1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_compile.cpp.incl"
  27 
  28 /// Support for intrinsics.
  29 
  30 // Return the index at which m must be inserted (or already exists).
  31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  33 #ifdef ASSERT
  34   for (int i = 1; i < _intrinsics->length(); i++) {
  35     CallGenerator* cg1 = _intrinsics->at(i-1);
  36     CallGenerator* cg2 = _intrinsics->at(i);
  37     assert(cg1->method() != cg2->method()
  38            ? cg1->method()     < cg2->method()
  39            : cg1->is_virtual() < cg2->is_virtual(),
  40            "compiler intrinsics list must stay sorted");
  41   }
  42 #endif
  43   // Binary search sorted list, in decreasing intervals [lo, hi].
  44   int lo = 0, hi = _intrinsics->length()-1;
  45   while (lo <= hi) {
  46     int mid = (uint)(hi + lo) / 2;
  47     ciMethod* mid_m = _intrinsics->at(mid)->method();
  48     if (m < mid_m) {
  49       hi = mid-1;
  50     } else if (m > mid_m) {
  51       lo = mid+1;
  52     } else {
  53       // look at minor sort key
  54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
  55       if (is_virtual < mid_virt) {
  56         hi = mid-1;
  57       } else if (is_virtual > mid_virt) {
  58         lo = mid+1;
  59       } else {
  60         return mid;  // exact match
  61       }
  62     }
  63   }
  64   return lo;  // inexact match
  65 }
  66 
  67 void Compile::register_intrinsic(CallGenerator* cg) {
  68   if (_intrinsics == NULL) {
  69     _intrinsics = new GrowableArray<CallGenerator*>(60);
  70   }
  71   // This code is stolen from ciObjectFactory::insert.
  72   // Really, GrowableArray should have methods for
  73   // insert_at, remove_at, and binary_search.
  74   int len = _intrinsics->length();
  75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
  76   if (index == len) {
  77     _intrinsics->append(cg);
  78   } else {
  79 #ifdef ASSERT
  80     CallGenerator* oldcg = _intrinsics->at(index);
  81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
  82 #endif
  83     _intrinsics->append(_intrinsics->at(len-1));
  84     int pos;
  85     for (pos = len-2; pos >= index; pos--) {
  86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
  87     }
  88     _intrinsics->at_put(index, cg);
  89   }
  90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
  91 }
  92 
  93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
  94   assert(m->is_loaded(), "don't try this on unloaded methods");
  95   if (_intrinsics != NULL) {
  96     int index = intrinsic_insertion_index(m, is_virtual);
  97     if (index < _intrinsics->length()
  98         && _intrinsics->at(index)->method() == m
  99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 100       return _intrinsics->at(index);
 101     }
 102   }
 103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 104   if (m->intrinsic_id() != vmIntrinsics::_none &&
 105       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 106     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 107     if (cg != NULL) {
 108       // Save it for next time:
 109       register_intrinsic(cg);
 110       return cg;
 111     } else {
 112       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 113     }
 114   }
 115   return NULL;
 116 }
 117 
 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 119 // in library_call.cpp.
 120 
 121 
 122 #ifndef PRODUCT
 123 // statistics gathering...
 124 
 125 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 127 
 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 129   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 130   int oflags = _intrinsic_hist_flags[id];
 131   assert(flags != 0, "what happened?");
 132   if (is_virtual) {
 133     flags |= _intrinsic_virtual;
 134   }
 135   bool changed = (flags != oflags);
 136   if ((flags & _intrinsic_worked) != 0) {
 137     juint count = (_intrinsic_hist_count[id] += 1);
 138     if (count == 1) {
 139       changed = true;           // first time
 140     }
 141     // increment the overall count also:
 142     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 143   }
 144   if (changed) {
 145     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 146       // Something changed about the intrinsic's virtuality.
 147       if ((flags & _intrinsic_virtual) != 0) {
 148         // This is the first use of this intrinsic as a virtual call.
 149         if (oflags != 0) {
 150           // We already saw it as a non-virtual, so note both cases.
 151           flags |= _intrinsic_both;
 152         }
 153       } else if ((oflags & _intrinsic_both) == 0) {
 154         // This is the first use of this intrinsic as a non-virtual
 155         flags |= _intrinsic_both;
 156       }
 157     }
 158     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 159   }
 160   // update the overall flags also:
 161   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 162   return changed;
 163 }
 164 
 165 static char* format_flags(int flags, char* buf) {
 166   buf[0] = 0;
 167   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 168   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 169   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 170   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 171   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 172   if (buf[0] == 0)  strcat(buf, ",");
 173   assert(buf[0] == ',', "must be");
 174   return &buf[1];
 175 }
 176 
 177 void Compile::print_intrinsic_statistics() {
 178   char flagsbuf[100];
 179   ttyLocker ttyl;
 180   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 181   tty->print_cr("Compiler intrinsic usage:");
 182   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 183   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 184   #define PRINT_STAT_LINE(name, c, f) \
 185     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 186   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 187     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 188     int   flags = _intrinsic_hist_flags[id];
 189     juint count = _intrinsic_hist_count[id];
 190     if ((flags | count) != 0) {
 191       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 192     }
 193   }
 194   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 195   if (xtty != NULL)  xtty->tail("statistics");
 196 }
 197 
 198 void Compile::print_statistics() {
 199   { ttyLocker ttyl;
 200     if (xtty != NULL)  xtty->head("statistics type='opto'");
 201     Parse::print_statistics();
 202     PhaseCCP::print_statistics();
 203     PhaseRegAlloc::print_statistics();
 204     Scheduling::print_statistics();
 205     PhasePeephole::print_statistics();
 206     PhaseIdealLoop::print_statistics();
 207     if (xtty != NULL)  xtty->tail("statistics");
 208   }
 209   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 210     // put this under its own <statistics> element.
 211     print_intrinsic_statistics();
 212   }
 213 }
 214 #endif //PRODUCT
 215 
 216 // Support for bundling info
 217 Bundle* Compile::node_bundling(const Node *n) {
 218   assert(valid_bundle_info(n), "oob");
 219   return &_node_bundling_base[n->_idx];
 220 }
 221 
 222 bool Compile::valid_bundle_info(const Node *n) {
 223   return (_node_bundling_limit > n->_idx);
 224 }
 225 
 226 
 227 // Identify all nodes that are reachable from below, useful.
 228 // Use breadth-first pass that records state in a Unique_Node_List,
 229 // recursive traversal is slower.
 230 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 231   int estimated_worklist_size = unique();
 232   useful.map( estimated_worklist_size, NULL );  // preallocate space
 233 
 234   // Initialize worklist
 235   if (root() != NULL)     { useful.push(root()); }
 236   // If 'top' is cached, declare it useful to preserve cached node
 237   if( cached_top_node() ) { useful.push(cached_top_node()); }
 238 
 239   // Push all useful nodes onto the list, breadthfirst
 240   for( uint next = 0; next < useful.size(); ++next ) {
 241     assert( next < unique(), "Unique useful nodes < total nodes");
 242     Node *n  = useful.at(next);
 243     uint max = n->len();
 244     for( uint i = 0; i < max; ++i ) {
 245       Node *m = n->in(i);
 246       if( m == NULL ) continue;
 247       useful.push(m);
 248     }
 249   }
 250 }
 251 
 252 // Disconnect all useless nodes by disconnecting those at the boundary.
 253 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 254   uint next = 0;
 255   while( next < useful.size() ) {
 256     Node *n = useful.at(next++);
 257     // Use raw traversal of out edges since this code removes out edges
 258     int max = n->outcnt();
 259     for (int j = 0; j < max; ++j ) {
 260       Node* child = n->raw_out(j);
 261       if( ! useful.member(child) ) {
 262         assert( !child->is_top() || child != top(),
 263                 "If top is cached in Compile object it is in useful list");
 264         // Only need to remove this out-edge to the useless node
 265         n->raw_del_out(j);
 266         --j;
 267         --max;
 268       }
 269     }
 270     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 271       record_for_igvn( n->unique_out() );
 272     }
 273   }
 274   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 275 }
 276 
 277 //------------------------------frame_size_in_words-----------------------------
 278 // frame_slots in units of words
 279 int Compile::frame_size_in_words() const {
 280   // shift is 0 in LP32 and 1 in LP64
 281   const int shift = (LogBytesPerWord - LogBytesPerInt);
 282   int words = _frame_slots >> shift;
 283   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 284   return words;
 285 }
 286 
 287 // ============================================================================
 288 //------------------------------CompileWrapper---------------------------------
 289 class CompileWrapper : public StackObj {
 290   Compile *const _compile;
 291  public:
 292   CompileWrapper(Compile* compile);
 293 
 294   ~CompileWrapper();
 295 };
 296 
 297 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 298   // the Compile* pointer is stored in the current ciEnv:
 299   ciEnv* env = compile->env();
 300   assert(env == ciEnv::current(), "must already be a ciEnv active");
 301   assert(env->compiler_data() == NULL, "compile already active?");
 302   env->set_compiler_data(compile);
 303   assert(compile == Compile::current(), "sanity");
 304 
 305   compile->set_type_dict(NULL);
 306   compile->set_type_hwm(NULL);
 307   compile->set_type_last_size(0);
 308   compile->set_last_tf(NULL, NULL);
 309   compile->set_indexSet_arena(NULL);
 310   compile->set_indexSet_free_block_list(NULL);
 311   compile->init_type_arena();
 312   Type::Initialize(compile);
 313   _compile->set_scratch_buffer_blob(NULL);
 314   _compile->begin_method();
 315 }
 316 CompileWrapper::~CompileWrapper() {
 317   _compile->end_method();
 318   if (_compile->scratch_buffer_blob() != NULL)
 319     BufferBlob::free(_compile->scratch_buffer_blob());
 320   _compile->env()->set_compiler_data(NULL);
 321 }
 322 
 323 
 324 //----------------------------print_compile_messages---------------------------
 325 void Compile::print_compile_messages() {
 326 #ifndef PRODUCT
 327   // Check if recompiling
 328   if (_subsume_loads == false && PrintOpto) {
 329     // Recompiling without allowing machine instructions to subsume loads
 330     tty->print_cr("*********************************************************");
 331     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 332     tty->print_cr("*********************************************************");
 333   }
 334   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 335     // Recompiling without escape analysis
 336     tty->print_cr("*********************************************************");
 337     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 338     tty->print_cr("*********************************************************");
 339   }
 340   if (env()->break_at_compile()) {
 341     // Open the debugger when compiling this method.
 342     tty->print("### Breaking when compiling: ");
 343     method()->print_short_name();
 344     tty->cr();
 345     BREAKPOINT;
 346   }
 347 
 348   if( PrintOpto ) {
 349     if (is_osr_compilation()) {
 350       tty->print("[OSR]%3d", _compile_id);
 351     } else {
 352       tty->print("%3d", _compile_id);
 353     }
 354   }
 355 #endif
 356 }
 357 
 358 
 359 void Compile::init_scratch_buffer_blob() {
 360   if( scratch_buffer_blob() != NULL )  return;
 361 
 362   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 363   // Cache this BufferBlob for this compile.
 364   ResourceMark rm;
 365   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 366   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 367   // Record the buffer blob for next time.
 368   set_scratch_buffer_blob(blob);
 369   // Have we run out of code space?
 370   if (scratch_buffer_blob() == NULL) {
 371     // Let CompilerBroker disable further compilations.
 372     record_failure("Not enough space for scratch buffer in CodeCache");
 373     return;
 374   }
 375 
 376   // Initialize the relocation buffers
 377   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
 378   set_scratch_locs_memory(locs_buf);
 379 }
 380 
 381 
 382 //-----------------------scratch_emit_size-------------------------------------
 383 // Helper function that computes size by emitting code
 384 uint Compile::scratch_emit_size(const Node* n) {
 385   // Emit into a trash buffer and count bytes emitted.
 386   // This is a pretty expensive way to compute a size,
 387   // but it works well enough if seldom used.
 388   // All common fixed-size instructions are given a size
 389   // method by the AD file.
 390   // Note that the scratch buffer blob and locs memory are
 391   // allocated at the beginning of the compile task, and
 392   // may be shared by several calls to scratch_emit_size.
 393   // The allocation of the scratch buffer blob is particularly
 394   // expensive, since it has to grab the code cache lock.
 395   BufferBlob* blob = this->scratch_buffer_blob();
 396   assert(blob != NULL, "Initialize BufferBlob at start");
 397   assert(blob->size() > MAX_inst_size, "sanity");
 398   relocInfo* locs_buf = scratch_locs_memory();
 399   address blob_begin = blob->instructions_begin();
 400   address blob_end   = (address)locs_buf;
 401   assert(blob->instructions_contains(blob_end), "sanity");
 402   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 403   buf.initialize_consts_size(MAX_const_size);
 404   buf.initialize_stubs_size(MAX_stubs_size);
 405   assert(locs_buf != NULL, "sanity");
 406   int lsize = MAX_locs_size / 2;
 407   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 408   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 409   n->emit(buf, this->regalloc());
 410   return buf.code_size();
 411 }
 412 
 413 
 414 // ============================================================================
 415 //------------------------------Compile standard-------------------------------
 416 debug_only( int Compile::_debug_idx = 100000; )
 417 
 418 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 419 // the continuation bci for on stack replacement.
 420 
 421 
 422 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 423                 : Phase(Compiler),
 424                   _env(ci_env),
 425                   _log(ci_env->log()),
 426                   _compile_id(ci_env->compile_id()),
 427                   _save_argument_registers(false),
 428                   _stub_name(NULL),
 429                   _stub_function(NULL),
 430                   _stub_entry_point(NULL),
 431                   _method(target),
 432                   _entry_bci(osr_bci),
 433                   _initial_gvn(NULL),
 434                   _for_igvn(NULL),
 435                   _warm_calls(NULL),
 436                   _subsume_loads(subsume_loads),
 437                   _do_escape_analysis(do_escape_analysis),
 438                   _failure_reason(NULL),
 439                   _code_buffer("Compile::Fill_buffer"),
 440                   _orig_pc_slot(0),
 441                   _orig_pc_slot_offset_in_bytes(0),
 442                   _node_bundling_limit(0),
 443                   _node_bundling_base(NULL),
 444 #ifndef PRODUCT
 445                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 446                   _printer(IdealGraphPrinter::printer()),
 447 #endif
 448                   _congraph(NULL) {
 449   C = this;
 450 
 451   CompileWrapper cw(this);
 452 #ifndef PRODUCT
 453   if (TimeCompiler2) {
 454     tty->print(" ");
 455     target->holder()->name()->print();
 456     tty->print(".");
 457     target->print_short_name();
 458     tty->print("  ");
 459   }
 460   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 461   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 462   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 463   if (!print_opto_assembly) {
 464     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 465     if (print_assembly && !Disassembler::can_decode()) {
 466       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 467       print_opto_assembly = true;
 468     }
 469   }
 470   set_print_assembly(print_opto_assembly);
 471   set_parsed_irreducible_loop(false);
 472 #endif
 473 
 474   if (ProfileTraps) {
 475     // Make sure the method being compiled gets its own MDO,
 476     // so we can at least track the decompile_count().
 477     method()->build_method_data();
 478   }
 479 
 480   Init(::AliasLevel);
 481 
 482 
 483   print_compile_messages();
 484 
 485   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 486     _ilt = InlineTree::build_inline_tree_root();
 487   else
 488     _ilt = NULL;
 489 
 490   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 491   assert(num_alias_types() >= AliasIdxRaw, "");
 492 
 493 #define MINIMUM_NODE_HASH  1023
 494   // Node list that Iterative GVN will start with
 495   Unique_Node_List for_igvn(comp_arena());
 496   set_for_igvn(&for_igvn);
 497 
 498   // GVN that will be run immediately on new nodes
 499   uint estimated_size = method()->code_size()*4+64;
 500   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 501   PhaseGVN gvn(node_arena(), estimated_size);
 502   set_initial_gvn(&gvn);
 503 
 504   { // Scope for timing the parser
 505     TracePhase t3("parse", &_t_parser, true);
 506 
 507     // Put top into the hash table ASAP.
 508     initial_gvn()->transform_no_reclaim(top());
 509 
 510     // Set up tf(), start(), and find a CallGenerator.
 511     CallGenerator* cg;
 512     if (is_osr_compilation()) {
 513       const TypeTuple *domain = StartOSRNode::osr_domain();
 514       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 515       init_tf(TypeFunc::make(domain, range));
 516       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 517       initial_gvn()->set_type_bottom(s);
 518       init_start(s);
 519       cg = CallGenerator::for_osr(method(), entry_bci());
 520     } else {
 521       // Normal case.
 522       init_tf(TypeFunc::make(method()));
 523       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 524       initial_gvn()->set_type_bottom(s);
 525       init_start(s);
 526       float past_uses = method()->interpreter_invocation_count();
 527       float expected_uses = past_uses;
 528       cg = CallGenerator::for_inline(method(), expected_uses);
 529     }
 530     if (failing())  return;
 531     if (cg == NULL) {
 532       record_method_not_compilable_all_tiers("cannot parse method");
 533       return;
 534     }
 535     JVMState* jvms = build_start_state(start(), tf());
 536     if ((jvms = cg->generate(jvms)) == NULL) {
 537       record_method_not_compilable("method parse failed");
 538       return;
 539     }
 540     GraphKit kit(jvms);
 541 
 542     if (!kit.stopped()) {
 543       // Accept return values, and transfer control we know not where.
 544       // This is done by a special, unique ReturnNode bound to root.
 545       return_values(kit.jvms());
 546     }
 547 
 548     if (kit.has_exceptions()) {
 549       // Any exceptions that escape from this call must be rethrown
 550       // to whatever caller is dynamically above us on the stack.
 551       // This is done by a special, unique RethrowNode bound to root.
 552       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 553     }
 554 
 555     print_method("Before RemoveUseless", 3);
 556 
 557     // Remove clutter produced by parsing.
 558     if (!failing()) {
 559       ResourceMark rm;
 560       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 561     }
 562   }
 563 
 564   // Note:  Large methods are capped off in do_one_bytecode().
 565   if (failing())  return;
 566 
 567   // After parsing, node notes are no longer automagic.
 568   // They must be propagated by register_new_node_with_optimizer(),
 569   // clone(), or the like.
 570   set_default_node_notes(NULL);
 571 
 572   for (;;) {
 573     int successes = Inline_Warm();
 574     if (failing())  return;
 575     if (successes == 0)  break;
 576   }
 577 
 578   // Drain the list.
 579   Finish_Warm();
 580 #ifndef PRODUCT
 581   if (_printer) {
 582     _printer->print_inlining(this);
 583   }
 584 #endif
 585 
 586   if (failing())  return;
 587   NOT_PRODUCT( verify_graph_edges(); )
 588 
 589   // Perform escape analysis
 590   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
 591     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
 592     // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
 593     PhaseGVN* igvn = initial_gvn();
 594     Node* oop_null = igvn->zerocon(T_OBJECT);
 595     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 596 
 597     _congraph = new(comp_arena()) ConnectionGraph(this);
 598     bool has_non_escaping_obj = _congraph->compute_escape();
 599 
 600 #ifndef PRODUCT
 601     if (PrintEscapeAnalysis) {
 602       _congraph->dump();
 603     }
 604 #endif
 605     // Cleanup.
 606     if (oop_null->outcnt() == 0)
 607       igvn->hash_delete(oop_null);
 608     if (noop_null->outcnt() == 0)
 609       igvn->hash_delete(noop_null);
 610 
 611     if (!has_non_escaping_obj) {
 612       _congraph = NULL;
 613     }
 614 
 615     if (failing())  return;
 616   }
 617   // Now optimize
 618   Optimize();
 619   if (failing())  return;
 620   NOT_PRODUCT( verify_graph_edges(); )
 621 
 622 #ifndef PRODUCT
 623   if (PrintIdeal) {
 624     ttyLocker ttyl;  // keep the following output all in one block
 625     // This output goes directly to the tty, not the compiler log.
 626     // To enable tools to match it up with the compilation activity,
 627     // be sure to tag this tty output with the compile ID.
 628     if (xtty != NULL) {
 629       xtty->head("ideal compile_id='%d'%s", compile_id(),
 630                  is_osr_compilation()    ? " compile_kind='osr'" :
 631                  "");
 632     }
 633     root()->dump(9999);
 634     if (xtty != NULL) {
 635       xtty->tail("ideal");
 636     }
 637   }
 638 #endif
 639 
 640   // Now that we know the size of all the monitors we can add a fixed slot
 641   // for the original deopt pc.
 642 
 643   _orig_pc_slot =  fixed_slots();
 644   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 645   set_fixed_slots(next_slot);
 646 
 647   // Now generate code
 648   Code_Gen();
 649   if (failing())  return;
 650 
 651   // Check if we want to skip execution of all compiled code.
 652   {
 653 #ifndef PRODUCT
 654     if (OptoNoExecute) {
 655       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 656       return;
 657     }
 658     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 659 #endif
 660 
 661     if (is_osr_compilation()) {
 662       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 663       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 664     } else {
 665       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 666       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 667     }
 668 
 669     env()->register_method(_method, _entry_bci,
 670                            &_code_offsets,
 671                            _orig_pc_slot_offset_in_bytes,
 672                            code_buffer(),
 673                            frame_size_in_words(), _oop_map_set,
 674                            &_handler_table, &_inc_table,
 675                            compiler,
 676                            env()->comp_level(),
 677                            true, /*has_debug_info*/
 678                            has_unsafe_access()
 679                            );
 680   }
 681 }
 682 
 683 //------------------------------Compile----------------------------------------
 684 // Compile a runtime stub
 685 Compile::Compile( ciEnv* ci_env,
 686                   TypeFunc_generator generator,
 687                   address stub_function,
 688                   const char *stub_name,
 689                   int is_fancy_jump,
 690                   bool pass_tls,
 691                   bool save_arg_registers,
 692                   bool return_pc )
 693   : Phase(Compiler),
 694     _env(ci_env),
 695     _log(ci_env->log()),
 696     _compile_id(-1),
 697     _save_argument_registers(save_arg_registers),
 698     _method(NULL),
 699     _stub_name(stub_name),
 700     _stub_function(stub_function),
 701     _stub_entry_point(NULL),
 702     _entry_bci(InvocationEntryBci),
 703     _initial_gvn(NULL),
 704     _for_igvn(NULL),
 705     _warm_calls(NULL),
 706     _orig_pc_slot(0),
 707     _orig_pc_slot_offset_in_bytes(0),
 708     _subsume_loads(true),
 709     _do_escape_analysis(false),
 710     _failure_reason(NULL),
 711     _code_buffer("Compile::Fill_buffer"),
 712     _node_bundling_limit(0),
 713     _node_bundling_base(NULL),
 714 #ifndef PRODUCT
 715     _trace_opto_output(TraceOptoOutput),
 716     _printer(NULL),
 717 #endif
 718     _congraph(NULL) {
 719   C = this;
 720 
 721 #ifndef PRODUCT
 722   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 723   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 724   set_print_assembly(PrintFrameConverterAssembly);
 725   set_parsed_irreducible_loop(false);
 726 #endif
 727   CompileWrapper cw(this);
 728   Init(/*AliasLevel=*/ 0);
 729   init_tf((*generator)());
 730 
 731   {
 732     // The following is a dummy for the sake of GraphKit::gen_stub
 733     Unique_Node_List for_igvn(comp_arena());
 734     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 735     PhaseGVN gvn(Thread::current()->resource_area(),255);
 736     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 737     gvn.transform_no_reclaim(top());
 738 
 739     GraphKit kit;
 740     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 741   }
 742 
 743   NOT_PRODUCT( verify_graph_edges(); )
 744   Code_Gen();
 745   if (failing())  return;
 746 
 747 
 748   // Entry point will be accessed using compile->stub_entry_point();
 749   if (code_buffer() == NULL) {
 750     Matcher::soft_match_failure();
 751   } else {
 752     if (PrintAssembly && (WizardMode || Verbose))
 753       tty->print_cr("### Stub::%s", stub_name);
 754 
 755     if (!failing()) {
 756       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 757 
 758       // Make the NMethod
 759       // For now we mark the frame as never safe for profile stackwalking
 760       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 761                                                       code_buffer(),
 762                                                       CodeOffsets::frame_never_safe,
 763                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 764                                                       frame_size_in_words(),
 765                                                       _oop_map_set,
 766                                                       save_arg_registers);
 767       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 768 
 769       _stub_entry_point = rs->entry_point();
 770     }
 771   }
 772 }
 773 
 774 #ifndef PRODUCT
 775 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 776   if(PrintOpto && Verbose) {
 777     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 778   }
 779 }
 780 #endif
 781 
 782 void Compile::print_codes() {
 783 }
 784 
 785 //------------------------------Init-------------------------------------------
 786 // Prepare for a single compilation
 787 void Compile::Init(int aliaslevel) {
 788   _unique  = 0;
 789   _regalloc = NULL;
 790 
 791   _tf      = NULL;  // filled in later
 792   _top     = NULL;  // cached later
 793   _matcher = NULL;  // filled in later
 794   _cfg     = NULL;  // filled in later
 795 
 796   set_24_bit_selection_and_mode(Use24BitFP, false);
 797 
 798   _node_note_array = NULL;
 799   _default_node_notes = NULL;
 800 
 801   _immutable_memory = NULL; // filled in at first inquiry
 802 
 803   // Globally visible Nodes
 804   // First set TOP to NULL to give safe behavior during creation of RootNode
 805   set_cached_top_node(NULL);
 806   set_root(new (this, 3) RootNode());
 807   // Now that you have a Root to point to, create the real TOP
 808   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 809   set_recent_alloc(NULL, NULL);
 810 
 811   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 812   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 813   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 814   env()->set_dependencies(new Dependencies(env()));
 815 
 816   _fixed_slots = 0;
 817   set_has_split_ifs(false);
 818   set_has_loops(has_method() && method()->has_loops()); // first approximation
 819   _deopt_happens = true;  // start out assuming the worst
 820   _trap_can_recompile = false;  // no traps emitted yet
 821   _major_progress = true; // start out assuming good things will happen
 822   set_has_unsafe_access(false);
 823   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 824   set_decompile_count(0);
 825 
 826   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 827   // Compilation level related initialization
 828   if (env()->comp_level() == CompLevel_fast_compile) {
 829     set_num_loop_opts(Tier1LoopOptsCount);
 830     set_do_inlining(Tier1Inline != 0);
 831     set_max_inline_size(Tier1MaxInlineSize);
 832     set_freq_inline_size(Tier1FreqInlineSize);
 833     set_do_scheduling(false);
 834     set_do_count_invocations(Tier1CountInvocations);
 835     set_do_method_data_update(Tier1UpdateMethodData);
 836   } else {
 837     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
 838     set_num_loop_opts(LoopOptsCount);
 839     set_do_inlining(Inline);
 840     set_max_inline_size(MaxInlineSize);
 841     set_freq_inline_size(FreqInlineSize);
 842     set_do_scheduling(OptoScheduling);
 843     set_do_count_invocations(false);
 844     set_do_method_data_update(false);
 845   }
 846 
 847   if (debug_info()->recording_non_safepoints()) {
 848     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 849                         (comp_arena(), 8, 0, NULL));
 850     set_default_node_notes(Node_Notes::make(this));
 851   }
 852 
 853   // // -- Initialize types before each compile --
 854   // // Update cached type information
 855   // if( _method && _method->constants() )
 856   //   Type::update_loaded_types(_method, _method->constants());
 857 
 858   // Init alias_type map.
 859   if (!_do_escape_analysis && aliaslevel == 3)
 860     aliaslevel = 2;  // No unique types without escape analysis
 861   _AliasLevel = aliaslevel;
 862   const int grow_ats = 16;
 863   _max_alias_types = grow_ats;
 864   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 865   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 866   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 867   {
 868     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 869   }
 870   // Initialize the first few types.
 871   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 872   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 873   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 874   _num_alias_types = AliasIdxRaw+1;
 875   // Zero out the alias type cache.
 876   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 877   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 878   probe_alias_cache(NULL)->_index = AliasIdxTop;
 879 
 880   _intrinsics = NULL;
 881   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 882   register_library_intrinsics();
 883 }
 884 
 885 //---------------------------init_start----------------------------------------
 886 // Install the StartNode on this compile object.
 887 void Compile::init_start(StartNode* s) {
 888   if (failing())
 889     return; // already failing
 890   assert(s == start(), "");
 891 }
 892 
 893 StartNode* Compile::start() const {
 894   assert(!failing(), "");
 895   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 896     Node* start = root()->fast_out(i);
 897     if( start->is_Start() )
 898       return start->as_Start();
 899   }
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 //-------------------------------immutable_memory-------------------------------------
 905 // Access immutable memory
 906 Node* Compile::immutable_memory() {
 907   if (_immutable_memory != NULL) {
 908     return _immutable_memory;
 909   }
 910   StartNode* s = start();
 911   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 912     Node *p = s->fast_out(i);
 913     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 914       _immutable_memory = p;
 915       return _immutable_memory;
 916     }
 917   }
 918   ShouldNotReachHere();
 919   return NULL;
 920 }
 921 
 922 //----------------------set_cached_top_node------------------------------------
 923 // Install the cached top node, and make sure Node::is_top works correctly.
 924 void Compile::set_cached_top_node(Node* tn) {
 925   if (tn != NULL)  verify_top(tn);
 926   Node* old_top = _top;
 927   _top = tn;
 928   // Calling Node::setup_is_top allows the nodes the chance to adjust
 929   // their _out arrays.
 930   if (_top != NULL)     _top->setup_is_top();
 931   if (old_top != NULL)  old_top->setup_is_top();
 932   assert(_top == NULL || top()->is_top(), "");
 933 }
 934 
 935 #ifndef PRODUCT
 936 void Compile::verify_top(Node* tn) const {
 937   if (tn != NULL) {
 938     assert(tn->is_Con(), "top node must be a constant");
 939     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
 940     assert(tn->in(0) != NULL, "must have live top node");
 941   }
 942 }
 943 #endif
 944 
 945 
 946 ///-------------------Managing Per-Node Debug & Profile Info-------------------
 947 
 948 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
 949   guarantee(arr != NULL, "");
 950   int num_blocks = arr->length();
 951   if (grow_by < num_blocks)  grow_by = num_blocks;
 952   int num_notes = grow_by * _node_notes_block_size;
 953   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
 954   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
 955   while (num_notes > 0) {
 956     arr->append(notes);
 957     notes     += _node_notes_block_size;
 958     num_notes -= _node_notes_block_size;
 959   }
 960   assert(num_notes == 0, "exact multiple, please");
 961 }
 962 
 963 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
 964   if (source == NULL || dest == NULL)  return false;
 965 
 966   if (dest->is_Con())
 967     return false;               // Do not push debug info onto constants.
 968 
 969 #ifdef ASSERT
 970   // Leave a bread crumb trail pointing to the original node:
 971   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
 972     dest->set_debug_orig(source);
 973   }
 974 #endif
 975 
 976   if (node_note_array() == NULL)
 977     return false;               // Not collecting any notes now.
 978 
 979   // This is a copy onto a pre-existing node, which may already have notes.
 980   // If both nodes have notes, do not overwrite any pre-existing notes.
 981   Node_Notes* source_notes = node_notes_at(source->_idx);
 982   if (source_notes == NULL || source_notes->is_clear())  return false;
 983   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
 984   if (dest_notes == NULL || dest_notes->is_clear()) {
 985     return set_node_notes_at(dest->_idx, source_notes);
 986   }
 987 
 988   Node_Notes merged_notes = (*source_notes);
 989   // The order of operations here ensures that dest notes will win...
 990   merged_notes.update_from(dest_notes);
 991   return set_node_notes_at(dest->_idx, &merged_notes);
 992 }
 993 
 994 
 995 //--------------------------allow_range_check_smearing-------------------------
 996 // Gating condition for coalescing similar range checks.
 997 // Sometimes we try 'speculatively' replacing a series of a range checks by a
 998 // single covering check that is at least as strong as any of them.
 999 // If the optimization succeeds, the simplified (strengthened) range check
1000 // will always succeed.  If it fails, we will deopt, and then give up
1001 // on the optimization.
1002 bool Compile::allow_range_check_smearing() const {
1003   // If this method has already thrown a range-check,
1004   // assume it was because we already tried range smearing
1005   // and it failed.
1006   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1007   return !already_trapped;
1008 }
1009 
1010 
1011 //------------------------------flatten_alias_type-----------------------------
1012 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1013   int offset = tj->offset();
1014   TypePtr::PTR ptr = tj->ptr();
1015 
1016   // Known instance (scalarizable allocation) alias only with itself.
1017   bool is_known_inst = tj->isa_oopptr() != NULL &&
1018                        tj->is_oopptr()->is_known_instance();
1019 
1020   // Process weird unsafe references.
1021   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1022     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1023     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1024     tj = TypeOopPtr::BOTTOM;
1025     ptr = tj->ptr();
1026     offset = tj->offset();
1027   }
1028 
1029   // Array pointers need some flattening
1030   const TypeAryPtr *ta = tj->isa_aryptr();
1031   if( ta && is_known_inst ) {
1032     if ( offset != Type::OffsetBot &&
1033          offset > arrayOopDesc::length_offset_in_bytes() ) {
1034       offset = Type::OffsetBot; // Flatten constant access into array body only
1035       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1036     }
1037   } else if( ta && _AliasLevel >= 2 ) {
1038     // For arrays indexed by constant indices, we flatten the alias
1039     // space to include all of the array body.  Only the header, klass
1040     // and array length can be accessed un-aliased.
1041     if( offset != Type::OffsetBot ) {
1042       if( ta->const_oop() ) { // methodDataOop or methodOop
1043         offset = Type::OffsetBot;   // Flatten constant access into array body
1044         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1045       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1046         // range is OK as-is.
1047         tj = ta = TypeAryPtr::RANGE;
1048       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1049         tj = TypeInstPtr::KLASS; // all klass loads look alike
1050         ta = TypeAryPtr::RANGE; // generic ignored junk
1051         ptr = TypePtr::BotPTR;
1052       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1053         tj = TypeInstPtr::MARK;
1054         ta = TypeAryPtr::RANGE; // generic ignored junk
1055         ptr = TypePtr::BotPTR;
1056       } else {                  // Random constant offset into array body
1057         offset = Type::OffsetBot;   // Flatten constant access into array body
1058         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1059       }
1060     }
1061     // Arrays of fixed size alias with arrays of unknown size.
1062     if (ta->size() != TypeInt::POS) {
1063       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1064       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1065     }
1066     // Arrays of known objects become arrays of unknown objects.
1067     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1068       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1069       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1070     }
1071     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1072       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1073       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1074     }
1075     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1076     // cannot be distinguished by bytecode alone.
1077     if (ta->elem() == TypeInt::BOOL) {
1078       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1079       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1080       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1081     }
1082     // During the 2nd round of IterGVN, NotNull castings are removed.
1083     // Make sure the Bottom and NotNull variants alias the same.
1084     // Also, make sure exact and non-exact variants alias the same.
1085     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1086       if (ta->const_oop()) {
1087         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1088       } else {
1089         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1090       }
1091     }
1092   }
1093 
1094   // Oop pointers need some flattening
1095   const TypeInstPtr *to = tj->isa_instptr();
1096   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1097     if( ptr == TypePtr::Constant ) {
1098       // No constant oop pointers (such as Strings); they alias with
1099       // unknown strings.
1100       assert(!is_known_inst, "not scalarizable allocation");
1101       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1102     } else if( is_known_inst ) {
1103       tj = to; // Keep NotNull and klass_is_exact for instance type
1104     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1105       // During the 2nd round of IterGVN, NotNull castings are removed.
1106       // Make sure the Bottom and NotNull variants alias the same.
1107       // Also, make sure exact and non-exact variants alias the same.
1108       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1109     }
1110     // Canonicalize the holder of this field
1111     ciInstanceKlass *k = to->klass()->as_instance_klass();
1112     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1113       // First handle header references such as a LoadKlassNode, even if the
1114       // object's klass is unloaded at compile time (4965979).
1115       if (!is_known_inst) { // Do it only for non-instance types
1116         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1117       }
1118     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1119       to = NULL;
1120       tj = TypeOopPtr::BOTTOM;
1121       offset = tj->offset();
1122     } else {
1123       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1124       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1125         if( is_known_inst ) {
1126           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1127         } else {
1128           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1129         }
1130       }
1131     }
1132   }
1133 
1134   // Klass pointers to object array klasses need some flattening
1135   const TypeKlassPtr *tk = tj->isa_klassptr();
1136   if( tk ) {
1137     // If we are referencing a field within a Klass, we need
1138     // to assume the worst case of an Object.  Both exact and
1139     // inexact types must flatten to the same alias class.
1140     // Since the flattened result for a klass is defined to be
1141     // precisely java.lang.Object, use a constant ptr.
1142     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1143 
1144       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1145                                    TypeKlassPtr::OBJECT->klass(),
1146                                    offset);
1147     }
1148 
1149     ciKlass* klass = tk->klass();
1150     if( klass->is_obj_array_klass() ) {
1151       ciKlass* k = TypeAryPtr::OOPS->klass();
1152       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1153         k = TypeInstPtr::BOTTOM->klass();
1154       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1155     }
1156 
1157     // Check for precise loads from the primary supertype array and force them
1158     // to the supertype cache alias index.  Check for generic array loads from
1159     // the primary supertype array and also force them to the supertype cache
1160     // alias index.  Since the same load can reach both, we need to merge
1161     // these 2 disparate memories into the same alias class.  Since the
1162     // primary supertype array is read-only, there's no chance of confusion
1163     // where we bypass an array load and an array store.
1164     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1165     if( offset == Type::OffsetBot ||
1166         off2 < Klass::primary_super_limit()*wordSize ) {
1167       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1168       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1169     }
1170   }
1171 
1172   // Flatten all Raw pointers together.
1173   if (tj->base() == Type::RawPtr)
1174     tj = TypeRawPtr::BOTTOM;
1175 
1176   if (tj->base() == Type::AnyPtr)
1177     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1178 
1179   // Flatten all to bottom for now
1180   switch( _AliasLevel ) {
1181   case 0:
1182     tj = TypePtr::BOTTOM;
1183     break;
1184   case 1:                       // Flatten to: oop, static, field or array
1185     switch (tj->base()) {
1186     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1187     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1188     case Type::AryPtr:   // do not distinguish arrays at all
1189     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1190     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1191     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1192     default: ShouldNotReachHere();
1193     }
1194     break;
1195   case 2:                       // No collapsing at level 2; keep all splits
1196   case 3:                       // No collapsing at level 3; keep all splits
1197     break;
1198   default:
1199     Unimplemented();
1200   }
1201 
1202   offset = tj->offset();
1203   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1204 
1205   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1206           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1207           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1208           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1209           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1210           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1211           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1212           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1213   assert( tj->ptr() != TypePtr::TopPTR &&
1214           tj->ptr() != TypePtr::AnyNull &&
1215           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1216 //    assert( tj->ptr() != TypePtr::Constant ||
1217 //            tj->base() == Type::RawPtr ||
1218 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1219 
1220   return tj;
1221 }
1222 
1223 void Compile::AliasType::Init(int i, const TypePtr* at) {
1224   _index = i;
1225   _adr_type = at;
1226   _field = NULL;
1227   _is_rewritable = true; // default
1228   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1229   if (atoop != NULL && atoop->is_known_instance()) {
1230     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1231     _general_index = Compile::current()->get_alias_index(gt);
1232   } else {
1233     _general_index = 0;
1234   }
1235 }
1236 
1237 //---------------------------------print_on------------------------------------
1238 #ifndef PRODUCT
1239 void Compile::AliasType::print_on(outputStream* st) {
1240   if (index() < 10)
1241         st->print("@ <%d> ", index());
1242   else  st->print("@ <%d>",  index());
1243   st->print(is_rewritable() ? "   " : " RO");
1244   int offset = adr_type()->offset();
1245   if (offset == Type::OffsetBot)
1246         st->print(" +any");
1247   else  st->print(" +%-3d", offset);
1248   st->print(" in ");
1249   adr_type()->dump_on(st);
1250   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1251   if (field() != NULL && tjp) {
1252     if (tjp->klass()  != field()->holder() ||
1253         tjp->offset() != field()->offset_in_bytes()) {
1254       st->print(" != ");
1255       field()->print();
1256       st->print(" ***");
1257     }
1258   }
1259 }
1260 
1261 void print_alias_types() {
1262   Compile* C = Compile::current();
1263   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1264   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1265     C->alias_type(idx)->print_on(tty);
1266     tty->cr();
1267   }
1268 }
1269 #endif
1270 
1271 
1272 //----------------------------probe_alias_cache--------------------------------
1273 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1274   intptr_t key = (intptr_t) adr_type;
1275   key ^= key >> logAliasCacheSize;
1276   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1277 }
1278 
1279 
1280 //-----------------------------grow_alias_types--------------------------------
1281 void Compile::grow_alias_types() {
1282   const int old_ats  = _max_alias_types; // how many before?
1283   const int new_ats  = old_ats;          // how many more?
1284   const int grow_ats = old_ats+new_ats;  // how many now?
1285   _max_alias_types = grow_ats;
1286   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1287   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1288   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1289   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1290 }
1291 
1292 
1293 //--------------------------------find_alias_type------------------------------
1294 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1295   if (_AliasLevel == 0)
1296     return alias_type(AliasIdxBot);
1297 
1298   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1299   if (ace->_adr_type == adr_type) {
1300     return alias_type(ace->_index);
1301   }
1302 
1303   // Handle special cases.
1304   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1305   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1306 
1307   // Do it the slow way.
1308   const TypePtr* flat = flatten_alias_type(adr_type);
1309 
1310 #ifdef ASSERT
1311   assert(flat == flatten_alias_type(flat), "idempotent");
1312   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1313   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1314     const TypeOopPtr* foop = flat->is_oopptr();
1315     // Scalarizable allocations have exact klass always.
1316     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1317     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1318     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1319   }
1320   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1321 #endif
1322 
1323   int idx = AliasIdxTop;
1324   for (int i = 0; i < num_alias_types(); i++) {
1325     if (alias_type(i)->adr_type() == flat) {
1326       idx = i;
1327       break;
1328     }
1329   }
1330 
1331   if (idx == AliasIdxTop) {
1332     if (no_create)  return NULL;
1333     // Grow the array if necessary.
1334     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1335     // Add a new alias type.
1336     idx = _num_alias_types++;
1337     _alias_types[idx]->Init(idx, flat);
1338     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1339     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1340     if (flat->isa_instptr()) {
1341       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1342           && flat->is_instptr()->klass() == env()->Class_klass())
1343         alias_type(idx)->set_rewritable(false);
1344     }
1345     if (flat->isa_klassptr()) {
1346       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1347         alias_type(idx)->set_rewritable(false);
1348       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1349         alias_type(idx)->set_rewritable(false);
1350       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1351         alias_type(idx)->set_rewritable(false);
1352       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1353         alias_type(idx)->set_rewritable(false);
1354     }
1355     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1356     // but the base pointer type is not distinctive enough to identify
1357     // references into JavaThread.)
1358 
1359     // Check for final instance fields.
1360     const TypeInstPtr* tinst = flat->isa_instptr();
1361     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1362       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1363       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1364       // Set field() and is_rewritable() attributes.
1365       if (field != NULL)  alias_type(idx)->set_field(field);
1366     }
1367     const TypeKlassPtr* tklass = flat->isa_klassptr();
1368     // Check for final static fields.
1369     if (tklass && tklass->klass()->is_instance_klass()) {
1370       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1371       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1372       // Set field() and is_rewritable() attributes.
1373       if (field != NULL)   alias_type(idx)->set_field(field);
1374     }
1375   }
1376 
1377   // Fill the cache for next time.
1378   ace->_adr_type = adr_type;
1379   ace->_index    = idx;
1380   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1381 
1382   // Might as well try to fill the cache for the flattened version, too.
1383   AliasCacheEntry* face = probe_alias_cache(flat);
1384   if (face->_adr_type == NULL) {
1385     face->_adr_type = flat;
1386     face->_index    = idx;
1387     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1388   }
1389 
1390   return alias_type(idx);
1391 }
1392 
1393 
1394 Compile::AliasType* Compile::alias_type(ciField* field) {
1395   const TypeOopPtr* t;
1396   if (field->is_static())
1397     t = TypeKlassPtr::make(field->holder());
1398   else
1399     t = TypeOopPtr::make_from_klass_raw(field->holder());
1400   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1401   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1402   return atp;
1403 }
1404 
1405 
1406 //------------------------------have_alias_type--------------------------------
1407 bool Compile::have_alias_type(const TypePtr* adr_type) {
1408   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1409   if (ace->_adr_type == adr_type) {
1410     return true;
1411   }
1412 
1413   // Handle special cases.
1414   if (adr_type == NULL)             return true;
1415   if (adr_type == TypePtr::BOTTOM)  return true;
1416 
1417   return find_alias_type(adr_type, true) != NULL;
1418 }
1419 
1420 //-----------------------------must_alias--------------------------------------
1421 // True if all values of the given address type are in the given alias category.
1422 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1423   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1424   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1425   if (alias_idx == AliasIdxTop)         return false; // the empty category
1426   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1427 
1428   // the only remaining possible overlap is identity
1429   int adr_idx = get_alias_index(adr_type);
1430   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1431   assert(adr_idx == alias_idx ||
1432          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1433           && adr_type                       != TypeOopPtr::BOTTOM),
1434          "should not be testing for overlap with an unsafe pointer");
1435   return adr_idx == alias_idx;
1436 }
1437 
1438 //------------------------------can_alias--------------------------------------
1439 // True if any values of the given address type are in the given alias category.
1440 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1441   if (alias_idx == AliasIdxTop)         return false; // the empty category
1442   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1443   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1444   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1445 
1446   // the only remaining possible overlap is identity
1447   int adr_idx = get_alias_index(adr_type);
1448   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1449   return adr_idx == alias_idx;
1450 }
1451 
1452 
1453 
1454 //---------------------------pop_warm_call-------------------------------------
1455 WarmCallInfo* Compile::pop_warm_call() {
1456   WarmCallInfo* wci = _warm_calls;
1457   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1458   return wci;
1459 }
1460 
1461 //----------------------------Inline_Warm--------------------------------------
1462 int Compile::Inline_Warm() {
1463   // If there is room, try to inline some more warm call sites.
1464   // %%% Do a graph index compaction pass when we think we're out of space?
1465   if (!InlineWarmCalls)  return 0;
1466 
1467   int calls_made_hot = 0;
1468   int room_to_grow   = NodeCountInliningCutoff - unique();
1469   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1470   int amount_grown   = 0;
1471   WarmCallInfo* call;
1472   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1473     int est_size = (int)call->size();
1474     if (est_size > (room_to_grow - amount_grown)) {
1475       // This one won't fit anyway.  Get rid of it.
1476       call->make_cold();
1477       continue;
1478     }
1479     call->make_hot();
1480     calls_made_hot++;
1481     amount_grown   += est_size;
1482     amount_to_grow -= est_size;
1483   }
1484 
1485   if (calls_made_hot > 0)  set_major_progress();
1486   return calls_made_hot;
1487 }
1488 
1489 
1490 //----------------------------Finish_Warm--------------------------------------
1491 void Compile::Finish_Warm() {
1492   if (!InlineWarmCalls)  return;
1493   if (failing())  return;
1494   if (warm_calls() == NULL)  return;
1495 
1496   // Clean up loose ends, if we are out of space for inlining.
1497   WarmCallInfo* call;
1498   while ((call = pop_warm_call()) != NULL) {
1499     call->make_cold();
1500   }
1501 }
1502 
1503 
1504 //------------------------------Optimize---------------------------------------
1505 // Given a graph, optimize it.
1506 void Compile::Optimize() {
1507   TracePhase t1("optimizer", &_t_optimizer, true);
1508 
1509 #ifndef PRODUCT
1510   if (env()->break_at_compile()) {
1511     BREAKPOINT;
1512   }
1513 
1514 #endif
1515 
1516   ResourceMark rm;
1517   int          loop_opts_cnt;
1518 
1519   NOT_PRODUCT( verify_graph_edges(); )
1520 
1521   print_method("After Parsing");
1522 
1523  {
1524   // Iterative Global Value Numbering, including ideal transforms
1525   // Initialize IterGVN with types and values from parse-time GVN
1526   PhaseIterGVN igvn(initial_gvn());
1527   {
1528     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1529     igvn.optimize();
1530   }
1531 
1532   print_method("Iter GVN 1", 2);
1533 
1534   if (failing())  return;
1535 
1536   // Loop transforms on the ideal graph.  Range Check Elimination,
1537   // peeling, unrolling, etc.
1538 
1539   // Set loop opts counter
1540   loop_opts_cnt = num_loop_opts();
1541   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1542     {
1543       TracePhase t2("idealLoop", &_t_idealLoop, true);
1544       PhaseIdealLoop ideal_loop( igvn, NULL, true );
1545       loop_opts_cnt--;
1546       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1547       if (failing())  return;
1548     }
1549     // Loop opts pass if partial peeling occurred in previous pass
1550     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1551       TracePhase t3("idealLoop", &_t_idealLoop, true);
1552       PhaseIdealLoop ideal_loop( igvn, NULL, false );
1553       loop_opts_cnt--;
1554       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1555       if (failing())  return;
1556     }
1557     // Loop opts pass for loop-unrolling before CCP
1558     if(major_progress() && (loop_opts_cnt > 0)) {
1559       TracePhase t4("idealLoop", &_t_idealLoop, true);
1560       PhaseIdealLoop ideal_loop( igvn, NULL, false );
1561       loop_opts_cnt--;
1562       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1563     }
1564   }
1565   if (failing())  return;
1566 
1567   // Conditional Constant Propagation;
1568   PhaseCCP ccp( &igvn );
1569   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1570   {
1571     TracePhase t2("ccp", &_t_ccp, true);
1572     ccp.do_transform();
1573   }
1574   print_method("PhaseCPP 1", 2);
1575 
1576   assert( true, "Break here to ccp.dump_old2new_map()");
1577 
1578   // Iterative Global Value Numbering, including ideal transforms
1579   {
1580     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1581     igvn = ccp;
1582     igvn.optimize();
1583   }
1584 
1585   print_method("Iter GVN 2", 2);
1586 
1587   if (failing())  return;
1588 
1589   // Loop transforms on the ideal graph.  Range Check Elimination,
1590   // peeling, unrolling, etc.
1591   if(loop_opts_cnt > 0) {
1592     debug_only( int cnt = 0; );
1593     while(major_progress() && (loop_opts_cnt > 0)) {
1594       TracePhase t2("idealLoop", &_t_idealLoop, true);
1595       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1596       PhaseIdealLoop ideal_loop( igvn, NULL, true );
1597       loop_opts_cnt--;
1598       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1599       if (failing())  return;
1600     }
1601   }
1602   {
1603     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1604     PhaseMacroExpand  mex(igvn);
1605     if (mex.expand_macro_nodes()) {
1606       assert(failing(), "must bail out w/ explicit message");
1607       return;
1608     }
1609   }
1610 
1611  } // (End scope of igvn; run destructor if necessary for asserts.)
1612 
1613   // A method with only infinite loops has no edges entering loops from root
1614   {
1615     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1616     if (final_graph_reshaping()) {
1617       assert(failing(), "must bail out w/ explicit message");
1618       return;
1619     }
1620   }
1621 
1622   print_method("Optimize finished", 2);
1623 }
1624 
1625 
1626 //------------------------------Code_Gen---------------------------------------
1627 // Given a graph, generate code for it
1628 void Compile::Code_Gen() {
1629   if (failing())  return;
1630 
1631   // Perform instruction selection.  You might think we could reclaim Matcher
1632   // memory PDQ, but actually the Matcher is used in generating spill code.
1633   // Internals of the Matcher (including some VectorSets) must remain live
1634   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1635   // set a bit in reclaimed memory.
1636 
1637   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1638   // nodes.  Mapping is only valid at the root of each matched subtree.
1639   NOT_PRODUCT( verify_graph_edges(); )
1640 
1641   Node_List proj_list;
1642   Matcher m(proj_list);
1643   _matcher = &m;
1644   {
1645     TracePhase t2("matcher", &_t_matcher, true);
1646     m.match();
1647   }
1648   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1649   // nodes.  Mapping is only valid at the root of each matched subtree.
1650   NOT_PRODUCT( verify_graph_edges(); )
1651 
1652   // If you have too many nodes, or if matching has failed, bail out
1653   check_node_count(0, "out of nodes matching instructions");
1654   if (failing())  return;
1655 
1656   // Build a proper-looking CFG
1657   PhaseCFG cfg(node_arena(), root(), m);
1658   _cfg = &cfg;
1659   {
1660     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1661     cfg.Dominators();
1662     if (failing())  return;
1663 
1664     NOT_PRODUCT( verify_graph_edges(); )
1665 
1666     cfg.Estimate_Block_Frequency();
1667     cfg.GlobalCodeMotion(m,unique(),proj_list);
1668 
1669     print_method("Global code motion", 2);
1670 
1671     if (failing())  return;
1672     NOT_PRODUCT( verify_graph_edges(); )
1673 
1674     debug_only( cfg.verify(); )
1675   }
1676   NOT_PRODUCT( verify_graph_edges(); )
1677 
1678   PhaseChaitin regalloc(unique(),cfg,m);
1679   _regalloc = &regalloc;
1680   {
1681     TracePhase t2("regalloc", &_t_registerAllocation, true);
1682     // Perform any platform dependent preallocation actions.  This is used,
1683     // for example, to avoid taking an implicit null pointer exception
1684     // using the frame pointer on win95.
1685     _regalloc->pd_preallocate_hook();
1686 
1687     // Perform register allocation.  After Chaitin, use-def chains are
1688     // no longer accurate (at spill code) and so must be ignored.
1689     // Node->LRG->reg mappings are still accurate.
1690     _regalloc->Register_Allocate();
1691 
1692     // Bail out if the allocator builds too many nodes
1693     if (failing())  return;
1694   }
1695 
1696   // Prior to register allocation we kept empty basic blocks in case the
1697   // the allocator needed a place to spill.  After register allocation we
1698   // are not adding any new instructions.  If any basic block is empty, we
1699   // can now safely remove it.
1700   {
1701     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1702     cfg.remove_empty();
1703     if (do_freq_based_layout()) {
1704       PhaseBlockLayout layout(cfg);
1705     } else {
1706       cfg.set_loop_alignment();
1707     }
1708     cfg.fixup_flow();
1709   }
1710 
1711   // Perform any platform dependent postallocation verifications.
1712   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1713 
1714   // Apply peephole optimizations
1715   if( OptoPeephole ) {
1716     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1717     PhasePeephole peep( _regalloc, cfg);
1718     peep.do_transform();
1719   }
1720 
1721   // Convert Nodes to instruction bits in a buffer
1722   {
1723     // %%%% workspace merge brought two timers together for one job
1724     TracePhase t2a("output", &_t_output, true);
1725     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1726     Output();
1727   }
1728 
1729   print_method("Final Code");
1730 
1731   // He's dead, Jim.
1732   _cfg     = (PhaseCFG*)0xdeadbeef;
1733   _regalloc = (PhaseChaitin*)0xdeadbeef;
1734 }
1735 
1736 
1737 //------------------------------dump_asm---------------------------------------
1738 // Dump formatted assembly
1739 #ifndef PRODUCT
1740 void Compile::dump_asm(int *pcs, uint pc_limit) {
1741   bool cut_short = false;
1742   tty->print_cr("#");
1743   tty->print("#  ");  _tf->dump();  tty->cr();
1744   tty->print_cr("#");
1745 
1746   // For all blocks
1747   int pc = 0x0;                 // Program counter
1748   char starts_bundle = ' ';
1749   _regalloc->dump_frame();
1750 
1751   Node *n = NULL;
1752   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1753     if (VMThread::should_terminate()) { cut_short = true; break; }
1754     Block *b = _cfg->_blocks[i];
1755     if (b->is_connector() && !Verbose) continue;
1756     n = b->_nodes[0];
1757     if (pcs && n->_idx < pc_limit)
1758       tty->print("%3.3x   ", pcs[n->_idx]);
1759     else
1760       tty->print("      ");
1761     b->dump_head( &_cfg->_bbs );
1762     if (b->is_connector()) {
1763       tty->print_cr("        # Empty connector block");
1764     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1765       tty->print_cr("        # Block is sole successor of call");
1766     }
1767 
1768     // For all instructions
1769     Node *delay = NULL;
1770     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1771       if (VMThread::should_terminate()) { cut_short = true; break; }
1772       n = b->_nodes[j];
1773       if (valid_bundle_info(n)) {
1774         Bundle *bundle = node_bundling(n);
1775         if (bundle->used_in_unconditional_delay()) {
1776           delay = n;
1777           continue;
1778         }
1779         if (bundle->starts_bundle())
1780           starts_bundle = '+';
1781       }
1782 
1783       if (WizardMode) n->dump();
1784 
1785       if( !n->is_Region() &&    // Dont print in the Assembly
1786           !n->is_Phi() &&       // a few noisely useless nodes
1787           !n->is_Proj() &&
1788           !n->is_MachTemp() &&
1789           !n->is_Catch() &&     // Would be nice to print exception table targets
1790           !n->is_MergeMem() &&  // Not very interesting
1791           !n->is_top() &&       // Debug info table constants
1792           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1793           ) {
1794         if (pcs && n->_idx < pc_limit)
1795           tty->print("%3.3x", pcs[n->_idx]);
1796         else
1797           tty->print("   ");
1798         tty->print(" %c ", starts_bundle);
1799         starts_bundle = ' ';
1800         tty->print("\t");
1801         n->format(_regalloc, tty);
1802         tty->cr();
1803       }
1804 
1805       // If we have an instruction with a delay slot, and have seen a delay,
1806       // then back up and print it
1807       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1808         assert(delay != NULL, "no unconditional delay instruction");
1809         if (WizardMode) delay->dump();
1810 
1811         if (node_bundling(delay)->starts_bundle())
1812           starts_bundle = '+';
1813         if (pcs && n->_idx < pc_limit)
1814           tty->print("%3.3x", pcs[n->_idx]);
1815         else
1816           tty->print("   ");
1817         tty->print(" %c ", starts_bundle);
1818         starts_bundle = ' ';
1819         tty->print("\t");
1820         delay->format(_regalloc, tty);
1821         tty->print_cr("");
1822         delay = NULL;
1823       }
1824 
1825       // Dump the exception table as well
1826       if( n->is_Catch() && (Verbose || WizardMode) ) {
1827         // Print the exception table for this offset
1828         _handler_table.print_subtable_for(pc);
1829       }
1830     }
1831 
1832     if (pcs && n->_idx < pc_limit)
1833       tty->print_cr("%3.3x", pcs[n->_idx]);
1834     else
1835       tty->print_cr("");
1836 
1837     assert(cut_short || delay == NULL, "no unconditional delay branch");
1838 
1839   } // End of per-block dump
1840   tty->print_cr("");
1841 
1842   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1843 }
1844 #endif
1845 
1846 //------------------------------Final_Reshape_Counts---------------------------
1847 // This class defines counters to help identify when a method
1848 // may/must be executed using hardware with only 24-bit precision.
1849 struct Final_Reshape_Counts : public StackObj {
1850   int  _call_count;             // count non-inlined 'common' calls
1851   int  _float_count;            // count float ops requiring 24-bit precision
1852   int  _double_count;           // count double ops requiring more precision
1853   int  _java_call_count;        // count non-inlined 'java' calls
1854   VectorSet _visited;           // Visitation flags
1855   Node_List _tests;             // Set of IfNodes & PCTableNodes
1856 
1857   Final_Reshape_Counts() :
1858     _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
1859     _visited( Thread::current()->resource_area() ) { }
1860 
1861   void inc_call_count  () { _call_count  ++; }
1862   void inc_float_count () { _float_count ++; }
1863   void inc_double_count() { _double_count++; }
1864   void inc_java_call_count() { _java_call_count++; }
1865 
1866   int  get_call_count  () const { return _call_count  ; }
1867   int  get_float_count () const { return _float_count ; }
1868   int  get_double_count() const { return _double_count; }
1869   int  get_java_call_count() const { return _java_call_count; }
1870 };
1871 
1872 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1873   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1874   // Make sure the offset goes inside the instance layout.
1875   return k->contains_field_offset(tp->offset());
1876   // Note that OffsetBot and OffsetTop are very negative.
1877 }
1878 
1879 //------------------------------final_graph_reshaping_impl----------------------
1880 // Implement items 1-5 from final_graph_reshaping below.
1881 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
1882 
1883   if ( n->outcnt() == 0 ) return; // dead node
1884   uint nop = n->Opcode();
1885 
1886   // Check for 2-input instruction with "last use" on right input.
1887   // Swap to left input.  Implements item (2).
1888   if( n->req() == 3 &&          // two-input instruction
1889       n->in(1)->outcnt() > 1 && // left use is NOT a last use
1890       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1891       n->in(2)->outcnt() == 1 &&// right use IS a last use
1892       !n->in(2)->is_Con() ) {   // right use is not a constant
1893     // Check for commutative opcode
1894     switch( nop ) {
1895     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1896     case Op_MaxI:  case Op_MinI:
1897     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1898     case Op_AndL:  case Op_XorL:  case Op_OrL:
1899     case Op_AndI:  case Op_XorI:  case Op_OrI: {
1900       // Move "last use" input to left by swapping inputs
1901       n->swap_edges(1, 2);
1902       break;
1903     }
1904     default:
1905       break;
1906     }
1907   }
1908 
1909   // Count FPU ops and common calls, implements item (3)
1910   switch( nop ) {
1911   // Count all float operations that may use FPU
1912   case Op_AddF:
1913   case Op_SubF:
1914   case Op_MulF:
1915   case Op_DivF:
1916   case Op_NegF:
1917   case Op_ModF:
1918   case Op_ConvI2F:
1919   case Op_ConF:
1920   case Op_CmpF:
1921   case Op_CmpF3:
1922   // case Op_ConvL2F: // longs are split into 32-bit halves
1923     fpu.inc_float_count();
1924     break;
1925 
1926   case Op_ConvF2D:
1927   case Op_ConvD2F:
1928     fpu.inc_float_count();
1929     fpu.inc_double_count();
1930     break;
1931 
1932   // Count all double operations that may use FPU
1933   case Op_AddD:
1934   case Op_SubD:
1935   case Op_MulD:
1936   case Op_DivD:
1937   case Op_NegD:
1938   case Op_ModD:
1939   case Op_ConvI2D:
1940   case Op_ConvD2I:
1941   // case Op_ConvL2D: // handled by leaf call
1942   // case Op_ConvD2L: // handled by leaf call
1943   case Op_ConD:
1944   case Op_CmpD:
1945   case Op_CmpD3:
1946     fpu.inc_double_count();
1947     break;
1948   case Op_Opaque1:              // Remove Opaque Nodes before matching
1949   case Op_Opaque2:              // Remove Opaque Nodes before matching
1950     n->subsume_by(n->in(1));
1951     break;
1952   case Op_CallStaticJava:
1953   case Op_CallJava:
1954   case Op_CallDynamicJava:
1955     fpu.inc_java_call_count(); // Count java call site;
1956   case Op_CallRuntime:
1957   case Op_CallLeaf:
1958   case Op_CallLeafNoFP: {
1959     assert( n->is_Call(), "" );
1960     CallNode *call = n->as_Call();
1961     // Count call sites where the FP mode bit would have to be flipped.
1962     // Do not count uncommon runtime calls:
1963     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
1964     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
1965     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
1966       fpu.inc_call_count();   // Count the call site
1967     } else {                  // See if uncommon argument is shared
1968       Node *n = call->in(TypeFunc::Parms);
1969       int nop = n->Opcode();
1970       // Clone shared simple arguments to uncommon calls, item (1).
1971       if( n->outcnt() > 1 &&
1972           !n->is_Proj() &&
1973           nop != Op_CreateEx &&
1974           nop != Op_CheckCastPP &&
1975           nop != Op_DecodeN &&
1976           !n->is_Mem() ) {
1977         Node *x = n->clone();
1978         call->set_req( TypeFunc::Parms, x );
1979       }
1980     }
1981     break;
1982   }
1983 
1984   case Op_StoreD:
1985   case Op_LoadD:
1986   case Op_LoadD_unaligned:
1987     fpu.inc_double_count();
1988     goto handle_mem;
1989   case Op_StoreF:
1990   case Op_LoadF:
1991     fpu.inc_float_count();
1992     goto handle_mem;
1993 
1994   case Op_StoreB:
1995   case Op_StoreC:
1996   case Op_StoreCM:
1997   case Op_StorePConditional:
1998   case Op_StoreI:
1999   case Op_StoreL:
2000   case Op_StoreIConditional:
2001   case Op_StoreLConditional:
2002   case Op_CompareAndSwapI:
2003   case Op_CompareAndSwapL:
2004   case Op_CompareAndSwapP:
2005   case Op_CompareAndSwapN:
2006   case Op_StoreP:
2007   case Op_StoreN:
2008   case Op_LoadB:
2009   case Op_LoadUB:
2010   case Op_LoadUS:
2011   case Op_LoadI:
2012   case Op_LoadUI2L:
2013   case Op_LoadKlass:
2014   case Op_LoadNKlass:
2015   case Op_LoadL:
2016   case Op_LoadL_unaligned:
2017   case Op_LoadPLocked:
2018   case Op_LoadLLocked:
2019   case Op_LoadP:
2020   case Op_LoadN:
2021   case Op_LoadRange:
2022   case Op_LoadS: {
2023   handle_mem:
2024 #ifdef ASSERT
2025     if( VerifyOptoOopOffsets ) {
2026       assert( n->is_Mem(), "" );
2027       MemNode *mem  = (MemNode*)n;
2028       // Check to see if address types have grounded out somehow.
2029       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2030       assert( !tp || oop_offset_is_sane(tp), "" );
2031     }
2032 #endif
2033     break;
2034   }
2035 
2036   case Op_AddP: {               // Assert sane base pointers
2037     Node *addp = n->in(AddPNode::Address);
2038     assert( !addp->is_AddP() ||
2039             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2040             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2041             "Base pointers must match" );
2042 #ifdef _LP64
2043     if (UseCompressedOops &&
2044         addp->Opcode() == Op_ConP &&
2045         addp == n->in(AddPNode::Base) &&
2046         n->in(AddPNode::Offset)->is_Con()) {
2047       // Use addressing with narrow klass to load with offset on x86.
2048       // On sparc loading 32-bits constant and decoding it have less
2049       // instructions (4) then load 64-bits constant (7).
2050       // Do this transformation here since IGVN will convert ConN back to ConP.
2051       const Type* t = addp->bottom_type();
2052       if (t->isa_oopptr()) {
2053         Node* nn = NULL;
2054 
2055         // Look for existing ConN node of the same exact type.
2056         Compile* C = Compile::current();
2057         Node* r  = C->root();
2058         uint cnt = r->outcnt();
2059         for (uint i = 0; i < cnt; i++) {
2060           Node* m = r->raw_out(i);
2061           if (m!= NULL && m->Opcode() == Op_ConN &&
2062               m->bottom_type()->make_ptr() == t) {
2063             nn = m;
2064             break;
2065           }
2066         }
2067         if (nn != NULL) {
2068           // Decode a narrow oop to match address
2069           // [R12 + narrow_oop_reg<<3 + offset]
2070           nn = new (C,  2) DecodeNNode(nn, t);
2071           n->set_req(AddPNode::Base, nn);
2072           n->set_req(AddPNode::Address, nn);
2073           if (addp->outcnt() == 0) {
2074             addp->disconnect_inputs(NULL);
2075           }
2076         }
2077       }
2078     }
2079 #endif
2080     break;
2081   }
2082 
2083 #ifdef _LP64
2084   case Op_CastPP:
2085     if (n->in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks()) {
2086       Compile* C = Compile::current();
2087       Node* in1 = n->in(1);
2088       const Type* t = n->bottom_type();
2089       Node* new_in1 = in1->clone();
2090       new_in1->as_DecodeN()->set_type(t);
2091 
2092       if (!Matcher::clone_shift_expressions) {
2093         //
2094         // x86, ARM and friends can handle 2 adds in addressing mode
2095         // and Matcher can fold a DecodeN node into address by using
2096         // a narrow oop directly and do implicit NULL check in address:
2097         //
2098         // [R12 + narrow_oop_reg<<3 + offset]
2099         // NullCheck narrow_oop_reg
2100         //
2101         // On other platforms (Sparc) we have to keep new DecodeN node and
2102         // use it to do implicit NULL check in address:
2103         //
2104         // decode_not_null narrow_oop_reg, base_reg
2105         // [base_reg + offset]
2106         // NullCheck base_reg
2107         //
2108         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2109         // to keep the information to which NULL check the new DecodeN node
2110         // corresponds to use it as value in implicit_null_check().
2111         //
2112         new_in1->set_req(0, n->in(0));
2113       }
2114 
2115       n->subsume_by(new_in1);
2116       if (in1->outcnt() == 0) {
2117         in1->disconnect_inputs(NULL);
2118       }
2119     }
2120     break;
2121 
2122   case Op_CmpP:
2123     // Do this transformation here to preserve CmpPNode::sub() and
2124     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2125     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2126       Node* in1 = n->in(1);
2127       Node* in2 = n->in(2);
2128       if (!in1->is_DecodeN()) {
2129         in2 = in1;
2130         in1 = n->in(2);
2131       }
2132       assert(in1->is_DecodeN(), "sanity");
2133 
2134       Compile* C = Compile::current();
2135       Node* new_in2 = NULL;
2136       if (in2->is_DecodeN()) {
2137         new_in2 = in2->in(1);
2138       } else if (in2->Opcode() == Op_ConP) {
2139         const Type* t = in2->bottom_type();
2140         if (t == TypePtr::NULL_PTR && Universe::narrow_oop_use_implicit_null_checks()) {
2141           new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2142           //
2143           // This transformation together with CastPP transformation above
2144           // will generated code for implicit NULL checks for compressed oops.
2145           //
2146           // The original code after Optimize()
2147           //
2148           //    LoadN memory, narrow_oop_reg
2149           //    decode narrow_oop_reg, base_reg
2150           //    CmpP base_reg, NULL
2151           //    CastPP base_reg // NotNull
2152           //    Load [base_reg + offset], val_reg
2153           //
2154           // after these transformations will be
2155           //
2156           //    LoadN memory, narrow_oop_reg
2157           //    CmpN narrow_oop_reg, NULL
2158           //    decode_not_null narrow_oop_reg, base_reg
2159           //    Load [base_reg + offset], val_reg
2160           //
2161           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2162           // since narrow oops can be used in debug info now (see the code in
2163           // final_graph_reshaping_walk()).
2164           //
2165           // At the end the code will be matched to
2166           // on x86:
2167           //
2168           //    Load_narrow_oop memory, narrow_oop_reg
2169           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2170           //    NullCheck narrow_oop_reg
2171           //
2172           // and on sparc:
2173           //
2174           //    Load_narrow_oop memory, narrow_oop_reg
2175           //    decode_not_null narrow_oop_reg, base_reg
2176           //    Load [base_reg + offset], val_reg
2177           //    NullCheck base_reg
2178           //
2179         } else if (t->isa_oopptr()) {
2180           new_in2 = ConNode::make(C, t->make_narrowoop());
2181         }
2182       }
2183       if (new_in2 != NULL) {
2184         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2185         n->subsume_by( cmpN );
2186         if (in1->outcnt() == 0) {
2187           in1->disconnect_inputs(NULL);
2188         }
2189         if (in2->outcnt() == 0) {
2190           in2->disconnect_inputs(NULL);
2191         }
2192       }
2193     }
2194     break;
2195 
2196   case Op_DecodeN:
2197     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2198     // DecodeN could be pinned on Sparc where it can't be fold into
2199     // an address expression, see the code for Op_CastPP above.
2200     assert(n->in(0) == NULL || !Matcher::clone_shift_expressions, "no control except on sparc");
2201     break;
2202 
2203   case Op_EncodeP: {
2204     Node* in1 = n->in(1);
2205     if (in1->is_DecodeN()) {
2206       n->subsume_by(in1->in(1));
2207     } else if (in1->Opcode() == Op_ConP) {
2208       Compile* C = Compile::current();
2209       const Type* t = in1->bottom_type();
2210       if (t == TypePtr::NULL_PTR) {
2211         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2212       } else if (t->isa_oopptr()) {
2213         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2214       }
2215     }
2216     if (in1->outcnt() == 0) {
2217       in1->disconnect_inputs(NULL);
2218     }
2219     break;
2220   }
2221 
2222   case Op_Phi:
2223     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2224       // The EncodeP optimization may create Phi with the same edges
2225       // for all paths. It is not handled well by Register Allocator.
2226       Node* unique_in = n->in(1);
2227       assert(unique_in != NULL, "");
2228       uint cnt = n->req();
2229       for (uint i = 2; i < cnt; i++) {
2230         Node* m = n->in(i);
2231         assert(m != NULL, "");
2232         if (unique_in != m)
2233           unique_in = NULL;
2234       }
2235       if (unique_in != NULL) {
2236         n->subsume_by(unique_in);
2237       }
2238     }
2239     break;
2240 
2241 #endif
2242 
2243   case Op_ModI:
2244     if (UseDivMod) {
2245       // Check if a%b and a/b both exist
2246       Node* d = n->find_similar(Op_DivI);
2247       if (d) {
2248         // Replace them with a fused divmod if supported
2249         Compile* C = Compile::current();
2250         if (Matcher::has_match_rule(Op_DivModI)) {
2251           DivModINode* divmod = DivModINode::make(C, n);
2252           d->subsume_by(divmod->div_proj());
2253           n->subsume_by(divmod->mod_proj());
2254         } else {
2255           // replace a%b with a-((a/b)*b)
2256           Node* mult = new (C, 3) MulINode(d, d->in(2));
2257           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2258           n->subsume_by( sub );
2259         }
2260       }
2261     }
2262     break;
2263 
2264   case Op_ModL:
2265     if (UseDivMod) {
2266       // Check if a%b and a/b both exist
2267       Node* d = n->find_similar(Op_DivL);
2268       if (d) {
2269         // Replace them with a fused divmod if supported
2270         Compile* C = Compile::current();
2271         if (Matcher::has_match_rule(Op_DivModL)) {
2272           DivModLNode* divmod = DivModLNode::make(C, n);
2273           d->subsume_by(divmod->div_proj());
2274           n->subsume_by(divmod->mod_proj());
2275         } else {
2276           // replace a%b with a-((a/b)*b)
2277           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2278           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2279           n->subsume_by( sub );
2280         }
2281       }
2282     }
2283     break;
2284 
2285   case Op_Load16B:
2286   case Op_Load8B:
2287   case Op_Load4B:
2288   case Op_Load8S:
2289   case Op_Load4S:
2290   case Op_Load2S:
2291   case Op_Load8C:
2292   case Op_Load4C:
2293   case Op_Load2C:
2294   case Op_Load4I:
2295   case Op_Load2I:
2296   case Op_Load2L:
2297   case Op_Load4F:
2298   case Op_Load2F:
2299   case Op_Load2D:
2300   case Op_Store16B:
2301   case Op_Store8B:
2302   case Op_Store4B:
2303   case Op_Store8C:
2304   case Op_Store4C:
2305   case Op_Store2C:
2306   case Op_Store4I:
2307   case Op_Store2I:
2308   case Op_Store2L:
2309   case Op_Store4F:
2310   case Op_Store2F:
2311   case Op_Store2D:
2312     break;
2313 
2314   case Op_PackB:
2315   case Op_PackS:
2316   case Op_PackC:
2317   case Op_PackI:
2318   case Op_PackF:
2319   case Op_PackL:
2320   case Op_PackD:
2321     if (n->req()-1 > 2) {
2322       // Replace many operand PackNodes with a binary tree for matching
2323       PackNode* p = (PackNode*) n;
2324       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2325       n->subsume_by(btp);
2326     }
2327     break;
2328   default:
2329     assert( !n->is_Call(), "" );
2330     assert( !n->is_Mem(), "" );
2331     break;
2332   }
2333 
2334   // Collect CFG split points
2335   if (n->is_MultiBranch())
2336     fpu._tests.push(n);
2337 }
2338 
2339 //------------------------------final_graph_reshaping_walk---------------------
2340 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2341 // requires that the walk visits a node's inputs before visiting the node.
2342 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
2343   ResourceArea *area = Thread::current()->resource_area();
2344   Unique_Node_List sfpt(area);
2345 
2346   fpu._visited.set(root->_idx); // first, mark node as visited
2347   uint cnt = root->req();
2348   Node *n = root;
2349   uint  i = 0;
2350   while (true) {
2351     if (i < cnt) {
2352       // Place all non-visited non-null inputs onto stack
2353       Node* m = n->in(i);
2354       ++i;
2355       if (m != NULL && !fpu._visited.test_set(m->_idx)) {
2356         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2357           sfpt.push(m);
2358         cnt = m->req();
2359         nstack.push(n, i); // put on stack parent and next input's index
2360         n = m;
2361         i = 0;
2362       }
2363     } else {
2364       // Now do post-visit work
2365       final_graph_reshaping_impl( n, fpu );
2366       if (nstack.is_empty())
2367         break;             // finished
2368       n = nstack.node();   // Get node from stack
2369       cnt = n->req();
2370       i = nstack.index();
2371       nstack.pop();        // Shift to the next node on stack
2372     }
2373   }
2374 
2375   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2376   // It could be done for an uncommon traps or any safepoints/calls
2377   // if the DecodeN node is referenced only in a debug info.
2378   while (sfpt.size() > 0) {
2379     n = sfpt.pop();
2380     JVMState *jvms = n->as_SafePoint()->jvms();
2381     assert(jvms != NULL, "sanity");
2382     int start = jvms->debug_start();
2383     int end   = n->req();
2384     bool is_uncommon = (n->is_CallStaticJava() &&
2385                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2386     for (int j = start; j < end; j++) {
2387       Node* in = n->in(j);
2388       if (in->is_DecodeN()) {
2389         bool safe_to_skip = true;
2390         if (!is_uncommon ) {
2391           // Is it safe to skip?
2392           for (uint i = 0; i < in->outcnt(); i++) {
2393             Node* u = in->raw_out(i);
2394             if (!u->is_SafePoint() ||
2395                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2396               safe_to_skip = false;
2397             }
2398           }
2399         }
2400         if (safe_to_skip) {
2401           n->set_req(j, in->in(1));
2402         }
2403         if (in->outcnt() == 0) {
2404           in->disconnect_inputs(NULL);
2405         }
2406       }
2407     }
2408   }
2409 }
2410 
2411 //------------------------------final_graph_reshaping--------------------------
2412 // Final Graph Reshaping.
2413 //
2414 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2415 //     and not commoned up and forced early.  Must come after regular
2416 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2417 //     inputs to Loop Phis; these will be split by the allocator anyways.
2418 //     Remove Opaque nodes.
2419 // (2) Move last-uses by commutative operations to the left input to encourage
2420 //     Intel update-in-place two-address operations and better register usage
2421 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2422 //     calls canonicalizing them back.
2423 // (3) Count the number of double-precision FP ops, single-precision FP ops
2424 //     and call sites.  On Intel, we can get correct rounding either by
2425 //     forcing singles to memory (requires extra stores and loads after each
2426 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2427 //     clearing the mode bit around call sites).  The mode bit is only used
2428 //     if the relative frequency of single FP ops to calls is low enough.
2429 //     This is a key transform for SPEC mpeg_audio.
2430 // (4) Detect infinite loops; blobs of code reachable from above but not
2431 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2432 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2433 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2434 //     Detection is by looking for IfNodes where only 1 projection is
2435 //     reachable from below or CatchNodes missing some targets.
2436 // (5) Assert for insane oop offsets in debug mode.
2437 
2438 bool Compile::final_graph_reshaping() {
2439   // an infinite loop may have been eliminated by the optimizer,
2440   // in which case the graph will be empty.
2441   if (root()->req() == 1) {
2442     record_method_not_compilable("trivial infinite loop");
2443     return true;
2444   }
2445 
2446   Final_Reshape_Counts fpu;
2447 
2448   // Visit everybody reachable!
2449   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2450   Node_Stack nstack(unique() >> 1);
2451   final_graph_reshaping_walk(nstack, root(), fpu);
2452 
2453   // Check for unreachable (from below) code (i.e., infinite loops).
2454   for( uint i = 0; i < fpu._tests.size(); i++ ) {
2455     MultiBranchNode *n = fpu._tests[i]->as_MultiBranch();
2456     // Get number of CFG targets.
2457     // Note that PCTables include exception targets after calls.
2458     uint required_outcnt = n->required_outcnt();
2459     if (n->outcnt() != required_outcnt) {
2460       // Check for a few special cases.  Rethrow Nodes never take the
2461       // 'fall-thru' path, so expected kids is 1 less.
2462       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2463         if (n->in(0)->in(0)->is_Call()) {
2464           CallNode *call = n->in(0)->in(0)->as_Call();
2465           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2466             required_outcnt--;      // Rethrow always has 1 less kid
2467           } else if (call->req() > TypeFunc::Parms &&
2468                      call->is_CallDynamicJava()) {
2469             // Check for null receiver. In such case, the optimizer has
2470             // detected that the virtual call will always result in a null
2471             // pointer exception. The fall-through projection of this CatchNode
2472             // will not be populated.
2473             Node *arg0 = call->in(TypeFunc::Parms);
2474             if (arg0->is_Type() &&
2475                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2476               required_outcnt--;
2477             }
2478           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2479                      call->req() > TypeFunc::Parms+1 &&
2480                      call->is_CallStaticJava()) {
2481             // Check for negative array length. In such case, the optimizer has
2482             // detected that the allocation attempt will always result in an
2483             // exception. There is no fall-through projection of this CatchNode .
2484             Node *arg1 = call->in(TypeFunc::Parms+1);
2485             if (arg1->is_Type() &&
2486                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2487               required_outcnt--;
2488             }
2489           }
2490         }
2491       }
2492       // Recheck with a better notion of 'required_outcnt'
2493       if (n->outcnt() != required_outcnt) {
2494         record_method_not_compilable("malformed control flow");
2495         return true;            // Not all targets reachable!
2496       }
2497     }
2498     // Check that I actually visited all kids.  Unreached kids
2499     // must be infinite loops.
2500     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2501       if (!fpu._visited.test(n->fast_out(j)->_idx)) {
2502         record_method_not_compilable("infinite loop");
2503         return true;            // Found unvisited kid; must be unreach
2504       }
2505   }
2506 
2507   // If original bytecodes contained a mixture of floats and doubles
2508   // check if the optimizer has made it homogenous, item (3).
2509   if( Use24BitFPMode && Use24BitFP &&
2510       fpu.get_float_count() > 32 &&
2511       fpu.get_double_count() == 0 &&
2512       (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
2513     set_24_bit_selection_and_mode( false,  true );
2514   }
2515 
2516   set_has_java_calls(fpu.get_java_call_count() > 0);
2517 
2518   // No infinite loops, no reason to bail out.
2519   return false;
2520 }
2521 
2522 //-----------------------------too_many_traps----------------------------------
2523 // Report if there are too many traps at the current method and bci.
2524 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2525 bool Compile::too_many_traps(ciMethod* method,
2526                              int bci,
2527                              Deoptimization::DeoptReason reason) {
2528   ciMethodData* md = method->method_data();
2529   if (md->is_empty()) {
2530     // Assume the trap has not occurred, or that it occurred only
2531     // because of a transient condition during start-up in the interpreter.
2532     return false;
2533   }
2534   if (md->has_trap_at(bci, reason) != 0) {
2535     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2536     // Also, if there are multiple reasons, or if there is no per-BCI record,
2537     // assume the worst.
2538     if (log())
2539       log()->elem("observe trap='%s' count='%d'",
2540                   Deoptimization::trap_reason_name(reason),
2541                   md->trap_count(reason));
2542     return true;
2543   } else {
2544     // Ignore method/bci and see if there have been too many globally.
2545     return too_many_traps(reason, md);
2546   }
2547 }
2548 
2549 // Less-accurate variant which does not require a method and bci.
2550 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2551                              ciMethodData* logmd) {
2552  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2553     // Too many traps globally.
2554     // Note that we use cumulative trap_count, not just md->trap_count.
2555     if (log()) {
2556       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2557       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2558                   Deoptimization::trap_reason_name(reason),
2559                   mcount, trap_count(reason));
2560     }
2561     return true;
2562   } else {
2563     // The coast is clear.
2564     return false;
2565   }
2566 }
2567 
2568 //--------------------------too_many_recompiles--------------------------------
2569 // Report if there are too many recompiles at the current method and bci.
2570 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2571 // Is not eager to return true, since this will cause the compiler to use
2572 // Action_none for a trap point, to avoid too many recompilations.
2573 bool Compile::too_many_recompiles(ciMethod* method,
2574                                   int bci,
2575                                   Deoptimization::DeoptReason reason) {
2576   ciMethodData* md = method->method_data();
2577   if (md->is_empty()) {
2578     // Assume the trap has not occurred, or that it occurred only
2579     // because of a transient condition during start-up in the interpreter.
2580     return false;
2581   }
2582   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2583   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2584   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2585   Deoptimization::DeoptReason per_bc_reason
2586     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2587   if ((per_bc_reason == Deoptimization::Reason_none
2588        || md->has_trap_at(bci, reason) != 0)
2589       // The trap frequency measure we care about is the recompile count:
2590       && md->trap_recompiled_at(bci)
2591       && md->overflow_recompile_count() >= bc_cutoff) {
2592     // Do not emit a trap here if it has already caused recompilations.
2593     // Also, if there are multiple reasons, or if there is no per-BCI record,
2594     // assume the worst.
2595     if (log())
2596       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2597                   Deoptimization::trap_reason_name(reason),
2598                   md->trap_count(reason),
2599                   md->overflow_recompile_count());
2600     return true;
2601   } else if (trap_count(reason) != 0
2602              && decompile_count() >= m_cutoff) {
2603     // Too many recompiles globally, and we have seen this sort of trap.
2604     // Use cumulative decompile_count, not just md->decompile_count.
2605     if (log())
2606       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2607                   Deoptimization::trap_reason_name(reason),
2608                   md->trap_count(reason), trap_count(reason),
2609                   md->decompile_count(), decompile_count());
2610     return true;
2611   } else {
2612     // The coast is clear.
2613     return false;
2614   }
2615 }
2616 
2617 
2618 #ifndef PRODUCT
2619 //------------------------------verify_graph_edges---------------------------
2620 // Walk the Graph and verify that there is a one-to-one correspondence
2621 // between Use-Def edges and Def-Use edges in the graph.
2622 void Compile::verify_graph_edges(bool no_dead_code) {
2623   if (VerifyGraphEdges) {
2624     ResourceArea *area = Thread::current()->resource_area();
2625     Unique_Node_List visited(area);
2626     // Call recursive graph walk to check edges
2627     _root->verify_edges(visited);
2628     if (no_dead_code) {
2629       // Now make sure that no visited node is used by an unvisited node.
2630       bool dead_nodes = 0;
2631       Unique_Node_List checked(area);
2632       while (visited.size() > 0) {
2633         Node* n = visited.pop();
2634         checked.push(n);
2635         for (uint i = 0; i < n->outcnt(); i++) {
2636           Node* use = n->raw_out(i);
2637           if (checked.member(use))  continue;  // already checked
2638           if (visited.member(use))  continue;  // already in the graph
2639           if (use->is_Con())        continue;  // a dead ConNode is OK
2640           // At this point, we have found a dead node which is DU-reachable.
2641           if (dead_nodes++ == 0)
2642             tty->print_cr("*** Dead nodes reachable via DU edges:");
2643           use->dump(2);
2644           tty->print_cr("---");
2645           checked.push(use);  // No repeats; pretend it is now checked.
2646         }
2647       }
2648       assert(dead_nodes == 0, "using nodes must be reachable from root");
2649     }
2650   }
2651 }
2652 #endif
2653 
2654 // The Compile object keeps track of failure reasons separately from the ciEnv.
2655 // This is required because there is not quite a 1-1 relation between the
2656 // ciEnv and its compilation task and the Compile object.  Note that one
2657 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2658 // to backtrack and retry without subsuming loads.  Other than this backtracking
2659 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2660 // by the logic in C2Compiler.
2661 void Compile::record_failure(const char* reason) {
2662   if (log() != NULL) {
2663     log()->elem("failure reason='%s' phase='compile'", reason);
2664   }
2665   if (_failure_reason == NULL) {
2666     // Record the first failure reason.
2667     _failure_reason = reason;
2668   }
2669   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2670     C->print_method(_failure_reason);
2671   }
2672   _root = NULL;  // flush the graph, too
2673 }
2674 
2675 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2676   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2677 {
2678   if (dolog) {
2679     C = Compile::current();
2680     _log = C->log();
2681   } else {
2682     C = NULL;
2683     _log = NULL;
2684   }
2685   if (_log != NULL) {
2686     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2687     _log->stamp();
2688     _log->end_head();
2689   }
2690 }
2691 
2692 Compile::TracePhase::~TracePhase() {
2693   if (_log != NULL) {
2694     _log->done("phase nodes='%d'", C->unique());
2695   }
2696 }