1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_node.cpp.incl"
  27 
  28 class RegMask;
  29 // #include "phase.hpp"
  30 class PhaseTransform;
  31 class PhaseGVN;
  32 
  33 // Arena we are currently building Nodes in
  34 const uint Node::NotAMachineReg = 0xffff0000;
  35 
  36 #ifndef PRODUCT
  37 extern int nodes_created;
  38 #endif
  39 
  40 #ifdef ASSERT
  41 
  42 //-------------------------- construct_node------------------------------------
  43 // Set a breakpoint here to identify where a particular node index is built.
  44 void Node::verify_construction() {
  45   _debug_orig = NULL;
  46   int old_debug_idx = Compile::debug_idx();
  47   int new_debug_idx = old_debug_idx+1;
  48   if (new_debug_idx > 0) {
  49     // Arrange that the lowest five decimal digits of _debug_idx
  50     // will repeat thos of _idx.  In case this is somehow pathological,
  51     // we continue to assign negative numbers (!) consecutively.
  52     const int mod = 100000;
  53     int bump = (int)(_idx - new_debug_idx) % mod;
  54     if (bump < 0)  bump += mod;
  55     assert(bump >= 0 && bump < mod, "");
  56     new_debug_idx += bump;
  57   }
  58   Compile::set_debug_idx(new_debug_idx);
  59   set_debug_idx( new_debug_idx );
  60   assert(Compile::current()->unique() < Compile::current()->nodes_limit(), "Node limit exceeded");
  61   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  62     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  63     BREAKPOINT;
  64   }
  65 #if OPTO_DU_ITERATOR_ASSERT
  66   _last_del = NULL;
  67   _del_tick = 0;
  68 #endif
  69   _hash_lock = 0;
  70 }
  71 
  72 
  73 // #ifdef ASSERT ...
  74 
  75 #if OPTO_DU_ITERATOR_ASSERT
  76 void DUIterator_Common::sample(const Node* node) {
  77   _vdui     = VerifyDUIterators;
  78   _node     = node;
  79   _outcnt   = node->_outcnt;
  80   _del_tick = node->_del_tick;
  81   _last     = NULL;
  82 }
  83 
  84 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  85   assert(_node     == node, "consistent iterator source");
  86   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  87 }
  88 
  89 void DUIterator_Common::verify_resync() {
  90   // Ensure that the loop body has just deleted the last guy produced.
  91   const Node* node = _node;
  92   // Ensure that at least one copy of the last-seen edge was deleted.
  93   // Note:  It is OK to delete multiple copies of the last-seen edge.
  94   // Unfortunately, we have no way to verify that all the deletions delete
  95   // that same edge.  On this point we must use the Honor System.
  96   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
  97   assert(node->_last_del == _last, "must have deleted the edge just produced");
  98   // We liked this deletion, so accept the resulting outcnt and tick.
  99   _outcnt   = node->_outcnt;
 100   _del_tick = node->_del_tick;
 101 }
 102 
 103 void DUIterator_Common::reset(const DUIterator_Common& that) {
 104   if (this == &that)  return;  // ignore assignment to self
 105   if (!_vdui) {
 106     // We need to initialize everything, overwriting garbage values.
 107     _last = that._last;
 108     _vdui = that._vdui;
 109   }
 110   // Note:  It is legal (though odd) for an iterator over some node x
 111   // to be reassigned to iterate over another node y.  Some doubly-nested
 112   // progress loops depend on being able to do this.
 113   const Node* node = that._node;
 114   // Re-initialize everything, except _last.
 115   _node     = node;
 116   _outcnt   = node->_outcnt;
 117   _del_tick = node->_del_tick;
 118 }
 119 
 120 void DUIterator::sample(const Node* node) {
 121   DUIterator_Common::sample(node);      // Initialize the assertion data.
 122   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 123 }
 124 
 125 void DUIterator::verify(const Node* node, bool at_end_ok) {
 126   DUIterator_Common::verify(node, at_end_ok);
 127   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 128 }
 129 
 130 void DUIterator::verify_increment() {
 131   if (_refresh_tick & 1) {
 132     // We have refreshed the index during this loop.
 133     // Fix up _idx to meet asserts.
 134     if (_idx > _outcnt)  _idx = _outcnt;
 135   }
 136   verify(_node, true);
 137 }
 138 
 139 void DUIterator::verify_resync() {
 140   // Note:  We do not assert on _outcnt, because insertions are OK here.
 141   DUIterator_Common::verify_resync();
 142   // Make sure we are still in sync, possibly with no more out-edges:
 143   verify(_node, true);
 144 }
 145 
 146 void DUIterator::reset(const DUIterator& that) {
 147   if (this == &that)  return;  // self assignment is always a no-op
 148   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 149   assert(that._idx          == 0, "assign only the result of Node::outs()");
 150   assert(_idx               == that._idx, "already assigned _idx");
 151   if (!_vdui) {
 152     // We need to initialize everything, overwriting garbage values.
 153     sample(that._node);
 154   } else {
 155     DUIterator_Common::reset(that);
 156     if (_refresh_tick & 1) {
 157       _refresh_tick++;                  // Clear the "was refreshed" flag.
 158     }
 159     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 160   }
 161 }
 162 
 163 void DUIterator::refresh() {
 164   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 165   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 166 }
 167 
 168 void DUIterator::verify_finish() {
 169   // If the loop has killed the node, do not require it to re-run.
 170   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 171   // If this assert triggers, it means that a loop used refresh_out_pos
 172   // to re-synch an iteration index, but the loop did not correctly
 173   // re-run itself, using a "while (progress)" construct.
 174   // This iterator enforces the rule that you must keep trying the loop
 175   // until it "runs clean" without any need for refreshing.
 176   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 177 }
 178 
 179 
 180 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 181   DUIterator_Common::verify(node, at_end_ok);
 182   Node** out    = node->_out;
 183   uint   cnt    = node->_outcnt;
 184   assert(cnt == _outcnt, "no insertions allowed");
 185   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 186   // This last check is carefully designed to work for NO_OUT_ARRAY.
 187 }
 188 
 189 void DUIterator_Fast::verify_limit() {
 190   const Node* node = _node;
 191   verify(node, true);
 192   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 193 }
 194 
 195 void DUIterator_Fast::verify_resync() {
 196   const Node* node = _node;
 197   if (_outp == node->_out + _outcnt) {
 198     // Note that the limit imax, not the pointer i, gets updated with the
 199     // exact count of deletions.  (For the pointer it's always "--i".)
 200     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 201     // This is a limit pointer, with a name like "imax".
 202     // Fudge the _last field so that the common assert will be happy.
 203     _last = (Node*) node->_last_del;
 204     DUIterator_Common::verify_resync();
 205   } else {
 206     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 207     // A normal internal pointer.
 208     DUIterator_Common::verify_resync();
 209     // Make sure we are still in sync, possibly with no more out-edges:
 210     verify(node, true);
 211   }
 212 }
 213 
 214 void DUIterator_Fast::verify_relimit(uint n) {
 215   const Node* node = _node;
 216   assert((int)n > 0, "use imax -= n only with a positive count");
 217   // This must be a limit pointer, with a name like "imax".
 218   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 219   // The reported number of deletions must match what the node saw.
 220   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 221   // Fudge the _last field so that the common assert will be happy.
 222   _last = (Node*) node->_last_del;
 223   DUIterator_Common::verify_resync();
 224 }
 225 
 226 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 227   assert(_outp              == that._outp, "already assigned _outp");
 228   DUIterator_Common::reset(that);
 229 }
 230 
 231 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 232   // at_end_ok means the _outp is allowed to underflow by 1
 233   _outp += at_end_ok;
 234   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 235   _outp -= at_end_ok;
 236   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 237 }
 238 
 239 void DUIterator_Last::verify_limit() {
 240   // Do not require the limit address to be resynched.
 241   //verify(node, true);
 242   assert(_outp == _node->_out, "limit still correct");
 243 }
 244 
 245 void DUIterator_Last::verify_step(uint num_edges) {
 246   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 247   _outcnt   -= num_edges;
 248   _del_tick += num_edges;
 249   // Make sure we are still in sync, possibly with no more out-edges:
 250   const Node* node = _node;
 251   verify(node, true);
 252   assert(node->_last_del == _last, "must have deleted the edge just produced");
 253 }
 254 
 255 #endif //OPTO_DU_ITERATOR_ASSERT
 256 
 257 
 258 #endif //ASSERT
 259 
 260 
 261 // This constant used to initialize _out may be any non-null value.
 262 // The value NULL is reserved for the top node only.
 263 #define NO_OUT_ARRAY ((Node**)-1)
 264 
 265 // This funny expression handshakes with Node::operator new
 266 // to pull Compile::current out of the new node's _out field,
 267 // and then calls a subroutine which manages most field
 268 // initializations.  The only one which is tricky is the
 269 // _idx field, which is const, and so must be initialized
 270 // by a return value, not an assignment.
 271 //
 272 // (Aren't you thankful that Java finals don't require so many tricks?)
 273 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 274 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 275 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 276 #endif
 277 
 278 // Out-of-line code from node constructors.
 279 // Executed only when extra debug info. is being passed around.
 280 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 281   C->set_node_notes_at(idx, nn);
 282 }
 283 
 284 // Shared initialization code.
 285 inline int Node::Init(int req, Compile* C) {
 286   assert(Compile::current() == C, "must use operator new(Compile*)");
 287   int idx = C->next_unique();
 288 
 289   // If there are default notes floating around, capture them:
 290   Node_Notes* nn = C->default_node_notes();
 291   if (nn != NULL)  init_node_notes(C, idx, nn);
 292 
 293   // Note:  At this point, C is dead,
 294   // and we begin to initialize the new Node.
 295 
 296   _cnt = _max = req;
 297   _outcnt = _outmax = 0;
 298   _class_id = Class_Node;
 299   _flags = 0;
 300   _out = NO_OUT_ARRAY;
 301   return idx;
 302 }
 303 
 304 //------------------------------Node-------------------------------------------
 305 // Create a Node, with a given number of required edges.
 306 Node::Node(uint req)
 307   : _idx(IDX_INIT(req))
 308 {
 309   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 310   debug_only( verify_construction() );
 311   NOT_PRODUCT(nodes_created++);
 312   if (req == 0) {
 313     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 314     _in = NULL;
 315   } else {
 316     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 317     Node** to = _in;
 318     for(uint i = 0; i < req; i++) {
 319       to[i] = NULL;
 320     }
 321   }
 322 }
 323 
 324 //------------------------------Node-------------------------------------------
 325 Node::Node(Node *n0)
 326   : _idx(IDX_INIT(1))
 327 {
 328   debug_only( verify_construction() );
 329   NOT_PRODUCT(nodes_created++);
 330   // Assert we allocated space for input array already
 331   assert( _in[0] == this, "Must pass arg count to 'new'" );
 332   assert( is_not_dead(n0), "can not use dead node");
 333   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 334 }
 335 
 336 //------------------------------Node-------------------------------------------
 337 Node::Node(Node *n0, Node *n1)
 338   : _idx(IDX_INIT(2))
 339 {
 340   debug_only( verify_construction() );
 341   NOT_PRODUCT(nodes_created++);
 342   // Assert we allocated space for input array already
 343   assert( _in[1] == this, "Must pass arg count to 'new'" );
 344   assert( is_not_dead(n0), "can not use dead node");
 345   assert( is_not_dead(n1), "can not use dead node");
 346   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 347   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 348 }
 349 
 350 //------------------------------Node-------------------------------------------
 351 Node::Node(Node *n0, Node *n1, Node *n2)
 352   : _idx(IDX_INIT(3))
 353 {
 354   debug_only( verify_construction() );
 355   NOT_PRODUCT(nodes_created++);
 356   // Assert we allocated space for input array already
 357   assert( _in[2] == this, "Must pass arg count to 'new'" );
 358   assert( is_not_dead(n0), "can not use dead node");
 359   assert( is_not_dead(n1), "can not use dead node");
 360   assert( is_not_dead(n2), "can not use dead node");
 361   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 362   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 363   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 364 }
 365 
 366 //------------------------------Node-------------------------------------------
 367 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 368   : _idx(IDX_INIT(4))
 369 {
 370   debug_only( verify_construction() );
 371   NOT_PRODUCT(nodes_created++);
 372   // Assert we allocated space for input array already
 373   assert( _in[3] == this, "Must pass arg count to 'new'" );
 374   assert( is_not_dead(n0), "can not use dead node");
 375   assert( is_not_dead(n1), "can not use dead node");
 376   assert( is_not_dead(n2), "can not use dead node");
 377   assert( is_not_dead(n3), "can not use dead node");
 378   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 379   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 380   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 381   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 386   : _idx(IDX_INIT(5))
 387 {
 388   debug_only( verify_construction() );
 389   NOT_PRODUCT(nodes_created++);
 390   // Assert we allocated space for input array already
 391   assert( _in[4] == this, "Must pass arg count to 'new'" );
 392   assert( is_not_dead(n0), "can not use dead node");
 393   assert( is_not_dead(n1), "can not use dead node");
 394   assert( is_not_dead(n2), "can not use dead node");
 395   assert( is_not_dead(n3), "can not use dead node");
 396   assert( is_not_dead(n4), "can not use dead node");
 397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 401   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 402 }
 403 
 404 //------------------------------Node-------------------------------------------
 405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 406                      Node *n4, Node *n5)
 407   : _idx(IDX_INIT(6))
 408 {
 409   debug_only( verify_construction() );
 410   NOT_PRODUCT(nodes_created++);
 411   // Assert we allocated space for input array already
 412   assert( _in[5] == this, "Must pass arg count to 'new'" );
 413   assert( is_not_dead(n0), "can not use dead node");
 414   assert( is_not_dead(n1), "can not use dead node");
 415   assert( is_not_dead(n2), "can not use dead node");
 416   assert( is_not_dead(n3), "can not use dead node");
 417   assert( is_not_dead(n4), "can not use dead node");
 418   assert( is_not_dead(n5), "can not use dead node");
 419   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 420   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 421   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 422   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 423   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 424   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 425 }
 426 
 427 //------------------------------Node-------------------------------------------
 428 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 429                      Node *n4, Node *n5, Node *n6)
 430   : _idx(IDX_INIT(7))
 431 {
 432   debug_only( verify_construction() );
 433   NOT_PRODUCT(nodes_created++);
 434   // Assert we allocated space for input array already
 435   assert( _in[6] == this, "Must pass arg count to 'new'" );
 436   assert( is_not_dead(n0), "can not use dead node");
 437   assert( is_not_dead(n1), "can not use dead node");
 438   assert( is_not_dead(n2), "can not use dead node");
 439   assert( is_not_dead(n3), "can not use dead node");
 440   assert( is_not_dead(n4), "can not use dead node");
 441   assert( is_not_dead(n5), "can not use dead node");
 442   assert( is_not_dead(n6), "can not use dead node");
 443   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 444   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 445   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 446   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 447   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 448   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 449   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 450 }
 451 
 452 
 453 //------------------------------clone------------------------------------------
 454 // Clone a Node.
 455 Node *Node::clone() const {
 456   Compile *compile = Compile::current();
 457   uint s = size_of();           // Size of inherited Node
 458   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 459   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 460   // Set the new input pointer array
 461   n->_in = (Node**)(((char*)n)+s);
 462   // Cannot share the old output pointer array, so kill it
 463   n->_out = NO_OUT_ARRAY;
 464   // And reset the counters to 0
 465   n->_outcnt = 0;
 466   n->_outmax = 0;
 467   // Unlock this guy, since he is not in any hash table.
 468   debug_only(n->_hash_lock = 0);
 469   // Walk the old node's input list to duplicate its edges
 470   uint i;
 471   for( i = 0; i < len(); i++ ) {
 472     Node *x = in(i);
 473     n->_in[i] = x;
 474     if (x != NULL) x->add_out(n);
 475   }
 476   if (is_macro())
 477     compile->add_macro_node(n);
 478 
 479   n->set_idx(compile->next_unique()); // Get new unique index as well
 480   debug_only( n->verify_construction() );
 481   NOT_PRODUCT(nodes_created++);
 482   // Do not patch over the debug_idx of a clone, because it makes it
 483   // impossible to break on the clone's moment of creation.
 484   //debug_only( n->set_debug_idx( debug_idx() ) );
 485 
 486   compile->copy_node_notes_to(n, (Node*) this);
 487 
 488   // MachNode clone
 489   uint nopnds;
 490   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 491     MachNode *mach  = n->as_Mach();
 492     MachNode *mthis = this->as_Mach();
 493     // Get address of _opnd_array.
 494     // It should be the same offset since it is the clone of this node.
 495     MachOper **from = mthis->_opnds;
 496     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 497                     pointer_delta((const void*)from,
 498                                   (const void*)(&mthis->_opnds), 1));
 499     mach->_opnds = to;
 500     for ( uint i = 0; i < nopnds; ++i ) {
 501       to[i] = from[i]->clone(compile);
 502     }
 503   }
 504   // cloning CallNode may need to clone JVMState
 505   if (n->is_Call()) {
 506     CallNode *call = n->as_Call();
 507     call->clone_jvms();
 508   }
 509   return n;                     // Return the clone
 510 }
 511 
 512 //---------------------------setup_is_top--------------------------------------
 513 // Call this when changing the top node, to reassert the invariants
 514 // required by Node::is_top.  See Compile::set_cached_top_node.
 515 void Node::setup_is_top() {
 516   if (this == (Node*)Compile::current()->top()) {
 517     // This node has just become top.  Kill its out array.
 518     _outcnt = _outmax = 0;
 519     _out = NULL;                           // marker value for top
 520     assert(is_top(), "must be top");
 521   } else {
 522     if (_out == NULL)  _out = NO_OUT_ARRAY;
 523     assert(!is_top(), "must not be top");
 524   }
 525 }
 526 
 527 
 528 //------------------------------~Node------------------------------------------
 529 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 530 extern int reclaim_idx ;
 531 extern int reclaim_in  ;
 532 extern int reclaim_node;
 533 void Node::destruct() {
 534   // Eagerly reclaim unique Node numberings
 535   Compile* compile = Compile::current();
 536   if ((uint)_idx+1 == compile->unique()) {
 537     compile->set_unique(compile->unique()-1);
 538 #ifdef ASSERT
 539     reclaim_idx++;
 540 #endif
 541   }
 542   // Clear debug info:
 543   Node_Notes* nn = compile->node_notes_at(_idx);
 544   if (nn != NULL)  nn->clear();
 545   // Walk the input array, freeing the corresponding output edges
 546   _cnt = _max;  // forget req/prec distinction
 547   uint i;
 548   for( i = 0; i < _max; i++ ) {
 549     set_req(i, NULL);
 550     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 551   }
 552   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 553   // See if the input array was allocated just prior to the object
 554   int edge_size = _max*sizeof(void*);
 555   int out_edge_size = _outmax*sizeof(void*);
 556   char *edge_end = ((char*)_in) + edge_size;
 557   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 558   char *out_edge_end = out_array + out_edge_size;
 559   int node_size = size_of();
 560 
 561   // Free the output edge array
 562   if (out_edge_size > 0) {
 563 #ifdef ASSERT
 564     if( out_edge_end == compile->node_arena()->hwm() )
 565       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 566 #endif
 567     compile->node_arena()->Afree(out_array, out_edge_size);
 568   }
 569 
 570   // Free the input edge array and the node itself
 571   if( edge_end == (char*)this ) {
 572 #ifdef ASSERT
 573     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 574       reclaim_in  += edge_size;
 575       reclaim_node+= node_size;
 576     }
 577 #else
 578     // It was; free the input array and object all in one hit
 579     compile->node_arena()->Afree(_in,edge_size+node_size);
 580 #endif
 581   } else {
 582 
 583     // Free just the input array
 584 #ifdef ASSERT
 585     if( edge_end == compile->node_arena()->hwm() )
 586       reclaim_in  += edge_size;
 587 #endif
 588     compile->node_arena()->Afree(_in,edge_size);
 589 
 590     // Free just the object
 591 #ifdef ASSERT
 592     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 593       reclaim_node+= node_size;
 594 #else
 595     compile->node_arena()->Afree(this,node_size);
 596 #endif
 597   }
 598   if (is_macro()) {
 599     compile->remove_macro_node(this);
 600   }
 601 #ifdef ASSERT
 602   // We will not actually delete the storage, but we'll make the node unusable.
 603   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 604   _in = _out = (Node**) badAddress;
 605   _max = _cnt = _outmax = _outcnt = 0;
 606 #endif
 607 }
 608 
 609 //------------------------------grow-------------------------------------------
 610 // Grow the input array, making space for more edges
 611 void Node::grow( uint len ) {
 612   Arena* arena = Compile::current()->node_arena();
 613   uint new_max = _max;
 614   if( new_max == 0 ) {
 615     _max = 4;
 616     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 617     Node** to = _in;
 618     to[0] = NULL;
 619     to[1] = NULL;
 620     to[2] = NULL;
 621     to[3] = NULL;
 622     return;
 623   }
 624   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 625   // Trimming to limit allows a uint8 to handle up to 255 edges.
 626   // Previously I was using only powers-of-2 which peaked at 128 edges.
 627   //if( new_max >= limit ) new_max = limit-1;
 628   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 629   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 630   _max = new_max;               // Record new max length
 631   // This assertion makes sure that Node::_max is wide enough to
 632   // represent the numerical value of new_max.
 633   assert(_max == new_max && _max > len, "int width of _max is too small");
 634 }
 635 
 636 //-----------------------------out_grow----------------------------------------
 637 // Grow the input array, making space for more edges
 638 void Node::out_grow( uint len ) {
 639   assert(!is_top(), "cannot grow a top node's out array");
 640   Arena* arena = Compile::current()->node_arena();
 641   uint new_max = _outmax;
 642   if( new_max == 0 ) {
 643     _outmax = 4;
 644     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 645     return;
 646   }
 647   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 648   // Trimming to limit allows a uint8 to handle up to 255 edges.
 649   // Previously I was using only powers-of-2 which peaked at 128 edges.
 650   //if( new_max >= limit ) new_max = limit-1;
 651   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 652   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 653   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 654   _outmax = new_max;               // Record new max length
 655   // This assertion makes sure that Node::_max is wide enough to
 656   // represent the numerical value of new_max.
 657   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 658 }
 659 
 660 #ifdef ASSERT
 661 //------------------------------is_dead----------------------------------------
 662 bool Node::is_dead() const {
 663   // Mach and pinch point nodes may look like dead.
 664   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 665     return false;
 666   for( uint i = 0; i < _max; i++ )
 667     if( _in[i] != NULL )
 668       return false;
 669   dump();
 670   return true;
 671 }
 672 #endif
 673 
 674 //------------------------------add_req----------------------------------------
 675 // Add a new required input at the end
 676 void Node::add_req( Node *n ) {
 677   assert( is_not_dead(n), "can not use dead node");
 678 
 679   // Look to see if I can move precedence down one without reallocating
 680   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 681     grow( _max+1 );
 682 
 683   // Find a precedence edge to move
 684   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 685     uint i;
 686     for( i=_cnt; i<_max; i++ )
 687       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 688         break;                  // There must be one, since we grew the array
 689     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 690   }
 691   _in[_cnt++] = n;            // Stuff over old prec edge
 692   if (n != NULL) n->add_out((Node *)this);
 693 }
 694 
 695 //---------------------------add_req_batch-------------------------------------
 696 // Add a new required input at the end
 697 void Node::add_req_batch( Node *n, uint m ) {
 698   assert( is_not_dead(n), "can not use dead node");
 699   // check various edge cases
 700   if ((int)m <= 1) {
 701     assert((int)m >= 0, "oob");
 702     if (m != 0)  add_req(n);
 703     return;
 704   }
 705 
 706   // Look to see if I can move precedence down one without reallocating
 707   if( (_cnt+m) > _max || _in[_max-m] )
 708     grow( _max+m );
 709 
 710   // Find a precedence edge to move
 711   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 712     uint i;
 713     for( i=_cnt; i<_max; i++ )
 714       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 715         break;                  // There must be one, since we grew the array
 716     // Slide all the precs over by m positions (assume #prec << m).
 717     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 718   }
 719 
 720   // Stuff over the old prec edges
 721   for(uint i=0; i<m; i++ ) {
 722     _in[_cnt++] = n;
 723   }
 724 
 725   // Insert multiple out edges on the node.
 726   if (n != NULL && !n->is_top()) {
 727     for(uint i=0; i<m; i++ ) {
 728       n->add_out((Node *)this);
 729     }
 730   }
 731 }
 732 
 733 //------------------------------del_req----------------------------------------
 734 // Delete the required edge and compact the edge array
 735 void Node::del_req( uint idx ) {
 736   // First remove corresponding def-use edge
 737   Node *n = in(idx);
 738   if (n != NULL) n->del_out((Node *)this);
 739   _in[idx] = in(--_cnt);  // Compact the array
 740   _in[_cnt] = NULL;       // NULL out emptied slot
 741 }
 742 
 743 //------------------------------ins_req----------------------------------------
 744 // Insert a new required input at the end
 745 void Node::ins_req( uint idx, Node *n ) {
 746   assert( is_not_dead(n), "can not use dead node");
 747   add_req(NULL);                // Make space
 748   assert( idx < _max, "Must have allocated enough space");
 749   // Slide over
 750   if(_cnt-idx-1 > 0) {
 751     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 752   }
 753   _in[idx] = n;                            // Stuff over old required edge
 754   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 755 }
 756 
 757 //-----------------------------find_edge---------------------------------------
 758 int Node::find_edge(Node* n) {
 759   for (uint i = 0; i < len(); i++) {
 760     if (_in[i] == n)  return i;
 761   }
 762   return -1;
 763 }
 764 
 765 //----------------------------replace_edge-------------------------------------
 766 int Node::replace_edge(Node* old, Node* neww) {
 767   if (old == neww)  return 0;  // nothing to do
 768   uint nrep = 0;
 769   for (uint i = 0; i < len(); i++) {
 770     if (in(i) == old) {
 771       if (i < req())
 772         set_req(i, neww);
 773       else
 774         set_prec(i, neww);
 775       nrep++;
 776     }
 777   }
 778   return nrep;
 779 }
 780 
 781 //-------------------------disconnect_inputs-----------------------------------
 782 // NULL out all inputs to eliminate incoming Def-Use edges.
 783 // Return the number of edges between 'n' and 'this'
 784 int Node::disconnect_inputs(Node *n) {
 785   int edges_to_n = 0;
 786 
 787   uint cnt = req();
 788   for( uint i = 0; i < cnt; ++i ) {
 789     if( in(i) == 0 ) continue;
 790     if( in(i) == n ) ++edges_to_n;
 791     set_req(i, NULL);
 792   }
 793   // Remove precedence edges if any exist
 794   // Note: Safepoints may have precedence edges, even during parsing
 795   if( (req() != len()) && (in(req()) != NULL) ) {
 796     uint max = len();
 797     for( uint i = 0; i < max; ++i ) {
 798       if( in(i) == 0 ) continue;
 799       if( in(i) == n ) ++edges_to_n;
 800       set_prec(i, NULL);
 801     }
 802   }
 803 
 804   // Node::destruct requires all out edges be deleted first
 805   // debug_only(destruct();)   // no reuse benefit expected
 806   return edges_to_n;
 807 }
 808 
 809 //-----------------------------uncast---------------------------------------
 810 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 811 // Strip away casting.  (It is depth-limited.)
 812 Node* Node::uncast() const {
 813   // Should be inline:
 814   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 815   if (is_ConstraintCast() || is_CheckCastPP())
 816     return uncast_helper(this);
 817   else
 818     return (Node*) this;
 819 }
 820 
 821 //---------------------------uncast_helper-------------------------------------
 822 Node* Node::uncast_helper(const Node* p) {
 823   uint max_depth = 3;
 824   for (uint i = 0; i < max_depth; i++) {
 825     if (p == NULL || p->req() != 2) {
 826       break;
 827     } else if (p->is_ConstraintCast()) {
 828       p = p->in(1);
 829     } else if (p->is_CheckCastPP()) {
 830       p = p->in(1);
 831     } else {
 832       break;
 833     }
 834   }
 835   return (Node*) p;
 836 }
 837 
 838 //------------------------------add_prec---------------------------------------
 839 // Add a new precedence input.  Precedence inputs are unordered, with
 840 // duplicates removed and NULLs packed down at the end.
 841 void Node::add_prec( Node *n ) {
 842   assert( is_not_dead(n), "can not use dead node");
 843 
 844   // Check for NULL at end
 845   if( _cnt >= _max || in(_max-1) )
 846     grow( _max+1 );
 847 
 848   // Find a precedence edge to move
 849   uint i = _cnt;
 850   while( in(i) != NULL ) i++;
 851   _in[i] = n;                                // Stuff prec edge over NULL
 852   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 853 }
 854 
 855 //------------------------------rm_prec----------------------------------------
 856 // Remove a precedence input.  Precedence inputs are unordered, with
 857 // duplicates removed and NULLs packed down at the end.
 858 void Node::rm_prec( uint j ) {
 859 
 860   // Find end of precedence list to pack NULLs
 861   uint i;
 862   for( i=j; i<_max; i++ )
 863     if( !_in[i] )               // Find the NULL at end of prec edge list
 864       break;
 865   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 866   _in[j] = _in[--i];            // Move last element over removed guy
 867   _in[i] = NULL;                // NULL out last element
 868 }
 869 
 870 //------------------------------size_of----------------------------------------
 871 uint Node::size_of() const { return sizeof(*this); }
 872 
 873 //------------------------------ideal_reg--------------------------------------
 874 uint Node::ideal_reg() const { return 0; }
 875 
 876 //------------------------------jvms-------------------------------------------
 877 JVMState* Node::jvms() const { return NULL; }
 878 
 879 #ifdef ASSERT
 880 //------------------------------jvms-------------------------------------------
 881 bool Node::verify_jvms(const JVMState* using_jvms) const {
 882   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 883     if (jvms == using_jvms)  return true;
 884   }
 885   return false;
 886 }
 887 
 888 //------------------------------init_NodeProperty------------------------------
 889 void Node::init_NodeProperty() {
 890   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 891   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 892 }
 893 #endif
 894 
 895 //------------------------------format-----------------------------------------
 896 // Print as assembly
 897 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 898 //------------------------------emit-------------------------------------------
 899 // Emit bytes starting at parameter 'ptr'.
 900 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 901 //------------------------------size-------------------------------------------
 902 // Size of instruction in bytes
 903 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 904 
 905 //------------------------------CFG Construction-------------------------------
 906 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 907 // Goto and Return.
 908 const Node *Node::is_block_proj() const { return 0; }
 909 
 910 // Minimum guaranteed type
 911 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 912 
 913 
 914 //------------------------------raise_bottom_type------------------------------
 915 // Get the worst-case Type output for this Node.
 916 void Node::raise_bottom_type(const Type* new_type) {
 917   if (is_Type()) {
 918     TypeNode *n = this->as_Type();
 919     if (VerifyAliases) {
 920       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 921     }
 922     n->set_type(new_type);
 923   } else if (is_Load()) {
 924     LoadNode *n = this->as_Load();
 925     if (VerifyAliases) {
 926       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 927     }
 928     n->set_type(new_type);
 929   }
 930 }
 931 
 932 //------------------------------Identity---------------------------------------
 933 // Return a node that the given node is equivalent to.
 934 Node *Node::Identity( PhaseTransform * ) {
 935   return this;                  // Default to no identities
 936 }
 937 
 938 //------------------------------Value------------------------------------------
 939 // Compute a new Type for a node using the Type of the inputs.
 940 const Type *Node::Value( PhaseTransform * ) const {
 941   return bottom_type();         // Default to worst-case Type
 942 }
 943 
 944 //------------------------------Ideal------------------------------------------
 945 //
 946 // 'Idealize' the graph rooted at this Node.
 947 //
 948 // In order to be efficient and flexible there are some subtle invariants
 949 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
 950 // these invariants, although its too slow to have on by default.  If you are
 951 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
 952 //
 953 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
 954 // pointer.  If ANY change is made, it must return the root of the reshaped
 955 // graph - even if the root is the same Node.  Example: swapping the inputs
 956 // to an AddINode gives the same answer and same root, but you still have to
 957 // return the 'this' pointer instead of NULL.
 958 //
 959 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
 960 // Identity call to return an old Node; basically if Identity can find
 961 // another Node have the Ideal call make no change and return NULL.
 962 // Example: AddINode::Ideal must check for add of zero; in this case it
 963 // returns NULL instead of doing any graph reshaping.
 964 //
 965 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
 966 // sharing there may be other users of the old Nodes relying on their current
 967 // semantics.  Modifying them will break the other users.
 968 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
 969 // "X+3" unchanged in case it is shared.
 970 //
 971 // If you modify the 'this' pointer's inputs, you should use
 972 // 'set_req'.  If you are making a new Node (either as the new root or
 973 // some new internal piece) you may use 'init_req' to set the initial
 974 // value.  You can make a new Node with either 'new' or 'clone'.  In
 975 // either case, def-use info is correctly maintained.
 976 //
 977 // Example: reshape "(X+3)+4" into "X+7":
 978 //    set_req(1, in(1)->in(1));
 979 //    set_req(2, phase->intcon(7));
 980 //    return this;
 981 // Example: reshape "X*4" into "X<<2"
 982 //    return new (C,3) LShiftINode(in(1), phase->intcon(2));
 983 //
 984 // You must call 'phase->transform(X)' on any new Nodes X you make, except
 985 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
 986 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
 987 //    return new (C,3) AddINode(shift, in(1));
 988 //
 989 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
 990 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
 991 // The Right Thing with def-use info.
 992 //
 993 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
 994 // graph uses the 'this' Node it must be the root.  If you want a Node with
 995 // the same Opcode as the 'this' pointer use 'clone'.
 996 //
 997 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
 998   return NULL;                  // Default to being Ideal already
 999 }
1000 
1001 // Some nodes have specific Ideal subgraph transformations only if they are
1002 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1003 // for the transformations to happen.
1004 bool Node::has_special_unique_user() const {
1005   assert(outcnt() == 1, "match only for unique out");
1006   Node* n = unique_out();
1007   int op  = Opcode();
1008   if( this->is_Store() ) {
1009     // Condition for back-to-back stores folding.
1010     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1011   } else if( op == Op_AddL ) {
1012     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1013     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1014   } else if( op == Op_SubI || op == Op_SubL ) {
1015     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1016     return n->Opcode() == op && n->in(2) == this;
1017   }
1018   return false;
1019 };
1020 
1021 //--------------------------find_exact_control---------------------------------
1022 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1023 Node* Node::find_exact_control(Node* ctrl) {
1024   if (ctrl == NULL && this->is_Region())
1025     ctrl = this->as_Region()->is_copy();
1026 
1027   if (ctrl != NULL && ctrl->is_CatchProj()) {
1028     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1029       ctrl = ctrl->in(0);
1030     if (ctrl != NULL && !ctrl->is_top())
1031       ctrl = ctrl->in(0);
1032   }
1033 
1034   if (ctrl != NULL && ctrl->is_Proj())
1035     ctrl = ctrl->in(0);
1036 
1037   return ctrl;
1038 }
1039 
1040 //--------------------------dominates------------------------------------------
1041 // Helper function for MemNode::all_controls_dominate().
1042 // Check if 'this' control node dominates or equal to 'sub' control node.
1043 // We already know that if any path back to Root or Start reaches 'this',
1044 // then all paths so, so this is a simple search for one example,
1045 // not an exhaustive search for a counterexample.
1046 bool Node::dominates(Node* sub, Node_List &nlist) {
1047   assert(this->is_CFG(), "expecting control");
1048   assert(sub != NULL && sub->is_CFG(), "expecting control");
1049 
1050   // detect dead cycle without regions
1051   int iterations_without_region_limit = DominatorSearchLimit;
1052 
1053   Node* orig_sub = sub;
1054   Node* dom      = this;
1055   bool  met_dom  = false;
1056   nlist.clear();
1057 
1058   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1059   // After seeing 'dom', continue up to Root or Start.
1060   // If we hit a region (backward split point), it may be a loop head.
1061   // Keep going through one of the region's inputs.  If we reach the
1062   // same region again, go through a different input.  Eventually we
1063   // will either exit through the loop head, or give up.
1064   // (If we get confused, break out and return a conservative 'false'.)
1065   while (sub != NULL) {
1066     if (sub->is_top())  break; // Conservative answer for dead code.
1067     if (sub == dom) {
1068       if (nlist.size() == 0) {
1069         // No Region nodes except loops were visited before and the EntryControl
1070         // path was taken for loops: it did not walk in a cycle.
1071         return true;
1072       } else if (met_dom) {
1073         break;          // already met before: walk in a cycle
1074       } else {
1075         // Region nodes were visited. Continue walk up to Start or Root
1076         // to make sure that it did not walk in a cycle.
1077         met_dom = true; // first time meet
1078         iterations_without_region_limit = DominatorSearchLimit; // Reset
1079      }
1080     }
1081     if (sub->is_Start() || sub->is_Root()) {
1082       // Success if we met 'dom' along a path to Start or Root.
1083       // We assume there are no alternative paths that avoid 'dom'.
1084       // (This assumption is up to the caller to ensure!)
1085       return met_dom;
1086     }
1087     Node* up = sub->in(0);
1088     // Normalize simple pass-through regions and projections:
1089     up = sub->find_exact_control(up);
1090     // If sub == up, we found a self-loop.  Try to push past it.
1091     if (sub == up && sub->is_Loop()) {
1092       // Take loop entry path on the way up to 'dom'.
1093       up = sub->in(1); // in(LoopNode::EntryControl);
1094     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1095       // Always take in(1) path on the way up to 'dom' for clone regions
1096       // (with only one input) or regions which merge > 2 paths
1097       // (usually used to merge fast/slow paths).
1098       up = sub->in(1);
1099     } else if (sub == up && sub->is_Region()) {
1100       // Try both paths for Regions with 2 input paths (it may be a loop head).
1101       // It could give conservative 'false' answer without information
1102       // which region's input is the entry path.
1103       iterations_without_region_limit = DominatorSearchLimit; // Reset
1104 
1105       bool region_was_visited_before = false;
1106       // Was this Region node visited before?
1107       // If so, we have reached it because we accidentally took a
1108       // loop-back edge from 'sub' back into the body of the loop,
1109       // and worked our way up again to the loop header 'sub'.
1110       // So, take the first unexplored path on the way up to 'dom'.
1111       for (int j = nlist.size() - 1; j >= 0; j--) {
1112         intptr_t ni = (intptr_t)nlist.at(j);
1113         Node* visited = (Node*)(ni & ~1);
1114         bool  visited_twice_already = ((ni & 1) != 0);
1115         if (visited == sub) {
1116           if (visited_twice_already) {
1117             // Visited 2 paths, but still stuck in loop body.  Give up.
1118             return false;
1119           }
1120           // The Region node was visited before only once.
1121           // (We will repush with the low bit set, below.)
1122           nlist.remove(j);
1123           // We will find a new edge and re-insert.
1124           region_was_visited_before = true;
1125           break;
1126         }
1127       }
1128 
1129       // Find an incoming edge which has not been seen yet; walk through it.
1130       assert(up == sub, "");
1131       uint skip = region_was_visited_before ? 1 : 0;
1132       for (uint i = 1; i < sub->req(); i++) {
1133         Node* in = sub->in(i);
1134         if (in != NULL && !in->is_top() && in != sub) {
1135           if (skip == 0) {
1136             up = in;
1137             break;
1138           }
1139           --skip;               // skip this nontrivial input
1140         }
1141       }
1142 
1143       // Set 0 bit to indicate that both paths were taken.
1144       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1145     }
1146 
1147     if (up == sub) {
1148       break;    // some kind of tight cycle
1149     }
1150     if (up == orig_sub && met_dom) {
1151       // returned back after visiting 'dom'
1152       break;    // some kind of cycle
1153     }
1154     if (--iterations_without_region_limit < 0) {
1155       break;    // dead cycle
1156     }
1157     sub = up;
1158   }
1159 
1160   // Did not meet Root or Start node in pred. chain.
1161   // Conservative answer for dead code.
1162   return false;
1163 }
1164 
1165 //------------------------------remove_dead_region-----------------------------
1166 // This control node is dead.  Follow the subgraph below it making everything
1167 // using it dead as well.  This will happen normally via the usual IterGVN
1168 // worklist but this call is more efficient.  Do not update use-def info
1169 // inside the dead region, just at the borders.
1170 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1171   // Con's are a popular node to re-hit in the hash table again.
1172   if( dead->is_Con() ) return;
1173 
1174   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1175   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1176   Node_List  nstack(Thread::current()->resource_area());
1177 
1178   Node *top = igvn->C->top();
1179   nstack.push(dead);
1180 
1181   while (nstack.size() > 0) {
1182     dead = nstack.pop();
1183     if (dead->outcnt() > 0) {
1184       // Keep dead node on stack until all uses are processed.
1185       nstack.push(dead);
1186       // For all Users of the Dead...    ;-)
1187       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1188         Node* use = dead->last_out(k);
1189         igvn->hash_delete(use);       // Yank from hash table prior to mod
1190         if (use->in(0) == dead) {     // Found another dead node
1191           assert (!use->is_Con(), "Control for Con node should be Root node.")
1192           use->set_req(0, top);       // Cut dead edge to prevent processing
1193           nstack.push(use);           // the dead node again.
1194         } else {                      // Else found a not-dead user
1195           for (uint j = 1; j < use->req(); j++) {
1196             if (use->in(j) == dead) { // Turn all dead inputs into TOP
1197               use->set_req(j, top);
1198             }
1199           }
1200           igvn->_worklist.push(use);
1201         }
1202         // Refresh the iterator, since any number of kills might have happened.
1203         k = dead->last_outs(kmin);
1204       }
1205     } else { // (dead->outcnt() == 0)
1206       // Done with outputs.
1207       igvn->hash_delete(dead);
1208       igvn->_worklist.remove(dead);
1209       igvn->set_type(dead, Type::TOP);
1210       if (dead->is_macro()) {
1211         igvn->C->remove_macro_node(dead);
1212       }
1213       // Kill all inputs to the dead guy
1214       for (uint i=0; i < dead->req(); i++) {
1215         Node *n = dead->in(i);      // Get input to dead guy
1216         if (n != NULL && !n->is_top()) { // Input is valid?
1217           dead->set_req(i, top);    // Smash input away
1218           if (n->outcnt() == 0) {   // Input also goes dead?
1219             if (!n->is_Con())
1220               nstack.push(n);       // Clear it out as well
1221           } else if (n->outcnt() == 1 &&
1222                      n->has_special_unique_user()) {
1223             igvn->add_users_to_worklist( n );
1224           } else if (n->outcnt() <= 2 && n->is_Store()) {
1225             // Push store's uses on worklist to enable folding optimization for
1226             // store/store and store/load to the same address.
1227             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1228             // and remove_globally_dead_node().
1229             igvn->add_users_to_worklist( n );
1230           }
1231         }
1232       }
1233     } // (dead->outcnt() == 0)
1234   }   // while (nstack.size() > 0) for outputs
1235   return;
1236 }
1237 
1238 //------------------------------remove_dead_region-----------------------------
1239 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1240   Node *n = in(0);
1241   if( !n ) return false;
1242   // Lost control into this guy?  I.e., it became unreachable?
1243   // Aggressively kill all unreachable code.
1244   if (can_reshape && n->is_top()) {
1245     kill_dead_code(this, phase->is_IterGVN());
1246     return false; // Node is dead.
1247   }
1248 
1249   if( n->is_Region() && n->as_Region()->is_copy() ) {
1250     Node *m = n->nonnull_req();
1251     set_req(0, m);
1252     return true;
1253   }
1254   return false;
1255 }
1256 
1257 //------------------------------Ideal_DU_postCCP-------------------------------
1258 // Idealize graph, using DU info.  Must clone result into new-space
1259 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1260   return NULL;                 // Default to no change
1261 }
1262 
1263 //------------------------------hash-------------------------------------------
1264 // Hash function over Nodes.
1265 uint Node::hash() const {
1266   uint sum = 0;
1267   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1268     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1269   return (sum>>2) + _cnt + Opcode();
1270 }
1271 
1272 //------------------------------cmp--------------------------------------------
1273 // Compare special parts of simple Nodes
1274 uint Node::cmp( const Node &n ) const {
1275   return 1;                     // Must be same
1276 }
1277 
1278 //------------------------------rematerialize-----------------------------------
1279 // Should we clone rather than spill this instruction?
1280 bool Node::rematerialize() const {
1281   if ( is_Mach() )
1282     return this->as_Mach()->rematerialize();
1283   else
1284     return (_flags & Flag_rematerialize) != 0;
1285 }
1286 
1287 //------------------------------needs_anti_dependence_check---------------------
1288 // Nodes which use memory without consuming it, hence need antidependences.
1289 bool Node::needs_anti_dependence_check() const {
1290   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1291     return false;
1292   else
1293     return in(1)->bottom_type()->has_memory();
1294 }
1295 
1296 
1297 // Get an integer constant from a ConNode (or CastIINode).
1298 // Return a default value if there is no apparent constant here.
1299 const TypeInt* Node::find_int_type() const {
1300   if (this->is_Type()) {
1301     return this->as_Type()->type()->isa_int();
1302   } else if (this->is_Con()) {
1303     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1304     return this->bottom_type()->isa_int();
1305   }
1306   return NULL;
1307 }
1308 
1309 // Get a pointer constant from a ConstNode.
1310 // Returns the constant if it is a pointer ConstNode
1311 intptr_t Node::get_ptr() const {
1312   assert( Opcode() == Op_ConP, "" );
1313   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1314 }
1315 
1316 // Get a narrow oop constant from a ConNNode.
1317 intptr_t Node::get_narrowcon() const {
1318   assert( Opcode() == Op_ConN, "" );
1319   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1320 }
1321 
1322 // Get a long constant from a ConNode.
1323 // Return a default value if there is no apparent constant here.
1324 const TypeLong* Node::find_long_type() const {
1325   if (this->is_Type()) {
1326     return this->as_Type()->type()->isa_long();
1327   } else if (this->is_Con()) {
1328     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1329     return this->bottom_type()->isa_long();
1330   }
1331   return NULL;
1332 }
1333 
1334 // Get a double constant from a ConstNode.
1335 // Returns the constant if it is a double ConstNode
1336 jdouble Node::getd() const {
1337   assert( Opcode() == Op_ConD, "" );
1338   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1339 }
1340 
1341 // Get a float constant from a ConstNode.
1342 // Returns the constant if it is a float ConstNode
1343 jfloat Node::getf() const {
1344   assert( Opcode() == Op_ConF, "" );
1345   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1346 }
1347 
1348 #ifndef PRODUCT
1349 
1350 //----------------------------NotANode----------------------------------------
1351 // Used in debugging code to avoid walking across dead or uninitialized edges.
1352 static inline bool NotANode(const Node* n) {
1353   if (n == NULL)                   return true;
1354   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1355   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1356   return false;
1357 }
1358 
1359 
1360 //------------------------------find------------------------------------------
1361 // Find a neighbor of this Node with the given _idx
1362 // If idx is negative, find its absolute value, following both _in and _out.
1363 static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
1364                         VectorSet &old_space, VectorSet &new_space ) {
1365   int node_idx = (idx >= 0) ? idx : -idx;
1366   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1367   // Contained in new_space or old_space?
1368   VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
1369   if( v->test(n->_idx) ) return;
1370   if( (int)n->_idx == node_idx
1371       debug_only(|| n->debug_idx() == node_idx) ) {
1372     if (result != NULL)
1373       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1374                  (uintptr_t)result, (uintptr_t)n, node_idx);
1375     result = n;
1376   }
1377   v->set(n->_idx);
1378   for( uint i=0; i<n->len(); i++ ) {
1379     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1380     find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
1381   }
1382   // Search along forward edges also:
1383   if (idx < 0 && !only_ctrl) {
1384     for( uint j=0; j<n->outcnt(); j++ ) {
1385       find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1386     }
1387   }
1388 #ifdef ASSERT
1389   // Search along debug_orig edges last:
1390   for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
1391     if (NotANode(orig))  break;
1392     find_recur( result, orig, idx, only_ctrl, old_space, new_space );
1393   }
1394 #endif //ASSERT
1395 }
1396 
1397 // call this from debugger:
1398 Node* find_node(Node* n, int idx) {
1399   return n->find(idx);
1400 }
1401 
1402 //------------------------------find-------------------------------------------
1403 Node* Node::find(int idx) const {
1404   ResourceArea *area = Thread::current()->resource_area();
1405   VectorSet old_space(area), new_space(area);
1406   Node* result = NULL;
1407   find_recur( result, (Node*) this, idx, false, old_space, new_space );
1408   return result;
1409 }
1410 
1411 //------------------------------find_ctrl--------------------------------------
1412 // Find an ancestor to this node in the control history with given _idx
1413 Node* Node::find_ctrl(int idx) const {
1414   ResourceArea *area = Thread::current()->resource_area();
1415   VectorSet old_space(area), new_space(area);
1416   Node* result = NULL;
1417   find_recur( result, (Node*) this, idx, true, old_space, new_space );
1418   return result;
1419 }
1420 #endif
1421 
1422 
1423 
1424 #ifndef PRODUCT
1425 int Node::_in_dump_cnt = 0;
1426 
1427 // -----------------------------Name-------------------------------------------
1428 extern const char *NodeClassNames[];
1429 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1430 
1431 static bool is_disconnected(const Node* n) {
1432   for (uint i = 0; i < n->req(); i++) {
1433     if (n->in(i) != NULL)  return false;
1434   }
1435   return true;
1436 }
1437 
1438 #ifdef ASSERT
1439 static void dump_orig(Node* orig) {
1440   Compile* C = Compile::current();
1441   if (NotANode(orig))  orig = NULL;
1442   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1443   if (orig == NULL)  return;
1444   tty->print(" !orig=");
1445   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1446   if (NotANode(fast))  fast = NULL;
1447   while (orig != NULL) {
1448     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1449     if (discon)  tty->print("[");
1450     if (!Compile::current()->node_arena()->contains(orig))
1451       tty->print("o");
1452     tty->print("%d", orig->_idx);
1453     if (discon)  tty->print("]");
1454     orig = orig->debug_orig();
1455     if (NotANode(orig))  orig = NULL;
1456     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1457     if (orig != NULL)  tty->print(",");
1458     if (fast != NULL) {
1459       // Step fast twice for each single step of orig:
1460       fast = fast->debug_orig();
1461       if (NotANode(fast))  fast = NULL;
1462       if (fast != NULL && fast != orig) {
1463         fast = fast->debug_orig();
1464         if (NotANode(fast))  fast = NULL;
1465       }
1466       if (fast == orig) {
1467         tty->print("...");
1468         break;
1469       }
1470     }
1471   }
1472 }
1473 
1474 void Node::set_debug_orig(Node* orig) {
1475   _debug_orig = orig;
1476   if (BreakAtNode == 0)  return;
1477   if (NotANode(orig))  orig = NULL;
1478   int trip = 10;
1479   while (orig != NULL) {
1480     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1481       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1482                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1483       BREAKPOINT;
1484     }
1485     orig = orig->debug_orig();
1486     if (NotANode(orig))  orig = NULL;
1487     if (trip-- <= 0)  break;
1488   }
1489 }
1490 #endif //ASSERT
1491 
1492 //------------------------------dump------------------------------------------
1493 // Dump a Node
1494 void Node::dump() const {
1495   Compile* C = Compile::current();
1496   bool is_new = C->node_arena()->contains(this);
1497   _in_dump_cnt++;
1498   tty->print("%c%d\t%s\t=== ",
1499              is_new ? ' ' : 'o', _idx, Name());
1500 
1501   // Dump the required and precedence inputs
1502   dump_req();
1503   dump_prec();
1504   // Dump the outputs
1505   dump_out();
1506 
1507   if (is_disconnected(this)) {
1508 #ifdef ASSERT
1509     tty->print("  [%d]",debug_idx());
1510     dump_orig(debug_orig());
1511 #endif
1512     tty->cr();
1513     _in_dump_cnt--;
1514     return;                     // don't process dead nodes
1515   }
1516 
1517   // Dump node-specific info
1518   dump_spec(tty);
1519 #ifdef ASSERT
1520   // Dump the non-reset _debug_idx
1521   if( Verbose && WizardMode ) {
1522     tty->print("  [%d]",debug_idx());
1523   }
1524 #endif
1525 
1526   const Type *t = bottom_type();
1527 
1528   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1529     const TypeInstPtr  *toop = t->isa_instptr();
1530     const TypeKlassPtr *tkls = t->isa_klassptr();
1531     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1532     if( klass && klass->is_loaded() && klass->is_interface() ) {
1533       tty->print("  Interface:");
1534     } else if( toop ) {
1535       tty->print("  Oop:");
1536     } else if( tkls ) {
1537       tty->print("  Klass:");
1538     }
1539     t->dump();
1540   } else if( t == Type::MEMORY ) {
1541     tty->print("  Memory:");
1542     MemNode::dump_adr_type(this, adr_type(), tty);
1543   } else if( Verbose || WizardMode ) {
1544     tty->print("  Type:");
1545     if( t ) {
1546       t->dump();
1547     } else {
1548       tty->print("no type");
1549     }
1550   }
1551   if (is_new) {
1552     debug_only(dump_orig(debug_orig()));
1553     Node_Notes* nn = C->node_notes_at(_idx);
1554     if (nn != NULL && !nn->is_clear()) {
1555       if (nn->jvms() != NULL) {
1556         tty->print(" !jvms:");
1557         nn->jvms()->dump_spec(tty);
1558       }
1559     }
1560   }
1561   tty->cr();
1562   _in_dump_cnt--;
1563 }
1564 
1565 //------------------------------dump_req--------------------------------------
1566 void Node::dump_req() const {
1567   // Dump the required input edges
1568   for (uint i = 0; i < req(); i++) {    // For all required inputs
1569     Node* d = in(i);
1570     if (d == NULL) {
1571       tty->print("_ ");
1572     } else if (NotANode(d)) {
1573       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1574     } else {
1575       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1576     }
1577   }
1578 }
1579 
1580 
1581 //------------------------------dump_prec-------------------------------------
1582 void Node::dump_prec() const {
1583   // Dump the precedence edges
1584   int any_prec = 0;
1585   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1586     Node* p = in(i);
1587     if (p != NULL) {
1588       if( !any_prec++ ) tty->print(" |");
1589       if (NotANode(p)) { tty->print("NotANode "); continue; }
1590       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1591     }
1592   }
1593 }
1594 
1595 //------------------------------dump_out--------------------------------------
1596 void Node::dump_out() const {
1597   // Delimit the output edges
1598   tty->print(" [[");
1599   // Dump the output edges
1600   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1601     Node* u = _out[i];
1602     if (u == NULL) {
1603       tty->print("_ ");
1604     } else if (NotANode(u)) {
1605       tty->print("NotANode ");
1606     } else {
1607       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1608     }
1609   }
1610   tty->print("]] ");
1611 }
1612 
1613 //------------------------------dump_nodes-------------------------------------
1614 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1615   Node* s = (Node*)start; // remove const
1616   if (NotANode(s)) return;
1617 
1618   uint depth = (uint)ABS(d);
1619   int direction = d;
1620   Compile* C = Compile::current();
1621   GrowableArray <Node *> nstack(C->unique());
1622 
1623   nstack.append(s);
1624   int begin = 0;
1625   int end = 0;
1626   for(uint i = 0; i < depth; i++) {
1627     end = nstack.length();
1628     for(int j = begin; j < end; j++) {
1629       Node* tp  = nstack.at(j);
1630       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1631       for(uint k = 0; k < limit; k++) {
1632         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1633 
1634         if (NotANode(n))  continue;
1635         // do not recurse through top or the root (would reach unrelated stuff)
1636         if (n->is_Root() || n->is_top())  continue;
1637         if (only_ctrl && !n->is_CFG()) continue;
1638 
1639         bool on_stack = nstack.contains(n);
1640         if (!on_stack) {
1641           nstack.append(n);
1642         }
1643       }
1644     }
1645     begin = end;
1646   }
1647   end = nstack.length();
1648   if (direction > 0) {
1649     for(int j = end-1; j >= 0; j--) {
1650       nstack.at(j)->dump();
1651     }
1652   } else {
1653     for(int j = 0; j < end; j++) {
1654       nstack.at(j)->dump();
1655     }
1656   }
1657 }
1658 
1659 //------------------------------dump-------------------------------------------
1660 void Node::dump(int d) const {
1661   dump_nodes(this, d, false);
1662 }
1663 
1664 //------------------------------dump_ctrl--------------------------------------
1665 // Dump a Node's control history to depth
1666 void Node::dump_ctrl(int d) const {
1667   dump_nodes(this, d, true);
1668 }
1669 
1670 // VERIFICATION CODE
1671 // For each input edge to a node (ie - for each Use-Def edge), verify that
1672 // there is a corresponding Def-Use edge.
1673 //------------------------------verify_edges-----------------------------------
1674 void Node::verify_edges(Unique_Node_List &visited) {
1675   uint i, j, idx;
1676   int  cnt;
1677   Node *n;
1678 
1679   // Recursive termination test
1680   if (visited.member(this))  return;
1681   visited.push(this);
1682 
1683   // Walk over all input edges, checking for correspondence
1684   for( i = 0; i < len(); i++ ) {
1685     n = in(i);
1686     if (n != NULL && !n->is_top()) {
1687       // Count instances of (Node *)this
1688       cnt = 0;
1689       for (idx = 0; idx < n->_outcnt; idx++ ) {
1690         if (n->_out[idx] == (Node *)this)  cnt++;
1691       }
1692       assert( cnt > 0,"Failed to find Def-Use edge." );
1693       // Check for duplicate edges
1694       // walk the input array downcounting the input edges to n
1695       for( j = 0; j < len(); j++ ) {
1696         if( in(j) == n ) cnt--;
1697       }
1698       assert( cnt == 0,"Mismatched edge count.");
1699     } else if (n == NULL) {
1700       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1701     } else {
1702       assert(n->is_top(), "sanity");
1703       // Nothing to check.
1704     }
1705   }
1706   // Recursive walk over all input edges
1707   for( i = 0; i < len(); i++ ) {
1708     n = in(i);
1709     if( n != NULL )
1710       in(i)->verify_edges(visited);
1711   }
1712 }
1713 
1714 //------------------------------verify_recur-----------------------------------
1715 static const Node *unique_top = NULL;
1716 
1717 void Node::verify_recur(const Node *n, int verify_depth,
1718                         VectorSet &old_space, VectorSet &new_space) {
1719   if ( verify_depth == 0 )  return;
1720   if (verify_depth > 0)  --verify_depth;
1721 
1722   Compile* C = Compile::current();
1723 
1724   // Contained in new_space or old_space?
1725   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1726   // Check for visited in the proper space.  Numberings are not unique
1727   // across spaces so we need a separate VectorSet for each space.
1728   if( v->test_set(n->_idx) ) return;
1729 
1730   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1731     if (C->cached_top_node() == NULL)
1732       C->set_cached_top_node((Node*)n);
1733     assert(C->cached_top_node() == n, "TOP node must be unique");
1734   }
1735 
1736   for( uint i = 0; i < n->len(); i++ ) {
1737     Node *x = n->in(i);
1738     if (!x || x->is_top()) continue;
1739 
1740     // Verify my input has a def-use edge to me
1741     if (true /*VerifyDefUse*/) {
1742       // Count use-def edges from n to x
1743       int cnt = 0;
1744       for( uint j = 0; j < n->len(); j++ )
1745         if( n->in(j) == x )
1746           cnt++;
1747       // Count def-use edges from x to n
1748       uint max = x->_outcnt;
1749       for( uint k = 0; k < max; k++ )
1750         if (x->_out[k] == n)
1751           cnt--;
1752       assert( cnt == 0, "mismatched def-use edge counts" );
1753     }
1754 
1755     verify_recur(x, verify_depth, old_space, new_space);
1756   }
1757 
1758 }
1759 
1760 //------------------------------verify-----------------------------------------
1761 // Check Def-Use info for my subgraph
1762 void Node::verify() const {
1763   Compile* C = Compile::current();
1764   Node* old_top = C->cached_top_node();
1765   ResourceMark rm;
1766   ResourceArea *area = Thread::current()->resource_area();
1767   VectorSet old_space(area), new_space(area);
1768   verify_recur(this, -1, old_space, new_space);
1769   C->set_cached_top_node(old_top);
1770 }
1771 #endif
1772 
1773 
1774 //------------------------------walk-------------------------------------------
1775 // Graph walk, with both pre-order and post-order functions
1776 void Node::walk(NFunc pre, NFunc post, void *env) {
1777   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1778   walk_(pre, post, env, visited);
1779 }
1780 
1781 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1782   if( visited.test_set(_idx) ) return;
1783   pre(*this,env);               // Call the pre-order walk function
1784   for( uint i=0; i<_max; i++ )
1785     if( in(i) )                 // Input exists and is not walked?
1786       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1787   post(*this,env);              // Call the post-order walk function
1788 }
1789 
1790 void Node::nop(Node &, void*) {}
1791 
1792 //------------------------------Registers--------------------------------------
1793 // Do we Match on this edge index or not?  Generally false for Control
1794 // and true for everything else.  Weird for calls & returns.
1795 uint Node::match_edge(uint idx) const {
1796   return idx;                   // True for other than index 0 (control)
1797 }
1798 
1799 // Register classes are defined for specific machines
1800 const RegMask &Node::out_RegMask() const {
1801   ShouldNotCallThis();
1802   return *(new RegMask());
1803 }
1804 
1805 const RegMask &Node::in_RegMask(uint) const {
1806   ShouldNotCallThis();
1807   return *(new RegMask());
1808 }
1809 
1810 //=============================================================================
1811 //-----------------------------------------------------------------------------
1812 void Node_Array::reset( Arena *new_arena ) {
1813   _a->Afree(_nodes,_max*sizeof(Node*));
1814   _max   = 0;
1815   _nodes = NULL;
1816   _a     = new_arena;
1817 }
1818 
1819 //------------------------------clear------------------------------------------
1820 // Clear all entries in _nodes to NULL but keep storage
1821 void Node_Array::clear() {
1822   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1823 }
1824 
1825 //-----------------------------------------------------------------------------
1826 void Node_Array::grow( uint i ) {
1827   if( !_max ) {
1828     _max = 1;
1829     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1830     _nodes[0] = NULL;
1831   }
1832   uint old = _max;
1833   while( i >= _max ) _max <<= 1;        // Double to fit
1834   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1835   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1836 }
1837 
1838 //-----------------------------------------------------------------------------
1839 void Node_Array::insert( uint i, Node *n ) {
1840   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1841   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1842   _nodes[i] = n;
1843 }
1844 
1845 //-----------------------------------------------------------------------------
1846 void Node_Array::remove( uint i ) {
1847   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1848   _nodes[_max-1] = NULL;
1849 }
1850 
1851 //-----------------------------------------------------------------------------
1852 void Node_Array::sort( C_sort_func_t func) {
1853   qsort( _nodes, _max, sizeof( Node* ), func );
1854 }
1855 
1856 //-----------------------------------------------------------------------------
1857 void Node_Array::dump() const {
1858 #ifndef PRODUCT
1859   for( uint i = 0; i < _max; i++ ) {
1860     Node *nn = _nodes[i];
1861     if( nn != NULL ) {
1862       tty->print("%5d--> ",i); nn->dump();
1863     }
1864   }
1865 #endif
1866 }
1867 
1868 //--------------------------is_iteratively_computed------------------------------
1869 // Operation appears to be iteratively computed (such as an induction variable)
1870 // It is possible for this operation to return false for a loop-varying
1871 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1872 bool Node::is_iteratively_computed() {
1873   if (ideal_reg()) { // does operation have a result register?
1874     for (uint i = 1; i < req(); i++) {
1875       Node* n = in(i);
1876       if (n != NULL && n->is_Phi()) {
1877         for (uint j = 1; j < n->req(); j++) {
1878           if (n->in(j) == this) {
1879             return true;
1880           }
1881         }
1882       }
1883     }
1884   }
1885   return false;
1886 }
1887 
1888 //--------------------------find_similar------------------------------
1889 // Return a node with opcode "opc" and same inputs as "this" if one can
1890 // be found; Otherwise return NULL;
1891 Node* Node::find_similar(int opc) {
1892   if (req() >= 2) {
1893     Node* def = in(1);
1894     if (def && def->outcnt() >= 2) {
1895       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1896         Node* use = def->fast_out(i);
1897         if (use->Opcode() == opc &&
1898             use->req() == req()) {
1899           uint j;
1900           for (j = 0; j < use->req(); j++) {
1901             if (use->in(j) != in(j)) {
1902               break;
1903             }
1904           }
1905           if (j == use->req()) {
1906             return use;
1907           }
1908         }
1909       }
1910     }
1911   }
1912   return NULL;
1913 }
1914 
1915 
1916 //--------------------------unique_ctrl_out------------------------------
1917 // Return the unique control out if only one. Null if none or more than one.
1918 Node* Node::unique_ctrl_out() {
1919   Node* found = NULL;
1920   for (uint i = 0; i < outcnt(); i++) {
1921     Node* use = raw_out(i);
1922     if (use->is_CFG() && use != this) {
1923       if (found != NULL) return NULL;
1924       found = use;
1925     }
1926   }
1927   return found;
1928 }
1929 
1930 //=============================================================================
1931 //------------------------------yank-------------------------------------------
1932 // Find and remove
1933 void Node_List::yank( Node *n ) {
1934   uint i;
1935   for( i = 0; i < _cnt; i++ )
1936     if( _nodes[i] == n )
1937       break;
1938 
1939   if( i < _cnt )
1940     _nodes[i] = _nodes[--_cnt];
1941 }
1942 
1943 //------------------------------dump-------------------------------------------
1944 void Node_List::dump() const {
1945 #ifndef PRODUCT
1946   for( uint i = 0; i < _cnt; i++ )
1947     if( _nodes[i] ) {
1948       tty->print("%5d--> ",i);
1949       _nodes[i]->dump();
1950     }
1951 #endif
1952 }
1953 
1954 //=============================================================================
1955 //------------------------------remove-----------------------------------------
1956 void Unique_Node_List::remove( Node *n ) {
1957   if( _in_worklist[n->_idx] ) {
1958     for( uint i = 0; i < size(); i++ )
1959       if( _nodes[i] == n ) {
1960         map(i,Node_List::pop());
1961         _in_worklist >>= n->_idx;
1962         return;
1963       }
1964     ShouldNotReachHere();
1965   }
1966 }
1967 
1968 //-----------------------remove_useless_nodes----------------------------------
1969 // Remove useless nodes from worklist
1970 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
1971 
1972   for( uint i = 0; i < size(); ++i ) {
1973     Node *n = at(i);
1974     assert( n != NULL, "Did not expect null entries in worklist");
1975     if( ! useful.test(n->_idx) ) {
1976       _in_worklist >>= n->_idx;
1977       map(i,Node_List::pop());
1978       // Node *replacement = Node_List::pop();
1979       // if( i != size() ) { // Check if removing last entry
1980       //   _nodes[i] = replacement;
1981       // }
1982       --i;  // Visit popped node
1983       // If it was last entry, loop terminates since size() was also reduced
1984     }
1985   }
1986 }
1987 
1988 //=============================================================================
1989 void Node_Stack::grow() {
1990   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
1991   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
1992   size_t max = old_max << 1;             // max * 2
1993   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
1994   _inode_max = _inodes + max;
1995   _inode_top = _inodes + old_top;        // restore _top
1996 }
1997 
1998 //=============================================================================
1999 uint TypeNode::size_of() const { return sizeof(*this); }
2000 #ifndef PRODUCT
2001 void TypeNode::dump_spec(outputStream *st) const {
2002   if( !Verbose && !WizardMode ) {
2003     // standard dump does this in Verbose and WizardMode
2004     st->print(" #"); _type->dump_on(st);
2005   }
2006 }
2007 #endif
2008 uint TypeNode::hash() const {
2009   return Node::hash() + _type->hash();
2010 }
2011 uint TypeNode::cmp( const Node &n ) const
2012 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2013 const Type *TypeNode::bottom_type() const { return _type; }
2014 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2015 
2016 //------------------------------ideal_reg--------------------------------------
2017 uint TypeNode::ideal_reg() const {
2018   return Matcher::base2reg[_type->base()];
2019 }