1 /*
   2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _node_map(C->comp_arena()) {
  90 
  91   _phantom_object = C->top()->_idx,
  92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  93 
  94   // Add ConP(#NULL) and ConN(#NULL) nodes.
  95   PhaseGVN* igvn = C->initial_gvn();
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   // compute max escape state of anything this node could point to
 211   VectorSet ptset(Thread::current()->resource_area());
 212   PointsTo(ptset, n, phase);
 213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 214     uint pt = i.elem;
 215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 216     if (pes > es)
 217       es = pes;
 218   }
 219   // cache the computed escape state
 220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 221   ptnode_adr(idx)->set_escape_state(es);
 222   return es;
 223 }
 224 
 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
 226   VectorSet visited(Thread::current()->resource_area());
 227   GrowableArray<uint>  worklist;
 228 
 229 #ifdef ASSERT
 230   Node *orig_n = n;
 231 #endif
 232 
 233   n = n->uncast();
 234   PointsToNode* npt = ptnode_adr(n->_idx);
 235 
 236   // If we have a JavaObject, return just that object
 237   if (npt->node_type() == PointsToNode::JavaObject) {
 238     ptset.set(n->_idx);
 239     return;
 240   }
 241 #ifdef ASSERT
 242   if (npt->_node == NULL) {
 243     if (orig_n != n)
 244       orig_n->dump();
 245     n->dump();
 246     assert(npt->_node != NULL, "unregistered node");
 247   }
 248 #endif
 249   worklist.push(n->_idx);
 250   while(worklist.length() > 0) {
 251     int ni = worklist.pop();
 252     if (visited.test_set(ni))
 253       continue;
 254 
 255     PointsToNode* pn = ptnode_adr(ni);
 256     // ensure that all inputs of a Phi have been processed
 257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 258 
 259     int edges_processed = 0;
 260     uint e_cnt = pn->edge_count();
 261     for (uint e = 0; e < e_cnt; e++) {
 262       uint etgt = pn->edge_target(e);
 263       PointsToNode::EdgeType et = pn->edge_type(e);
 264       if (et == PointsToNode::PointsToEdge) {
 265         ptset.set(etgt);
 266         edges_processed++;
 267       } else if (et == PointsToNode::DeferredEdge) {
 268         worklist.push(etgt);
 269         edges_processed++;
 270       } else {
 271         assert(false,"neither PointsToEdge or DeferredEdge");
 272       }
 273     }
 274     if (edges_processed == 0) {
 275       // no deferred or pointsto edges found.  Assume the value was set
 276       // outside this method.  Add the phantom object to the pointsto set.
 277       ptset.set(_phantom_object);
 278     }
 279   }
 280 }
 281 
 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 283   // This method is most expensive during ConnectionGraph construction.
 284   // Reuse vectorSet and an additional growable array for deferred edges.
 285   deferred_edges->clear();
 286   visited->Clear();
 287 
 288   visited->set(ni);
 289   PointsToNode *ptn = ptnode_adr(ni);
 290 
 291   // Mark current edges as visited and move deferred edges to separate array.
 292   for (uint i = 0; i < ptn->edge_count(); ) {
 293     uint t = ptn->edge_target(i);
 294 #ifdef ASSERT
 295     assert(!visited->test_set(t), "expecting no duplications");
 296 #else
 297     visited->set(t);
 298 #endif
 299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 301       deferred_edges->append(t);
 302     } else {
 303       i++;
 304     }
 305   }
 306   for (int next = 0; next < deferred_edges->length(); ++next) {
 307     uint t = deferred_edges->at(next);
 308     PointsToNode *ptt = ptnode_adr(t);
 309     uint e_cnt = ptt->edge_count();
 310     for (uint e = 0; e < e_cnt; e++) {
 311       uint etgt = ptt->edge_target(e);
 312       if (visited->test_set(etgt))
 313         continue;
 314 
 315       PointsToNode::EdgeType et = ptt->edge_type(e);
 316       if (et == PointsToNode::PointsToEdge) {
 317         add_pointsto_edge(ni, etgt);
 318         if(etgt == _phantom_object) {
 319           // Special case - field set outside (globally escaping).
 320           ptn->set_escape_state(PointsToNode::GlobalEscape);
 321         }
 322       } else if (et == PointsToNode::DeferredEdge) {
 323         deferred_edges->append(etgt);
 324       } else {
 325         assert(false,"invalid connection graph");
 326       }
 327     }
 328   }
 329 }
 330 
 331 
 332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 334 //  a pointsto edge is added if it is a JavaObject
 335 
 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 337   PointsToNode* an = ptnode_adr(adr_i);
 338   PointsToNode* to = ptnode_adr(to_i);
 339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 340 
 341   for (uint fe = 0; fe < an->edge_count(); fe++) {
 342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 343     int fi = an->edge_target(fe);
 344     PointsToNode* pf = ptnode_adr(fi);
 345     int po = pf->offset();
 346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 347       if (deferred)
 348         add_deferred_edge(fi, to_i);
 349       else
 350         add_pointsto_edge(fi, to_i);
 351     }
 352   }
 353 }
 354 
 355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 356 // whose offset matches "offset".
 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 358   PointsToNode* an = ptnode_adr(adr_i);
 359   for (uint fe = 0; fe < an->edge_count(); fe++) {
 360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 361     int fi = an->edge_target(fe);
 362     PointsToNode* pf = ptnode_adr(fi);
 363     int po = pf->offset();
 364     if (pf->edge_count() == 0) {
 365       // we have not seen any stores to this field, assume it was set outside this method
 366       add_pointsto_edge(fi, _phantom_object);
 367     }
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       add_deferred_edge(from_i, fi);
 370     }
 371   }
 372 }
 373 
 374 // Helper functions
 375 
 376 static Node* get_addp_base(Node *addp) {
 377   assert(addp->is_AddP(), "must be AddP");
 378   //
 379   // AddP cases for Base and Address inputs:
 380   // case #1. Direct object's field reference:
 381   //     Allocate
 382   //       |
 383   //     Proj #5 ( oop result )
 384   //       |
 385   //     CheckCastPP (cast to instance type)
 386   //      | |
 387   //     AddP  ( base == address )
 388   //
 389   // case #2. Indirect object's field reference:
 390   //      Phi
 391   //       |
 392   //     CastPP (cast to instance type)
 393   //      | |
 394   //     AddP  ( base == address )
 395   //
 396   // case #3. Raw object's field reference for Initialize node:
 397   //      Allocate
 398   //        |
 399   //      Proj #5 ( oop result )
 400   //  top   |
 401   //     \  |
 402   //     AddP  ( base == top )
 403   //
 404   // case #4. Array's element reference:
 405   //   {CheckCastPP | CastPP}
 406   //     |  | |
 407   //     |  AddP ( array's element offset )
 408   //     |  |
 409   //     AddP ( array's offset )
 410   //
 411   // case #5. Raw object's field reference for arraycopy stub call:
 412   //          The inline_native_clone() case when the arraycopy stub is called
 413   //          after the allocation before Initialize and CheckCastPP nodes.
 414   //      Allocate
 415   //        |
 416   //      Proj #5 ( oop result )
 417   //       | |
 418   //       AddP  ( base == address )
 419   //
 420   // case #6. Constant Pool, ThreadLocal, CastX2P or
 421   //          Raw object's field reference:
 422   //      {ConP, ThreadLocal, CastX2P, raw Load}
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #7. Klass's field reference.
 428   //      LoadKlass
 429   //       | |
 430   //       AddP  ( base == address )
 431   //
 432   // case #8. narrow Klass's field reference.
 433   //      LoadNKlass
 434   //       |
 435   //      DecodeN
 436   //       | |
 437   //       AddP  ( base == address )
 438   //
 439   Node *base = addp->in(AddPNode::Base)->uncast();
 440   if (base->is_top()) { // The AddP case #3 and #6.
 441     base = addp->in(AddPNode::Address)->uncast();
 442     while (base->is_AddP()) {
 443       // Case #6 (unsafe access) may have several chained AddP nodes.
 444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 445       base = base->in(AddPNode::Address)->uncast();
 446     }
 447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 451   }
 452   return base;
 453 }
 454 
 455 static Node* find_second_addp(Node* addp, Node* n) {
 456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 457 
 458   Node* addp2 = addp->raw_out(0);
 459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 460       addp2->in(AddPNode::Base) == n &&
 461       addp2->in(AddPNode::Address) == addp) {
 462 
 463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 464     //
 465     // Find array's offset to push it on worklist first and
 466     // as result process an array's element offset first (pushed second)
 467     // to avoid CastPP for the array's offset.
 468     // Otherwise the inserted CastPP (LocalVar) will point to what
 469     // the AddP (Field) points to. Which would be wrong since
 470     // the algorithm expects the CastPP has the same point as
 471     // as AddP's base CheckCastPP (LocalVar).
 472     //
 473     //    ArrayAllocation
 474     //     |
 475     //    CheckCastPP
 476     //     |
 477     //    memProj (from ArrayAllocation CheckCastPP)
 478     //     |  ||
 479     //     |  ||   Int (element index)
 480     //     |  ||    |   ConI (log(element size))
 481     //     |  ||    |   /
 482     //     |  ||   LShift
 483     //     |  ||  /
 484     //     |  AddP (array's element offset)
 485     //     |  |
 486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 487     //     | / /
 488     //     AddP (array's offset)
 489     //      |
 490     //     Load/Store (memory operation on array's element)
 491     //
 492     return addp2;
 493   }
 494   return NULL;
 495 }
 496 
 497 //
 498 // Adjust the type and inputs of an AddP which computes the
 499 // address of a field of an instance
 500 //
 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 505   if (t == NULL) {
 506     // We are computing a raw address for a store captured by an Initialize
 507     // compute an appropriate address type (cases #3 and #5).
 508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 511     assert(offs != Type::OffsetBot, "offset must be a constant");
 512     t = base_t->add_offset(offs)->is_oopptr();
 513   }
 514   int inst_id =  base_t->instance_id();
 515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 516                              "old type must be non-instance or match new type");
 517 
 518   // The type 't' could be subclass of 'base_t'.
 519   // As result t->offset() could be large then base_t's size and it will
 520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 521   // constructor verifies correctness of the offset.
 522   //
 523   // It could happened on subclass's branch (from the type profiling
 524   // inlining) which was not eliminated during parsing since the exactness
 525   // of the allocation type was not propagated to the subclass type check.
 526   //
 527   // Or the type 't' could be not related to 'base_t' at all.
 528   // It could happened when CHA type is different from MDO type on a dead path 
 529   // (for example, from instanceof check) which is not collapsed during parsing.
 530   //
 531   // Do nothing for such AddP node and don't process its users since
 532   // this code branch will go away.
 533   //
 534   if (!t->is_known_instance() &&
 535       !base_t->klass()->is_subtype_of(t->klass())) {
 536      return false; // bail out
 537   }
 538 
 539   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 540   // Do NOT remove the next call: ensure an new alias index is allocated
 541   // for the instance type
 542   int alias_idx = _compile->get_alias_index(tinst);
 543   igvn->set_type(addp, tinst);
 544   // record the allocation in the node map
 545   set_map(addp->_idx, get_map(base->_idx));
 546 
 547   // Set addp's Base and Address to 'base'.
 548   Node *abase = addp->in(AddPNode::Base);
 549   Node *adr   = addp->in(AddPNode::Address);
 550   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 551       adr->in(0)->_idx == (uint)inst_id) {
 552     // Skip AddP cases #3 and #5.
 553   } else {
 554     assert(!abase->is_top(), "sanity"); // AddP case #3
 555     if (abase != base) {
 556       igvn->hash_delete(addp);
 557       addp->set_req(AddPNode::Base, base);
 558       if (abase == adr) {
 559         addp->set_req(AddPNode::Address, base);
 560       } else {
 561         // AddP case #4 (adr is array's element offset AddP node)
 562 #ifdef ASSERT
 563         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 564         assert(adr->is_AddP() && atype != NULL &&
 565                atype->instance_id() == inst_id, "array's element offset should be processed first");
 566 #endif
 567       }
 568       igvn->hash_insert(addp);
 569     }
 570   }
 571   // Put on IGVN worklist since at least addp's type was changed above.
 572   record_for_optimizer(addp);
 573   return true;
 574 }
 575 
 576 //
 577 // Create a new version of orig_phi if necessary. Returns either the newly
 578 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 579 // phi was created.  Cache the last newly created phi in the node map.
 580 //
 581 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 582   Compile *C = _compile;
 583   new_created = false;
 584   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 585   // nothing to do if orig_phi is bottom memory or matches alias_idx
 586   if (phi_alias_idx == alias_idx) {
 587     return orig_phi;
 588   }
 589   // Have we recently created a Phi for this alias index?
 590   PhiNode *result = get_map_phi(orig_phi->_idx);
 591   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 592     return result;
 593   }
 594   // Previous check may fail when the same wide memory Phi was split into Phis
 595   // for different memory slices. Search all Phis for this region.
 596   if (result != NULL) {
 597     Node* region = orig_phi->in(0);
 598     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 599       Node* phi = region->fast_out(i);
 600       if (phi->is_Phi() &&
 601           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 602         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 603         return phi->as_Phi();
 604       }
 605     }
 606   }
 607   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 608     if (C->do_escape_analysis() == true && !C->failing()) {
 609       // Retry compilation without escape analysis.
 610       // If this is the first failure, the sentinel string will "stick"
 611       // to the Compile object, and the C2Compiler will see it and retry.
 612       C->record_failure(C2Compiler::retry_no_escape_analysis());
 613     }
 614     return NULL;
 615   }
 616   orig_phi_worklist.append_if_missing(orig_phi);
 617   const TypePtr *atype = C->get_adr_type(alias_idx);
 618   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 619   C->copy_node_notes_to(result, orig_phi);
 620   set_map_phi(orig_phi->_idx, result);
 621   igvn->set_type(result, result->bottom_type());
 622   record_for_optimizer(result);
 623   new_created = true;
 624   return result;
 625 }
 626 
 627 //
 628 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 629 // specified alias index.
 630 //
 631 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 632 
 633   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 634   Compile *C = _compile;
 635   bool new_phi_created;
 636   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 637   if (!new_phi_created) {
 638     return result;
 639   }
 640 
 641   GrowableArray<PhiNode *>  phi_list;
 642   GrowableArray<uint>  cur_input;
 643 
 644   PhiNode *phi = orig_phi;
 645   uint idx = 1;
 646   bool finished = false;
 647   while(!finished) {
 648     while (idx < phi->req()) {
 649       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 650       if (mem != NULL && mem->is_Phi()) {
 651         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 652         if (new_phi_created) {
 653           // found an phi for which we created a new split, push current one on worklist and begin
 654           // processing new one
 655           phi_list.push(phi);
 656           cur_input.push(idx);
 657           phi = mem->as_Phi();
 658           result = newphi;
 659           idx = 1;
 660           continue;
 661         } else {
 662           mem = newphi;
 663         }
 664       }
 665       if (C->failing()) {
 666         return NULL;
 667       }
 668       result->set_req(idx++, mem);
 669     }
 670 #ifdef ASSERT
 671     // verify that the new Phi has an input for each input of the original
 672     assert( phi->req() == result->req(), "must have same number of inputs.");
 673     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 674 #endif
 675     // Check if all new phi's inputs have specified alias index.
 676     // Otherwise use old phi.
 677     for (uint i = 1; i < phi->req(); i++) {
 678       Node* in = result->in(i);
 679       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 680     }
 681     // we have finished processing a Phi, see if there are any more to do
 682     finished = (phi_list.length() == 0 );
 683     if (!finished) {
 684       phi = phi_list.pop();
 685       idx = cur_input.pop();
 686       PhiNode *prev_result = get_map_phi(phi->_idx);
 687       prev_result->set_req(idx++, result);
 688       result = prev_result;
 689     }
 690   }
 691   return result;
 692 }
 693 
 694 
 695 //
 696 // The next methods are derived from methods in MemNode.
 697 //
 698 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
 699   Node *mem = mmem;
 700   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 701   // means an array I have not precisely typed yet.  Do not do any
 702   // alias stuff with it any time soon.
 703   if( tinst->base() != Type::AnyPtr &&
 704       !(tinst->klass()->is_java_lang_Object() &&
 705         tinst->offset() == Type::OffsetBot) ) {
 706     mem = mmem->memory_at(alias_idx);
 707     // Update input if it is progress over what we have now
 708   }
 709   return mem;
 710 }
 711 
 712 //
 713 // Search memory chain of "mem" to find a MemNode whose address
 714 // is the specified alias index.
 715 //
 716 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 717   if (orig_mem == NULL)
 718     return orig_mem;
 719   Compile* C = phase->C;
 720   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
 721   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
 722   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 723   Node *prev = NULL;
 724   Node *result = orig_mem;
 725   while (prev != result) {
 726     prev = result;
 727     if (result == start_mem)
 728       break;  // hit one of our sentinels
 729     if (result->is_Mem()) {
 730       const Type *at = phase->type(result->in(MemNode::Address));
 731       if (at != Type::TOP) {
 732         assert (at->isa_ptr() != NULL, "pointer type required.");
 733         int idx = C->get_alias_index(at->is_ptr());
 734         if (idx == alias_idx)
 735           break;
 736       }
 737       result = result->in(MemNode::Memory);
 738     }
 739     if (!is_instance)
 740       continue;  // don't search further for non-instance types
 741     // skip over a call which does not affect this memory slice
 742     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 743       Node *proj_in = result->in(0);
 744       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
 745         break;  // hit one of our sentinels
 746       } else if (proj_in->is_Call()) {
 747         CallNode *call = proj_in->as_Call();
 748         if (!call->may_modify(tinst, phase)) {
 749           result = call->in(TypeFunc::Memory);
 750         }
 751       } else if (proj_in->is_Initialize()) {
 752         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 753         // Stop if this is the initialization for the object instance which
 754         // which contains this memory slice, otherwise skip over it.
 755         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
 756           result = proj_in->in(TypeFunc::Memory);
 757         }
 758       } else if (proj_in->is_MemBar()) {
 759         result = proj_in->in(TypeFunc::Memory);
 760       }
 761     } else if (result->is_MergeMem()) {
 762       MergeMemNode *mmem = result->as_MergeMem();
 763       result = step_through_mergemem(mmem, alias_idx, tinst);
 764       if (result == mmem->base_memory()) {
 765         // Didn't find instance memory, search through general slice recursively.
 766         result = mmem->memory_at(C->get_general_index(alias_idx));
 767         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 768         if (C->failing()) {
 769           return NULL;
 770         }
 771         mmem->set_memory_at(alias_idx, result);
 772       }
 773     } else if (result->is_Phi() &&
 774                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 775       Node *un = result->as_Phi()->unique_input(phase);
 776       if (un != NULL) {
 777         result = un;
 778       } else {
 779         break;
 780       }
 781     } else if (result->Opcode() == Op_SCMemProj) {
 782       assert(result->in(0)->is_LoadStore(), "sanity");
 783       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 784       if (at != Type::TOP) {
 785         assert (at->isa_ptr() != NULL, "pointer type required.");
 786         int idx = C->get_alias_index(at->is_ptr());
 787         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 788         break;
 789       }
 790       result = result->in(0)->in(MemNode::Memory);
 791     }
 792   }
 793   if (result->is_Phi()) {
 794     PhiNode *mphi = result->as_Phi();
 795     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 796     const TypePtr *t = mphi->adr_type();
 797     if (C->get_alias_index(t) != alias_idx) {
 798       // Create a new Phi with the specified alias index type.
 799       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 800     } else if (!is_instance) {
 801       // Push all non-instance Phis on the orig_phis worklist to update inputs
 802       // during Phase 4 if needed.
 803       orig_phis.append_if_missing(mphi);
 804     }
 805   }
 806   // the result is either MemNode, PhiNode, InitializeNode.
 807   return result;
 808 }
 809 
 810 
 811 //
 812 //  Convert the types of unescaped object to instance types where possible,
 813 //  propagate the new type information through the graph, and update memory
 814 //  edges and MergeMem inputs to reflect the new type.
 815 //
 816 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 817 //  The processing is done in 4 phases:
 818 //
 819 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 820 //            types for the CheckCastPP for allocations where possible.
 821 //            Propagate the the new types through users as follows:
 822 //               casts and Phi:  push users on alloc_worklist
 823 //               AddP:  cast Base and Address inputs to the instance type
 824 //                      push any AddP users on alloc_worklist and push any memnode
 825 //                      users onto memnode_worklist.
 826 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 827 //            search the Memory chain for a store with the appropriate type
 828 //            address type.  If a Phi is found, create a new version with
 829 //            the appropriate memory slices from each of the Phi inputs.
 830 //            For stores, process the users as follows:
 831 //               MemNode:  push on memnode_worklist
 832 //               MergeMem: push on mergemem_worklist
 833 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 834 //            moving the first node encountered of each  instance type to the
 835 //            the input corresponding to its alias index.
 836 //            appropriate memory slice.
 837 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 838 //
 839 // In the following example, the CheckCastPP nodes are the cast of allocation
 840 // results and the allocation of node 29 is unescaped and eligible to be an
 841 // instance type.
 842 //
 843 // We start with:
 844 //
 845 //     7 Parm #memory
 846 //    10  ConI  "12"
 847 //    19  CheckCastPP   "Foo"
 848 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 849 //    29  CheckCastPP   "Foo"
 850 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 851 //
 852 //    40  StoreP  25   7  20   ... alias_index=4
 853 //    50  StoreP  35  40  30   ... alias_index=4
 854 //    60  StoreP  45  50  20   ... alias_index=4
 855 //    70  LoadP    _  60  30   ... alias_index=4
 856 //    80  Phi     75  50  60   Memory alias_index=4
 857 //    90  LoadP    _  80  30   ... alias_index=4
 858 //   100  LoadP    _  80  20   ... alias_index=4
 859 //
 860 //
 861 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 862 // and creating a new alias index for node 30.  This gives:
 863 //
 864 //     7 Parm #memory
 865 //    10  ConI  "12"
 866 //    19  CheckCastPP   "Foo"
 867 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 868 //    29  CheckCastPP   "Foo"  iid=24
 869 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 870 //
 871 //    40  StoreP  25   7  20   ... alias_index=4
 872 //    50  StoreP  35  40  30   ... alias_index=6
 873 //    60  StoreP  45  50  20   ... alias_index=4
 874 //    70  LoadP    _  60  30   ... alias_index=6
 875 //    80  Phi     75  50  60   Memory alias_index=4
 876 //    90  LoadP    _  80  30   ... alias_index=6
 877 //   100  LoadP    _  80  20   ... alias_index=4
 878 //
 879 // In phase 2, new memory inputs are computed for the loads and stores,
 880 // And a new version of the phi is created.  In phase 4, the inputs to
 881 // node 80 are updated and then the memory nodes are updated with the
 882 // values computed in phase 2.  This results in:
 883 //
 884 //     7 Parm #memory
 885 //    10  ConI  "12"
 886 //    19  CheckCastPP   "Foo"
 887 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 888 //    29  CheckCastPP   "Foo"  iid=24
 889 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 890 //
 891 //    40  StoreP  25  7   20   ... alias_index=4
 892 //    50  StoreP  35  7   30   ... alias_index=6
 893 //    60  StoreP  45  40  20   ... alias_index=4
 894 //    70  LoadP    _  50  30   ... alias_index=6
 895 //    80  Phi     75  40  60   Memory alias_index=4
 896 //   120  Phi     75  50  50   Memory alias_index=6
 897 //    90  LoadP    _ 120  30   ... alias_index=6
 898 //   100  LoadP    _  80  20   ... alias_index=4
 899 //
 900 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 901   GrowableArray<Node *>  memnode_worklist;
 902   GrowableArray<Node *>  mergemem_worklist;
 903   GrowableArray<PhiNode *>  orig_phis;
 904   PhaseGVN  *igvn = _compile->initial_gvn();
 905   uint new_index_start = (uint) _compile->num_alias_types();
 906   VectorSet visited(Thread::current()->resource_area());
 907   VectorSet ptset(Thread::current()->resource_area());
 908 
 909 
 910   //  Phase 1:  Process possible allocations from alloc_worklist.
 911   //  Create instance types for the CheckCastPP for allocations where possible.
 912   //
 913   // (Note: don't forget to change the order of the second AddP node on
 914   //  the alloc_worklist if the order of the worklist processing is changed,
 915   //  see the comment in find_second_addp().)
 916   //
 917   while (alloc_worklist.length() != 0) {
 918     Node *n = alloc_worklist.pop();
 919     uint ni = n->_idx;
 920     const TypeOopPtr* tinst = NULL;
 921     if (n->is_Call()) {
 922       CallNode *alloc = n->as_Call();
 923       // copy escape information to call node
 924       PointsToNode* ptn = ptnode_adr(alloc->_idx);
 925       PointsToNode::EscapeState es = escape_state(alloc, igvn);
 926       // We have an allocation or call which returns a Java object,
 927       // see if it is unescaped.
 928       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
 929         continue;
 930 
 931       // Find CheckCastPP for the allocate or for the return value of a call
 932       n = alloc->result_cast();
 933       if (n == NULL) {            // No uses except Initialize node
 934         if (alloc->is_Allocate()) {
 935           // Set the scalar_replaceable flag for allocation
 936           // so it could be eliminated if it has no uses.
 937           alloc->as_Allocate()->_is_scalar_replaceable = true;
 938         }
 939         continue;
 940       }
 941       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
 942         assert(!alloc->is_Allocate(), "allocation should have unique type");
 943         continue;
 944       }
 945 
 946       // The inline code for Object.clone() casts the allocation result to
 947       // java.lang.Object and then to the actual type of the allocated
 948       // object. Detect this case and use the second cast.
 949       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
 950       // the allocation result is cast to java.lang.Object and then
 951       // to the actual Array type.
 952       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
 953           && (alloc->is_AllocateArray() ||
 954               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
 955         Node *cast2 = NULL;
 956         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 957           Node *use = n->fast_out(i);
 958           if (use->is_CheckCastPP()) {
 959             cast2 = use;
 960             break;
 961           }
 962         }
 963         if (cast2 != NULL) {
 964           n = cast2;
 965         } else {
 966           // Non-scalar replaceable if the allocation type is unknown statically
 967           // (reflection allocation), the object can't be restored during
 968           // deoptimization without precise type.
 969           continue;
 970         }
 971       }
 972       if (alloc->is_Allocate()) {
 973         // Set the scalar_replaceable flag for allocation
 974         // so it could be eliminated.
 975         alloc->as_Allocate()->_is_scalar_replaceable = true;
 976       }
 977       set_escape_state(n->_idx, es);
 978       // in order for an object to be scalar-replaceable, it must be:
 979       //   - a direct allocation (not a call returning an object)
 980       //   - non-escaping
 981       //   - eligible to be a unique type
 982       //   - not determined to be ineligible by escape analysis
 983       set_map(alloc->_idx, n);
 984       set_map(n->_idx, alloc);
 985       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
 986       if (t == NULL)
 987         continue;  // not a TypeInstPtr
 988       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
 989       igvn->hash_delete(n);
 990       igvn->set_type(n,  tinst);
 991       n->raise_bottom_type(tinst);
 992       igvn->hash_insert(n);
 993       record_for_optimizer(n);
 994       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
 995           (t->isa_instptr() || t->isa_aryptr())) {
 996 
 997         // First, put on the worklist all Field edges from Connection Graph
 998         // which is more accurate then putting immediate users from Ideal Graph.
 999         for (uint e = 0; e < ptn->edge_count(); e++) {
1000           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1001           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1002                  "only AddP nodes are Field edges in CG");
1003           if (use->outcnt() > 0) { // Don't process dead nodes
1004             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1005             if (addp2 != NULL) {
1006               assert(alloc->is_AllocateArray(),"array allocation was expected");
1007               alloc_worklist.append_if_missing(addp2);
1008             }
1009             alloc_worklist.append_if_missing(use);
1010           }
1011         }
1012 
1013         // An allocation may have an Initialize which has raw stores. Scan
1014         // the users of the raw allocation result and push AddP users
1015         // on alloc_worklist.
1016         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1017         assert (raw_result != NULL, "must have an allocation result");
1018         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1019           Node *use = raw_result->fast_out(i);
1020           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1021             Node* addp2 = find_second_addp(use, raw_result);
1022             if (addp2 != NULL) {
1023               assert(alloc->is_AllocateArray(),"array allocation was expected");
1024               alloc_worklist.append_if_missing(addp2);
1025             }
1026             alloc_worklist.append_if_missing(use);
1027           } else if (use->is_Initialize()) {
1028             memnode_worklist.append_if_missing(use);
1029           }
1030         }
1031       }
1032     } else if (n->is_AddP()) {
1033       ptset.Clear();
1034       PointsTo(ptset, get_addp_base(n), igvn);
1035       assert(ptset.Size() == 1, "AddP address is unique");
1036       uint elem = ptset.getelem(); // Allocation node's index
1037       if (elem == _phantom_object)
1038         continue; // Assume the value was set outside this method.
1039       Node *base = get_map(elem);  // CheckCastPP node
1040       if (!split_AddP(n, base, igvn)) continue; // wrong type
1041       tinst = igvn->type(base)->isa_oopptr();
1042     } else if (n->is_Phi() ||
1043                n->is_CheckCastPP() ||
1044                n->is_EncodeP() ||
1045                n->is_DecodeN() ||
1046                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1047       if (visited.test_set(n->_idx)) {
1048         assert(n->is_Phi(), "loops only through Phi's");
1049         continue;  // already processed
1050       }
1051       ptset.Clear();
1052       PointsTo(ptset, n, igvn);
1053       if (ptset.Size() == 1) {
1054         uint elem = ptset.getelem(); // Allocation node's index
1055         if (elem == _phantom_object)
1056           continue; // Assume the value was set outside this method.
1057         Node *val = get_map(elem);   // CheckCastPP node
1058         TypeNode *tn = n->as_Type();
1059         tinst = igvn->type(val)->isa_oopptr();
1060         assert(tinst != NULL && tinst->is_known_instance() &&
1061                (uint)tinst->instance_id() == elem , "instance type expected.");
1062 
1063         const Type *tn_type = igvn->type(tn);
1064         const TypeOopPtr *tn_t;
1065         if (tn_type->isa_narrowoop()) {
1066           tn_t = tn_type->make_ptr()->isa_oopptr();
1067         } else {
1068           tn_t = tn_type->isa_oopptr();
1069         }
1070 
1071         if (tn_t != NULL &&
1072             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1073           if (tn_type->isa_narrowoop()) {
1074             tn_type = tinst->make_narrowoop();
1075           } else {
1076             tn_type = tinst;
1077           }
1078           igvn->hash_delete(tn);
1079           igvn->set_type(tn, tn_type);
1080           tn->set_type(tn_type);
1081           igvn->hash_insert(tn);
1082           record_for_optimizer(n);
1083         } else {
1084           continue; // wrong type
1085         }
1086       }
1087     } else {
1088       continue;
1089     }
1090     // push users on appropriate worklist
1091     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1092       Node *use = n->fast_out(i);
1093       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1094         memnode_worklist.append_if_missing(use);
1095       } else if (use->is_Initialize()) {
1096         memnode_worklist.append_if_missing(use);
1097       } else if (use->is_MergeMem()) {
1098         mergemem_worklist.append_if_missing(use);
1099       } else if (use->is_SafePoint() && tinst != NULL) {
1100         // Look for MergeMem nodes for calls which reference unique allocation
1101         // (through CheckCastPP nodes) even for debug info.
1102         Node* m = use->in(TypeFunc::Memory);
1103         uint iid = tinst->instance_id();
1104         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1105                m->in(0) != use && !m->in(0)->_idx != iid) {
1106           m = m->in(0)->in(TypeFunc::Memory);
1107         }
1108         if (m->is_MergeMem()) {
1109           mergemem_worklist.append_if_missing(m);
1110         }
1111       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1112         Node* addp2 = find_second_addp(use, n);
1113         if (addp2 != NULL) {
1114           alloc_worklist.append_if_missing(addp2);
1115         }
1116         alloc_worklist.append_if_missing(use);
1117       } else if (use->is_Phi() ||
1118                  use->is_CheckCastPP() ||
1119                  use->is_EncodeP() ||
1120                  use->is_DecodeN() ||
1121                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1122         alloc_worklist.append_if_missing(use);
1123       }
1124     }
1125 
1126   }
1127   // New alias types were created in split_AddP().
1128   uint new_index_end = (uint) _compile->num_alias_types();
1129 
1130   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1131   //            compute new values for Memory inputs  (the Memory inputs are not
1132   //            actually updated until phase 4.)
1133   if (memnode_worklist.length() == 0)
1134     return;  // nothing to do
1135 
1136   while (memnode_worklist.length() != 0) {
1137     Node *n = memnode_worklist.pop();
1138     if (visited.test_set(n->_idx))
1139       continue;
1140     if (n->is_Phi()) {
1141       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
1142       // we don't need to do anything, but the users must be pushed if we haven't processed
1143       // this Phi before
1144     } else if (n->is_Initialize()) {
1145       // we don't need to do anything, but the users of the memory projection must be pushed
1146       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
1147       if (n == NULL)
1148         continue;
1149     } else {
1150       assert(n->is_Mem(), "memory node required.");
1151       Node *addr = n->in(MemNode::Address);
1152       assert(addr->is_AddP(), "AddP required");
1153       const Type *addr_t = igvn->type(addr);
1154       if (addr_t == Type::TOP)
1155         continue;
1156       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1157       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1158       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1159       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1160       if (_compile->failing()) {
1161         return;
1162       }
1163       if (mem != n->in(MemNode::Memory)) {
1164         set_map(n->_idx, mem);
1165         ptnode_adr(n->_idx)->_node = n;
1166       }
1167       if (n->is_Load()) {
1168         continue;  // don't push users
1169       } else if (n->is_LoadStore()) {
1170         // get the memory projection
1171         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1172           Node *use = n->fast_out(i);
1173           if (use->Opcode() == Op_SCMemProj) {
1174             n = use;
1175             break;
1176           }
1177         }
1178         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1179       }
1180     }
1181     // push user on appropriate worklist
1182     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1183       Node *use = n->fast_out(i);
1184       if (use->is_Phi()) {
1185         memnode_worklist.append_if_missing(use);
1186       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1187         memnode_worklist.append_if_missing(use);
1188       } else if (use->is_Initialize()) {
1189         memnode_worklist.append_if_missing(use);
1190       } else if (use->is_MergeMem()) {
1191         mergemem_worklist.append_if_missing(use);
1192       }
1193     }
1194   }
1195 
1196   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1197   //            Walk each memory moving the first node encountered of each
1198   //            instance type to the the input corresponding to its alias index.
1199   while (mergemem_worklist.length() != 0) {
1200     Node *n = mergemem_worklist.pop();
1201     assert(n->is_MergeMem(), "MergeMem node required.");
1202     if (visited.test_set(n->_idx))
1203       continue;
1204     MergeMemNode *nmm = n->as_MergeMem();
1205     // Note: we don't want to use MergeMemStream here because we only want to
1206     //  scan inputs which exist at the start, not ones we add during processing.
1207     uint nslices = nmm->req();
1208     igvn->hash_delete(nmm);
1209     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1210       Node* mem = nmm->in(i);
1211       Node* cur = NULL;
1212       if (mem == NULL || mem->is_top())
1213         continue;
1214       while (mem->is_Mem()) {
1215         const Type *at = igvn->type(mem->in(MemNode::Address));
1216         if (at != Type::TOP) {
1217           assert (at->isa_ptr() != NULL, "pointer type required.");
1218           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1219           if (idx == i) {
1220             if (cur == NULL)
1221               cur = mem;
1222           } else {
1223             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1224               nmm->set_memory_at(idx, mem);
1225             }
1226           }
1227         }
1228         mem = mem->in(MemNode::Memory);
1229       }
1230       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1231       // Find any instance of the current type if we haven't encountered
1232       // a value of the instance along the chain.
1233       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1234         if((uint)_compile->get_general_index(ni) == i) {
1235           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1236           if (nmm->is_empty_memory(m)) {
1237             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1238             if (_compile->failing()) {
1239               return;
1240             }
1241             nmm->set_memory_at(ni, result);
1242           }
1243         }
1244       }
1245     }
1246     // Find the rest of instances values
1247     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1248       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
1249       Node* result = step_through_mergemem(nmm, ni, tinst);
1250       if (result == nmm->base_memory()) {
1251         // Didn't find instance memory, search through general slice recursively.
1252         result = nmm->memory_at(igvn->C->get_general_index(ni));
1253         result = find_inst_mem(result, ni, orig_phis, igvn);
1254         if (_compile->failing()) {
1255           return;
1256         }
1257         nmm->set_memory_at(ni, result);
1258       }
1259     }
1260     igvn->hash_insert(nmm);
1261     record_for_optimizer(nmm);
1262 
1263     // Propagate new memory slices to following MergeMem nodes.
1264     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1265       Node *use = n->fast_out(i);
1266       if (use->is_Call()) {
1267         CallNode* in = use->as_Call();
1268         if (in->proj_out(TypeFunc::Memory) != NULL) {
1269           Node* m = in->proj_out(TypeFunc::Memory);
1270           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1271             Node* mm = m->fast_out(j);
1272             if (mm->is_MergeMem()) {
1273               mergemem_worklist.append_if_missing(mm);
1274             }
1275           }
1276         }
1277         if (use->is_Allocate()) {
1278           use = use->as_Allocate()->initialization();
1279           if (use == NULL) {
1280             continue;
1281           }
1282         }
1283       }
1284       if (use->is_Initialize()) {
1285         InitializeNode* in = use->as_Initialize();
1286         if (in->proj_out(TypeFunc::Memory) != NULL) {
1287           Node* m = in->proj_out(TypeFunc::Memory);
1288           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1289             Node* mm = m->fast_out(j);
1290             if (mm->is_MergeMem()) {
1291               mergemem_worklist.append_if_missing(mm);
1292             }
1293           }
1294         }
1295       }
1296     }
1297   }
1298 
1299   //  Phase 4:  Update the inputs of non-instance memory Phis and
1300   //            the Memory input of memnodes
1301   // First update the inputs of any non-instance Phi's from
1302   // which we split out an instance Phi.  Note we don't have
1303   // to recursively process Phi's encounted on the input memory
1304   // chains as is done in split_memory_phi() since they  will
1305   // also be processed here.
1306   for (int j = 0; j < orig_phis.length(); j++) {
1307     PhiNode *phi = orig_phis.at(j);
1308     int alias_idx = _compile->get_alias_index(phi->adr_type());
1309     igvn->hash_delete(phi);
1310     for (uint i = 1; i < phi->req(); i++) {
1311       Node *mem = phi->in(i);
1312       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1313       if (_compile->failing()) {
1314         return;
1315       }
1316       if (mem != new_mem) {
1317         phi->set_req(i, new_mem);
1318       }
1319     }
1320     igvn->hash_insert(phi);
1321     record_for_optimizer(phi);
1322   }
1323 
1324   // Update the memory inputs of MemNodes with the value we computed
1325   // in Phase 2.
1326   for (uint i = 0; i < nodes_size(); i++) {
1327     Node *nmem = get_map(i);
1328     if (nmem != NULL) {
1329       Node *n = ptnode_adr(i)->_node;
1330       if (n != NULL && n->is_Mem()) {
1331         igvn->hash_delete(n);
1332         n->set_req(MemNode::Memory, nmem);
1333         igvn->hash_insert(n);
1334         record_for_optimizer(n);
1335       }
1336     }
1337   }
1338 }
1339 
1340 bool ConnectionGraph::has_candidates(Compile *C) {
1341   // EA brings benefits only when the code has allocations and/or locks which
1342   // are represented by ideal Macro nodes.
1343   int cnt = C->macro_count();
1344   for( int i=0; i < cnt; i++ ) {
1345     Node *n = C->macro_node(i);
1346     if ( n->is_Allocate() )
1347       return true;
1348     if( n->is_Lock() ) {
1349       Node* obj = n->as_Lock()->obj_node()->uncast();
1350       if( !(obj->is_Parm() || obj->is_Con()) )
1351         return true;
1352     }
1353   }
1354   return false;
1355 }
1356 
1357 bool ConnectionGraph::compute_escape() {
1358   Compile* C = _compile;
1359 
1360   // 1. Populate Connection Graph (CG) with Ideal nodes.
1361 
1362   Unique_Node_List worklist_init;
1363   worklist_init.map(C->unique(), NULL);  // preallocate space
1364 
1365   // Initialize worklist
1366   if (C->root() != NULL) {
1367     worklist_init.push(C->root());
1368   }
1369 
1370   GrowableArray<int> cg_worklist;
1371   PhaseGVN* igvn = C->initial_gvn();
1372   bool has_allocations = false;
1373 
1374   // Push all useful nodes onto CG list and set their type.
1375   for( uint next = 0; next < worklist_init.size(); ++next ) {
1376     Node* n = worklist_init.at(next);
1377     record_for_escape_analysis(n, igvn);
1378     // Only allocations and java static calls results are checked
1379     // for an escape status. See process_call_result() below.
1380     if (n->is_Allocate() || n->is_CallStaticJava() &&
1381         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1382       has_allocations = true;
1383     }
1384     if(n->is_AddP())
1385       cg_worklist.append(n->_idx);
1386     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1387       Node* m = n->fast_out(i);   // Get user
1388       worklist_init.push(m);
1389     }
1390   }
1391 
1392   if (!has_allocations) {
1393     _collecting = false;
1394     return false; // Nothing to do.
1395   }
1396 
1397   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1398   uint delayed_size = _delayed_worklist.size();
1399   for( uint next = 0; next < delayed_size; ++next ) {
1400     Node* n = _delayed_worklist.at(next);
1401     build_connection_graph(n, igvn);
1402   }
1403 
1404   // 3. Pass to create fields edges (Allocate -F-> AddP).
1405   uint cg_length = cg_worklist.length();
1406   for( uint next = 0; next < cg_length; ++next ) {
1407     int ni = cg_worklist.at(next);
1408     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1409   }
1410 
1411   cg_worklist.clear();
1412   cg_worklist.append(_phantom_object);
1413 
1414   // 4. Build Connection Graph which need
1415   //    to walk the connection graph.
1416   for (uint ni = 0; ni < nodes_size(); ni++) {
1417     PointsToNode* ptn = ptnode_adr(ni);
1418     Node *n = ptn->_node;
1419     if (n != NULL) { // Call, AddP, LoadP, StoreP
1420       build_connection_graph(n, igvn);
1421       if (ptn->node_type() != PointsToNode::UnknownType)
1422         cg_worklist.append(n->_idx); // Collect CG nodes
1423     }
1424   }
1425 
1426   VectorSet ptset(Thread::current()->resource_area());
1427   GrowableArray<uint>  deferred_edges;
1428   VectorSet visited(Thread::current()->resource_area());
1429 
1430   // 5. Remove deferred edges from the graph and collect
1431   //    information needed for type splitting.
1432   cg_length = cg_worklist.length();
1433   for( uint next = 0; next < cg_length; ++next ) {
1434     int ni = cg_worklist.at(next);
1435     PointsToNode* ptn = ptnode_adr(ni);
1436     PointsToNode::NodeType nt = ptn->node_type();
1437     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1438       remove_deferred(ni, &deferred_edges, &visited);
1439       Node *n = ptn->_node;
1440       if (n->is_AddP()) {
1441         // Search for objects which are not scalar replaceable.
1442         // Mark their escape state as ArgEscape to propagate the state
1443         // to referenced objects.
1444         // Note: currently there are no difference in compiler optimizations
1445         // for ArgEscape objects and NoEscape objects which are not
1446         // scalar replaceable.
1447 
1448         int offset = ptn->offset();
1449         Node *base = get_addp_base(n);
1450         ptset.Clear();
1451         PointsTo(ptset, base, igvn);
1452         int ptset_size = ptset.Size();
1453 
1454         // Check if a field's initializing value is recorded and add
1455         // a corresponding NULL field's value if it is not recorded.
1456         // Connection Graph does not record a default initialization by NULL
1457         // captured by Initialize node.
1458         //
1459         // Note: it will disable scalar replacement in some cases:
1460         //
1461         //    Point p[] = new Point[1];
1462         //    p[0] = new Point(); // Will be not scalar replaced
1463         //
1464         // but it will save us from incorrect optimizations in next cases:
1465         //
1466         //    Point p[] = new Point[1];
1467         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1468         //
1469         // Without a control flow analysis we can't distinguish above cases.
1470         //
1471         if (offset != Type::OffsetBot && ptset_size == 1) {
1472           uint elem = ptset.getelem(); // Allocation node's index
1473           // It does not matter if it is not Allocation node since
1474           // only non-escaping allocations are scalar replaced.
1475           if (ptnode_adr(elem)->_node->is_Allocate() &&
1476               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1477             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1478             InitializeNode* ini = alloc->initialization();
1479             Node* value = NULL;
1480             if (ini != NULL) {
1481               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1482               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
1483               if (store != NULL && store->is_Store())
1484                 value = store->in(MemNode::ValueIn);
1485             }
1486             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1487               // A field's initializing value was not recorded. Add NULL.
1488               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1489               add_pointsto_edge(ni, null_idx);
1490             }
1491           }
1492         }
1493 
1494         // An object is not scalar replaceable if the field which may point
1495         // to it has unknown offset (unknown element of an array of objects).
1496         //
1497         if (offset == Type::OffsetBot) {
1498           uint e_cnt = ptn->edge_count();
1499           for (uint ei = 0; ei < e_cnt; ei++) {
1500             uint npi = ptn->edge_target(ei);
1501             set_escape_state(npi, PointsToNode::ArgEscape);
1502             ptnode_adr(npi)->_scalar_replaceable = false;
1503           }
1504         }
1505 
1506         // Currently an object is not scalar replaceable if a LoadStore node
1507         // access its field since the field value is unknown after it.
1508         //
1509         bool has_LoadStore = false;
1510         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1511           Node *use = n->fast_out(i);
1512           if (use->is_LoadStore()) {
1513             has_LoadStore = true;
1514             break;
1515           }
1516         }
1517         // An object is not scalar replaceable if the address points
1518         // to unknown field (unknown element for arrays, offset is OffsetBot).
1519         //
1520         // Or the address may point to more then one object. This may produce
1521         // the false positive result (set scalar_replaceable to false)
1522         // since the flow-insensitive escape analysis can't separate
1523         // the case when stores overwrite the field's value from the case
1524         // when stores happened on different control branches.
1525         //
1526         if (ptset_size > 1 || ptset_size != 0 &&
1527             (has_LoadStore || offset == Type::OffsetBot)) {
1528           for( VectorSetI j(&ptset); j.test(); ++j ) {
1529             set_escape_state(j.elem, PointsToNode::ArgEscape);
1530             ptnode_adr(j.elem)->_scalar_replaceable = false;
1531           }
1532         }
1533       }
1534     }
1535   }
1536 
1537   // 6. Propagate escape states.
1538   GrowableArray<int>  worklist;
1539   bool has_non_escaping_obj = false;
1540 
1541   // push all GlobalEscape nodes on the worklist
1542   for( uint next = 0; next < cg_length; ++next ) {
1543     int nk = cg_worklist.at(next);
1544     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1545       worklist.push(nk);
1546   }
1547   // mark all nodes reachable from GlobalEscape nodes
1548   while(worklist.length() > 0) {
1549     PointsToNode* ptn = ptnode_adr(worklist.pop());
1550     uint e_cnt = ptn->edge_count();
1551     for (uint ei = 0; ei < e_cnt; ei++) {
1552       uint npi = ptn->edge_target(ei);
1553       PointsToNode *np = ptnode_adr(npi);
1554       if (np->escape_state() < PointsToNode::GlobalEscape) {
1555         np->set_escape_state(PointsToNode::GlobalEscape);
1556         worklist.push(npi);
1557       }
1558     }
1559   }
1560 
1561   // push all ArgEscape nodes on the worklist
1562   for( uint next = 0; next < cg_length; ++next ) {
1563     int nk = cg_worklist.at(next);
1564     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1565       worklist.push(nk);
1566   }
1567   // mark all nodes reachable from ArgEscape nodes
1568   while(worklist.length() > 0) {
1569     PointsToNode* ptn = ptnode_adr(worklist.pop());
1570     if (ptn->node_type() == PointsToNode::JavaObject)
1571       has_non_escaping_obj = true; // Non GlobalEscape
1572     uint e_cnt = ptn->edge_count();
1573     for (uint ei = 0; ei < e_cnt; ei++) {
1574       uint npi = ptn->edge_target(ei);
1575       PointsToNode *np = ptnode_adr(npi);
1576       if (np->escape_state() < PointsToNode::ArgEscape) {
1577         np->set_escape_state(PointsToNode::ArgEscape);
1578         worklist.push(npi);
1579       }
1580     }
1581   }
1582 
1583   GrowableArray<Node*> alloc_worklist;
1584 
1585   // push all NoEscape nodes on the worklist
1586   for( uint next = 0; next < cg_length; ++next ) {
1587     int nk = cg_worklist.at(next);
1588     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1589       worklist.push(nk);
1590   }
1591   // mark all nodes reachable from NoEscape nodes
1592   while(worklist.length() > 0) {
1593     PointsToNode* ptn = ptnode_adr(worklist.pop());
1594     if (ptn->node_type() == PointsToNode::JavaObject)
1595       has_non_escaping_obj = true; // Non GlobalEscape
1596     Node* n = ptn->_node;
1597     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1598       // Push scalar replaceable allocations on alloc_worklist
1599       // for processing in split_unique_types().
1600       alloc_worklist.append(n);
1601     }
1602     uint e_cnt = ptn->edge_count();
1603     for (uint ei = 0; ei < e_cnt; ei++) {
1604       uint npi = ptn->edge_target(ei);
1605       PointsToNode *np = ptnode_adr(npi);
1606       if (np->escape_state() < PointsToNode::NoEscape) {
1607         np->set_escape_state(PointsToNode::NoEscape);
1608         worklist.push(npi);
1609       }
1610     }
1611   }
1612 
1613   _collecting = false;
1614   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1615 
1616   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1617   if ( has_scalar_replaceable_candidates &&
1618        C->AliasLevel() >= 3 && EliminateAllocations ) {
1619 
1620     // Now use the escape information to create unique types for
1621     // scalar replaceable objects.
1622     split_unique_types(alloc_worklist);
1623 
1624     if (C->failing())  return false;
1625 
1626     // Clean up after split unique types.
1627     ResourceMark rm;
1628     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1629 
1630     C->print_method("After Escape Analysis", 2);
1631 
1632 #ifdef ASSERT
1633   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1634     tty->print("=== No allocations eliminated for ");
1635     C->method()->print_short_name();
1636     if(!EliminateAllocations) {
1637       tty->print(" since EliminateAllocations is off ===");
1638     } else if(!has_scalar_replaceable_candidates) {
1639       tty->print(" since there are no scalar replaceable candidates ===");
1640     } else if(C->AliasLevel() < 3) {
1641       tty->print(" since AliasLevel < 3 ===");
1642     }
1643     tty->cr();
1644 #endif
1645   }
1646   return has_non_escaping_obj;
1647 }
1648 
1649 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1650 
1651     switch (call->Opcode()) {
1652 #ifdef ASSERT
1653     case Op_Allocate:
1654     case Op_AllocateArray:
1655     case Op_Lock:
1656     case Op_Unlock:
1657       assert(false, "should be done already");
1658       break;
1659 #endif
1660     case Op_CallLeafNoFP:
1661     {
1662       // Stub calls, objects do not escape but they are not scale replaceable.
1663       // Adjust escape state for outgoing arguments.
1664       const TypeTuple * d = call->tf()->domain();
1665       VectorSet ptset(Thread::current()->resource_area());
1666       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1667         const Type* at = d->field_at(i);
1668         Node *arg = call->in(i)->uncast();
1669         const Type *aat = phase->type(arg);
1670         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1671           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1672                  aat->isa_ptr() != NULL, "expecting an Ptr");
1673           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1674           if (arg->is_AddP()) {
1675             //
1676             // The inline_native_clone() case when the arraycopy stub is called
1677             // after the allocation before Initialize and CheckCastPP nodes.
1678             //
1679             // Set AddP's base (Allocate) as not scalar replaceable since
1680             // pointer to the base (with offset) is passed as argument.
1681             //
1682             arg = get_addp_base(arg);
1683           }
1684           ptset.Clear();
1685           PointsTo(ptset, arg, phase);
1686           for( VectorSetI j(&ptset); j.test(); ++j ) {
1687             uint pt = j.elem;
1688             set_escape_state(pt, PointsToNode::ArgEscape);
1689           }
1690         }
1691       }
1692       break;
1693     }
1694 
1695     case Op_CallStaticJava:
1696     // For a static call, we know exactly what method is being called.
1697     // Use bytecode estimator to record the call's escape affects
1698     {
1699       ciMethod *meth = call->as_CallJava()->method();
1700       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1701       // fall-through if not a Java method or no analyzer information
1702       if (call_analyzer != NULL) {
1703         const TypeTuple * d = call->tf()->domain();
1704         VectorSet ptset(Thread::current()->resource_area());
1705         bool copy_dependencies = false;
1706         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1707           const Type* at = d->field_at(i);
1708           int k = i - TypeFunc::Parms;
1709 
1710           if (at->isa_oopptr() != NULL) {
1711             Node *arg = call->in(i)->uncast();
1712 
1713             bool global_escapes = false;
1714             bool fields_escapes = false;
1715             if (!call_analyzer->is_arg_stack(k)) {
1716               // The argument global escapes, mark everything it could point to
1717               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1718               global_escapes = true;
1719             } else {
1720               if (!call_analyzer->is_arg_local(k)) {
1721                 // The argument itself doesn't escape, but any fields might
1722                 fields_escapes = true;
1723               }
1724               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1725               copy_dependencies = true;
1726             }
1727 
1728             ptset.Clear();
1729             PointsTo(ptset, arg, phase);
1730             for( VectorSetI j(&ptset); j.test(); ++j ) {
1731               uint pt = j.elem;
1732               if (global_escapes) {
1733                 //The argument global escapes, mark everything it could point to
1734                 set_escape_state(pt, PointsToNode::GlobalEscape);
1735               } else {
1736                 if (fields_escapes) {
1737                   // The argument itself doesn't escape, but any fields might
1738                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1739                 }
1740                 set_escape_state(pt, PointsToNode::ArgEscape);
1741               }
1742             }
1743           }
1744         }
1745         if (copy_dependencies)
1746           call_analyzer->copy_dependencies(_compile->dependencies());
1747         break;
1748       }
1749     }
1750 
1751     default:
1752     // Fall-through here if not a Java method or no analyzer information
1753     // or some other type of call, assume the worst case: all arguments
1754     // globally escape.
1755     {
1756       // adjust escape state for  outgoing arguments
1757       const TypeTuple * d = call->tf()->domain();
1758       VectorSet ptset(Thread::current()->resource_area());
1759       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1760         const Type* at = d->field_at(i);
1761         if (at->isa_oopptr() != NULL) {
1762           Node *arg = call->in(i)->uncast();
1763           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1764           ptset.Clear();
1765           PointsTo(ptset, arg, phase);
1766           for( VectorSetI j(&ptset); j.test(); ++j ) {
1767             uint pt = j.elem;
1768             set_escape_state(pt, PointsToNode::GlobalEscape);
1769           }
1770         }
1771       }
1772     }
1773   }
1774 }
1775 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1776   CallNode   *call = resproj->in(0)->as_Call();
1777   uint    call_idx = call->_idx;
1778   uint resproj_idx = resproj->_idx;
1779 
1780   switch (call->Opcode()) {
1781     case Op_Allocate:
1782     {
1783       Node *k = call->in(AllocateNode::KlassNode);
1784       const TypeKlassPtr *kt;
1785       if (k->Opcode() == Op_LoadKlass) {
1786         kt = k->as_Load()->type()->isa_klassptr();
1787       } else {
1788         // Also works for DecodeN(LoadNKlass).
1789         kt = k->as_Type()->type()->isa_klassptr();
1790       }
1791       assert(kt != NULL, "TypeKlassPtr  required.");
1792       ciKlass* cik = kt->klass();
1793       ciInstanceKlass* ciik = cik->as_instance_klass();
1794 
1795       PointsToNode::EscapeState es;
1796       uint edge_to;
1797       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1798         es = PointsToNode::GlobalEscape;
1799         edge_to = _phantom_object; // Could not be worse
1800       } else {
1801         es = PointsToNode::NoEscape;
1802         edge_to = call_idx;
1803       }
1804       set_escape_state(call_idx, es);
1805       add_pointsto_edge(resproj_idx, edge_to);
1806       _processed.set(resproj_idx);
1807       break;
1808     }
1809 
1810     case Op_AllocateArray:
1811     {
1812       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1813       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1814         // Not scalar replaceable if the length is not constant or too big.
1815         ptnode_adr(call_idx)->_scalar_replaceable = false;
1816       }
1817       set_escape_state(call_idx, PointsToNode::NoEscape);
1818       add_pointsto_edge(resproj_idx, call_idx);
1819       _processed.set(resproj_idx);
1820       break;
1821     }
1822 
1823     case Op_CallStaticJava:
1824     // For a static call, we know exactly what method is being called.
1825     // Use bytecode estimator to record whether the call's return value escapes
1826     {
1827       bool done = true;
1828       const TypeTuple *r = call->tf()->range();
1829       const Type* ret_type = NULL;
1830 
1831       if (r->cnt() > TypeFunc::Parms)
1832         ret_type = r->field_at(TypeFunc::Parms);
1833 
1834       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1835       //        _multianewarray functions return a TypeRawPtr.
1836       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1837         _processed.set(resproj_idx);
1838         break;  // doesn't return a pointer type
1839       }
1840       ciMethod *meth = call->as_CallJava()->method();
1841       const TypeTuple * d = call->tf()->domain();
1842       if (meth == NULL) {
1843         // not a Java method, assume global escape
1844         set_escape_state(call_idx, PointsToNode::GlobalEscape);
1845         add_pointsto_edge(resproj_idx, _phantom_object);
1846       } else {
1847         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1848         bool copy_dependencies = false;
1849 
1850         if (call_analyzer->is_return_allocated()) {
1851           // Returns a newly allocated unescaped object, simply
1852           // update dependency information.
1853           // Mark it as NoEscape so that objects referenced by
1854           // it's fields will be marked as NoEscape at least.
1855           set_escape_state(call_idx, PointsToNode::NoEscape);
1856           add_pointsto_edge(resproj_idx, call_idx);
1857           copy_dependencies = true;
1858         } else if (call_analyzer->is_return_local()) {
1859           // determine whether any arguments are returned
1860           set_escape_state(call_idx, PointsToNode::NoEscape);
1861           bool ret_arg = false;
1862           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1863             const Type* at = d->field_at(i);
1864 
1865             if (at->isa_oopptr() != NULL) {
1866               Node *arg = call->in(i)->uncast();
1867 
1868               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1869                 ret_arg = true;
1870                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1871                 if (arg_esp->node_type() == PointsToNode::UnknownType)
1872                   done = false;
1873                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
1874                   add_pointsto_edge(resproj_idx, arg->_idx);
1875                 else
1876                   add_deferred_edge(resproj_idx, arg->_idx);
1877                 arg_esp->_hidden_alias = true;
1878               }
1879             }
1880           }
1881           if (done && !ret_arg) {
1882             // Returns unknown object.
1883             set_escape_state(call_idx, PointsToNode::GlobalEscape);
1884             add_pointsto_edge(resproj_idx, _phantom_object);
1885           }
1886           copy_dependencies = true;
1887         } else {
1888           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1889           add_pointsto_edge(resproj_idx, _phantom_object);
1890           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1891             const Type* at = d->field_at(i);
1892             if (at->isa_oopptr() != NULL) {
1893               Node *arg = call->in(i)->uncast();
1894               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1895               arg_esp->_hidden_alias = true;
1896             }
1897           }
1898         }
1899         if (copy_dependencies)
1900           call_analyzer->copy_dependencies(_compile->dependencies());
1901       }
1902       if (done)
1903         _processed.set(resproj_idx);
1904       break;
1905     }
1906 
1907     default:
1908     // Some other type of call, assume the worst case that the
1909     // returned value, if any, globally escapes.
1910     {
1911       const TypeTuple *r = call->tf()->range();
1912       if (r->cnt() > TypeFunc::Parms) {
1913         const Type* ret_type = r->field_at(TypeFunc::Parms);
1914 
1915         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1916         //        _multianewarray functions return a TypeRawPtr.
1917         if (ret_type->isa_ptr() != NULL) {
1918           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1919           add_pointsto_edge(resproj_idx, _phantom_object);
1920         }
1921       }
1922       _processed.set(resproj_idx);
1923     }
1924   }
1925 }
1926 
1927 // Populate Connection Graph with Ideal nodes and create simple
1928 // connection graph edges (do not need to check the node_type of inputs
1929 // or to call PointsTo() to walk the connection graph).
1930 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
1931   if (_processed.test(n->_idx))
1932     return; // No need to redefine node's state.
1933 
1934   if (n->is_Call()) {
1935     // Arguments to allocation and locking don't escape.
1936     if (n->is_Allocate()) {
1937       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
1938       record_for_optimizer(n);
1939     } else if (n->is_Lock() || n->is_Unlock()) {
1940       // Put Lock and Unlock nodes on IGVN worklist to process them during
1941       // the first IGVN optimization when escape information is still available.
1942       record_for_optimizer(n);
1943       _processed.set(n->_idx);
1944     } else {
1945       // Have to process call's arguments first.
1946       PointsToNode::NodeType nt = PointsToNode::UnknownType;
1947 
1948       // Check if a call returns an object.
1949       const TypeTuple *r = n->as_Call()->tf()->range();
1950       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
1951           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
1952         // Note:  use isa_ptr() instead of isa_oopptr() here because
1953         //        the _multianewarray functions return a TypeRawPtr.
1954         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
1955           nt = PointsToNode::JavaObject;
1956         }
1957       }
1958       add_node(n, nt, PointsToNode::UnknownEscape, false);
1959     }
1960     return;
1961   }
1962 
1963   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1964   // ThreadLocal has RawPrt type.
1965   switch (n->Opcode()) {
1966     case Op_AddP:
1967     {
1968       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
1969       break;
1970     }
1971     case Op_CastX2P:
1972     { // "Unsafe" memory access.
1973       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1974       break;
1975     }
1976     case Op_CastPP:
1977     case Op_CheckCastPP:
1978     case Op_EncodeP:
1979     case Op_DecodeN:
1980     {
1981       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
1982       int ti = n->in(1)->_idx;
1983       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
1984       if (nt == PointsToNode::UnknownType) {
1985         _delayed_worklist.push(n); // Process it later.
1986         break;
1987       } else if (nt == PointsToNode::JavaObject) {
1988         add_pointsto_edge(n->_idx, ti);
1989       } else {
1990         add_deferred_edge(n->_idx, ti);
1991       }
1992       _processed.set(n->_idx);
1993       break;
1994     }
1995     case Op_ConP:
1996     {
1997       // assume all pointer constants globally escape except for null
1998       PointsToNode::EscapeState es;
1999       if (phase->type(n) == TypePtr::NULL_PTR)
2000         es = PointsToNode::NoEscape;
2001       else
2002         es = PointsToNode::GlobalEscape;
2003 
2004       add_node(n, PointsToNode::JavaObject, es, true);
2005       break;
2006     }
2007     case Op_ConN:
2008     {
2009       // assume all narrow oop constants globally escape except for null
2010       PointsToNode::EscapeState es;
2011       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2012         es = PointsToNode::NoEscape;
2013       else
2014         es = PointsToNode::GlobalEscape;
2015 
2016       add_node(n, PointsToNode::JavaObject, es, true);
2017       break;
2018     }
2019     case Op_CreateEx:
2020     {
2021       // assume that all exception objects globally escape
2022       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2023       break;
2024     }
2025     case Op_LoadKlass:
2026     case Op_LoadNKlass:
2027     {
2028       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2029       break;
2030     }
2031     case Op_LoadP:
2032     case Op_LoadN:
2033     {
2034       const Type *t = phase->type(n);
2035       if (t->make_ptr() == NULL) {
2036         _processed.set(n->_idx);
2037         return;
2038       }
2039       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2040       break;
2041     }
2042     case Op_Parm:
2043     {
2044       _processed.set(n->_idx); // No need to redefine it state.
2045       uint con = n->as_Proj()->_con;
2046       if (con < TypeFunc::Parms)
2047         return;
2048       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2049       if (t->isa_ptr() == NULL)
2050         return;
2051       // We have to assume all input parameters globally escape
2052       // (Note: passing 'false' since _processed is already set).
2053       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2054       break;
2055     }
2056     case Op_Phi:
2057     {
2058       const Type *t = n->as_Phi()->type();
2059       if (t->make_ptr() == NULL) {
2060         // nothing to do if not an oop or narrow oop
2061         _processed.set(n->_idx);
2062         return;
2063       }
2064       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2065       uint i;
2066       for (i = 1; i < n->req() ; i++) {
2067         Node* in = n->in(i);
2068         if (in == NULL)
2069           continue;  // ignore NULL
2070         in = in->uncast();
2071         if (in->is_top() || in == n)
2072           continue;  // ignore top or inputs which go back this node
2073         int ti = in->_idx;
2074         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2075         if (nt == PointsToNode::UnknownType) {
2076           break;
2077         } else if (nt == PointsToNode::JavaObject) {
2078           add_pointsto_edge(n->_idx, ti);
2079         } else {
2080           add_deferred_edge(n->_idx, ti);
2081         }
2082       }
2083       if (i >= n->req())
2084         _processed.set(n->_idx);
2085       else
2086         _delayed_worklist.push(n);
2087       break;
2088     }
2089     case Op_Proj:
2090     {
2091       // we are only interested in the result projection from a call
2092       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2093         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2094         process_call_result(n->as_Proj(), phase);
2095         if (!_processed.test(n->_idx)) {
2096           // The call's result may need to be processed later if the call
2097           // returns it's argument and the argument is not processed yet.
2098           _delayed_worklist.push(n);
2099         }
2100       } else {
2101         _processed.set(n->_idx);
2102       }
2103       break;
2104     }
2105     case Op_Return:
2106     {
2107       if( n->req() > TypeFunc::Parms &&
2108           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2109         // Treat Return value as LocalVar with GlobalEscape escape state.
2110         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2111         int ti = n->in(TypeFunc::Parms)->_idx;
2112         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2113         if (nt == PointsToNode::UnknownType) {
2114           _delayed_worklist.push(n); // Process it later.
2115           break;
2116         } else if (nt == PointsToNode::JavaObject) {
2117           add_pointsto_edge(n->_idx, ti);
2118         } else {
2119           add_deferred_edge(n->_idx, ti);
2120         }
2121       }
2122       _processed.set(n->_idx);
2123       break;
2124     }
2125     case Op_StoreP:
2126     case Op_StoreN:
2127     {
2128       const Type *adr_type = phase->type(n->in(MemNode::Address));
2129       adr_type = adr_type->make_ptr();
2130       if (adr_type->isa_oopptr()) {
2131         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2132       } else {
2133         Node* adr = n->in(MemNode::Address);
2134         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2135             adr->in(AddPNode::Address)->is_Proj() &&
2136             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2137           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2138           // We are computing a raw address for a store captured
2139           // by an Initialize compute an appropriate address type.
2140           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2141           assert(offs != Type::OffsetBot, "offset must be a constant");
2142         } else {
2143           _processed.set(n->_idx);
2144           return;
2145         }
2146       }
2147       break;
2148     }
2149     case Op_StorePConditional:
2150     case Op_CompareAndSwapP:
2151     case Op_CompareAndSwapN:
2152     {
2153       const Type *adr_type = phase->type(n->in(MemNode::Address));
2154       adr_type = adr_type->make_ptr();
2155       if (adr_type->isa_oopptr()) {
2156         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2157       } else {
2158         _processed.set(n->_idx);
2159         return;
2160       }
2161       break;
2162     }
2163     case Op_ThreadLocal:
2164     {
2165       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2166       break;
2167     }
2168     default:
2169       ;
2170       // nothing to do
2171   }
2172   return;
2173 }
2174 
2175 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2176   uint n_idx = n->_idx;
2177 
2178   // Don't set processed bit for AddP, LoadP, StoreP since
2179   // they may need more then one pass to process.
2180   if (_processed.test(n_idx))
2181     return; // No need to redefine node's state.
2182 
2183   if (n->is_Call()) {
2184     CallNode *call = n->as_Call();
2185     process_call_arguments(call, phase);
2186     _processed.set(n_idx);
2187     return;
2188   }
2189 
2190   switch (n->Opcode()) {
2191     case Op_AddP:
2192     {
2193       Node *base = get_addp_base(n);
2194       // Create a field edge to this node from everything base could point to.
2195       VectorSet ptset(Thread::current()->resource_area());
2196       PointsTo(ptset, base, phase);
2197       for( VectorSetI i(&ptset); i.test(); ++i ) {
2198         uint pt = i.elem;
2199         add_field_edge(pt, n_idx, address_offset(n, phase));
2200       }
2201       break;
2202     }
2203     case Op_CastX2P:
2204     {
2205       assert(false, "Op_CastX2P");
2206       break;
2207     }
2208     case Op_CastPP:
2209     case Op_CheckCastPP:
2210     case Op_EncodeP:
2211     case Op_DecodeN:
2212     {
2213       int ti = n->in(1)->_idx;
2214       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2215         add_pointsto_edge(n_idx, ti);
2216       } else {
2217         add_deferred_edge(n_idx, ti);
2218       }
2219       _processed.set(n_idx);
2220       break;
2221     }
2222     case Op_ConP:
2223     {
2224       assert(false, "Op_ConP");
2225       break;
2226     }
2227     case Op_ConN:
2228     {
2229       assert(false, "Op_ConN");
2230       break;
2231     }
2232     case Op_CreateEx:
2233     {
2234       assert(false, "Op_CreateEx");
2235       break;
2236     }
2237     case Op_LoadKlass:
2238     case Op_LoadNKlass:
2239     {
2240       assert(false, "Op_LoadKlass");
2241       break;
2242     }
2243     case Op_LoadP:
2244     case Op_LoadN:
2245     {
2246       const Type *t = phase->type(n);
2247 #ifdef ASSERT
2248       if (t->make_ptr() == NULL)
2249         assert(false, "Op_LoadP");
2250 #endif
2251 
2252       Node* adr = n->in(MemNode::Address)->uncast();
2253       const Type *adr_type = phase->type(adr);
2254       Node* adr_base;
2255       if (adr->is_AddP()) {
2256         adr_base = get_addp_base(adr);
2257       } else {
2258         adr_base = adr;
2259       }
2260 
2261       // For everything "adr_base" could point to, create a deferred edge from
2262       // this node to each field with the same offset.
2263       VectorSet ptset(Thread::current()->resource_area());
2264       PointsTo(ptset, adr_base, phase);
2265       int offset = address_offset(adr, phase);
2266       for( VectorSetI i(&ptset); i.test(); ++i ) {
2267         uint pt = i.elem;
2268         add_deferred_edge_to_fields(n_idx, pt, offset);
2269       }
2270       break;
2271     }
2272     case Op_Parm:
2273     {
2274       assert(false, "Op_Parm");
2275       break;
2276     }
2277     case Op_Phi:
2278     {
2279 #ifdef ASSERT
2280       const Type *t = n->as_Phi()->type();
2281       if (t->make_ptr() == NULL)
2282         assert(false, "Op_Phi");
2283 #endif
2284       for (uint i = 1; i < n->req() ; i++) {
2285         Node* in = n->in(i);
2286         if (in == NULL)
2287           continue;  // ignore NULL
2288         in = in->uncast();
2289         if (in->is_top() || in == n)
2290           continue;  // ignore top or inputs which go back this node
2291         int ti = in->_idx;
2292         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2293         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2294         if (nt == PointsToNode::JavaObject) {
2295           add_pointsto_edge(n_idx, ti);
2296         } else {
2297           add_deferred_edge(n_idx, ti);
2298         }
2299       }
2300       _processed.set(n_idx);
2301       break;
2302     }
2303     case Op_Proj:
2304     {
2305       // we are only interested in the result projection from a call
2306       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2307         process_call_result(n->as_Proj(), phase);
2308         assert(_processed.test(n_idx), "all call results should be processed");
2309       } else {
2310         assert(false, "Op_Proj");
2311       }
2312       break;
2313     }
2314     case Op_Return:
2315     {
2316 #ifdef ASSERT
2317       if( n->req() <= TypeFunc::Parms ||
2318           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2319         assert(false, "Op_Return");
2320       }
2321 #endif
2322       int ti = n->in(TypeFunc::Parms)->_idx;
2323       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2324         add_pointsto_edge(n_idx, ti);
2325       } else {
2326         add_deferred_edge(n_idx, ti);
2327       }
2328       _processed.set(n_idx);
2329       break;
2330     }
2331     case Op_StoreP:
2332     case Op_StoreN:
2333     case Op_StorePConditional:
2334     case Op_CompareAndSwapP:
2335     case Op_CompareAndSwapN:
2336     {
2337       Node *adr = n->in(MemNode::Address);
2338       const Type *adr_type = phase->type(adr)->make_ptr();
2339 #ifdef ASSERT
2340       if (!adr_type->isa_oopptr())
2341         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2342 #endif
2343 
2344       assert(adr->is_AddP(), "expecting an AddP");
2345       Node *adr_base = get_addp_base(adr);
2346       Node *val = n->in(MemNode::ValueIn)->uncast();
2347       // For everything "adr_base" could point to, create a deferred edge
2348       // to "val" from each field with the same offset.
2349       VectorSet ptset(Thread::current()->resource_area());
2350       PointsTo(ptset, adr_base, phase);
2351       for( VectorSetI i(&ptset); i.test(); ++i ) {
2352         uint pt = i.elem;
2353         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2354       }
2355       break;
2356     }
2357     case Op_ThreadLocal:
2358     {
2359       assert(false, "Op_ThreadLocal");
2360       break;
2361     }
2362     default:
2363       ;
2364       // nothing to do
2365   }
2366 }
2367 
2368 #ifndef PRODUCT
2369 void ConnectionGraph::dump() {
2370   PhaseGVN  *igvn = _compile->initial_gvn();
2371   bool first = true;
2372 
2373   uint size = nodes_size();
2374   for (uint ni = 0; ni < size; ni++) {
2375     PointsToNode *ptn = ptnode_adr(ni);
2376     PointsToNode::NodeType ptn_type = ptn->node_type();
2377 
2378     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2379       continue;
2380     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2381     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2382       if (first) {
2383         tty->cr();
2384         tty->print("======== Connection graph for ");
2385         _compile->method()->print_short_name();
2386         tty->cr();
2387         first = false;
2388       }
2389       tty->print("%6d ", ni);
2390       ptn->dump();
2391       // Print all locals which reference this allocation
2392       for (uint li = ni; li < size; li++) {
2393         PointsToNode *ptn_loc = ptnode_adr(li);
2394         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2395         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2396              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2397           ptnode_adr(li)->dump(false);
2398         }
2399       }
2400       if (Verbose) {
2401         // Print all fields which reference this allocation
2402         for (uint i = 0; i < ptn->edge_count(); i++) {
2403           uint ei = ptn->edge_target(i);
2404           ptnode_adr(ei)->dump(false);
2405         }
2406       }
2407       tty->cr();
2408     }
2409   }
2410 }
2411 #endif