1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_compile.cpp.incl"
  27 
  28 /// Support for intrinsics.
  29 
  30 // Return the index at which m must be inserted (or already exists).
  31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  33 #ifdef ASSERT
  34   for (int i = 1; i < _intrinsics->length(); i++) {
  35     CallGenerator* cg1 = _intrinsics->at(i-1);
  36     CallGenerator* cg2 = _intrinsics->at(i);
  37     assert(cg1->method() != cg2->method()
  38            ? cg1->method()     < cg2->method()
  39            : cg1->is_virtual() < cg2->is_virtual(),
  40            "compiler intrinsics list must stay sorted");
  41   }
  42 #endif
  43   // Binary search sorted list, in decreasing intervals [lo, hi].
  44   int lo = 0, hi = _intrinsics->length()-1;
  45   while (lo <= hi) {
  46     int mid = (uint)(hi + lo) / 2;
  47     ciMethod* mid_m = _intrinsics->at(mid)->method();
  48     if (m < mid_m) {
  49       hi = mid-1;
  50     } else if (m > mid_m) {
  51       lo = mid+1;
  52     } else {
  53       // look at minor sort key
  54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
  55       if (is_virtual < mid_virt) {
  56         hi = mid-1;
  57       } else if (is_virtual > mid_virt) {
  58         lo = mid+1;
  59       } else {
  60         return mid;  // exact match
  61       }
  62     }
  63   }
  64   return lo;  // inexact match
  65 }
  66 
  67 void Compile::register_intrinsic(CallGenerator* cg) {
  68   if (_intrinsics == NULL) {
  69     _intrinsics = new GrowableArray<CallGenerator*>(60);
  70   }
  71   // This code is stolen from ciObjectFactory::insert.
  72   // Really, GrowableArray should have methods for
  73   // insert_at, remove_at, and binary_search.
  74   int len = _intrinsics->length();
  75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
  76   if (index == len) {
  77     _intrinsics->append(cg);
  78   } else {
  79 #ifdef ASSERT
  80     CallGenerator* oldcg = _intrinsics->at(index);
  81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
  82 #endif
  83     _intrinsics->append(_intrinsics->at(len-1));
  84     int pos;
  85     for (pos = len-2; pos >= index; pos--) {
  86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
  87     }
  88     _intrinsics->at_put(index, cg);
  89   }
  90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
  91 }
  92 
  93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
  94   assert(m->is_loaded(), "don't try this on unloaded methods");
  95   if (_intrinsics != NULL) {
  96     int index = intrinsic_insertion_index(m, is_virtual);
  97     if (index < _intrinsics->length()
  98         && _intrinsics->at(index)->method() == m
  99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 100       return _intrinsics->at(index);
 101     }
 102   }
 103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 104   if (m->intrinsic_id() != vmIntrinsics::_none) {
 105     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 106     if (cg != NULL) {
 107       // Save it for next time:
 108       register_intrinsic(cg);
 109       return cg;
 110     } else {
 111       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 112     }
 113   }
 114   return NULL;
 115 }
 116 
 117 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 118 // in library_call.cpp.
 119 
 120 
 121 #ifndef PRODUCT
 122 // statistics gathering...
 123 
 124 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 125 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 126 
 127 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 128   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 129   int oflags = _intrinsic_hist_flags[id];
 130   assert(flags != 0, "what happened?");
 131   if (is_virtual) {
 132     flags |= _intrinsic_virtual;
 133   }
 134   bool changed = (flags != oflags);
 135   if ((flags & _intrinsic_worked) != 0) {
 136     juint count = (_intrinsic_hist_count[id] += 1);
 137     if (count == 1) {
 138       changed = true;           // first time
 139     }
 140     // increment the overall count also:
 141     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 142   }
 143   if (changed) {
 144     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 145       // Something changed about the intrinsic's virtuality.
 146       if ((flags & _intrinsic_virtual) != 0) {
 147         // This is the first use of this intrinsic as a virtual call.
 148         if (oflags != 0) {
 149           // We already saw it as a non-virtual, so note both cases.
 150           flags |= _intrinsic_both;
 151         }
 152       } else if ((oflags & _intrinsic_both) == 0) {
 153         // This is the first use of this intrinsic as a non-virtual
 154         flags |= _intrinsic_both;
 155       }
 156     }
 157     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 158   }
 159   // update the overall flags also:
 160   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 161   return changed;
 162 }
 163 
 164 static char* format_flags(int flags, char* buf) {
 165   buf[0] = 0;
 166   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 167   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 168   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 169   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 170   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 171   if (buf[0] == 0)  strcat(buf, ",");
 172   assert(buf[0] == ',', "must be");
 173   return &buf[1];
 174 }
 175 
 176 void Compile::print_intrinsic_statistics() {
 177   char flagsbuf[100];
 178   ttyLocker ttyl;
 179   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 180   tty->print_cr("Compiler intrinsic usage:");
 181   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 182   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 183   #define PRINT_STAT_LINE(name, c, f) \
 184     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 185   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 186     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 187     int   flags = _intrinsic_hist_flags[id];
 188     juint count = _intrinsic_hist_count[id];
 189     if ((flags | count) != 0) {
 190       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 191     }
 192   }
 193   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 194   if (xtty != NULL)  xtty->tail("statistics");
 195 }
 196 
 197 void Compile::print_statistics() {
 198   { ttyLocker ttyl;
 199     if (xtty != NULL)  xtty->head("statistics type='opto'");
 200     Parse::print_statistics();
 201     PhaseCCP::print_statistics();
 202     PhaseRegAlloc::print_statistics();
 203     Scheduling::print_statistics();
 204     PhasePeephole::print_statistics();
 205     PhaseIdealLoop::print_statistics();
 206     if (xtty != NULL)  xtty->tail("statistics");
 207   }
 208   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 209     // put this under its own <statistics> element.
 210     print_intrinsic_statistics();
 211   }
 212 }
 213 #endif //PRODUCT
 214 
 215 // Support for bundling info
 216 Bundle* Compile::node_bundling(const Node *n) {
 217   assert(valid_bundle_info(n), "oob");
 218   return &_node_bundling_base[n->_idx];
 219 }
 220 
 221 bool Compile::valid_bundle_info(const Node *n) {
 222   return (_node_bundling_limit > n->_idx);
 223 }
 224 
 225 
 226 // Identify all nodes that are reachable from below, useful.
 227 // Use breadth-first pass that records state in a Unique_Node_List,
 228 // recursive traversal is slower.
 229 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 230   int estimated_worklist_size = unique();
 231   useful.map( estimated_worklist_size, NULL );  // preallocate space
 232 
 233   // Initialize worklist
 234   if (root() != NULL)     { useful.push(root()); }
 235   // If 'top' is cached, declare it useful to preserve cached node
 236   if( cached_top_node() ) { useful.push(cached_top_node()); }
 237 
 238   // Push all useful nodes onto the list, breadthfirst
 239   for( uint next = 0; next < useful.size(); ++next ) {
 240     assert( next < unique(), "Unique useful nodes < total nodes");
 241     Node *n  = useful.at(next);
 242     uint max = n->len();
 243     for( uint i = 0; i < max; ++i ) {
 244       Node *m = n->in(i);
 245       if( m == NULL ) continue;
 246       useful.push(m);
 247     }
 248   }
 249 }
 250 
 251 // Disconnect all useless nodes by disconnecting those at the boundary.
 252 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 253   uint next = 0;
 254   while( next < useful.size() ) {
 255     Node *n = useful.at(next++);
 256     // Use raw traversal of out edges since this code removes out edges
 257     int max = n->outcnt();
 258     for (int j = 0; j < max; ++j ) {
 259       Node* child = n->raw_out(j);
 260       if( ! useful.member(child) ) {
 261         assert( !child->is_top() || child != top(),
 262                 "If top is cached in Compile object it is in useful list");
 263         // Only need to remove this out-edge to the useless node
 264         n->raw_del_out(j);
 265         --j;
 266         --max;
 267       }
 268     }
 269     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 270       record_for_igvn( n->unique_out() );
 271     }
 272   }
 273   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 274 }
 275 
 276 //------------------------------frame_size_in_words-----------------------------
 277 // frame_slots in units of words
 278 int Compile::frame_size_in_words() const {
 279   // shift is 0 in LP32 and 1 in LP64
 280   const int shift = (LogBytesPerWord - LogBytesPerInt);
 281   int words = _frame_slots >> shift;
 282   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 283   return words;
 284 }
 285 
 286 // ============================================================================
 287 //------------------------------CompileWrapper---------------------------------
 288 class CompileWrapper : public StackObj {
 289   Compile *const _compile;
 290  public:
 291   CompileWrapper(Compile* compile);
 292 
 293   ~CompileWrapper();
 294 };
 295 
 296 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 297   // the Compile* pointer is stored in the current ciEnv:
 298   ciEnv* env = compile->env();
 299   assert(env == ciEnv::current(), "must already be a ciEnv active");
 300   assert(env->compiler_data() == NULL, "compile already active?");
 301   env->set_compiler_data(compile);
 302   assert(compile == Compile::current(), "sanity");
 303 
 304   compile->set_type_dict(NULL);
 305   compile->set_type_hwm(NULL);
 306   compile->set_type_last_size(0);
 307   compile->set_last_tf(NULL, NULL);
 308   compile->set_indexSet_arena(NULL);
 309   compile->set_indexSet_free_block_list(NULL);
 310   compile->init_type_arena();
 311   Type::Initialize(compile);
 312   _compile->set_scratch_buffer_blob(NULL);
 313   _compile->begin_method();
 314 }
 315 CompileWrapper::~CompileWrapper() {
 316   _compile->end_method();
 317   if (_compile->scratch_buffer_blob() != NULL)
 318     BufferBlob::free(_compile->scratch_buffer_blob());
 319   _compile->env()->set_compiler_data(NULL);
 320 }
 321 
 322 
 323 //----------------------------print_compile_messages---------------------------
 324 void Compile::print_compile_messages() {
 325 #ifndef PRODUCT
 326   // Check if recompiling
 327   if (_subsume_loads == false && PrintOpto) {
 328     // Recompiling without allowing machine instructions to subsume loads
 329     tty->print_cr("*********************************************************");
 330     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 331     tty->print_cr("*********************************************************");
 332   }
 333   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 334     // Recompiling without escape analysis
 335     tty->print_cr("*********************************************************");
 336     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 337     tty->print_cr("*********************************************************");
 338   }
 339   if (env()->break_at_compile()) {
 340     // Open the debugger when compiling this method.
 341     tty->print("### Breaking when compiling: ");
 342     method()->print_short_name();
 343     tty->cr();
 344     BREAKPOINT;
 345   }
 346 
 347   if( PrintOpto ) {
 348     if (is_osr_compilation()) {
 349       tty->print("[OSR]%3d", _compile_id);
 350     } else {
 351       tty->print("%3d", _compile_id);
 352     }
 353   }
 354 #endif
 355 }
 356 
 357 
 358 void Compile::init_scratch_buffer_blob() {
 359   if( scratch_buffer_blob() != NULL )  return;
 360 
 361   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 362   // Cache this BufferBlob for this compile.
 363   ResourceMark rm;
 364   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 365   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 366   // Record the buffer blob for next time.
 367   set_scratch_buffer_blob(blob);
 368   // Have we run out of code space?
 369   if (scratch_buffer_blob() == NULL) {
 370     // Let CompilerBroker disable further compilations.
 371     record_failure("Not enough space for scratch buffer in CodeCache");
 372     return;
 373   }
 374 
 375   // Initialize the relocation buffers
 376   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
 377   set_scratch_locs_memory(locs_buf);
 378 }
 379 
 380 
 381 //-----------------------scratch_emit_size-------------------------------------
 382 // Helper function that computes size by emitting code
 383 uint Compile::scratch_emit_size(const Node* n) {
 384   // Emit into a trash buffer and count bytes emitted.
 385   // This is a pretty expensive way to compute a size,
 386   // but it works well enough if seldom used.
 387   // All common fixed-size instructions are given a size
 388   // method by the AD file.
 389   // Note that the scratch buffer blob and locs memory are
 390   // allocated at the beginning of the compile task, and
 391   // may be shared by several calls to scratch_emit_size.
 392   // The allocation of the scratch buffer blob is particularly
 393   // expensive, since it has to grab the code cache lock.
 394   BufferBlob* blob = this->scratch_buffer_blob();
 395   assert(blob != NULL, "Initialize BufferBlob at start");
 396   assert(blob->size() > MAX_inst_size, "sanity");
 397   relocInfo* locs_buf = scratch_locs_memory();
 398   address blob_begin = blob->instructions_begin();
 399   address blob_end   = (address)locs_buf;
 400   assert(blob->instructions_contains(blob_end), "sanity");
 401   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 402   buf.initialize_consts_size(MAX_const_size);
 403   buf.initialize_stubs_size(MAX_stubs_size);
 404   assert(locs_buf != NULL, "sanity");
 405   int lsize = MAX_locs_size / 2;
 406   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 407   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 408   n->emit(buf, this->regalloc());
 409   return buf.code_size();
 410 }
 411 
 412 
 413 // ============================================================================
 414 //------------------------------Compile standard-------------------------------
 415 debug_only( int Compile::_debug_idx = 100000; )
 416 
 417 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 418 // the continuation bci for on stack replacement.
 419 
 420 
 421 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 422                 : Phase(Compiler),
 423                   _env(ci_env),
 424                   _log(ci_env->log()),
 425                   _compile_id(ci_env->compile_id()),
 426                   _save_argument_registers(false),
 427                   _stub_name(NULL),
 428                   _stub_function(NULL),
 429                   _stub_entry_point(NULL),
 430                   _method(target),
 431                   _entry_bci(osr_bci),
 432                   _initial_gvn(NULL),
 433                   _for_igvn(NULL),
 434                   _warm_calls(NULL),
 435                   _subsume_loads(subsume_loads),
 436                   _do_escape_analysis(do_escape_analysis),
 437                   _failure_reason(NULL),
 438                   _code_buffer("Compile::Fill_buffer"),
 439                   _orig_pc_slot(0),
 440                   _orig_pc_slot_offset_in_bytes(0),
 441                   _node_bundling_limit(0),
 442                   _node_bundling_base(NULL),
 443 #ifndef PRODUCT
 444                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 445                   _printer(IdealGraphPrinter::printer()),
 446 #endif
 447                   _congraph(NULL) {
 448   C = this;
 449 
 450   CompileWrapper cw(this);
 451 #ifndef PRODUCT
 452   if (TimeCompiler2) {
 453     tty->print(" ");
 454     target->holder()->name()->print();
 455     tty->print(".");
 456     target->print_short_name();
 457     tty->print("  ");
 458   }
 459   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 460   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 461   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 462   if (!print_opto_assembly) {
 463     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 464     if (print_assembly && !Disassembler::can_decode()) {
 465       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 466       print_opto_assembly = true;
 467     }
 468   }
 469   set_print_assembly(print_opto_assembly);
 470   set_parsed_irreducible_loop(false);
 471 #endif
 472 
 473   if (ProfileTraps) {
 474     // Make sure the method being compiled gets its own MDO,
 475     // so we can at least track the decompile_count().
 476     method()->build_method_data();
 477   }
 478 
 479   Init(::AliasLevel);
 480 
 481 
 482   print_compile_messages();
 483 
 484   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 485     _ilt = InlineTree::build_inline_tree_root();
 486   else
 487     _ilt = NULL;
 488 
 489   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 490   assert(num_alias_types() >= AliasIdxRaw, "");
 491 
 492 #define MINIMUM_NODE_HASH  1023
 493   // Node list that Iterative GVN will start with
 494   Unique_Node_List for_igvn(comp_arena());
 495   set_for_igvn(&for_igvn);
 496 
 497   // GVN that will be run immediately on new nodes
 498   uint estimated_size = method()->code_size()*4+64;
 499   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 500   PhaseGVN gvn(node_arena(), estimated_size);
 501   set_initial_gvn(&gvn);
 502 
 503   { // Scope for timing the parser
 504     TracePhase t3("parse", &_t_parser, true);
 505 
 506     // Put top into the hash table ASAP.
 507     initial_gvn()->transform_no_reclaim(top());
 508 
 509     // Set up tf(), start(), and find a CallGenerator.
 510     CallGenerator* cg;
 511     if (is_osr_compilation()) {
 512       const TypeTuple *domain = StartOSRNode::osr_domain();
 513       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 514       init_tf(TypeFunc::make(domain, range));
 515       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 516       initial_gvn()->set_type_bottom(s);
 517       init_start(s);
 518       cg = CallGenerator::for_osr(method(), entry_bci());
 519     } else {
 520       // Normal case.
 521       init_tf(TypeFunc::make(method()));
 522       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 523       initial_gvn()->set_type_bottom(s);
 524       init_start(s);
 525       float past_uses = method()->interpreter_invocation_count();
 526       float expected_uses = past_uses;
 527       cg = CallGenerator::for_inline(method(), expected_uses);
 528     }
 529     if (failing())  return;
 530     if (cg == NULL) {
 531       record_method_not_compilable_all_tiers("cannot parse method");
 532       return;
 533     }
 534     JVMState* jvms = build_start_state(start(), tf());
 535     if ((jvms = cg->generate(jvms)) == NULL) {
 536       record_method_not_compilable("method parse failed");
 537       return;
 538     }
 539     GraphKit kit(jvms);
 540 
 541     if (!kit.stopped()) {
 542       // Accept return values, and transfer control we know not where.
 543       // This is done by a special, unique ReturnNode bound to root.
 544       return_values(kit.jvms());
 545     }
 546 
 547     if (kit.has_exceptions()) {
 548       // Any exceptions that escape from this call must be rethrown
 549       // to whatever caller is dynamically above us on the stack.
 550       // This is done by a special, unique RethrowNode bound to root.
 551       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 552     }
 553 
 554     print_method("Before RemoveUseless", 3);
 555 
 556     // Remove clutter produced by parsing.
 557     if (!failing()) {
 558       ResourceMark rm;
 559       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 560     }
 561   }
 562 
 563   // Note:  Large methods are capped off in do_one_bytecode().
 564   if (failing())  return;
 565 
 566   // After parsing, node notes are no longer automagic.
 567   // They must be propagated by register_new_node_with_optimizer(),
 568   // clone(), or the like.
 569   set_default_node_notes(NULL);
 570 
 571   for (;;) {
 572     int successes = Inline_Warm();
 573     if (failing())  return;
 574     if (successes == 0)  break;
 575   }
 576 
 577   // Drain the list.
 578   Finish_Warm();
 579 #ifndef PRODUCT
 580   if (_printer) {
 581     _printer->print_inlining(this);
 582   }
 583 #endif
 584 
 585   if (failing())  return;
 586   NOT_PRODUCT( verify_graph_edges(); )
 587 
 588   // Perform escape analysis
 589   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
 590     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
 591     // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
 592     PhaseGVN* igvn = initial_gvn();
 593     Node* oop_null = igvn->zerocon(T_OBJECT);
 594     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 595 
 596     _congraph = new(comp_arena()) ConnectionGraph(this);
 597     bool has_non_escaping_obj = _congraph->compute_escape();
 598 
 599 #ifndef PRODUCT
 600     if (PrintEscapeAnalysis) {
 601       _congraph->dump();
 602     }
 603 #endif
 604     // Cleanup.
 605     if (oop_null->outcnt() == 0)
 606       igvn->hash_delete(oop_null);
 607     if (noop_null->outcnt() == 0)
 608       igvn->hash_delete(noop_null);
 609 
 610     if (!has_non_escaping_obj) {
 611       _congraph = NULL;
 612     }
 613 
 614     if (failing())  return;
 615   }
 616   // Now optimize
 617   Optimize();
 618   if (failing())  return;
 619   NOT_PRODUCT( verify_graph_edges(); )
 620 
 621 #ifndef PRODUCT
 622   if (PrintIdeal) {
 623     ttyLocker ttyl;  // keep the following output all in one block
 624     // This output goes directly to the tty, not the compiler log.
 625     // To enable tools to match it up with the compilation activity,
 626     // be sure to tag this tty output with the compile ID.
 627     if (xtty != NULL) {
 628       xtty->head("ideal compile_id='%d'%s", compile_id(),
 629                  is_osr_compilation()    ? " compile_kind='osr'" :
 630                  "");
 631     }
 632     root()->dump(9999);
 633     if (xtty != NULL) {
 634       xtty->tail("ideal");
 635     }
 636   }
 637 #endif
 638 
 639   // Now that we know the size of all the monitors we can add a fixed slot
 640   // for the original deopt pc.
 641 
 642   _orig_pc_slot =  fixed_slots();
 643   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 644   set_fixed_slots(next_slot);
 645 
 646   // Now generate code
 647   Code_Gen();
 648   if (failing())  return;
 649 
 650   // Check if we want to skip execution of all compiled code.
 651   {
 652 #ifndef PRODUCT
 653     if (OptoNoExecute) {
 654       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 655       return;
 656     }
 657     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 658 #endif
 659 
 660     if (is_osr_compilation()) {
 661       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 662       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 663     } else {
 664       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 665       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 666     }
 667 
 668     env()->register_method(_method, _entry_bci,
 669                            &_code_offsets,
 670                            _orig_pc_slot_offset_in_bytes,
 671                            code_buffer(),
 672                            frame_size_in_words(), _oop_map_set,
 673                            &_handler_table, &_inc_table,
 674                            compiler,
 675                            env()->comp_level(),
 676                            true, /*has_debug_info*/
 677                            has_unsafe_access()
 678                            );
 679   }
 680 }
 681 
 682 //------------------------------Compile----------------------------------------
 683 // Compile a runtime stub
 684 Compile::Compile( ciEnv* ci_env,
 685                   TypeFunc_generator generator,
 686                   address stub_function,
 687                   const char *stub_name,
 688                   int is_fancy_jump,
 689                   bool pass_tls,
 690                   bool save_arg_registers,
 691                   bool return_pc )
 692   : Phase(Compiler),
 693     _env(ci_env),
 694     _log(ci_env->log()),
 695     _compile_id(-1),
 696     _save_argument_registers(save_arg_registers),
 697     _method(NULL),
 698     _stub_name(stub_name),
 699     _stub_function(stub_function),
 700     _stub_entry_point(NULL),
 701     _entry_bci(InvocationEntryBci),
 702     _initial_gvn(NULL),
 703     _for_igvn(NULL),
 704     _warm_calls(NULL),
 705     _orig_pc_slot(0),
 706     _orig_pc_slot_offset_in_bytes(0),
 707     _subsume_loads(true),
 708     _do_escape_analysis(false),
 709     _failure_reason(NULL),
 710     _code_buffer("Compile::Fill_buffer"),
 711     _node_bundling_limit(0),
 712     _node_bundling_base(NULL),
 713 #ifndef PRODUCT
 714     _trace_opto_output(TraceOptoOutput),
 715     _printer(NULL),
 716 #endif
 717     _congraph(NULL) {
 718   C = this;
 719 
 720 #ifndef PRODUCT
 721   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 722   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 723   set_print_assembly(PrintFrameConverterAssembly);
 724   set_parsed_irreducible_loop(false);
 725 #endif
 726   CompileWrapper cw(this);
 727   Init(/*AliasLevel=*/ 0);
 728   init_tf((*generator)());
 729 
 730   {
 731     // The following is a dummy for the sake of GraphKit::gen_stub
 732     Unique_Node_List for_igvn(comp_arena());
 733     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 734     PhaseGVN gvn(Thread::current()->resource_area(),255);
 735     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 736     gvn.transform_no_reclaim(top());
 737 
 738     GraphKit kit;
 739     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 740   }
 741 
 742   NOT_PRODUCT( verify_graph_edges(); )
 743   Code_Gen();
 744   if (failing())  return;
 745 
 746 
 747   // Entry point will be accessed using compile->stub_entry_point();
 748   if (code_buffer() == NULL) {
 749     Matcher::soft_match_failure();
 750   } else {
 751     if (PrintAssembly && (WizardMode || Verbose))
 752       tty->print_cr("### Stub::%s", stub_name);
 753 
 754     if (!failing()) {
 755       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 756 
 757       // Make the NMethod
 758       // For now we mark the frame as never safe for profile stackwalking
 759       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 760                                                       code_buffer(),
 761                                                       CodeOffsets::frame_never_safe,
 762                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 763                                                       frame_size_in_words(),
 764                                                       _oop_map_set,
 765                                                       save_arg_registers);
 766       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 767 
 768       _stub_entry_point = rs->entry_point();
 769     }
 770   }
 771 }
 772 
 773 #ifndef PRODUCT
 774 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 775   if(PrintOpto && Verbose) {
 776     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 777   }
 778 }
 779 #endif
 780 
 781 void Compile::print_codes() {
 782 }
 783 
 784 //------------------------------Init-------------------------------------------
 785 // Prepare for a single compilation
 786 void Compile::Init(int aliaslevel) {
 787   _unique  = 0;
 788   _regalloc = NULL;
 789 
 790   _tf      = NULL;  // filled in later
 791   _top     = NULL;  // cached later
 792   _matcher = NULL;  // filled in later
 793   _cfg     = NULL;  // filled in later
 794 
 795   set_24_bit_selection_and_mode(Use24BitFP, false);
 796 
 797   _node_note_array = NULL;
 798   _default_node_notes = NULL;
 799 
 800   _immutable_memory = NULL; // filled in at first inquiry
 801 
 802   // Globally visible Nodes
 803   // First set TOP to NULL to give safe behavior during creation of RootNode
 804   set_cached_top_node(NULL);
 805   set_root(new (this, 3) RootNode());
 806   // Now that you have a Root to point to, create the real TOP
 807   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 808   set_recent_alloc(NULL, NULL);
 809 
 810   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 811   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 812   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 813   env()->set_dependencies(new Dependencies(env()));
 814 
 815   _fixed_slots = 0;
 816   set_has_split_ifs(false);
 817   set_has_loops(has_method() && method()->has_loops()); // first approximation
 818   _deopt_happens = true;  // start out assuming the worst
 819   _trap_can_recompile = false;  // no traps emitted yet
 820   _major_progress = true; // start out assuming good things will happen
 821   set_has_unsafe_access(false);
 822   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 823   set_decompile_count(0);
 824 
 825   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 826   // Compilation level related initialization
 827   if (env()->comp_level() == CompLevel_fast_compile) {
 828     set_num_loop_opts(Tier1LoopOptsCount);
 829     set_do_inlining(Tier1Inline != 0);
 830     set_max_inline_size(Tier1MaxInlineSize);
 831     set_freq_inline_size(Tier1FreqInlineSize);
 832     set_do_scheduling(false);
 833     set_do_count_invocations(Tier1CountInvocations);
 834     set_do_method_data_update(Tier1UpdateMethodData);
 835   } else {
 836     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
 837     set_num_loop_opts(LoopOptsCount);
 838     set_do_inlining(Inline);
 839     set_max_inline_size(MaxInlineSize);
 840     set_freq_inline_size(FreqInlineSize);
 841     set_do_scheduling(OptoScheduling);
 842     set_do_count_invocations(false);
 843     set_do_method_data_update(false);
 844   }
 845 
 846   if (debug_info()->recording_non_safepoints()) {
 847     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 848                         (comp_arena(), 8, 0, NULL));
 849     set_default_node_notes(Node_Notes::make(this));
 850   }
 851 
 852   // // -- Initialize types before each compile --
 853   // // Update cached type information
 854   // if( _method && _method->constants() )
 855   //   Type::update_loaded_types(_method, _method->constants());
 856 
 857   // Init alias_type map.
 858   if (!_do_escape_analysis && aliaslevel == 3)
 859     aliaslevel = 2;  // No unique types without escape analysis
 860   _AliasLevel = aliaslevel;
 861   const int grow_ats = 16;
 862   _max_alias_types = grow_ats;
 863   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 864   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 865   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 866   {
 867     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 868   }
 869   // Initialize the first few types.
 870   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 871   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 872   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 873   _num_alias_types = AliasIdxRaw+1;
 874   // Zero out the alias type cache.
 875   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 876   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 877   probe_alias_cache(NULL)->_index = AliasIdxTop;
 878 
 879   _intrinsics = NULL;
 880   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 881   register_library_intrinsics();
 882 }
 883 
 884 //---------------------------init_start----------------------------------------
 885 // Install the StartNode on this compile object.
 886 void Compile::init_start(StartNode* s) {
 887   if (failing())
 888     return; // already failing
 889   assert(s == start(), "");
 890 }
 891 
 892 StartNode* Compile::start() const {
 893   assert(!failing(), "");
 894   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 895     Node* start = root()->fast_out(i);
 896     if( start->is_Start() )
 897       return start->as_Start();
 898   }
 899   ShouldNotReachHere();
 900   return NULL;
 901 }
 902 
 903 //-------------------------------immutable_memory-------------------------------------
 904 // Access immutable memory
 905 Node* Compile::immutable_memory() {
 906   if (_immutable_memory != NULL) {
 907     return _immutable_memory;
 908   }
 909   StartNode* s = start();
 910   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 911     Node *p = s->fast_out(i);
 912     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 913       _immutable_memory = p;
 914       return _immutable_memory;
 915     }
 916   }
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 //----------------------set_cached_top_node------------------------------------
 922 // Install the cached top node, and make sure Node::is_top works correctly.
 923 void Compile::set_cached_top_node(Node* tn) {
 924   if (tn != NULL)  verify_top(tn);
 925   Node* old_top = _top;
 926   _top = tn;
 927   // Calling Node::setup_is_top allows the nodes the chance to adjust
 928   // their _out arrays.
 929   if (_top != NULL)     _top->setup_is_top();
 930   if (old_top != NULL)  old_top->setup_is_top();
 931   assert(_top == NULL || top()->is_top(), "");
 932 }
 933 
 934 #ifndef PRODUCT
 935 void Compile::verify_top(Node* tn) const {
 936   if (tn != NULL) {
 937     assert(tn->is_Con(), "top node must be a constant");
 938     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
 939     assert(tn->in(0) != NULL, "must have live top node");
 940   }
 941 }
 942 #endif
 943 
 944 
 945 ///-------------------Managing Per-Node Debug & Profile Info-------------------
 946 
 947 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
 948   guarantee(arr != NULL, "");
 949   int num_blocks = arr->length();
 950   if (grow_by < num_blocks)  grow_by = num_blocks;
 951   int num_notes = grow_by * _node_notes_block_size;
 952   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
 953   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
 954   while (num_notes > 0) {
 955     arr->append(notes);
 956     notes     += _node_notes_block_size;
 957     num_notes -= _node_notes_block_size;
 958   }
 959   assert(num_notes == 0, "exact multiple, please");
 960 }
 961 
 962 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
 963   if (source == NULL || dest == NULL)  return false;
 964 
 965   if (dest->is_Con())
 966     return false;               // Do not push debug info onto constants.
 967 
 968 #ifdef ASSERT
 969   // Leave a bread crumb trail pointing to the original node:
 970   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
 971     dest->set_debug_orig(source);
 972   }
 973 #endif
 974 
 975   if (node_note_array() == NULL)
 976     return false;               // Not collecting any notes now.
 977 
 978   // This is a copy onto a pre-existing node, which may already have notes.
 979   // If both nodes have notes, do not overwrite any pre-existing notes.
 980   Node_Notes* source_notes = node_notes_at(source->_idx);
 981   if (source_notes == NULL || source_notes->is_clear())  return false;
 982   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
 983   if (dest_notes == NULL || dest_notes->is_clear()) {
 984     return set_node_notes_at(dest->_idx, source_notes);
 985   }
 986 
 987   Node_Notes merged_notes = (*source_notes);
 988   // The order of operations here ensures that dest notes will win...
 989   merged_notes.update_from(dest_notes);
 990   return set_node_notes_at(dest->_idx, &merged_notes);
 991 }
 992 
 993 
 994 //--------------------------allow_range_check_smearing-------------------------
 995 // Gating condition for coalescing similar range checks.
 996 // Sometimes we try 'speculatively' replacing a series of a range checks by a
 997 // single covering check that is at least as strong as any of them.
 998 // If the optimization succeeds, the simplified (strengthened) range check
 999 // will always succeed.  If it fails, we will deopt, and then give up
1000 // on the optimization.
1001 bool Compile::allow_range_check_smearing() const {
1002   // If this method has already thrown a range-check,
1003   // assume it was because we already tried range smearing
1004   // and it failed.
1005   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1006   return !already_trapped;
1007 }
1008 
1009 
1010 //------------------------------flatten_alias_type-----------------------------
1011 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1012   int offset = tj->offset();
1013   TypePtr::PTR ptr = tj->ptr();
1014 
1015   // Known instance (scalarizable allocation) alias only with itself.
1016   bool is_known_inst = tj->isa_oopptr() != NULL &&
1017                        tj->is_oopptr()->is_known_instance();
1018 
1019   // Process weird unsafe references.
1020   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1021     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1022     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1023     tj = TypeOopPtr::BOTTOM;
1024     ptr = tj->ptr();
1025     offset = tj->offset();
1026   }
1027 
1028   // Array pointers need some flattening
1029   const TypeAryPtr *ta = tj->isa_aryptr();
1030   if( ta && is_known_inst ) {
1031     if ( offset != Type::OffsetBot &&
1032          offset > arrayOopDesc::length_offset_in_bytes() ) {
1033       offset = Type::OffsetBot; // Flatten constant access into array body only
1034       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1035     }
1036   } else if( ta && _AliasLevel >= 2 ) {
1037     // For arrays indexed by constant indices, we flatten the alias
1038     // space to include all of the array body.  Only the header, klass
1039     // and array length can be accessed un-aliased.
1040     if( offset != Type::OffsetBot ) {
1041       if( ta->const_oop() ) { // methodDataOop or methodOop
1042         offset = Type::OffsetBot;   // Flatten constant access into array body
1043         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1044       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1045         // range is OK as-is.
1046         tj = ta = TypeAryPtr::RANGE;
1047       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1048         tj = TypeInstPtr::KLASS; // all klass loads look alike
1049         ta = TypeAryPtr::RANGE; // generic ignored junk
1050         ptr = TypePtr::BotPTR;
1051       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1052         tj = TypeInstPtr::MARK;
1053         ta = TypeAryPtr::RANGE; // generic ignored junk
1054         ptr = TypePtr::BotPTR;
1055       } else {                  // Random constant offset into array body
1056         offset = Type::OffsetBot;   // Flatten constant access into array body
1057         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1058       }
1059     }
1060     // Arrays of fixed size alias with arrays of unknown size.
1061     if (ta->size() != TypeInt::POS) {
1062       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1063       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1064     }
1065     // Arrays of known objects become arrays of unknown objects.
1066     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1067       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1068       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1069     }
1070     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1071       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1072       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1073     }
1074     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1075     // cannot be distinguished by bytecode alone.
1076     if (ta->elem() == TypeInt::BOOL) {
1077       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1078       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1079       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1080     }
1081     // During the 2nd round of IterGVN, NotNull castings are removed.
1082     // Make sure the Bottom and NotNull variants alias the same.
1083     // Also, make sure exact and non-exact variants alias the same.
1084     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1085       if (ta->const_oop()) {
1086         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1087       } else {
1088         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1089       }
1090     }
1091   }
1092 
1093   // Oop pointers need some flattening
1094   const TypeInstPtr *to = tj->isa_instptr();
1095   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1096     if( ptr == TypePtr::Constant ) {
1097       // No constant oop pointers (such as Strings); they alias with
1098       // unknown strings.
1099       assert(!is_known_inst, "not scalarizable allocation");
1100       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1101     } else if( is_known_inst ) {
1102       tj = to; // Keep NotNull and klass_is_exact for instance type
1103     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1104       // During the 2nd round of IterGVN, NotNull castings are removed.
1105       // Make sure the Bottom and NotNull variants alias the same.
1106       // Also, make sure exact and non-exact variants alias the same.
1107       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1108     }
1109     // Canonicalize the holder of this field
1110     ciInstanceKlass *k = to->klass()->as_instance_klass();
1111     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1112       // First handle header references such as a LoadKlassNode, even if the
1113       // object's klass is unloaded at compile time (4965979).
1114       if (!is_known_inst) { // Do it only for non-instance types
1115         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1116       }
1117     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1118       to = NULL;
1119       tj = TypeOopPtr::BOTTOM;
1120       offset = tj->offset();
1121     } else {
1122       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1123       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1124         if( is_known_inst ) {
1125           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1126         } else {
1127           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1128         }
1129       }
1130     }
1131   }
1132 
1133   // Klass pointers to object array klasses need some flattening
1134   const TypeKlassPtr *tk = tj->isa_klassptr();
1135   if( tk ) {
1136     // If we are referencing a field within a Klass, we need
1137     // to assume the worst case of an Object.  Both exact and
1138     // inexact types must flatten to the same alias class.
1139     // Since the flattened result for a klass is defined to be
1140     // precisely java.lang.Object, use a constant ptr.
1141     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1142 
1143       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1144                                    TypeKlassPtr::OBJECT->klass(),
1145                                    offset);
1146     }
1147 
1148     ciKlass* klass = tk->klass();
1149     if( klass->is_obj_array_klass() ) {
1150       ciKlass* k = TypeAryPtr::OOPS->klass();
1151       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1152         k = TypeInstPtr::BOTTOM->klass();
1153       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1154     }
1155 
1156     // Check for precise loads from the primary supertype array and force them
1157     // to the supertype cache alias index.  Check for generic array loads from
1158     // the primary supertype array and also force them to the supertype cache
1159     // alias index.  Since the same load can reach both, we need to merge
1160     // these 2 disparate memories into the same alias class.  Since the
1161     // primary supertype array is read-only, there's no chance of confusion
1162     // where we bypass an array load and an array store.
1163     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1164     if( offset == Type::OffsetBot ||
1165         off2 < Klass::primary_super_limit()*wordSize ) {
1166       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1167       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1168     }
1169   }
1170 
1171   // Flatten all Raw pointers together.
1172   if (tj->base() == Type::RawPtr)
1173     tj = TypeRawPtr::BOTTOM;
1174 
1175   if (tj->base() == Type::AnyPtr)
1176     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1177 
1178   // Flatten all to bottom for now
1179   switch( _AliasLevel ) {
1180   case 0:
1181     tj = TypePtr::BOTTOM;
1182     break;
1183   case 1:                       // Flatten to: oop, static, field or array
1184     switch (tj->base()) {
1185     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1186     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1187     case Type::AryPtr:   // do not distinguish arrays at all
1188     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1189     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1190     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1191     default: ShouldNotReachHere();
1192     }
1193     break;
1194   case 2:                       // No collapsing at level 2; keep all splits
1195   case 3:                       // No collapsing at level 3; keep all splits
1196     break;
1197   default:
1198     Unimplemented();
1199   }
1200 
1201   offset = tj->offset();
1202   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1203 
1204   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1205           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1206           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1207           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1208           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1209           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1210           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1211           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1212   assert( tj->ptr() != TypePtr::TopPTR &&
1213           tj->ptr() != TypePtr::AnyNull &&
1214           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1215 //    assert( tj->ptr() != TypePtr::Constant ||
1216 //            tj->base() == Type::RawPtr ||
1217 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1218 
1219   return tj;
1220 }
1221 
1222 void Compile::AliasType::Init(int i, const TypePtr* at) {
1223   _index = i;
1224   _adr_type = at;
1225   _field = NULL;
1226   _is_rewritable = true; // default
1227   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1228   if (atoop != NULL && atoop->is_known_instance()) {
1229     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1230     _general_index = Compile::current()->get_alias_index(gt);
1231   } else {
1232     _general_index = 0;
1233   }
1234 }
1235 
1236 //---------------------------------print_on------------------------------------
1237 #ifndef PRODUCT
1238 void Compile::AliasType::print_on(outputStream* st) {
1239   if (index() < 10)
1240         st->print("@ <%d> ", index());
1241   else  st->print("@ <%d>",  index());
1242   st->print(is_rewritable() ? "   " : " RO");
1243   int offset = adr_type()->offset();
1244   if (offset == Type::OffsetBot)
1245         st->print(" +any");
1246   else  st->print(" +%-3d", offset);
1247   st->print(" in ");
1248   adr_type()->dump_on(st);
1249   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1250   if (field() != NULL && tjp) {
1251     if (tjp->klass()  != field()->holder() ||
1252         tjp->offset() != field()->offset_in_bytes()) {
1253       st->print(" != ");
1254       field()->print();
1255       st->print(" ***");
1256     }
1257   }
1258 }
1259 
1260 void print_alias_types() {
1261   Compile* C = Compile::current();
1262   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1263   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1264     C->alias_type(idx)->print_on(tty);
1265     tty->cr();
1266   }
1267 }
1268 #endif
1269 
1270 
1271 //----------------------------probe_alias_cache--------------------------------
1272 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1273   intptr_t key = (intptr_t) adr_type;
1274   key ^= key >> logAliasCacheSize;
1275   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1276 }
1277 
1278 
1279 //-----------------------------grow_alias_types--------------------------------
1280 void Compile::grow_alias_types() {
1281   const int old_ats  = _max_alias_types; // how many before?
1282   const int new_ats  = old_ats;          // how many more?
1283   const int grow_ats = old_ats+new_ats;  // how many now?
1284   _max_alias_types = grow_ats;
1285   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1286   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1287   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1288   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1289 }
1290 
1291 
1292 //--------------------------------find_alias_type------------------------------
1293 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1294   if (_AliasLevel == 0)
1295     return alias_type(AliasIdxBot);
1296 
1297   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1298   if (ace->_adr_type == adr_type) {
1299     return alias_type(ace->_index);
1300   }
1301 
1302   // Handle special cases.
1303   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1304   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1305 
1306   // Do it the slow way.
1307   const TypePtr* flat = flatten_alias_type(adr_type);
1308 
1309 #ifdef ASSERT
1310   assert(flat == flatten_alias_type(flat), "idempotent");
1311   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1312   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1313     const TypeOopPtr* foop = flat->is_oopptr();
1314     // Scalarizable allocations have exact klass always.
1315     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1316     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1317     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1318   }
1319   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1320 #endif
1321 
1322   int idx = AliasIdxTop;
1323   for (int i = 0; i < num_alias_types(); i++) {
1324     if (alias_type(i)->adr_type() == flat) {
1325       idx = i;
1326       break;
1327     }
1328   }
1329 
1330   if (idx == AliasIdxTop) {
1331     if (no_create)  return NULL;
1332     // Grow the array if necessary.
1333     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1334     // Add a new alias type.
1335     idx = _num_alias_types++;
1336     _alias_types[idx]->Init(idx, flat);
1337     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1338     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1339     if (flat->isa_instptr()) {
1340       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1341           && flat->is_instptr()->klass() == env()->Class_klass())
1342         alias_type(idx)->set_rewritable(false);
1343     }
1344     if (flat->isa_klassptr()) {
1345       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1346         alias_type(idx)->set_rewritable(false);
1347       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1348         alias_type(idx)->set_rewritable(false);
1349       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1350         alias_type(idx)->set_rewritable(false);
1351       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1352         alias_type(idx)->set_rewritable(false);
1353     }
1354     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1355     // but the base pointer type is not distinctive enough to identify
1356     // references into JavaThread.)
1357 
1358     // Check for final instance fields.
1359     const TypeInstPtr* tinst = flat->isa_instptr();
1360     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1361       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1362       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1363       // Set field() and is_rewritable() attributes.
1364       if (field != NULL)  alias_type(idx)->set_field(field);
1365     }
1366     const TypeKlassPtr* tklass = flat->isa_klassptr();
1367     // Check for final static fields.
1368     if (tklass && tklass->klass()->is_instance_klass()) {
1369       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1370       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1371       // Set field() and is_rewritable() attributes.
1372       if (field != NULL)   alias_type(idx)->set_field(field);
1373     }
1374   }
1375 
1376   // Fill the cache for next time.
1377   ace->_adr_type = adr_type;
1378   ace->_index    = idx;
1379   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1380 
1381   // Might as well try to fill the cache for the flattened version, too.
1382   AliasCacheEntry* face = probe_alias_cache(flat);
1383   if (face->_adr_type == NULL) {
1384     face->_adr_type = flat;
1385     face->_index    = idx;
1386     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1387   }
1388 
1389   return alias_type(idx);
1390 }
1391 
1392 
1393 Compile::AliasType* Compile::alias_type(ciField* field) {
1394   const TypeOopPtr* t;
1395   if (field->is_static())
1396     t = TypeKlassPtr::make(field->holder());
1397   else
1398     t = TypeOopPtr::make_from_klass_raw(field->holder());
1399   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1400   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1401   return atp;
1402 }
1403 
1404 
1405 //------------------------------have_alias_type--------------------------------
1406 bool Compile::have_alias_type(const TypePtr* adr_type) {
1407   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1408   if (ace->_adr_type == adr_type) {
1409     return true;
1410   }
1411 
1412   // Handle special cases.
1413   if (adr_type == NULL)             return true;
1414   if (adr_type == TypePtr::BOTTOM)  return true;
1415 
1416   return find_alias_type(adr_type, true) != NULL;
1417 }
1418 
1419 //-----------------------------must_alias--------------------------------------
1420 // True if all values of the given address type are in the given alias category.
1421 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1422   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1423   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1424   if (alias_idx == AliasIdxTop)         return false; // the empty category
1425   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1426 
1427   // the only remaining possible overlap is identity
1428   int adr_idx = get_alias_index(adr_type);
1429   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1430   assert(adr_idx == alias_idx ||
1431          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1432           && adr_type                       != TypeOopPtr::BOTTOM),
1433          "should not be testing for overlap with an unsafe pointer");
1434   return adr_idx == alias_idx;
1435 }
1436 
1437 //------------------------------can_alias--------------------------------------
1438 // True if any values of the given address type are in the given alias category.
1439 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1440   if (alias_idx == AliasIdxTop)         return false; // the empty category
1441   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1442   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1443   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1444 
1445   // the only remaining possible overlap is identity
1446   int adr_idx = get_alias_index(adr_type);
1447   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1448   return adr_idx == alias_idx;
1449 }
1450 
1451 
1452 
1453 //---------------------------pop_warm_call-------------------------------------
1454 WarmCallInfo* Compile::pop_warm_call() {
1455   WarmCallInfo* wci = _warm_calls;
1456   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1457   return wci;
1458 }
1459 
1460 //----------------------------Inline_Warm--------------------------------------
1461 int Compile::Inline_Warm() {
1462   // If there is room, try to inline some more warm call sites.
1463   // %%% Do a graph index compaction pass when we think we're out of space?
1464   if (!InlineWarmCalls)  return 0;
1465 
1466   int calls_made_hot = 0;
1467   int room_to_grow   = NodeCountInliningCutoff - unique();
1468   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1469   int amount_grown   = 0;
1470   WarmCallInfo* call;
1471   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1472     int est_size = (int)call->size();
1473     if (est_size > (room_to_grow - amount_grown)) {
1474       // This one won't fit anyway.  Get rid of it.
1475       call->make_cold();
1476       continue;
1477     }
1478     call->make_hot();
1479     calls_made_hot++;
1480     amount_grown   += est_size;
1481     amount_to_grow -= est_size;
1482   }
1483 
1484   if (calls_made_hot > 0)  set_major_progress();
1485   return calls_made_hot;
1486 }
1487 
1488 
1489 //----------------------------Finish_Warm--------------------------------------
1490 void Compile::Finish_Warm() {
1491   if (!InlineWarmCalls)  return;
1492   if (failing())  return;
1493   if (warm_calls() == NULL)  return;
1494 
1495   // Clean up loose ends, if we are out of space for inlining.
1496   WarmCallInfo* call;
1497   while ((call = pop_warm_call()) != NULL) {
1498     call->make_cold();
1499   }
1500 }
1501 
1502 
1503 //------------------------------Optimize---------------------------------------
1504 // Given a graph, optimize it.
1505 void Compile::Optimize() {
1506   TracePhase t1("optimizer", &_t_optimizer, true);
1507 
1508 #ifndef PRODUCT
1509   if (env()->break_at_compile()) {
1510     BREAKPOINT;
1511   }
1512 
1513 #endif
1514 
1515   ResourceMark rm;
1516   int          loop_opts_cnt;
1517 
1518   NOT_PRODUCT( verify_graph_edges(); )
1519 
1520   print_method("After Parsing");
1521 
1522  {
1523   // Iterative Global Value Numbering, including ideal transforms
1524   // Initialize IterGVN with types and values from parse-time GVN
1525   PhaseIterGVN igvn(initial_gvn());
1526   {
1527     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1528     igvn.optimize();
1529   }
1530 
1531   print_method("Iter GVN 1", 2);
1532 
1533   if (failing())  return;
1534 
1535   // Loop transforms on the ideal graph.  Range Check Elimination,
1536   // peeling, unrolling, etc.
1537 
1538   // Set loop opts counter
1539   loop_opts_cnt = num_loop_opts();
1540   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1541     {
1542       TracePhase t2("idealLoop", &_t_idealLoop, true);
1543       PhaseIdealLoop ideal_loop( igvn, NULL, true );
1544       loop_opts_cnt--;
1545       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1546       if (failing())  return;
1547     }
1548     // Loop opts pass if partial peeling occurred in previous pass
1549     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1550       TracePhase t3("idealLoop", &_t_idealLoop, true);
1551       PhaseIdealLoop ideal_loop( igvn, NULL, false );
1552       loop_opts_cnt--;
1553       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1554       if (failing())  return;
1555     }
1556     // Loop opts pass for loop-unrolling before CCP
1557     if(major_progress() && (loop_opts_cnt > 0)) {
1558       TracePhase t4("idealLoop", &_t_idealLoop, true);
1559       PhaseIdealLoop ideal_loop( igvn, NULL, false );
1560       loop_opts_cnt--;
1561       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1562     }
1563   }
1564   if (failing())  return;
1565 
1566   // Conditional Constant Propagation;
1567   PhaseCCP ccp( &igvn );
1568   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1569   {
1570     TracePhase t2("ccp", &_t_ccp, true);
1571     ccp.do_transform();
1572   }
1573   print_method("PhaseCPP 1", 2);
1574 
1575   assert( true, "Break here to ccp.dump_old2new_map()");
1576 
1577   // Iterative Global Value Numbering, including ideal transforms
1578   {
1579     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1580     igvn = ccp;
1581     igvn.optimize();
1582   }
1583 
1584   print_method("Iter GVN 2", 2);
1585 
1586   if (failing())  return;
1587 
1588   // Loop transforms on the ideal graph.  Range Check Elimination,
1589   // peeling, unrolling, etc.
1590   if(loop_opts_cnt > 0) {
1591     debug_only( int cnt = 0; );
1592     while(major_progress() && (loop_opts_cnt > 0)) {
1593       TracePhase t2("idealLoop", &_t_idealLoop, true);
1594       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1595       PhaseIdealLoop ideal_loop( igvn, NULL, true );
1596       loop_opts_cnt--;
1597       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1598       if (failing())  return;
1599     }
1600   }
1601   {
1602     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1603     PhaseMacroExpand  mex(igvn);
1604     if (mex.expand_macro_nodes()) {
1605       assert(failing(), "must bail out w/ explicit message");
1606       return;
1607     }
1608   }
1609 
1610  } // (End scope of igvn; run destructor if necessary for asserts.)
1611 
1612   // A method with only infinite loops has no edges entering loops from root
1613   {
1614     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1615     if (final_graph_reshaping()) {
1616       assert(failing(), "must bail out w/ explicit message");
1617       return;
1618     }
1619   }
1620 
1621   print_method("Optimize finished", 2);
1622 }
1623 
1624 
1625 //------------------------------Code_Gen---------------------------------------
1626 // Given a graph, generate code for it
1627 void Compile::Code_Gen() {
1628   if (failing())  return;
1629 
1630   // Perform instruction selection.  You might think we could reclaim Matcher
1631   // memory PDQ, but actually the Matcher is used in generating spill code.
1632   // Internals of the Matcher (including some VectorSets) must remain live
1633   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1634   // set a bit in reclaimed memory.
1635 
1636   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1637   // nodes.  Mapping is only valid at the root of each matched subtree.
1638   NOT_PRODUCT( verify_graph_edges(); )
1639 
1640   Node_List proj_list;
1641   Matcher m(proj_list);
1642   _matcher = &m;
1643   {
1644     TracePhase t2("matcher", &_t_matcher, true);
1645     m.match();
1646   }
1647   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1648   // nodes.  Mapping is only valid at the root of each matched subtree.
1649   NOT_PRODUCT( verify_graph_edges(); )
1650 
1651   // If you have too many nodes, or if matching has failed, bail out
1652   check_node_count(0, "out of nodes matching instructions");
1653   if (failing())  return;
1654 
1655   // Build a proper-looking CFG
1656   PhaseCFG cfg(node_arena(), root(), m);
1657   _cfg = &cfg;
1658   {
1659     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1660     cfg.Dominators();
1661     if (failing())  return;
1662 
1663     NOT_PRODUCT( verify_graph_edges(); )
1664 
1665     cfg.Estimate_Block_Frequency();
1666     cfg.GlobalCodeMotion(m,unique(),proj_list);
1667 
1668     print_method("Global code motion", 2);
1669 
1670     if (failing())  return;
1671     NOT_PRODUCT( verify_graph_edges(); )
1672 
1673     debug_only( cfg.verify(); )
1674   }
1675   NOT_PRODUCT( verify_graph_edges(); )
1676 
1677   PhaseChaitin regalloc(unique(),cfg,m);
1678   _regalloc = &regalloc;
1679   {
1680     TracePhase t2("regalloc", &_t_registerAllocation, true);
1681     // Perform any platform dependent preallocation actions.  This is used,
1682     // for example, to avoid taking an implicit null pointer exception
1683     // using the frame pointer on win95.
1684     _regalloc->pd_preallocate_hook();
1685 
1686     // Perform register allocation.  After Chaitin, use-def chains are
1687     // no longer accurate (at spill code) and so must be ignored.
1688     // Node->LRG->reg mappings are still accurate.
1689     _regalloc->Register_Allocate();
1690 
1691     // Bail out if the allocator builds too many nodes
1692     if (failing())  return;
1693   }
1694 
1695   // Prior to register allocation we kept empty basic blocks in case the
1696   // the allocator needed a place to spill.  After register allocation we
1697   // are not adding any new instructions.  If any basic block is empty, we
1698   // can now safely remove it.
1699   {
1700     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1701     cfg.remove_empty();
1702     if (do_freq_based_layout()) {
1703       PhaseBlockLayout layout(cfg);
1704     } else {
1705       cfg.set_loop_alignment();
1706     }
1707     cfg.fixup_flow();
1708   }
1709 
1710   // Perform any platform dependent postallocation verifications.
1711   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1712 
1713   // Apply peephole optimizations
1714   if( OptoPeephole ) {
1715     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1716     PhasePeephole peep( _regalloc, cfg);
1717     peep.do_transform();
1718   }
1719 
1720   // Convert Nodes to instruction bits in a buffer
1721   {
1722     // %%%% workspace merge brought two timers together for one job
1723     TracePhase t2a("output", &_t_output, true);
1724     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1725     Output();
1726   }
1727 
1728   print_method("Final Code");
1729 
1730   // He's dead, Jim.
1731   _cfg     = (PhaseCFG*)0xdeadbeef;
1732   _regalloc = (PhaseChaitin*)0xdeadbeef;
1733 }
1734 
1735 
1736 //------------------------------dump_asm---------------------------------------
1737 // Dump formatted assembly
1738 #ifndef PRODUCT
1739 void Compile::dump_asm(int *pcs, uint pc_limit) {
1740   bool cut_short = false;
1741   tty->print_cr("#");
1742   tty->print("#  ");  _tf->dump();  tty->cr();
1743   tty->print_cr("#");
1744 
1745   // For all blocks
1746   int pc = 0x0;                 // Program counter
1747   char starts_bundle = ' ';
1748   _regalloc->dump_frame();
1749 
1750   Node *n = NULL;
1751   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1752     if (VMThread::should_terminate()) { cut_short = true; break; }
1753     Block *b = _cfg->_blocks[i];
1754     if (b->is_connector() && !Verbose) continue;
1755     n = b->_nodes[0];
1756     if (pcs && n->_idx < pc_limit)
1757       tty->print("%3.3x   ", pcs[n->_idx]);
1758     else
1759       tty->print("      ");
1760     b->dump_head( &_cfg->_bbs );
1761     if (b->is_connector()) {
1762       tty->print_cr("        # Empty connector block");
1763     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1764       tty->print_cr("        # Block is sole successor of call");
1765     }
1766 
1767     // For all instructions
1768     Node *delay = NULL;
1769     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1770       if (VMThread::should_terminate()) { cut_short = true; break; }
1771       n = b->_nodes[j];
1772       if (valid_bundle_info(n)) {
1773         Bundle *bundle = node_bundling(n);
1774         if (bundle->used_in_unconditional_delay()) {
1775           delay = n;
1776           continue;
1777         }
1778         if (bundle->starts_bundle())
1779           starts_bundle = '+';
1780       }
1781 
1782       if (WizardMode) n->dump();
1783 
1784       if( !n->is_Region() &&    // Dont print in the Assembly
1785           !n->is_Phi() &&       // a few noisely useless nodes
1786           !n->is_Proj() &&
1787           !n->is_MachTemp() &&
1788           !n->is_Catch() &&     // Would be nice to print exception table targets
1789           !n->is_MergeMem() &&  // Not very interesting
1790           !n->is_top() &&       // Debug info table constants
1791           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1792           ) {
1793         if (pcs && n->_idx < pc_limit)
1794           tty->print("%3.3x", pcs[n->_idx]);
1795         else
1796           tty->print("   ");
1797         tty->print(" %c ", starts_bundle);
1798         starts_bundle = ' ';
1799         tty->print("\t");
1800         n->format(_regalloc, tty);
1801         tty->cr();
1802       }
1803 
1804       // If we have an instruction with a delay slot, and have seen a delay,
1805       // then back up and print it
1806       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1807         assert(delay != NULL, "no unconditional delay instruction");
1808         if (WizardMode) delay->dump();
1809 
1810         if (node_bundling(delay)->starts_bundle())
1811           starts_bundle = '+';
1812         if (pcs && n->_idx < pc_limit)
1813           tty->print("%3.3x", pcs[n->_idx]);
1814         else
1815           tty->print("   ");
1816         tty->print(" %c ", starts_bundle);
1817         starts_bundle = ' ';
1818         tty->print("\t");
1819         delay->format(_regalloc, tty);
1820         tty->print_cr("");
1821         delay = NULL;
1822       }
1823 
1824       // Dump the exception table as well
1825       if( n->is_Catch() && (Verbose || WizardMode) ) {
1826         // Print the exception table for this offset
1827         _handler_table.print_subtable_for(pc);
1828       }
1829     }
1830 
1831     if (pcs && n->_idx < pc_limit)
1832       tty->print_cr("%3.3x", pcs[n->_idx]);
1833     else
1834       tty->print_cr("");
1835 
1836     assert(cut_short || delay == NULL, "no unconditional delay branch");
1837 
1838   } // End of per-block dump
1839   tty->print_cr("");
1840 
1841   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1842 }
1843 #endif
1844 
1845 //------------------------------Final_Reshape_Counts---------------------------
1846 // This class defines counters to help identify when a method
1847 // may/must be executed using hardware with only 24-bit precision.
1848 struct Final_Reshape_Counts : public StackObj {
1849   int  _call_count;             // count non-inlined 'common' calls
1850   int  _float_count;            // count float ops requiring 24-bit precision
1851   int  _double_count;           // count double ops requiring more precision
1852   int  _java_call_count;        // count non-inlined 'java' calls
1853   VectorSet _visited;           // Visitation flags
1854   Node_List _tests;             // Set of IfNodes & PCTableNodes
1855 
1856   Final_Reshape_Counts() :
1857     _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
1858     _visited( Thread::current()->resource_area() ) { }
1859 
1860   void inc_call_count  () { _call_count  ++; }
1861   void inc_float_count () { _float_count ++; }
1862   void inc_double_count() { _double_count++; }
1863   void inc_java_call_count() { _java_call_count++; }
1864 
1865   int  get_call_count  () const { return _call_count  ; }
1866   int  get_float_count () const { return _float_count ; }
1867   int  get_double_count() const { return _double_count; }
1868   int  get_java_call_count() const { return _java_call_count; }
1869 };
1870 
1871 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1872   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1873   // Make sure the offset goes inside the instance layout.
1874   return k->contains_field_offset(tp->offset());
1875   // Note that OffsetBot and OffsetTop are very negative.
1876 }
1877 
1878 //------------------------------final_graph_reshaping_impl----------------------
1879 // Implement items 1-5 from final_graph_reshaping below.
1880 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
1881 
1882   if ( n->outcnt() == 0 ) return; // dead node
1883   uint nop = n->Opcode();
1884 
1885   // Check for 2-input instruction with "last use" on right input.
1886   // Swap to left input.  Implements item (2).
1887   if( n->req() == 3 &&          // two-input instruction
1888       n->in(1)->outcnt() > 1 && // left use is NOT a last use
1889       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1890       n->in(2)->outcnt() == 1 &&// right use IS a last use
1891       !n->in(2)->is_Con() ) {   // right use is not a constant
1892     // Check for commutative opcode
1893     switch( nop ) {
1894     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1895     case Op_MaxI:  case Op_MinI:
1896     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1897     case Op_AndL:  case Op_XorL:  case Op_OrL:
1898     case Op_AndI:  case Op_XorI:  case Op_OrI: {
1899       // Move "last use" input to left by swapping inputs
1900       n->swap_edges(1, 2);
1901       break;
1902     }
1903     default:
1904       break;
1905     }
1906   }
1907 
1908   // Count FPU ops and common calls, implements item (3)
1909   switch( nop ) {
1910   // Count all float operations that may use FPU
1911   case Op_AddF:
1912   case Op_SubF:
1913   case Op_MulF:
1914   case Op_DivF:
1915   case Op_NegF:
1916   case Op_ModF:
1917   case Op_ConvI2F:
1918   case Op_ConF:
1919   case Op_CmpF:
1920   case Op_CmpF3:
1921   // case Op_ConvL2F: // longs are split into 32-bit halves
1922     fpu.inc_float_count();
1923     break;
1924 
1925   case Op_ConvF2D:
1926   case Op_ConvD2F:
1927     fpu.inc_float_count();
1928     fpu.inc_double_count();
1929     break;
1930 
1931   // Count all double operations that may use FPU
1932   case Op_AddD:
1933   case Op_SubD:
1934   case Op_MulD:
1935   case Op_DivD:
1936   case Op_NegD:
1937   case Op_ModD:
1938   case Op_ConvI2D:
1939   case Op_ConvD2I:
1940   // case Op_ConvL2D: // handled by leaf call
1941   // case Op_ConvD2L: // handled by leaf call
1942   case Op_ConD:
1943   case Op_CmpD:
1944   case Op_CmpD3:
1945     fpu.inc_double_count();
1946     break;
1947   case Op_Opaque1:              // Remove Opaque Nodes before matching
1948   case Op_Opaque2:              // Remove Opaque Nodes before matching
1949     n->subsume_by(n->in(1));
1950     break;
1951   case Op_CallStaticJava:
1952   case Op_CallJava:
1953   case Op_CallDynamicJava:
1954     fpu.inc_java_call_count(); // Count java call site;
1955   case Op_CallRuntime:
1956   case Op_CallLeaf:
1957   case Op_CallLeafNoFP: {
1958     assert( n->is_Call(), "" );
1959     CallNode *call = n->as_Call();
1960     // Count call sites where the FP mode bit would have to be flipped.
1961     // Do not count uncommon runtime calls:
1962     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
1963     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
1964     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
1965       fpu.inc_call_count();   // Count the call site
1966     } else {                  // See if uncommon argument is shared
1967       Node *n = call->in(TypeFunc::Parms);
1968       int nop = n->Opcode();
1969       // Clone shared simple arguments to uncommon calls, item (1).
1970       if( n->outcnt() > 1 &&
1971           !n->is_Proj() &&
1972           nop != Op_CreateEx &&
1973           nop != Op_CheckCastPP &&
1974           nop != Op_DecodeN &&
1975           !n->is_Mem() ) {
1976         Node *x = n->clone();
1977         call->set_req( TypeFunc::Parms, x );
1978       }
1979     }
1980     break;
1981   }
1982 
1983   case Op_StoreD:
1984   case Op_LoadD:
1985   case Op_LoadD_unaligned:
1986     fpu.inc_double_count();
1987     goto handle_mem;
1988   case Op_StoreF:
1989   case Op_LoadF:
1990     fpu.inc_float_count();
1991     goto handle_mem;
1992 
1993   case Op_StoreB:
1994   case Op_StoreC:
1995   case Op_StoreCM:
1996   case Op_StorePConditional:
1997   case Op_StoreI:
1998   case Op_StoreL:
1999   case Op_StoreIConditional:
2000   case Op_StoreLConditional:
2001   case Op_CompareAndSwapI:
2002   case Op_CompareAndSwapL:
2003   case Op_CompareAndSwapP:
2004   case Op_CompareAndSwapN:
2005   case Op_StoreP:
2006   case Op_StoreN:
2007   case Op_LoadB:
2008   case Op_LoadUB:
2009   case Op_LoadUS:
2010   case Op_LoadI:
2011   case Op_LoadUI2L:
2012   case Op_LoadKlass:
2013   case Op_LoadNKlass:
2014   case Op_LoadL:
2015   case Op_LoadL_unaligned:
2016   case Op_LoadPLocked:
2017   case Op_LoadLLocked:
2018   case Op_LoadP:
2019   case Op_LoadN:
2020   case Op_LoadRange:
2021   case Op_LoadS: {
2022   handle_mem:
2023 #ifdef ASSERT
2024     if( VerifyOptoOopOffsets ) {
2025       assert( n->is_Mem(), "" );
2026       MemNode *mem  = (MemNode*)n;
2027       // Check to see if address types have grounded out somehow.
2028       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2029       assert( !tp || oop_offset_is_sane(tp), "" );
2030     }
2031 #endif
2032     break;
2033   }
2034 
2035   case Op_AddP: {               // Assert sane base pointers
2036     Node *addp = n->in(AddPNode::Address);
2037     assert( !addp->is_AddP() ||
2038             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2039             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2040             "Base pointers must match" );
2041 #ifdef _LP64
2042     if (UseCompressedOops &&
2043         addp->Opcode() == Op_ConP &&
2044         addp == n->in(AddPNode::Base) &&
2045         n->in(AddPNode::Offset)->is_Con()) {
2046       // Use addressing with narrow klass to load with offset on x86.
2047       // On sparc loading 32-bits constant and decoding it have less
2048       // instructions (4) then load 64-bits constant (7).
2049       // Do this transformation here since IGVN will convert ConN back to ConP.
2050       const Type* t = addp->bottom_type();
2051       if (t->isa_oopptr()) {
2052         Node* nn = NULL;
2053 
2054         // Look for existing ConN node of the same exact type.
2055         Compile* C = Compile::current();
2056         Node* r  = C->root();
2057         uint cnt = r->outcnt();
2058         for (uint i = 0; i < cnt; i++) {
2059           Node* m = r->raw_out(i);
2060           if (m!= NULL && m->Opcode() == Op_ConN &&
2061               m->bottom_type()->make_ptr() == t) {
2062             nn = m;
2063             break;
2064           }
2065         }
2066         if (nn != NULL) {
2067           // Decode a narrow oop to match address
2068           // [R12 + narrow_oop_reg<<3 + offset]
2069           nn = new (C,  2) DecodeNNode(nn, t);
2070           n->set_req(AddPNode::Base, nn);
2071           n->set_req(AddPNode::Address, nn);
2072           if (addp->outcnt() == 0) {
2073             addp->disconnect_inputs(NULL);
2074           }
2075         }
2076       }
2077     }
2078 #endif
2079     break;
2080   }
2081 
2082 #ifdef _LP64
2083   case Op_CastPP:
2084     if (n->in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks()) {
2085       Compile* C = Compile::current();
2086       Node* in1 = n->in(1);
2087       const Type* t = n->bottom_type();
2088       Node* new_in1 = in1->clone();
2089       new_in1->as_DecodeN()->set_type(t);
2090 
2091       if (!Matcher::clone_shift_expressions) {
2092         //
2093         // x86, ARM and friends can handle 2 adds in addressing mode
2094         // and Matcher can fold a DecodeN node into address by using
2095         // a narrow oop directly and do implicit NULL check in address:
2096         //
2097         // [R12 + narrow_oop_reg<<3 + offset]
2098         // NullCheck narrow_oop_reg
2099         //
2100         // On other platforms (Sparc) we have to keep new DecodeN node and
2101         // use it to do implicit NULL check in address:
2102         //
2103         // decode_not_null narrow_oop_reg, base_reg
2104         // [base_reg + offset]
2105         // NullCheck base_reg
2106         //
2107         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2108         // to keep the information to which NULL check the new DecodeN node
2109         // corresponds to use it as value in implicit_null_check().
2110         //
2111         new_in1->set_req(0, n->in(0));
2112       }
2113 
2114       n->subsume_by(new_in1);
2115       if (in1->outcnt() == 0) {
2116         in1->disconnect_inputs(NULL);
2117       }
2118     }
2119     break;
2120 
2121   case Op_CmpP:
2122     // Do this transformation here to preserve CmpPNode::sub() and
2123     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2124     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2125       Node* in1 = n->in(1);
2126       Node* in2 = n->in(2);
2127       if (!in1->is_DecodeN()) {
2128         in2 = in1;
2129         in1 = n->in(2);
2130       }
2131       assert(in1->is_DecodeN(), "sanity");
2132 
2133       Compile* C = Compile::current();
2134       Node* new_in2 = NULL;
2135       if (in2->is_DecodeN()) {
2136         new_in2 = in2->in(1);
2137       } else if (in2->Opcode() == Op_ConP) {
2138         const Type* t = in2->bottom_type();
2139         if (t == TypePtr::NULL_PTR && Universe::narrow_oop_use_implicit_null_checks()) {
2140           new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2141           //
2142           // This transformation together with CastPP transformation above
2143           // will generated code for implicit NULL checks for compressed oops.
2144           //
2145           // The original code after Optimize()
2146           //
2147           //    LoadN memory, narrow_oop_reg
2148           //    decode narrow_oop_reg, base_reg
2149           //    CmpP base_reg, NULL
2150           //    CastPP base_reg // NotNull
2151           //    Load [base_reg + offset], val_reg
2152           //
2153           // after these transformations will be
2154           //
2155           //    LoadN memory, narrow_oop_reg
2156           //    CmpN narrow_oop_reg, NULL
2157           //    decode_not_null narrow_oop_reg, base_reg
2158           //    Load [base_reg + offset], val_reg
2159           //
2160           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2161           // since narrow oops can be used in debug info now (see the code in
2162           // final_graph_reshaping_walk()).
2163           //
2164           // At the end the code will be matched to
2165           // on x86:
2166           //
2167           //    Load_narrow_oop memory, narrow_oop_reg
2168           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2169           //    NullCheck narrow_oop_reg
2170           //
2171           // and on sparc:
2172           //
2173           //    Load_narrow_oop memory, narrow_oop_reg
2174           //    decode_not_null narrow_oop_reg, base_reg
2175           //    Load [base_reg + offset], val_reg
2176           //    NullCheck base_reg
2177           //
2178         } else if (t->isa_oopptr()) {
2179           new_in2 = ConNode::make(C, t->make_narrowoop());
2180         }
2181       }
2182       if (new_in2 != NULL) {
2183         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2184         n->subsume_by( cmpN );
2185         if (in1->outcnt() == 0) {
2186           in1->disconnect_inputs(NULL);
2187         }
2188         if (in2->outcnt() == 0) {
2189           in2->disconnect_inputs(NULL);
2190         }
2191       }
2192     }
2193     break;
2194 
2195   case Op_DecodeN:
2196     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2197     // DecodeN could be pinned on Sparc where it can't be fold into
2198     // an address expression, see the code for Op_CastPP above.
2199     assert(n->in(0) == NULL || !Matcher::clone_shift_expressions, "no control except on sparc");
2200     break;
2201 
2202   case Op_EncodeP: {
2203     Node* in1 = n->in(1);
2204     if (in1->is_DecodeN()) {
2205       n->subsume_by(in1->in(1));
2206     } else if (in1->Opcode() == Op_ConP) {
2207       Compile* C = Compile::current();
2208       const Type* t = in1->bottom_type();
2209       if (t == TypePtr::NULL_PTR) {
2210         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2211       } else if (t->isa_oopptr()) {
2212         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2213       }
2214     }
2215     if (in1->outcnt() == 0) {
2216       in1->disconnect_inputs(NULL);
2217     }
2218     break;
2219   }
2220 
2221   case Op_Phi:
2222     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2223       // The EncodeP optimization may create Phi with the same edges
2224       // for all paths. It is not handled well by Register Allocator.
2225       Node* unique_in = n->in(1);
2226       assert(unique_in != NULL, "");
2227       uint cnt = n->req();
2228       for (uint i = 2; i < cnt; i++) {
2229         Node* m = n->in(i);
2230         assert(m != NULL, "");
2231         if (unique_in != m)
2232           unique_in = NULL;
2233       }
2234       if (unique_in != NULL) {
2235         n->subsume_by(unique_in);
2236       }
2237     }
2238     break;
2239 
2240 #endif
2241 
2242   case Op_ModI:
2243     if (UseDivMod) {
2244       // Check if a%b and a/b both exist
2245       Node* d = n->find_similar(Op_DivI);
2246       if (d) {
2247         // Replace them with a fused divmod if supported
2248         Compile* C = Compile::current();
2249         if (Matcher::has_match_rule(Op_DivModI)) {
2250           DivModINode* divmod = DivModINode::make(C, n);
2251           d->subsume_by(divmod->div_proj());
2252           n->subsume_by(divmod->mod_proj());
2253         } else {
2254           // replace a%b with a-((a/b)*b)
2255           Node* mult = new (C, 3) MulINode(d, d->in(2));
2256           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2257           n->subsume_by( sub );
2258         }
2259       }
2260     }
2261     break;
2262 
2263   case Op_ModL:
2264     if (UseDivMod) {
2265       // Check if a%b and a/b both exist
2266       Node* d = n->find_similar(Op_DivL);
2267       if (d) {
2268         // Replace them with a fused divmod if supported
2269         Compile* C = Compile::current();
2270         if (Matcher::has_match_rule(Op_DivModL)) {
2271           DivModLNode* divmod = DivModLNode::make(C, n);
2272           d->subsume_by(divmod->div_proj());
2273           n->subsume_by(divmod->mod_proj());
2274         } else {
2275           // replace a%b with a-((a/b)*b)
2276           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2277           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2278           n->subsume_by( sub );
2279         }
2280       }
2281     }
2282     break;
2283 
2284   case Op_Load16B:
2285   case Op_Load8B:
2286   case Op_Load4B:
2287   case Op_Load8S:
2288   case Op_Load4S:
2289   case Op_Load2S:
2290   case Op_Load8C:
2291   case Op_Load4C:
2292   case Op_Load2C:
2293   case Op_Load4I:
2294   case Op_Load2I:
2295   case Op_Load2L:
2296   case Op_Load4F:
2297   case Op_Load2F:
2298   case Op_Load2D:
2299   case Op_Store16B:
2300   case Op_Store8B:
2301   case Op_Store4B:
2302   case Op_Store8C:
2303   case Op_Store4C:
2304   case Op_Store2C:
2305   case Op_Store4I:
2306   case Op_Store2I:
2307   case Op_Store2L:
2308   case Op_Store4F:
2309   case Op_Store2F:
2310   case Op_Store2D:
2311     break;
2312 
2313   case Op_PackB:
2314   case Op_PackS:
2315   case Op_PackC:
2316   case Op_PackI:
2317   case Op_PackF:
2318   case Op_PackL:
2319   case Op_PackD:
2320     if (n->req()-1 > 2) {
2321       // Replace many operand PackNodes with a binary tree for matching
2322       PackNode* p = (PackNode*) n;
2323       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2324       n->subsume_by(btp);
2325     }
2326     break;
2327   default:
2328     assert( !n->is_Call(), "" );
2329     assert( !n->is_Mem(), "" );
2330     break;
2331   }
2332 
2333   // Collect CFG split points
2334   if (n->is_MultiBranch())
2335     fpu._tests.push(n);
2336 }
2337 
2338 //------------------------------final_graph_reshaping_walk---------------------
2339 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2340 // requires that the walk visits a node's inputs before visiting the node.
2341 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
2342   ResourceArea *area = Thread::current()->resource_area();
2343   Unique_Node_List sfpt(area);
2344 
2345   fpu._visited.set(root->_idx); // first, mark node as visited
2346   uint cnt = root->req();
2347   Node *n = root;
2348   uint  i = 0;
2349   while (true) {
2350     if (i < cnt) {
2351       // Place all non-visited non-null inputs onto stack
2352       Node* m = n->in(i);
2353       ++i;
2354       if (m != NULL && !fpu._visited.test_set(m->_idx)) {
2355         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2356           sfpt.push(m);
2357         cnt = m->req();
2358         nstack.push(n, i); // put on stack parent and next input's index
2359         n = m;
2360         i = 0;
2361       }
2362     } else {
2363       // Now do post-visit work
2364       final_graph_reshaping_impl( n, fpu );
2365       if (nstack.is_empty())
2366         break;             // finished
2367       n = nstack.node();   // Get node from stack
2368       cnt = n->req();
2369       i = nstack.index();
2370       nstack.pop();        // Shift to the next node on stack
2371     }
2372   }
2373 
2374   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2375   // It could be done for an uncommon traps or any safepoints/calls
2376   // if the DecodeN node is referenced only in a debug info.
2377   while (sfpt.size() > 0) {
2378     n = sfpt.pop();
2379     JVMState *jvms = n->as_SafePoint()->jvms();
2380     assert(jvms != NULL, "sanity");
2381     int start = jvms->debug_start();
2382     int end   = n->req();
2383     bool is_uncommon = (n->is_CallStaticJava() &&
2384                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2385     for (int j = start; j < end; j++) {
2386       Node* in = n->in(j);
2387       if (in->is_DecodeN()) {
2388         bool safe_to_skip = true;
2389         if (!is_uncommon ) {
2390           // Is it safe to skip?
2391           for (uint i = 0; i < in->outcnt(); i++) {
2392             Node* u = in->raw_out(i);
2393             if (!u->is_SafePoint() ||
2394                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2395               safe_to_skip = false;
2396             }
2397           }
2398         }
2399         if (safe_to_skip) {
2400           n->set_req(j, in->in(1));
2401         }
2402         if (in->outcnt() == 0) {
2403           in->disconnect_inputs(NULL);
2404         }
2405       }
2406     }
2407   }
2408 }
2409 
2410 //------------------------------final_graph_reshaping--------------------------
2411 // Final Graph Reshaping.
2412 //
2413 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2414 //     and not commoned up and forced early.  Must come after regular
2415 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2416 //     inputs to Loop Phis; these will be split by the allocator anyways.
2417 //     Remove Opaque nodes.
2418 // (2) Move last-uses by commutative operations to the left input to encourage
2419 //     Intel update-in-place two-address operations and better register usage
2420 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2421 //     calls canonicalizing them back.
2422 // (3) Count the number of double-precision FP ops, single-precision FP ops
2423 //     and call sites.  On Intel, we can get correct rounding either by
2424 //     forcing singles to memory (requires extra stores and loads after each
2425 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2426 //     clearing the mode bit around call sites).  The mode bit is only used
2427 //     if the relative frequency of single FP ops to calls is low enough.
2428 //     This is a key transform for SPEC mpeg_audio.
2429 // (4) Detect infinite loops; blobs of code reachable from above but not
2430 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2431 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2432 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2433 //     Detection is by looking for IfNodes where only 1 projection is
2434 //     reachable from below or CatchNodes missing some targets.
2435 // (5) Assert for insane oop offsets in debug mode.
2436 
2437 bool Compile::final_graph_reshaping() {
2438   // an infinite loop may have been eliminated by the optimizer,
2439   // in which case the graph will be empty.
2440   if (root()->req() == 1) {
2441     record_method_not_compilable("trivial infinite loop");
2442     return true;
2443   }
2444 
2445   Final_Reshape_Counts fpu;
2446 
2447   // Visit everybody reachable!
2448   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2449   Node_Stack nstack(unique() >> 1);
2450   final_graph_reshaping_walk(nstack, root(), fpu);
2451 
2452   // Check for unreachable (from below) code (i.e., infinite loops).
2453   for( uint i = 0; i < fpu._tests.size(); i++ ) {
2454     MultiBranchNode *n = fpu._tests[i]->as_MultiBranch();
2455     // Get number of CFG targets.
2456     // Note that PCTables include exception targets after calls.
2457     uint required_outcnt = n->required_outcnt();
2458     if (n->outcnt() != required_outcnt) {
2459       // Check for a few special cases.  Rethrow Nodes never take the
2460       // 'fall-thru' path, so expected kids is 1 less.
2461       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2462         if (n->in(0)->in(0)->is_Call()) {
2463           CallNode *call = n->in(0)->in(0)->as_Call();
2464           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2465             required_outcnt--;      // Rethrow always has 1 less kid
2466           } else if (call->req() > TypeFunc::Parms &&
2467                      call->is_CallDynamicJava()) {
2468             // Check for null receiver. In such case, the optimizer has
2469             // detected that the virtual call will always result in a null
2470             // pointer exception. The fall-through projection of this CatchNode
2471             // will not be populated.
2472             Node *arg0 = call->in(TypeFunc::Parms);
2473             if (arg0->is_Type() &&
2474                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2475               required_outcnt--;
2476             }
2477           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2478                      call->req() > TypeFunc::Parms+1 &&
2479                      call->is_CallStaticJava()) {
2480             // Check for negative array length. In such case, the optimizer has
2481             // detected that the allocation attempt will always result in an
2482             // exception. There is no fall-through projection of this CatchNode .
2483             Node *arg1 = call->in(TypeFunc::Parms+1);
2484             if (arg1->is_Type() &&
2485                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2486               required_outcnt--;
2487             }
2488           }
2489         }
2490       }
2491       // Recheck with a better notion of 'required_outcnt'
2492       if (n->outcnt() != required_outcnt) {
2493         record_method_not_compilable("malformed control flow");
2494         return true;            // Not all targets reachable!
2495       }
2496     }
2497     // Check that I actually visited all kids.  Unreached kids
2498     // must be infinite loops.
2499     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2500       if (!fpu._visited.test(n->fast_out(j)->_idx)) {
2501         record_method_not_compilable("infinite loop");
2502         return true;            // Found unvisited kid; must be unreach
2503       }
2504   }
2505 
2506   // If original bytecodes contained a mixture of floats and doubles
2507   // check if the optimizer has made it homogenous, item (3).
2508   if( Use24BitFPMode && Use24BitFP &&
2509       fpu.get_float_count() > 32 &&
2510       fpu.get_double_count() == 0 &&
2511       (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
2512     set_24_bit_selection_and_mode( false,  true );
2513   }
2514 
2515   set_has_java_calls(fpu.get_java_call_count() > 0);
2516 
2517   // No infinite loops, no reason to bail out.
2518   return false;
2519 }
2520 
2521 //-----------------------------too_many_traps----------------------------------
2522 // Report if there are too many traps at the current method and bci.
2523 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2524 bool Compile::too_many_traps(ciMethod* method,
2525                              int bci,
2526                              Deoptimization::DeoptReason reason) {
2527   ciMethodData* md = method->method_data();
2528   if (md->is_empty()) {
2529     // Assume the trap has not occurred, or that it occurred only
2530     // because of a transient condition during start-up in the interpreter.
2531     return false;
2532   }
2533   if (md->has_trap_at(bci, reason) != 0) {
2534     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2535     // Also, if there are multiple reasons, or if there is no per-BCI record,
2536     // assume the worst.
2537     if (log())
2538       log()->elem("observe trap='%s' count='%d'",
2539                   Deoptimization::trap_reason_name(reason),
2540                   md->trap_count(reason));
2541     return true;
2542   } else {
2543     // Ignore method/bci and see if there have been too many globally.
2544     return too_many_traps(reason, md);
2545   }
2546 }
2547 
2548 // Less-accurate variant which does not require a method and bci.
2549 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2550                              ciMethodData* logmd) {
2551  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2552     // Too many traps globally.
2553     // Note that we use cumulative trap_count, not just md->trap_count.
2554     if (log()) {
2555       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2556       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2557                   Deoptimization::trap_reason_name(reason),
2558                   mcount, trap_count(reason));
2559     }
2560     return true;
2561   } else {
2562     // The coast is clear.
2563     return false;
2564   }
2565 }
2566 
2567 //--------------------------too_many_recompiles--------------------------------
2568 // Report if there are too many recompiles at the current method and bci.
2569 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2570 // Is not eager to return true, since this will cause the compiler to use
2571 // Action_none for a trap point, to avoid too many recompilations.
2572 bool Compile::too_many_recompiles(ciMethod* method,
2573                                   int bci,
2574                                   Deoptimization::DeoptReason reason) {
2575   ciMethodData* md = method->method_data();
2576   if (md->is_empty()) {
2577     // Assume the trap has not occurred, or that it occurred only
2578     // because of a transient condition during start-up in the interpreter.
2579     return false;
2580   }
2581   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2582   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2583   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2584   Deoptimization::DeoptReason per_bc_reason
2585     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2586   if ((per_bc_reason == Deoptimization::Reason_none
2587        || md->has_trap_at(bci, reason) != 0)
2588       // The trap frequency measure we care about is the recompile count:
2589       && md->trap_recompiled_at(bci)
2590       && md->overflow_recompile_count() >= bc_cutoff) {
2591     // Do not emit a trap here if it has already caused recompilations.
2592     // Also, if there are multiple reasons, or if there is no per-BCI record,
2593     // assume the worst.
2594     if (log())
2595       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2596                   Deoptimization::trap_reason_name(reason),
2597                   md->trap_count(reason),
2598                   md->overflow_recompile_count());
2599     return true;
2600   } else if (trap_count(reason) != 0
2601              && decompile_count() >= m_cutoff) {
2602     // Too many recompiles globally, and we have seen this sort of trap.
2603     // Use cumulative decompile_count, not just md->decompile_count.
2604     if (log())
2605       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2606                   Deoptimization::trap_reason_name(reason),
2607                   md->trap_count(reason), trap_count(reason),
2608                   md->decompile_count(), decompile_count());
2609     return true;
2610   } else {
2611     // The coast is clear.
2612     return false;
2613   }
2614 }
2615 
2616 
2617 #ifndef PRODUCT
2618 //------------------------------verify_graph_edges---------------------------
2619 // Walk the Graph and verify that there is a one-to-one correspondence
2620 // between Use-Def edges and Def-Use edges in the graph.
2621 void Compile::verify_graph_edges(bool no_dead_code) {
2622   if (VerifyGraphEdges) {
2623     ResourceArea *area = Thread::current()->resource_area();
2624     Unique_Node_List visited(area);
2625     // Call recursive graph walk to check edges
2626     _root->verify_edges(visited);
2627     if (no_dead_code) {
2628       // Now make sure that no visited node is used by an unvisited node.
2629       bool dead_nodes = 0;
2630       Unique_Node_List checked(area);
2631       while (visited.size() > 0) {
2632         Node* n = visited.pop();
2633         checked.push(n);
2634         for (uint i = 0; i < n->outcnt(); i++) {
2635           Node* use = n->raw_out(i);
2636           if (checked.member(use))  continue;  // already checked
2637           if (visited.member(use))  continue;  // already in the graph
2638           if (use->is_Con())        continue;  // a dead ConNode is OK
2639           // At this point, we have found a dead node which is DU-reachable.
2640           if (dead_nodes++ == 0)
2641             tty->print_cr("*** Dead nodes reachable via DU edges:");
2642           use->dump(2);
2643           tty->print_cr("---");
2644           checked.push(use);  // No repeats; pretend it is now checked.
2645         }
2646       }
2647       assert(dead_nodes == 0, "using nodes must be reachable from root");
2648     }
2649   }
2650 }
2651 #endif
2652 
2653 // The Compile object keeps track of failure reasons separately from the ciEnv.
2654 // This is required because there is not quite a 1-1 relation between the
2655 // ciEnv and its compilation task and the Compile object.  Note that one
2656 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2657 // to backtrack and retry without subsuming loads.  Other than this backtracking
2658 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2659 // by the logic in C2Compiler.
2660 void Compile::record_failure(const char* reason) {
2661   if (log() != NULL) {
2662     log()->elem("failure reason='%s' phase='compile'", reason);
2663   }
2664   if (_failure_reason == NULL) {
2665     // Record the first failure reason.
2666     _failure_reason = reason;
2667   }
2668   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2669     C->print_method(_failure_reason);
2670   }
2671   _root = NULL;  // flush the graph, too
2672 }
2673 
2674 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2675   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2676 {
2677   if (dolog) {
2678     C = Compile::current();
2679     _log = C->log();
2680   } else {
2681     C = NULL;
2682     _log = NULL;
2683   }
2684   if (_log != NULL) {
2685     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2686     _log->stamp();
2687     _log->end_head();
2688   }
2689 }
2690 
2691 Compile::TracePhase::~TracePhase() {
2692   if (_log != NULL) {
2693     _log->done("phase nodes='%d'", C->unique());
2694   }
2695 }