1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_graphKit.cpp.incl"
  27 
  28 //----------------------------GraphKit-----------------------------------------
  29 // Main utility constructor.
  30 GraphKit::GraphKit(JVMState* jvms)
  31   : Phase(Phase::Parser),
  32     _env(C->env()),
  33     _gvn(*C->initial_gvn())
  34 {
  35   _exceptions = jvms->map()->next_exception();
  36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  37   set_jvms(jvms);
  38 }
  39 
  40 // Private constructor for parser.
  41 GraphKit::GraphKit()
  42   : Phase(Phase::Parser),
  43     _env(C->env()),
  44     _gvn(*C->initial_gvn())
  45 {
  46   _exceptions = NULL;
  47   set_map(NULL);
  48   debug_only(_sp = -99);
  49   debug_only(set_bci(-99));
  50 }
  51 
  52 
  53 
  54 //---------------------------clean_stack---------------------------------------
  55 // Clear away rubbish from the stack area of the JVM state.
  56 // This destroys any arguments that may be waiting on the stack.
  57 void GraphKit::clean_stack(int from_sp) {
  58   SafePointNode* map      = this->map();
  59   JVMState*      jvms     = this->jvms();
  60   int            stk_size = jvms->stk_size();
  61   int            stkoff   = jvms->stkoff();
  62   Node*          top      = this->top();
  63   for (int i = from_sp; i < stk_size; i++) {
  64     if (map->in(stkoff + i) != top) {
  65       map->set_req(stkoff + i, top);
  66     }
  67   }
  68 }
  69 
  70 
  71 //--------------------------------sync_jvms-----------------------------------
  72 // Make sure our current jvms agrees with our parse state.
  73 JVMState* GraphKit::sync_jvms() const {
  74   JVMState* jvms = this->jvms();
  75   jvms->set_bci(bci());       // Record the new bci in the JVMState
  76   jvms->set_sp(sp());         // Record the new sp in the JVMState
  77   assert(jvms_in_sync(), "jvms is now in sync");
  78   return jvms;
  79 }
  80 
  81 #ifdef ASSERT
  82 bool GraphKit::jvms_in_sync() const {
  83   Parse* parse = is_Parse();
  84   if (parse == NULL) {
  85     if (bci() !=      jvms()->bci())          return false;
  86     if (sp()  != (int)jvms()->sp())           return false;
  87     return true;
  88   }
  89   if (jvms()->method() != parse->method())    return false;
  90   if (jvms()->bci()    != parse->bci())       return false;
  91   int jvms_sp = jvms()->sp();
  92   if (jvms_sp          != parse->sp())        return false;
  93   int jvms_depth = jvms()->depth();
  94   if (jvms_depth       != parse->depth())     return false;
  95   return true;
  96 }
  97 
  98 // Local helper checks for special internal merge points
  99 // used to accumulate and merge exception states.
 100 // They are marked by the region's in(0) edge being the map itself.
 101 // Such merge points must never "escape" into the parser at large,
 102 // until they have been handed to gvn.transform.
 103 static bool is_hidden_merge(Node* reg) {
 104   if (reg == NULL)  return false;
 105   if (reg->is_Phi()) {
 106     reg = reg->in(0);
 107     if (reg == NULL)  return false;
 108   }
 109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 110 }
 111 
 112 void GraphKit::verify_map() const {
 113   if (map() == NULL)  return;  // null map is OK
 114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 117 }
 118 
 119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 122 }
 123 #endif
 124 
 125 //---------------------------stop_and_kill_map---------------------------------
 126 // Set _map to NULL, signalling a stop to further bytecode execution.
 127 // First smash the current map's control to a constant, to mark it dead.
 128 void GraphKit::stop_and_kill_map() {
 129   SafePointNode* dead_map = stop();
 130   if (dead_map != NULL) {
 131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
 132     assert(dead_map->is_killed(), "must be so marked");
 133   }
 134 }
 135 
 136 
 137 //--------------------------------stopped--------------------------------------
 138 // Tell if _map is NULL, or control is top.
 139 bool GraphKit::stopped() {
 140   if (map() == NULL)           return true;
 141   else if (control() == top()) return true;
 142   else                         return false;
 143 }
 144 
 145 
 146 //-----------------------------has_ex_handler----------------------------------
 147 // Tell if this method or any caller method has exception handlers.
 148 bool GraphKit::has_ex_handler() {
 149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 151       return true;
 152     }
 153   }
 154   return false;
 155 }
 156 
 157 //------------------------------save_ex_oop------------------------------------
 158 // Save an exception without blowing stack contents or other JVM state.
 159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 161   ex_map->add_req(ex_oop);
 162   debug_only(verify_exception_state(ex_map));
 163 }
 164 
 165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 167   Node* ex_oop = ex_map->in(ex_map->req()-1);
 168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 169   return ex_oop;
 170 }
 171 
 172 //-----------------------------saved_ex_oop------------------------------------
 173 // Recover a saved exception from its map.
 174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 175   return common_saved_ex_oop(ex_map, false);
 176 }
 177 
 178 //--------------------------clear_saved_ex_oop---------------------------------
 179 // Erase a previously saved exception from its map.
 180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 181   return common_saved_ex_oop(ex_map, true);
 182 }
 183 
 184 #ifdef ASSERT
 185 //---------------------------has_saved_ex_oop----------------------------------
 186 // Erase a previously saved exception from its map.
 187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 188   return ex_map->req() == ex_map->jvms()->endoff()+1;
 189 }
 190 #endif
 191 
 192 //-------------------------make_exception_state--------------------------------
 193 // Turn the current JVM state into an exception state, appending the ex_oop.
 194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 195   sync_jvms();
 196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 197   set_saved_ex_oop(ex_map, ex_oop);
 198   return ex_map;
 199 }
 200 
 201 
 202 //--------------------------add_exception_state--------------------------------
 203 // Add an exception to my list of exceptions.
 204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 205   if (ex_map == NULL || ex_map->control() == top()) {
 206     return;
 207   }
 208 #ifdef ASSERT
 209   verify_exception_state(ex_map);
 210   if (has_exceptions()) {
 211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 212   }
 213 #endif
 214 
 215   // If there is already an exception of exactly this type, merge with it.
 216   // In particular, null-checks and other low-level exceptions common up here.
 217   Node*       ex_oop  = saved_ex_oop(ex_map);
 218   const Type* ex_type = _gvn.type(ex_oop);
 219   if (ex_oop == top()) {
 220     // No action needed.
 221     return;
 222   }
 223   assert(ex_type->isa_instptr(), "exception must be an instance");
 224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 226     // We check sp also because call bytecodes can generate exceptions
 227     // both before and after arguments are popped!
 228     if (ex_type2 == ex_type
 229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 230       combine_exception_states(ex_map, e2);
 231       return;
 232     }
 233   }
 234 
 235   // No pre-existing exception of the same type.  Chain it on the list.
 236   push_exception_state(ex_map);
 237 }
 238 
 239 //-----------------------add_exception_states_from-----------------------------
 240 void GraphKit::add_exception_states_from(JVMState* jvms) {
 241   SafePointNode* ex_map = jvms->map()->next_exception();
 242   if (ex_map != NULL) {
 243     jvms->map()->set_next_exception(NULL);
 244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 245       next_map = ex_map->next_exception();
 246       ex_map->set_next_exception(NULL);
 247       add_exception_state(ex_map);
 248     }
 249   }
 250 }
 251 
 252 //-----------------------transfer_exceptions_into_jvms-------------------------
 253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 254   if (map() == NULL) {
 255     // We need a JVMS to carry the exceptions, but the map has gone away.
 256     // Create a scratch JVMS, cloned from any of the exception states...
 257     if (has_exceptions()) {
 258       _map = _exceptions;
 259       _map = clone_map();
 260       _map->set_next_exception(NULL);
 261       clear_saved_ex_oop(_map);
 262       debug_only(verify_map());
 263     } else {
 264       // ...or created from scratch
 265       JVMState* jvms = new (C) JVMState(_method, NULL);
 266       jvms->set_bci(_bci);
 267       jvms->set_sp(_sp);
 268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
 269       set_jvms(jvms);
 270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 271       set_all_memory(top());
 272       while (map()->req() < jvms->endoff())  map()->add_req(top());
 273     }
 274     // (This is a kludge, in case you didn't notice.)
 275     set_control(top());
 276   }
 277   JVMState* jvms = sync_jvms();
 278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 279   jvms->map()->set_next_exception(_exceptions);
 280   _exceptions = NULL;   // done with this set of exceptions
 281   return jvms;
 282 }
 283 
 284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 285   assert(is_hidden_merge(dstphi), "must be a special merge node");
 286   assert(is_hidden_merge(srcphi), "must be a special merge node");
 287   uint limit = srcphi->req();
 288   for (uint i = PhiNode::Input; i < limit; i++) {
 289     dstphi->add_req(srcphi->in(i));
 290   }
 291 }
 292 static inline void add_one_req(Node* dstphi, Node* src) {
 293   assert(is_hidden_merge(dstphi), "must be a special merge node");
 294   assert(!is_hidden_merge(src), "must not be a special merge node");
 295   dstphi->add_req(src);
 296 }
 297 
 298 //-----------------------combine_exception_states------------------------------
 299 // This helper function combines exception states by building phis on a
 300 // specially marked state-merging region.  These regions and phis are
 301 // untransformed, and can build up gradually.  The region is marked by
 302 // having a control input of its exception map, rather than NULL.  Such
 303 // regions do not appear except in this function, and in use_exception_state.
 304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 305   if (failing())  return;  // dying anyway...
 306   JVMState* ex_jvms = ex_map->_jvms;
 307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 311   assert(ex_map->req() == phi_map->req(), "matching maps");
 312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 313   Node*         hidden_merge_mark = root();
 314   Node*         region  = phi_map->control();
 315   MergeMemNode* phi_mem = phi_map->merged_memory();
 316   MergeMemNode* ex_mem  = ex_map->merged_memory();
 317   if (region->in(0) != hidden_merge_mark) {
 318     // The control input is not (yet) a specially-marked region in phi_map.
 319     // Make it so, and build some phis.
 320     region = new (C, 2) RegionNode(2);
 321     _gvn.set_type(region, Type::CONTROL);
 322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 323     region->init_req(1, phi_map->control());
 324     phi_map->set_control(region);
 325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 326     record_for_igvn(io_phi);
 327     _gvn.set_type(io_phi, Type::ABIO);
 328     phi_map->set_i_o(io_phi);
 329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 330       Node* m = mms.memory();
 331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 332       record_for_igvn(m_phi);
 333       _gvn.set_type(m_phi, Type::MEMORY);
 334       mms.set_memory(m_phi);
 335     }
 336   }
 337 
 338   // Either or both of phi_map and ex_map might already be converted into phis.
 339   Node* ex_control = ex_map->control();
 340   // if there is special marking on ex_map also, we add multiple edges from src
 341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 342   // how wide was the destination phi_map, originally?
 343   uint orig_width = region->req();
 344 
 345   if (add_multiple) {
 346     add_n_reqs(region, ex_control);
 347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 348   } else {
 349     // ex_map has no merges, so we just add single edges everywhere
 350     add_one_req(region, ex_control);
 351     add_one_req(phi_map->i_o(), ex_map->i_o());
 352   }
 353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 354     if (mms.is_empty()) {
 355       // get a copy of the base memory, and patch some inputs into it
 356       const TypePtr* adr_type = mms.adr_type(C);
 357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 359       mms.set_memory(phi);
 360       // Prepare to append interesting stuff onto the newly sliced phi:
 361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 362     }
 363     // Append stuff from ex_map:
 364     if (add_multiple) {
 365       add_n_reqs(mms.memory(), mms.memory2());
 366     } else {
 367       add_one_req(mms.memory(), mms.memory2());
 368     }
 369   }
 370   uint limit = ex_map->req();
 371   for (uint i = TypeFunc::Parms; i < limit; i++) {
 372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 373     if (i == tos)  i = ex_jvms->monoff();
 374     Node* src = ex_map->in(i);
 375     Node* dst = phi_map->in(i);
 376     if (src != dst) {
 377       PhiNode* phi;
 378       if (dst->in(0) != region) {
 379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 380         record_for_igvn(phi);
 381         _gvn.set_type(phi, phi->type());
 382         phi_map->set_req(i, dst);
 383         // Prepare to append interesting stuff onto the new phi:
 384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 385       } else {
 386         assert(dst->is_Phi(), "nobody else uses a hidden region");
 387         phi = (PhiNode*)dst;
 388       }
 389       if (add_multiple && src->in(0) == ex_control) {
 390         // Both are phis.
 391         add_n_reqs(dst, src);
 392       } else {
 393         while (dst->req() < region->req())  add_one_req(dst, src);
 394       }
 395       const Type* srctype = _gvn.type(src);
 396       if (phi->type() != srctype) {
 397         const Type* dsttype = phi->type()->meet(srctype);
 398         if (phi->type() != dsttype) {
 399           phi->set_type(dsttype);
 400           _gvn.set_type(phi, dsttype);
 401         }
 402       }
 403     }
 404   }
 405 }
 406 
 407 //--------------------------use_exception_state--------------------------------
 408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 409   if (failing()) { stop(); return top(); }
 410   Node* region = phi_map->control();
 411   Node* hidden_merge_mark = root();
 412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 413   Node* ex_oop = clear_saved_ex_oop(phi_map);
 414   if (region->in(0) == hidden_merge_mark) {
 415     // Special marking for internal ex-states.  Process the phis now.
 416     region->set_req(0, region);  // now it's an ordinary region
 417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 418     // Note: Setting the jvms also sets the bci and sp.
 419     set_control(_gvn.transform(region));
 420     uint tos = jvms()->stkoff() + sp();
 421     for (uint i = 1; i < tos; i++) {
 422       Node* x = phi_map->in(i);
 423       if (x->in(0) == region) {
 424         assert(x->is_Phi(), "expected a special phi");
 425         phi_map->set_req(i, _gvn.transform(x));
 426       }
 427     }
 428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 429       Node* x = mms.memory();
 430       if (x->in(0) == region) {
 431         assert(x->is_Phi(), "nobody else uses a hidden region");
 432         mms.set_memory(_gvn.transform(x));
 433       }
 434     }
 435     if (ex_oop->in(0) == region) {
 436       assert(ex_oop->is_Phi(), "expected a special phi");
 437       ex_oop = _gvn.transform(ex_oop);
 438     }
 439   } else {
 440     set_jvms(phi_map->jvms());
 441   }
 442 
 443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 445   return ex_oop;
 446 }
 447 
 448 //---------------------------------java_bc-------------------------------------
 449 Bytecodes::Code GraphKit::java_bc() const {
 450   ciMethod* method = this->method();
 451   int       bci    = this->bci();
 452   if (method != NULL && bci != InvocationEntryBci)
 453     return method->java_code_at_bci(bci);
 454   else
 455     return Bytecodes::_illegal;
 456 }
 457 
 458 //------------------------------builtin_throw----------------------------------
 459 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 460   bool must_throw = true;
 461 
 462   if (env()->jvmti_can_post_exceptions()) {
 463     // Do not try anything fancy if we're notifying the VM on every throw.
 464     // Cf. case Bytecodes::_athrow in parse2.cpp.
 465     uncommon_trap(reason, Deoptimization::Action_none,
 466                   (ciKlass*)NULL, (char*)NULL, must_throw);
 467     return;
 468   }
 469 
 470   // If this particular condition has not yet happened at this
 471   // bytecode, then use the uncommon trap mechanism, and allow for
 472   // a future recompilation if several traps occur here.
 473   // If the throw is hot, try to use a more complicated inline mechanism
 474   // which keeps execution inside the compiled code.
 475   bool treat_throw_as_hot = false;
 476   ciMethodData* md = method()->method_data();
 477 
 478   if (ProfileTraps) {
 479     if (too_many_traps(reason)) {
 480       treat_throw_as_hot = true;
 481     }
 482     // (If there is no MDO at all, assume it is early in
 483     // execution, and that any deopts are part of the
 484     // startup transient, and don't need to be remembered.)
 485 
 486     // Also, if there is a local exception handler, treat all throws
 487     // as hot if there has been at least one in this method.
 488     if (C->trap_count(reason) != 0
 489         && method()->method_data()->trap_count(reason) != 0
 490         && has_ex_handler()) {
 491         treat_throw_as_hot = true;
 492     }
 493   }
 494 
 495   // If this throw happens frequently, an uncommon trap might cause
 496   // a performance pothole.  If there is a local exception handler,
 497   // and if this particular bytecode appears to be deoptimizing often,
 498   // let us handle the throw inline, with a preconstructed instance.
 499   // Note:   If the deopt count has blown up, the uncommon trap
 500   // runtime is going to flush this nmethod, not matter what.
 501   if (treat_throw_as_hot
 502       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 503     // If the throw is local, we use a pre-existing instance and
 504     // punt on the backtrace.  This would lead to a missing backtrace
 505     // (a repeat of 4292742) if the backtrace object is ever asked
 506     // for its backtrace.
 507     // Fixing this remaining case of 4292742 requires some flavor of
 508     // escape analysis.  Leave that for the future.
 509     ciInstance* ex_obj = NULL;
 510     switch (reason) {
 511     case Deoptimization::Reason_null_check:
 512       ex_obj = env()->NullPointerException_instance();
 513       break;
 514     case Deoptimization::Reason_div0_check:
 515       ex_obj = env()->ArithmeticException_instance();
 516       break;
 517     case Deoptimization::Reason_range_check:
 518       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 519       break;
 520     case Deoptimization::Reason_class_check:
 521       if (java_bc() == Bytecodes::_aastore) {
 522         ex_obj = env()->ArrayStoreException_instance();
 523       } else {
 524         ex_obj = env()->ClassCastException_instance();
 525       }
 526       break;
 527     }
 528     if (failing()) { stop(); return; }  // exception allocation might fail
 529     if (ex_obj != NULL) {
 530       // Cheat with a preallocated exception object.
 531       if (C->log() != NULL)
 532         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 533                        Deoptimization::trap_reason_name(reason));
 534       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 535       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 536 
 537       // Clear the detail message of the preallocated exception object.
 538       // Weblogic sometimes mutates the detail message of exceptions
 539       // using reflection.
 540       int offset = java_lang_Throwable::get_detailMessage_offset();
 541       const TypePtr* adr_typ = ex_con->add_offset(offset);
 542 
 543       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 544       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
 545 
 546       add_exception_state(make_exception_state(ex_node));
 547       return;
 548     }
 549   }
 550 
 551   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 552   // It won't be much cheaper than bailing to the interp., since we'll
 553   // have to pass up all the debug-info, and the runtime will have to
 554   // create the stack trace.
 555 
 556   // Usual case:  Bail to interpreter.
 557   // Reserve the right to recompile if we haven't seen anything yet.
 558 
 559   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 560   if (treat_throw_as_hot
 561       && (method()->method_data()->trap_recompiled_at(bci())
 562           || C->too_many_traps(reason))) {
 563     // We cannot afford to take more traps here.  Suffer in the interpreter.
 564     if (C->log() != NULL)
 565       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 566                      Deoptimization::trap_reason_name(reason),
 567                      C->trap_count(reason));
 568     action = Deoptimization::Action_none;
 569   }
 570 
 571   // "must_throw" prunes the JVM state to include only the stack, if there
 572   // are no local exception handlers.  This should cut down on register
 573   // allocation time and code size, by drastically reducing the number
 574   // of in-edges on the call to the uncommon trap.
 575 
 576   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 577 }
 578 
 579 
 580 //----------------------------PreserveJVMState---------------------------------
 581 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 582   debug_only(kit->verify_map());
 583   _kit    = kit;
 584   _map    = kit->map();   // preserve the map
 585   _sp     = kit->sp();
 586   kit->set_map(clone_map ? kit->clone_map() : NULL);
 587 #ifdef ASSERT
 588   _bci    = kit->bci();
 589   Parse* parser = kit->is_Parse();
 590   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 591   _block  = block;
 592 #endif
 593 }
 594 PreserveJVMState::~PreserveJVMState() {
 595   GraphKit* kit = _kit;
 596 #ifdef ASSERT
 597   assert(kit->bci() == _bci, "bci must not shift");
 598   Parse* parser = kit->is_Parse();
 599   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 600   assert(block == _block,    "block must not shift");
 601 #endif
 602   kit->set_map(_map);
 603   kit->set_sp(_sp);
 604 }
 605 
 606 
 607 //-----------------------------BuildCutout-------------------------------------
 608 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 609   : PreserveJVMState(kit)
 610 {
 611   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 612   SafePointNode* outer_map = _map;   // preserved map is caller's
 613   SafePointNode* inner_map = kit->map();
 614   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 615   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
 616   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
 617 }
 618 BuildCutout::~BuildCutout() {
 619   GraphKit* kit = _kit;
 620   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 621 }
 622 
 623 //---------------------------PreserveReexecuteState----------------------------
 624 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 625   _kit    =    kit;
 626   _sp     =    kit->sp();
 627   _reexecute = kit->jvms()->_reexecute;
 628 }
 629 PreserveReexecuteState::~PreserveReexecuteState() {
 630   _kit->jvms()->_reexecute = _reexecute;
 631   _kit->set_sp(_sp);
 632 }
 633 
 634 //------------------------------clone_map--------------------------------------
 635 // Implementation of PreserveJVMState
 636 //
 637 // Only clone_map(...) here. If this function is only used in the
 638 // PreserveJVMState class we may want to get rid of this extra
 639 // function eventually and do it all there.
 640 
 641 SafePointNode* GraphKit::clone_map() {
 642   if (map() == NULL)  return NULL;
 643 
 644   // Clone the memory edge first
 645   Node* mem = MergeMemNode::make(C, map()->memory());
 646   gvn().set_type_bottom(mem);
 647 
 648   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 649   JVMState* jvms = this->jvms();
 650   JVMState* clonejvms = jvms->clone_shallow(C);
 651   clonemap->set_memory(mem);
 652   clonemap->set_jvms(clonejvms);
 653   clonejvms->set_map(clonemap);
 654   record_for_igvn(clonemap);
 655   gvn().set_type_bottom(clonemap);
 656   return clonemap;
 657 }
 658 
 659 
 660 //-----------------------------set_map_clone-----------------------------------
 661 void GraphKit::set_map_clone(SafePointNode* m) {
 662   _map = m;
 663   _map = clone_map();
 664   _map->set_next_exception(NULL);
 665   debug_only(verify_map());
 666 }
 667 
 668 
 669 //----------------------------kill_dead_locals---------------------------------
 670 // Detect any locals which are known to be dead, and force them to top.
 671 void GraphKit::kill_dead_locals() {
 672   // Consult the liveness information for the locals.  If any
 673   // of them are unused, then they can be replaced by top().  This
 674   // should help register allocation time and cut down on the size
 675   // of the deoptimization information.
 676 
 677   // This call is made from many of the bytecode handling
 678   // subroutines called from the Big Switch in do_one_bytecode.
 679   // Every bytecode which might include a slow path is responsible
 680   // for killing its dead locals.  The more consistent we
 681   // are about killing deads, the fewer useless phis will be
 682   // constructed for them at various merge points.
 683 
 684   // bci can be -1 (InvocationEntryBci).  We return the entry
 685   // liveness for the method.
 686 
 687   if (method() == NULL || method()->code_size() == 0) {
 688     // We are building a graph for a call to a native method.
 689     // All locals are live.
 690     return;
 691   }
 692 
 693   ResourceMark rm;
 694 
 695   // Consult the liveness information for the locals.  If any
 696   // of them are unused, then they can be replaced by top().  This
 697   // should help register allocation time and cut down on the size
 698   // of the deoptimization information.
 699   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 700 
 701   int len = (int)live_locals.size();
 702   assert(len <= jvms()->loc_size(), "too many live locals");
 703   for (int local = 0; local < len; local++) {
 704     if (!live_locals.at(local)) {
 705       set_local(local, top());
 706     }
 707   }
 708 }
 709 
 710 #ifdef ASSERT
 711 //-------------------------dead_locals_are_killed------------------------------
 712 // Return true if all dead locals are set to top in the map.
 713 // Used to assert "clean" debug info at various points.
 714 bool GraphKit::dead_locals_are_killed() {
 715   if (method() == NULL || method()->code_size() == 0) {
 716     // No locals need to be dead, so all is as it should be.
 717     return true;
 718   }
 719 
 720   // Make sure somebody called kill_dead_locals upstream.
 721   ResourceMark rm;
 722   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 723     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 724     SafePointNode* map = jvms->map();
 725     ciMethod* method = jvms->method();
 726     int       bci    = jvms->bci();
 727     if (jvms == this->jvms()) {
 728       bci = this->bci();  // it might not yet be synched
 729     }
 730     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 731     int len = (int)live_locals.size();
 732     if (!live_locals.is_valid() || len == 0)
 733       // This method is trivial, or is poisoned by a breakpoint.
 734       return true;
 735     assert(len == jvms->loc_size(), "live map consistent with locals map");
 736     for (int local = 0; local < len; local++) {
 737       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 738         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 739           tty->print_cr("Zombie local %d: ", local);
 740           jvms->dump();
 741         }
 742         return false;
 743       }
 744     }
 745   }
 746   return true;
 747 }
 748 
 749 #endif //ASSERT
 750 
 751 // Helper function for enforcing certain bytecodes to reexecute if
 752 // deoptimization happens
 753 static bool should_reexecute_implied_by_bytecode(JVMState *jvms) {
 754   ciMethod* cur_method = jvms->method();
 755   int       cur_bci   = jvms->bci();
 756   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 757     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 758     return Interpreter::bytecode_should_reexecute(code);
 759   } else
 760     return false;
 761 }
 762 
 763 // Helper function for adding JVMState and debug information to node
 764 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 765   // Add the safepoint edges to the call (or other safepoint).
 766 
 767   // Make sure dead locals are set to top.  This
 768   // should help register allocation time and cut down on the size
 769   // of the deoptimization information.
 770   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 771 
 772   // Walk the inline list to fill in the correct set of JVMState's
 773   // Also fill in the associated edges for each JVMState.
 774 
 775   JVMState* youngest_jvms = sync_jvms();
 776 
 777   // Do we need debug info here?  If it is a SafePoint and this method
 778   // cannot de-opt, then we do NOT need any debug info.
 779   bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
 780 
 781   // If we are guaranteed to throw, we can prune everything but the
 782   // input to the current bytecode.
 783   bool can_prune_locals = false;
 784   uint stack_slots_not_pruned = 0;
 785   int inputs = 0, depth = 0;
 786   if (must_throw) {
 787     assert(method() == youngest_jvms->method(), "sanity");
 788     if (compute_stack_effects(inputs, depth)) {
 789       can_prune_locals = true;
 790       stack_slots_not_pruned = inputs;
 791     }
 792   }
 793 
 794   if (env()->jvmti_can_examine_or_deopt_anywhere()) {
 795     // At any safepoint, this method can get breakpointed, which would
 796     // then require an immediate deoptimization.
 797     full_info = true;
 798     can_prune_locals = false;  // do not prune locals
 799     stack_slots_not_pruned = 0;
 800   }
 801 
 802   // do not scribble on the input jvms
 803   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 804   call->set_jvms(out_jvms); // Start jvms list for call node
 805 
 806   // For a known set of bytecodes, the interpreter should reexecute them if
 807   // deoptimization happens. We set the reexecute state for them here
 808   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 809       should_reexecute_implied_by_bytecode(out_jvms)) {
 810     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 811   }
 812 
 813   // Presize the call:
 814   debug_only(uint non_debug_edges = call->req());
 815   call->add_req_batch(top(), youngest_jvms->debug_depth());
 816   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 817 
 818   // Set up edges so that the call looks like this:
 819   //  Call [state:] ctl io mem fptr retadr
 820   //       [parms:] parm0 ... parmN
 821   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 822   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 823   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 824   // Note that caller debug info precedes callee debug info.
 825 
 826   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 827   uint debug_ptr = call->req();
 828 
 829   // Loop over the map input edges associated with jvms, add them
 830   // to the call node, & reset all offsets to match call node array.
 831   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 832     uint debug_end   = debug_ptr;
 833     uint debug_start = debug_ptr - in_jvms->debug_size();
 834     debug_ptr = debug_start;  // back up the ptr
 835 
 836     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 837     uint j, k, l;
 838     SafePointNode* in_map = in_jvms->map();
 839     out_jvms->set_map(call);
 840 
 841     if (can_prune_locals) {
 842       assert(in_jvms->method() == out_jvms->method(), "sanity");
 843       // If the current throw can reach an exception handler in this JVMS,
 844       // then we must keep everything live that can reach that handler.
 845       // As a quick and dirty approximation, we look for any handlers at all.
 846       if (in_jvms->method()->has_exception_handlers()) {
 847         can_prune_locals = false;
 848       }
 849     }
 850 
 851     // Add the Locals
 852     k = in_jvms->locoff();
 853     l = in_jvms->loc_size();
 854     out_jvms->set_locoff(p);
 855     if (full_info && !can_prune_locals) {
 856       for (j = 0; j < l; j++)
 857         call->set_req(p++, in_map->in(k+j));
 858     } else {
 859       p += l;  // already set to top above by add_req_batch
 860     }
 861 
 862     // Add the Expression Stack
 863     k = in_jvms->stkoff();
 864     l = in_jvms->sp();
 865     out_jvms->set_stkoff(p);
 866     if (full_info && !can_prune_locals) {
 867       for (j = 0; j < l; j++)
 868         call->set_req(p++, in_map->in(k+j));
 869     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 870       // Divide stack into {S0,...,S1}, where S0 is set to top.
 871       uint s1 = stack_slots_not_pruned;
 872       stack_slots_not_pruned = 0;  // for next iteration
 873       if (s1 > l)  s1 = l;
 874       uint s0 = l - s1;
 875       p += s0;  // skip the tops preinstalled by add_req_batch
 876       for (j = s0; j < l; j++)
 877         call->set_req(p++, in_map->in(k+j));
 878     } else {
 879       p += l;  // already set to top above by add_req_batch
 880     }
 881 
 882     // Add the Monitors
 883     k = in_jvms->monoff();
 884     l = in_jvms->mon_size();
 885     out_jvms->set_monoff(p);
 886     for (j = 0; j < l; j++)
 887       call->set_req(p++, in_map->in(k+j));
 888 
 889     // Copy any scalar object fields.
 890     k = in_jvms->scloff();
 891     l = in_jvms->scl_size();
 892     out_jvms->set_scloff(p);
 893     for (j = 0; j < l; j++)
 894       call->set_req(p++, in_map->in(k+j));
 895 
 896     // Finish the new jvms.
 897     out_jvms->set_endoff(p);
 898 
 899     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 900     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 901     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 902     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 903     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 904     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 905 
 906     // Update the two tail pointers in parallel.
 907     out_jvms = out_jvms->caller();
 908     in_jvms  = in_jvms->caller();
 909   }
 910 
 911   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 912 
 913   // Test the correctness of JVMState::debug_xxx accessors:
 914   assert(call->jvms()->debug_start() == non_debug_edges, "");
 915   assert(call->jvms()->debug_end()   == call->req(), "");
 916   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 917 }
 918 
 919 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 920   Bytecodes::Code code = java_bc();
 921   if (code == Bytecodes::_wide) {
 922     code = method()->java_code_at_bci(bci() + 1);
 923   }
 924 
 925   BasicType rtype = T_ILLEGAL;
 926   int       rsize = 0;
 927 
 928   if (code != Bytecodes::_illegal) {
 929     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
 930     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
 931     if (rtype < T_CONFLICT)
 932       rsize = type2size[rtype];
 933   }
 934 
 935   switch (code) {
 936   case Bytecodes::_illegal:
 937     return false;
 938 
 939   case Bytecodes::_ldc:
 940   case Bytecodes::_ldc_w:
 941   case Bytecodes::_ldc2_w:
 942     inputs = 0;
 943     break;
 944 
 945   case Bytecodes::_dup:         inputs = 1;  break;
 946   case Bytecodes::_dup_x1:      inputs = 2;  break;
 947   case Bytecodes::_dup_x2:      inputs = 3;  break;
 948   case Bytecodes::_dup2:        inputs = 2;  break;
 949   case Bytecodes::_dup2_x1:     inputs = 3;  break;
 950   case Bytecodes::_dup2_x2:     inputs = 4;  break;
 951   case Bytecodes::_swap:        inputs = 2;  break;
 952   case Bytecodes::_arraylength: inputs = 1;  break;
 953 
 954   case Bytecodes::_getstatic:
 955   case Bytecodes::_putstatic:
 956   case Bytecodes::_getfield:
 957   case Bytecodes::_putfield:
 958     {
 959       bool is_get = (depth >= 0), is_static = (depth & 1);
 960       bool ignore;
 961       ciBytecodeStream iter(method());
 962       iter.reset_to_bci(bci());
 963       iter.next();
 964       ciField* field = iter.get_field(ignore);
 965       int      size  = field->type()->size();
 966       inputs  = (is_static ? 0 : 1);
 967       if (is_get) {
 968         depth = size - inputs;
 969       } else {
 970         inputs += size;        // putxxx pops the value from the stack
 971         depth = - inputs;
 972       }
 973     }
 974     break;
 975 
 976   case Bytecodes::_invokevirtual:
 977   case Bytecodes::_invokespecial:
 978   case Bytecodes::_invokestatic:
 979   case Bytecodes::_invokedynamic:
 980   case Bytecodes::_invokeinterface:
 981     {
 982       bool is_static = (depth == 0);
 983       bool ignore;
 984       ciBytecodeStream iter(method());
 985       iter.reset_to_bci(bci());
 986       iter.next();
 987       ciMethod* method = iter.get_method(ignore);
 988       inputs = method->arg_size_no_receiver();
 989       if (!is_static)  inputs += 1;
 990       int size = method->return_type()->size();
 991       depth = size - inputs;
 992     }
 993     break;
 994 
 995   case Bytecodes::_multianewarray:
 996     {
 997       ciBytecodeStream iter(method());
 998       iter.reset_to_bci(bci());
 999       iter.next();
1000       inputs = iter.get_dimensions();
1001       assert(rsize == 1, "");
1002       depth = rsize - inputs;
1003     }
1004     break;
1005 
1006   case Bytecodes::_ireturn:
1007   case Bytecodes::_lreturn:
1008   case Bytecodes::_freturn:
1009   case Bytecodes::_dreturn:
1010   case Bytecodes::_areturn:
1011     assert(rsize = -depth, "");
1012     inputs = rsize;
1013     break;
1014 
1015   case Bytecodes::_jsr:
1016   case Bytecodes::_jsr_w:
1017     inputs = 0;
1018     depth  = 1;                  // S.B. depth=1, not zero
1019     break;
1020 
1021   default:
1022     // bytecode produces a typed result
1023     inputs = rsize - depth;
1024     assert(inputs >= 0, "");
1025     break;
1026   }
1027 
1028 #ifdef ASSERT
1029   // spot check
1030   int outputs = depth + inputs;
1031   assert(outputs >= 0, "sanity");
1032   switch (code) {
1033   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1034   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1035   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1036   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1037   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1038   }
1039 #endif //ASSERT
1040 
1041   return true;
1042 }
1043 
1044 
1045 
1046 //------------------------------basic_plus_adr---------------------------------
1047 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1048   // short-circuit a common case
1049   if (offset == intcon(0))  return ptr;
1050   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
1051 }
1052 
1053 Node* GraphKit::ConvI2L(Node* offset) {
1054   // short-circuit a common case
1055   jint offset_con = find_int_con(offset, Type::OffsetBot);
1056   if (offset_con != Type::OffsetBot) {
1057     return longcon((long) offset_con);
1058   }
1059   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
1060 }
1061 Node* GraphKit::ConvL2I(Node* offset) {
1062   // short-circuit a common case
1063   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1064   if (offset_con != (jlong)Type::OffsetBot) {
1065     return intcon((int) offset_con);
1066   }
1067   return _gvn.transform( new (C, 2) ConvL2INode(offset));
1068 }
1069 
1070 //-------------------------load_object_klass-----------------------------------
1071 Node* GraphKit::load_object_klass(Node* obj) {
1072   // Special-case a fresh allocation to avoid building nodes:
1073   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1074   if (akls != NULL)  return akls;
1075   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1076   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1077 }
1078 
1079 //-------------------------load_array_length-----------------------------------
1080 Node* GraphKit::load_array_length(Node* array) {
1081   // Special-case a fresh allocation to avoid building nodes:
1082   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1083   Node *alen;
1084   if (alloc == NULL) {
1085     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1086     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1087   } else {
1088     alen = alloc->Ideal_length();
1089     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_aryptr(), &_gvn);
1090     if (ccast != alen) {
1091       alen = _gvn.transform(ccast);
1092     }
1093   }
1094   return alen;
1095 }
1096 
1097 //------------------------------do_null_check----------------------------------
1098 // Helper function to do a NULL pointer check.  Returned value is
1099 // the incoming address with NULL casted away.  You are allowed to use the
1100 // not-null value only if you are control dependent on the test.
1101 extern int explicit_null_checks_inserted,
1102            explicit_null_checks_elided;
1103 Node* GraphKit::null_check_common(Node* value, BasicType type,
1104                                   // optional arguments for variations:
1105                                   bool assert_null,
1106                                   Node* *null_control) {
1107   assert(!assert_null || null_control == NULL, "not both at once");
1108   if (stopped())  return top();
1109   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1110     // For some performance testing, we may wish to suppress null checking.
1111     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1112     return value;
1113   }
1114   explicit_null_checks_inserted++;
1115 
1116   // Construct NULL check
1117   Node *chk = NULL;
1118   switch(type) {
1119     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1120     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
1121     case T_ARRAY  : // fall through
1122       type = T_OBJECT;  // simplify further tests
1123     case T_OBJECT : {
1124       const Type *t = _gvn.type( value );
1125 
1126       const TypeInstPtr* tp = t->isa_instptr();
1127       if (tp != NULL && !tp->klass()->is_loaded()
1128           // Only for do_null_check, not any of its siblings:
1129           && !assert_null && null_control == NULL) {
1130         // Usually, any field access or invocation on an unloaded oop type
1131         // will simply fail to link, since the statically linked class is
1132         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1133         // the static class is loaded but the sharper oop type is not.
1134         // Rather than checking for this obscure case in lots of places,
1135         // we simply observe that a null check on an unloaded class
1136         // will always be followed by a nonsense operation, so we
1137         // can just issue the uncommon trap here.
1138         // Our access to the unloaded class will only be correct
1139         // after it has been loaded and initialized, which requires
1140         // a trip through the interpreter.
1141 #ifndef PRODUCT
1142         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1143 #endif
1144         uncommon_trap(Deoptimization::Reason_unloaded,
1145                       Deoptimization::Action_reinterpret,
1146                       tp->klass(), "!loaded");
1147         return top();
1148       }
1149 
1150       if (assert_null) {
1151         // See if the type is contained in NULL_PTR.
1152         // If so, then the value is already null.
1153         if (t->higher_equal(TypePtr::NULL_PTR)) {
1154           explicit_null_checks_elided++;
1155           return value;           // Elided null assert quickly!
1156         }
1157       } else {
1158         // See if mixing in the NULL pointer changes type.
1159         // If so, then the NULL pointer was not allowed in the original
1160         // type.  In other words, "value" was not-null.
1161         if (t->meet(TypePtr::NULL_PTR) != t) {
1162           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1163           explicit_null_checks_elided++;
1164           return value;           // Elided null check quickly!
1165         }
1166       }
1167       chk = new (C, 3) CmpPNode( value, null() );
1168       break;
1169     }
1170 
1171     default      : ShouldNotReachHere();
1172   }
1173   assert(chk != NULL, "sanity check");
1174   chk = _gvn.transform(chk);
1175 
1176   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1177   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
1178   Node   *tst = _gvn.transform( btst );
1179 
1180   //-----------
1181   // if peephole optimizations occurred, a prior test existed.
1182   // If a prior test existed, maybe it dominates as we can avoid this test.
1183   if (tst != btst && type == T_OBJECT) {
1184     // At this point we want to scan up the CFG to see if we can
1185     // find an identical test (and so avoid this test altogether).
1186     Node *cfg = control();
1187     int depth = 0;
1188     while( depth < 16 ) {       // Limit search depth for speed
1189       if( cfg->Opcode() == Op_IfTrue &&
1190           cfg->in(0)->in(1) == tst ) {
1191         // Found prior test.  Use "cast_not_null" to construct an identical
1192         // CastPP (and hence hash to) as already exists for the prior test.
1193         // Return that casted value.
1194         if (assert_null) {
1195           replace_in_map(value, null());
1196           return null();  // do not issue the redundant test
1197         }
1198         Node *oldcontrol = control();
1199         set_control(cfg);
1200         Node *res = cast_not_null(value);
1201         set_control(oldcontrol);
1202         explicit_null_checks_elided++;
1203         return res;
1204       }
1205       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1206       if (cfg == NULL)  break;  // Quit at region nodes
1207       depth++;
1208     }
1209   }
1210 
1211   //-----------
1212   // Branch to failure if null
1213   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1214   Deoptimization::DeoptReason reason;
1215   if (assert_null)
1216     reason = Deoptimization::Reason_null_assert;
1217   else if (type == T_OBJECT)
1218     reason = Deoptimization::Reason_null_check;
1219   else
1220     reason = Deoptimization::Reason_div0_check;
1221 
1222   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1223   // ciMethodData::has_trap_at will return a conservative -1 if any
1224   // must-be-null assertion has failed.  This could cause performance
1225   // problems for a method after its first do_null_assert failure.
1226   // Consider using 'Reason_class_check' instead?
1227 
1228   // To cause an implicit null check, we set the not-null probability
1229   // to the maximum (PROB_MAX).  For an explicit check the probability
1230   // is set to a smaller value.
1231   if (null_control != NULL || too_many_traps(reason)) {
1232     // probability is less likely
1233     ok_prob =  PROB_LIKELY_MAG(3);
1234   } else if (!assert_null &&
1235              (ImplicitNullCheckThreshold > 0) &&
1236              method() != NULL &&
1237              (method()->method_data()->trap_count(reason)
1238               >= (uint)ImplicitNullCheckThreshold)) {
1239     ok_prob =  PROB_LIKELY_MAG(3);
1240   }
1241 
1242   if (null_control != NULL) {
1243     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1244     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
1245     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
1246     if (null_true == top())
1247       explicit_null_checks_elided++;
1248     (*null_control) = null_true;
1249   } else {
1250     BuildCutout unless(this, tst, ok_prob);
1251     // Check for optimizer eliding test at parse time
1252     if (stopped()) {
1253       // Failure not possible; do not bother making uncommon trap.
1254       explicit_null_checks_elided++;
1255     } else if (assert_null) {
1256       uncommon_trap(reason,
1257                     Deoptimization::Action_make_not_entrant,
1258                     NULL, "assert_null");
1259     } else {
1260       replace_in_map(value, zerocon(type));
1261       builtin_throw(reason);
1262     }
1263   }
1264 
1265   // Must throw exception, fall-thru not possible?
1266   if (stopped()) {
1267     return top();               // No result
1268   }
1269 
1270   if (assert_null) {
1271     // Cast obj to null on this path.
1272     replace_in_map(value, zerocon(type));
1273     return zerocon(type);
1274   }
1275 
1276   // Cast obj to not-null on this path, if there is no null_control.
1277   // (If there is a null_control, a non-null value may come back to haunt us.)
1278   if (type == T_OBJECT) {
1279     Node* cast = cast_not_null(value, false);
1280     if (null_control == NULL || (*null_control) == top())
1281       replace_in_map(value, cast);
1282     value = cast;
1283   }
1284 
1285   return value;
1286 }
1287 
1288 
1289 //------------------------------cast_not_null----------------------------------
1290 // Cast obj to not-null on this path
1291 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1292   const Type *t = _gvn.type(obj);
1293   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1294   // Object is already not-null?
1295   if( t == t_not_null ) return obj;
1296 
1297   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
1298   cast->init_req(0, control());
1299   cast = _gvn.transform( cast );
1300 
1301   // Scan for instances of 'obj' in the current JVM mapping.
1302   // These instances are known to be not-null after the test.
1303   if (do_replace_in_map)
1304     replace_in_map(obj, cast);
1305 
1306   return cast;                  // Return casted value
1307 }
1308 
1309 
1310 //--------------------------replace_in_map-------------------------------------
1311 void GraphKit::replace_in_map(Node* old, Node* neww) {
1312   this->map()->replace_edge(old, neww);
1313 
1314   // Note: This operation potentially replaces any edge
1315   // on the map.  This includes locals, stack, and monitors
1316   // of the current (innermost) JVM state.
1317 
1318   // We can consider replacing in caller maps.
1319   // The idea would be that an inlined function's null checks
1320   // can be shared with the entire inlining tree.
1321   // The expense of doing this is that the PreserveJVMState class
1322   // would have to preserve caller states too, with a deep copy.
1323 }
1324 
1325 
1326 
1327 //=============================================================================
1328 //--------------------------------memory---------------------------------------
1329 Node* GraphKit::memory(uint alias_idx) {
1330   MergeMemNode* mem = merged_memory();
1331   Node* p = mem->memory_at(alias_idx);
1332   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1333   return p;
1334 }
1335 
1336 //-----------------------------reset_memory------------------------------------
1337 Node* GraphKit::reset_memory() {
1338   Node* mem = map()->memory();
1339   // do not use this node for any more parsing!
1340   debug_only( map()->set_memory((Node*)NULL) );
1341   return _gvn.transform( mem );
1342 }
1343 
1344 //------------------------------set_all_memory---------------------------------
1345 void GraphKit::set_all_memory(Node* newmem) {
1346   Node* mergemem = MergeMemNode::make(C, newmem);
1347   gvn().set_type_bottom(mergemem);
1348   map()->set_memory(mergemem);
1349 }
1350 
1351 //------------------------------set_all_memory_call----------------------------
1352 void GraphKit::set_all_memory_call(Node* call) {
1353   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1354   set_all_memory(newmem);
1355 }
1356 
1357 //=============================================================================
1358 //
1359 // parser factory methods for MemNodes
1360 //
1361 // These are layered on top of the factory methods in LoadNode and StoreNode,
1362 // and integrate with the parser's memory state and _gvn engine.
1363 //
1364 
1365 // factory methods in "int adr_idx"
1366 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1367                           int adr_idx,
1368                           bool require_atomic_access) {
1369   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1370   const TypePtr* adr_type = NULL; // debug-mode-only argument
1371   debug_only(adr_type = C->get_adr_type(adr_idx));
1372   Node* mem = memory(adr_idx);
1373   Node* ld;
1374   if (require_atomic_access && bt == T_LONG) {
1375     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1376   } else {
1377     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1378   }
1379   return _gvn.transform(ld);
1380 }
1381 
1382 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1383                                 int adr_idx,
1384                                 bool require_atomic_access) {
1385   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1386   const TypePtr* adr_type = NULL;
1387   debug_only(adr_type = C->get_adr_type(adr_idx));
1388   Node *mem = memory(adr_idx);
1389   Node* st;
1390   if (require_atomic_access && bt == T_LONG) {
1391     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1392   } else {
1393     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1394   }
1395   st = _gvn.transform(st);
1396   set_memory(st, adr_idx);
1397   // Back-to-back stores can only remove intermediate store with DU info
1398   // so push on worklist for optimizer.
1399   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1400     record_for_igvn(st);
1401 
1402   return st;
1403 }
1404 
1405 
1406 void GraphKit::pre_barrier(Node* ctl,
1407                            Node* obj,
1408                            Node* adr,
1409                            uint  adr_idx,
1410                            Node* val,
1411                            const TypeOopPtr* val_type,
1412                            BasicType bt) {
1413   BarrierSet* bs = Universe::heap()->barrier_set();
1414   set_control(ctl);
1415   switch (bs->kind()) {
1416     case BarrierSet::G1SATBCT:
1417     case BarrierSet::G1SATBCTLogging:
1418       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
1419       break;
1420 
1421     case BarrierSet::CardTableModRef:
1422     case BarrierSet::CardTableExtension:
1423     case BarrierSet::ModRef:
1424       break;
1425 
1426     case BarrierSet::Other:
1427     default      :
1428       ShouldNotReachHere();
1429 
1430   }
1431 }
1432 
1433 void GraphKit::post_barrier(Node* ctl,
1434                             Node* store,
1435                             Node* obj,
1436                             Node* adr,
1437                             uint  adr_idx,
1438                             Node* val,
1439                             BasicType bt,
1440                             bool use_precise) {
1441   BarrierSet* bs = Universe::heap()->barrier_set();
1442   set_control(ctl);
1443   switch (bs->kind()) {
1444     case BarrierSet::G1SATBCT:
1445     case BarrierSet::G1SATBCTLogging:
1446       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1447       break;
1448 
1449     case BarrierSet::CardTableModRef:
1450     case BarrierSet::CardTableExtension:
1451       write_barrier_post(store, obj, adr, val, use_precise);
1452       break;
1453 
1454     case BarrierSet::ModRef:
1455       break;
1456 
1457     case BarrierSet::Other:
1458     default      :
1459       ShouldNotReachHere();
1460 
1461   }
1462 }
1463 
1464 Node* GraphKit::store_oop(Node* ctl,
1465                           Node* obj,
1466                           Node* adr,
1467                           const TypePtr* adr_type,
1468                           Node* val,
1469                           const TypeOopPtr* val_type,
1470                           BasicType bt,
1471                           bool use_precise) {
1472 
1473   set_control(ctl);
1474   if (stopped()) return top(); // Dead path ?
1475 
1476   assert(bt == T_OBJECT, "sanity");
1477   assert(val != NULL, "not dead path");
1478   uint adr_idx = C->get_alias_index(adr_type);
1479   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1480 
1481   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
1482   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1483   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1484   return store;
1485 }
1486 
1487 // Could be an array or object we don't know at compile time (unsafe ref.)
1488 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1489                              Node* obj,   // containing obj
1490                              Node* adr,  // actual adress to store val at
1491                              const TypePtr* adr_type,
1492                              Node* val,
1493                              BasicType bt) {
1494   Compile::AliasType* at = C->alias_type(adr_type);
1495   const TypeOopPtr* val_type = NULL;
1496   if (adr_type->isa_instptr()) {
1497     if (at->field() != NULL) {
1498       // known field.  This code is a copy of the do_put_xxx logic.
1499       ciField* field = at->field();
1500       if (!field->type()->is_loaded()) {
1501         val_type = TypeInstPtr::BOTTOM;
1502       } else {
1503         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1504       }
1505     }
1506   } else if (adr_type->isa_aryptr()) {
1507     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1508   }
1509   if (val_type == NULL) {
1510     val_type = TypeInstPtr::BOTTOM;
1511   }
1512   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1513 }
1514 
1515 
1516 //-------------------------array_element_address-------------------------
1517 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1518                                       const TypeInt* sizetype) {
1519   uint shift  = exact_log2(type2aelembytes(elembt));
1520   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1521 
1522   // short-circuit a common case (saves lots of confusing waste motion)
1523   jint idx_con = find_int_con(idx, -1);
1524   if (idx_con >= 0) {
1525     intptr_t offset = header + ((intptr_t)idx_con << shift);
1526     return basic_plus_adr(ary, offset);
1527   }
1528 
1529   // must be correct type for alignment purposes
1530   Node* base  = basic_plus_adr(ary, header);
1531 #ifdef _LP64
1532   // The scaled index operand to AddP must be a clean 64-bit value.
1533   // Java allows a 32-bit int to be incremented to a negative
1534   // value, which appears in a 64-bit register as a large
1535   // positive number.  Using that large positive number as an
1536   // operand in pointer arithmetic has bad consequences.
1537   // On the other hand, 32-bit overflow is rare, and the possibility
1538   // can often be excluded, if we annotate the ConvI2L node with
1539   // a type assertion that its value is known to be a small positive
1540   // number.  (The prior range check has ensured this.)
1541   // This assertion is used by ConvI2LNode::Ideal.
1542   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1543   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1544   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1545   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
1546 #endif
1547   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
1548   return basic_plus_adr(ary, base, scale);
1549 }
1550 
1551 //-------------------------load_array_element-------------------------
1552 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1553   const Type* elemtype = arytype->elem();
1554   BasicType elembt = elemtype->array_element_basic_type();
1555   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1556   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1557   return ld;
1558 }
1559 
1560 //-------------------------set_arguments_for_java_call-------------------------
1561 // Arguments (pre-popped from the stack) are taken from the JVMS.
1562 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1563   // Add the call arguments:
1564   uint nargs = call->method()->arg_size();
1565   for (uint i = 0; i < nargs; i++) {
1566     Node* arg = argument(i);
1567     call->init_req(i + TypeFunc::Parms, arg);
1568   }
1569 }
1570 
1571 //---------------------------set_edges_for_java_call---------------------------
1572 // Connect a newly created call into the current JVMS.
1573 // A return value node (if any) is returned from set_edges_for_java_call.
1574 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw) {
1575 
1576   // Add the predefined inputs:
1577   call->init_req( TypeFunc::Control, control() );
1578   call->init_req( TypeFunc::I_O    , i_o() );
1579   call->init_req( TypeFunc::Memory , reset_memory() );
1580   call->init_req( TypeFunc::FramePtr, frameptr() );
1581   call->init_req( TypeFunc::ReturnAdr, top() );
1582 
1583   add_safepoint_edges(call, must_throw);
1584 
1585   Node* xcall = _gvn.transform(call);
1586 
1587   if (xcall == top()) {
1588     set_control(top());
1589     return;
1590   }
1591   assert(xcall == call, "call identity is stable");
1592 
1593   // Re-use the current map to produce the result.
1594 
1595   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
1596   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    )));
1597   set_all_memory_call(xcall);
1598 
1599   //return xcall;   // no need, caller already has it
1600 }
1601 
1602 Node* GraphKit::set_results_for_java_call(CallJavaNode* call) {
1603   if (stopped())  return top();  // maybe the call folded up?
1604 
1605   // Capture the return value, if any.
1606   Node* ret;
1607   if (call->method() == NULL ||
1608       call->method()->return_type()->basic_type() == T_VOID)
1609         ret = top();
1610   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
1611 
1612   // Note:  Since any out-of-line call can produce an exception,
1613   // we always insert an I_O projection from the call into the result.
1614 
1615   make_slow_call_ex(call, env()->Throwable_klass(), false);
1616 
1617   return ret;
1618 }
1619 
1620 //--------------------set_predefined_input_for_runtime_call--------------------
1621 // Reading and setting the memory state is way conservative here.
1622 // The real problem is that I am not doing real Type analysis on memory,
1623 // so I cannot distinguish card mark stores from other stores.  Across a GC
1624 // point the Store Barrier and the card mark memory has to agree.  I cannot
1625 // have a card mark store and its barrier split across the GC point from
1626 // either above or below.  Here I get that to happen by reading ALL of memory.
1627 // A better answer would be to separate out card marks from other memory.
1628 // For now, return the input memory state, so that it can be reused
1629 // after the call, if this call has restricted memory effects.
1630 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1631   // Set fixed predefined input arguments
1632   Node* memory = reset_memory();
1633   call->init_req( TypeFunc::Control,   control()  );
1634   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1635   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1636   call->init_req( TypeFunc::FramePtr,  frameptr() );
1637   call->init_req( TypeFunc::ReturnAdr, top()      );
1638   return memory;
1639 }
1640 
1641 //-------------------set_predefined_output_for_runtime_call--------------------
1642 // Set control and memory (not i_o) from the call.
1643 // If keep_mem is not NULL, use it for the output state,
1644 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1645 // If hook_mem is NULL, this call produces no memory effects at all.
1646 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1647 // then only that memory slice is taken from the call.
1648 // In the last case, we must put an appropriate memory barrier before
1649 // the call, so as to create the correct anti-dependencies on loads
1650 // preceding the call.
1651 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1652                                                       Node* keep_mem,
1653                                                       const TypePtr* hook_mem) {
1654   // no i/o
1655   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
1656   if (keep_mem) {
1657     // First clone the existing memory state
1658     set_all_memory(keep_mem);
1659     if (hook_mem != NULL) {
1660       // Make memory for the call
1661       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1662       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1663       // We also use hook_mem to extract specific effects from arraycopy stubs.
1664       set_memory(mem, hook_mem);
1665     }
1666     // ...else the call has NO memory effects.
1667 
1668     // Make sure the call advertises its memory effects precisely.
1669     // This lets us build accurate anti-dependences in gcm.cpp.
1670     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1671            "call node must be constructed correctly");
1672   } else {
1673     assert(hook_mem == NULL, "");
1674     // This is not a "slow path" call; all memory comes from the call.
1675     set_all_memory_call(call);
1676   }
1677 }
1678 
1679 //------------------------------increment_counter------------------------------
1680 // for statistics: increment a VM counter by 1
1681 
1682 void GraphKit::increment_counter(address counter_addr) {
1683   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1684   increment_counter(adr1);
1685 }
1686 
1687 void GraphKit::increment_counter(Node* counter_addr) {
1688   int adr_type = Compile::AliasIdxRaw;
1689   Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
1690   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
1691   store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
1692 }
1693 
1694 
1695 //------------------------------uncommon_trap----------------------------------
1696 // Bail out to the interpreter in mid-method.  Implemented by calling the
1697 // uncommon_trap blob.  This helper function inserts a runtime call with the
1698 // right debug info.
1699 void GraphKit::uncommon_trap(int trap_request,
1700                              ciKlass* klass, const char* comment,
1701                              bool must_throw,
1702                              bool keep_exact_action) {
1703   if (failing())  stop();
1704   if (stopped())  return; // trap reachable?
1705 
1706   // Note:  If ProfileTraps is true, and if a deopt. actually
1707   // occurs here, the runtime will make sure an MDO exists.  There is
1708   // no need to call method()->build_method_data() at this point.
1709 
1710 #ifdef ASSERT
1711   if (!must_throw) {
1712     // Make sure the stack has at least enough depth to execute
1713     // the current bytecode.
1714     int inputs, ignore;
1715     if (compute_stack_effects(inputs, ignore)) {
1716       assert(sp() >= inputs, "must have enough JVMS stack to execute");
1717       // It is a frequent error in library_call.cpp to issue an
1718       // uncommon trap with the _sp value already popped.
1719     }
1720   }
1721 #endif
1722 
1723   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1724   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1725 
1726   switch (action) {
1727   case Deoptimization::Action_maybe_recompile:
1728   case Deoptimization::Action_reinterpret:
1729     // Temporary fix for 6529811 to allow virtual calls to be sure they
1730     // get the chance to go from mono->bi->mega
1731     if (!keep_exact_action &&
1732         Deoptimization::trap_request_index(trap_request) < 0 &&
1733         too_many_recompiles(reason)) {
1734       // This BCI is causing too many recompilations.
1735       action = Deoptimization::Action_none;
1736       trap_request = Deoptimization::make_trap_request(reason, action);
1737     } else {
1738       C->set_trap_can_recompile(true);
1739     }
1740     break;
1741   case Deoptimization::Action_make_not_entrant:
1742     C->set_trap_can_recompile(true);
1743     break;
1744 #ifdef ASSERT
1745   case Deoptimization::Action_none:
1746   case Deoptimization::Action_make_not_compilable:
1747     break;
1748   default:
1749     assert(false, "bad action");
1750 #endif
1751   }
1752 
1753   if (TraceOptoParse) {
1754     char buf[100];
1755     tty->print_cr("Uncommon trap %s at bci:%d",
1756                   Deoptimization::format_trap_request(buf, sizeof(buf),
1757                                                       trap_request), bci());
1758   }
1759 
1760   CompileLog* log = C->log();
1761   if (log != NULL) {
1762     int kid = (klass == NULL)? -1: log->identify(klass);
1763     log->begin_elem("uncommon_trap bci='%d'", bci());
1764     char buf[100];
1765     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1766                                                           trap_request));
1767     if (kid >= 0)         log->print(" klass='%d'", kid);
1768     if (comment != NULL)  log->print(" comment='%s'", comment);
1769     log->end_elem();
1770   }
1771 
1772   // Make sure any guarding test views this path as very unlikely
1773   Node *i0 = control()->in(0);
1774   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1775     IfNode *iff = i0->as_If();
1776     float f = iff->_prob;   // Get prob
1777     if (control()->Opcode() == Op_IfTrue) {
1778       if (f > PROB_UNLIKELY_MAG(4))
1779         iff->_prob = PROB_MIN;
1780     } else {
1781       if (f < PROB_LIKELY_MAG(4))
1782         iff->_prob = PROB_MAX;
1783     }
1784   }
1785 
1786   // Clear out dead values from the debug info.
1787   kill_dead_locals();
1788 
1789   // Now insert the uncommon trap subroutine call
1790   address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
1791   const TypePtr* no_memory_effects = NULL;
1792   // Pass the index of the class to be loaded
1793   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1794                                  (must_throw ? RC_MUST_THROW : 0),
1795                                  OptoRuntime::uncommon_trap_Type(),
1796                                  call_addr, "uncommon_trap", no_memory_effects,
1797                                  intcon(trap_request));
1798   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1799          "must extract request correctly from the graph");
1800   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1801 
1802   call->set_req(TypeFunc::ReturnAdr, returnadr());
1803   // The debug info is the only real input to this call.
1804 
1805   // Halt-and-catch fire here.  The above call should never return!
1806   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
1807   _gvn.set_type_bottom(halt);
1808   root()->add_req(halt);
1809 
1810   stop_and_kill_map();
1811 }
1812 
1813 
1814 //--------------------------just_allocated_object------------------------------
1815 // Report the object that was just allocated.
1816 // It must be the case that there are no intervening safepoints.
1817 // We use this to determine if an object is so "fresh" that
1818 // it does not require card marks.
1819 Node* GraphKit::just_allocated_object(Node* current_control) {
1820   if (C->recent_alloc_ctl() == current_control)
1821     return C->recent_alloc_obj();
1822   return NULL;
1823 }
1824 
1825 
1826 void GraphKit::round_double_arguments(ciMethod* dest_method) {
1827   // (Note:  TypeFunc::make has a cache that makes this fast.)
1828   const TypeFunc* tf    = TypeFunc::make(dest_method);
1829   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
1830   for (int j = 0; j < nargs; j++) {
1831     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
1832     if( targ->basic_type() == T_DOUBLE ) {
1833       // If any parameters are doubles, they must be rounded before
1834       // the call, dstore_rounding does gvn.transform
1835       Node *arg = argument(j);
1836       arg = dstore_rounding(arg);
1837       set_argument(j, arg);
1838     }
1839   }
1840 }
1841 
1842 void GraphKit::round_double_result(ciMethod* dest_method) {
1843   // A non-strict method may return a double value which has an extended
1844   // exponent, but this must not be visible in a caller which is 'strict'
1845   // If a strict caller invokes a non-strict callee, round a double result
1846 
1847   BasicType result_type = dest_method->return_type()->basic_type();
1848   assert( method() != NULL, "must have caller context");
1849   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
1850     // Destination method's return value is on top of stack
1851     // dstore_rounding() does gvn.transform
1852     Node *result = pop_pair();
1853     result = dstore_rounding(result);
1854     push_pair(result);
1855   }
1856 }
1857 
1858 // rounding for strict float precision conformance
1859 Node* GraphKit::precision_rounding(Node* n) {
1860   return UseStrictFP && _method->flags().is_strict()
1861     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
1862     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
1863     : n;
1864 }
1865 
1866 // rounding for strict double precision conformance
1867 Node* GraphKit::dprecision_rounding(Node *n) {
1868   return UseStrictFP && _method->flags().is_strict()
1869     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
1870     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1871     : n;
1872 }
1873 
1874 // rounding for non-strict double stores
1875 Node* GraphKit::dstore_rounding(Node* n) {
1876   return Matcher::strict_fp_requires_explicit_rounding
1877     && UseSSE <= 1
1878     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1879     : n;
1880 }
1881 
1882 //=============================================================================
1883 // Generate a fast path/slow path idiom.  Graph looks like:
1884 // [foo] indicates that 'foo' is a parameter
1885 //
1886 //              [in]     NULL
1887 //                 \    /
1888 //                  CmpP
1889 //                  Bool ne
1890 //                   If
1891 //                  /  \
1892 //              True    False-<2>
1893 //              / |
1894 //             /  cast_not_null
1895 //           Load  |    |   ^
1896 //        [fast_test]   |   |
1897 // gvn to   opt_test    |   |
1898 //          /    \      |  <1>
1899 //      True     False  |
1900 //        |         \\  |
1901 //   [slow_call]     \[fast_result]
1902 //    Ctl   Val       \      \
1903 //     |               \      \
1904 //    Catch       <1>   \      \
1905 //   /    \        ^     \      \
1906 //  Ex    No_Ex    |      \      \
1907 //  |       \   \  |       \ <2>  \
1908 //  ...      \  [slow_res] |  |    \   [null_result]
1909 //            \         \--+--+---  |  |
1910 //             \           | /    \ | /
1911 //              --------Region     Phi
1912 //
1913 //=============================================================================
1914 // Code is structured as a series of driver functions all called 'do_XXX' that
1915 // call a set of helper functions.  Helper functions first, then drivers.
1916 
1917 //------------------------------null_check_oop---------------------------------
1918 // Null check oop.  Set null-path control into Region in slot 3.
1919 // Make a cast-not-nullness use the other not-null control.  Return cast.
1920 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
1921                                bool never_see_null) {
1922   // Initial NULL check taken path
1923   (*null_control) = top();
1924   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
1925 
1926   // Generate uncommon_trap:
1927   if (never_see_null && (*null_control) != top()) {
1928     // If we see an unexpected null at a check-cast we record it and force a
1929     // recompile; the offending check-cast will be compiled to handle NULLs.
1930     // If we see more than one offending BCI, then all checkcasts in the
1931     // method will be compiled to handle NULLs.
1932     PreserveJVMState pjvms(this);
1933     set_control(*null_control);
1934     replace_in_map(value, null());
1935     uncommon_trap(Deoptimization::Reason_null_check,
1936                   Deoptimization::Action_make_not_entrant);
1937     (*null_control) = top();    // NULL path is dead
1938   }
1939 
1940   // Cast away null-ness on the result
1941   return cast;
1942 }
1943 
1944 //------------------------------opt_iff----------------------------------------
1945 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
1946 // Return slow-path control.
1947 Node* GraphKit::opt_iff(Node* region, Node* iff) {
1948   IfNode *opt_iff = _gvn.transform(iff)->as_If();
1949 
1950   // Fast path taken; set region slot 2
1951   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
1952   region->init_req(2,fast_taken); // Capture fast-control
1953 
1954   // Fast path not-taken, i.e. slow path
1955   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
1956   return slow_taken;
1957 }
1958 
1959 //-----------------------------make_runtime_call-------------------------------
1960 Node* GraphKit::make_runtime_call(int flags,
1961                                   const TypeFunc* call_type, address call_addr,
1962                                   const char* call_name,
1963                                   const TypePtr* adr_type,
1964                                   // The following parms are all optional.
1965                                   // The first NULL ends the list.
1966                                   Node* parm0, Node* parm1,
1967                                   Node* parm2, Node* parm3,
1968                                   Node* parm4, Node* parm5,
1969                                   Node* parm6, Node* parm7) {
1970   // Slow-path call
1971   int size = call_type->domain()->cnt();
1972   bool is_leaf = !(flags & RC_NO_LEAF);
1973   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
1974   if (call_name == NULL) {
1975     assert(!is_leaf, "must supply name for leaf");
1976     call_name = OptoRuntime::stub_name(call_addr);
1977   }
1978   CallNode* call;
1979   if (!is_leaf) {
1980     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
1981                                            bci(), adr_type);
1982   } else if (flags & RC_NO_FP) {
1983     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
1984   } else {
1985     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
1986   }
1987 
1988   // The following is similar to set_edges_for_java_call,
1989   // except that the memory effects of the call are restricted to AliasIdxRaw.
1990 
1991   // Slow path call has no side-effects, uses few values
1992   bool wide_in  = !(flags & RC_NARROW_MEM);
1993   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
1994 
1995   Node* prev_mem = NULL;
1996   if (wide_in) {
1997     prev_mem = set_predefined_input_for_runtime_call(call);
1998   } else {
1999     assert(!wide_out, "narrow in => narrow out");
2000     Node* narrow_mem = memory(adr_type);
2001     prev_mem = reset_memory();
2002     map()->set_memory(narrow_mem);
2003     set_predefined_input_for_runtime_call(call);
2004   }
2005 
2006   // Hook each parm in order.  Stop looking at the first NULL.
2007   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2008   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2009   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2010   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2011   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2012   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2013   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2014   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2015     /* close each nested if ===> */  } } } } } } } }
2016   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2017 
2018   if (!is_leaf) {
2019     // Non-leaves can block and take safepoints:
2020     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2021   }
2022   // Non-leaves can throw exceptions:
2023   if (has_io) {
2024     call->set_req(TypeFunc::I_O, i_o());
2025   }
2026 
2027   if (flags & RC_UNCOMMON) {
2028     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2029     // (An "if" probability corresponds roughly to an unconditional count.
2030     // Sort of.)
2031     call->set_cnt(PROB_UNLIKELY_MAG(4));
2032   }
2033 
2034   Node* c = _gvn.transform(call);
2035   assert(c == call, "cannot disappear");
2036 
2037   if (wide_out) {
2038     // Slow path call has full side-effects.
2039     set_predefined_output_for_runtime_call(call);
2040   } else {
2041     // Slow path call has few side-effects, and/or sets few values.
2042     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2043   }
2044 
2045   if (has_io) {
2046     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
2047   }
2048   return call;
2049 
2050 }
2051 
2052 //------------------------------merge_memory-----------------------------------
2053 // Merge memory from one path into the current memory state.
2054 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2055   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2056     Node* old_slice = mms.force_memory();
2057     Node* new_slice = mms.memory2();
2058     if (old_slice != new_slice) {
2059       PhiNode* phi;
2060       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2061         phi = new_slice->as_Phi();
2062         #ifdef ASSERT
2063         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2064           old_slice = old_slice->in(new_path);
2065         // Caller is responsible for ensuring that any pre-existing
2066         // phis are already aware of old memory.
2067         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2068         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2069         #endif
2070         mms.set_memory(phi);
2071       } else {
2072         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2073         _gvn.set_type(phi, Type::MEMORY);
2074         phi->set_req(new_path, new_slice);
2075         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2076       }
2077     }
2078   }
2079 }
2080 
2081 //------------------------------make_slow_call_ex------------------------------
2082 // Make the exception handler hookups for the slow call
2083 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2084   if (stopped())  return;
2085 
2086   // Make a catch node with just two handlers:  fall-through and catch-all
2087   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2088   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
2089   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2090   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2091 
2092   { PreserveJVMState pjvms(this);
2093     set_control(excp);
2094     set_i_o(i_o);
2095 
2096     if (excp != top()) {
2097       // Create an exception state also.
2098       // Use an exact type if the caller has specified a specific exception.
2099       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2100       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
2101       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2102     }
2103   }
2104 
2105   // Get the no-exception control from the CatchNode.
2106   set_control(norm);
2107 }
2108 
2109 
2110 //-------------------------------gen_subtype_check-----------------------------
2111 // Generate a subtyping check.  Takes as input the subtype and supertype.
2112 // Returns 2 values: sets the default control() to the true path and returns
2113 // the false path.  Only reads invariant memory; sets no (visible) memory.
2114 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2115 // but that's not exposed to the optimizer.  This call also doesn't take in an
2116 // Object; if you wish to check an Object you need to load the Object's class
2117 // prior to coming here.
2118 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2119   // Fast check for identical types, perhaps identical constants.
2120   // The types can even be identical non-constants, in cases
2121   // involving Array.newInstance, Object.clone, etc.
2122   if (subklass == superklass)
2123     return top();             // false path is dead; no test needed.
2124 
2125   if (_gvn.type(superklass)->singleton()) {
2126     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2127     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2128 
2129     // In the common case of an exact superklass, try to fold up the
2130     // test before generating code.  You may ask, why not just generate
2131     // the code and then let it fold up?  The answer is that the generated
2132     // code will necessarily include null checks, which do not always
2133     // completely fold away.  If they are also needless, then they turn
2134     // into a performance loss.  Example:
2135     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2136     // Here, the type of 'fa' is often exact, so the store check
2137     // of fa[1]=x will fold up, without testing the nullness of x.
2138     switch (static_subtype_check(superk, subk)) {
2139     case SSC_always_false:
2140       {
2141         Node* always_fail = control();
2142         set_control(top());
2143         return always_fail;
2144       }
2145     case SSC_always_true:
2146       return top();
2147     case SSC_easy_test:
2148       {
2149         // Just do a direct pointer compare and be done.
2150         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
2151         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2152         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2153         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
2154         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
2155       }
2156     case SSC_full_test:
2157       break;
2158     default:
2159       ShouldNotReachHere();
2160     }
2161   }
2162 
2163   // %%% Possible further optimization:  Even if the superklass is not exact,
2164   // if the subklass is the unique subtype of the superklass, the check
2165   // will always succeed.  We could leave a dependency behind to ensure this.
2166 
2167   // First load the super-klass's check-offset
2168   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
2169   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2170   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
2171   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2172 
2173   // Load from the sub-klass's super-class display list, or a 1-word cache of
2174   // the secondary superclass list, or a failing value with a sentinel offset
2175   // if the super-klass is an interface or exceptionally deep in the Java
2176   // hierarchy and we have to scan the secondary superclass list the hard way.
2177   // Worst-case type is a little odd: NULL is allowed as a result (usually
2178   // klass loads can never produce a NULL).
2179   Node *chk_off_X = ConvI2X(chk_off);
2180   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
2181   // For some types like interfaces the following loadKlass is from a 1-word
2182   // cache which is mutable so can't use immutable memory.  Other
2183   // types load from the super-class display table which is immutable.
2184   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2185   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2186 
2187   // Compile speed common case: ARE a subtype and we canNOT fail
2188   if( superklass == nkls )
2189     return top();             // false path is dead; no test needed.
2190 
2191   // See if we get an immediate positive hit.  Happens roughly 83% of the
2192   // time.  Test to see if the value loaded just previously from the subklass
2193   // is exactly the superklass.
2194   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
2195   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
2196   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2197   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
2198   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
2199 
2200   // Compile speed common case: Check for being deterministic right now.  If
2201   // chk_off is a constant and not equal to cacheoff then we are NOT a
2202   // subklass.  In this case we need exactly the 1 test above and we can
2203   // return those results immediately.
2204   if (!might_be_cache) {
2205     Node* not_subtype_ctrl = control();
2206     set_control(iftrue1); // We need exactly the 1 test above
2207     return not_subtype_ctrl;
2208   }
2209 
2210   // Gather the various success & failures here
2211   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
2212   record_for_igvn(r_ok_subtype);
2213   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
2214   record_for_igvn(r_not_subtype);
2215 
2216   r_ok_subtype->init_req(1, iftrue1);
2217 
2218   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2219   // is roughly 63% of the remaining cases).  Test to see if the loaded
2220   // check-offset points into the subklass display list or the 1-element
2221   // cache.  If it points to the display (and NOT the cache) and the display
2222   // missed then it's not a subtype.
2223   Node *cacheoff = _gvn.intcon(cacheoff_con);
2224   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
2225   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
2226   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2227   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
2228   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
2229 
2230   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2231   // No performance impact (too rare) but allows sharing of secondary arrays
2232   // which has some footprint reduction.
2233   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
2234   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
2235   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2236   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
2237   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
2238 
2239   // -- Roads not taken here: --
2240   // We could also have chosen to perform the self-check at the beginning
2241   // of this code sequence, as the assembler does.  This would not pay off
2242   // the same way, since the optimizer, unlike the assembler, can perform
2243   // static type analysis to fold away many successful self-checks.
2244   // Non-foldable self checks work better here in second position, because
2245   // the initial primary superclass check subsumes a self-check for most
2246   // types.  An exception would be a secondary type like array-of-interface,
2247   // which does not appear in its own primary supertype display.
2248   // Finally, we could have chosen to move the self-check into the
2249   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2250   // dependent manner.  But it is worthwhile to have the check here,
2251   // where it can be perhaps be optimized.  The cost in code space is
2252   // small (register compare, branch).
2253 
2254   // Now do a linear scan of the secondary super-klass array.  Again, no real
2255   // performance impact (too rare) but it's gotta be done.
2256   // Since the code is rarely used, there is no penalty for moving it
2257   // out of line, and it can only improve I-cache density.
2258   // The decision to inline or out-of-line this final check is platform
2259   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2260   Node* psc = _gvn.transform(
2261     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
2262 
2263   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
2264   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
2265   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2266   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
2267   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
2268 
2269   // Return false path; set default control to true path.
2270   set_control( _gvn.transform(r_ok_subtype) );
2271   return _gvn.transform(r_not_subtype);
2272 }
2273 
2274 //----------------------------static_subtype_check-----------------------------
2275 // Shortcut important common cases when superklass is exact:
2276 // (0) superklass is java.lang.Object (can occur in reflective code)
2277 // (1) subklass is already limited to a subtype of superklass => always ok
2278 // (2) subklass does not overlap with superklass => always fail
2279 // (3) superklass has NO subtypes and we can check with a simple compare.
2280 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2281   if (StressReflectiveCode) {
2282     return SSC_full_test;       // Let caller generate the general case.
2283   }
2284 
2285   if (superk == env()->Object_klass()) {
2286     return SSC_always_true;     // (0) this test cannot fail
2287   }
2288 
2289   ciType* superelem = superk;
2290   if (superelem->is_array_klass())
2291     superelem = superelem->as_array_klass()->base_element_type();
2292 
2293   if (!subk->is_interface()) {  // cannot trust static interface types yet
2294     if (subk->is_subtype_of(superk)) {
2295       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2296     }
2297     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2298         !superk->is_subtype_of(subk)) {
2299       return SSC_always_false;
2300     }
2301   }
2302 
2303   // If casting to an instance klass, it must have no subtypes
2304   if (superk->is_interface()) {
2305     // Cannot trust interfaces yet.
2306     // %%% S.B. superk->nof_implementors() == 1
2307   } else if (superelem->is_instance_klass()) {
2308     ciInstanceKlass* ik = superelem->as_instance_klass();
2309     if (!ik->has_subklass() && !ik->is_interface()) {
2310       if (!ik->is_final()) {
2311         // Add a dependency if there is a chance of a later subclass.
2312         C->dependencies()->assert_leaf_type(ik);
2313       }
2314       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2315     }
2316   } else {
2317     // A primitive array type has no subtypes.
2318     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2319   }
2320 
2321   return SSC_full_test;
2322 }
2323 
2324 // Profile-driven exact type check:
2325 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2326                                     float prob,
2327                                     Node* *casted_receiver) {
2328   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2329   Node* recv_klass = load_object_klass(receiver);
2330   Node* want_klass = makecon(tklass);
2331   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
2332   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2333   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2334   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
2335   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
2336 
2337   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2338   assert(recv_xtype->klass_is_exact(), "");
2339 
2340   // Subsume downstream occurrences of receiver with a cast to
2341   // recv_xtype, since now we know what the type will be.
2342   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
2343   (*casted_receiver) = _gvn.transform(cast);
2344   // (User must make the replace_in_map call.)
2345 
2346   return fail;
2347 }
2348 
2349 
2350 //-------------------------------gen_instanceof--------------------------------
2351 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2352 // and the reflective instance-of call.
2353 Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
2354   C->set_has_split_ifs(true); // Has chance for split-if optimization
2355   assert( !stopped(), "dead parse path should be checked in callers" );
2356   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2357          "must check for not-null not-dead klass in callers");
2358 
2359   // Make the merge point
2360   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2361   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2362   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2363   C->set_has_split_ifs(true); // Has chance for split-if optimization
2364 
2365   // Null check; get casted pointer; set region slot 3
2366   Node* null_ctl = top();
2367   Node* not_null_obj = null_check_oop(subobj, &null_ctl);
2368 
2369   // If not_null_obj is dead, only null-path is taken
2370   if (stopped()) {              // Doing instance-of on a NULL?
2371     set_control(null_ctl);
2372     return intcon(0);
2373   }
2374   region->init_req(_null_path, null_ctl);
2375   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2376 
2377   // Load the object's klass
2378   Node* obj_klass = load_object_klass(not_null_obj);
2379 
2380   // Generate the subtype check
2381   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2382 
2383   // Plug in the success path to the general merge in slot 1.
2384   region->init_req(_obj_path, control());
2385   phi   ->init_req(_obj_path, intcon(1));
2386 
2387   // Plug in the failing path to the general merge in slot 2.
2388   region->init_req(_fail_path, not_subtype_ctrl);
2389   phi   ->init_req(_fail_path, intcon(0));
2390 
2391   // Return final merged results
2392   set_control( _gvn.transform(region) );
2393   record_for_igvn(region);
2394   return _gvn.transform(phi);
2395 }
2396 
2397 //-------------------------------gen_checkcast---------------------------------
2398 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2399 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2400 // uncommon-trap paths work.  Adjust stack after this call.
2401 // If failure_control is supplied and not null, it is filled in with
2402 // the control edge for the cast failure.  Otherwise, an appropriate
2403 // uncommon trap or exception is thrown.
2404 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2405                               Node* *failure_control) {
2406   kill_dead_locals();           // Benefit all the uncommon traps
2407   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2408   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2409 
2410   // Fast cutout:  Check the case that the cast is vacuously true.
2411   // This detects the common cases where the test will short-circuit
2412   // away completely.  We do this before we perform the null check,
2413   // because if the test is going to turn into zero code, we don't
2414   // want a residual null check left around.  (Causes a slowdown,
2415   // for example, in some objArray manipulations, such as a[i]=a[j].)
2416   if (tk->singleton()) {
2417     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2418     if (objtp != NULL && objtp->klass() != NULL) {
2419       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2420       case SSC_always_true:
2421         return obj;
2422       case SSC_always_false:
2423         // It needs a null check because a null will *pass* the cast check.
2424         // A non-null value will always produce an exception.
2425         return do_null_assert(obj, T_OBJECT);
2426       }
2427     }
2428   }
2429 
2430   ciProfileData* data = NULL;
2431   if (failure_control == NULL) {        // use MDO in regular case only
2432     assert(java_bc() == Bytecodes::_aastore ||
2433            java_bc() == Bytecodes::_checkcast,
2434            "interpreter profiles type checks only for these BCs");
2435     data = method()->method_data()->bci_to_data(bci());
2436   }
2437 
2438   // Make the merge point
2439   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2440   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2441   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
2442   C->set_has_split_ifs(true); // Has chance for split-if optimization
2443 
2444   // Use null-cast information if it is available
2445   bool never_see_null = false;
2446   // If we see an unexpected null at a check-cast we record it and force a
2447   // recompile; the offending check-cast will be compiled to handle NULLs.
2448   // If we see several offending BCIs, then all checkcasts in the
2449   // method will be compiled to handle NULLs.
2450   if (UncommonNullCast            // Cutout for this technique
2451       && failure_control == NULL  // regular case
2452       && obj != null()            // And not the -Xcomp stupid case?
2453       && !too_many_traps(Deoptimization::Reason_null_check)) {
2454     // Finally, check the "null_seen" bit from the interpreter.
2455     if (data == NULL || !data->as_BitData()->null_seen()) {
2456       never_see_null = true;
2457     }
2458   }
2459 
2460   // Null check; get casted pointer; set region slot 3
2461   Node* null_ctl = top();
2462   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2463 
2464   // If not_null_obj is dead, only null-path is taken
2465   if (stopped()) {              // Doing instance-of on a NULL?
2466     set_control(null_ctl);
2467     return null();
2468   }
2469   region->init_req(_null_path, null_ctl);
2470   phi   ->init_req(_null_path, null());  // Set null path value
2471 
2472   Node* cast_obj = NULL;        // the casted version of the object
2473 
2474   // If the profile has seen exactly one type, narrow to that type.
2475   // (The subsequent subtype check will always fold up.)
2476   if (UseTypeProfile && TypeProfileCasts && data != NULL &&
2477       // Counter has never been decremented (due to cast failure).
2478       // ...This is a reasonable thing to expect.  It is true of
2479       // all casts inserted by javac to implement generic types.
2480       data->as_CounterData()->count() >= 0 &&
2481       !too_many_traps(Deoptimization::Reason_class_check)) {
2482     // (No, this isn't a call, but it's enough like a virtual call
2483     // to use the same ciMethod accessor to get the profile info...)
2484     ciCallProfile profile = method()->call_profile_at_bci(bci());
2485     if (profile.count() >= 0 &&         // no cast failures here
2486         profile.has_receiver(0) &&
2487         profile.morphism() == 1) {
2488       ciKlass* exact_kls = profile.receiver(0);
2489       int ssc = static_subtype_check(tk->klass(), exact_kls);
2490       if (ssc == SSC_always_true) {
2491         // If we narrow the type to match what the type profile sees,
2492         // we can then remove the rest of the cast.
2493         // This is a win, even if the exact_kls is very specific,
2494         // because downstream operations, such as method calls,
2495         // will often benefit from the sharper type.
2496         Node* exact_obj = not_null_obj; // will get updated in place...
2497         Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2498                                               &exact_obj);
2499         { PreserveJVMState pjvms(this);
2500           set_control(slow_ctl);
2501           uncommon_trap(Deoptimization::Reason_class_check,
2502                         Deoptimization::Action_maybe_recompile);
2503         }
2504         if (failure_control != NULL) // failure is now impossible
2505           (*failure_control) = top();
2506         replace_in_map(not_null_obj, exact_obj);
2507         // adjust the type of the phi to the exact klass:
2508         phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
2509         cast_obj = exact_obj;
2510       }
2511       // assert(cast_obj != NULL)... except maybe the profile lied to us.
2512     }
2513   }
2514 
2515   if (cast_obj == NULL) {
2516     // Load the object's klass
2517     Node* obj_klass = load_object_klass(not_null_obj);
2518 
2519     // Generate the subtype check
2520     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2521 
2522     // Plug in success path into the merge
2523     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
2524                                                          not_null_obj, toop));
2525     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2526     if (failure_control == NULL) {
2527       if (not_subtype_ctrl != top()) { // If failure is possible
2528         PreserveJVMState pjvms(this);
2529         set_control(not_subtype_ctrl);
2530         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2531       }
2532     } else {
2533       (*failure_control) = not_subtype_ctrl;
2534     }
2535   }
2536 
2537   region->init_req(_obj_path, control());
2538   phi   ->init_req(_obj_path, cast_obj);
2539 
2540   // A merge of NULL or Casted-NotNull obj
2541   Node* res = _gvn.transform(phi);
2542 
2543   // Note I do NOT always 'replace_in_map(obj,result)' here.
2544   //  if( tk->klass()->can_be_primary_super()  )
2545     // This means that if I successfully store an Object into an array-of-String
2546     // I 'forget' that the Object is really now known to be a String.  I have to
2547     // do this because we don't have true union types for interfaces - if I store
2548     // a Baz into an array-of-Interface and then tell the optimizer it's an
2549     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2550     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2551   //  replace_in_map( obj, res );
2552 
2553   // Return final merged results
2554   set_control( _gvn.transform(region) );
2555   record_for_igvn(region);
2556   return res;
2557 }
2558 
2559 //------------------------------next_monitor-----------------------------------
2560 // What number should be given to the next monitor?
2561 int GraphKit::next_monitor() {
2562   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2563   int next = current + C->sync_stack_slots();
2564   // Keep the toplevel high water mark current:
2565   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2566   return current;
2567 }
2568 
2569 //------------------------------insert_mem_bar---------------------------------
2570 // Memory barrier to avoid floating things around
2571 // The membar serves as a pinch point between both control and all memory slices.
2572 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2573   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2574   mb->init_req(TypeFunc::Control, control());
2575   mb->init_req(TypeFunc::Memory,  reset_memory());
2576   Node* membar = _gvn.transform(mb);
2577   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
2578   set_all_memory_call(membar);
2579   return membar;
2580 }
2581 
2582 //-------------------------insert_mem_bar_volatile----------------------------
2583 // Memory barrier to avoid floating things around
2584 // The membar serves as a pinch point between both control and memory(alias_idx).
2585 // If you want to make a pinch point on all memory slices, do not use this
2586 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2587 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2588   // When Parse::do_put_xxx updates a volatile field, it appends a series
2589   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2590   // The first membar is on the same memory slice as the field store opcode.
2591   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2592   // All the other membars (for other volatile slices, including AliasIdxBot,
2593   // which stands for all unknown volatile slices) are control-dependent
2594   // on the first membar.  This prevents later volatile loads or stores
2595   // from sliding up past the just-emitted store.
2596 
2597   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2598   mb->set_req(TypeFunc::Control,control());
2599   if (alias_idx == Compile::AliasIdxBot) {
2600     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2601   } else {
2602     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2603     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2604   }
2605   Node* membar = _gvn.transform(mb);
2606   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
2607   if (alias_idx == Compile::AliasIdxBot) {
2608     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
2609   } else {
2610     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2611   }
2612   return membar;
2613 }
2614 
2615 //------------------------------shared_lock------------------------------------
2616 // Emit locking code.
2617 FastLockNode* GraphKit::shared_lock(Node* obj) {
2618   // bci is either a monitorenter bc or InvocationEntryBci
2619   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2620   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2621 
2622   if( !GenerateSynchronizationCode )
2623     return NULL;                // Not locking things?
2624   if (stopped())                // Dead monitor?
2625     return NULL;
2626 
2627   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2628 
2629   // Box the stack location
2630   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
2631   Node* mem = reset_memory();
2632 
2633   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
2634   if (PrintPreciseBiasedLockingStatistics) {
2635     // Create the counters for this fast lock.
2636     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2637   }
2638   // Add monitor to debug info for the slow path.  If we block inside the
2639   // slow path and de-opt, we need the monitor hanging around
2640   map()->push_monitor( flock );
2641 
2642   const TypeFunc *tf = LockNode::lock_type();
2643   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
2644 
2645   lock->init_req( TypeFunc::Control, control() );
2646   lock->init_req( TypeFunc::Memory , mem );
2647   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2648   lock->init_req( TypeFunc::FramePtr, frameptr() );
2649   lock->init_req( TypeFunc::ReturnAdr, top() );
2650 
2651   lock->init_req(TypeFunc::Parms + 0, obj);
2652   lock->init_req(TypeFunc::Parms + 1, box);
2653   lock->init_req(TypeFunc::Parms + 2, flock);
2654   add_safepoint_edges(lock);
2655 
2656   lock = _gvn.transform( lock )->as_Lock();
2657 
2658   // lock has no side-effects, sets few values
2659   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2660 
2661   insert_mem_bar(Op_MemBarAcquire);
2662 
2663   // Add this to the worklist so that the lock can be eliminated
2664   record_for_igvn(lock);
2665 
2666 #ifndef PRODUCT
2667   if (PrintLockStatistics) {
2668     // Update the counter for this lock.  Don't bother using an atomic
2669     // operation since we don't require absolute accuracy.
2670     lock->create_lock_counter(map()->jvms());
2671     int adr_type = Compile::AliasIdxRaw;
2672     Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
2673     Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
2674     Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
2675     store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
2676   }
2677 #endif
2678 
2679   return flock;
2680 }
2681 
2682 
2683 //------------------------------shared_unlock----------------------------------
2684 // Emit unlocking code.
2685 void GraphKit::shared_unlock(Node* box, Node* obj) {
2686   // bci is either a monitorenter bc or InvocationEntryBci
2687   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2688   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2689 
2690   if( !GenerateSynchronizationCode )
2691     return;
2692   if (stopped()) {               // Dead monitor?
2693     map()->pop_monitor();        // Kill monitor from debug info
2694     return;
2695   }
2696 
2697   // Memory barrier to avoid floating things down past the locked region
2698   insert_mem_bar(Op_MemBarRelease);
2699 
2700   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2701   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
2702   uint raw_idx = Compile::AliasIdxRaw;
2703   unlock->init_req( TypeFunc::Control, control() );
2704   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2705   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2706   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2707   unlock->init_req( TypeFunc::ReturnAdr, top() );
2708 
2709   unlock->init_req(TypeFunc::Parms + 0, obj);
2710   unlock->init_req(TypeFunc::Parms + 1, box);
2711   unlock = _gvn.transform(unlock)->as_Unlock();
2712 
2713   Node* mem = reset_memory();
2714 
2715   // unlock has no side-effects, sets few values
2716   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2717 
2718   // Kill monitor from debug info
2719   map()->pop_monitor( );
2720 }
2721 
2722 //-------------------------------get_layout_helper-----------------------------
2723 // If the given klass is a constant or known to be an array,
2724 // fetch the constant layout helper value into constant_value
2725 // and return (Node*)NULL.  Otherwise, load the non-constant
2726 // layout helper value, and return the node which represents it.
2727 // This two-faced routine is useful because allocation sites
2728 // almost always feature constant types.
2729 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2730   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2731   if (!StressReflectiveCode && inst_klass != NULL) {
2732     ciKlass* klass = inst_klass->klass();
2733     bool    xklass = inst_klass->klass_is_exact();
2734     if (xklass || klass->is_array_klass()) {
2735       jint lhelper = klass->layout_helper();
2736       if (lhelper != Klass::_lh_neutral_value) {
2737         constant_value = lhelper;
2738         return (Node*) NULL;
2739       }
2740     }
2741   }
2742   constant_value = Klass::_lh_neutral_value;  // put in a known value
2743   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
2744   return make_load(NULL, lhp, TypeInt::INT, T_INT);
2745 }
2746 
2747 // We just put in an allocate/initialize with a big raw-memory effect.
2748 // Hook selected additional alias categories on the initialization.
2749 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
2750                                 MergeMemNode* init_in_merge,
2751                                 Node* init_out_raw) {
2752   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
2753   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
2754 
2755   Node* prevmem = kit.memory(alias_idx);
2756   init_in_merge->set_memory_at(alias_idx, prevmem);
2757   kit.set_memory(init_out_raw, alias_idx);
2758 }
2759 
2760 //---------------------------set_output_for_allocation-------------------------
2761 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
2762                                           const TypeOopPtr* oop_type,
2763                                           bool raw_mem_only) {
2764   int rawidx = Compile::AliasIdxRaw;
2765   alloc->set_req( TypeFunc::FramePtr, frameptr() );
2766   add_safepoint_edges(alloc);
2767   Node* allocx = _gvn.transform(alloc);
2768   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
2769   // create memory projection for i_o
2770   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
2771   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
2772 
2773   // create a memory projection as for the normal control path
2774   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
2775   set_memory(malloc, rawidx);
2776 
2777   // a normal slow-call doesn't change i_o, but an allocation does
2778   // we create a separate i_o projection for the normal control path
2779   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
2780   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
2781 
2782   // put in an initialization barrier
2783   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
2784                                                  rawoop)->as_Initialize();
2785   assert(alloc->initialization() == init,  "2-way macro link must work");
2786   assert(init ->allocation()     == alloc, "2-way macro link must work");
2787   if (ReduceFieldZeroing && !raw_mem_only) {
2788     // Extract memory strands which may participate in the new object's
2789     // initialization, and source them from the new InitializeNode.
2790     // This will allow us to observe initializations when they occur,
2791     // and link them properly (as a group) to the InitializeNode.
2792     assert(init->in(InitializeNode::Memory) == malloc, "");
2793     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
2794     init->set_req(InitializeNode::Memory, minit_in);
2795     record_for_igvn(minit_in); // fold it up later, if possible
2796     Node* minit_out = memory(rawidx);
2797     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
2798     if (oop_type->isa_aryptr()) {
2799       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
2800       int            elemidx  = C->get_alias_index(telemref);
2801       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
2802     } else if (oop_type->isa_instptr()) {
2803       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
2804       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
2805         ciField* field = ik->nonstatic_field_at(i);
2806         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
2807           continue;  // do not bother to track really large numbers of fields
2808         // Find (or create) the alias category for this field:
2809         int fieldidx = C->alias_type(field)->index();
2810         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
2811       }
2812     }
2813   }
2814 
2815   // Cast raw oop to the real thing...
2816   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
2817   javaoop = _gvn.transform(javaoop);
2818   C->set_recent_alloc(control(), javaoop);
2819   assert(just_allocated_object(control()) == javaoop, "just allocated");
2820 
2821 #ifdef ASSERT
2822   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
2823     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
2824            "Ideal_allocation works");
2825     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
2826            "Ideal_allocation works");
2827     if (alloc->is_AllocateArray()) {
2828       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
2829              "Ideal_allocation works");
2830       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
2831              "Ideal_allocation works");
2832     } else {
2833       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
2834     }
2835   }
2836 #endif //ASSERT
2837 
2838   return javaoop;
2839 }
2840 
2841 //---------------------------new_instance--------------------------------------
2842 // This routine takes a klass_node which may be constant (for a static type)
2843 // or may be non-constant (for reflective code).  It will work equally well
2844 // for either, and the graph will fold nicely if the optimizer later reduces
2845 // the type to a constant.
2846 // The optional arguments are for specialized use by intrinsics:
2847 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
2848 //  - If 'raw_mem_only', do not cast the result to an oop.
2849 //  - If 'return_size_val', report the the total object size to the caller.
2850 Node* GraphKit::new_instance(Node* klass_node,
2851                              Node* extra_slow_test,
2852                              bool raw_mem_only, // affect only raw memory
2853                              Node* *return_size_val) {
2854   // Compute size in doublewords
2855   // The size is always an integral number of doublewords, represented
2856   // as a positive bytewise size stored in the klass's layout_helper.
2857   // The layout_helper also encodes (in a low bit) the need for a slow path.
2858   jint  layout_con = Klass::_lh_neutral_value;
2859   Node* layout_val = get_layout_helper(klass_node, layout_con);
2860   int   layout_is_con = (layout_val == NULL);
2861 
2862   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
2863   // Generate the initial go-slow test.  It's either ALWAYS (return a
2864   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
2865   // case) a computed value derived from the layout_helper.
2866   Node* initial_slow_test = NULL;
2867   if (layout_is_con) {
2868     assert(!StressReflectiveCode, "stress mode does not use these paths");
2869     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
2870     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
2871 
2872   } else {   // reflective case
2873     // This reflective path is used by Unsafe.allocateInstance.
2874     // (It may be stress-tested by specifying StressReflectiveCode.)
2875     // Basically, we want to get into the VM is there's an illegal argument.
2876     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
2877     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
2878     if (extra_slow_test != intcon(0)) {
2879       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
2880     }
2881     // (Macro-expander will further convert this to a Bool, if necessary.)
2882   }
2883 
2884   // Find the size in bytes.  This is easy; it's the layout_helper.
2885   // The size value must be valid even if the slow path is taken.
2886   Node* size = NULL;
2887   if (layout_is_con) {
2888     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
2889   } else {   // reflective case
2890     // This reflective path is used by clone and Unsafe.allocateInstance.
2891     size = ConvI2X(layout_val);
2892 
2893     // Clear the low bits to extract layout_helper_size_in_bytes:
2894     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
2895     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
2896     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
2897   }
2898   if (return_size_val != NULL) {
2899     (*return_size_val) = size;
2900   }
2901 
2902   // This is a precise notnull oop of the klass.
2903   // (Actually, it need not be precise if this is a reflective allocation.)
2904   // It's what we cast the result to.
2905   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
2906   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
2907   const TypeOopPtr* oop_type = tklass->as_instance_type();
2908 
2909   // Now generate allocation code
2910 
2911   // The entire memory state is needed for slow path of the allocation
2912   // since GC and deoptimization can happened.
2913   Node *mem = reset_memory();
2914   set_all_memory(mem); // Create new memory state
2915 
2916   AllocateNode* alloc
2917     = new (C, AllocateNode::ParmLimit)
2918         AllocateNode(C, AllocateNode::alloc_type(),
2919                      control(), mem, i_o(),
2920                      size, klass_node,
2921                      initial_slow_test);
2922 
2923   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
2924 }
2925 
2926 //-------------------------------new_array-------------------------------------
2927 // helper for both newarray and anewarray
2928 // The 'length' parameter is (obviously) the length of the array.
2929 // See comments on new_instance for the meaning of the other arguments.
2930 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
2931                           Node* length,         // number of array elements
2932                           int   nargs,          // number of arguments to push back for uncommon trap
2933                           bool raw_mem_only,    // affect only raw memory
2934                           Node* *return_size_val) {
2935   jint  layout_con = Klass::_lh_neutral_value;
2936   Node* layout_val = get_layout_helper(klass_node, layout_con);
2937   int   layout_is_con = (layout_val == NULL);
2938 
2939   if (!layout_is_con && !StressReflectiveCode &&
2940       !too_many_traps(Deoptimization::Reason_class_check)) {
2941     // This is a reflective array creation site.
2942     // Optimistically assume that it is a subtype of Object[],
2943     // so that we can fold up all the address arithmetic.
2944     layout_con = Klass::array_layout_helper(T_OBJECT);
2945     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
2946     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
2947     { BuildCutout unless(this, bol_lh, PROB_MAX);
2948       _sp += nargs;
2949       uncommon_trap(Deoptimization::Reason_class_check,
2950                     Deoptimization::Action_maybe_recompile);
2951     }
2952     layout_val = NULL;
2953     layout_is_con = true;
2954   }
2955 
2956   // Generate the initial go-slow test.  Make sure we do not overflow
2957   // if length is huge (near 2Gig) or negative!  We do not need
2958   // exact double-words here, just a close approximation of needed
2959   // double-words.  We can't add any offset or rounding bits, lest we
2960   // take a size -1 of bytes and make it positive.  Use an unsigned
2961   // compare, so negative sizes look hugely positive.
2962   int fast_size_limit = FastAllocateSizeLimit;
2963   if (layout_is_con) {
2964     assert(!StressReflectiveCode, "stress mode does not use these paths");
2965     // Increase the size limit if we have exact knowledge of array type.
2966     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
2967     fast_size_limit <<= (LogBytesPerLong - log2_esize);
2968   }
2969 
2970   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
2971   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
2972   if (initial_slow_test->is_Bool()) {
2973     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
2974     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
2975   }
2976 
2977   // --- Size Computation ---
2978   // array_size = round_to_heap(array_header + (length << elem_shift));
2979   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
2980   // and round_to(x, y) == ((x + y-1) & ~(y-1))
2981   // The rounding mask is strength-reduced, if possible.
2982   int round_mask = MinObjAlignmentInBytes - 1;
2983   Node* header_size = NULL;
2984   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
2985   // (T_BYTE has the weakest alignment and size restrictions...)
2986   if (layout_is_con) {
2987     int       hsize  = Klass::layout_helper_header_size(layout_con);
2988     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
2989     BasicType etype  = Klass::layout_helper_element_type(layout_con);
2990     if ((round_mask & ~right_n_bits(eshift)) == 0)
2991       round_mask = 0;  // strength-reduce it if it goes away completely
2992     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
2993     assert(header_size_min <= hsize, "generic minimum is smallest");
2994     header_size_min = hsize;
2995     header_size = intcon(hsize + round_mask);
2996   } else {
2997     Node* hss   = intcon(Klass::_lh_header_size_shift);
2998     Node* hsm   = intcon(Klass::_lh_header_size_mask);
2999     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
3000     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
3001     Node* mask  = intcon(round_mask);
3002     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
3003   }
3004 
3005   Node* elem_shift = NULL;
3006   if (layout_is_con) {
3007     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3008     if (eshift != 0)
3009       elem_shift = intcon(eshift);
3010   } else {
3011     // There is no need to mask or shift this value.
3012     // The semantics of LShiftINode include an implicit mask to 0x1F.
3013     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3014     elem_shift = layout_val;
3015   }
3016 
3017   // Transition to native address size for all offset calculations:
3018   Node* lengthx = ConvI2X(length);
3019   Node* headerx = ConvI2X(header_size);
3020 #ifdef _LP64
3021   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3022     if (tllen != NULL && tllen->_lo < 0) {
3023       // Add a manual constraint to a positive range.  Cf. array_element_address.
3024       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3025       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3026       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3027       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
3028     }
3029   }
3030 #endif
3031 
3032   // Combine header size (plus rounding) and body size.  Then round down.
3033   // This computation cannot overflow, because it is used only in two
3034   // places, one where the length is sharply limited, and the other
3035   // after a successful allocation.
3036   Node* abody = lengthx;
3037   if (elem_shift != NULL)
3038     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
3039   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
3040   if (round_mask != 0) {
3041     Node* mask = MakeConX(~round_mask);
3042     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
3043   }
3044   // else if round_mask == 0, the size computation is self-rounding
3045 
3046   if (return_size_val != NULL) {
3047     // This is the size
3048     (*return_size_val) = size;
3049   }
3050 
3051   // Now generate allocation code
3052 
3053   // The entire memory state is needed for slow path of the allocation
3054   // since GC and deoptimization can happened.
3055   Node *mem = reset_memory();
3056   set_all_memory(mem); // Create new memory state
3057 
3058   // Create the AllocateArrayNode and its result projections
3059   AllocateArrayNode* alloc
3060     = new (C, AllocateArrayNode::ParmLimit)
3061         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3062                           control(), mem, i_o(),
3063                           size, klass_node,
3064                           initial_slow_test,
3065                           length);
3066 
3067   // Cast to correct type.  Note that the klass_node may be constant or not,
3068   // and in the latter case the actual array type will be inexact also.
3069   // (This happens via a non-constant argument to inline_native_newArray.)
3070   // In any case, the value of klass_node provides the desired array type.
3071   const TypeInt* length_type = _gvn.find_int_type(length);
3072   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3073   if (ary_type->isa_aryptr() && length_type != NULL) {
3074     // Try to get a better type than POS for the size
3075     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3076   }
3077 
3078   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
3079 
3080   // Cast length on remaining path to be as narrow as possible
3081   if (map()->find_edge(length) >= 0) {
3082     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3083     if (ccast != length) {
3084       _gvn.set_type_bottom(ccast);
3085       record_for_igvn(ccast);
3086       replace_in_map(length, ccast);
3087     }
3088   }
3089 
3090   return javaoop;
3091 }
3092 
3093 // The following "Ideal_foo" functions are placed here because they recognize
3094 // the graph shapes created by the functions immediately above.
3095 
3096 //---------------------------Ideal_allocation----------------------------------
3097 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3098 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3099   if (ptr == NULL) {     // reduce dumb test in callers
3100     return NULL;
3101   }
3102   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3103     ptr = ptr->in(1);
3104     if (ptr == NULL)  return NULL;
3105   }
3106   if (ptr->is_Proj()) {
3107     Node* allo = ptr->in(0);
3108     if (allo != NULL && allo->is_Allocate()) {
3109       return allo->as_Allocate();
3110     }
3111   }
3112   // Report failure to match.
3113   return NULL;
3114 }
3115 
3116 // Fancy version which also strips off an offset (and reports it to caller).
3117 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3118                                              intptr_t& offset) {
3119   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3120   if (base == NULL)  return NULL;
3121   return Ideal_allocation(base, phase);
3122 }
3123 
3124 // Trace Initialize <- Proj[Parm] <- Allocate
3125 AllocateNode* InitializeNode::allocation() {
3126   Node* rawoop = in(InitializeNode::RawAddress);
3127   if (rawoop->is_Proj()) {
3128     Node* alloc = rawoop->in(0);
3129     if (alloc->is_Allocate()) {
3130       return alloc->as_Allocate();
3131     }
3132   }
3133   return NULL;
3134 }
3135 
3136 // Trace Allocate -> Proj[Parm] -> Initialize
3137 InitializeNode* AllocateNode::initialization() {
3138   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3139   if (rawoop == NULL)  return NULL;
3140   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3141     Node* init = rawoop->fast_out(i);
3142     if (init->is_Initialize()) {
3143       assert(init->as_Initialize()->allocation() == this, "2-way link");
3144       return init->as_Initialize();
3145     }
3146   }
3147   return NULL;
3148 }
3149 
3150 //----------------------------- store barriers ----------------------------
3151 #define __ ideal.
3152 
3153 void GraphKit::sync_kit(IdealKit& ideal) {
3154   // Final sync IdealKit and graphKit.
3155   __ drain_delay_transform();
3156   set_all_memory(__ merged_memory());
3157   set_control(__ ctrl());
3158 }
3159 
3160 // vanilla/CMS post barrier
3161 // Insert a write-barrier store.  This is to let generational GC work; we have
3162 // to flag all oop-stores before the next GC point.
3163 void GraphKit::write_barrier_post(Node* oop_store,
3164                                   Node* obj,
3165                                   Node* adr,
3166                                   Node* val,
3167                                   bool use_precise) {
3168   // No store check needed if we're storing a NULL or an old object
3169   // (latter case is probably a string constant). The concurrent
3170   // mark sweep garbage collector, however, needs to have all nonNull
3171   // oop updates flagged via card-marks.
3172   if (val != NULL && val->is_Con()) {
3173     // must be either an oop or NULL
3174     const Type* t = val->bottom_type();
3175     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3176       // stores of null never (?) need barriers
3177       return;
3178     ciObject* con = t->is_oopptr()->const_oop();
3179     if (con != NULL
3180         && con->is_perm()
3181         && Universe::heap()->can_elide_permanent_oop_store_barriers())
3182       // no store barrier needed, because no old-to-new ref created
3183       return;
3184   }
3185 
3186   if (!use_precise) {
3187     // All card marks for a (non-array) instance are in one place:
3188     adr = obj;
3189   }
3190   // (Else it's an array (or unknown), and we want more precise card marks.)
3191   assert(adr != NULL, "");
3192 
3193   IdealKit ideal(gvn(), control(), merged_memory(), true);
3194 
3195   // Convert the pointer to an int prior to doing math on it
3196   Node* cast = __ CastPX(__ ctrl(), adr);
3197 
3198   // Divide by card size
3199   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3200          "Only one we handle so far.");
3201   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3202 
3203   // Combine card table base and card offset
3204   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3205 
3206   // Get the alias_index for raw card-mark memory
3207   int adr_type = Compile::AliasIdxRaw;
3208   // Smash zero into card
3209   Node*   zero = __ ConI(0);
3210   BasicType bt = T_BYTE;
3211   if( !UseConcMarkSweepGC ) {
3212     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3213   } else {
3214     // Specialized path for CM store barrier
3215     __ storeCM(__ ctrl(), card_adr, zero, oop_store, bt, adr_type);
3216   }
3217 
3218   // Final sync IdealKit and GraphKit.
3219   sync_kit(ideal);
3220 }
3221 
3222 // G1 pre/post barriers
3223 void GraphKit::g1_write_barrier_pre(Node* obj,
3224                                     Node* adr,
3225                                     uint alias_idx,
3226                                     Node* val,
3227                                     const TypeOopPtr* val_type,
3228                                     BasicType bt) {
3229   IdealKit ideal(gvn(), control(), merged_memory(), true);
3230 
3231   Node* tls = __ thread(); // ThreadLocalStorage
3232 
3233   Node* no_ctrl = NULL;
3234   Node* no_base = __ top();
3235   Node* zero = __ ConI(0);
3236 
3237   float likely  = PROB_LIKELY(0.999);
3238   float unlikely  = PROB_UNLIKELY(0.999);
3239 
3240   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3241   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3242 
3243   // Offsets into the thread
3244   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3245                                           PtrQueue::byte_offset_of_active());
3246   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3247                                           PtrQueue::byte_offset_of_index());
3248   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3249                                           PtrQueue::byte_offset_of_buf());
3250   // Now the actual pointers into the thread
3251 
3252   // set_control( ctl);
3253 
3254   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3255   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3256   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3257 
3258   // Now some of the values
3259 
3260   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3261 
3262   // if (!marking)
3263   __ if_then(marking, BoolTest::ne, zero); {
3264     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3265 
3266     const Type* t1 = adr->bottom_type();
3267     const Type* t2 = val->bottom_type();
3268 
3269     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
3270     // if (orig != NULL)
3271     __ if_then(orig, BoolTest::ne, null()); {
3272       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3273 
3274       // load original value
3275       // alias_idx correct??
3276 
3277       // is the queue for this thread full?
3278       __ if_then(index, BoolTest::ne, zero, likely); {
3279 
3280         // decrement the index
3281         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3282         Node* next_indexX = next_index;
3283 #ifdef _LP64
3284         // We could refine the type for what it's worth
3285         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3286         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3287 #endif
3288 
3289         // Now get the buffer location we will log the original value into and store it
3290         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
3291         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
3292 
3293         // update the index
3294         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3295 
3296       } __ else_(); {
3297 
3298         // logging buffer is full, call the runtime
3299         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3300         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
3301       } __ end_if();  // (!index)
3302     } __ end_if();  // (orig != NULL)
3303   } __ end_if();  // (!marking)
3304 
3305   // Final sync IdealKit and GraphKit.
3306   sync_kit(ideal);
3307 }
3308 
3309 //
3310 // Update the card table and add card address to the queue
3311 //
3312 void GraphKit::g1_mark_card(IdealKit& ideal,
3313                             Node* card_adr,
3314                             Node* oop_store,
3315                             Node* index,
3316                             Node* index_adr,
3317                             Node* buffer,
3318                             const TypeFunc* tf) {
3319 
3320   Node* zero = __ ConI(0);
3321   Node* no_base = __ top();
3322   BasicType card_bt = T_BYTE;
3323   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3324   __ storeCM(__ ctrl(), card_adr, zero, oop_store, card_bt, Compile::AliasIdxRaw);
3325 
3326   //  Now do the queue work
3327   __ if_then(index, BoolTest::ne, zero); {
3328 
3329     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
3330     Node* next_indexX = next_index;
3331 #ifdef _LP64
3332     // We could refine the type for what it's worth
3333     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3334     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3335 #endif // _LP64
3336     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
3337 
3338     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3339     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3340 
3341   } __ else_(); {
3342     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3343   } __ end_if();
3344 
3345 }
3346 
3347 void GraphKit::g1_write_barrier_post(Node* oop_store,
3348                                      Node* obj,
3349                                      Node* adr,
3350                                      uint alias_idx,
3351                                      Node* val,
3352                                      BasicType bt,
3353                                      bool use_precise) {
3354   // If we are writing a NULL then we need no post barrier
3355 
3356   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3357     // Must be NULL
3358     const Type* t = val->bottom_type();
3359     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3360     // No post barrier if writing NULLx
3361     return;
3362   }
3363 
3364   if (!use_precise) {
3365     // All card marks for a (non-array) instance are in one place:
3366     adr = obj;
3367   }
3368   // (Else it's an array (or unknown), and we want more precise card marks.)
3369   assert(adr != NULL, "");
3370 
3371   IdealKit ideal(gvn(), control(), merged_memory(), true);
3372 
3373   Node* tls = __ thread(); // ThreadLocalStorage
3374 
3375   Node* no_ctrl = NULL;
3376   Node* no_base = __ top();
3377   float likely  = PROB_LIKELY(0.999);
3378   float unlikely  = PROB_UNLIKELY(0.999);
3379   Node* zero = __ ConI(0);
3380   Node* zeroX = __ ConX(0);
3381 
3382   // Get the alias_index for raw card-mark memory
3383   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3384 
3385   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3386 
3387   // Offsets into the thread
3388   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3389                                      PtrQueue::byte_offset_of_index());
3390   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3391                                      PtrQueue::byte_offset_of_buf());
3392 
3393   // Pointers into the thread
3394 
3395   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3396   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3397 
3398   // Now some values
3399 
3400   Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3401   Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3402 
3403 
3404   // Convert the store obj pointer to an int prior to doing math on it
3405   // Must use ctrl to prevent "integerized oop" existing across safepoint
3406   Node* cast =  __ CastPX(__ ctrl(), adr);
3407 
3408   // Divide pointer by card size
3409   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3410 
3411   // Combine card table base and card offset
3412   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3413 
3414   // If we know the value being stored does it cross regions?
3415 
3416   if (val != NULL) {
3417     // Does the store cause us to cross regions?
3418 
3419     // Should be able to do an unsigned compare of region_size instead of
3420     // and extra shift. Do we have an unsigned compare??
3421     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3422     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3423 
3424     // if (xor_res == 0) same region so skip
3425     __ if_then(xor_res, BoolTest::ne, zeroX); {
3426 
3427       // No barrier if we are storing a NULL
3428       __ if_then(val, BoolTest::ne, null(), unlikely); {
3429 
3430         // Ok must mark the card if not already dirty
3431 
3432         // load the original value of the card
3433         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3434 
3435         __ if_then(card_val, BoolTest::ne, zero); {
3436           g1_mark_card(ideal, card_adr, oop_store, index, index_adr, buffer, tf);
3437         } __ end_if();
3438       } __ end_if();
3439     } __ end_if();
3440   } else {
3441     // Object.clone() instrinsic uses this path.
3442     g1_mark_card(ideal, card_adr, oop_store, index, index_adr, buffer, tf);
3443   }
3444 
3445   // Final sync IdealKit and GraphKit.
3446   sync_kit(ideal);
3447 }
3448 #undef __
3449