1 /*
   2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _node_map(C->comp_arena()) {
  90 
  91   _phantom_object = C->top()->_idx,
  92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  93 
  94   // Add ConP(#NULL) and ConN(#NULL) nodes.
  95   PhaseGVN* igvn = C->initial_gvn();
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   // compute max escape state of anything this node could point to
 211   VectorSet ptset(Thread::current()->resource_area());
 212   PointsTo(ptset, n, phase);
 213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 214     uint pt = i.elem;
 215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 216     if (pes > es)
 217       es = pes;
 218   }
 219   // cache the computed escape state
 220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 221   ptnode_adr(idx)->set_escape_state(es);
 222   return es;
 223 }
 224 
 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
 226   VectorSet visited(Thread::current()->resource_area());
 227   GrowableArray<uint>  worklist;
 228 
 229 #ifdef ASSERT
 230   Node *orig_n = n;
 231 #endif
 232 
 233   n = n->uncast();
 234   PointsToNode* npt = ptnode_adr(n->_idx);
 235 
 236   // If we have a JavaObject, return just that object
 237   if (npt->node_type() == PointsToNode::JavaObject) {
 238     ptset.set(n->_idx);
 239     return;
 240   }
 241 #ifdef ASSERT
 242   if (npt->_node == NULL) {
 243     if (orig_n != n)
 244       orig_n->dump();
 245     n->dump();
 246     assert(npt->_node != NULL, "unregistered node");
 247   }
 248 #endif
 249   worklist.push(n->_idx);
 250   while(worklist.length() > 0) {
 251     int ni = worklist.pop();
 252     if (visited.test_set(ni))
 253       continue;
 254 
 255     PointsToNode* pn = ptnode_adr(ni);
 256     // ensure that all inputs of a Phi have been processed
 257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 258 
 259     int edges_processed = 0;
 260     uint e_cnt = pn->edge_count();
 261     for (uint e = 0; e < e_cnt; e++) {
 262       uint etgt = pn->edge_target(e);
 263       PointsToNode::EdgeType et = pn->edge_type(e);
 264       if (et == PointsToNode::PointsToEdge) {
 265         ptset.set(etgt);
 266         edges_processed++;
 267       } else if (et == PointsToNode::DeferredEdge) {
 268         worklist.push(etgt);
 269         edges_processed++;
 270       } else {
 271         assert(false,"neither PointsToEdge or DeferredEdge");
 272       }
 273     }
 274     if (edges_processed == 0) {
 275       // no deferred or pointsto edges found.  Assume the value was set
 276       // outside this method.  Add the phantom object to the pointsto set.
 277       ptset.set(_phantom_object);
 278     }
 279   }
 280 }
 281 
 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 283   // This method is most expensive during ConnectionGraph construction.
 284   // Reuse vectorSet and an additional growable array for deferred edges.
 285   deferred_edges->clear();
 286   visited->Clear();
 287 
 288   visited->set(ni);
 289   PointsToNode *ptn = ptnode_adr(ni);
 290 
 291   // Mark current edges as visited and move deferred edges to separate array.
 292   for (uint i = 0; i < ptn->edge_count(); ) {
 293     uint t = ptn->edge_target(i);
 294 #ifdef ASSERT
 295     assert(!visited->test_set(t), "expecting no duplications");
 296 #else
 297     visited->set(t);
 298 #endif
 299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 301       deferred_edges->append(t);
 302     } else {
 303       i++;
 304     }
 305   }
 306   for (int next = 0; next < deferred_edges->length(); ++next) {
 307     uint t = deferred_edges->at(next);
 308     PointsToNode *ptt = ptnode_adr(t);
 309     uint e_cnt = ptt->edge_count();
 310     for (uint e = 0; e < e_cnt; e++) {
 311       uint etgt = ptt->edge_target(e);
 312       if (visited->test_set(etgt))
 313         continue;
 314 
 315       PointsToNode::EdgeType et = ptt->edge_type(e);
 316       if (et == PointsToNode::PointsToEdge) {
 317         add_pointsto_edge(ni, etgt);
 318         if(etgt == _phantom_object) {
 319           // Special case - field set outside (globally escaping).
 320           ptn->set_escape_state(PointsToNode::GlobalEscape);
 321         }
 322       } else if (et == PointsToNode::DeferredEdge) {
 323         deferred_edges->append(etgt);
 324       } else {
 325         assert(false,"invalid connection graph");
 326       }
 327     }
 328   }
 329 }
 330 
 331 
 332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 334 //  a pointsto edge is added if it is a JavaObject
 335 
 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 337   PointsToNode* an = ptnode_adr(adr_i);
 338   PointsToNode* to = ptnode_adr(to_i);
 339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 340 
 341   for (uint fe = 0; fe < an->edge_count(); fe++) {
 342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 343     int fi = an->edge_target(fe);
 344     PointsToNode* pf = ptnode_adr(fi);
 345     int po = pf->offset();
 346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 347       if (deferred)
 348         add_deferred_edge(fi, to_i);
 349       else
 350         add_pointsto_edge(fi, to_i);
 351     }
 352   }
 353 }
 354 
 355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 356 // whose offset matches "offset".
 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 358   PointsToNode* an = ptnode_adr(adr_i);
 359   for (uint fe = 0; fe < an->edge_count(); fe++) {
 360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 361     int fi = an->edge_target(fe);
 362     PointsToNode* pf = ptnode_adr(fi);
 363     int po = pf->offset();
 364     if (pf->edge_count() == 0) {
 365       // we have not seen any stores to this field, assume it was set outside this method
 366       add_pointsto_edge(fi, _phantom_object);
 367     }
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       add_deferred_edge(from_i, fi);
 370     }
 371   }
 372 }
 373 
 374 // Helper functions
 375 
 376 static Node* get_addp_base(Node *addp) {
 377   assert(addp->is_AddP(), "must be AddP");
 378   //
 379   // AddP cases for Base and Address inputs:
 380   // case #1. Direct object's field reference:
 381   //     Allocate
 382   //       |
 383   //     Proj #5 ( oop result )
 384   //       |
 385   //     CheckCastPP (cast to instance type)
 386   //      | |
 387   //     AddP  ( base == address )
 388   //
 389   // case #2. Indirect object's field reference:
 390   //      Phi
 391   //       |
 392   //     CastPP (cast to instance type)
 393   //      | |
 394   //     AddP  ( base == address )
 395   //
 396   // case #3. Raw object's field reference for Initialize node:
 397   //      Allocate
 398   //        |
 399   //      Proj #5 ( oop result )
 400   //  top   |
 401   //     \  |
 402   //     AddP  ( base == top )
 403   //
 404   // case #4. Array's element reference:
 405   //   {CheckCastPP | CastPP}
 406   //     |  | |
 407   //     |  AddP ( array's element offset )
 408   //     |  |
 409   //     AddP ( array's offset )
 410   //
 411   // case #5. Raw object's field reference for arraycopy stub call:
 412   //          The inline_native_clone() case when the arraycopy stub is called
 413   //          after the allocation before Initialize and CheckCastPP nodes.
 414   //      Allocate
 415   //        |
 416   //      Proj #5 ( oop result )
 417   //       | |
 418   //       AddP  ( base == address )
 419   //
 420   // case #6. Constant Pool, ThreadLocal, CastX2P or
 421   //          Raw object's field reference:
 422   //      {ConP, ThreadLocal, CastX2P, raw Load}
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #7. Klass's field reference.
 428   //      LoadKlass
 429   //       | |
 430   //       AddP  ( base == address )
 431   //
 432   // case #8. narrow Klass's field reference.
 433   //      LoadNKlass
 434   //       |
 435   //      DecodeN
 436   //       | |
 437   //       AddP  ( base == address )
 438   //
 439   Node *base = addp->in(AddPNode::Base)->uncast();
 440   if (base->is_top()) { // The AddP case #3 and #6.
 441     base = addp->in(AddPNode::Address)->uncast();
 442     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 443            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 444            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 445            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 446   }
 447   return base;
 448 }
 449 
 450 static Node* find_second_addp(Node* addp, Node* n) {
 451   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 452 
 453   Node* addp2 = addp->raw_out(0);
 454   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 455       addp2->in(AddPNode::Base) == n &&
 456       addp2->in(AddPNode::Address) == addp) {
 457 
 458     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 459     //
 460     // Find array's offset to push it on worklist first and
 461     // as result process an array's element offset first (pushed second)
 462     // to avoid CastPP for the array's offset.
 463     // Otherwise the inserted CastPP (LocalVar) will point to what
 464     // the AddP (Field) points to. Which would be wrong since
 465     // the algorithm expects the CastPP has the same point as
 466     // as AddP's base CheckCastPP (LocalVar).
 467     //
 468     //    ArrayAllocation
 469     //     |
 470     //    CheckCastPP
 471     //     |
 472     //    memProj (from ArrayAllocation CheckCastPP)
 473     //     |  ||
 474     //     |  ||   Int (element index)
 475     //     |  ||    |   ConI (log(element size))
 476     //     |  ||    |   /
 477     //     |  ||   LShift
 478     //     |  ||  /
 479     //     |  AddP (array's element offset)
 480     //     |  |
 481     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 482     //     | / /
 483     //     AddP (array's offset)
 484     //      |
 485     //     Load/Store (memory operation on array's element)
 486     //
 487     return addp2;
 488   }
 489   return NULL;
 490 }
 491 
 492 //
 493 // Adjust the type and inputs of an AddP which computes the
 494 // address of a field of an instance
 495 //
 496 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 497   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 498   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 499   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 500   if (t == NULL) {
 501     // We are computing a raw address for a store captured by an Initialize
 502     // compute an appropriate address type (cases #3 and #5).
 503     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 504     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 505     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 506     assert(offs != Type::OffsetBot, "offset must be a constant");
 507     t = base_t->add_offset(offs)->is_oopptr();
 508   }
 509   int inst_id =  base_t->instance_id();
 510   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 511                              "old type must be non-instance or match new type");
 512 
 513   // The type 't' could be subclass of 'base_t'.
 514   // As result t->offset() could be large then base_t's size and it will
 515   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 516   // constructor verifies correctness of the offset.
 517   //
 518   // It could happened on subclass's branch (from the type profiling
 519   // inlining) which was not eliminated during parsing since the exactness
 520   // of the allocation type was not propagated to the subclass type check.
 521   //
 522   // Do nothing for such AddP node and don't process its users since
 523   // this code branch will go away.
 524   //
 525   if (!t->is_known_instance() &&
 526       !t->klass()->equals(base_t->klass()) &&
 527       t->klass()->is_subtype_of(base_t->klass())) {
 528      return false; // bail out
 529   }
 530 
 531   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 532   // Do NOT remove the next call: ensure an new alias index is allocated
 533   // for the instance type
 534   int alias_idx = _compile->get_alias_index(tinst);
 535   igvn->set_type(addp, tinst);
 536   // record the allocation in the node map
 537   set_map(addp->_idx, get_map(base->_idx));
 538 
 539   // Set addp's Base and Address to 'base'.
 540   Node *abase = addp->in(AddPNode::Base);
 541   Node *adr   = addp->in(AddPNode::Address);
 542   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 543       adr->in(0)->_idx == (uint)inst_id) {
 544     // Skip AddP cases #3 and #5.
 545   } else {
 546     assert(!abase->is_top(), "sanity"); // AddP case #3
 547     if (abase != base) {
 548       igvn->hash_delete(addp);
 549       addp->set_req(AddPNode::Base, base);
 550       if (abase == adr) {
 551         addp->set_req(AddPNode::Address, base);
 552       } else {
 553         // AddP case #4 (adr is array's element offset AddP node)
 554 #ifdef ASSERT
 555         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 556         assert(adr->is_AddP() && atype != NULL &&
 557                atype->instance_id() == inst_id, "array's element offset should be processed first");
 558 #endif
 559       }
 560       igvn->hash_insert(addp);
 561     }
 562   }
 563   // Put on IGVN worklist since at least addp's type was changed above.
 564   record_for_optimizer(addp);
 565   return true;
 566 }
 567 
 568 //
 569 // Create a new version of orig_phi if necessary. Returns either the newly
 570 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 571 // phi was created.  Cache the last newly created phi in the node map.
 572 //
 573 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 574   Compile *C = _compile;
 575   new_created = false;
 576   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 577   // nothing to do if orig_phi is bottom memory or matches alias_idx
 578   if (phi_alias_idx == alias_idx) {
 579     return orig_phi;
 580   }
 581   // Have we recently created a Phi for this alias index?
 582   PhiNode *result = get_map_phi(orig_phi->_idx);
 583   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 584     return result;
 585   }
 586   // Previous check may fail when the same wide memory Phi was split into Phis
 587   // for different memory slices. Search all Phis for this region.
 588   if (result != NULL) {
 589     Node* region = orig_phi->in(0);
 590     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 591       Node* phi = region->fast_out(i);
 592       if (phi->is_Phi() &&
 593           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 594         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 595         return phi->as_Phi();
 596       }
 597     }
 598   }
 599   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 600     if (C->do_escape_analysis() == true && !C->failing()) {
 601       // Retry compilation without escape analysis.
 602       // If this is the first failure, the sentinel string will "stick"
 603       // to the Compile object, and the C2Compiler will see it and retry.
 604       C->record_failure(C2Compiler::retry_no_escape_analysis());
 605     }
 606     return NULL;
 607   }
 608   orig_phi_worklist.append_if_missing(orig_phi);
 609   const TypePtr *atype = C->get_adr_type(alias_idx);
 610   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 611   C->copy_node_notes_to(result, orig_phi);
 612   set_map_phi(orig_phi->_idx, result);
 613   igvn->set_type(result, result->bottom_type());
 614   record_for_optimizer(result);
 615   new_created = true;
 616   return result;
 617 }
 618 
 619 //
 620 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 621 // specified alias index.
 622 //
 623 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 624 
 625   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 626   Compile *C = _compile;
 627   bool new_phi_created;
 628   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 629   if (!new_phi_created) {
 630     return result;
 631   }
 632 
 633   GrowableArray<PhiNode *>  phi_list;
 634   GrowableArray<uint>  cur_input;
 635 
 636   PhiNode *phi = orig_phi;
 637   uint idx = 1;
 638   bool finished = false;
 639   while(!finished) {
 640     while (idx < phi->req()) {
 641       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 642       if (mem != NULL && mem->is_Phi()) {
 643         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 644         if (new_phi_created) {
 645           // found an phi for which we created a new split, push current one on worklist and begin
 646           // processing new one
 647           phi_list.push(phi);
 648           cur_input.push(idx);
 649           phi = mem->as_Phi();
 650           result = newphi;
 651           idx = 1;
 652           continue;
 653         } else {
 654           mem = newphi;
 655         }
 656       }
 657       if (C->failing()) {
 658         return NULL;
 659       }
 660       result->set_req(idx++, mem);
 661     }
 662 #ifdef ASSERT
 663     // verify that the new Phi has an input for each input of the original
 664     assert( phi->req() == result->req(), "must have same number of inputs.");
 665     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 666 #endif
 667     // Check if all new phi's inputs have specified alias index.
 668     // Otherwise use old phi.
 669     for (uint i = 1; i < phi->req(); i++) {
 670       Node* in = result->in(i);
 671       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 672     }
 673     // we have finished processing a Phi, see if there are any more to do
 674     finished = (phi_list.length() == 0 );
 675     if (!finished) {
 676       phi = phi_list.pop();
 677       idx = cur_input.pop();
 678       PhiNode *prev_result = get_map_phi(phi->_idx);
 679       prev_result->set_req(idx++, result);
 680       result = prev_result;
 681     }
 682   }
 683   return result;
 684 }
 685 
 686 
 687 //
 688 // The next methods are derived from methods in MemNode.
 689 //
 690 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
 691   Node *mem = mmem;
 692   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 693   // means an array I have not precisely typed yet.  Do not do any
 694   // alias stuff with it any time soon.
 695   if( tinst->base() != Type::AnyPtr &&
 696       !(tinst->klass()->is_java_lang_Object() &&
 697         tinst->offset() == Type::OffsetBot) ) {
 698     mem = mmem->memory_at(alias_idx);
 699     // Update input if it is progress over what we have now
 700   }
 701   return mem;
 702 }
 703 
 704 //
 705 // Search memory chain of "mem" to find a MemNode whose address
 706 // is the specified alias index.
 707 //
 708 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 709   if (orig_mem == NULL)
 710     return orig_mem;
 711   Compile* C = phase->C;
 712   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
 713   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
 714   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 715   Node *prev = NULL;
 716   Node *result = orig_mem;
 717   while (prev != result) {
 718     prev = result;
 719     if (result == start_mem)
 720       break;  // hit one of our sentinels
 721     if (result->is_Mem()) {
 722       const Type *at = phase->type(result->in(MemNode::Address));
 723       if (at != Type::TOP) {
 724         assert (at->isa_ptr() != NULL, "pointer type required.");
 725         int idx = C->get_alias_index(at->is_ptr());
 726         if (idx == alias_idx)
 727           break;
 728       }
 729       result = result->in(MemNode::Memory);
 730     }
 731     if (!is_instance)
 732       continue;  // don't search further for non-instance types
 733     // skip over a call which does not affect this memory slice
 734     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 735       Node *proj_in = result->in(0);
 736       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
 737         break;  // hit one of our sentinels
 738       } else if (proj_in->is_Call()) {
 739         CallNode *call = proj_in->as_Call();
 740         if (!call->may_modify(tinst, phase)) {
 741           result = call->in(TypeFunc::Memory);
 742         }
 743       } else if (proj_in->is_Initialize()) {
 744         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 745         // Stop if this is the initialization for the object instance which
 746         // which contains this memory slice, otherwise skip over it.
 747         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
 748           result = proj_in->in(TypeFunc::Memory);
 749         }
 750       } else if (proj_in->is_MemBar()) {
 751         result = proj_in->in(TypeFunc::Memory);
 752       }
 753     } else if (result->is_MergeMem()) {
 754       MergeMemNode *mmem = result->as_MergeMem();
 755       result = step_through_mergemem(mmem, alias_idx, tinst);
 756       if (result == mmem->base_memory()) {
 757         // Didn't find instance memory, search through general slice recursively.
 758         result = mmem->memory_at(C->get_general_index(alias_idx));
 759         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 760         if (C->failing()) {
 761           return NULL;
 762         }
 763         mmem->set_memory_at(alias_idx, result);
 764       }
 765     } else if (result->is_Phi() &&
 766                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 767       Node *un = result->as_Phi()->unique_input(phase);
 768       if (un != NULL) {
 769         result = un;
 770       } else {
 771         break;
 772       }
 773     } else if (result->Opcode() == Op_SCMemProj) {
 774       assert(result->in(0)->is_LoadStore(), "sanity");
 775       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 776       if (at != Type::TOP) {
 777         assert (at->isa_ptr() != NULL, "pointer type required.");
 778         int idx = C->get_alias_index(at->is_ptr());
 779         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 780         break;
 781       }
 782       result = result->in(0)->in(MemNode::Memory);
 783     }
 784   }
 785   if (result->is_Phi()) {
 786     PhiNode *mphi = result->as_Phi();
 787     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 788     const TypePtr *t = mphi->adr_type();
 789     if (C->get_alias_index(t) != alias_idx) {
 790       // Create a new Phi with the specified alias index type.
 791       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 792     } else if (!is_instance) {
 793       // Push all non-instance Phis on the orig_phis worklist to update inputs
 794       // during Phase 4 if needed.
 795       orig_phis.append_if_missing(mphi);
 796     }
 797   }
 798   // the result is either MemNode, PhiNode, InitializeNode.
 799   return result;
 800 }
 801 
 802 
 803 //
 804 //  Convert the types of unescaped object to instance types where possible,
 805 //  propagate the new type information through the graph, and update memory
 806 //  edges and MergeMem inputs to reflect the new type.
 807 //
 808 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 809 //  The processing is done in 4 phases:
 810 //
 811 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 812 //            types for the CheckCastPP for allocations where possible.
 813 //            Propagate the the new types through users as follows:
 814 //               casts and Phi:  push users on alloc_worklist
 815 //               AddP:  cast Base and Address inputs to the instance type
 816 //                      push any AddP users on alloc_worklist and push any memnode
 817 //                      users onto memnode_worklist.
 818 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 819 //            search the Memory chain for a store with the appropriate type
 820 //            address type.  If a Phi is found, create a new version with
 821 //            the appropriate memory slices from each of the Phi inputs.
 822 //            For stores, process the users as follows:
 823 //               MemNode:  push on memnode_worklist
 824 //               MergeMem: push on mergemem_worklist
 825 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 826 //            moving the first node encountered of each  instance type to the
 827 //            the input corresponding to its alias index.
 828 //            appropriate memory slice.
 829 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 830 //
 831 // In the following example, the CheckCastPP nodes are the cast of allocation
 832 // results and the allocation of node 29 is unescaped and eligible to be an
 833 // instance type.
 834 //
 835 // We start with:
 836 //
 837 //     7 Parm #memory
 838 //    10  ConI  "12"
 839 //    19  CheckCastPP   "Foo"
 840 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 841 //    29  CheckCastPP   "Foo"
 842 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 843 //
 844 //    40  StoreP  25   7  20   ... alias_index=4
 845 //    50  StoreP  35  40  30   ... alias_index=4
 846 //    60  StoreP  45  50  20   ... alias_index=4
 847 //    70  LoadP    _  60  30   ... alias_index=4
 848 //    80  Phi     75  50  60   Memory alias_index=4
 849 //    90  LoadP    _  80  30   ... alias_index=4
 850 //   100  LoadP    _  80  20   ... alias_index=4
 851 //
 852 //
 853 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 854 // and creating a new alias index for node 30.  This gives:
 855 //
 856 //     7 Parm #memory
 857 //    10  ConI  "12"
 858 //    19  CheckCastPP   "Foo"
 859 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 860 //    29  CheckCastPP   "Foo"  iid=24
 861 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 862 //
 863 //    40  StoreP  25   7  20   ... alias_index=4
 864 //    50  StoreP  35  40  30   ... alias_index=6
 865 //    60  StoreP  45  50  20   ... alias_index=4
 866 //    70  LoadP    _  60  30   ... alias_index=6
 867 //    80  Phi     75  50  60   Memory alias_index=4
 868 //    90  LoadP    _  80  30   ... alias_index=6
 869 //   100  LoadP    _  80  20   ... alias_index=4
 870 //
 871 // In phase 2, new memory inputs are computed for the loads and stores,
 872 // And a new version of the phi is created.  In phase 4, the inputs to
 873 // node 80 are updated and then the memory nodes are updated with the
 874 // values computed in phase 2.  This results in:
 875 //
 876 //     7 Parm #memory
 877 //    10  ConI  "12"
 878 //    19  CheckCastPP   "Foo"
 879 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 880 //    29  CheckCastPP   "Foo"  iid=24
 881 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 882 //
 883 //    40  StoreP  25  7   20   ... alias_index=4
 884 //    50  StoreP  35  7   30   ... alias_index=6
 885 //    60  StoreP  45  40  20   ... alias_index=4
 886 //    70  LoadP    _  50  30   ... alias_index=6
 887 //    80  Phi     75  40  60   Memory alias_index=4
 888 //   120  Phi     75  50  50   Memory alias_index=6
 889 //    90  LoadP    _ 120  30   ... alias_index=6
 890 //   100  LoadP    _  80  20   ... alias_index=4
 891 //
 892 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 893   GrowableArray<Node *>  memnode_worklist;
 894   GrowableArray<Node *>  mergemem_worklist;
 895   GrowableArray<PhiNode *>  orig_phis;
 896   PhaseGVN  *igvn = _compile->initial_gvn();
 897   uint new_index_start = (uint) _compile->num_alias_types();
 898   VectorSet visited(Thread::current()->resource_area());
 899   VectorSet ptset(Thread::current()->resource_area());
 900 
 901 
 902   //  Phase 1:  Process possible allocations from alloc_worklist.
 903   //  Create instance types for the CheckCastPP for allocations where possible.
 904   //
 905   // (Note: don't forget to change the order of the second AddP node on
 906   //  the alloc_worklist if the order of the worklist processing is changed,
 907   //  see the comment in find_second_addp().)
 908   //
 909   while (alloc_worklist.length() != 0) {
 910     Node *n = alloc_worklist.pop();
 911     uint ni = n->_idx;
 912     const TypeOopPtr* tinst = NULL;
 913     if (n->is_Call()) {
 914       CallNode *alloc = n->as_Call();
 915       // copy escape information to call node
 916       PointsToNode* ptn = ptnode_adr(alloc->_idx);
 917       PointsToNode::EscapeState es = escape_state(alloc, igvn);
 918       // We have an allocation or call which returns a Java object,
 919       // see if it is unescaped.
 920       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
 921         continue;
 922 
 923       // Find CheckCastPP for the allocate or for the return value of a call
 924       n = alloc->result_cast();
 925       if (n == NULL) {            // No uses except Initialize node
 926         if (alloc->is_Allocate()) {
 927           // Set the scalar_replaceable flag for allocation
 928           // so it could be eliminated if it has no uses.
 929           alloc->as_Allocate()->_is_scalar_replaceable = true;
 930         }
 931         continue;
 932       }
 933       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
 934         assert(!alloc->is_Allocate(), "allocation should have unique type");
 935         continue;
 936       }
 937 
 938       // The inline code for Object.clone() casts the allocation result to
 939       // java.lang.Object and then to the actual type of the allocated
 940       // object. Detect this case and use the second cast.
 941       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
 942       // the allocation result is cast to java.lang.Object and then
 943       // to the actual Array type.
 944       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
 945           && (alloc->is_AllocateArray() ||
 946               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
 947         Node *cast2 = NULL;
 948         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 949           Node *use = n->fast_out(i);
 950           if (use->is_CheckCastPP()) {
 951             cast2 = use;
 952             break;
 953           }
 954         }
 955         if (cast2 != NULL) {
 956           n = cast2;
 957         } else {
 958           // Non-scalar replaceable if the allocation type is unknown statically
 959           // (reflection allocation), the object can't be restored during
 960           // deoptimization without precise type.
 961           continue;
 962         }
 963       }
 964       if (alloc->is_Allocate()) {
 965         // Set the scalar_replaceable flag for allocation
 966         // so it could be eliminated.
 967         alloc->as_Allocate()->_is_scalar_replaceable = true;
 968       }
 969       set_escape_state(n->_idx, es);
 970       // in order for an object to be scalar-replaceable, it must be:
 971       //   - a direct allocation (not a call returning an object)
 972       //   - non-escaping
 973       //   - eligible to be a unique type
 974       //   - not determined to be ineligible by escape analysis
 975       set_map(alloc->_idx, n);
 976       set_map(n->_idx, alloc);
 977       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
 978       if (t == NULL)
 979         continue;  // not a TypeInstPtr
 980       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
 981       igvn->hash_delete(n);
 982       igvn->set_type(n,  tinst);
 983       n->raise_bottom_type(tinst);
 984       igvn->hash_insert(n);
 985       record_for_optimizer(n);
 986       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
 987           (t->isa_instptr() || t->isa_aryptr())) {
 988 
 989         // First, put on the worklist all Field edges from Connection Graph
 990         // which is more accurate then putting immediate users from Ideal Graph.
 991         for (uint e = 0; e < ptn->edge_count(); e++) {
 992           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
 993           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
 994                  "only AddP nodes are Field edges in CG");
 995           if (use->outcnt() > 0) { // Don't process dead nodes
 996             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
 997             if (addp2 != NULL) {
 998               assert(alloc->is_AllocateArray(),"array allocation was expected");
 999               alloc_worklist.append_if_missing(addp2);
1000             }
1001             alloc_worklist.append_if_missing(use);
1002           }
1003         }
1004 
1005         // An allocation may have an Initialize which has raw stores. Scan
1006         // the users of the raw allocation result and push AddP users
1007         // on alloc_worklist.
1008         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1009         assert (raw_result != NULL, "must have an allocation result");
1010         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1011           Node *use = raw_result->fast_out(i);
1012           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1013             Node* addp2 = find_second_addp(use, raw_result);
1014             if (addp2 != NULL) {
1015               assert(alloc->is_AllocateArray(),"array allocation was expected");
1016               alloc_worklist.append_if_missing(addp2);
1017             }
1018             alloc_worklist.append_if_missing(use);
1019           } else if (use->is_Initialize()) {
1020             memnode_worklist.append_if_missing(use);
1021           }
1022         }
1023       }
1024     } else if (n->is_AddP()) {
1025       ptset.Clear();
1026       PointsTo(ptset, get_addp_base(n), igvn);
1027       assert(ptset.Size() == 1, "AddP address is unique");
1028       uint elem = ptset.getelem(); // Allocation node's index
1029       if (elem == _phantom_object)
1030         continue; // Assume the value was set outside this method.
1031       Node *base = get_map(elem);  // CheckCastPP node
1032       if (!split_AddP(n, base, igvn)) continue; // wrong type
1033       tinst = igvn->type(base)->isa_oopptr();
1034     } else if (n->is_Phi() ||
1035                n->is_CheckCastPP() ||
1036                n->is_EncodeP() ||
1037                n->is_DecodeN() ||
1038                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1039       if (visited.test_set(n->_idx)) {
1040         assert(n->is_Phi(), "loops only through Phi's");
1041         continue;  // already processed
1042       }
1043       ptset.Clear();
1044       PointsTo(ptset, n, igvn);
1045       if (ptset.Size() == 1) {
1046         uint elem = ptset.getelem(); // Allocation node's index
1047         if (elem == _phantom_object)
1048           continue; // Assume the value was set outside this method.
1049         Node *val = get_map(elem);   // CheckCastPP node
1050         TypeNode *tn = n->as_Type();
1051         tinst = igvn->type(val)->isa_oopptr();
1052         assert(tinst != NULL && tinst->is_known_instance() &&
1053                (uint)tinst->instance_id() == elem , "instance type expected.");
1054 
1055         const Type *tn_type = igvn->type(tn);
1056         const TypeOopPtr *tn_t;
1057         if (tn_type->isa_narrowoop()) {
1058           tn_t = tn_type->make_ptr()->isa_oopptr();
1059         } else {
1060           tn_t = tn_type->isa_oopptr();
1061         }
1062 
1063         if (tn_t != NULL &&
1064             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1065           if (tn_type->isa_narrowoop()) {
1066             tn_type = tinst->make_narrowoop();
1067           } else {
1068             tn_type = tinst;
1069           }
1070           igvn->hash_delete(tn);
1071           igvn->set_type(tn, tn_type);
1072           tn->set_type(tn_type);
1073           igvn->hash_insert(tn);
1074           record_for_optimizer(n);
1075         } else {
1076           continue; // wrong type
1077         }
1078       }
1079     } else {
1080       continue;
1081     }
1082     // push users on appropriate worklist
1083     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1084       Node *use = n->fast_out(i);
1085       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1086         memnode_worklist.append_if_missing(use);
1087       } else if (use->is_Initialize()) {
1088         memnode_worklist.append_if_missing(use);
1089       } else if (use->is_MergeMem()) {
1090         mergemem_worklist.append_if_missing(use);
1091       } else if (use->is_SafePoint() && tinst != NULL) {
1092         // Look for MergeMem nodes for calls which reference unique allocation
1093         // (through CheckCastPP nodes) even for debug info.
1094         Node* m = use->in(TypeFunc::Memory);
1095         uint iid = tinst->instance_id();
1096         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1097                m->in(0) != use && !m->in(0)->_idx != iid) {
1098           m = m->in(0)->in(TypeFunc::Memory);
1099         }
1100         if (m->is_MergeMem()) {
1101           mergemem_worklist.append_if_missing(m);
1102         }
1103       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1104         Node* addp2 = find_second_addp(use, n);
1105         if (addp2 != NULL) {
1106           alloc_worklist.append_if_missing(addp2);
1107         }
1108         alloc_worklist.append_if_missing(use);
1109       } else if (use->is_Phi() ||
1110                  use->is_CheckCastPP() ||
1111                  use->is_EncodeP() ||
1112                  use->is_DecodeN() ||
1113                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1114         alloc_worklist.append_if_missing(use);
1115       }
1116     }
1117 
1118   }
1119   // New alias types were created in split_AddP().
1120   uint new_index_end = (uint) _compile->num_alias_types();
1121 
1122   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1123   //            compute new values for Memory inputs  (the Memory inputs are not
1124   //            actually updated until phase 4.)
1125   if (memnode_worklist.length() == 0)
1126     return;  // nothing to do
1127 
1128   while (memnode_worklist.length() != 0) {
1129     Node *n = memnode_worklist.pop();
1130     if (visited.test_set(n->_idx))
1131       continue;
1132     if (n->is_Phi()) {
1133       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
1134       // we don't need to do anything, but the users must be pushed if we haven't processed
1135       // this Phi before
1136     } else if (n->is_Initialize()) {
1137       // we don't need to do anything, but the users of the memory projection must be pushed
1138       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
1139       if (n == NULL)
1140         continue;
1141     } else {
1142       assert(n->is_Mem(), "memory node required.");
1143       Node *addr = n->in(MemNode::Address);
1144       assert(addr->is_AddP(), "AddP required");
1145       const Type *addr_t = igvn->type(addr);
1146       if (addr_t == Type::TOP)
1147         continue;
1148       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1149       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1150       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1151       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1152       if (_compile->failing()) {
1153         return;
1154       }
1155       if (mem != n->in(MemNode::Memory)) {
1156         set_map(n->_idx, mem);
1157         ptnode_adr(n->_idx)->_node = n;
1158       }
1159       if (n->is_Load()) {
1160         continue;  // don't push users
1161       } else if (n->is_LoadStore()) {
1162         // get the memory projection
1163         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1164           Node *use = n->fast_out(i);
1165           if (use->Opcode() == Op_SCMemProj) {
1166             n = use;
1167             break;
1168           }
1169         }
1170         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1171       }
1172     }
1173     // push user on appropriate worklist
1174     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1175       Node *use = n->fast_out(i);
1176       if (use->is_Phi()) {
1177         memnode_worklist.append_if_missing(use);
1178       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1179         memnode_worklist.append_if_missing(use);
1180       } else if (use->is_Initialize()) {
1181         memnode_worklist.append_if_missing(use);
1182       } else if (use->is_MergeMem()) {
1183         mergemem_worklist.append_if_missing(use);
1184       }
1185     }
1186   }
1187 
1188   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1189   //            Walk each memory moving the first node encountered of each
1190   //            instance type to the the input corresponding to its alias index.
1191   while (mergemem_worklist.length() != 0) {
1192     Node *n = mergemem_worklist.pop();
1193     assert(n->is_MergeMem(), "MergeMem node required.");
1194     if (visited.test_set(n->_idx))
1195       continue;
1196     MergeMemNode *nmm = n->as_MergeMem();
1197     // Note: we don't want to use MergeMemStream here because we only want to
1198     //  scan inputs which exist at the start, not ones we add during processing.
1199     uint nslices = nmm->req();
1200     igvn->hash_delete(nmm);
1201     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1202       Node* mem = nmm->in(i);
1203       Node* cur = NULL;
1204       if (mem == NULL || mem->is_top())
1205         continue;
1206       while (mem->is_Mem()) {
1207         const Type *at = igvn->type(mem->in(MemNode::Address));
1208         if (at != Type::TOP) {
1209           assert (at->isa_ptr() != NULL, "pointer type required.");
1210           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1211           if (idx == i) {
1212             if (cur == NULL)
1213               cur = mem;
1214           } else {
1215             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1216               nmm->set_memory_at(idx, mem);
1217             }
1218           }
1219         }
1220         mem = mem->in(MemNode::Memory);
1221       }
1222       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1223       // Find any instance of the current type if we haven't encountered
1224       // a value of the instance along the chain.
1225       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1226         if((uint)_compile->get_general_index(ni) == i) {
1227           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1228           if (nmm->is_empty_memory(m)) {
1229             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1230             if (_compile->failing()) {
1231               return;
1232             }
1233             nmm->set_memory_at(ni, result);
1234           }
1235         }
1236       }
1237     }
1238     // Find the rest of instances values
1239     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1240       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
1241       Node* result = step_through_mergemem(nmm, ni, tinst);
1242       if (result == nmm->base_memory()) {
1243         // Didn't find instance memory, search through general slice recursively.
1244         result = nmm->memory_at(igvn->C->get_general_index(ni));
1245         result = find_inst_mem(result, ni, orig_phis, igvn);
1246         if (_compile->failing()) {
1247           return;
1248         }
1249         nmm->set_memory_at(ni, result);
1250       }
1251     }
1252     igvn->hash_insert(nmm);
1253     record_for_optimizer(nmm);
1254 
1255     // Propagate new memory slices to following MergeMem nodes.
1256     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1257       Node *use = n->fast_out(i);
1258       if (use->is_Call()) {
1259         CallNode* in = use->as_Call();
1260         if (in->proj_out(TypeFunc::Memory) != NULL) {
1261           Node* m = in->proj_out(TypeFunc::Memory);
1262           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1263             Node* mm = m->fast_out(j);
1264             if (mm->is_MergeMem()) {
1265               mergemem_worklist.append_if_missing(mm);
1266             }
1267           }
1268         }
1269         if (use->is_Allocate()) {
1270           use = use->as_Allocate()->initialization();
1271           if (use == NULL) {
1272             continue;
1273           }
1274         }
1275       }
1276       if (use->is_Initialize()) {
1277         InitializeNode* in = use->as_Initialize();
1278         if (in->proj_out(TypeFunc::Memory) != NULL) {
1279           Node* m = in->proj_out(TypeFunc::Memory);
1280           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1281             Node* mm = m->fast_out(j);
1282             if (mm->is_MergeMem()) {
1283               mergemem_worklist.append_if_missing(mm);
1284             }
1285           }
1286         }
1287       }
1288     }
1289   }
1290 
1291   //  Phase 4:  Update the inputs of non-instance memory Phis and
1292   //            the Memory input of memnodes
1293   // First update the inputs of any non-instance Phi's from
1294   // which we split out an instance Phi.  Note we don't have
1295   // to recursively process Phi's encounted on the input memory
1296   // chains as is done in split_memory_phi() since they  will
1297   // also be processed here.
1298   for (int j = 0; j < orig_phis.length(); j++) {
1299     PhiNode *phi = orig_phis.at(j);
1300     int alias_idx = _compile->get_alias_index(phi->adr_type());
1301     igvn->hash_delete(phi);
1302     for (uint i = 1; i < phi->req(); i++) {
1303       Node *mem = phi->in(i);
1304       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1305       if (_compile->failing()) {
1306         return;
1307       }
1308       if (mem != new_mem) {
1309         phi->set_req(i, new_mem);
1310       }
1311     }
1312     igvn->hash_insert(phi);
1313     record_for_optimizer(phi);
1314   }
1315 
1316   // Update the memory inputs of MemNodes with the value we computed
1317   // in Phase 2.
1318   for (uint i = 0; i < nodes_size(); i++) {
1319     Node *nmem = get_map(i);
1320     if (nmem != NULL) {
1321       Node *n = ptnode_adr(i)->_node;
1322       if (n != NULL && n->is_Mem()) {
1323         igvn->hash_delete(n);
1324         n->set_req(MemNode::Memory, nmem);
1325         igvn->hash_insert(n);
1326         record_for_optimizer(n);
1327       }
1328     }
1329   }
1330 }
1331 
1332 bool ConnectionGraph::has_candidates(Compile *C) {
1333   // EA brings benefits only when the code has allocations and/or locks which
1334   // are represented by ideal Macro nodes.
1335   int cnt = C->macro_count();
1336   for( int i=0; i < cnt; i++ ) {
1337     Node *n = C->macro_node(i);
1338     if ( n->is_Allocate() )
1339       return true;
1340     if( n->is_Lock() ) {
1341       Node* obj = n->as_Lock()->obj_node()->uncast();
1342       if( !(obj->is_Parm() || obj->is_Con()) )
1343         return true;
1344     }
1345   }
1346   return false;
1347 }
1348 
1349 bool ConnectionGraph::compute_escape() {
1350   Compile* C = _compile;
1351 
1352   // 1. Populate Connection Graph (CG) with Ideal nodes.
1353 
1354   Unique_Node_List worklist_init;
1355   worklist_init.map(C->unique(), NULL);  // preallocate space
1356 
1357   // Initialize worklist
1358   if (C->root() != NULL) {
1359     worklist_init.push(C->root());
1360   }
1361 
1362   GrowableArray<int> cg_worklist;
1363   PhaseGVN* igvn = C->initial_gvn();
1364   bool has_allocations = false;
1365 
1366   // Push all useful nodes onto CG list and set their type.
1367   for( uint next = 0; next < worklist_init.size(); ++next ) {
1368     Node* n = worklist_init.at(next);
1369     record_for_escape_analysis(n, igvn);
1370     // Only allocations and java static calls results are checked
1371     // for an escape status. See process_call_result() below.
1372     if (n->is_Allocate() || n->is_CallStaticJava() &&
1373         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1374       has_allocations = true;
1375     }
1376     if(n->is_AddP())
1377       cg_worklist.append(n->_idx);
1378     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1379       Node* m = n->fast_out(i);   // Get user
1380       worklist_init.push(m);
1381     }
1382   }
1383 
1384   if (!has_allocations) {
1385     _collecting = false;
1386     return false; // Nothing to do.
1387   }
1388 
1389   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1390   uint delayed_size = _delayed_worklist.size();
1391   for( uint next = 0; next < delayed_size; ++next ) {
1392     Node* n = _delayed_worklist.at(next);
1393     build_connection_graph(n, igvn);
1394   }
1395 
1396   // 3. Pass to create fields edges (Allocate -F-> AddP).
1397   uint cg_length = cg_worklist.length();
1398   for( uint next = 0; next < cg_length; ++next ) {
1399     int ni = cg_worklist.at(next);
1400     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1401   }
1402 
1403   cg_worklist.clear();
1404   cg_worklist.append(_phantom_object);
1405 
1406   // 4. Build Connection Graph which need
1407   //    to walk the connection graph.
1408   for (uint ni = 0; ni < nodes_size(); ni++) {
1409     PointsToNode* ptn = ptnode_adr(ni);
1410     Node *n = ptn->_node;
1411     if (n != NULL) { // Call, AddP, LoadP, StoreP
1412       build_connection_graph(n, igvn);
1413       if (ptn->node_type() != PointsToNode::UnknownType)
1414         cg_worklist.append(n->_idx); // Collect CG nodes
1415     }
1416   }
1417 
1418   VectorSet ptset(Thread::current()->resource_area());
1419   GrowableArray<uint>  deferred_edges;
1420   VectorSet visited(Thread::current()->resource_area());
1421 
1422   // 5. Remove deferred edges from the graph and collect
1423   //    information needed for type splitting.
1424   cg_length = cg_worklist.length();
1425   for( uint next = 0; next < cg_length; ++next ) {
1426     int ni = cg_worklist.at(next);
1427     PointsToNode* ptn = ptnode_adr(ni);
1428     PointsToNode::NodeType nt = ptn->node_type();
1429     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1430       remove_deferred(ni, &deferred_edges, &visited);
1431       Node *n = ptn->_node;
1432       if (n->is_AddP()) {
1433         // Search for objects which are not scalar replaceable.
1434         // Mark their escape state as ArgEscape to propagate the state
1435         // to referenced objects.
1436         // Note: currently there are no difference in compiler optimizations
1437         // for ArgEscape objects and NoEscape objects which are not
1438         // scalar replaceable.
1439 
1440         int offset = ptn->offset();
1441         Node *base = get_addp_base(n);
1442         ptset.Clear();
1443         PointsTo(ptset, base, igvn);
1444         int ptset_size = ptset.Size();
1445 
1446         // Check if a field's initializing value is recorded and add
1447         // a corresponding NULL field's value if it is not recorded.
1448         // Connection Graph does not record a default initialization by NULL
1449         // captured by Initialize node.
1450         //
1451         // Note: it will disable scalar replacement in some cases:
1452         //
1453         //    Point p[] = new Point[1];
1454         //    p[0] = new Point(); // Will be not scalar replaced
1455         //
1456         // but it will save us from incorrect optimizations in next cases:
1457         //
1458         //    Point p[] = new Point[1];
1459         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1460         //
1461         // Without a control flow analysis we can't distinguish above cases.
1462         //
1463         if (offset != Type::OffsetBot && ptset_size == 1) {
1464           uint elem = ptset.getelem(); // Allocation node's index
1465           // It does not matter if it is not Allocation node since
1466           // only non-escaping allocations are scalar replaced.
1467           if (ptnode_adr(elem)->_node->is_Allocate() &&
1468               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1469             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1470             InitializeNode* ini = alloc->initialization();
1471             Node* value = NULL;
1472             if (ini != NULL) {
1473               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1474               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
1475               if (store != NULL && store->is_Store())
1476                 value = store->in(MemNode::ValueIn);
1477             }
1478             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1479               // A field's initializing value was not recorded. Add NULL.
1480               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1481               add_pointsto_edge(ni, null_idx);
1482             }
1483           }
1484         }
1485 
1486         // An object is not scalar replaceable if the field which may point
1487         // to it has unknown offset (unknown element of an array of objects).
1488         //
1489         if (offset == Type::OffsetBot) {
1490           uint e_cnt = ptn->edge_count();
1491           for (uint ei = 0; ei < e_cnt; ei++) {
1492             uint npi = ptn->edge_target(ei);
1493             set_escape_state(npi, PointsToNode::ArgEscape);
1494             ptnode_adr(npi)->_scalar_replaceable = false;
1495           }
1496         }
1497 
1498         // Currently an object is not scalar replaceable if a LoadStore node
1499         // access its field since the field value is unknown after it.
1500         //
1501         bool has_LoadStore = false;
1502         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1503           Node *use = n->fast_out(i);
1504           if (use->is_LoadStore()) {
1505             has_LoadStore = true;
1506             break;
1507           }
1508         }
1509         // An object is not scalar replaceable if the address points
1510         // to unknown field (unknown element for arrays, offset is OffsetBot).
1511         //
1512         // Or the address may point to more then one object. This may produce
1513         // the false positive result (set scalar_replaceable to false)
1514         // since the flow-insensitive escape analysis can't separate
1515         // the case when stores overwrite the field's value from the case
1516         // when stores happened on different control branches.
1517         //
1518         if (ptset_size > 1 || ptset_size != 0 &&
1519             (has_LoadStore || offset == Type::OffsetBot)) {
1520           for( VectorSetI j(&ptset); j.test(); ++j ) {
1521             set_escape_state(j.elem, PointsToNode::ArgEscape);
1522             ptnode_adr(j.elem)->_scalar_replaceable = false;
1523           }
1524         }
1525       }
1526     }
1527   }
1528 
1529   // 6. Propagate escape states.
1530   GrowableArray<int>  worklist;
1531   bool has_non_escaping_obj = false;
1532 
1533   // push all GlobalEscape nodes on the worklist
1534   for( uint next = 0; next < cg_length; ++next ) {
1535     int nk = cg_worklist.at(next);
1536     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1537       worklist.push(nk);
1538   }
1539   // mark all nodes reachable from GlobalEscape nodes
1540   while(worklist.length() > 0) {
1541     PointsToNode* ptn = ptnode_adr(worklist.pop());
1542     uint e_cnt = ptn->edge_count();
1543     for (uint ei = 0; ei < e_cnt; ei++) {
1544       uint npi = ptn->edge_target(ei);
1545       PointsToNode *np = ptnode_adr(npi);
1546       if (np->escape_state() < PointsToNode::GlobalEscape) {
1547         np->set_escape_state(PointsToNode::GlobalEscape);
1548         worklist.push(npi);
1549       }
1550     }
1551   }
1552 
1553   // push all ArgEscape nodes on the worklist
1554   for( uint next = 0; next < cg_length; ++next ) {
1555     int nk = cg_worklist.at(next);
1556     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1557       worklist.push(nk);
1558   }
1559   // mark all nodes reachable from ArgEscape nodes
1560   while(worklist.length() > 0) {
1561     PointsToNode* ptn = ptnode_adr(worklist.pop());
1562     if (ptn->node_type() == PointsToNode::JavaObject)
1563       has_non_escaping_obj = true; // Non GlobalEscape
1564     uint e_cnt = ptn->edge_count();
1565     for (uint ei = 0; ei < e_cnt; ei++) {
1566       uint npi = ptn->edge_target(ei);
1567       PointsToNode *np = ptnode_adr(npi);
1568       if (np->escape_state() < PointsToNode::ArgEscape) {
1569         np->set_escape_state(PointsToNode::ArgEscape);
1570         worklist.push(npi);
1571       }
1572     }
1573   }
1574 
1575   GrowableArray<Node*> alloc_worklist;
1576 
1577   // push all NoEscape nodes on the worklist
1578   for( uint next = 0; next < cg_length; ++next ) {
1579     int nk = cg_worklist.at(next);
1580     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1581       worklist.push(nk);
1582   }
1583   // mark all nodes reachable from NoEscape nodes
1584   while(worklist.length() > 0) {
1585     PointsToNode* ptn = ptnode_adr(worklist.pop());
1586     if (ptn->node_type() == PointsToNode::JavaObject)
1587       has_non_escaping_obj = true; // Non GlobalEscape
1588     Node* n = ptn->_node;
1589     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1590       // Push scalar replaceable allocations on alloc_worklist
1591       // for processing in split_unique_types().
1592       alloc_worklist.append(n);
1593     }
1594     uint e_cnt = ptn->edge_count();
1595     for (uint ei = 0; ei < e_cnt; ei++) {
1596       uint npi = ptn->edge_target(ei);
1597       PointsToNode *np = ptnode_adr(npi);
1598       if (np->escape_state() < PointsToNode::NoEscape) {
1599         np->set_escape_state(PointsToNode::NoEscape);
1600         worklist.push(npi);
1601       }
1602     }
1603   }
1604 
1605   _collecting = false;
1606   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1607 
1608   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1609   if ( has_scalar_replaceable_candidates &&
1610        C->AliasLevel() >= 3 && EliminateAllocations ) {
1611 
1612     // Now use the escape information to create unique types for
1613     // scalar replaceable objects.
1614     split_unique_types(alloc_worklist);
1615 
1616     if (C->failing())  return false;
1617 
1618     // Clean up after split unique types.
1619     ResourceMark rm;
1620     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1621 
1622     C->print_method("After Escape Analysis", 2);
1623 
1624 #ifdef ASSERT
1625   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1626     tty->print("=== No allocations eliminated for ");
1627     C->method()->print_short_name();
1628     if(!EliminateAllocations) {
1629       tty->print(" since EliminateAllocations is off ===");
1630     } else if(!has_scalar_replaceable_candidates) {
1631       tty->print(" since there are no scalar replaceable candidates ===");
1632     } else if(C->AliasLevel() < 3) {
1633       tty->print(" since AliasLevel < 3 ===");
1634     }
1635     tty->cr();
1636 #endif
1637   }
1638   return has_non_escaping_obj;
1639 }
1640 
1641 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1642 
1643     switch (call->Opcode()) {
1644 #ifdef ASSERT
1645     case Op_Allocate:
1646     case Op_AllocateArray:
1647     case Op_Lock:
1648     case Op_Unlock:
1649       assert(false, "should be done already");
1650       break;
1651 #endif
1652     case Op_CallLeafNoFP:
1653     {
1654       // Stub calls, objects do not escape but they are not scale replaceable.
1655       // Adjust escape state for outgoing arguments.
1656       const TypeTuple * d = call->tf()->domain();
1657       VectorSet ptset(Thread::current()->resource_area());
1658       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1659         const Type* at = d->field_at(i);
1660         Node *arg = call->in(i)->uncast();
1661         const Type *aat = phase->type(arg);
1662         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1663           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1664                  aat->isa_ptr() != NULL, "expecting an Ptr");
1665           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1666           if (arg->is_AddP()) {
1667             //
1668             // The inline_native_clone() case when the arraycopy stub is called
1669             // after the allocation before Initialize and CheckCastPP nodes.
1670             //
1671             // Set AddP's base (Allocate) as not scalar replaceable since
1672             // pointer to the base (with offset) is passed as argument.
1673             //
1674             arg = get_addp_base(arg);
1675           }
1676           ptset.Clear();
1677           PointsTo(ptset, arg, phase);
1678           for( VectorSetI j(&ptset); j.test(); ++j ) {
1679             uint pt = j.elem;
1680             set_escape_state(pt, PointsToNode::ArgEscape);
1681           }
1682         }
1683       }
1684       break;
1685     }
1686 
1687     case Op_CallStaticJava:
1688     // For a static call, we know exactly what method is being called.
1689     // Use bytecode estimator to record the call's escape affects
1690     {
1691       ciMethod *meth = call->as_CallJava()->method();
1692       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1693       // fall-through if not a Java method or no analyzer information
1694       if (call_analyzer != NULL) {
1695         const TypeTuple * d = call->tf()->domain();
1696         VectorSet ptset(Thread::current()->resource_area());
1697         bool copy_dependencies = false;
1698         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1699           const Type* at = d->field_at(i);
1700           int k = i - TypeFunc::Parms;
1701 
1702           if (at->isa_oopptr() != NULL) {
1703             Node *arg = call->in(i)->uncast();
1704 
1705             bool global_escapes = false;
1706             bool fields_escapes = false;
1707             if (!call_analyzer->is_arg_stack(k)) {
1708               // The argument global escapes, mark everything it could point to
1709               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1710               global_escapes = true;
1711             } else {
1712               if (!call_analyzer->is_arg_local(k)) {
1713                 // The argument itself doesn't escape, but any fields might
1714                 fields_escapes = true;
1715               }
1716               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1717               copy_dependencies = true;
1718             }
1719 
1720             ptset.Clear();
1721             PointsTo(ptset, arg, phase);
1722             for( VectorSetI j(&ptset); j.test(); ++j ) {
1723               uint pt = j.elem;
1724               if (global_escapes) {
1725                 //The argument global escapes, mark everything it could point to
1726                 set_escape_state(pt, PointsToNode::GlobalEscape);
1727               } else {
1728                 if (fields_escapes) {
1729                   // The argument itself doesn't escape, but any fields might
1730                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1731                 }
1732                 set_escape_state(pt, PointsToNode::ArgEscape);
1733               }
1734             }
1735           }
1736         }
1737         if (copy_dependencies)
1738           call_analyzer->copy_dependencies(_compile->dependencies());
1739         break;
1740       }
1741     }
1742 
1743     default:
1744     // Fall-through here if not a Java method or no analyzer information
1745     // or some other type of call, assume the worst case: all arguments
1746     // globally escape.
1747     {
1748       // adjust escape state for  outgoing arguments
1749       const TypeTuple * d = call->tf()->domain();
1750       VectorSet ptset(Thread::current()->resource_area());
1751       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1752         const Type* at = d->field_at(i);
1753         if (at->isa_oopptr() != NULL) {
1754           Node *arg = call->in(i)->uncast();
1755           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1756           ptset.Clear();
1757           PointsTo(ptset, arg, phase);
1758           for( VectorSetI j(&ptset); j.test(); ++j ) {
1759             uint pt = j.elem;
1760             set_escape_state(pt, PointsToNode::GlobalEscape);
1761           }
1762         }
1763       }
1764     }
1765   }
1766 }
1767 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1768   CallNode   *call = resproj->in(0)->as_Call();
1769   uint    call_idx = call->_idx;
1770   uint resproj_idx = resproj->_idx;
1771 
1772   switch (call->Opcode()) {
1773     case Op_Allocate:
1774     {
1775       Node *k = call->in(AllocateNode::KlassNode);
1776       const TypeKlassPtr *kt;
1777       if (k->Opcode() == Op_LoadKlass) {
1778         kt = k->as_Load()->type()->isa_klassptr();
1779       } else {
1780         // Also works for DecodeN(LoadNKlass).
1781         kt = k->as_Type()->type()->isa_klassptr();
1782       }
1783       assert(kt != NULL, "TypeKlassPtr  required.");
1784       ciKlass* cik = kt->klass();
1785       ciInstanceKlass* ciik = cik->as_instance_klass();
1786 
1787       PointsToNode::EscapeState es;
1788       uint edge_to;
1789       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1790         es = PointsToNode::GlobalEscape;
1791         edge_to = _phantom_object; // Could not be worse
1792       } else {
1793         es = PointsToNode::NoEscape;
1794         edge_to = call_idx;
1795       }
1796       set_escape_state(call_idx, es);
1797       add_pointsto_edge(resproj_idx, edge_to);
1798       _processed.set(resproj_idx);
1799       break;
1800     }
1801 
1802     case Op_AllocateArray:
1803     {
1804       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1805       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1806         // Not scalar replaceable if the length is not constant or too big.
1807         ptnode_adr(call_idx)->_scalar_replaceable = false;
1808       }
1809       set_escape_state(call_idx, PointsToNode::NoEscape);
1810       add_pointsto_edge(resproj_idx, call_idx);
1811       _processed.set(resproj_idx);
1812       break;
1813     }
1814 
1815     case Op_CallStaticJava:
1816     // For a static call, we know exactly what method is being called.
1817     // Use bytecode estimator to record whether the call's return value escapes
1818     {
1819       bool done = true;
1820       const TypeTuple *r = call->tf()->range();
1821       const Type* ret_type = NULL;
1822 
1823       if (r->cnt() > TypeFunc::Parms)
1824         ret_type = r->field_at(TypeFunc::Parms);
1825 
1826       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1827       //        _multianewarray functions return a TypeRawPtr.
1828       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1829         _processed.set(resproj_idx);
1830         break;  // doesn't return a pointer type
1831       }
1832       ciMethod *meth = call->as_CallJava()->method();
1833       const TypeTuple * d = call->tf()->domain();
1834       if (meth == NULL) {
1835         // not a Java method, assume global escape
1836         set_escape_state(call_idx, PointsToNode::GlobalEscape);
1837         add_pointsto_edge(resproj_idx, _phantom_object);
1838       } else {
1839         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1840         bool copy_dependencies = false;
1841 
1842         if (call_analyzer->is_return_allocated()) {
1843           // Returns a newly allocated unescaped object, simply
1844           // update dependency information.
1845           // Mark it as NoEscape so that objects referenced by
1846           // it's fields will be marked as NoEscape at least.
1847           set_escape_state(call_idx, PointsToNode::NoEscape);
1848           add_pointsto_edge(resproj_idx, call_idx);
1849           copy_dependencies = true;
1850         } else if (call_analyzer->is_return_local()) {
1851           // determine whether any arguments are returned
1852           set_escape_state(call_idx, PointsToNode::NoEscape);
1853           bool ret_arg = false;
1854           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1855             const Type* at = d->field_at(i);
1856 
1857             if (at->isa_oopptr() != NULL) {
1858               Node *arg = call->in(i)->uncast();
1859 
1860               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1861                 ret_arg = true;
1862                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1863                 if (arg_esp->node_type() == PointsToNode::UnknownType)
1864                   done = false;
1865                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
1866                   add_pointsto_edge(resproj_idx, arg->_idx);
1867                 else
1868                   add_deferred_edge(resproj_idx, arg->_idx);
1869                 arg_esp->_hidden_alias = true;
1870               }
1871             }
1872           }
1873           if (done && !ret_arg) {
1874             // Returns unknown object.
1875             set_escape_state(call_idx, PointsToNode::GlobalEscape);
1876             add_pointsto_edge(resproj_idx, _phantom_object);
1877           }
1878           copy_dependencies = true;
1879         } else {
1880           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1881           add_pointsto_edge(resproj_idx, _phantom_object);
1882           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1883             const Type* at = d->field_at(i);
1884             if (at->isa_oopptr() != NULL) {
1885               Node *arg = call->in(i)->uncast();
1886               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1887               arg_esp->_hidden_alias = true;
1888             }
1889           }
1890         }
1891         if (copy_dependencies)
1892           call_analyzer->copy_dependencies(_compile->dependencies());
1893       }
1894       if (done)
1895         _processed.set(resproj_idx);
1896       break;
1897     }
1898 
1899     default:
1900     // Some other type of call, assume the worst case that the
1901     // returned value, if any, globally escapes.
1902     {
1903       const TypeTuple *r = call->tf()->range();
1904       if (r->cnt() > TypeFunc::Parms) {
1905         const Type* ret_type = r->field_at(TypeFunc::Parms);
1906 
1907         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1908         //        _multianewarray functions return a TypeRawPtr.
1909         if (ret_type->isa_ptr() != NULL) {
1910           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1911           add_pointsto_edge(resproj_idx, _phantom_object);
1912         }
1913       }
1914       _processed.set(resproj_idx);
1915     }
1916   }
1917 }
1918 
1919 // Populate Connection Graph with Ideal nodes and create simple
1920 // connection graph edges (do not need to check the node_type of inputs
1921 // or to call PointsTo() to walk the connection graph).
1922 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
1923   if (_processed.test(n->_idx))
1924     return; // No need to redefine node's state.
1925 
1926   if (n->is_Call()) {
1927     // Arguments to allocation and locking don't escape.
1928     if (n->is_Allocate()) {
1929       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
1930       record_for_optimizer(n);
1931     } else if (n->is_Lock() || n->is_Unlock()) {
1932       // Put Lock and Unlock nodes on IGVN worklist to process them during
1933       // the first IGVN optimization when escape information is still available.
1934       record_for_optimizer(n);
1935       _processed.set(n->_idx);
1936     } else {
1937       // Have to process call's arguments first.
1938       PointsToNode::NodeType nt = PointsToNode::UnknownType;
1939 
1940       // Check if a call returns an object.
1941       const TypeTuple *r = n->as_Call()->tf()->range();
1942       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
1943           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
1944         // Note:  use isa_ptr() instead of isa_oopptr() here because
1945         //        the _multianewarray functions return a TypeRawPtr.
1946         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
1947           nt = PointsToNode::JavaObject;
1948         }
1949       }
1950       add_node(n, nt, PointsToNode::UnknownEscape, false);
1951     }
1952     return;
1953   }
1954 
1955   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
1956   // ThreadLocal has RawPrt type.
1957   switch (n->Opcode()) {
1958     case Op_AddP:
1959     {
1960       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
1961       break;
1962     }
1963     case Op_CastX2P:
1964     { // "Unsafe" memory access.
1965       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
1966       break;
1967     }
1968     case Op_CastPP:
1969     case Op_CheckCastPP:
1970     case Op_EncodeP:
1971     case Op_DecodeN:
1972     {
1973       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
1974       int ti = n->in(1)->_idx;
1975       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
1976       if (nt == PointsToNode::UnknownType) {
1977         _delayed_worklist.push(n); // Process it later.
1978         break;
1979       } else if (nt == PointsToNode::JavaObject) {
1980         add_pointsto_edge(n->_idx, ti);
1981       } else {
1982         add_deferred_edge(n->_idx, ti);
1983       }
1984       _processed.set(n->_idx);
1985       break;
1986     }
1987     case Op_ConP:
1988     {
1989       // assume all pointer constants globally escape except for null
1990       PointsToNode::EscapeState es;
1991       if (phase->type(n) == TypePtr::NULL_PTR)
1992         es = PointsToNode::NoEscape;
1993       else
1994         es = PointsToNode::GlobalEscape;
1995 
1996       add_node(n, PointsToNode::JavaObject, es, true);
1997       break;
1998     }
1999     case Op_ConN:
2000     {
2001       // assume all narrow oop constants globally escape except for null
2002       PointsToNode::EscapeState es;
2003       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2004         es = PointsToNode::NoEscape;
2005       else
2006         es = PointsToNode::GlobalEscape;
2007 
2008       add_node(n, PointsToNode::JavaObject, es, true);
2009       break;
2010     }
2011     case Op_CreateEx:
2012     {
2013       // assume that all exception objects globally escape
2014       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2015       break;
2016     }
2017     case Op_LoadKlass:
2018     case Op_LoadNKlass:
2019     {
2020       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2021       break;
2022     }
2023     case Op_LoadP:
2024     case Op_LoadN:
2025     {
2026       const Type *t = phase->type(n);
2027       if (t->make_ptr() == NULL) {
2028         _processed.set(n->_idx);
2029         return;
2030       }
2031       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2032       break;
2033     }
2034     case Op_Parm:
2035     {
2036       _processed.set(n->_idx); // No need to redefine it state.
2037       uint con = n->as_Proj()->_con;
2038       if (con < TypeFunc::Parms)
2039         return;
2040       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2041       if (t->isa_ptr() == NULL)
2042         return;
2043       // We have to assume all input parameters globally escape
2044       // (Note: passing 'false' since _processed is already set).
2045       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2046       break;
2047     }
2048     case Op_Phi:
2049     {
2050       const Type *t = n->as_Phi()->type();
2051       if (t->make_ptr() == NULL) {
2052         // nothing to do if not an oop or narrow oop
2053         _processed.set(n->_idx);
2054         return;
2055       }
2056       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2057       uint i;
2058       for (i = 1; i < n->req() ; i++) {
2059         Node* in = n->in(i);
2060         if (in == NULL)
2061           continue;  // ignore NULL
2062         in = in->uncast();
2063         if (in->is_top() || in == n)
2064           continue;  // ignore top or inputs which go back this node
2065         int ti = in->_idx;
2066         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2067         if (nt == PointsToNode::UnknownType) {
2068           break;
2069         } else if (nt == PointsToNode::JavaObject) {
2070           add_pointsto_edge(n->_idx, ti);
2071         } else {
2072           add_deferred_edge(n->_idx, ti);
2073         }
2074       }
2075       if (i >= n->req())
2076         _processed.set(n->_idx);
2077       else
2078         _delayed_worklist.push(n);
2079       break;
2080     }
2081     case Op_Proj:
2082     {
2083       // we are only interested in the result projection from a call
2084       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2085         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2086         process_call_result(n->as_Proj(), phase);
2087         if (!_processed.test(n->_idx)) {
2088           // The call's result may need to be processed later if the call
2089           // returns it's argument and the argument is not processed yet.
2090           _delayed_worklist.push(n);
2091         }
2092       } else {
2093         _processed.set(n->_idx);
2094       }
2095       break;
2096     }
2097     case Op_Return:
2098     {
2099       if( n->req() > TypeFunc::Parms &&
2100           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2101         // Treat Return value as LocalVar with GlobalEscape escape state.
2102         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2103         int ti = n->in(TypeFunc::Parms)->_idx;
2104         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2105         if (nt == PointsToNode::UnknownType) {
2106           _delayed_worklist.push(n); // Process it later.
2107           break;
2108         } else if (nt == PointsToNode::JavaObject) {
2109           add_pointsto_edge(n->_idx, ti);
2110         } else {
2111           add_deferred_edge(n->_idx, ti);
2112         }
2113       }
2114       _processed.set(n->_idx);
2115       break;
2116     }
2117     case Op_StoreP:
2118     case Op_StoreN:
2119     {
2120       const Type *adr_type = phase->type(n->in(MemNode::Address));
2121       adr_type = adr_type->make_ptr();
2122       if (adr_type->isa_oopptr()) {
2123         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2124       } else {
2125         Node* adr = n->in(MemNode::Address);
2126         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2127             adr->in(AddPNode::Address)->is_Proj() &&
2128             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2129           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2130           // We are computing a raw address for a store captured
2131           // by an Initialize compute an appropriate address type.
2132           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2133           assert(offs != Type::OffsetBot, "offset must be a constant");
2134         } else {
2135           _processed.set(n->_idx);
2136           return;
2137         }
2138       }
2139       break;
2140     }
2141     case Op_StorePConditional:
2142     case Op_CompareAndSwapP:
2143     case Op_CompareAndSwapN:
2144     {
2145       const Type *adr_type = phase->type(n->in(MemNode::Address));
2146       adr_type = adr_type->make_ptr();
2147       if (adr_type->isa_oopptr()) {
2148         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2149       } else {
2150         _processed.set(n->_idx);
2151         return;
2152       }
2153       break;
2154     }
2155     case Op_ThreadLocal:
2156     {
2157       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2158       break;
2159     }
2160     default:
2161       ;
2162       // nothing to do
2163   }
2164   return;
2165 }
2166 
2167 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2168   uint n_idx = n->_idx;
2169 
2170   // Don't set processed bit for AddP, LoadP, StoreP since
2171   // they may need more then one pass to process.
2172   if (_processed.test(n_idx))
2173     return; // No need to redefine node's state.
2174 
2175   if (n->is_Call()) {
2176     CallNode *call = n->as_Call();
2177     process_call_arguments(call, phase);
2178     _processed.set(n_idx);
2179     return;
2180   }
2181 
2182   switch (n->Opcode()) {
2183     case Op_AddP:
2184     {
2185       Node *base = get_addp_base(n);
2186       // Create a field edge to this node from everything base could point to.
2187       VectorSet ptset(Thread::current()->resource_area());
2188       PointsTo(ptset, base, phase);
2189       for( VectorSetI i(&ptset); i.test(); ++i ) {
2190         uint pt = i.elem;
2191         add_field_edge(pt, n_idx, address_offset(n, phase));
2192       }
2193       break;
2194     }
2195     case Op_CastX2P:
2196     {
2197       assert(false, "Op_CastX2P");
2198       break;
2199     }
2200     case Op_CastPP:
2201     case Op_CheckCastPP:
2202     case Op_EncodeP:
2203     case Op_DecodeN:
2204     {
2205       int ti = n->in(1)->_idx;
2206       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2207         add_pointsto_edge(n_idx, ti);
2208       } else {
2209         add_deferred_edge(n_idx, ti);
2210       }
2211       _processed.set(n_idx);
2212       break;
2213     }
2214     case Op_ConP:
2215     {
2216       assert(false, "Op_ConP");
2217       break;
2218     }
2219     case Op_ConN:
2220     {
2221       assert(false, "Op_ConN");
2222       break;
2223     }
2224     case Op_CreateEx:
2225     {
2226       assert(false, "Op_CreateEx");
2227       break;
2228     }
2229     case Op_LoadKlass:
2230     case Op_LoadNKlass:
2231     {
2232       assert(false, "Op_LoadKlass");
2233       break;
2234     }
2235     case Op_LoadP:
2236     case Op_LoadN:
2237     {
2238       const Type *t = phase->type(n);
2239 #ifdef ASSERT
2240       if (t->make_ptr() == NULL)
2241         assert(false, "Op_LoadP");
2242 #endif
2243 
2244       Node* adr = n->in(MemNode::Address)->uncast();
2245       const Type *adr_type = phase->type(adr);
2246       Node* adr_base;
2247       if (adr->is_AddP()) {
2248         adr_base = get_addp_base(adr);
2249       } else {
2250         adr_base = adr;
2251       }
2252 
2253       // For everything "adr_base" could point to, create a deferred edge from
2254       // this node to each field with the same offset.
2255       VectorSet ptset(Thread::current()->resource_area());
2256       PointsTo(ptset, adr_base, phase);
2257       int offset = address_offset(adr, phase);
2258       for( VectorSetI i(&ptset); i.test(); ++i ) {
2259         uint pt = i.elem;
2260         add_deferred_edge_to_fields(n_idx, pt, offset);
2261       }
2262       break;
2263     }
2264     case Op_Parm:
2265     {
2266       assert(false, "Op_Parm");
2267       break;
2268     }
2269     case Op_Phi:
2270     {
2271 #ifdef ASSERT
2272       const Type *t = n->as_Phi()->type();
2273       if (t->make_ptr() == NULL)
2274         assert(false, "Op_Phi");
2275 #endif
2276       for (uint i = 1; i < n->req() ; i++) {
2277         Node* in = n->in(i);
2278         if (in == NULL)
2279           continue;  // ignore NULL
2280         in = in->uncast();
2281         if (in->is_top() || in == n)
2282           continue;  // ignore top or inputs which go back this node
2283         int ti = in->_idx;
2284         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2285         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2286         if (nt == PointsToNode::JavaObject) {
2287           add_pointsto_edge(n_idx, ti);
2288         } else {
2289           add_deferred_edge(n_idx, ti);
2290         }
2291       }
2292       _processed.set(n_idx);
2293       break;
2294     }
2295     case Op_Proj:
2296     {
2297       // we are only interested in the result projection from a call
2298       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2299         process_call_result(n->as_Proj(), phase);
2300         assert(_processed.test(n_idx), "all call results should be processed");
2301       } else {
2302         assert(false, "Op_Proj");
2303       }
2304       break;
2305     }
2306     case Op_Return:
2307     {
2308 #ifdef ASSERT
2309       if( n->req() <= TypeFunc::Parms ||
2310           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2311         assert(false, "Op_Return");
2312       }
2313 #endif
2314       int ti = n->in(TypeFunc::Parms)->_idx;
2315       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2316         add_pointsto_edge(n_idx, ti);
2317       } else {
2318         add_deferred_edge(n_idx, ti);
2319       }
2320       _processed.set(n_idx);
2321       break;
2322     }
2323     case Op_StoreP:
2324     case Op_StoreN:
2325     case Op_StorePConditional:
2326     case Op_CompareAndSwapP:
2327     case Op_CompareAndSwapN:
2328     {
2329       Node *adr = n->in(MemNode::Address);
2330       const Type *adr_type = phase->type(adr)->make_ptr();
2331 #ifdef ASSERT
2332       if (!adr_type->isa_oopptr())
2333         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2334 #endif
2335 
2336       assert(adr->is_AddP(), "expecting an AddP");
2337       Node *adr_base = get_addp_base(adr);
2338       Node *val = n->in(MemNode::ValueIn)->uncast();
2339       // For everything "adr_base" could point to, create a deferred edge
2340       // to "val" from each field with the same offset.
2341       VectorSet ptset(Thread::current()->resource_area());
2342       PointsTo(ptset, adr_base, phase);
2343       for( VectorSetI i(&ptset); i.test(); ++i ) {
2344         uint pt = i.elem;
2345         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2346       }
2347       break;
2348     }
2349     case Op_ThreadLocal:
2350     {
2351       assert(false, "Op_ThreadLocal");
2352       break;
2353     }
2354     default:
2355       ;
2356       // nothing to do
2357   }
2358 }
2359 
2360 #ifndef PRODUCT
2361 void ConnectionGraph::dump() {
2362   PhaseGVN  *igvn = _compile->initial_gvn();
2363   bool first = true;
2364 
2365   uint size = nodes_size();
2366   for (uint ni = 0; ni < size; ni++) {
2367     PointsToNode *ptn = ptnode_adr(ni);
2368     PointsToNode::NodeType ptn_type = ptn->node_type();
2369 
2370     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2371       continue;
2372     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2373     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2374       if (first) {
2375         tty->cr();
2376         tty->print("======== Connection graph for ");
2377         _compile->method()->print_short_name();
2378         tty->cr();
2379         first = false;
2380       }
2381       tty->print("%6d ", ni);
2382       ptn->dump();
2383       // Print all locals which reference this allocation
2384       for (uint li = ni; li < size; li++) {
2385         PointsToNode *ptn_loc = ptnode_adr(li);
2386         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2387         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2388              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2389           ptnode_adr(li)->dump(false);
2390         }
2391       }
2392       if (Verbose) {
2393         // Print all fields which reference this allocation
2394         for (uint i = 0; i < ptn->edge_count(); i++) {
2395           uint ei = ptn->edge_target(i);
2396           ptnode_adr(ei)->dump(false);
2397         }
2398       }
2399       tty->cr();
2400     }
2401   }
2402 }
2403 #endif