1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   bool inline_string_compareTo();
 137   bool inline_string_indexOf();
 138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 139   bool inline_string_equals();
 140   Node* pop_math_arg();
 141   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 142   bool inline_math_native(vmIntrinsics::ID id);
 143   bool inline_trig(vmIntrinsics::ID id);
 144   bool inline_trans(vmIntrinsics::ID id);
 145   bool inline_abs(vmIntrinsics::ID id);
 146   bool inline_sqrt(vmIntrinsics::ID id);
 147   bool inline_pow(vmIntrinsics::ID id);
 148   bool inline_exp(vmIntrinsics::ID id);
 149   bool inline_min_max(vmIntrinsics::ID id);
 150   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 151   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 152   int classify_unsafe_addr(Node* &base, Node* &offset);
 153   Node* make_unsafe_address(Node* base, Node* offset);
 154   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 155   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 156   bool inline_unsafe_allocate();
 157   bool inline_unsafe_copyMemory();
 158   bool inline_native_currentThread();
 159   bool inline_native_time_funcs(bool isNano);
 160   bool inline_native_isInterrupted();
 161   bool inline_native_Class_query(vmIntrinsics::ID id);
 162   bool inline_native_subtype_check();
 163 
 164   bool inline_native_newArray();
 165   bool inline_native_getLength();
 166   bool inline_array_copyOf(bool is_copyOfRange);
 167   bool inline_array_equals();
 168   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 169   bool inline_native_clone(bool is_virtual);
 170   bool inline_native_Reflection_getCallerClass();
 171   bool inline_native_AtomicLong_get();
 172   bool inline_native_AtomicLong_attemptUpdate();
 173   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 174   // Helper function for inlining native object hash method
 175   bool inline_native_hashcode(bool is_virtual, bool is_static);
 176   bool inline_native_getClass();
 177 
 178   // Helper functions for inlining arraycopy
 179   bool inline_arraycopy();
 180   void generate_arraycopy(const TypePtr* adr_type,
 181                           BasicType basic_elem_type,
 182                           Node* src,  Node* src_offset,
 183                           Node* dest, Node* dest_offset,
 184                           Node* copy_length,
 185                           bool disjoint_bases = false,
 186                           bool length_never_negative = false,
 187                           RegionNode* slow_region = NULL);
 188   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 189                                                 RegionNode* slow_region);
 190   void generate_clear_array(const TypePtr* adr_type,
 191                             Node* dest,
 192                             BasicType basic_elem_type,
 193                             Node* slice_off,
 194                             Node* slice_len,
 195                             Node* slice_end);
 196   bool generate_block_arraycopy(const TypePtr* adr_type,
 197                                 BasicType basic_elem_type,
 198                                 AllocateNode* alloc,
 199                                 Node* src,  Node* src_offset,
 200                                 Node* dest, Node* dest_offset,
 201                                 Node* dest_size);
 202   void generate_slow_arraycopy(const TypePtr* adr_type,
 203                                Node* src,  Node* src_offset,
 204                                Node* dest, Node* dest_offset,
 205                                Node* copy_length);
 206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 207                                      Node* dest_elem_klass,
 208                                      Node* src,  Node* src_offset,
 209                                      Node* dest, Node* dest_offset,
 210                                      Node* copy_length);
 211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 212                                    Node* src,  Node* src_offset,
 213                                    Node* dest, Node* dest_offset,
 214                                    Node* copy_length);
 215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 216                                     BasicType basic_elem_type,
 217                                     bool disjoint_bases,
 218                                     Node* src,  Node* src_offset,
 219                                     Node* dest, Node* dest_offset,
 220                                     Node* copy_length);
 221   bool inline_unsafe_CAS(BasicType type);
 222   bool inline_unsafe_ordered_store(BasicType type);
 223   bool inline_fp_conversions(vmIntrinsics::ID id);
 224   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 225   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 226   bool inline_bitCount(vmIntrinsics::ID id);
 227   bool inline_reverseBytes(vmIntrinsics::ID id);
 228 };
 229 
 230 
 231 //---------------------------make_vm_intrinsic----------------------------
 232 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 233   vmIntrinsics::ID id = m->intrinsic_id();
 234   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 235 
 236   if (DisableIntrinsic[0] != '\0'
 237       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 238     // disabled by a user request on the command line:
 239     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 240     return NULL;
 241   }
 242 
 243   if (!m->is_loaded()) {
 244     // do not attempt to inline unloaded methods
 245     return NULL;
 246   }
 247 
 248   // Only a few intrinsics implement a virtual dispatch.
 249   // They are expensive calls which are also frequently overridden.
 250   if (is_virtual) {
 251     switch (id) {
 252     case vmIntrinsics::_hashCode:
 253     case vmIntrinsics::_clone:
 254       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 255       break;
 256     default:
 257       return NULL;
 258     }
 259   }
 260 
 261   // -XX:-InlineNatives disables nearly all intrinsics:
 262   if (!InlineNatives) {
 263     switch (id) {
 264     case vmIntrinsics::_indexOf:
 265     case vmIntrinsics::_compareTo:
 266     case vmIntrinsics::_equals:
 267     case vmIntrinsics::_equalsC:
 268       break;  // InlineNatives does not control String.compareTo
 269     default:
 270       return NULL;
 271     }
 272   }
 273 
 274   switch (id) {
 275   case vmIntrinsics::_compareTo:
 276     if (!SpecialStringCompareTo)  return NULL;
 277     break;
 278   case vmIntrinsics::_indexOf:
 279     if (!SpecialStringIndexOf)  return NULL;
 280     break;
 281   case vmIntrinsics::_equals:
 282     if (!SpecialStringEquals)  return NULL;
 283     break;
 284   case vmIntrinsics::_equalsC:
 285     if (!SpecialArraysEquals)  return NULL;
 286     break;
 287   case vmIntrinsics::_arraycopy:
 288     if (!InlineArrayCopy)  return NULL;
 289     break;
 290   case vmIntrinsics::_copyMemory:
 291     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 292     if (!InlineArrayCopy)  return NULL;
 293     break;
 294   case vmIntrinsics::_hashCode:
 295     if (!InlineObjectHash)  return NULL;
 296     break;
 297   case vmIntrinsics::_clone:
 298   case vmIntrinsics::_copyOf:
 299   case vmIntrinsics::_copyOfRange:
 300     if (!InlineObjectCopy)  return NULL;
 301     // These also use the arraycopy intrinsic mechanism:
 302     if (!InlineArrayCopy)  return NULL;
 303     break;
 304   case vmIntrinsics::_checkIndex:
 305     // We do not intrinsify this.  The optimizer does fine with it.
 306     return NULL;
 307 
 308   case vmIntrinsics::_get_AtomicLong:
 309   case vmIntrinsics::_attemptUpdate:
 310     if (!InlineAtomicLong)  return NULL;
 311     break;
 312 
 313   case vmIntrinsics::_Object_init:
 314   case vmIntrinsics::_invoke:
 315     // We do not intrinsify these; they are marked for other purposes.
 316     return NULL;
 317 
 318   case vmIntrinsics::_getCallerClass:
 319     if (!UseNewReflection)  return NULL;
 320     if (!InlineReflectionGetCallerClass)  return NULL;
 321     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 322     break;
 323 
 324   case vmIntrinsics::_bitCount_i:
 325   case vmIntrinsics::_bitCount_l:
 326     if (!UsePopCountInstruction)  return NULL;
 327     break;
 328 
 329  default:
 330     break;
 331   }
 332 
 333   // -XX:-InlineClassNatives disables natives from the Class class.
 334   // The flag applies to all reflective calls, notably Array.newArray
 335   // (visible to Java programmers as Array.newInstance).
 336   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 337       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 338     if (!InlineClassNatives)  return NULL;
 339   }
 340 
 341   // -XX:-InlineThreadNatives disables natives from the Thread class.
 342   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 343     if (!InlineThreadNatives)  return NULL;
 344   }
 345 
 346   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 347   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 348       m->holder()->name() == ciSymbol::java_lang_Float() ||
 349       m->holder()->name() == ciSymbol::java_lang_Double()) {
 350     if (!InlineMathNatives)  return NULL;
 351   }
 352 
 353   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 354   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 355     if (!InlineUnsafeOps)  return NULL;
 356   }
 357 
 358   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 359 }
 360 
 361 //----------------------register_library_intrinsics-----------------------
 362 // Initialize this file's data structures, for each Compile instance.
 363 void Compile::register_library_intrinsics() {
 364   // Nothing to do here.
 365 }
 366 
 367 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 368   LibraryCallKit kit(jvms, this);
 369   Compile* C = kit.C;
 370   int nodes = C->unique();
 371 #ifndef PRODUCT
 372   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 373     char buf[1000];
 374     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 375     tty->print_cr("Intrinsic %s", str);
 376   }
 377 #endif
 378   if (kit.try_to_inline()) {
 379     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 380       tty->print("Inlining intrinsic %s%s at bci:%d in",
 381                  vmIntrinsics::name_at(intrinsic_id()),
 382                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 383       kit.caller()->print_short_name(tty);
 384       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 385     }
 386     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 387     if (C->log()) {
 388       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 389                      vmIntrinsics::name_at(intrinsic_id()),
 390                      (is_virtual() ? " virtual='1'" : ""),
 391                      C->unique() - nodes);
 392     }
 393     return kit.transfer_exceptions_into_jvms();
 394   }
 395 
 396   if (PrintIntrinsics) {
 397     switch (intrinsic_id()) {
 398     case vmIntrinsics::_invoke:
 399     case vmIntrinsics::_Object_init:
 400       // We do not expect to inline these, so do not produce any noise about them.
 401       break;
 402     default:
 403       tty->print("Did not inline intrinsic %s%s at bci:%d in",
 404                  vmIntrinsics::name_at(intrinsic_id()),
 405                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 406       kit.caller()->print_short_name(tty);
 407       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 408     }
 409   }
 410   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 411   return NULL;
 412 }
 413 
 414 bool LibraryCallKit::try_to_inline() {
 415   // Handle symbolic names for otherwise undistinguished boolean switches:
 416   const bool is_store       = true;
 417   const bool is_native_ptr  = true;
 418   const bool is_static      = true;
 419 
 420   switch (intrinsic_id()) {
 421   case vmIntrinsics::_hashCode:
 422     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 423   case vmIntrinsics::_identityHashCode:
 424     return inline_native_hashcode(/*!virtual*/ false, is_static);
 425   case vmIntrinsics::_getClass:
 426     return inline_native_getClass();
 427 
 428   case vmIntrinsics::_dsin:
 429   case vmIntrinsics::_dcos:
 430   case vmIntrinsics::_dtan:
 431   case vmIntrinsics::_dabs:
 432   case vmIntrinsics::_datan2:
 433   case vmIntrinsics::_dsqrt:
 434   case vmIntrinsics::_dexp:
 435   case vmIntrinsics::_dlog:
 436   case vmIntrinsics::_dlog10:
 437   case vmIntrinsics::_dpow:
 438     return inline_math_native(intrinsic_id());
 439 
 440   case vmIntrinsics::_min:
 441   case vmIntrinsics::_max:
 442     return inline_min_max(intrinsic_id());
 443 
 444   case vmIntrinsics::_arraycopy:
 445     return inline_arraycopy();
 446 
 447   case vmIntrinsics::_compareTo:
 448     return inline_string_compareTo();
 449   case vmIntrinsics::_indexOf:
 450     return inline_string_indexOf();
 451   case vmIntrinsics::_equals:
 452     return inline_string_equals();
 453 
 454   case vmIntrinsics::_getObject:
 455     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 456   case vmIntrinsics::_getBoolean:
 457     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 458   case vmIntrinsics::_getByte:
 459     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 460   case vmIntrinsics::_getShort:
 461     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 462   case vmIntrinsics::_getChar:
 463     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 464   case vmIntrinsics::_getInt:
 465     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 466   case vmIntrinsics::_getLong:
 467     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 468   case vmIntrinsics::_getFloat:
 469     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 470   case vmIntrinsics::_getDouble:
 471     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 472 
 473   case vmIntrinsics::_putObject:
 474     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 475   case vmIntrinsics::_putBoolean:
 476     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 477   case vmIntrinsics::_putByte:
 478     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 479   case vmIntrinsics::_putShort:
 480     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 481   case vmIntrinsics::_putChar:
 482     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 483   case vmIntrinsics::_putInt:
 484     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 485   case vmIntrinsics::_putLong:
 486     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 487   case vmIntrinsics::_putFloat:
 488     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 489   case vmIntrinsics::_putDouble:
 490     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 491 
 492   case vmIntrinsics::_getByte_raw:
 493     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 494   case vmIntrinsics::_getShort_raw:
 495     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 496   case vmIntrinsics::_getChar_raw:
 497     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 498   case vmIntrinsics::_getInt_raw:
 499     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 500   case vmIntrinsics::_getLong_raw:
 501     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 502   case vmIntrinsics::_getFloat_raw:
 503     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 504   case vmIntrinsics::_getDouble_raw:
 505     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 506   case vmIntrinsics::_getAddress_raw:
 507     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 508 
 509   case vmIntrinsics::_putByte_raw:
 510     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 511   case vmIntrinsics::_putShort_raw:
 512     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 513   case vmIntrinsics::_putChar_raw:
 514     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 515   case vmIntrinsics::_putInt_raw:
 516     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 517   case vmIntrinsics::_putLong_raw:
 518     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 519   case vmIntrinsics::_putFloat_raw:
 520     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 521   case vmIntrinsics::_putDouble_raw:
 522     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 523   case vmIntrinsics::_putAddress_raw:
 524     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 525 
 526   case vmIntrinsics::_getObjectVolatile:
 527     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 528   case vmIntrinsics::_getBooleanVolatile:
 529     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 530   case vmIntrinsics::_getByteVolatile:
 531     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 532   case vmIntrinsics::_getShortVolatile:
 533     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 534   case vmIntrinsics::_getCharVolatile:
 535     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 536   case vmIntrinsics::_getIntVolatile:
 537     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 538   case vmIntrinsics::_getLongVolatile:
 539     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 540   case vmIntrinsics::_getFloatVolatile:
 541     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 542   case vmIntrinsics::_getDoubleVolatile:
 543     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 544 
 545   case vmIntrinsics::_putObjectVolatile:
 546     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 547   case vmIntrinsics::_putBooleanVolatile:
 548     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 549   case vmIntrinsics::_putByteVolatile:
 550     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 551   case vmIntrinsics::_putShortVolatile:
 552     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 553   case vmIntrinsics::_putCharVolatile:
 554     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 555   case vmIntrinsics::_putIntVolatile:
 556     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 557   case vmIntrinsics::_putLongVolatile:
 558     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 559   case vmIntrinsics::_putFloatVolatile:
 560     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 561   case vmIntrinsics::_putDoubleVolatile:
 562     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 563 
 564   case vmIntrinsics::_prefetchRead:
 565     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 566   case vmIntrinsics::_prefetchWrite:
 567     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 568   case vmIntrinsics::_prefetchReadStatic:
 569     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 570   case vmIntrinsics::_prefetchWriteStatic:
 571     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 572 
 573   case vmIntrinsics::_compareAndSwapObject:
 574     return inline_unsafe_CAS(T_OBJECT);
 575   case vmIntrinsics::_compareAndSwapInt:
 576     return inline_unsafe_CAS(T_INT);
 577   case vmIntrinsics::_compareAndSwapLong:
 578     return inline_unsafe_CAS(T_LONG);
 579 
 580   case vmIntrinsics::_putOrderedObject:
 581     return inline_unsafe_ordered_store(T_OBJECT);
 582   case vmIntrinsics::_putOrderedInt:
 583     return inline_unsafe_ordered_store(T_INT);
 584   case vmIntrinsics::_putOrderedLong:
 585     return inline_unsafe_ordered_store(T_LONG);
 586 
 587   case vmIntrinsics::_currentThread:
 588     return inline_native_currentThread();
 589   case vmIntrinsics::_isInterrupted:
 590     return inline_native_isInterrupted();
 591 
 592   case vmIntrinsics::_currentTimeMillis:
 593     return inline_native_time_funcs(false);
 594   case vmIntrinsics::_nanoTime:
 595     return inline_native_time_funcs(true);
 596   case vmIntrinsics::_allocateInstance:
 597     return inline_unsafe_allocate();
 598   case vmIntrinsics::_copyMemory:
 599     return inline_unsafe_copyMemory();
 600   case vmIntrinsics::_newArray:
 601     return inline_native_newArray();
 602   case vmIntrinsics::_getLength:
 603     return inline_native_getLength();
 604   case vmIntrinsics::_copyOf:
 605     return inline_array_copyOf(false);
 606   case vmIntrinsics::_copyOfRange:
 607     return inline_array_copyOf(true);
 608   case vmIntrinsics::_equalsC:
 609     return inline_array_equals();
 610   case vmIntrinsics::_clone:
 611     return inline_native_clone(intrinsic()->is_virtual());
 612 
 613   case vmIntrinsics::_isAssignableFrom:
 614     return inline_native_subtype_check();
 615 
 616   case vmIntrinsics::_isInstance:
 617   case vmIntrinsics::_getModifiers:
 618   case vmIntrinsics::_isInterface:
 619   case vmIntrinsics::_isArray:
 620   case vmIntrinsics::_isPrimitive:
 621   case vmIntrinsics::_getSuperclass:
 622   case vmIntrinsics::_getComponentType:
 623   case vmIntrinsics::_getClassAccessFlags:
 624     return inline_native_Class_query(intrinsic_id());
 625 
 626   case vmIntrinsics::_floatToRawIntBits:
 627   case vmIntrinsics::_floatToIntBits:
 628   case vmIntrinsics::_intBitsToFloat:
 629   case vmIntrinsics::_doubleToRawLongBits:
 630   case vmIntrinsics::_doubleToLongBits:
 631   case vmIntrinsics::_longBitsToDouble:
 632     return inline_fp_conversions(intrinsic_id());
 633 
 634   case vmIntrinsics::_numberOfLeadingZeros_i:
 635   case vmIntrinsics::_numberOfLeadingZeros_l:
 636     return inline_numberOfLeadingZeros(intrinsic_id());
 637 
 638   case vmIntrinsics::_numberOfTrailingZeros_i:
 639   case vmIntrinsics::_numberOfTrailingZeros_l:
 640     return inline_numberOfTrailingZeros(intrinsic_id());
 641 
 642   case vmIntrinsics::_bitCount_i:
 643   case vmIntrinsics::_bitCount_l:
 644     return inline_bitCount(intrinsic_id());
 645 
 646   case vmIntrinsics::_reverseBytes_i:
 647   case vmIntrinsics::_reverseBytes_l:
 648     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 649 
 650   case vmIntrinsics::_get_AtomicLong:
 651     return inline_native_AtomicLong_get();
 652   case vmIntrinsics::_attemptUpdate:
 653     return inline_native_AtomicLong_attemptUpdate();
 654 
 655   case vmIntrinsics::_getCallerClass:
 656     return inline_native_Reflection_getCallerClass();
 657 
 658   default:
 659     // If you get here, it may be that someone has added a new intrinsic
 660     // to the list in vmSymbols.hpp without implementing it here.
 661 #ifndef PRODUCT
 662     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 663       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 664                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 665     }
 666 #endif
 667     return false;
 668   }
 669 }
 670 
 671 //------------------------------push_result------------------------------
 672 // Helper function for finishing intrinsics.
 673 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 674   record_for_igvn(region);
 675   set_control(_gvn.transform(region));
 676   BasicType value_type = value->type()->basic_type();
 677   push_node(value_type, _gvn.transform(value));
 678 }
 679 
 680 //------------------------------generate_guard---------------------------
 681 // Helper function for generating guarded fast-slow graph structures.
 682 // The given 'test', if true, guards a slow path.  If the test fails
 683 // then a fast path can be taken.  (We generally hope it fails.)
 684 // In all cases, GraphKit::control() is updated to the fast path.
 685 // The returned value represents the control for the slow path.
 686 // The return value is never 'top'; it is either a valid control
 687 // or NULL if it is obvious that the slow path can never be taken.
 688 // Also, if region and the slow control are not NULL, the slow edge
 689 // is appended to the region.
 690 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 691   if (stopped()) {
 692     // Already short circuited.
 693     return NULL;
 694   }
 695 
 696   // Build an if node and its projections.
 697   // If test is true we take the slow path, which we assume is uncommon.
 698   if (_gvn.type(test) == TypeInt::ZERO) {
 699     // The slow branch is never taken.  No need to build this guard.
 700     return NULL;
 701   }
 702 
 703   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 704 
 705   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 706   if (if_slow == top()) {
 707     // The slow branch is never taken.  No need to build this guard.
 708     return NULL;
 709   }
 710 
 711   if (region != NULL)
 712     region->add_req(if_slow);
 713 
 714   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 715   set_control(if_fast);
 716 
 717   return if_slow;
 718 }
 719 
 720 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 721   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 722 }
 723 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 724   return generate_guard(test, region, PROB_FAIR);
 725 }
 726 
 727 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 728                                                      Node* *pos_index) {
 729   if (stopped())
 730     return NULL;                // already stopped
 731   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 732     return NULL;                // index is already adequately typed
 733   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 734   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 735   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 736   if (is_neg != NULL && pos_index != NULL) {
 737     // Emulate effect of Parse::adjust_map_after_if.
 738     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 739     ccast->set_req(0, control());
 740     (*pos_index) = _gvn.transform(ccast);
 741   }
 742   return is_neg;
 743 }
 744 
 745 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 746                                                         Node* *pos_index) {
 747   if (stopped())
 748     return NULL;                // already stopped
 749   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 750     return NULL;                // index is already adequately typed
 751   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 752   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 753   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 754   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 755   if (is_notp != NULL && pos_index != NULL) {
 756     // Emulate effect of Parse::adjust_map_after_if.
 757     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 758     ccast->set_req(0, control());
 759     (*pos_index) = _gvn.transform(ccast);
 760   }
 761   return is_notp;
 762 }
 763 
 764 // Make sure that 'position' is a valid limit index, in [0..length].
 765 // There are two equivalent plans for checking this:
 766 //   A. (offset + copyLength)  unsigned<=  arrayLength
 767 //   B. offset  <=  (arrayLength - copyLength)
 768 // We require that all of the values above, except for the sum and
 769 // difference, are already known to be non-negative.
 770 // Plan A is robust in the face of overflow, if offset and copyLength
 771 // are both hugely positive.
 772 //
 773 // Plan B is less direct and intuitive, but it does not overflow at
 774 // all, since the difference of two non-negatives is always
 775 // representable.  Whenever Java methods must perform the equivalent
 776 // check they generally use Plan B instead of Plan A.
 777 // For the moment we use Plan A.
 778 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 779                                                   Node* subseq_length,
 780                                                   Node* array_length,
 781                                                   RegionNode* region) {
 782   if (stopped())
 783     return NULL;                // already stopped
 784   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 785   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 786     return NULL;                // common case of whole-array copy
 787   Node* last = subseq_length;
 788   if (!zero_offset)             // last += offset
 789     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 790   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 791   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 792   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 793   return is_over;
 794 }
 795 
 796 
 797 //--------------------------generate_current_thread--------------------
 798 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 799   ciKlass*    thread_klass = env()->Thread_klass();
 800   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 801   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 802   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 803   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 804   tls_output = thread;
 805   return threadObj;
 806 }
 807 
 808 
 809 //------------------------------inline_string_compareTo------------------------
 810 bool LibraryCallKit::inline_string_compareTo() {
 811 
 812   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 813 
 814   const int value_offset = java_lang_String::value_offset_in_bytes();
 815   const int count_offset = java_lang_String::count_offset_in_bytes();
 816   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 817 
 818   _sp += 2;
 819   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 820   Node *receiver = pop();
 821 
 822   // Null check on self without removing any arguments.  The argument
 823   // null check technically happens in the wrong place, which can lead to
 824   // invalid stack traces when string compare is inlined into a method
 825   // which handles NullPointerExceptions.
 826   _sp += 2;
 827   receiver = do_null_check(receiver, T_OBJECT);
 828   argument = do_null_check(argument, T_OBJECT);
 829   _sp -= 2;
 830   if (stopped()) {
 831     return true;
 832   }
 833 
 834   ciInstanceKlass* klass = env()->String_klass();
 835   const TypeInstPtr* string_type =
 836     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 837 
 838   Node* compare =
 839     _gvn.transform(new (C, 7) StrCompNode(
 840                         control(),
 841                         memory(TypeAryPtr::CHARS),
 842                         memory(string_type->add_offset(value_offset)),
 843                         memory(string_type->add_offset(count_offset)),
 844                         memory(string_type->add_offset(offset_offset)),
 845                         receiver,
 846                         argument));
 847   push(compare);
 848   return true;
 849 }
 850 
 851 //------------------------------inline_string_equals------------------------
 852 bool LibraryCallKit::inline_string_equals() {
 853 
 854   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 855 
 856   const int value_offset = java_lang_String::value_offset_in_bytes();
 857   const int count_offset = java_lang_String::count_offset_in_bytes();
 858   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 859 
 860   _sp += 2;
 861   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 862   Node* receiver = pop();
 863 
 864   // Null check on self without removing any arguments.  The argument
 865   // null check technically happens in the wrong place, which can lead to
 866   // invalid stack traces when string compare is inlined into a method
 867   // which handles NullPointerExceptions.
 868   _sp += 2;
 869   receiver = do_null_check(receiver, T_OBJECT);
 870   //should not do null check for argument for String.equals(), because spec
 871   //allows to specify NULL as argument.
 872   _sp -= 2;
 873 
 874   if (stopped()) {
 875     return true;
 876   }
 877 
 878   // get String klass for instanceOf
 879   ciInstanceKlass* klass = env()->String_klass();
 880 
 881   // two paths (plus control) merge
 882   RegionNode* region = new (C, 3) RegionNode(3);
 883   Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
 884 
 885   Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 886   Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 887   Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 888 
 889   IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
 890 
 891   Node* if_true  = _gvn.transform(new (C, 1) IfTrueNode(iff));
 892   set_control(if_true);
 893 
 894   const TypeInstPtr* string_type =
 895     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 896 
 897   // instanceOf == true
 898   Node* equals =
 899     _gvn.transform(new (C, 7) StrEqualsNode(
 900                         control(),
 901                         memory(TypeAryPtr::CHARS),
 902                         memory(string_type->add_offset(value_offset)),
 903                         memory(string_type->add_offset(count_offset)),
 904                         memory(string_type->add_offset(offset_offset)),
 905                         receiver,
 906                         argument));
 907 
 908   phi->init_req(1, _gvn.transform(equals));
 909   region->init_req(1, if_true);
 910 
 911   //instanceOf == false, fallthrough
 912   Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
 913   set_control(if_false);
 914 
 915   phi->init_req(2, _gvn.transform(intcon(0)));
 916   region->init_req(2, if_false);
 917 
 918   // post merge
 919   set_control(_gvn.transform(region));
 920   record_for_igvn(region);
 921 
 922   push(_gvn.transform(phi));
 923 
 924   return true;
 925 }
 926 
 927 //------------------------------inline_array_equals----------------------------
 928 bool LibraryCallKit::inline_array_equals() {
 929 
 930   if (!Matcher::has_match_rule(Op_AryEq)) return false;
 931 
 932   _sp += 2;
 933   Node *argument2 = pop();
 934   Node *argument1 = pop();
 935 
 936   Node* equals =
 937     _gvn.transform(new (C, 3) AryEqNode(control(),
 938                                         argument1,
 939                                         argument2)
 940                    );
 941   push(equals);
 942   return true;
 943 }
 944 
 945 // Java version of String.indexOf(constant string)
 946 // class StringDecl {
 947 //   StringDecl(char[] ca) {
 948 //     offset = 0;
 949 //     count = ca.length;
 950 //     value = ca;
 951 //   }
 952 //   int offset;
 953 //   int count;
 954 //   char[] value;
 955 // }
 956 //
 957 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
 958 //                             int targetOffset, int cache_i, int md2) {
 959 //   int cache = cache_i;
 960 //   int sourceOffset = string_object.offset;
 961 //   int sourceCount = string_object.count;
 962 //   int targetCount = target_object.length;
 963 //
 964 //   int targetCountLess1 = targetCount - 1;
 965 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
 966 //
 967 //   char[] source = string_object.value;
 968 //   char[] target = target_object;
 969 //   int lastChar = target[targetCountLess1];
 970 //
 971 //  outer_loop:
 972 //   for (int i = sourceOffset; i < sourceEnd; ) {
 973 //     int src = source[i + targetCountLess1];
 974 //     if (src == lastChar) {
 975 //       // With random strings and a 4-character alphabet,
 976 //       // reverse matching at this point sets up 0.8% fewer
 977 //       // frames, but (paradoxically) makes 0.3% more probes.
 978 //       // Since those probes are nearer the lastChar probe,
 979 //       // there is may be a net D$ win with reverse matching.
 980 //       // But, reversing loop inhibits unroll of inner loop
 981 //       // for unknown reason.  So, does running outer loop from
 982 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
 983 //       for (int j = 0; j < targetCountLess1; j++) {
 984 //         if (target[targetOffset + j] != source[i+j]) {
 985 //           if ((cache & (1 << source[i+j])) == 0) {
 986 //             if (md2 < j+1) {
 987 //               i += j+1;
 988 //               continue outer_loop;
 989 //             }
 990 //           }
 991 //           i += md2;
 992 //           continue outer_loop;
 993 //         }
 994 //       }
 995 //       return i - sourceOffset;
 996 //     }
 997 //     if ((cache & (1 << src)) == 0) {
 998 //       i += targetCountLess1;
 999 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1000 //     i++;
1001 //   }
1002 //   return -1;
1003 // }
1004 
1005 //------------------------------string_indexOf------------------------
1006 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1007                                      jint cache_i, jint md2_i) {
1008 
1009   Node* no_ctrl  = NULL;
1010   float likely   = PROB_LIKELY(0.9);
1011   float unlikely = PROB_UNLIKELY(0.9);
1012 
1013   const int value_offset  = java_lang_String::value_offset_in_bytes();
1014   const int count_offset  = java_lang_String::count_offset_in_bytes();
1015   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1016 
1017   ciInstanceKlass* klass = env()->String_klass();
1018   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1019   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1020 
1021   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1022   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1023   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1024   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1025   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1026   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1027 
1028   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1029   jint target_length = target_array->length();
1030   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1031   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1032 
1033   IdealKit kit(gvn(), control(), merged_memory());
1034 #define __ kit.
1035   Node* zero             = __ ConI(0);
1036   Node* one              = __ ConI(1);
1037   Node* cache            = __ ConI(cache_i);
1038   Node* md2              = __ ConI(md2_i);
1039   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1040   Node* targetCount      = __ ConI(target_length);
1041   Node* targetCountLess1 = __ ConI(target_length - 1);
1042   Node* targetOffset     = __ ConI(targetOffset_i);
1043   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1044 
1045   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
1046   Node* outer_loop = __ make_label(2 /* goto */);
1047   Node* return_    = __ make_label(1);
1048 
1049   __ set(rtn,__ ConI(-1));
1050   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1051        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1052        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1053        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1054        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1055          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1056               Node* tpj = __ AddI(targetOffset, __ value(j));
1057               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1058               Node* ipj  = __ AddI(__ value(i), __ value(j));
1059               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1060               __ if_then(targ, BoolTest::ne, src2); {
1061                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1062                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1063                     __ increment(i, __ AddI(__ value(j), one));
1064                     __ goto_(outer_loop);
1065                   } __ end_if(); __ dead(j);
1066                 }__ end_if(); __ dead(j);
1067                 __ increment(i, md2);
1068                 __ goto_(outer_loop);
1069               }__ end_if();
1070               __ increment(j, one);
1071          }__ end_loop(); __ dead(j);
1072          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1073          __ goto_(return_);
1074        }__ end_if();
1075        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1076          __ increment(i, targetCountLess1);
1077        }__ end_if();
1078        __ increment(i, one);
1079        __ bind(outer_loop);
1080   }__ end_loop(); __ dead(i);
1081   __ bind(return_);
1082   __ drain_delay_transform();
1083 
1084   set_control(__ ctrl());
1085   Node* result = __ value(rtn);
1086 #undef __
1087   C->set_has_loops(true);
1088   return result;
1089 }
1090 
1091 //------------------------------inline_string_indexOf------------------------
1092 bool LibraryCallKit::inline_string_indexOf() {
1093 
1094   const int value_offset  = java_lang_String::value_offset_in_bytes();
1095   const int count_offset  = java_lang_String::count_offset_in_bytes();
1096   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1097 
1098   _sp += 2;
1099   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1100   Node *receiver = pop();
1101 
1102   Node* result;
1103   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1104       UseSSE42Intrinsics) {
1105     // Generate SSE4.2 version of indexOf
1106     // We currently only have match rules that use SSE4.2
1107 
1108     // Null check on self without removing any arguments.  The argument
1109     // null check technically happens in the wrong place, which can lead to
1110     // invalid stack traces when string compare is inlined into a method
1111     // which handles NullPointerExceptions.
1112     _sp += 2;
1113     receiver = do_null_check(receiver, T_OBJECT);
1114     argument = do_null_check(argument, T_OBJECT);
1115     _sp -= 2;
1116 
1117     if (stopped()) {
1118       return true;
1119     }
1120 
1121     ciInstanceKlass* klass = env()->String_klass();
1122     const TypeInstPtr* string_type =
1123       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1124 
1125     result =
1126       _gvn.transform(new (C, 7)
1127                      StrIndexOfNode(control(),
1128                                     memory(TypeAryPtr::CHARS),
1129                                     memory(string_type->add_offset(value_offset)),
1130                                     memory(string_type->add_offset(count_offset)),
1131                                     memory(string_type->add_offset(offset_offset)),
1132                                     receiver,
1133                                     argument));
1134   } else { //Use LibraryCallKit::string_indexOf
1135     // don't intrinsify is argument isn't a constant string.
1136     if (!argument->is_Con()) {
1137      return false;
1138     }
1139     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1140     if (str_type == NULL) {
1141       return false;
1142     }
1143     ciInstanceKlass* klass = env()->String_klass();
1144     ciObject* str_const = str_type->const_oop();
1145     if (str_const == NULL || str_const->klass() != klass) {
1146       return false;
1147     }
1148     ciInstance* str = str_const->as_instance();
1149     assert(str != NULL, "must be instance");
1150 
1151     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1152     int       o = str->field_value_by_offset(offset_offset).as_int();
1153     int       c = str->field_value_by_offset(count_offset).as_int();
1154     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1155 
1156     // constant strings have no offset and count == length which
1157     // simplifies the resulting code somewhat so lets optimize for that.
1158     if (o != 0 || c != pat->length()) {
1159      return false;
1160     }
1161 
1162     // Null check on self without removing any arguments.  The argument
1163     // null check technically happens in the wrong place, which can lead to
1164     // invalid stack traces when string compare is inlined into a method
1165     // which handles NullPointerExceptions.
1166     _sp += 2;
1167     receiver = do_null_check(receiver, T_OBJECT);
1168     // No null check on the argument is needed since it's a constant String oop.
1169     _sp -= 2;
1170     if (stopped()) {
1171      return true;
1172     }
1173 
1174     // The null string as a pattern always returns 0 (match at beginning of string)
1175     if (c == 0) {
1176       push(intcon(0));
1177       return true;
1178     }
1179 
1180     // Generate default indexOf
1181     jchar lastChar = pat->char_at(o + (c - 1));
1182     int cache = 0;
1183     int i;
1184     for (i = 0; i < c - 1; i++) {
1185       assert(i < pat->length(), "out of range");
1186       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1187     }
1188 
1189     int md2 = c;
1190     for (i = 0; i < c - 1; i++) {
1191       assert(i < pat->length(), "out of range");
1192       if (pat->char_at(o + i) == lastChar) {
1193         md2 = (c - 1) - i;
1194       }
1195     }
1196 
1197     result = string_indexOf(receiver, pat, o, cache, md2);
1198   }
1199 
1200   push(result);
1201   return true;
1202 }
1203 
1204 //--------------------------pop_math_arg--------------------------------
1205 // Pop a double argument to a math function from the stack
1206 // rounding it if necessary.
1207 Node * LibraryCallKit::pop_math_arg() {
1208   Node *arg = pop_pair();
1209   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1210     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1211   return arg;
1212 }
1213 
1214 //------------------------------inline_trig----------------------------------
1215 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1216 // argument reduction which will turn into a fast/slow diamond.
1217 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1218   _sp += arg_size();            // restore stack pointer
1219   Node* arg = pop_math_arg();
1220   Node* trig = NULL;
1221 
1222   switch (id) {
1223   case vmIntrinsics::_dsin:
1224     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1225     break;
1226   case vmIntrinsics::_dcos:
1227     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1228     break;
1229   case vmIntrinsics::_dtan:
1230     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1231     break;
1232   default:
1233     assert(false, "bad intrinsic was passed in");
1234     return false;
1235   }
1236 
1237   // Rounding required?  Check for argument reduction!
1238   if( Matcher::strict_fp_requires_explicit_rounding ) {
1239 
1240     static const double     pi_4 =  0.7853981633974483;
1241     static const double neg_pi_4 = -0.7853981633974483;
1242     // pi/2 in 80-bit extended precision
1243     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1244     // -pi/2 in 80-bit extended precision
1245     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1246     // Cutoff value for using this argument reduction technique
1247     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1248     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1249 
1250     // Pseudocode for sin:
1251     // if (x <= Math.PI / 4.0) {
1252     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1253     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1254     // } else {
1255     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1256     // }
1257     // return StrictMath.sin(x);
1258 
1259     // Pseudocode for cos:
1260     // if (x <= Math.PI / 4.0) {
1261     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1262     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1263     // } else {
1264     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1265     // }
1266     // return StrictMath.cos(x);
1267 
1268     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1269     // requires a special machine instruction to load it.  Instead we'll try
1270     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1271     // probably do the math inside the SIN encoding.
1272 
1273     // Make the merge point
1274     RegionNode *r = new (C, 3) RegionNode(3);
1275     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1276 
1277     // Flatten arg so we need only 1 test
1278     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1279     // Node for PI/4 constant
1280     Node *pi4 = makecon(TypeD::make(pi_4));
1281     // Check PI/4 : abs(arg)
1282     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1283     // Check: If PI/4 < abs(arg) then go slow
1284     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1285     // Branch either way
1286     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1287     set_control(opt_iff(r,iff));
1288 
1289     // Set fast path result
1290     phi->init_req(2,trig);
1291 
1292     // Slow path - non-blocking leaf call
1293     Node* call = NULL;
1294     switch (id) {
1295     case vmIntrinsics::_dsin:
1296       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1297                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1298                                "Sin", NULL, arg, top());
1299       break;
1300     case vmIntrinsics::_dcos:
1301       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1302                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1303                                "Cos", NULL, arg, top());
1304       break;
1305     case vmIntrinsics::_dtan:
1306       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1307                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1308                                "Tan", NULL, arg, top());
1309       break;
1310     }
1311     assert(control()->in(0) == call, "");
1312     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1313     r->init_req(1,control());
1314     phi->init_req(1,slow_result);
1315 
1316     // Post-merge
1317     set_control(_gvn.transform(r));
1318     record_for_igvn(r);
1319     trig = _gvn.transform(phi);
1320 
1321     C->set_has_split_ifs(true); // Has chance for split-if optimization
1322   }
1323   // Push result back on JVM stack
1324   push_pair(trig);
1325   return true;
1326 }
1327 
1328 //------------------------------inline_sqrt-------------------------------------
1329 // Inline square root instruction, if possible.
1330 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1331   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1332   _sp += arg_size();        // restore stack pointer
1333   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1334   return true;
1335 }
1336 
1337 //------------------------------inline_abs-------------------------------------
1338 // Inline absolute value instruction, if possible.
1339 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1340   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1341   _sp += arg_size();        // restore stack pointer
1342   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1343   return true;
1344 }
1345 
1346 //------------------------------inline_exp-------------------------------------
1347 // Inline exp instructions, if possible.  The Intel hardware only misses
1348 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1349 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1350   assert(id == vmIntrinsics::_dexp, "Not exp");
1351 
1352   // If this inlining ever returned NaN in the past, we do not intrinsify it
1353   // every again.  NaN results requires StrictMath.exp handling.
1354   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1355 
1356   // Do not intrinsify on older platforms which lack cmove.
1357   if (ConditionalMoveLimit == 0)  return false;
1358 
1359   _sp += arg_size();        // restore stack pointer
1360   Node *x = pop_math_arg();
1361   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1362 
1363   //-------------------
1364   //result=(result.isNaN())? StrictMath::exp():result;
1365   // Check: If isNaN() by checking result!=result? then go to Strict Math
1366   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1367   // Build the boolean node
1368   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1369 
1370   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1371     // End the current control-flow path
1372     push_pair(x);
1373     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1374     // to handle.  Recompile without intrinsifying Math.exp
1375     uncommon_trap(Deoptimization::Reason_intrinsic,
1376                   Deoptimization::Action_make_not_entrant);
1377   }
1378 
1379   C->set_has_split_ifs(true); // Has chance for split-if optimization
1380 
1381   push_pair(result);
1382 
1383   return true;
1384 }
1385 
1386 //------------------------------inline_pow-------------------------------------
1387 // Inline power instructions, if possible.
1388 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1389   assert(id == vmIntrinsics::_dpow, "Not pow");
1390 
1391   // If this inlining ever returned NaN in the past, we do not intrinsify it
1392   // every again.  NaN results requires StrictMath.pow handling.
1393   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1394 
1395   // Do not intrinsify on older platforms which lack cmove.
1396   if (ConditionalMoveLimit == 0)  return false;
1397 
1398   // Pseudocode for pow
1399   // if (x <= 0.0) {
1400   //   if ((double)((int)y)==y) { // if y is int
1401   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1402   //   } else {
1403   //     result = NaN;
1404   //   }
1405   // } else {
1406   //   result = DPow(x,y);
1407   // }
1408   // if (result != result)?  {
1409   //   uncommon_trap();
1410   // }
1411   // return result;
1412 
1413   _sp += arg_size();        // restore stack pointer
1414   Node* y = pop_math_arg();
1415   Node* x = pop_math_arg();
1416 
1417   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1418 
1419   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1420   // inside of something) then skip the fancy tests and just check for
1421   // NaN result.
1422   Node *result = NULL;
1423   if( jvms()->depth() >= 1 ) {
1424     result = fast_result;
1425   } else {
1426 
1427     // Set the merge point for If node with condition of (x <= 0.0)
1428     // There are four possible paths to region node and phi node
1429     RegionNode *r = new (C, 4) RegionNode(4);
1430     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1431 
1432     // Build the first if node: if (x <= 0.0)
1433     // Node for 0 constant
1434     Node *zeronode = makecon(TypeD::ZERO);
1435     // Check x:0
1436     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1437     // Check: If (x<=0) then go complex path
1438     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1439     // Branch either way
1440     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1441     Node *opt_test = _gvn.transform(if1);
1442     //assert( opt_test->is_If(), "Expect an IfNode");
1443     IfNode *opt_if1 = (IfNode*)opt_test;
1444     // Fast path taken; set region slot 3
1445     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1446     r->init_req(3,fast_taken); // Capture fast-control
1447 
1448     // Fast path not-taken, i.e. slow path
1449     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1450 
1451     // Set fast path result
1452     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1453     phi->init_req(3, fast_result);
1454 
1455     // Complex path
1456     // Build the second if node (if y is int)
1457     // Node for (int)y
1458     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1459     // Node for (double)((int) y)
1460     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1461     // Check (double)((int) y) : y
1462     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1463     // Check if (y isn't int) then go to slow path
1464 
1465     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1466     // Branch either way
1467     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1468     Node *slow_path = opt_iff(r,if2); // Set region path 2
1469 
1470     // Calculate DPow(abs(x), y)*(1 & (int)y)
1471     // Node for constant 1
1472     Node *conone = intcon(1);
1473     // 1& (int)y
1474     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1475     // zero node
1476     Node *conzero = intcon(0);
1477     // Check (1&(int)y)==0?
1478     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1479     // Check if (1&(int)y)!=0?, if so the result is negative
1480     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1481     // abs(x)
1482     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1483     // abs(x)^y
1484     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1485     // -abs(x)^y
1486     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1487     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1488     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1489     // Set complex path fast result
1490     phi->init_req(2, signresult);
1491 
1492     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1493     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1494     r->init_req(1,slow_path);
1495     phi->init_req(1,slow_result);
1496 
1497     // Post merge
1498     set_control(_gvn.transform(r));
1499     record_for_igvn(r);
1500     result=_gvn.transform(phi);
1501   }
1502 
1503   //-------------------
1504   //result=(result.isNaN())? uncommon_trap():result;
1505   // Check: If isNaN() by checking result!=result? then go to Strict Math
1506   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1507   // Build the boolean node
1508   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1509 
1510   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1511     // End the current control-flow path
1512     push_pair(x);
1513     push_pair(y);
1514     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1515     // to handle.  Recompile without intrinsifying Math.pow.
1516     uncommon_trap(Deoptimization::Reason_intrinsic,
1517                   Deoptimization::Action_make_not_entrant);
1518   }
1519 
1520   C->set_has_split_ifs(true); // Has chance for split-if optimization
1521 
1522   push_pair(result);
1523 
1524   return true;
1525 }
1526 
1527 //------------------------------inline_trans-------------------------------------
1528 // Inline transcendental instructions, if possible.  The Intel hardware gets
1529 // these right, no funny corner cases missed.
1530 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1531   _sp += arg_size();        // restore stack pointer
1532   Node* arg = pop_math_arg();
1533   Node* trans = NULL;
1534 
1535   switch (id) {
1536   case vmIntrinsics::_dlog:
1537     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1538     break;
1539   case vmIntrinsics::_dlog10:
1540     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1541     break;
1542   default:
1543     assert(false, "bad intrinsic was passed in");
1544     return false;
1545   }
1546 
1547   // Push result back on JVM stack
1548   push_pair(trans);
1549   return true;
1550 }
1551 
1552 //------------------------------runtime_math-----------------------------
1553 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1554   Node* a = NULL;
1555   Node* b = NULL;
1556 
1557   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1558          "must be (DD)D or (D)D type");
1559 
1560   // Inputs
1561   _sp += arg_size();        // restore stack pointer
1562   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1563     b = pop_math_arg();
1564   }
1565   a = pop_math_arg();
1566 
1567   const TypePtr* no_memory_effects = NULL;
1568   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1569                                  no_memory_effects,
1570                                  a, top(), b, b ? top() : NULL);
1571   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1572 #ifdef ASSERT
1573   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1574   assert(value_top == top(), "second value must be top");
1575 #endif
1576 
1577   push_pair(value);
1578   return true;
1579 }
1580 
1581 //------------------------------inline_math_native-----------------------------
1582 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1583   switch (id) {
1584     // These intrinsics are not properly supported on all hardware
1585   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1586     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1587   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1588     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1589   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1590     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1591 
1592   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1593     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1594   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1595     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1596 
1597     // These intrinsics are supported on all hardware
1598   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1599   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1600 
1601     // These intrinsics don't work on X86.  The ad implementation doesn't
1602     // handle NaN's properly.  Instead of returning infinity, the ad
1603     // implementation returns a NaN on overflow. See bug: 6304089
1604     // Once the ad implementations are fixed, change the code below
1605     // to match the intrinsics above
1606 
1607   case vmIntrinsics::_dexp:  return
1608     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1609   case vmIntrinsics::_dpow:  return
1610     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1611 
1612    // These intrinsics are not yet correctly implemented
1613   case vmIntrinsics::_datan2:
1614     return false;
1615 
1616   default:
1617     ShouldNotReachHere();
1618     return false;
1619   }
1620 }
1621 
1622 static bool is_simple_name(Node* n) {
1623   return (n->req() == 1         // constant
1624           || (n->is_Type() && n->as_Type()->type()->singleton())
1625           || n->is_Proj()       // parameter or return value
1626           || n->is_Phi()        // local of some sort
1627           );
1628 }
1629 
1630 //----------------------------inline_min_max-----------------------------------
1631 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1632   push(generate_min_max(id, argument(0), argument(1)));
1633 
1634   return true;
1635 }
1636 
1637 Node*
1638 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1639   // These are the candidate return value:
1640   Node* xvalue = x0;
1641   Node* yvalue = y0;
1642 
1643   if (xvalue == yvalue) {
1644     return xvalue;
1645   }
1646 
1647   bool want_max = (id == vmIntrinsics::_max);
1648 
1649   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1650   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1651   if (txvalue == NULL || tyvalue == NULL)  return top();
1652   // This is not really necessary, but it is consistent with a
1653   // hypothetical MaxINode::Value method:
1654   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1655 
1656   // %%% This folding logic should (ideally) be in a different place.
1657   // Some should be inside IfNode, and there to be a more reliable
1658   // transformation of ?: style patterns into cmoves.  We also want
1659   // more powerful optimizations around cmove and min/max.
1660 
1661   // Try to find a dominating comparison of these guys.
1662   // It can simplify the index computation for Arrays.copyOf
1663   // and similar uses of System.arraycopy.
1664   // First, compute the normalized version of CmpI(x, y).
1665   int   cmp_op = Op_CmpI;
1666   Node* xkey = xvalue;
1667   Node* ykey = yvalue;
1668   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1669   if (ideal_cmpxy->is_Cmp()) {
1670     // E.g., if we have CmpI(length - offset, count),
1671     // it might idealize to CmpI(length, count + offset)
1672     cmp_op = ideal_cmpxy->Opcode();
1673     xkey = ideal_cmpxy->in(1);
1674     ykey = ideal_cmpxy->in(2);
1675   }
1676 
1677   // Start by locating any relevant comparisons.
1678   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1679   Node* cmpxy = NULL;
1680   Node* cmpyx = NULL;
1681   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1682     Node* cmp = start_from->fast_out(k);
1683     if (cmp->outcnt() > 0 &&            // must have prior uses
1684         cmp->in(0) == NULL &&           // must be context-independent
1685         cmp->Opcode() == cmp_op) {      // right kind of compare
1686       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1687       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1688     }
1689   }
1690 
1691   const int NCMPS = 2;
1692   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1693   int cmpn;
1694   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1695     if (cmps[cmpn] != NULL)  break;     // find a result
1696   }
1697   if (cmpn < NCMPS) {
1698     // Look for a dominating test that tells us the min and max.
1699     int depth = 0;                // Limit search depth for speed
1700     Node* dom = control();
1701     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1702       if (++depth >= 100)  break;
1703       Node* ifproj = dom;
1704       if (!ifproj->is_Proj())  continue;
1705       Node* iff = ifproj->in(0);
1706       if (!iff->is_If())  continue;
1707       Node* bol = iff->in(1);
1708       if (!bol->is_Bool())  continue;
1709       Node* cmp = bol->in(1);
1710       if (cmp == NULL)  continue;
1711       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1712         if (cmps[cmpn] == cmp)  break;
1713       if (cmpn == NCMPS)  continue;
1714       BoolTest::mask btest = bol->as_Bool()->_test._test;
1715       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1716       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1717       // At this point, we know that 'x btest y' is true.
1718       switch (btest) {
1719       case BoolTest::eq:
1720         // They are proven equal, so we can collapse the min/max.
1721         // Either value is the answer.  Choose the simpler.
1722         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1723           return yvalue;
1724         return xvalue;
1725       case BoolTest::lt:          // x < y
1726       case BoolTest::le:          // x <= y
1727         return (want_max ? yvalue : xvalue);
1728       case BoolTest::gt:          // x > y
1729       case BoolTest::ge:          // x >= y
1730         return (want_max ? xvalue : yvalue);
1731       }
1732     }
1733   }
1734 
1735   // We failed to find a dominating test.
1736   // Let's pick a test that might GVN with prior tests.
1737   Node*          best_bol   = NULL;
1738   BoolTest::mask best_btest = BoolTest::illegal;
1739   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1740     Node* cmp = cmps[cmpn];
1741     if (cmp == NULL)  continue;
1742     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1743       Node* bol = cmp->fast_out(j);
1744       if (!bol->is_Bool())  continue;
1745       BoolTest::mask btest = bol->as_Bool()->_test._test;
1746       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1747       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1748       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1749         best_bol   = bol->as_Bool();
1750         best_btest = btest;
1751       }
1752     }
1753   }
1754 
1755   Node* answer_if_true  = NULL;
1756   Node* answer_if_false = NULL;
1757   switch (best_btest) {
1758   default:
1759     if (cmpxy == NULL)
1760       cmpxy = ideal_cmpxy;
1761     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1762     // and fall through:
1763   case BoolTest::lt:          // x < y
1764   case BoolTest::le:          // x <= y
1765     answer_if_true  = (want_max ? yvalue : xvalue);
1766     answer_if_false = (want_max ? xvalue : yvalue);
1767     break;
1768   case BoolTest::gt:          // x > y
1769   case BoolTest::ge:          // x >= y
1770     answer_if_true  = (want_max ? xvalue : yvalue);
1771     answer_if_false = (want_max ? yvalue : xvalue);
1772     break;
1773   }
1774 
1775   jint hi, lo;
1776   if (want_max) {
1777     // We can sharpen the minimum.
1778     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1779     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1780   } else {
1781     // We can sharpen the maximum.
1782     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1783     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1784   }
1785 
1786   // Use a flow-free graph structure, to avoid creating excess control edges
1787   // which could hinder other optimizations.
1788   // Since Math.min/max is often used with arraycopy, we want
1789   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1790   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1791                                answer_if_false, answer_if_true,
1792                                TypeInt::make(lo, hi, widen));
1793 
1794   return _gvn.transform(cmov);
1795 
1796   /*
1797   // This is not as desirable as it may seem, since Min and Max
1798   // nodes do not have a full set of optimizations.
1799   // And they would interfere, anyway, with 'if' optimizations
1800   // and with CMoveI canonical forms.
1801   switch (id) {
1802   case vmIntrinsics::_min:
1803     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1804   case vmIntrinsics::_max:
1805     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1806   default:
1807     ShouldNotReachHere();
1808   }
1809   */
1810 }
1811 
1812 inline int
1813 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1814   const TypePtr* base_type = TypePtr::NULL_PTR;
1815   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1816   if (base_type == NULL) {
1817     // Unknown type.
1818     return Type::AnyPtr;
1819   } else if (base_type == TypePtr::NULL_PTR) {
1820     // Since this is a NULL+long form, we have to switch to a rawptr.
1821     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1822     offset = MakeConX(0);
1823     return Type::RawPtr;
1824   } else if (base_type->base() == Type::RawPtr) {
1825     return Type::RawPtr;
1826   } else if (base_type->isa_oopptr()) {
1827     // Base is never null => always a heap address.
1828     if (base_type->ptr() == TypePtr::NotNull) {
1829       return Type::OopPtr;
1830     }
1831     // Offset is small => always a heap address.
1832     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1833     if (offset_type != NULL &&
1834         base_type->offset() == 0 &&     // (should always be?)
1835         offset_type->_lo >= 0 &&
1836         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1837       return Type::OopPtr;
1838     }
1839     // Otherwise, it might either be oop+off or NULL+addr.
1840     return Type::AnyPtr;
1841   } else {
1842     // No information:
1843     return Type::AnyPtr;
1844   }
1845 }
1846 
1847 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1848   int kind = classify_unsafe_addr(base, offset);
1849   if (kind == Type::RawPtr) {
1850     return basic_plus_adr(top(), base, offset);
1851   } else {
1852     return basic_plus_adr(base, offset);
1853   }
1854 }
1855 
1856 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1857 // inline int Integer.numberOfLeadingZeros(int)
1858 // inline int Long.numberOfLeadingZeros(long)
1859 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1860   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1861   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1862   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1863   _sp += arg_size();  // restore stack pointer
1864   switch (id) {
1865   case vmIntrinsics::_numberOfLeadingZeros_i:
1866     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1867     break;
1868   case vmIntrinsics::_numberOfLeadingZeros_l:
1869     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1870     break;
1871   default:
1872     ShouldNotReachHere();
1873   }
1874   return true;
1875 }
1876 
1877 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1878 // inline int Integer.numberOfTrailingZeros(int)
1879 // inline int Long.numberOfTrailingZeros(long)
1880 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1881   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1882   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1883   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1884   _sp += arg_size();  // restore stack pointer
1885   switch (id) {
1886   case vmIntrinsics::_numberOfTrailingZeros_i:
1887     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1888     break;
1889   case vmIntrinsics::_numberOfTrailingZeros_l:
1890     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1891     break;
1892   default:
1893     ShouldNotReachHere();
1894   }
1895   return true;
1896 }
1897 
1898 //----------------------------inline_bitCount_int/long-----------------------
1899 // inline int Integer.bitCount(int)
1900 // inline int Long.bitCount(long)
1901 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
1902   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
1903   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
1904   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
1905   _sp += arg_size();  // restore stack pointer
1906   switch (id) {
1907   case vmIntrinsics::_bitCount_i:
1908     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
1909     break;
1910   case vmIntrinsics::_bitCount_l:
1911     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
1912     break;
1913   default:
1914     ShouldNotReachHere();
1915   }
1916   return true;
1917 }
1918 
1919 //----------------------------inline_reverseBytes_int/long-------------------
1920 // inline Integer.reverseBytes(int)
1921 // inline Long.reverseBytes(long)
1922 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
1923   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
1924   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
1925   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
1926   _sp += arg_size();        // restore stack pointer
1927   switch (id) {
1928   case vmIntrinsics::_reverseBytes_i:
1929     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
1930     break;
1931   case vmIntrinsics::_reverseBytes_l:
1932     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
1933     break;
1934   default:
1935     ;
1936   }
1937   return true;
1938 }
1939 
1940 //----------------------------inline_unsafe_access----------------------------
1941 
1942 const static BasicType T_ADDRESS_HOLDER = T_LONG;
1943 
1944 // Interpret Unsafe.fieldOffset cookies correctly:
1945 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
1946 
1947 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
1948   if (callee()->is_static())  return false;  // caller must have the capability!
1949 
1950 #ifndef PRODUCT
1951   {
1952     ResourceMark rm;
1953     // Check the signatures.
1954     ciSignature* sig = signature();
1955 #ifdef ASSERT
1956     if (!is_store) {
1957       // Object getObject(Object base, int/long offset), etc.
1958       BasicType rtype = sig->return_type()->basic_type();
1959       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
1960           rtype = T_ADDRESS;  // it is really a C void*
1961       assert(rtype == type, "getter must return the expected value");
1962       if (!is_native_ptr) {
1963         assert(sig->count() == 2, "oop getter has 2 arguments");
1964         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
1965         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
1966       } else {
1967         assert(sig->count() == 1, "native getter has 1 argument");
1968         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
1969       }
1970     } else {
1971       // void putObject(Object base, int/long offset, Object x), etc.
1972       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
1973       if (!is_native_ptr) {
1974         assert(sig->count() == 3, "oop putter has 3 arguments");
1975         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
1976         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
1977       } else {
1978         assert(sig->count() == 2, "native putter has 2 arguments");
1979         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
1980       }
1981       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
1982       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
1983         vtype = T_ADDRESS;  // it is really a C void*
1984       assert(vtype == type, "putter must accept the expected value");
1985     }
1986 #endif // ASSERT
1987  }
1988 #endif //PRODUCT
1989 
1990   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
1991 
1992   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
1993 
1994   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
1995   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
1996 
1997   debug_only(int saved_sp = _sp);
1998   _sp += nargs;
1999 
2000   Node* val;
2001   debug_only(val = (Node*)(uintptr_t)-1);
2002 
2003 
2004   if (is_store) {
2005     // Get the value being stored.  (Pop it first; it was pushed last.)
2006     switch (type) {
2007     case T_DOUBLE:
2008     case T_LONG:
2009     case T_ADDRESS:
2010       val = pop_pair();
2011       break;
2012     default:
2013       val = pop();
2014     }
2015   }
2016 
2017   // Build address expression.  See the code in inline_unsafe_prefetch.
2018   Node *adr;
2019   Node *heap_base_oop = top();
2020   if (!is_native_ptr) {
2021     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2022     Node* offset = pop_pair();
2023     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2024     Node* base   = pop();
2025     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2026     // to be plain byte offsets, which are also the same as those accepted
2027     // by oopDesc::field_base.
2028     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2029            "fieldOffset must be byte-scaled");
2030     // 32-bit machines ignore the high half!
2031     offset = ConvL2X(offset);
2032     adr = make_unsafe_address(base, offset);
2033     heap_base_oop = base;
2034   } else {
2035     Node* ptr = pop_pair();
2036     // Adjust Java long to machine word:
2037     ptr = ConvL2X(ptr);
2038     adr = make_unsafe_address(NULL, ptr);
2039   }
2040 
2041   // Pop receiver last:  it was pushed first.
2042   Node *receiver = pop();
2043 
2044   assert(saved_sp == _sp, "must have correct argument count");
2045 
2046   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2047 
2048   // First guess at the value type.
2049   const Type *value_type = Type::get_const_basic_type(type);
2050 
2051   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2052   // there was not enough information to nail it down.
2053   Compile::AliasType* alias_type = C->alias_type(adr_type);
2054   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2055 
2056   // We will need memory barriers unless we can determine a unique
2057   // alias category for this reference.  (Note:  If for some reason
2058   // the barriers get omitted and the unsafe reference begins to "pollute"
2059   // the alias analysis of the rest of the graph, either Compile::can_alias
2060   // or Compile::must_alias will throw a diagnostic assert.)
2061   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2062 
2063   if (!is_store && type == T_OBJECT) {
2064     // Attempt to infer a sharper value type from the offset and base type.
2065     ciKlass* sharpened_klass = NULL;
2066 
2067     // See if it is an instance field, with an object type.
2068     if (alias_type->field() != NULL) {
2069       assert(!is_native_ptr, "native pointer op cannot use a java address");
2070       if (alias_type->field()->type()->is_klass()) {
2071         sharpened_klass = alias_type->field()->type()->as_klass();
2072       }
2073     }
2074 
2075     // See if it is a narrow oop array.
2076     if (adr_type->isa_aryptr()) {
2077       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
2078         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2079         if (elem_type != NULL) {
2080           sharpened_klass = elem_type->klass();
2081         }
2082       }
2083     }
2084 
2085     if (sharpened_klass != NULL) {
2086       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2087 
2088       // Sharpen the value type.
2089       value_type = tjp;
2090 
2091 #ifndef PRODUCT
2092       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2093         tty->print("  from base type:  ");   adr_type->dump();
2094         tty->print("  sharpened value: "); value_type->dump();
2095       }
2096 #endif
2097     }
2098   }
2099 
2100   // Null check on self without removing any arguments.  The argument
2101   // null check technically happens in the wrong place, which can lead to
2102   // invalid stack traces when the primitive is inlined into a method
2103   // which handles NullPointerExceptions.
2104   _sp += nargs;
2105   do_null_check(receiver, T_OBJECT);
2106   _sp -= nargs;
2107   if (stopped()) {
2108     return true;
2109   }
2110   // Heap pointers get a null-check from the interpreter,
2111   // as a courtesy.  However, this is not guaranteed by Unsafe,
2112   // and it is not possible to fully distinguish unintended nulls
2113   // from intended ones in this API.
2114 
2115   if (is_volatile) {
2116     // We need to emit leading and trailing CPU membars (see below) in
2117     // addition to memory membars when is_volatile. This is a little
2118     // too strong, but avoids the need to insert per-alias-type
2119     // volatile membars (for stores; compare Parse::do_put_xxx), which
2120     // we cannot do effectively here because we probably only have a
2121     // rough approximation of type.
2122     need_mem_bar = true;
2123     // For Stores, place a memory ordering barrier now.
2124     if (is_store)
2125       insert_mem_bar(Op_MemBarRelease);
2126   }
2127 
2128   // Memory barrier to prevent normal and 'unsafe' accesses from
2129   // bypassing each other.  Happens after null checks, so the
2130   // exception paths do not take memory state from the memory barrier,
2131   // so there's no problems making a strong assert about mixing users
2132   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2133   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2134   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2135 
2136   if (!is_store) {
2137     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2138     // load value and push onto stack
2139     switch (type) {
2140     case T_BOOLEAN:
2141     case T_CHAR:
2142     case T_BYTE:
2143     case T_SHORT:
2144     case T_INT:
2145     case T_FLOAT:
2146     case T_OBJECT:
2147       push( p );
2148       break;
2149     case T_ADDRESS:
2150       // Cast to an int type.
2151       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2152       p = ConvX2L(p);
2153       push_pair(p);
2154       break;
2155     case T_DOUBLE:
2156     case T_LONG:
2157       push_pair( p );
2158       break;
2159     default: ShouldNotReachHere();
2160     }
2161   } else {
2162     // place effect of store into memory
2163     switch (type) {
2164     case T_DOUBLE:
2165       val = dstore_rounding(val);
2166       break;
2167     case T_ADDRESS:
2168       // Repackage the long as a pointer.
2169       val = ConvL2X(val);
2170       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2171       break;
2172     }
2173 
2174     if (type != T_OBJECT ) {
2175       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2176     } else {
2177       // Possibly an oop being stored to Java heap or native memory
2178       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2179         // oop to Java heap.
2180         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2181       } else {
2182         // We can't tell at compile time if we are storing in the Java heap or outside
2183         // of it. So we need to emit code to conditionally do the proper type of
2184         // store.
2185 
2186         IdealKit kit(gvn(), control(),  merged_memory());
2187         kit.declares_done();
2188         // QQQ who knows what probability is here??
2189         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2190           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2191         } kit.else_(); {
2192           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2193         } kit.end_if();
2194       }
2195     }
2196   }
2197 
2198   if (is_volatile) {
2199     if (!is_store)
2200       insert_mem_bar(Op_MemBarAcquire);
2201     else
2202       insert_mem_bar(Op_MemBarVolatile);
2203   }
2204 
2205   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2206 
2207   return true;
2208 }
2209 
2210 //----------------------------inline_unsafe_prefetch----------------------------
2211 
2212 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2213 #ifndef PRODUCT
2214   {
2215     ResourceMark rm;
2216     // Check the signatures.
2217     ciSignature* sig = signature();
2218 #ifdef ASSERT
2219     // Object getObject(Object base, int/long offset), etc.
2220     BasicType rtype = sig->return_type()->basic_type();
2221     if (!is_native_ptr) {
2222       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2223       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2224       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2225     } else {
2226       assert(sig->count() == 1, "native prefetch has 1 argument");
2227       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2228     }
2229 #endif // ASSERT
2230   }
2231 #endif // !PRODUCT
2232 
2233   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2234 
2235   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2236   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2237 
2238   debug_only(int saved_sp = _sp);
2239   _sp += nargs;
2240 
2241   // Build address expression.  See the code in inline_unsafe_access.
2242   Node *adr;
2243   if (!is_native_ptr) {
2244     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2245     Node* offset = pop_pair();
2246     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2247     Node* base   = pop();
2248     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2249     // to be plain byte offsets, which are also the same as those accepted
2250     // by oopDesc::field_base.
2251     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2252            "fieldOffset must be byte-scaled");
2253     // 32-bit machines ignore the high half!
2254     offset = ConvL2X(offset);
2255     adr = make_unsafe_address(base, offset);
2256   } else {
2257     Node* ptr = pop_pair();
2258     // Adjust Java long to machine word:
2259     ptr = ConvL2X(ptr);
2260     adr = make_unsafe_address(NULL, ptr);
2261   }
2262 
2263   if (is_static) {
2264     assert(saved_sp == _sp, "must have correct argument count");
2265   } else {
2266     // Pop receiver last:  it was pushed first.
2267     Node *receiver = pop();
2268     assert(saved_sp == _sp, "must have correct argument count");
2269 
2270     // Null check on self without removing any arguments.  The argument
2271     // null check technically happens in the wrong place, which can lead to
2272     // invalid stack traces when the primitive is inlined into a method
2273     // which handles NullPointerExceptions.
2274     _sp += nargs;
2275     do_null_check(receiver, T_OBJECT);
2276     _sp -= nargs;
2277     if (stopped()) {
2278       return true;
2279     }
2280   }
2281 
2282   // Generate the read or write prefetch
2283   Node *prefetch;
2284   if (is_store) {
2285     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2286   } else {
2287     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2288   }
2289   prefetch->init_req(0, control());
2290   set_i_o(_gvn.transform(prefetch));
2291 
2292   return true;
2293 }
2294 
2295 //----------------------------inline_unsafe_CAS----------------------------
2296 
2297 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2298   // This basic scheme here is the same as inline_unsafe_access, but
2299   // differs in enough details that combining them would make the code
2300   // overly confusing.  (This is a true fact! I originally combined
2301   // them, but even I was confused by it!) As much code/comments as
2302   // possible are retained from inline_unsafe_access though to make
2303   // the correspondences clearer. - dl
2304 
2305   if (callee()->is_static())  return false;  // caller must have the capability!
2306 
2307 #ifndef PRODUCT
2308   {
2309     ResourceMark rm;
2310     // Check the signatures.
2311     ciSignature* sig = signature();
2312 #ifdef ASSERT
2313     BasicType rtype = sig->return_type()->basic_type();
2314     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2315     assert(sig->count() == 4, "CAS has 4 arguments");
2316     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2317     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2318 #endif // ASSERT
2319   }
2320 #endif //PRODUCT
2321 
2322   // number of stack slots per value argument (1 or 2)
2323   int type_words = type2size[type];
2324 
2325   // Cannot inline wide CAS on machines that don't support it natively
2326   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2327     return false;
2328 
2329   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2330 
2331   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2332   int nargs = 1 + 1 + 2  + type_words + type_words;
2333 
2334   // pop arguments: newval, oldval, offset, base, and receiver
2335   debug_only(int saved_sp = _sp);
2336   _sp += nargs;
2337   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2338   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2339   Node *offset   = pop_pair();
2340   Node *base     = pop();
2341   Node *receiver = pop();
2342   assert(saved_sp == _sp, "must have correct argument count");
2343 
2344   //  Null check receiver.
2345   _sp += nargs;
2346   do_null_check(receiver, T_OBJECT);
2347   _sp -= nargs;
2348   if (stopped()) {
2349     return true;
2350   }
2351 
2352   // Build field offset expression.
2353   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2354   // to be plain byte offsets, which are also the same as those accepted
2355   // by oopDesc::field_base.
2356   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2357   // 32-bit machines ignore the high half of long offsets
2358   offset = ConvL2X(offset);
2359   Node* adr = make_unsafe_address(base, offset);
2360   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2361 
2362   // (Unlike inline_unsafe_access, there seems no point in trying
2363   // to refine types. Just use the coarse types here.
2364   const Type *value_type = Type::get_const_basic_type(type);
2365   Compile::AliasType* alias_type = C->alias_type(adr_type);
2366   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2367   int alias_idx = C->get_alias_index(adr_type);
2368 
2369   // Memory-model-wise, a CAS acts like a little synchronized block,
2370   // so needs barriers on each side.  These don't translate into
2371   // actual barriers on most machines, but we still need rest of
2372   // compiler to respect ordering.
2373 
2374   insert_mem_bar(Op_MemBarRelease);
2375   insert_mem_bar(Op_MemBarCPUOrder);
2376 
2377   // 4984716: MemBars must be inserted before this
2378   //          memory node in order to avoid a false
2379   //          dependency which will confuse the scheduler.
2380   Node *mem = memory(alias_idx);
2381 
2382   // For now, we handle only those cases that actually exist: ints,
2383   // longs, and Object. Adding others should be straightforward.
2384   Node* cas;
2385   switch(type) {
2386   case T_INT:
2387     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2388     break;
2389   case T_LONG:
2390     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2391     break;
2392   case T_OBJECT:
2393      // reference stores need a store barrier.
2394     // (They don't if CAS fails, but it isn't worth checking.)
2395     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2396 #ifdef _LP64
2397     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2398       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2399       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2400       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2401                                                           newval_enc, oldval_enc));
2402     } else
2403 #endif
2404     {
2405       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2406     }
2407     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2408     break;
2409   default:
2410     ShouldNotReachHere();
2411     break;
2412   }
2413 
2414   // SCMemProjNodes represent the memory state of CAS. Their main
2415   // role is to prevent CAS nodes from being optimized away when their
2416   // results aren't used.
2417   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2418   set_memory(proj, alias_idx);
2419 
2420   // Add the trailing membar surrounding the access
2421   insert_mem_bar(Op_MemBarCPUOrder);
2422   insert_mem_bar(Op_MemBarAcquire);
2423 
2424   push(cas);
2425   return true;
2426 }
2427 
2428 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2429   // This is another variant of inline_unsafe_access, differing in
2430   // that it always issues store-store ("release") barrier and ensures
2431   // store-atomicity (which only matters for "long").
2432 
2433   if (callee()->is_static())  return false;  // caller must have the capability!
2434 
2435 #ifndef PRODUCT
2436   {
2437     ResourceMark rm;
2438     // Check the signatures.
2439     ciSignature* sig = signature();
2440 #ifdef ASSERT
2441     BasicType rtype = sig->return_type()->basic_type();
2442     assert(rtype == T_VOID, "must return void");
2443     assert(sig->count() == 3, "has 3 arguments");
2444     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2445     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2446 #endif // ASSERT
2447   }
2448 #endif //PRODUCT
2449 
2450   // number of stack slots per value argument (1 or 2)
2451   int type_words = type2size[type];
2452 
2453   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2454 
2455   // Argument words:  "this" plus oop plus offset plus value;
2456   int nargs = 1 + 1 + 2 + type_words;
2457 
2458   // pop arguments: val, offset, base, and receiver
2459   debug_only(int saved_sp = _sp);
2460   _sp += nargs;
2461   Node* val      = (type_words == 1) ? pop() : pop_pair();
2462   Node *offset   = pop_pair();
2463   Node *base     = pop();
2464   Node *receiver = pop();
2465   assert(saved_sp == _sp, "must have correct argument count");
2466 
2467   //  Null check receiver.
2468   _sp += nargs;
2469   do_null_check(receiver, T_OBJECT);
2470   _sp -= nargs;
2471   if (stopped()) {
2472     return true;
2473   }
2474 
2475   // Build field offset expression.
2476   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2477   // 32-bit machines ignore the high half of long offsets
2478   offset = ConvL2X(offset);
2479   Node* adr = make_unsafe_address(base, offset);
2480   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2481   const Type *value_type = Type::get_const_basic_type(type);
2482   Compile::AliasType* alias_type = C->alias_type(adr_type);
2483 
2484   insert_mem_bar(Op_MemBarRelease);
2485   insert_mem_bar(Op_MemBarCPUOrder);
2486   // Ensure that the store is atomic for longs:
2487   bool require_atomic_access = true;
2488   Node* store;
2489   if (type == T_OBJECT) // reference stores need a store barrier.
2490     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2491   else {
2492     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2493   }
2494   insert_mem_bar(Op_MemBarCPUOrder);
2495   return true;
2496 }
2497 
2498 bool LibraryCallKit::inline_unsafe_allocate() {
2499   if (callee()->is_static())  return false;  // caller must have the capability!
2500   int nargs = 1 + 1;
2501   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2502   null_check_receiver(callee());  // check then ignore argument(0)
2503   _sp += nargs;  // set original stack for use by uncommon_trap
2504   Node* cls = do_null_check(argument(1), T_OBJECT);
2505   _sp -= nargs;
2506   if (stopped())  return true;
2507 
2508   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2509   _sp += nargs;  // set original stack for use by uncommon_trap
2510   kls = do_null_check(kls, T_OBJECT);
2511   _sp -= nargs;
2512   if (stopped())  return true;  // argument was like int.class
2513 
2514   // Note:  The argument might still be an illegal value like
2515   // Serializable.class or Object[].class.   The runtime will handle it.
2516   // But we must make an explicit check for initialization.
2517   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2518   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2519   Node* bits = intcon(instanceKlass::fully_initialized);
2520   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2521   // The 'test' is non-zero if we need to take a slow path.
2522 
2523   Node* obj = new_instance(kls, test);
2524   push(obj);
2525 
2526   return true;
2527 }
2528 
2529 //------------------------inline_native_time_funcs--------------
2530 // inline code for System.currentTimeMillis() and System.nanoTime()
2531 // these have the same type and signature
2532 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2533   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2534                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2535   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2536   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2537   const TypePtr* no_memory_effects = NULL;
2538   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2539   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2540 #ifdef ASSERT
2541   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2542   assert(value_top == top(), "second value must be top");
2543 #endif
2544   push_pair(value);
2545   return true;
2546 }
2547 
2548 //------------------------inline_native_currentThread------------------
2549 bool LibraryCallKit::inline_native_currentThread() {
2550   Node* junk = NULL;
2551   push(generate_current_thread(junk));
2552   return true;
2553 }
2554 
2555 //------------------------inline_native_isInterrupted------------------
2556 bool LibraryCallKit::inline_native_isInterrupted() {
2557   const int nargs = 1+1;  // receiver + boolean
2558   assert(nargs == arg_size(), "sanity");
2559   // Add a fast path to t.isInterrupted(clear_int):
2560   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2561   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2562   // So, in the common case that the interrupt bit is false,
2563   // we avoid making a call into the VM.  Even if the interrupt bit
2564   // is true, if the clear_int argument is false, we avoid the VM call.
2565   // However, if the receiver is not currentThread, we must call the VM,
2566   // because there must be some locking done around the operation.
2567 
2568   // We only go to the fast case code if we pass two guards.
2569   // Paths which do not pass are accumulated in the slow_region.
2570   RegionNode* slow_region = new (C, 1) RegionNode(1);
2571   record_for_igvn(slow_region);
2572   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2573   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2574   enum { no_int_result_path   = 1,
2575          no_clear_result_path = 2,
2576          slow_result_path     = 3
2577   };
2578 
2579   // (a) Receiving thread must be the current thread.
2580   Node* rec_thr = argument(0);
2581   Node* tls_ptr = NULL;
2582   Node* cur_thr = generate_current_thread(tls_ptr);
2583   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2584   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2585 
2586   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2587   if (!known_current_thread)
2588     generate_slow_guard(bol_thr, slow_region);
2589 
2590   // (b) Interrupt bit on TLS must be false.
2591   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2592   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2593   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2594   // Set the control input on the field _interrupted read to prevent it floating up.
2595   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2596   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2597   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2598 
2599   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2600 
2601   // First fast path:  if (!TLS._interrupted) return false;
2602   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2603   result_rgn->init_req(no_int_result_path, false_bit);
2604   result_val->init_req(no_int_result_path, intcon(0));
2605 
2606   // drop through to next case
2607   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2608 
2609   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2610   Node* clr_arg = argument(1);
2611   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2612   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2613   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2614 
2615   // Second fast path:  ... else if (!clear_int) return true;
2616   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2617   result_rgn->init_req(no_clear_result_path, false_arg);
2618   result_val->init_req(no_clear_result_path, intcon(1));
2619 
2620   // drop through to next case
2621   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2622 
2623   // (d) Otherwise, go to the slow path.
2624   slow_region->add_req(control());
2625   set_control( _gvn.transform(slow_region) );
2626 
2627   if (stopped()) {
2628     // There is no slow path.
2629     result_rgn->init_req(slow_result_path, top());
2630     result_val->init_req(slow_result_path, top());
2631   } else {
2632     // non-virtual because it is a private non-static
2633     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2634 
2635     Node* slow_val = set_results_for_java_call(slow_call);
2636     // this->control() comes from set_results_for_java_call
2637 
2638     // If we know that the result of the slow call will be true, tell the optimizer!
2639     if (known_current_thread)  slow_val = intcon(1);
2640 
2641     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2642     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2643     // These two phis are pre-filled with copies of of the fast IO and Memory
2644     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2645     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2646 
2647     result_rgn->init_req(slow_result_path, control());
2648     io_phi    ->init_req(slow_result_path, i_o());
2649     mem_phi   ->init_req(slow_result_path, reset_memory());
2650     result_val->init_req(slow_result_path, slow_val);
2651 
2652     set_all_memory( _gvn.transform(mem_phi) );
2653     set_i_o(        _gvn.transform(io_phi) );
2654   }
2655 
2656   push_result(result_rgn, result_val);
2657   C->set_has_split_ifs(true); // Has chance for split-if optimization
2658 
2659   return true;
2660 }
2661 
2662 //---------------------------load_mirror_from_klass----------------------------
2663 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2664 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2665   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2666   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2667 }
2668 
2669 //-----------------------load_klass_from_mirror_common-------------------------
2670 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2671 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2672 // and branch to the given path on the region.
2673 // If never_see_null, take an uncommon trap on null, so we can optimistically
2674 // compile for the non-null case.
2675 // If the region is NULL, force never_see_null = true.
2676 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2677                                                     bool never_see_null,
2678                                                     int nargs,
2679                                                     RegionNode* region,
2680                                                     int null_path,
2681                                                     int offset) {
2682   if (region == NULL)  never_see_null = true;
2683   Node* p = basic_plus_adr(mirror, offset);
2684   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2685   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2686   _sp += nargs; // any deopt will start just before call to enclosing method
2687   Node* null_ctl = top();
2688   kls = null_check_oop(kls, &null_ctl, never_see_null);
2689   if (region != NULL) {
2690     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2691     region->init_req(null_path, null_ctl);
2692   } else {
2693     assert(null_ctl == top(), "no loose ends");
2694   }
2695   _sp -= nargs;
2696   return kls;
2697 }
2698 
2699 //--------------------(inline_native_Class_query helpers)---------------------
2700 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2701 // Fall through if (mods & mask) == bits, take the guard otherwise.
2702 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2703   // Branch around if the given klass has the given modifier bit set.
2704   // Like generate_guard, adds a new path onto the region.
2705   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2706   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2707   Node* mask = intcon(modifier_mask);
2708   Node* bits = intcon(modifier_bits);
2709   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2710   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2711   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2712   return generate_fair_guard(bol, region);
2713 }
2714 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2715   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2716 }
2717 
2718 //-------------------------inline_native_Class_query-------------------
2719 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2720   int nargs = 1+0;  // just the Class mirror, in most cases
2721   const Type* return_type = TypeInt::BOOL;
2722   Node* prim_return_value = top();  // what happens if it's a primitive class?
2723   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2724   bool expect_prim = false;     // most of these guys expect to work on refs
2725 
2726   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2727 
2728   switch (id) {
2729   case vmIntrinsics::_isInstance:
2730     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2731     // nothing is an instance of a primitive type
2732     prim_return_value = intcon(0);
2733     break;
2734   case vmIntrinsics::_getModifiers:
2735     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2736     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2737     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2738     break;
2739   case vmIntrinsics::_isInterface:
2740     prim_return_value = intcon(0);
2741     break;
2742   case vmIntrinsics::_isArray:
2743     prim_return_value = intcon(0);
2744     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2745     break;
2746   case vmIntrinsics::_isPrimitive:
2747     prim_return_value = intcon(1);
2748     expect_prim = true;  // obviously
2749     break;
2750   case vmIntrinsics::_getSuperclass:
2751     prim_return_value = null();
2752     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2753     break;
2754   case vmIntrinsics::_getComponentType:
2755     prim_return_value = null();
2756     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2757     break;
2758   case vmIntrinsics::_getClassAccessFlags:
2759     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2760     return_type = TypeInt::INT;  // not bool!  6297094
2761     break;
2762   default:
2763     ShouldNotReachHere();
2764   }
2765 
2766   Node* mirror =                      argument(0);
2767   Node* obj    = (nargs <= 1)? top(): argument(1);
2768 
2769   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2770   if (mirror_con == NULL)  return false;  // cannot happen?
2771 
2772 #ifndef PRODUCT
2773   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2774     ciType* k = mirror_con->java_mirror_type();
2775     if (k) {
2776       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2777       k->print_name();
2778       tty->cr();
2779     }
2780   }
2781 #endif
2782 
2783   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2784   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2785   record_for_igvn(region);
2786   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2787 
2788   // The mirror will never be null of Reflection.getClassAccessFlags, however
2789   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2790   // if it is. See bug 4774291.
2791 
2792   // For Reflection.getClassAccessFlags(), the null check occurs in
2793   // the wrong place; see inline_unsafe_access(), above, for a similar
2794   // situation.
2795   _sp += nargs;  // set original stack for use by uncommon_trap
2796   mirror = do_null_check(mirror, T_OBJECT);
2797   _sp -= nargs;
2798   // If mirror or obj is dead, only null-path is taken.
2799   if (stopped())  return true;
2800 
2801   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2802 
2803   // Now load the mirror's klass metaobject, and null-check it.
2804   // Side-effects region with the control path if the klass is null.
2805   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2806                                      region, _prim_path);
2807   // If kls is null, we have a primitive mirror.
2808   phi->init_req(_prim_path, prim_return_value);
2809   if (stopped()) { push_result(region, phi); return true; }
2810 
2811   Node* p;  // handy temp
2812   Node* null_ctl;
2813 
2814   // Now that we have the non-null klass, we can perform the real query.
2815   // For constant classes, the query will constant-fold in LoadNode::Value.
2816   Node* query_value = top();
2817   switch (id) {
2818   case vmIntrinsics::_isInstance:
2819     // nothing is an instance of a primitive type
2820     query_value = gen_instanceof(obj, kls);
2821     break;
2822 
2823   case vmIntrinsics::_getModifiers:
2824     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2825     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2826     break;
2827 
2828   case vmIntrinsics::_isInterface:
2829     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2830     if (generate_interface_guard(kls, region) != NULL)
2831       // A guard was added.  If the guard is taken, it was an interface.
2832       phi->add_req(intcon(1));
2833     // If we fall through, it's a plain class.
2834     query_value = intcon(0);
2835     break;
2836 
2837   case vmIntrinsics::_isArray:
2838     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2839     if (generate_array_guard(kls, region) != NULL)
2840       // A guard was added.  If the guard is taken, it was an array.
2841       phi->add_req(intcon(1));
2842     // If we fall through, it's a plain class.
2843     query_value = intcon(0);
2844     break;
2845 
2846   case vmIntrinsics::_isPrimitive:
2847     query_value = intcon(0); // "normal" path produces false
2848     break;
2849 
2850   case vmIntrinsics::_getSuperclass:
2851     // The rules here are somewhat unfortunate, but we can still do better
2852     // with random logic than with a JNI call.
2853     // Interfaces store null or Object as _super, but must report null.
2854     // Arrays store an intermediate super as _super, but must report Object.
2855     // Other types can report the actual _super.
2856     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2857     if (generate_interface_guard(kls, region) != NULL)
2858       // A guard was added.  If the guard is taken, it was an interface.
2859       phi->add_req(null());
2860     if (generate_array_guard(kls, region) != NULL)
2861       // A guard was added.  If the guard is taken, it was an array.
2862       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2863     // If we fall through, it's a plain class.  Get its _super.
2864     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2865     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2866     null_ctl = top();
2867     kls = null_check_oop(kls, &null_ctl);
2868     if (null_ctl != top()) {
2869       // If the guard is taken, Object.superClass is null (both klass and mirror).
2870       region->add_req(null_ctl);
2871       phi   ->add_req(null());
2872     }
2873     if (!stopped()) {
2874       query_value = load_mirror_from_klass(kls);
2875     }
2876     break;
2877 
2878   case vmIntrinsics::_getComponentType:
2879     if (generate_array_guard(kls, region) != NULL) {
2880       // Be sure to pin the oop load to the guard edge just created:
2881       Node* is_array_ctrl = region->in(region->req()-1);
2882       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
2883       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
2884       phi->add_req(cmo);
2885     }
2886     query_value = null();  // non-array case is null
2887     break;
2888 
2889   case vmIntrinsics::_getClassAccessFlags:
2890     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2891     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2892     break;
2893 
2894   default:
2895     ShouldNotReachHere();
2896   }
2897 
2898   // Fall-through is the normal case of a query to a real class.
2899   phi->init_req(1, query_value);
2900   region->init_req(1, control());
2901 
2902   push_result(region, phi);
2903   C->set_has_split_ifs(true); // Has chance for split-if optimization
2904 
2905   return true;
2906 }
2907 
2908 //--------------------------inline_native_subtype_check------------------------
2909 // This intrinsic takes the JNI calls out of the heart of
2910 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
2911 bool LibraryCallKit::inline_native_subtype_check() {
2912   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
2913 
2914   // Pull both arguments off the stack.
2915   Node* args[2];                // two java.lang.Class mirrors: superc, subc
2916   args[0] = argument(0);
2917   args[1] = argument(1);
2918   Node* klasses[2];             // corresponding Klasses: superk, subk
2919   klasses[0] = klasses[1] = top();
2920 
2921   enum {
2922     // A full decision tree on {superc is prim, subc is prim}:
2923     _prim_0_path = 1,           // {P,N} => false
2924                                 // {P,P} & superc!=subc => false
2925     _prim_same_path,            // {P,P} & superc==subc => true
2926     _prim_1_path,               // {N,P} => false
2927     _ref_subtype_path,          // {N,N} & subtype check wins => true
2928     _both_ref_path,             // {N,N} & subtype check loses => false
2929     PATH_LIMIT
2930   };
2931 
2932   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2933   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2934   record_for_igvn(region);
2935 
2936   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
2937   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2938   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
2939 
2940   // First null-check both mirrors and load each mirror's klass metaobject.
2941   int which_arg;
2942   for (which_arg = 0; which_arg <= 1; which_arg++) {
2943     Node* arg = args[which_arg];
2944     _sp += nargs;  // set original stack for use by uncommon_trap
2945     arg = do_null_check(arg, T_OBJECT);
2946     _sp -= nargs;
2947     if (stopped())  break;
2948     args[which_arg] = _gvn.transform(arg);
2949 
2950     Node* p = basic_plus_adr(arg, class_klass_offset);
2951     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
2952     klasses[which_arg] = _gvn.transform(kls);
2953   }
2954 
2955   // Having loaded both klasses, test each for null.
2956   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2957   for (which_arg = 0; which_arg <= 1; which_arg++) {
2958     Node* kls = klasses[which_arg];
2959     Node* null_ctl = top();
2960     _sp += nargs;  // set original stack for use by uncommon_trap
2961     kls = null_check_oop(kls, &null_ctl, never_see_null);
2962     _sp -= nargs;
2963     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
2964     region->init_req(prim_path, null_ctl);
2965     if (stopped())  break;
2966     klasses[which_arg] = kls;
2967   }
2968 
2969   if (!stopped()) {
2970     // now we have two reference types, in klasses[0..1]
2971     Node* subk   = klasses[1];  // the argument to isAssignableFrom
2972     Node* superk = klasses[0];  // the receiver
2973     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
2974     // now we have a successful reference subtype check
2975     region->set_req(_ref_subtype_path, control());
2976   }
2977 
2978   // If both operands are primitive (both klasses null), then
2979   // we must return true when they are identical primitives.
2980   // It is convenient to test this after the first null klass check.
2981   set_control(region->in(_prim_0_path)); // go back to first null check
2982   if (!stopped()) {
2983     // Since superc is primitive, make a guard for the superc==subc case.
2984     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
2985     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
2986     generate_guard(bol_eq, region, PROB_FAIR);
2987     if (region->req() == PATH_LIMIT+1) {
2988       // A guard was added.  If the added guard is taken, superc==subc.
2989       region->swap_edges(PATH_LIMIT, _prim_same_path);
2990       region->del_req(PATH_LIMIT);
2991     }
2992     region->set_req(_prim_0_path, control()); // Not equal after all.
2993   }
2994 
2995   // these are the only paths that produce 'true':
2996   phi->set_req(_prim_same_path,   intcon(1));
2997   phi->set_req(_ref_subtype_path, intcon(1));
2998 
2999   // pull together the cases:
3000   assert(region->req() == PATH_LIMIT, "sane region");
3001   for (uint i = 1; i < region->req(); i++) {
3002     Node* ctl = region->in(i);
3003     if (ctl == NULL || ctl == top()) {
3004       region->set_req(i, top());
3005       phi   ->set_req(i, top());
3006     } else if (phi->in(i) == NULL) {
3007       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3008     }
3009   }
3010 
3011   set_control(_gvn.transform(region));
3012   push(_gvn.transform(phi));
3013 
3014   return true;
3015 }
3016 
3017 //---------------------generate_array_guard_common------------------------
3018 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3019                                                   bool obj_array, bool not_array) {
3020   // If obj_array/non_array==false/false:
3021   // Branch around if the given klass is in fact an array (either obj or prim).
3022   // If obj_array/non_array==false/true:
3023   // Branch around if the given klass is not an array klass of any kind.
3024   // If obj_array/non_array==true/true:
3025   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3026   // If obj_array/non_array==true/false:
3027   // Branch around if the kls is an oop array (Object[] or subtype)
3028   //
3029   // Like generate_guard, adds a new path onto the region.
3030   jint  layout_con = 0;
3031   Node* layout_val = get_layout_helper(kls, layout_con);
3032   if (layout_val == NULL) {
3033     bool query = (obj_array
3034                   ? Klass::layout_helper_is_objArray(layout_con)
3035                   : Klass::layout_helper_is_javaArray(layout_con));
3036     if (query == not_array) {
3037       return NULL;                       // never a branch
3038     } else {                             // always a branch
3039       Node* always_branch = control();
3040       if (region != NULL)
3041         region->add_req(always_branch);
3042       set_control(top());
3043       return always_branch;
3044     }
3045   }
3046   // Now test the correct condition.
3047   jint  nval = (obj_array
3048                 ? ((jint)Klass::_lh_array_tag_type_value
3049                    <<    Klass::_lh_array_tag_shift)
3050                 : Klass::_lh_neutral_value);
3051   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3052   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3053   // invert the test if we are looking for a non-array
3054   if (not_array)  btest = BoolTest(btest).negate();
3055   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3056   return generate_fair_guard(bol, region);
3057 }
3058 
3059 
3060 //-----------------------inline_native_newArray--------------------------
3061 bool LibraryCallKit::inline_native_newArray() {
3062   int nargs = 2;
3063   Node* mirror    = argument(0);
3064   Node* count_val = argument(1);
3065 
3066   _sp += nargs;  // set original stack for use by uncommon_trap
3067   mirror = do_null_check(mirror, T_OBJECT);
3068   _sp -= nargs;
3069   // If mirror or obj is dead, only null-path is taken.
3070   if (stopped())  return true;
3071 
3072   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3073   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3074   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3075                                                       TypeInstPtr::NOTNULL);
3076   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3077   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3078                                                       TypePtr::BOTTOM);
3079 
3080   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3081   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3082                                                   nargs,
3083                                                   result_reg, _slow_path);
3084   Node* normal_ctl   = control();
3085   Node* no_array_ctl = result_reg->in(_slow_path);
3086 
3087   // Generate code for the slow case.  We make a call to newArray().
3088   set_control(no_array_ctl);
3089   if (!stopped()) {
3090     // Either the input type is void.class, or else the
3091     // array klass has not yet been cached.  Either the
3092     // ensuing call will throw an exception, or else it
3093     // will cache the array klass for next time.
3094     PreserveJVMState pjvms(this);
3095     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3096     Node* slow_result = set_results_for_java_call(slow_call);
3097     // this->control() comes from set_results_for_java_call
3098     result_reg->set_req(_slow_path, control());
3099     result_val->set_req(_slow_path, slow_result);
3100     result_io ->set_req(_slow_path, i_o());
3101     result_mem->set_req(_slow_path, reset_memory());
3102   }
3103 
3104   set_control(normal_ctl);
3105   if (!stopped()) {
3106     // Normal case:  The array type has been cached in the java.lang.Class.
3107     // The following call works fine even if the array type is polymorphic.
3108     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3109     Node* obj = new_array(klass_node, count_val, nargs);
3110     result_reg->init_req(_normal_path, control());
3111     result_val->init_req(_normal_path, obj);
3112     result_io ->init_req(_normal_path, i_o());
3113     result_mem->init_req(_normal_path, reset_memory());
3114   }
3115 
3116   // Return the combined state.
3117   set_i_o(        _gvn.transform(result_io)  );
3118   set_all_memory( _gvn.transform(result_mem) );
3119   push_result(result_reg, result_val);
3120   C->set_has_split_ifs(true); // Has chance for split-if optimization
3121 
3122   return true;
3123 }
3124 
3125 //----------------------inline_native_getLength--------------------------
3126 bool LibraryCallKit::inline_native_getLength() {
3127   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3128 
3129   int nargs = 1;
3130   Node* array = argument(0);
3131 
3132   _sp += nargs;  // set original stack for use by uncommon_trap
3133   array = do_null_check(array, T_OBJECT);
3134   _sp -= nargs;
3135 
3136   // If array is dead, only null-path is taken.
3137   if (stopped())  return true;
3138 
3139   // Deoptimize if it is a non-array.
3140   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3141 
3142   if (non_array != NULL) {
3143     PreserveJVMState pjvms(this);
3144     set_control(non_array);
3145     _sp += nargs;  // push the arguments back on the stack
3146     uncommon_trap(Deoptimization::Reason_intrinsic,
3147                   Deoptimization::Action_maybe_recompile);
3148   }
3149 
3150   // If control is dead, only non-array-path is taken.
3151   if (stopped())  return true;
3152 
3153   // The works fine even if the array type is polymorphic.
3154   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3155   push( load_array_length(array) );
3156 
3157   C->set_has_split_ifs(true); // Has chance for split-if optimization
3158 
3159   return true;
3160 }
3161 
3162 //------------------------inline_array_copyOf----------------------------
3163 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3164   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3165 
3166   // Restore the stack and pop off the arguments.
3167   int nargs = 3 + (is_copyOfRange? 1: 0);
3168   Node* original          = argument(0);
3169   Node* start             = is_copyOfRange? argument(1): intcon(0);
3170   Node* end               = is_copyOfRange? argument(2): argument(1);
3171   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3172 
3173   _sp += nargs;  // set original stack for use by uncommon_trap
3174   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3175   original          = do_null_check(original, T_OBJECT);
3176   _sp -= nargs;
3177 
3178   // Check if a null path was taken unconditionally.
3179   if (stopped())  return true;
3180 
3181   Node* orig_length = load_array_length(original);
3182 
3183   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
3184                                             NULL, 0);
3185   _sp += nargs;  // set original stack for use by uncommon_trap
3186   klass_node = do_null_check(klass_node, T_OBJECT);
3187   _sp -= nargs;
3188 
3189   RegionNode* bailout = new (C, 1) RegionNode(1);
3190   record_for_igvn(bailout);
3191 
3192   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3193   // Bail out if that is so.
3194   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3195   if (not_objArray != NULL) {
3196     // Improve the klass node's type from the new optimistic assumption:
3197     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3198     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3199     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3200     cast->init_req(0, control());
3201     klass_node = _gvn.transform(cast);
3202   }
3203 
3204   // Bail out if either start or end is negative.
3205   generate_negative_guard(start, bailout, &start);
3206   generate_negative_guard(end,   bailout, &end);
3207 
3208   Node* length = end;
3209   if (_gvn.type(start) != TypeInt::ZERO) {
3210     length = _gvn.transform( new (C, 3) SubINode(end, start) );
3211   }
3212 
3213   // Bail out if length is negative.
3214   // ...Not needed, since the new_array will throw the right exception.
3215   //generate_negative_guard(length, bailout, &length);
3216 
3217   if (bailout->req() > 1) {
3218     PreserveJVMState pjvms(this);
3219     set_control( _gvn.transform(bailout) );
3220     _sp += nargs;  // push the arguments back on the stack
3221     uncommon_trap(Deoptimization::Reason_intrinsic,
3222                   Deoptimization::Action_maybe_recompile);
3223   }
3224 
3225   if (!stopped()) {
3226     // How many elements will we copy from the original?
3227     // The answer is MinI(orig_length - start, length).
3228     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3229     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3230 
3231     const bool raw_mem_only = true;
3232     Node* newcopy = new_array(klass_node, length, nargs, raw_mem_only);
3233 
3234     // Generate a direct call to the right arraycopy function(s).
3235     // We know the copy is disjoint but we might not know if the
3236     // oop stores need checking.
3237     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3238     // This will fail a store-check if x contains any non-nulls.
3239     bool disjoint_bases = true;
3240     bool length_never_negative = true;
3241     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3242                        original, start, newcopy, intcon(0), moved,
3243                        disjoint_bases, length_never_negative);
3244 
3245     push(newcopy);
3246   }
3247 
3248   C->set_has_split_ifs(true); // Has chance for split-if optimization
3249 
3250   return true;
3251 }
3252 
3253 
3254 //----------------------generate_virtual_guard---------------------------
3255 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3256 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3257                                              RegionNode* slow_region) {
3258   ciMethod* method = callee();
3259   int vtable_index = method->vtable_index();
3260   // Get the methodOop out of the appropriate vtable entry.
3261   int entry_offset  = (instanceKlass::vtable_start_offset() +
3262                      vtable_index*vtableEntry::size()) * wordSize +
3263                      vtableEntry::method_offset_in_bytes();
3264   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3265   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3266 
3267   // Compare the target method with the expected method (e.g., Object.hashCode).
3268   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3269 
3270   Node* native_call = makecon(native_call_addr);
3271   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3272   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3273 
3274   return generate_slow_guard(test_native, slow_region);
3275 }
3276 
3277 //-----------------------generate_method_call----------------------------
3278 // Use generate_method_call to make a slow-call to the real
3279 // method if the fast path fails.  An alternative would be to
3280 // use a stub like OptoRuntime::slow_arraycopy_Java.
3281 // This only works for expanding the current library call,
3282 // not another intrinsic.  (E.g., don't use this for making an
3283 // arraycopy call inside of the copyOf intrinsic.)
3284 CallJavaNode*
3285 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3286   // When compiling the intrinsic method itself, do not use this technique.
3287   guarantee(callee() != C->method(), "cannot make slow-call to self");
3288 
3289   ciMethod* method = callee();
3290   // ensure the JVMS we have will be correct for this call
3291   guarantee(method_id == method->intrinsic_id(), "must match");
3292 
3293   const TypeFunc* tf = TypeFunc::make(method);
3294   int tfdc = tf->domain()->cnt();
3295   CallJavaNode* slow_call;
3296   if (is_static) {
3297     assert(!is_virtual, "");
3298     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3299                                 SharedRuntime::get_resolve_static_call_stub(),
3300                                 method, bci());
3301   } else if (is_virtual) {
3302     null_check_receiver(method);
3303     int vtable_index = methodOopDesc::invalid_vtable_index;
3304     if (UseInlineCaches) {
3305       // Suppress the vtable call
3306     } else {
3307       // hashCode and clone are not a miranda methods,
3308       // so the vtable index is fixed.
3309       // No need to use the linkResolver to get it.
3310        vtable_index = method->vtable_index();
3311     }
3312     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3313                                 SharedRuntime::get_resolve_virtual_call_stub(),
3314                                 method, vtable_index, bci());
3315   } else {  // neither virtual nor static:  opt_virtual
3316     null_check_receiver(method);
3317     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3318                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3319                                 method, bci());
3320     slow_call->set_optimized_virtual(true);
3321   }
3322   set_arguments_for_java_call(slow_call);
3323   set_edges_for_java_call(slow_call);
3324   return slow_call;
3325 }
3326 
3327 
3328 //------------------------------inline_native_hashcode--------------------
3329 // Build special case code for calls to hashCode on an object.
3330 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3331   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3332   assert(!(is_virtual && is_static), "either virtual, special, or static");
3333 
3334   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3335 
3336   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3337   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3338                                                       TypeInt::INT);
3339   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3340   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3341                                                       TypePtr::BOTTOM);
3342   Node* obj = NULL;
3343   if (!is_static) {
3344     // Check for hashing null object
3345     obj = null_check_receiver(callee());
3346     if (stopped())  return true;        // unconditionally null
3347     result_reg->init_req(_null_path, top());
3348     result_val->init_req(_null_path, top());
3349   } else {
3350     // Do a null check, and return zero if null.
3351     // System.identityHashCode(null) == 0
3352     obj = argument(0);
3353     Node* null_ctl = top();
3354     obj = null_check_oop(obj, &null_ctl);
3355     result_reg->init_req(_null_path, null_ctl);
3356     result_val->init_req(_null_path, _gvn.intcon(0));
3357   }
3358 
3359   // Unconditionally null?  Then return right away.
3360   if (stopped()) {
3361     set_control( result_reg->in(_null_path) );
3362     if (!stopped())
3363       push(      result_val ->in(_null_path) );
3364     return true;
3365   }
3366 
3367   // After null check, get the object's klass.
3368   Node* obj_klass = load_object_klass(obj);
3369 
3370   // This call may be virtual (invokevirtual) or bound (invokespecial).
3371   // For each case we generate slightly different code.
3372 
3373   // We only go to the fast case code if we pass a number of guards.  The
3374   // paths which do not pass are accumulated in the slow_region.
3375   RegionNode* slow_region = new (C, 1) RegionNode(1);
3376   record_for_igvn(slow_region);
3377 
3378   // If this is a virtual call, we generate a funny guard.  We pull out
3379   // the vtable entry corresponding to hashCode() from the target object.
3380   // If the target method which we are calling happens to be the native
3381   // Object hashCode() method, we pass the guard.  We do not need this
3382   // guard for non-virtual calls -- the caller is known to be the native
3383   // Object hashCode().
3384   if (is_virtual) {
3385     generate_virtual_guard(obj_klass, slow_region);
3386   }
3387 
3388   // Get the header out of the object, use LoadMarkNode when available
3389   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3390   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3391   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3392 
3393   // Test the header to see if it is unlocked.
3394   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3395   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3396   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3397   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3398   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3399 
3400   generate_slow_guard(test_unlocked, slow_region);
3401 
3402   // Get the hash value and check to see that it has been properly assigned.
3403   // We depend on hash_mask being at most 32 bits and avoid the use of
3404   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3405   // vm: see markOop.hpp.
3406   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3407   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3408   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3409   // This hack lets the hash bits live anywhere in the mark object now, as long
3410   // as the shift drops the relevant bits into the low 32 bits.  Note that
3411   // Java spec says that HashCode is an int so there's no point in capturing
3412   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3413   hshifted_header      = ConvX2I(hshifted_header);
3414   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3415 
3416   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3417   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3418   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3419 
3420   generate_slow_guard(test_assigned, slow_region);
3421 
3422   Node* init_mem = reset_memory();
3423   // fill in the rest of the null path:
3424   result_io ->init_req(_null_path, i_o());
3425   result_mem->init_req(_null_path, init_mem);
3426 
3427   result_val->init_req(_fast_path, hash_val);
3428   result_reg->init_req(_fast_path, control());
3429   result_io ->init_req(_fast_path, i_o());
3430   result_mem->init_req(_fast_path, init_mem);
3431 
3432   // Generate code for the slow case.  We make a call to hashCode().
3433   set_control(_gvn.transform(slow_region));
3434   if (!stopped()) {
3435     // No need for PreserveJVMState, because we're using up the present state.
3436     set_all_memory(init_mem);
3437     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3438     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3439     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3440     Node* slow_result = set_results_for_java_call(slow_call);
3441     // this->control() comes from set_results_for_java_call
3442     result_reg->init_req(_slow_path, control());
3443     result_val->init_req(_slow_path, slow_result);
3444     result_io  ->set_req(_slow_path, i_o());
3445     result_mem ->set_req(_slow_path, reset_memory());
3446   }
3447 
3448   // Return the combined state.
3449   set_i_o(        _gvn.transform(result_io)  );
3450   set_all_memory( _gvn.transform(result_mem) );
3451   push_result(result_reg, result_val);
3452 
3453   return true;
3454 }
3455 
3456 //---------------------------inline_native_getClass----------------------------
3457 // Build special case code for calls to getClass on an object.
3458 bool LibraryCallKit::inline_native_getClass() {
3459   Node* obj = null_check_receiver(callee());
3460   if (stopped())  return true;
3461   push( load_mirror_from_klass(load_object_klass(obj)) );
3462   return true;
3463 }
3464 
3465 //-----------------inline_native_Reflection_getCallerClass---------------------
3466 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3467 //
3468 // NOTE that this code must perform the same logic as
3469 // vframeStream::security_get_caller_frame in that it must skip
3470 // Method.invoke() and auxiliary frames.
3471 
3472 
3473 
3474 
3475 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3476   ciMethod*       method = callee();
3477 
3478 #ifndef PRODUCT
3479   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3480     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3481   }
3482 #endif
3483 
3484   debug_only(int saved_sp = _sp);
3485 
3486   // Argument words:  (int depth)
3487   int nargs = 1;
3488 
3489   _sp += nargs;
3490   Node* caller_depth_node = pop();
3491 
3492   assert(saved_sp == _sp, "must have correct argument count");
3493 
3494   // The depth value must be a constant in order for the runtime call
3495   // to be eliminated.
3496   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3497   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3498 #ifndef PRODUCT
3499     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3500       tty->print_cr("  Bailing out because caller depth was not a constant");
3501     }
3502 #endif
3503     return false;
3504   }
3505   // Note that the JVM state at this point does not include the
3506   // getCallerClass() frame which we are trying to inline. The
3507   // semantics of getCallerClass(), however, are that the "first"
3508   // frame is the getCallerClass() frame, so we subtract one from the
3509   // requested depth before continuing. We don't inline requests of
3510   // getCallerClass(0).
3511   int caller_depth = caller_depth_type->get_con() - 1;
3512   if (caller_depth < 0) {
3513 #ifndef PRODUCT
3514     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3515       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3516     }
3517 #endif
3518     return false;
3519   }
3520 
3521   if (!jvms()->has_method()) {
3522 #ifndef PRODUCT
3523     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3524       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3525     }
3526 #endif
3527     return false;
3528   }
3529   int _depth = jvms()->depth();  // cache call chain depth
3530 
3531   // Walk back up the JVM state to find the caller at the required
3532   // depth. NOTE that this code must perform the same logic as
3533   // vframeStream::security_get_caller_frame in that it must skip
3534   // Method.invoke() and auxiliary frames. Note also that depth is
3535   // 1-based (1 is the bottom of the inlining).
3536   int inlining_depth = _depth;
3537   JVMState* caller_jvms = NULL;
3538 
3539   if (inlining_depth > 0) {
3540     caller_jvms = jvms();
3541     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3542     do {
3543       // The following if-tests should be performed in this order
3544       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3545         // Skip a Method.invoke() or auxiliary frame
3546       } else if (caller_depth > 0) {
3547         // Skip real frame
3548         --caller_depth;
3549       } else {
3550         // We're done: reached desired caller after skipping.
3551         break;
3552       }
3553       caller_jvms = caller_jvms->caller();
3554       --inlining_depth;
3555     } while (inlining_depth > 0);
3556   }
3557 
3558   if (inlining_depth == 0) {
3559 #ifndef PRODUCT
3560     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3561       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3562       tty->print_cr("  JVM state at this point:");
3563       for (int i = _depth; i >= 1; i--) {
3564         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3565       }
3566     }
3567 #endif
3568     return false; // Reached end of inlining
3569   }
3570 
3571   // Acquire method holder as java.lang.Class
3572   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3573   ciInstance*      caller_mirror = caller_klass->java_mirror();
3574   // Push this as a constant
3575   push(makecon(TypeInstPtr::make(caller_mirror)));
3576 #ifndef PRODUCT
3577   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3578     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3579     tty->print_cr("  JVM state at this point:");
3580     for (int i = _depth; i >= 1; i--) {
3581       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3582     }
3583   }
3584 #endif
3585   return true;
3586 }
3587 
3588 // Helper routine for above
3589 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3590   // Is this the Method.invoke method itself?
3591   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
3592     return true;
3593 
3594   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3595   ciKlass* k = jvms->method()->holder();
3596   if (k->is_instance_klass()) {
3597     ciInstanceKlass* ik = k->as_instance_klass();
3598     for (; ik != NULL; ik = ik->super()) {
3599       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3600           ik == env()->find_system_klass(ik->name())) {
3601         return true;
3602       }
3603     }
3604   }
3605 
3606   return false;
3607 }
3608 
3609 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3610                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3611                                      // computing it since there is no lookup field by name function in the
3612                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3613                                      // Using a static variable here is safe even if we have multiple compilation
3614                                      // threads because the offset is constant.  At worst the same offset will be
3615                                      // computed and  stored multiple
3616 
3617 bool LibraryCallKit::inline_native_AtomicLong_get() {
3618   // Restore the stack and pop off the argument
3619   _sp+=1;
3620   Node *obj = pop();
3621 
3622   // get the offset of the "value" field. Since the CI interfaces
3623   // does not provide a way to look up a field by name, we scan the bytecodes
3624   // to get the field index.  We expect the first 2 instructions of the method
3625   // to be:
3626   //    0 aload_0
3627   //    1 getfield "value"
3628   ciMethod* method = callee();
3629   if (value_field_offset == -1)
3630   {
3631     ciField* value_field;
3632     ciBytecodeStream iter(method);
3633     Bytecodes::Code bc = iter.next();
3634 
3635     if ((bc != Bytecodes::_aload_0) &&
3636               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3637       return false;
3638     bc = iter.next();
3639     if (bc != Bytecodes::_getfield)
3640       return false;
3641     bool ignore;
3642     value_field = iter.get_field(ignore);
3643     value_field_offset = value_field->offset_in_bytes();
3644   }
3645 
3646   // Null check without removing any arguments.
3647   _sp++;
3648   obj = do_null_check(obj, T_OBJECT);
3649   _sp--;
3650   // Check for locking null object
3651   if (stopped()) return true;
3652 
3653   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3654   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3655   int alias_idx = C->get_alias_index(adr_type);
3656 
3657   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3658 
3659   push_pair(result);
3660 
3661   return true;
3662 }
3663 
3664 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3665   // Restore the stack and pop off the arguments
3666   _sp+=5;
3667   Node *newVal = pop_pair();
3668   Node *oldVal = pop_pair();
3669   Node *obj = pop();
3670 
3671   // we need the offset of the "value" field which was computed when
3672   // inlining the get() method.  Give up if we don't have it.
3673   if (value_field_offset == -1)
3674     return false;
3675 
3676   // Null check without removing any arguments.
3677   _sp+=5;
3678   obj = do_null_check(obj, T_OBJECT);
3679   _sp-=5;
3680   // Check for locking null object
3681   if (stopped()) return true;
3682 
3683   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3684   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3685   int alias_idx = C->get_alias_index(adr_type);
3686 
3687   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3688   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3689   set_memory(store_proj, alias_idx);
3690   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3691 
3692   Node *result;
3693   // CMove node is not used to be able fold a possible check code
3694   // after attemptUpdate() call. This code could be transformed
3695   // into CMove node by loop optimizations.
3696   {
3697     RegionNode *r = new (C, 3) RegionNode(3);
3698     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3699 
3700     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3701     Node *iftrue = opt_iff(r, iff);
3702     r->init_req(1, iftrue);
3703     result->init_req(1, intcon(1));
3704     result->init_req(2, intcon(0));
3705 
3706     set_control(_gvn.transform(r));
3707     record_for_igvn(r);
3708 
3709     C->set_has_split_ifs(true); // Has chance for split-if optimization
3710   }
3711 
3712   push(_gvn.transform(result));
3713   return true;
3714 }
3715 
3716 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3717   // restore the arguments
3718   _sp += arg_size();
3719 
3720   switch (id) {
3721   case vmIntrinsics::_floatToRawIntBits:
3722     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3723     break;
3724 
3725   case vmIntrinsics::_intBitsToFloat:
3726     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3727     break;
3728 
3729   case vmIntrinsics::_doubleToRawLongBits:
3730     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3731     break;
3732 
3733   case vmIntrinsics::_longBitsToDouble:
3734     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3735     break;
3736 
3737   case vmIntrinsics::_doubleToLongBits: {
3738     Node* value = pop_pair();
3739 
3740     // two paths (plus control) merge in a wood
3741     RegionNode *r = new (C, 3) RegionNode(3);
3742     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3743 
3744     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3745     // Build the boolean node
3746     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3747 
3748     // Branch either way.
3749     // NaN case is less traveled, which makes all the difference.
3750     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3751     Node *opt_isnan = _gvn.transform(ifisnan);
3752     assert( opt_isnan->is_If(), "Expect an IfNode");
3753     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3754     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3755 
3756     set_control(iftrue);
3757 
3758     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3759     Node *slow_result = longcon(nan_bits); // return NaN
3760     phi->init_req(1, _gvn.transform( slow_result ));
3761     r->init_req(1, iftrue);
3762 
3763     // Else fall through
3764     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3765     set_control(iffalse);
3766 
3767     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3768     r->init_req(2, iffalse);
3769 
3770     // Post merge
3771     set_control(_gvn.transform(r));
3772     record_for_igvn(r);
3773 
3774     Node* result = _gvn.transform(phi);
3775     assert(result->bottom_type()->isa_long(), "must be");
3776     push_pair(result);
3777 
3778     C->set_has_split_ifs(true); // Has chance for split-if optimization
3779 
3780     break;
3781   }
3782 
3783   case vmIntrinsics::_floatToIntBits: {
3784     Node* value = pop();
3785 
3786     // two paths (plus control) merge in a wood
3787     RegionNode *r = new (C, 3) RegionNode(3);
3788     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3789 
3790     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3791     // Build the boolean node
3792     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3793 
3794     // Branch either way.
3795     // NaN case is less traveled, which makes all the difference.
3796     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3797     Node *opt_isnan = _gvn.transform(ifisnan);
3798     assert( opt_isnan->is_If(), "Expect an IfNode");
3799     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3800     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3801 
3802     set_control(iftrue);
3803 
3804     static const jint nan_bits = 0x7fc00000;
3805     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3806     phi->init_req(1, _gvn.transform( slow_result ));
3807     r->init_req(1, iftrue);
3808 
3809     // Else fall through
3810     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3811     set_control(iffalse);
3812 
3813     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3814     r->init_req(2, iffalse);
3815 
3816     // Post merge
3817     set_control(_gvn.transform(r));
3818     record_for_igvn(r);
3819 
3820     Node* result = _gvn.transform(phi);
3821     assert(result->bottom_type()->isa_int(), "must be");
3822     push(result);
3823 
3824     C->set_has_split_ifs(true); // Has chance for split-if optimization
3825 
3826     break;
3827   }
3828 
3829   default:
3830     ShouldNotReachHere();
3831   }
3832 
3833   return true;
3834 }
3835 
3836 #ifdef _LP64
3837 #define XTOP ,top() /*additional argument*/
3838 #else  //_LP64
3839 #define XTOP        /*no additional argument*/
3840 #endif //_LP64
3841 
3842 //----------------------inline_unsafe_copyMemory-------------------------
3843 bool LibraryCallKit::inline_unsafe_copyMemory() {
3844   if (callee()->is_static())  return false;  // caller must have the capability!
3845   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3846   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3847   null_check_receiver(callee());  // check then ignore argument(0)
3848   if (stopped())  return true;
3849 
3850   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3851 
3852   Node* src_ptr = argument(1);
3853   Node* src_off = ConvL2X(argument(2));
3854   assert(argument(3)->is_top(), "2nd half of long");
3855   Node* dst_ptr = argument(4);
3856   Node* dst_off = ConvL2X(argument(5));
3857   assert(argument(6)->is_top(), "2nd half of long");
3858   Node* size    = ConvL2X(argument(7));
3859   assert(argument(8)->is_top(), "2nd half of long");
3860 
3861   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3862          "fieldOffset must be byte-scaled");
3863 
3864   Node* src = make_unsafe_address(src_ptr, src_off);
3865   Node* dst = make_unsafe_address(dst_ptr, dst_off);
3866 
3867   // Conservatively insert a memory barrier on all memory slices.
3868   // Do not let writes of the copy source or destination float below the copy.
3869   insert_mem_bar(Op_MemBarCPUOrder);
3870 
3871   // Call it.  Note that the length argument is not scaled.
3872   make_runtime_call(RC_LEAF|RC_NO_FP,
3873                     OptoRuntime::fast_arraycopy_Type(),
3874                     StubRoutines::unsafe_arraycopy(),
3875                     "unsafe_arraycopy",
3876                     TypeRawPtr::BOTTOM,
3877                     src, dst, size XTOP);
3878 
3879   // Do not let reads of the copy destination float above the copy.
3880   insert_mem_bar(Op_MemBarCPUOrder);
3881 
3882   return true;
3883 }
3884 
3885 //------------------------clone_coping-----------------------------------
3886 // Helper function for inline_native_clone.
3887 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
3888   assert(obj_size != NULL, "");
3889   Node* raw_obj = alloc_obj->in(1);
3890   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3891 
3892   if (ReduceBulkZeroing) {
3893     // We will be completely responsible for initializing this object -
3894     // mark Initialize node as complete.
3895     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3896     // The object was just allocated - there should be no any stores!
3897     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
3898   }
3899 
3900   // Cast to Object for arraycopy.
3901   // We can't use the original CheckCastPP since it should be moved
3902   // after the arraycopy to prevent stores flowing above it.
3903   Node* new_obj = new(C, 2) CheckCastPPNode(alloc_obj->in(0), raw_obj,
3904                                             TypeInstPtr::NOTNULL);
3905   new_obj = _gvn.transform(new_obj);
3906   // Substitute in the locally valid dest_oop.
3907   replace_in_map(alloc_obj, new_obj);
3908 
3909   // Copy the fastest available way.
3910   // TODO: generate fields copies for small objects instead.
3911   Node* src  = obj;
3912   Node* dest = new_obj;
3913   Node* size = _gvn.transform(obj_size);
3914 
3915   // Exclude the header but include array length to copy by 8 bytes words.
3916   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
3917   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
3918                             instanceOopDesc::base_offset_in_bytes();
3919   // base_off:
3920   // 8  - 32-bit VM
3921   // 12 - 64-bit VM, compressed oops
3922   // 16 - 64-bit VM, normal oops
3923   if (base_off % BytesPerLong != 0) {
3924     assert(UseCompressedOops, "");
3925     if (is_array) {
3926       // Exclude length to copy by 8 bytes words.
3927       base_off += sizeof(int);
3928     } else {
3929       // Include klass to copy by 8 bytes words.
3930       base_off = instanceOopDesc::klass_offset_in_bytes();
3931     }
3932     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
3933   }
3934   src  = basic_plus_adr(src,  base_off);
3935   dest = basic_plus_adr(dest, base_off);
3936 
3937   // Compute the length also, if needed:
3938   Node* countx = size;
3939   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
3940   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
3941 
3942   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
3943   bool disjoint_bases = true;
3944   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
3945                                src, NULL, dest, NULL, countx);
3946 
3947   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
3948   if (card_mark) {
3949     assert(!is_array, "");
3950     // Put in store barrier for any and all oops we are sticking
3951     // into this object.  (We could avoid this if we could prove
3952     // that the object type contains no oop fields at all.)
3953     Node* no_particular_value = NULL;
3954     Node* no_particular_field = NULL;
3955     int raw_adr_idx = Compile::AliasIdxRaw;
3956     post_barrier(control(),
3957                  memory(raw_adr_type),
3958                  new_obj,
3959                  no_particular_field,
3960                  raw_adr_idx,
3961                  no_particular_value,
3962                  T_OBJECT,
3963                  false);
3964   }
3965 
3966   // Move the original CheckCastPP after arraycopy.
3967   _gvn.hash_delete(alloc_obj);
3968   alloc_obj->set_req(0, control());
3969   // Replace raw memory edge with new CheckCastPP to have a live oop
3970   // at safepoints instead of raw value.
3971   assert(new_obj->is_CheckCastPP() && new_obj->in(1) == alloc_obj->in(1), "sanity");
3972   alloc_obj->set_req(1, new_obj);    // cast to the original type
3973   _gvn.hash_find_insert(alloc_obj);  // put back into GVN table
3974   // Restore in the locally valid dest_oop.
3975   replace_in_map(new_obj, alloc_obj);
3976 }
3977 
3978 //------------------------inline_native_clone----------------------------
3979 // Here are the simple edge cases:
3980 //  null receiver => normal trap
3981 //  virtual and clone was overridden => slow path to out-of-line clone
3982 //  not cloneable or finalizer => slow path to out-of-line Object.clone
3983 //
3984 // The general case has two steps, allocation and copying.
3985 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
3986 //
3987 // Copying also has two cases, oop arrays and everything else.
3988 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
3989 // Everything else uses the tight inline loop supplied by CopyArrayNode.
3990 //
3991 // These steps fold up nicely if and when the cloned object's klass
3992 // can be sharply typed as an object array, a type array, or an instance.
3993 //
3994 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
3995   int nargs = 1;
3996   Node* obj = null_check_receiver(callee());
3997   if (stopped())  return true;
3998   Node* obj_klass = load_object_klass(obj);
3999   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4000   const TypeOopPtr*   toop   = ((tklass != NULL)
4001                                 ? tklass->as_instance_type()
4002                                 : TypeInstPtr::NOTNULL);
4003 
4004   // Conservatively insert a memory barrier on all memory slices.
4005   // Do not let writes into the original float below the clone.
4006   insert_mem_bar(Op_MemBarCPUOrder);
4007 
4008   // paths into result_reg:
4009   enum {
4010     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4011     _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4012     _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4013     _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4014     PATH_LIMIT
4015   };
4016   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4017   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
4018                                                       TypeInstPtr::NOTNULL);
4019   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4020   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4021                                                       TypePtr::BOTTOM);
4022   record_for_igvn(result_reg);
4023 
4024   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4025   int raw_adr_idx = Compile::AliasIdxRaw;
4026   const bool raw_mem_only = true;
4027 
4028   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4029   if (array_ctl != NULL) {
4030     // It's an array.
4031     PreserveJVMState pjvms(this);
4032     set_control(array_ctl);
4033     Node* obj_length = load_array_length(obj);
4034     Node* obj_size = NULL;
4035     Node* alloc_obj = new_array(obj_klass, obj_length, nargs,
4036                                 raw_mem_only, &obj_size);
4037 
4038     if (!use_ReduceInitialCardMarks()) {
4039       // If it is an oop array, it requires very special treatment,
4040       // because card marking is required on each card of the array.
4041       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4042       if (is_obja != NULL) {
4043         PreserveJVMState pjvms2(this);
4044         set_control(is_obja);
4045         // Generate a direct call to the right arraycopy function(s).
4046         bool disjoint_bases = true;
4047         bool length_never_negative = true;
4048         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4049                            obj, intcon(0), alloc_obj, intcon(0),
4050                            obj_length,
4051                            disjoint_bases, length_never_negative);
4052         result_reg->init_req(_objArray_path, control());
4053         result_val->init_req(_objArray_path, alloc_obj);
4054         result_i_o ->set_req(_objArray_path, i_o());
4055         result_mem ->set_req(_objArray_path, reset_memory());
4056       }
4057     }
4058     // We can dispense with card marks if we know the allocation
4059     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4060     // causes the non-eden paths to simulate a fresh allocation,
4061     // insofar that no further card marks are required to initialize
4062     // the object.
4063 
4064     // Otherwise, there are no card marks to worry about.
4065 
4066     if (!stopped()) {
4067       copy_to_clone(obj, alloc_obj, obj_size, true, false);
4068 
4069       // Present the results of the copy.
4070       result_reg->init_req(_array_path, control());
4071       result_val->init_req(_array_path, alloc_obj);
4072       result_i_o ->set_req(_array_path, i_o());
4073       result_mem ->set_req(_array_path, reset_memory());
4074     }
4075   }
4076 
4077   // We only go to the instance fast case code if we pass a number of guards.
4078   // The paths which do not pass are accumulated in the slow_region.
4079   RegionNode* slow_region = new (C, 1) RegionNode(1);
4080   record_for_igvn(slow_region);
4081   if (!stopped()) {
4082     // It's an instance (we did array above).  Make the slow-path tests.
4083     // If this is a virtual call, we generate a funny guard.  We grab
4084     // the vtable entry corresponding to clone() from the target object.
4085     // If the target method which we are calling happens to be the
4086     // Object clone() method, we pass the guard.  We do not need this
4087     // guard for non-virtual calls; the caller is known to be the native
4088     // Object clone().
4089     if (is_virtual) {
4090       generate_virtual_guard(obj_klass, slow_region);
4091     }
4092 
4093     // The object must be cloneable and must not have a finalizer.
4094     // Both of these conditions may be checked in a single test.
4095     // We could optimize the cloneable test further, but we don't care.
4096     generate_access_flags_guard(obj_klass,
4097                                 // Test both conditions:
4098                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4099                                 // Must be cloneable but not finalizer:
4100                                 JVM_ACC_IS_CLONEABLE,
4101                                 slow_region);
4102   }
4103 
4104   if (!stopped()) {
4105     // It's an instance, and it passed the slow-path tests.
4106     PreserveJVMState pjvms(this);
4107     Node* obj_size = NULL;
4108     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4109 
4110     copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4111 
4112     // Present the results of the slow call.
4113     result_reg->init_req(_instance_path, control());
4114     result_val->init_req(_instance_path, alloc_obj);
4115     result_i_o ->set_req(_instance_path, i_o());
4116     result_mem ->set_req(_instance_path, reset_memory());
4117   }
4118 
4119   // Generate code for the slow case.  We make a call to clone().
4120   set_control(_gvn.transform(slow_region));
4121   if (!stopped()) {
4122     PreserveJVMState pjvms(this);
4123     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4124     Node* slow_result = set_results_for_java_call(slow_call);
4125     // this->control() comes from set_results_for_java_call
4126     result_reg->init_req(_slow_path, control());
4127     result_val->init_req(_slow_path, slow_result);
4128     result_i_o ->set_req(_slow_path, i_o());
4129     result_mem ->set_req(_slow_path, reset_memory());
4130   }
4131 
4132   // Return the combined state.
4133   set_control(    _gvn.transform(result_reg) );
4134   set_i_o(        _gvn.transform(result_i_o) );
4135   set_all_memory( _gvn.transform(result_mem) );
4136 
4137   push(_gvn.transform(result_val));
4138 
4139   return true;
4140 }
4141 
4142 
4143 // constants for computing the copy function
4144 enum {
4145   COPYFUNC_UNALIGNED = 0,
4146   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4147   COPYFUNC_CONJOINT = 0,
4148   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4149 };
4150 
4151 // Note:  The condition "disjoint" applies also for overlapping copies
4152 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4153 static address
4154 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4155   int selector =
4156     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4157     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4158 
4159 #define RETURN_STUB(xxx_arraycopy) { \
4160   name = #xxx_arraycopy; \
4161   return StubRoutines::xxx_arraycopy(); }
4162 
4163   switch (t) {
4164   case T_BYTE:
4165   case T_BOOLEAN:
4166     switch (selector) {
4167     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4168     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4169     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4170     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4171     }
4172   case T_CHAR:
4173   case T_SHORT:
4174     switch (selector) {
4175     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4176     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4177     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4178     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4179     }
4180   case T_INT:
4181   case T_FLOAT:
4182     switch (selector) {
4183     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4184     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4185     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4186     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4187     }
4188   case T_DOUBLE:
4189   case T_LONG:
4190     switch (selector) {
4191     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4192     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4193     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4194     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4195     }
4196   case T_ARRAY:
4197   case T_OBJECT:
4198     switch (selector) {
4199     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4200     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4201     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4202     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4203     }
4204   default:
4205     ShouldNotReachHere();
4206     return NULL;
4207   }
4208 
4209 #undef RETURN_STUB
4210 }
4211 
4212 //------------------------------basictype2arraycopy----------------------------
4213 address LibraryCallKit::basictype2arraycopy(BasicType t,
4214                                             Node* src_offset,
4215                                             Node* dest_offset,
4216                                             bool disjoint_bases,
4217                                             const char* &name) {
4218   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4219   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4220 
4221   bool aligned = false;
4222   bool disjoint = disjoint_bases;
4223 
4224   // if the offsets are the same, we can treat the memory regions as
4225   // disjoint, because either the memory regions are in different arrays,
4226   // or they are identical (which we can treat as disjoint.)  We can also
4227   // treat a copy with a destination index  less that the source index
4228   // as disjoint since a low->high copy will work correctly in this case.
4229   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4230       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4231     // both indices are constants
4232     int s_offs = src_offset_inttype->get_con();
4233     int d_offs = dest_offset_inttype->get_con();
4234     int element_size = type2aelembytes(t);
4235     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4236               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4237     if (s_offs >= d_offs)  disjoint = true;
4238   } else if (src_offset == dest_offset && src_offset != NULL) {
4239     // This can occur if the offsets are identical non-constants.
4240     disjoint = true;
4241   }
4242 
4243   return select_arraycopy_function(t, aligned, disjoint, name);
4244 }
4245 
4246 
4247 //------------------------------inline_arraycopy-----------------------
4248 bool LibraryCallKit::inline_arraycopy() {
4249   // Restore the stack and pop off the arguments.
4250   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4251   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4252 
4253   Node *src         = argument(0);
4254   Node *src_offset  = argument(1);
4255   Node *dest        = argument(2);
4256   Node *dest_offset = argument(3);
4257   Node *length      = argument(4);
4258 
4259   // Compile time checks.  If any of these checks cannot be verified at compile time,
4260   // we do not make a fast path for this call.  Instead, we let the call remain as it
4261   // is.  The checks we choose to mandate at compile time are:
4262   //
4263   // (1) src and dest are arrays.
4264   const Type* src_type = src->Value(&_gvn);
4265   const Type* dest_type = dest->Value(&_gvn);
4266   const TypeAryPtr* top_src = src_type->isa_aryptr();
4267   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4268   if (top_src  == NULL || top_src->klass()  == NULL ||
4269       top_dest == NULL || top_dest->klass() == NULL) {
4270     // Conservatively insert a memory barrier on all memory slices.
4271     // Do not let writes into the source float below the arraycopy.
4272     insert_mem_bar(Op_MemBarCPUOrder);
4273 
4274     // Call StubRoutines::generic_arraycopy stub.
4275     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4276                        src, src_offset, dest, dest_offset, length);
4277 
4278     // Do not let reads from the destination float above the arraycopy.
4279     // Since we cannot type the arrays, we don't know which slices
4280     // might be affected.  We could restrict this barrier only to those
4281     // memory slices which pertain to array elements--but don't bother.
4282     if (!InsertMemBarAfterArraycopy)
4283       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4284       insert_mem_bar(Op_MemBarCPUOrder);
4285     return true;
4286   }
4287 
4288   // (2) src and dest arrays must have elements of the same BasicType
4289   // Figure out the size and type of the elements we will be copying.
4290   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4291   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4292   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4293   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4294 
4295   if (src_elem != dest_elem || dest_elem == T_VOID) {
4296     // The component types are not the same or are not recognized.  Punt.
4297     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4298     generate_slow_arraycopy(TypePtr::BOTTOM,
4299                             src, src_offset, dest, dest_offset, length);
4300     return true;
4301   }
4302 
4303   //---------------------------------------------------------------------------
4304   // We will make a fast path for this call to arraycopy.
4305 
4306   // We have the following tests left to perform:
4307   //
4308   // (3) src and dest must not be null.
4309   // (4) src_offset must not be negative.
4310   // (5) dest_offset must not be negative.
4311   // (6) length must not be negative.
4312   // (7) src_offset + length must not exceed length of src.
4313   // (8) dest_offset + length must not exceed length of dest.
4314   // (9) each element of an oop array must be assignable
4315 
4316   RegionNode* slow_region = new (C, 1) RegionNode(1);
4317   record_for_igvn(slow_region);
4318 
4319   // (3) operands must not be null
4320   // We currently perform our null checks with the do_null_check routine.
4321   // This means that the null exceptions will be reported in the caller
4322   // rather than (correctly) reported inside of the native arraycopy call.
4323   // This should be corrected, given time.  We do our null check with the
4324   // stack pointer restored.
4325   _sp += nargs;
4326   src  = do_null_check(src,  T_ARRAY);
4327   dest = do_null_check(dest, T_ARRAY);
4328   _sp -= nargs;
4329 
4330   // (4) src_offset must not be negative.
4331   generate_negative_guard(src_offset, slow_region);
4332 
4333   // (5) dest_offset must not be negative.
4334   generate_negative_guard(dest_offset, slow_region);
4335 
4336   // (6) length must not be negative (moved to generate_arraycopy()).
4337   // generate_negative_guard(length, slow_region);
4338 
4339   // (7) src_offset + length must not exceed length of src.
4340   generate_limit_guard(src_offset, length,
4341                        load_array_length(src),
4342                        slow_region);
4343 
4344   // (8) dest_offset + length must not exceed length of dest.
4345   generate_limit_guard(dest_offset, length,
4346                        load_array_length(dest),
4347                        slow_region);
4348 
4349   // (9) each element of an oop array must be assignable
4350   // The generate_arraycopy subroutine checks this.
4351 
4352   // This is where the memory effects are placed:
4353   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4354   generate_arraycopy(adr_type, dest_elem,
4355                      src, src_offset, dest, dest_offset, length,
4356                      false, false, slow_region);
4357 
4358   return true;
4359 }
4360 
4361 //-----------------------------generate_arraycopy----------------------
4362 // Generate an optimized call to arraycopy.
4363 // Caller must guard against non-arrays.
4364 // Caller must determine a common array basic-type for both arrays.
4365 // Caller must validate offsets against array bounds.
4366 // The slow_region has already collected guard failure paths
4367 // (such as out of bounds length or non-conformable array types).
4368 // The generated code has this shape, in general:
4369 //
4370 //     if (length == 0)  return   // via zero_path
4371 //     slowval = -1
4372 //     if (types unknown) {
4373 //       slowval = call generic copy loop
4374 //       if (slowval == 0)  return  // via checked_path
4375 //     } else if (indexes in bounds) {
4376 //       if ((is object array) && !(array type check)) {
4377 //         slowval = call checked copy loop
4378 //         if (slowval == 0)  return  // via checked_path
4379 //       } else {
4380 //         call bulk copy loop
4381 //         return  // via fast_path
4382 //       }
4383 //     }
4384 //     // adjust params for remaining work:
4385 //     if (slowval != -1) {
4386 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4387 //     }
4388 //   slow_region:
4389 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4390 //     return  // via slow_call_path
4391 //
4392 // This routine is used from several intrinsics:  System.arraycopy,
4393 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4394 //
4395 void
4396 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4397                                    BasicType basic_elem_type,
4398                                    Node* src,  Node* src_offset,
4399                                    Node* dest, Node* dest_offset,
4400                                    Node* copy_length,
4401                                    bool disjoint_bases,
4402                                    bool length_never_negative,
4403                                    RegionNode* slow_region) {
4404 
4405   if (slow_region == NULL) {
4406     slow_region = new(C,1) RegionNode(1);
4407     record_for_igvn(slow_region);
4408   }
4409 
4410   Node* original_dest      = dest;
4411   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4412   bool  must_clear_dest    = false;
4413 
4414   // See if this is the initialization of a newly-allocated array.
4415   // If so, we will take responsibility here for initializing it to zero.
4416   // (Note:  Because tightly_coupled_allocation performs checks on the
4417   // out-edges of the dest, we need to avoid making derived pointers
4418   // from it until we have checked its uses.)
4419   if (ReduceBulkZeroing
4420       && !ZeroTLAB              // pointless if already zeroed
4421       && basic_elem_type != T_CONFLICT // avoid corner case
4422       && !_gvn.eqv_uncast(src, dest)
4423       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4424           != NULL)
4425       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4426       && alloc->maybe_set_complete(&_gvn)) {
4427     // "You break it, you buy it."
4428     InitializeNode* init = alloc->initialization();
4429     assert(init->is_complete(), "we just did this");
4430     assert(dest->is_CheckCastPP(), "sanity");
4431     assert(dest->in(0)->in(0) == init, "dest pinned");
4432 
4433     // Cast to Object for arraycopy.
4434     // We can't use the original CheckCastPP since it should be moved
4435     // after the arraycopy to prevent stores flowing above it.
4436     Node* new_obj = new(C, 2) CheckCastPPNode(dest->in(0), dest->in(1),
4437                                               TypeInstPtr::NOTNULL);
4438     dest = _gvn.transform(new_obj);
4439     // Substitute in the locally valid dest_oop.
4440     replace_in_map(original_dest, dest);
4441     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4442     // From this point on, every exit path is responsible for
4443     // initializing any non-copied parts of the object to zero.
4444     must_clear_dest = true;
4445   } else {
4446     // No zeroing elimination here.
4447     alloc             = NULL;
4448     //original_dest   = dest;
4449     //must_clear_dest = false;
4450   }
4451 
4452   // Results are placed here:
4453   enum { fast_path        = 1,  // normal void-returning assembly stub
4454          checked_path     = 2,  // special assembly stub with cleanup
4455          slow_call_path   = 3,  // something went wrong; call the VM
4456          zero_path        = 4,  // bypass when length of copy is zero
4457          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4458          PATH_LIMIT       = 6
4459   };
4460   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4461   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4462   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4463   record_for_igvn(result_region);
4464   _gvn.set_type_bottom(result_i_o);
4465   _gvn.set_type_bottom(result_memory);
4466   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4467 
4468   // The slow_control path:
4469   Node* slow_control;
4470   Node* slow_i_o = i_o();
4471   Node* slow_mem = memory(adr_type);
4472   debug_only(slow_control = (Node*) badAddress);
4473 
4474   // Checked control path:
4475   Node* checked_control = top();
4476   Node* checked_mem     = NULL;
4477   Node* checked_i_o     = NULL;
4478   Node* checked_value   = NULL;
4479 
4480   if (basic_elem_type == T_CONFLICT) {
4481     assert(!must_clear_dest, "");
4482     Node* cv = generate_generic_arraycopy(adr_type,
4483                                           src, src_offset, dest, dest_offset,
4484                                           copy_length);
4485     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4486     checked_control = control();
4487     checked_i_o     = i_o();
4488     checked_mem     = memory(adr_type);
4489     checked_value   = cv;
4490     set_control(top());         // no fast path
4491   }
4492 
4493   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4494   if (not_pos != NULL) {
4495     PreserveJVMState pjvms(this);
4496     set_control(not_pos);
4497 
4498     // (6) length must not be negative.
4499     if (!length_never_negative) {
4500       generate_negative_guard(copy_length, slow_region);
4501     }
4502 
4503     if (!stopped() && must_clear_dest) {
4504       Node* dest_length = alloc->in(AllocateNode::ALength);
4505       if (_gvn.eqv_uncast(copy_length, dest_length)
4506           || _gvn.find_int_con(dest_length, 1) <= 0) {
4507         // There is no zeroing to do.
4508       } else {
4509         // Clear the whole thing since there are no source elements to copy.
4510         generate_clear_array(adr_type, dest, basic_elem_type,
4511                              intcon(0), NULL,
4512                              alloc->in(AllocateNode::AllocSize));
4513       }
4514     }
4515 
4516     // Use a secondary InitializeNode as raw memory barrier.
4517     // Currently it is needed only on this path since other
4518     // paths have stub or runtime calls as raw memory barriers.
4519     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4520                                                    Compile::AliasIdxRaw,
4521                                                    top())->as_Initialize();
4522     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4523 
4524     // Present the results of the fast call.
4525     result_region->init_req(zero_path, control());
4526     result_i_o   ->init_req(zero_path, i_o());
4527     result_memory->init_req(zero_path, memory(adr_type));
4528   }
4529 
4530   if (!stopped() && must_clear_dest) {
4531     // We have to initialize the *uncopied* part of the array to zero.
4532     // The copy destination is the slice dest[off..off+len].  The other slices
4533     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4534     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4535     Node* dest_length = alloc->in(AllocateNode::ALength);
4536     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4537                                                           copy_length) );
4538 
4539     // If there is a head section that needs zeroing, do it now.
4540     if (find_int_con(dest_offset, -1) != 0) {
4541       generate_clear_array(adr_type, dest, basic_elem_type,
4542                            intcon(0), dest_offset,
4543                            NULL);
4544     }
4545 
4546     // Next, perform a dynamic check on the tail length.
4547     // It is often zero, and we can win big if we prove this.
4548     // There are two wins:  Avoid generating the ClearArray
4549     // with its attendant messy index arithmetic, and upgrade
4550     // the copy to a more hardware-friendly word size of 64 bits.
4551     Node* tail_ctl = NULL;
4552     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4553       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4554       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4555       tail_ctl = generate_slow_guard(bol_lt, NULL);
4556       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4557     }
4558 
4559     // At this point, let's assume there is no tail.
4560     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4561       // There is no tail.  Try an upgrade to a 64-bit copy.
4562       bool didit = false;
4563       { PreserveJVMState pjvms(this);
4564         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4565                                          src, src_offset, dest, dest_offset,
4566                                          dest_size);
4567         if (didit) {
4568           // Present the results of the block-copying fast call.
4569           result_region->init_req(bcopy_path, control());
4570           result_i_o   ->init_req(bcopy_path, i_o());
4571           result_memory->init_req(bcopy_path, memory(adr_type));
4572         }
4573       }
4574       if (didit)
4575         set_control(top());     // no regular fast path
4576     }
4577 
4578     // Clear the tail, if any.
4579     if (tail_ctl != NULL) {
4580       Node* notail_ctl = stopped() ? NULL : control();
4581       set_control(tail_ctl);
4582       if (notail_ctl == NULL) {
4583         generate_clear_array(adr_type, dest, basic_elem_type,
4584                              dest_tail, NULL,
4585                              dest_size);
4586       } else {
4587         // Make a local merge.
4588         Node* done_ctl = new(C,3) RegionNode(3);
4589         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4590         done_ctl->init_req(1, notail_ctl);
4591         done_mem->init_req(1, memory(adr_type));
4592         generate_clear_array(adr_type, dest, basic_elem_type,
4593                              dest_tail, NULL,
4594                              dest_size);
4595         done_ctl->init_req(2, control());
4596         done_mem->init_req(2, memory(adr_type));
4597         set_control( _gvn.transform(done_ctl) );
4598         set_memory(  _gvn.transform(done_mem), adr_type );
4599       }
4600     }
4601   }
4602 
4603   BasicType copy_type = basic_elem_type;
4604   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4605   if (!stopped() && copy_type == T_OBJECT) {
4606     // If src and dest have compatible element types, we can copy bits.
4607     // Types S[] and D[] are compatible if D is a supertype of S.
4608     //
4609     // If they are not, we will use checked_oop_disjoint_arraycopy,
4610     // which performs a fast optimistic per-oop check, and backs off
4611     // further to JVM_ArrayCopy on the first per-oop check that fails.
4612     // (Actually, we don't move raw bits only; the GC requires card marks.)
4613 
4614     // Get the klassOop for both src and dest
4615     Node* src_klass  = load_object_klass(src);
4616     Node* dest_klass = load_object_klass(dest);
4617 
4618     // Generate the subtype check.
4619     // This might fold up statically, or then again it might not.
4620     //
4621     // Non-static example:  Copying List<String>.elements to a new String[].
4622     // The backing store for a List<String> is always an Object[],
4623     // but its elements are always type String, if the generic types
4624     // are correct at the source level.
4625     //
4626     // Test S[] against D[], not S against D, because (probably)
4627     // the secondary supertype cache is less busy for S[] than S.
4628     // This usually only matters when D is an interface.
4629     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4630     // Plug failing path into checked_oop_disjoint_arraycopy
4631     if (not_subtype_ctrl != top()) {
4632       PreserveJVMState pjvms(this);
4633       set_control(not_subtype_ctrl);
4634       // (At this point we can assume disjoint_bases, since types differ.)
4635       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4636       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4637       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4638       Node* dest_elem_klass = _gvn.transform(n1);
4639       Node* cv = generate_checkcast_arraycopy(adr_type,
4640                                               dest_elem_klass,
4641                                               src, src_offset, dest, dest_offset,
4642                                               copy_length);
4643       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4644       checked_control = control();
4645       checked_i_o     = i_o();
4646       checked_mem     = memory(adr_type);
4647       checked_value   = cv;
4648     }
4649     // At this point we know we do not need type checks on oop stores.
4650 
4651     // Let's see if we need card marks:
4652     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4653       // If we do not need card marks, copy using the jint or jlong stub.
4654       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4655       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4656              "sizes agree");
4657     }
4658   }
4659 
4660   if (!stopped()) {
4661     // Generate the fast path, if possible.
4662     PreserveJVMState pjvms(this);
4663     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4664                                  src, src_offset, dest, dest_offset,
4665                                  ConvI2X(copy_length));
4666 
4667     // Present the results of the fast call.
4668     result_region->init_req(fast_path, control());
4669     result_i_o   ->init_req(fast_path, i_o());
4670     result_memory->init_req(fast_path, memory(adr_type));
4671   }
4672 
4673   // Here are all the slow paths up to this point, in one bundle:
4674   slow_control = top();
4675   if (slow_region != NULL)
4676     slow_control = _gvn.transform(slow_region);
4677   debug_only(slow_region = (RegionNode*)badAddress);
4678 
4679   set_control(checked_control);
4680   if (!stopped()) {
4681     // Clean up after the checked call.
4682     // The returned value is either 0 or -1^K,
4683     // where K = number of partially transferred array elements.
4684     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4685     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4686     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4687 
4688     // If it is 0, we are done, so transfer to the end.
4689     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4690     result_region->init_req(checked_path, checks_done);
4691     result_i_o   ->init_req(checked_path, checked_i_o);
4692     result_memory->init_req(checked_path, checked_mem);
4693 
4694     // If it is not zero, merge into the slow call.
4695     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4696     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4697     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4698     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4699     record_for_igvn(slow_reg2);
4700     slow_reg2  ->init_req(1, slow_control);
4701     slow_i_o2  ->init_req(1, slow_i_o);
4702     slow_mem2  ->init_req(1, slow_mem);
4703     slow_reg2  ->init_req(2, control());
4704     slow_i_o2  ->init_req(2, checked_i_o);
4705     slow_mem2  ->init_req(2, checked_mem);
4706 
4707     slow_control = _gvn.transform(slow_reg2);
4708     slow_i_o     = _gvn.transform(slow_i_o2);
4709     slow_mem     = _gvn.transform(slow_mem2);
4710 
4711     if (alloc != NULL) {
4712       // We'll restart from the very beginning, after zeroing the whole thing.
4713       // This can cause double writes, but that's OK since dest is brand new.
4714       // So we ignore the low 31 bits of the value returned from the stub.
4715     } else {
4716       // We must continue the copy exactly where it failed, or else
4717       // another thread might see the wrong number of writes to dest.
4718       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4719       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4720       slow_offset->init_req(1, intcon(0));
4721       slow_offset->init_req(2, checked_offset);
4722       slow_offset  = _gvn.transform(slow_offset);
4723 
4724       // Adjust the arguments by the conditionally incoming offset.
4725       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4726       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4727       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4728 
4729       // Tweak the node variables to adjust the code produced below:
4730       src_offset  = src_off_plus;
4731       dest_offset = dest_off_plus;
4732       copy_length = length_minus;
4733     }
4734   }
4735 
4736   set_control(slow_control);
4737   if (!stopped()) {
4738     // Generate the slow path, if needed.
4739     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4740 
4741     set_memory(slow_mem, adr_type);
4742     set_i_o(slow_i_o);
4743 
4744     if (must_clear_dest) {
4745       generate_clear_array(adr_type, dest, basic_elem_type,
4746                            intcon(0), NULL,
4747                            alloc->in(AllocateNode::AllocSize));
4748     }
4749 
4750     generate_slow_arraycopy(adr_type,
4751                             src, src_offset, dest, dest_offset,
4752                             copy_length);
4753 
4754     result_region->init_req(slow_call_path, control());
4755     result_i_o   ->init_req(slow_call_path, i_o());
4756     result_memory->init_req(slow_call_path, memory(adr_type));
4757   }
4758 
4759   // Remove unused edges.
4760   for (uint i = 1; i < result_region->req(); i++) {
4761     if (result_region->in(i) == NULL)
4762       result_region->init_req(i, top());
4763   }
4764 
4765   // Finished; return the combined state.
4766   set_control( _gvn.transform(result_region) );
4767   set_i_o(     _gvn.transform(result_i_o)    );
4768   set_memory(  _gvn.transform(result_memory), adr_type );
4769 
4770   if (dest != original_dest) {
4771     // Pin the "finished" array node after the arraycopy/zeroing operations.
4772     _gvn.hash_delete(original_dest);
4773     original_dest->set_req(0, control());
4774     // Replace raw memory edge with new CheckCastPP to have a live oop
4775     // at safepoints instead of raw value.
4776     assert(dest->is_CheckCastPP() && dest->in(1) == original_dest->in(1), "sanity");
4777     original_dest->set_req(1, dest);       // cast to the original type
4778     _gvn.hash_find_insert(original_dest);  // put back into GVN table
4779     // Restore in the locally valid dest_oop.
4780     replace_in_map(dest, original_dest);
4781   }
4782   // The memory edges above are precise in order to model effects around
4783   // array copies accurately to allow value numbering of field loads around
4784   // arraycopy.  Such field loads, both before and after, are common in Java
4785   // collections and similar classes involving header/array data structures.
4786   //
4787   // But with low number of register or when some registers are used or killed
4788   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4789   // The next memory barrier is added to avoid it. If the arraycopy can be
4790   // optimized away (which it can, sometimes) then we can manually remove
4791   // the membar also.
4792   if (InsertMemBarAfterArraycopy)
4793     insert_mem_bar(Op_MemBarCPUOrder);
4794 }
4795 
4796 
4797 // Helper function which determines if an arraycopy immediately follows
4798 // an allocation, with no intervening tests or other escapes for the object.
4799 AllocateArrayNode*
4800 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4801                                            RegionNode* slow_region) {
4802   if (stopped())             return NULL;  // no fast path
4803   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4804 
4805   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4806   if (alloc == NULL)  return NULL;
4807 
4808   Node* rawmem = memory(Compile::AliasIdxRaw);
4809   // Is the allocation's memory state untouched?
4810   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4811     // Bail out if there have been raw-memory effects since the allocation.
4812     // (Example:  There might have been a call or safepoint.)
4813     return NULL;
4814   }
4815   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4816   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4817     return NULL;
4818   }
4819 
4820   // There must be no unexpected observers of this allocation.
4821   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4822     Node* obs = ptr->fast_out(i);
4823     if (obs != this->map()) {
4824       return NULL;
4825     }
4826   }
4827 
4828   // This arraycopy must unconditionally follow the allocation of the ptr.
4829   Node* alloc_ctl = ptr->in(0);
4830   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4831 
4832   Node* ctl = control();
4833   while (ctl != alloc_ctl) {
4834     // There may be guards which feed into the slow_region.
4835     // Any other control flow means that we might not get a chance
4836     // to finish initializing the allocated object.
4837     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4838       IfNode* iff = ctl->in(0)->as_If();
4839       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4840       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4841       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4842         ctl = iff->in(0);       // This test feeds the known slow_region.
4843         continue;
4844       }
4845       // One more try:  Various low-level checks bottom out in
4846       // uncommon traps.  If the debug-info of the trap omits
4847       // any reference to the allocation, as we've already
4848       // observed, then there can be no objection to the trap.
4849       bool found_trap = false;
4850       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4851         Node* obs = not_ctl->fast_out(j);
4852         if (obs->in(0) == not_ctl && obs->is_Call() &&
4853             (obs->as_Call()->entry_point() ==
4854              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4855           found_trap = true; break;
4856         }
4857       }
4858       if (found_trap) {
4859         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4860         continue;
4861       }
4862     }
4863     return NULL;
4864   }
4865 
4866   // If we get this far, we have an allocation which immediately
4867   // precedes the arraycopy, and we can take over zeroing the new object.
4868   // The arraycopy will finish the initialization, and provide
4869   // a new control state to which we will anchor the destination pointer.
4870 
4871   return alloc;
4872 }
4873 
4874 // Helper for initialization of arrays, creating a ClearArray.
4875 // It writes zero bits in [start..end), within the body of an array object.
4876 // The memory effects are all chained onto the 'adr_type' alias category.
4877 //
4878 // Since the object is otherwise uninitialized, we are free
4879 // to put a little "slop" around the edges of the cleared area,
4880 // as long as it does not go back into the array's header,
4881 // or beyond the array end within the heap.
4882 //
4883 // The lower edge can be rounded down to the nearest jint and the
4884 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4885 //
4886 // Arguments:
4887 //   adr_type           memory slice where writes are generated
4888 //   dest               oop of the destination array
4889 //   basic_elem_type    element type of the destination
4890 //   slice_idx          array index of first element to store
4891 //   slice_len          number of elements to store (or NULL)
4892 //   dest_size          total size in bytes of the array object
4893 //
4894 // Exactly one of slice_len or dest_size must be non-NULL.
4895 // If dest_size is non-NULL, zeroing extends to the end of the object.
4896 // If slice_len is non-NULL, the slice_idx value must be a constant.
4897 void
4898 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
4899                                      Node* dest,
4900                                      BasicType basic_elem_type,
4901                                      Node* slice_idx,
4902                                      Node* slice_len,
4903                                      Node* dest_size) {
4904   // one or the other but not both of slice_len and dest_size:
4905   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
4906   if (slice_len == NULL)  slice_len = top();
4907   if (dest_size == NULL)  dest_size = top();
4908 
4909   // operate on this memory slice:
4910   Node* mem = memory(adr_type); // memory slice to operate on
4911 
4912   // scaling and rounding of indexes:
4913   int scale = exact_log2(type2aelembytes(basic_elem_type));
4914   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4915   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
4916   int bump_bit  = (-1 << scale) & BytesPerInt;
4917 
4918   // determine constant starts and ends
4919   const intptr_t BIG_NEG = -128;
4920   assert(BIG_NEG + 2*abase < 0, "neg enough");
4921   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
4922   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
4923   if (slice_len_con == 0) {
4924     return;                     // nothing to do here
4925   }
4926   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
4927   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
4928   if (slice_idx_con >= 0 && slice_len_con >= 0) {
4929     assert(end_con < 0, "not two cons");
4930     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
4931                        BytesPerLong);
4932   }
4933 
4934   if (start_con >= 0 && end_con >= 0) {
4935     // Constant start and end.  Simple.
4936     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4937                                        start_con, end_con, &_gvn);
4938   } else if (start_con >= 0 && dest_size != top()) {
4939     // Constant start, pre-rounded end after the tail of the array.
4940     Node* end = dest_size;
4941     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4942                                        start_con, end, &_gvn);
4943   } else if (start_con >= 0 && slice_len != top()) {
4944     // Constant start, non-constant end.  End needs rounding up.
4945     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
4946     intptr_t end_base  = abase + (slice_idx_con << scale);
4947     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
4948     Node*    end       = ConvI2X(slice_len);
4949     if (scale != 0)
4950       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
4951     end_base += end_round;
4952     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
4953     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
4954     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4955                                        start_con, end, &_gvn);
4956   } else if (start_con < 0 && dest_size != top()) {
4957     // Non-constant start, pre-rounded end after the tail of the array.
4958     // This is almost certainly a "round-to-end" operation.
4959     Node* start = slice_idx;
4960     start = ConvI2X(start);
4961     if (scale != 0)
4962       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
4963     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
4964     if ((bump_bit | clear_low) != 0) {
4965       int to_clear = (bump_bit | clear_low);
4966       // Align up mod 8, then store a jint zero unconditionally
4967       // just before the mod-8 boundary.
4968       if (((abase + bump_bit) & ~to_clear) - bump_bit
4969           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
4970         bump_bit = 0;
4971         assert((abase & to_clear) == 0, "array base must be long-aligned");
4972       } else {
4973         // Bump 'start' up to (or past) the next jint boundary:
4974         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
4975         assert((abase & clear_low) == 0, "array base must be int-aligned");
4976       }
4977       // Round bumped 'start' down to jlong boundary in body of array.
4978       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
4979       if (bump_bit != 0) {
4980         // Store a zero to the immediately preceding jint:
4981         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
4982         Node* p1 = basic_plus_adr(dest, x1);
4983         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
4984         mem = _gvn.transform(mem);
4985       }
4986     }
4987     Node* end = dest_size; // pre-rounded
4988     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4989                                        start, end, &_gvn);
4990   } else {
4991     // Non-constant start, unrounded non-constant end.
4992     // (Nobody zeroes a random midsection of an array using this routine.)
4993     ShouldNotReachHere();       // fix caller
4994   }
4995 
4996   // Done.
4997   set_memory(mem, adr_type);
4998 }
4999 
5000 
5001 bool
5002 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5003                                          BasicType basic_elem_type,
5004                                          AllocateNode* alloc,
5005                                          Node* src,  Node* src_offset,
5006                                          Node* dest, Node* dest_offset,
5007                                          Node* dest_size) {
5008   // See if there is an advantage from block transfer.
5009   int scale = exact_log2(type2aelembytes(basic_elem_type));
5010   if (scale >= LogBytesPerLong)
5011     return false;               // it is already a block transfer
5012 
5013   // Look at the alignment of the starting offsets.
5014   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5015   const intptr_t BIG_NEG = -128;
5016   assert(BIG_NEG + 2*abase < 0, "neg enough");
5017 
5018   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5019   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5020   if (src_off < 0 || dest_off < 0)
5021     // At present, we can only understand constants.
5022     return false;
5023 
5024   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5025     // Non-aligned; too bad.
5026     // One more chance:  Pick off an initial 32-bit word.
5027     // This is a common case, since abase can be odd mod 8.
5028     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5029         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5030       Node* sptr = basic_plus_adr(src,  src_off);
5031       Node* dptr = basic_plus_adr(dest, dest_off);
5032       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5033       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5034       src_off += BytesPerInt;
5035       dest_off += BytesPerInt;
5036     } else {
5037       return false;
5038     }
5039   }
5040   assert(src_off % BytesPerLong == 0, "");
5041   assert(dest_off % BytesPerLong == 0, "");
5042 
5043   // Do this copy by giant steps.
5044   Node* sptr  = basic_plus_adr(src,  src_off);
5045   Node* dptr  = basic_plus_adr(dest, dest_off);
5046   Node* countx = dest_size;
5047   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5048   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5049 
5050   bool disjoint_bases = true;   // since alloc != NULL
5051   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5052                                sptr, NULL, dptr, NULL, countx);
5053 
5054   return true;
5055 }
5056 
5057 
5058 // Helper function; generates code for the slow case.
5059 // We make a call to a runtime method which emulates the native method,
5060 // but without the native wrapper overhead.
5061 void
5062 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5063                                         Node* src,  Node* src_offset,
5064                                         Node* dest, Node* dest_offset,
5065                                         Node* copy_length) {
5066   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5067                                  OptoRuntime::slow_arraycopy_Type(),
5068                                  OptoRuntime::slow_arraycopy_Java(),
5069                                  "slow_arraycopy", adr_type,
5070                                  src, src_offset, dest, dest_offset,
5071                                  copy_length);
5072 
5073   // Handle exceptions thrown by this fellow:
5074   make_slow_call_ex(call, env()->Throwable_klass(), false);
5075 }
5076 
5077 // Helper function; generates code for cases requiring runtime checks.
5078 Node*
5079 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5080                                              Node* dest_elem_klass,
5081                                              Node* src,  Node* src_offset,
5082                                              Node* dest, Node* dest_offset,
5083                                              Node* copy_length) {
5084   if (stopped())  return NULL;
5085 
5086   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5087   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5088     return NULL;
5089   }
5090 
5091   // Pick out the parameters required to perform a store-check
5092   // for the target array.  This is an optimistic check.  It will
5093   // look in each non-null element's class, at the desired klass's
5094   // super_check_offset, for the desired klass.
5095   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5096   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5097   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5098   Node* check_offset = _gvn.transform(n3);
5099   Node* check_value  = dest_elem_klass;
5100 
5101   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5102   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5103 
5104   // (We know the arrays are never conjoint, because their types differ.)
5105   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5106                                  OptoRuntime::checkcast_arraycopy_Type(),
5107                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5108                                  // five arguments, of which two are
5109                                  // intptr_t (jlong in LP64)
5110                                  src_start, dest_start,
5111                                  copy_length XTOP,
5112                                  check_offset XTOP,
5113                                  check_value);
5114 
5115   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5116 }
5117 
5118 
5119 // Helper function; generates code for cases requiring runtime checks.
5120 Node*
5121 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5122                                            Node* src,  Node* src_offset,
5123                                            Node* dest, Node* dest_offset,
5124                                            Node* copy_length) {
5125   if (stopped())  return NULL;
5126 
5127   address copyfunc_addr = StubRoutines::generic_arraycopy();
5128   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5129     return NULL;
5130   }
5131 
5132   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5133                     OptoRuntime::generic_arraycopy_Type(),
5134                     copyfunc_addr, "generic_arraycopy", adr_type,
5135                     src, src_offset, dest, dest_offset, copy_length);
5136 
5137   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5138 }
5139 
5140 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5141 void
5142 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5143                                              BasicType basic_elem_type,
5144                                              bool disjoint_bases,
5145                                              Node* src,  Node* src_offset,
5146                                              Node* dest, Node* dest_offset,
5147                                              Node* copy_length) {
5148   if (stopped())  return;               // nothing to do
5149 
5150   Node* src_start  = src;
5151   Node* dest_start = dest;
5152   if (src_offset != NULL || dest_offset != NULL) {
5153     assert(src_offset != NULL && dest_offset != NULL, "");
5154     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5155     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5156   }
5157 
5158   // Figure out which arraycopy runtime method to call.
5159   const char* copyfunc_name = "arraycopy";
5160   address     copyfunc_addr =
5161       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5162                           disjoint_bases, copyfunc_name);
5163 
5164   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5165   make_runtime_call(RC_LEAF|RC_NO_FP,
5166                     OptoRuntime::fast_arraycopy_Type(),
5167                     copyfunc_addr, copyfunc_name, adr_type,
5168                     src_start, dest_start, copy_length XTOP);
5169 }