id] = NULL;
1213 }
1214 
1215 //------------------------------grow_traces-------------------------------------
1216 // Append traces together via the most frequently executed edges
1217 void PhaseBlockLayout::grow_traces()
1218 {
1219   // Order the edges, and drive the growth of Traces via the most
1220   // frequently executed edges.
1221   edges->sort(edge_order);
1222   for (int i = 0; i < edges->length(); i++) {
1223     CFGEdge *e = edges->at(i);
1224 
1225     if (e->state() != CFGEdge::open) continue;
1226 
1227     Block *src_block = e->from();
1228     Block *targ_block = e->to();
1229 
1230     // Don't grow traces along backedges?
1231     if (!BlockLayoutRotateLoops) {
1232       if (targ_block->_rpo <= src_block->_rpo) {
1233         targ_block->set_loop_alignment(targ_block);
1234         continue;
1235       }
1236     }
1237 
1238     Trace *src_trace = trace(src_block);
1239     Trace *targ_trace = trace(targ_block);
1240 
1241     // If the edge in question can join two traces at their ends,
1242     // append one trace to the other.
1243    if (src_trace->last_block() == src_block) {
1244       if (src_trace == targ_trace) {
1245         e->set_state(CFGEdge::interior);
1246         if (targ_trace->backedge(e)) {
1247           // Reset i to catch any newly eligible edge
1248           // (Or we could remember the first "open" edge, and reset there)
1249           i = 0;
1250         }
1251       } else if (targ_trace->first_block() == targ_block) {
1252         e->set_state(CFGEdge::connected);
1253         src_trace->append(targ_trace);
1254         union_traces(src_trace, targ_trace);
1255       }
1256     }
1257   }
1258 }
1259 
1260 //------------------------------merge_traces-----------------------------------
1261 // Embed one trace into another, if the fork or join points are sufficiently
1262 // balanced.
1263 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1264 {
1265   // Walk the edge list a another time, looking at unprocessed edges.
1266   // Fold in diamonds
1267   for (int i = 0; i < edges->length(); i++) {
1268     CFGEdge *e = edges->at(i);
1269 
1270     if (e->state() != CFGEdge::open) continue;
1271     if (fall_thru_only) {
1272       if (e->infrequent()) continue;
1273     }
1274 
1275     Block *src_block = e->from();
1276     Trace *src_trace = trace(src_block);
1277     bool src_at_tail = src_trace->last_block() == src_block;
1278 
1279     Block *targ_block  = e->to();
1280     Trace *targ_trace  = trace(targ_block);
1281     bool targ_at_start = targ_trace->first_block() == targ_block;
1282 
1283     if (src_trace == targ_trace) {
1284       // This may be a loop, but we can't do much about it.
1285       e->set_state(CFGEdge::interior);
1286       continue;
1287     }
1288 
1289     if (fall_thru_only) {
1290       // If the edge links the middle of two traces, we can't do anything.
1291       // Mark the edge and continue.
1292       if (!src_at_tail & !targ_at_start) {
1293         continue;
1294       }
1295 
1296       // Don't grow traces along backedges?
1297       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1298           continue;
1299       }
1300 
1301       // If both ends of the edge are available, why didn't we handle it earlier?
1302       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1303 
1304       if (targ_at_start) {
1305         // Insert the "targ" trace in the "src" trace if the insertion point
1306         // is a two way branch.
1307         // Better profitability check possible, but may not be worth it.
1308         // Someday, see if the this "fork" has an associated "join";
1309         // then make a policy on merging this trace at the fork or join.
1310         // For example, other things being equal, it may be better to place this
1311         // trace at the join point if the "src" trace ends in a two-way, but
1312         // the insertion point is one-way.
1313         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1314         e->set_state(CFGEdge::connected);
1315         src_trace->insert_after(src_block, targ_trace);
1316         union_traces(src_trace, targ_trace);
1317       } else if (src_at_tail) {
1318         if (src_trace != trace(_cfg._broot)) {
1319           e->set_state(CFGEdge::connected);
1320           targ_trace->insert_before(targ_block, src_trace);
1321           union_traces(targ_trace, src_trace);
1322         }
1323       }
1324     } else if (e->state() == CFGEdge::open) {
1325       // Append traces, even without a fall-thru connection.
1326       // But leave root entry at the beginning of the block list.
1327       if (targ_trace != trace(_cfg._broot)) {
1328         e->set_state(CFGEdge::connected);
1329         src_trace->append(targ_trace);
1330         union_traces(src_trace, targ_trace);
1331       }
1332     }
1333   }
1334 }
1335 
1336 //----------------------------reorder_traces-----------------------------------
1337 // Order the sequence of the traces in some desirable way, and fixup the
1338 // jumps at the end of each block.
1339 void PhaseBlockLayout::reorder_traces(int count)
1340 {
1341   ResourceArea *area = Thread::current()->resource_area();
1342   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1343   Block_List worklist;
1344   int new_count = 0;
1345 
1346   // Compact the traces.
1347   for (int i = 0; i < count; i++) {
1348     Trace *tr = traces[i];
1349     if (tr != NULL) {
1350       new_traces[new_count++] = tr;
1351     }
1352   }
1353 
1354   // The entry block should be first on the new trace list.
1355   Trace *tr = trace(_cfg._broot);
1356   assert(tr == new_traces[0], "entry trace misplaced");
1357 
1358   // Sort the new trace list by frequency
1359   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1360 
1361   // Patch up the successor blocks
1362   _cfg._blocks.reset();
1363   _cfg._num_blocks = 0;
1364   for (int i = 0; i < new_count; i++) {
1365     Trace *tr = new_traces[i];
1366     if (tr != NULL) {
1367       tr->fixup_blocks(_cfg);
1368     }
1369   }
1370 }
1371 
1372 //------------------------------PhaseBlockLayout-------------------------------
1373 // Order basic blocks based on frequency
1374 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1375   Phase(BlockLayout),
1376   _cfg(cfg)
1377 {
1378   ResourceMark rm;
1379   ResourceArea *area = Thread::current()->resource_area();
1380 
1381   // List of traces
1382   int size = _cfg._num_blocks + 1;
1383   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1384   memset(traces, 0, size*sizeof(Trace*));
1385   next = NEW_ARENA_ARRAY(area, Block *, size);
1386   memset(next,   0, size*sizeof(Block *));
1387   prev = NEW_ARENA_ARRAY(area, Block *, size);
1388   memset(prev  , 0, size*sizeof(Block *));
1389 
1390   // List of edges
1391   edges = new GrowableArray<CFGEdge*>;
1392 
1393   // Mapping block index --> block_trace
1394   uf = new UnionFind(size);
1395   uf->reset(size);
1396 
1397   // Find edges and create traces.
1398   find_edges();
1399 
1400   // Grow traces at their ends via most frequent edges.
1401   grow_traces();
1402 
1403   // Merge one trace into another, but only at fall-through points.
1404   // This may make diamonds and other related shapes in a trace.
1405   merge_traces(true);
1406 
1407   // Run merge again, allowing two traces to be catenated, even if
1408   // one does not fall through into the other. This appends loosely
1409   // related traces to be near each other.
1410   merge_traces(false);
1411 
1412   // Re-order all the remaining traces by frequency
1413   reorder_traces(size);
1414 
1415   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1416 }
1417 
1418 
1419 //------------------------------backedge---------------------------------------
1420 // Edge e completes a loop in a trace. If the target block is head of the
1421 // loop, rotate the loop block so that the loop ends in a conditional branch.
1422 bool Trace::backedge(CFGEdge *e) {
1423   bool loop_rotated = false;
1424   Block *src_block  = e->from();
1425   Block *targ_block    = e->to();
1426 
1427   assert(last_block() == src_block, "loop discovery at back branch");
1428   if (first_block() == targ_block) {
1429     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1430       // Find the last block in the trace that has a conditional
1431       // branch.
1432       Block *b;
1433       for (b = last_block(); b != NULL; b = prev(b)) {
1434         if (b->num_fall_throughs() == 2) {
1435           break;
1436         }
1437       }
1438 
1439       if (b != last_block() && b != NULL) {
1440         loop_rotated = true;
1441 
1442         // Rotate the loop by doing two-part linked-list surgery.
1443         append(first_block());
1444         break_loop_after(b);
1445       }
1446     }
1447 
1448     // Backbranch to the top of a trace
1449     // Scroll forward through the trace from the targ_block. If we find
1450     // a loop head before another loop top, use the the loop head alignment.
1451     for (Block *b = targ_block; b != NULL; b = next(b)) {
1452       if (b->has_loop_alignment()) {
1453         break;
1454       }
1455       if (b->head()->is_Loop()) {
1456         targ_block = b;
1457         break;
1458       }
1459     }
1460 
1461     first_block()->set_loop_alignment(targ_block);
1462 
1463   } else {
1464     // Backbranch into the middle of a trace
1465     targ_block->set_loop_alignment(targ_block);
1466   }
1467 
1468   return loop_rotated;
1469 }
1470 
1471 //------------------------------fixup_blocks-----------------------------------
1472 // push blocks onto the CFG list
1473 // ensure that blocks have the correct two-way branch sense
1474 void Trace::fixup_blocks(PhaseCFG &cfg) {
1475   Block *last = last_block();
1476   for (Block *b = first_block(); b != NULL; b = next(b)) {
1477     cfg._blocks.push(b);
1478     cfg._num_blocks++;
1479     if (!b->is_connector()) {
1480       int nfallthru = b->num_fall_throughs();
1481       if (b != last) {
1482         if (nfallthru == 2) {
1483           // Ensure that the sense of the branch is correct
1484           Block *bnext = next(b);
1485           Block *bs0 = b->non_connector_successor(0);
1486 
1487           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1488           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1489           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1490 
1491           if (bnext == bs0) {
1492             // Fall-thru case in succs[0], should be in succs[1]
1493 
1494             // Flip targets in _succs map
1495             Block *tbs0 = b->_succs[0];
1496             Block *tbs1 = b->_succs[1];
1497             b->_succs.map( 0, tbs1 );
1498             b->_succs.map( 1, tbs0 );
1499 
1500             // Flip projections to match targets
1501             b->_nodes.map(b->_nodes.size()-2, proj1);
1502             b->_nodes.map(b->_nodes.size()-1, proj0);
1503           }
1504         }
1505       }
1506     }
1507   }
1508 }