1 /*
   2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _node_map(C->comp_arena()) {
  90 
  91   _phantom_object = C->top()->_idx,
  92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  93 
  94   // Add ConP(#NULL) and ConN(#NULL) nodes.
  95   PhaseGVN* igvn = C->initial_gvn();
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   // compute max escape state of anything this node could point to
 211   VectorSet ptset(Thread::current()->resource_area());
 212   PointsTo(ptset, n, phase);
 213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 214     uint pt = i.elem;
 215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 216     if (pes > es)
 217       es = pes;
 218   }
 219   // cache the computed escape state
 220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 221   ptnode_adr(idx)->set_escape_state(es);
 222   return es;
 223 }
 224 
 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
 226   VectorSet visited(Thread::current()->resource_area());
 227   GrowableArray<uint>  worklist;
 228 
 229 #ifdef ASSERT
 230   Node *orig_n = n;
 231 #endif
 232 
 233   n = n->uncast();
 234   PointsToNode* npt = ptnode_adr(n->_idx);
 235 
 236   // If we have a JavaObject, return just that object
 237   if (npt->node_type() == PointsToNode::JavaObject) {
 238     ptset.set(n->_idx);
 239     return;
 240   }
 241 #ifdef ASSERT
 242   if (npt->_node == NULL) {
 243     if (orig_n != n)
 244       orig_n->dump();
 245     n->dump();
 246     assert(npt->_node != NULL, "unregistered node");
 247   }
 248 #endif
 249   worklist.push(n->_idx);
 250   while(worklist.length() > 0) {
 251     int ni = worklist.pop();
 252     if (visited.test_set(ni))
 253       continue;
 254 
 255     PointsToNode* pn = ptnode_adr(ni);
 256     // ensure that all inputs of a Phi have been processed
 257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 258 
 259     int edges_processed = 0;
 260     uint e_cnt = pn->edge_count();
 261     for (uint e = 0; e < e_cnt; e++) {
 262       uint etgt = pn->edge_target(e);
 263       PointsToNode::EdgeType et = pn->edge_type(e);
 264       if (et == PointsToNode::PointsToEdge) {
 265         ptset.set(etgt);
 266         edges_processed++;
 267       } else if (et == PointsToNode::DeferredEdge) {
 268         worklist.push(etgt);
 269         edges_processed++;
 270       } else {
 271         assert(false,"neither PointsToEdge or DeferredEdge");
 272       }
 273     }
 274     if (edges_processed == 0) {
 275       // no deferred or pointsto edges found.  Assume the value was set
 276       // outside this method.  Add the phantom object to the pointsto set.
 277       ptset.set(_phantom_object);
 278     }
 279   }
 280 }
 281 
 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 283   // This method is most expensive during ConnectionGraph construction.
 284   // Reuse vectorSet and an additional growable array for deferred edges.
 285   deferred_edges->clear();
 286   visited->Clear();
 287 
 288   visited->set(ni);
 289   PointsToNode *ptn = ptnode_adr(ni);
 290 
 291   // Mark current edges as visited and move deferred edges to separate array.
 292   for (uint i = 0; i < ptn->edge_count(); ) {
 293     uint t = ptn->edge_target(i);
 294 #ifdef ASSERT
 295     assert(!visited->test_set(t), "expecting no duplications");
 296 #else
 297     visited->set(t);
 298 #endif
 299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 301       deferred_edges->append(t);
 302     } else {
 303       i++;
 304     }
 305   }
 306   for (int next = 0; next < deferred_edges->length(); ++next) {
 307     uint t = deferred_edges->at(next);
 308     PointsToNode *ptt = ptnode_adr(t);
 309     uint e_cnt = ptt->edge_count();
 310     for (uint e = 0; e < e_cnt; e++) {
 311       uint etgt = ptt->edge_target(e);
 312       if (visited->test_set(etgt))
 313         continue;
 314 
 315       PointsToNode::EdgeType et = ptt->edge_type(e);
 316       if (et == PointsToNode::PointsToEdge) {
 317         add_pointsto_edge(ni, etgt);
 318         if(etgt == _phantom_object) {
 319           // Special case - field set outside (globally escaping).
 320           ptn->set_escape_state(PointsToNode::GlobalEscape);
 321         }
 322       } else if (et == PointsToNode::DeferredEdge) {
 323         deferred_edges->append(etgt);
 324       } else {
 325         assert(false,"invalid connection graph");
 326       }
 327     }
 328   }
 329 }
 330 
 331 
 332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 334 //  a pointsto edge is added if it is a JavaObject
 335 
 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 337   PointsToNode* an = ptnode_adr(adr_i);
 338   PointsToNode* to = ptnode_adr(to_i);
 339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 340 
 341   for (uint fe = 0; fe < an->edge_count(); fe++) {
 342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 343     int fi = an->edge_target(fe);
 344     PointsToNode* pf = ptnode_adr(fi);
 345     int po = pf->offset();
 346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 347       if (deferred)
 348         add_deferred_edge(fi, to_i);
 349       else
 350         add_pointsto_edge(fi, to_i);
 351     }
 352   }
 353 }
 354 
 355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 356 // whose offset matches "offset".
 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 358   PointsToNode* an = ptnode_adr(adr_i);
 359   for (uint fe = 0; fe < an->edge_count(); fe++) {
 360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 361     int fi = an->edge_target(fe);
 362     PointsToNode* pf = ptnode_adr(fi);
 363     int po = pf->offset();
 364     if (pf->edge_count() == 0) {
 365       // we have not seen any stores to this field, assume it was set outside this method
 366       add_pointsto_edge(fi, _phantom_object);
 367     }
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       add_deferred_edge(from_i, fi);
 370     }
 371   }
 372 }
 373 
 374 // Helper functions
 375 
 376 static Node* get_addp_base(Node *addp) {
 377   assert(addp->is_AddP(), "must be AddP");
 378   //
 379   // AddP cases for Base and Address inputs:
 380   // case #1. Direct object's field reference:
 381   //     Allocate
 382   //       |
 383   //     Proj #5 ( oop result )
 384   //       |
 385   //     CheckCastPP (cast to instance type)
 386   //      | |
 387   //     AddP  ( base == address )
 388   //
 389   // case #2. Indirect object's field reference:
 390   //      Phi
 391   //       |
 392   //     CastPP (cast to instance type)
 393   //      | |
 394   //     AddP  ( base == address )
 395   //
 396   // case #3. Raw object's field reference for Initialize node:
 397   //      Allocate
 398   //        |
 399   //      Proj #5 ( oop result )
 400   //  top   |
 401   //     \  |
 402   //     AddP  ( base == top )
 403   //
 404   // case #4. Array's element reference:
 405   //   {CheckCastPP | CastPP}
 406   //     |  | |
 407   //     |  AddP ( array's element offset )
 408   //     |  |
 409   //     AddP ( array's offset )
 410   //
 411   // case #5. Raw object's field reference for arraycopy stub call:
 412   //          The inline_native_clone() case when the arraycopy stub is called
 413   //          after the allocation before Initialize and CheckCastPP nodes.
 414   //      Allocate
 415   //        |
 416   //      Proj #5 ( oop result )
 417   //       | |
 418   //       AddP  ( base == address )
 419   //
 420   // case #6. Constant Pool, ThreadLocal, CastX2P or
 421   //          Raw object's field reference:
 422   //      {ConP, ThreadLocal, CastX2P, raw Load}
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #7. Klass's field reference.
 428   //      LoadKlass
 429   //       | |
 430   //       AddP  ( base == address )
 431   //
 432   // case #8. narrow Klass's field reference.
 433   //      LoadNKlass
 434   //       |
 435   //      DecodeN
 436   //       | |
 437   //       AddP  ( base == address )
 438   //
 439   Node *base = addp->in(AddPNode::Base)->uncast();
 440   if (base->is_top()) { // The AddP case #3 and #6.
 441     base = addp->in(AddPNode::Address)->uncast();
 442     while (base->is_AddP()) {
 443       // Case #6 (unsafe access) may have several chained AddP nodes.
 444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 445       base = base->in(AddPNode::Address)->uncast();
 446     }
 447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 451   }
 452   return base;
 453 }
 454 
 455 static Node* find_second_addp(Node* addp, Node* n) {
 456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 457 
 458   Node* addp2 = addp->raw_out(0);
 459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 460       addp2->in(AddPNode::Base) == n &&
 461       addp2->in(AddPNode::Address) == addp) {
 462 
 463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 464     //
 465     // Find array's offset to push it on worklist first and
 466     // as result process an array's element offset first (pushed second)
 467     // to avoid CastPP for the array's offset.
 468     // Otherwise the inserted CastPP (LocalVar) will point to what
 469     // the AddP (Field) points to. Which would be wrong since
 470     // the algorithm expects the CastPP has the same point as
 471     // as AddP's base CheckCastPP (LocalVar).
 472     //
 473     //    ArrayAllocation
 474     //     |
 475     //    CheckCastPP
 476     //     |
 477     //    memProj (from ArrayAllocation CheckCastPP)
 478     //     |  ||
 479     //     |  ||   Int (element index)
 480     //     |  ||    |   ConI (log(element size))
 481     //     |  ||    |   /
 482     //     |  ||   LShift
 483     //     |  ||  /
 484     //     |  AddP (array's element offset)
 485     //     |  |
 486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 487     //     | / /
 488     //     AddP (array's offset)
 489     //      |
 490     //     Load/Store (memory operation on array's element)
 491     //
 492     return addp2;
 493   }
 494   return NULL;
 495 }
 496 
 497 //
 498 // Adjust the type and inputs of an AddP which computes the
 499 // address of a field of an instance
 500 //
 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 505   if (t == NULL) {
 506     // We are computing a raw address for a store captured by an Initialize
 507     // compute an appropriate address type (cases #3 and #5).
 508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 511     assert(offs != Type::OffsetBot, "offset must be a constant");
 512     t = base_t->add_offset(offs)->is_oopptr();
 513   }
 514   int inst_id =  base_t->instance_id();
 515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 516                              "old type must be non-instance or match new type");
 517 
 518   // The type 't' could be subclass of 'base_t'.
 519   // As result t->offset() could be large then base_t's size and it will
 520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 521   // constructor verifies correctness of the offset.
 522   //
 523   // It could happened on subclass's branch (from the type profiling
 524   // inlining) which was not eliminated during parsing since the exactness
 525   // of the allocation type was not propagated to the subclass type check.
 526   //
 527   // Or the type 't' could be not related to 'base_t' at all.
 528   // It could happened when CHA type is different from MDO type on a dead path
 529   // (for example, from instanceof check) which is not collapsed during parsing.
 530   //
 531   // Do nothing for such AddP node and don't process its users since
 532   // this code branch will go away.
 533   //
 534   if (!t->is_known_instance() &&
 535       !base_t->klass()->is_subtype_of(t->klass())) {
 536      return false; // bail out
 537   }
 538 
 539   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 540   // Do NOT remove the next line: ensure a new alias index is allocated
 541   // for the instance type. Note: C++ will not remove it since the call
 542   // has side effect.
 543   int alias_idx = _compile->get_alias_index(tinst);
 544   igvn->set_type(addp, tinst);
 545   // record the allocation in the node map
 546   set_map(addp->_idx, get_map(base->_idx));
 547 
 548   // Set addp's Base and Address to 'base'.
 549   Node *abase = addp->in(AddPNode::Base);
 550   Node *adr   = addp->in(AddPNode::Address);
 551   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 552       adr->in(0)->_idx == (uint)inst_id) {
 553     // Skip AddP cases #3 and #5.
 554   } else {
 555     assert(!abase->is_top(), "sanity"); // AddP case #3
 556     if (abase != base) {
 557       igvn->hash_delete(addp);
 558       addp->set_req(AddPNode::Base, base);
 559       if (abase == adr) {
 560         addp->set_req(AddPNode::Address, base);
 561       } else {
 562         // AddP case #4 (adr is array's element offset AddP node)
 563 #ifdef ASSERT
 564         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 565         assert(adr->is_AddP() && atype != NULL &&
 566                atype->instance_id() == inst_id, "array's element offset should be processed first");
 567 #endif
 568       }
 569       igvn->hash_insert(addp);
 570     }
 571   }
 572   // Put on IGVN worklist since at least addp's type was changed above.
 573   record_for_optimizer(addp);
 574   return true;
 575 }
 576 
 577 //
 578 // Create a new version of orig_phi if necessary. Returns either the newly
 579 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 580 // phi was created.  Cache the last newly created phi in the node map.
 581 //
 582 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 583   Compile *C = _compile;
 584   new_created = false;
 585   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 586   // nothing to do if orig_phi is bottom memory or matches alias_idx
 587   if (phi_alias_idx == alias_idx) {
 588     return orig_phi;
 589   }
 590   // Have we recently created a Phi for this alias index?
 591   PhiNode *result = get_map_phi(orig_phi->_idx);
 592   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 593     return result;
 594   }
 595   // Previous check may fail when the same wide memory Phi was split into Phis
 596   // for different memory slices. Search all Phis for this region.
 597   if (result != NULL) {
 598     Node* region = orig_phi->in(0);
 599     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 600       Node* phi = region->fast_out(i);
 601       if (phi->is_Phi() &&
 602           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 603         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 604         return phi->as_Phi();
 605       }
 606     }
 607   }
 608   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 609     if (C->do_escape_analysis() == true && !C->failing()) {
 610       // Retry compilation without escape analysis.
 611       // If this is the first failure, the sentinel string will "stick"
 612       // to the Compile object, and the C2Compiler will see it and retry.
 613       C->record_failure(C2Compiler::retry_no_escape_analysis());
 614     }
 615     return NULL;
 616   }
 617   orig_phi_worklist.append_if_missing(orig_phi);
 618   const TypePtr *atype = C->get_adr_type(alias_idx);
 619   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 620   C->copy_node_notes_to(result, orig_phi);
 621   set_map_phi(orig_phi->_idx, result);
 622   igvn->set_type(result, result->bottom_type());
 623   record_for_optimizer(result);
 624   new_created = true;
 625   return result;
 626 }
 627 
 628 //
 629 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 630 // specified alias index.
 631 //
 632 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 633 
 634   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 635   Compile *C = _compile;
 636   bool new_phi_created;
 637   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 638   if (!new_phi_created) {
 639     return result;
 640   }
 641 
 642   GrowableArray<PhiNode *>  phi_list;
 643   GrowableArray<uint>  cur_input;
 644 
 645   PhiNode *phi = orig_phi;
 646   uint idx = 1;
 647   bool finished = false;
 648   while(!finished) {
 649     while (idx < phi->req()) {
 650       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 651       if (mem != NULL && mem->is_Phi()) {
 652         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 653         if (new_phi_created) {
 654           // found an phi for which we created a new split, push current one on worklist and begin
 655           // processing new one
 656           phi_list.push(phi);
 657           cur_input.push(idx);
 658           phi = mem->as_Phi();
 659           result = newphi;
 660           idx = 1;
 661           continue;
 662         } else {
 663           mem = newphi;
 664         }
 665       }
 666       if (C->failing()) {
 667         return NULL;
 668       }
 669       result->set_req(idx++, mem);
 670     }
 671 #ifdef ASSERT
 672     // verify that the new Phi has an input for each input of the original
 673     assert( phi->req() == result->req(), "must have same number of inputs.");
 674     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 675 #endif
 676     // Check if all new phi's inputs have specified alias index.
 677     // Otherwise use old phi.
 678     for (uint i = 1; i < phi->req(); i++) {
 679       Node* in = result->in(i);
 680       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 681     }
 682     // we have finished processing a Phi, see if there are any more to do
 683     finished = (phi_list.length() == 0 );
 684     if (!finished) {
 685       phi = phi_list.pop();
 686       idx = cur_input.pop();
 687       PhiNode *prev_result = get_map_phi(phi->_idx);
 688       prev_result->set_req(idx++, result);
 689       result = prev_result;
 690     }
 691   }
 692   return result;
 693 }
 694 
 695 
 696 //
 697 // The next methods are derived from methods in MemNode.
 698 //
 699 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
 700   Node *mem = mmem;
 701   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 702   // means an array I have not precisely typed yet.  Do not do any
 703   // alias stuff with it any time soon.
 704   if( tinst->base() != Type::AnyPtr &&
 705       !(tinst->klass()->is_java_lang_Object() &&
 706         tinst->offset() == Type::OffsetBot) ) {
 707     mem = mmem->memory_at(alias_idx);
 708     // Update input if it is progress over what we have now
 709   }
 710   return mem;
 711 }
 712 
 713 //
 714 // Search memory chain of "mem" to find a MemNode whose address
 715 // is the specified alias index.
 716 //
 717 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 718   if (orig_mem == NULL)
 719     return orig_mem;
 720   Compile* C = phase->C;
 721   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
 722   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
 723   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 724   Node *prev = NULL;
 725   Node *result = orig_mem;
 726   while (prev != result) {
 727     prev = result;
 728     if (result == start_mem)
 729       break;  // hit one of our sentinels
 730     if (result->is_Mem()) {
 731       const Type *at = phase->type(result->in(MemNode::Address));
 732       if (at != Type::TOP) {
 733         assert (at->isa_ptr() != NULL, "pointer type required.");
 734         int idx = C->get_alias_index(at->is_ptr());
 735         if (idx == alias_idx)
 736           break;
 737       }
 738       result = result->in(MemNode::Memory);
 739     }
 740     if (!is_instance)
 741       continue;  // don't search further for non-instance types
 742     // skip over a call which does not affect this memory slice
 743     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 744       Node *proj_in = result->in(0);
 745       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
 746         break;  // hit one of our sentinels
 747       } else if (proj_in->is_Call()) {
 748         CallNode *call = proj_in->as_Call();
 749         if (!call->may_modify(tinst, phase)) {
 750           result = call->in(TypeFunc::Memory);
 751         }
 752       } else if (proj_in->is_Initialize()) {
 753         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 754         // Stop if this is the initialization for the object instance which
 755         // which contains this memory slice, otherwise skip over it.
 756         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
 757           result = proj_in->in(TypeFunc::Memory);
 758         }
 759       } else if (proj_in->is_MemBar()) {
 760         result = proj_in->in(TypeFunc::Memory);
 761       }
 762     } else if (result->is_MergeMem()) {
 763       MergeMemNode *mmem = result->as_MergeMem();
 764       result = step_through_mergemem(mmem, alias_idx, tinst);
 765       if (result == mmem->base_memory()) {
 766         // Didn't find instance memory, search through general slice recursively.
 767         result = mmem->memory_at(C->get_general_index(alias_idx));
 768         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 769         if (C->failing()) {
 770           return NULL;
 771         }
 772         mmem->set_memory_at(alias_idx, result);
 773       }
 774     } else if (result->is_Phi() &&
 775                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 776       Node *un = result->as_Phi()->unique_input(phase);
 777       if (un != NULL) {
 778         result = un;
 779       } else {
 780         break;
 781       }
 782     } else if (result->Opcode() == Op_ClearArray) {
 783       // This node initializes new object storage to zero.
 784       intptr_t offset;
 785       AllocateNode* alloc = AllocateNode::Ideal_allocation(result->in(3), phase, offset);
 786       // Can not bypass initialization of the instance
 787       // we are looking for or when something is wrong.
 788       if (alloc == NULL || alloc->_idx == (uint)tinst->instance_id())
 789         break;
 790       // Otherwise skip it.
 791       InitializeNode* init = alloc->initialization();
 792       if (init != NULL)
 793         result = init->in(TypeFunc::Memory);
 794       else
 795         result = alloc->in(TypeFunc::Memory);
 796     } else if (result->Opcode() == Op_SCMemProj) {
 797       assert(result->in(0)->is_LoadStore(), "sanity");
 798       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 799       if (at != Type::TOP) {
 800         assert (at->isa_ptr() != NULL, "pointer type required.");
 801         int idx = C->get_alias_index(at->is_ptr());
 802         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 803         break;
 804       }
 805       result = result->in(0)->in(MemNode::Memory);
 806     }
 807   }
 808   if (result->is_Phi()) {
 809     PhiNode *mphi = result->as_Phi();
 810     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 811     const TypePtr *t = mphi->adr_type();
 812     if (C->get_alias_index(t) != alias_idx) {
 813       // Create a new Phi with the specified alias index type.
 814       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 815     } else if (!is_instance) {
 816       // Push all non-instance Phis on the orig_phis worklist to update inputs
 817       // during Phase 4 if needed.
 818       orig_phis.append_if_missing(mphi);
 819     }
 820   }
 821   // the result is either MemNode, PhiNode, InitializeNode.
 822   return result;
 823 }
 824 
 825 //
 826 //  Convert the types of unescaped object to instance types where possible,
 827 //  propagate the new type information through the graph, and update memory
 828 //  edges and MergeMem inputs to reflect the new type.
 829 //
 830 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 831 //  The processing is done in 4 phases:
 832 //
 833 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 834 //            types for the CheckCastPP for allocations where possible.
 835 //            Propagate the the new types through users as follows:
 836 //               casts and Phi:  push users on alloc_worklist
 837 //               AddP:  cast Base and Address inputs to the instance type
 838 //                      push any AddP users on alloc_worklist and push any memnode
 839 //                      users onto memnode_worklist.
 840 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 841 //            search the Memory chain for a store with the appropriate type
 842 //            address type.  If a Phi is found, create a new version with
 843 //            the appropriate memory slices from each of the Phi inputs.
 844 //            For stores, process the users as follows:
 845 //               MemNode:  push on memnode_worklist
 846 //               MergeMem: push on mergemem_worklist
 847 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 848 //            moving the first node encountered of each  instance type to the
 849 //            the input corresponding to its alias index.
 850 //            appropriate memory slice.
 851 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 852 //
 853 // In the following example, the CheckCastPP nodes are the cast of allocation
 854 // results and the allocation of node 29 is unescaped and eligible to be an
 855 // instance type.
 856 //
 857 // We start with:
 858 //
 859 //     7 Parm #memory
 860 //    10  ConI  "12"
 861 //    19  CheckCastPP   "Foo"
 862 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 863 //    29  CheckCastPP   "Foo"
 864 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 865 //
 866 //    40  StoreP  25   7  20   ... alias_index=4
 867 //    50  StoreP  35  40  30   ... alias_index=4
 868 //    60  StoreP  45  50  20   ... alias_index=4
 869 //    70  LoadP    _  60  30   ... alias_index=4
 870 //    80  Phi     75  50  60   Memory alias_index=4
 871 //    90  LoadP    _  80  30   ... alias_index=4
 872 //   100  LoadP    _  80  20   ... alias_index=4
 873 //
 874 //
 875 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 876 // and creating a new alias index for node 30.  This gives:
 877 //
 878 //     7 Parm #memory
 879 //    10  ConI  "12"
 880 //    19  CheckCastPP   "Foo"
 881 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 882 //    29  CheckCastPP   "Foo"  iid=24
 883 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 884 //
 885 //    40  StoreP  25   7  20   ... alias_index=4
 886 //    50  StoreP  35  40  30   ... alias_index=6
 887 //    60  StoreP  45  50  20   ... alias_index=4
 888 //    70  LoadP    _  60  30   ... alias_index=6
 889 //    80  Phi     75  50  60   Memory alias_index=4
 890 //    90  LoadP    _  80  30   ... alias_index=6
 891 //   100  LoadP    _  80  20   ... alias_index=4
 892 //
 893 // In phase 2, new memory inputs are computed for the loads and stores,
 894 // And a new version of the phi is created.  In phase 4, the inputs to
 895 // node 80 are updated and then the memory nodes are updated with the
 896 // values computed in phase 2.  This results in:
 897 //
 898 //     7 Parm #memory
 899 //    10  ConI  "12"
 900 //    19  CheckCastPP   "Foo"
 901 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 902 //    29  CheckCastPP   "Foo"  iid=24
 903 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 904 //
 905 //    40  StoreP  25  7   20   ... alias_index=4
 906 //    50  StoreP  35  7   30   ... alias_index=6
 907 //    60  StoreP  45  40  20   ... alias_index=4
 908 //    70  LoadP    _  50  30   ... alias_index=6
 909 //    80  Phi     75  40  60   Memory alias_index=4
 910 //   120  Phi     75  50  50   Memory alias_index=6
 911 //    90  LoadP    _ 120  30   ... alias_index=6
 912 //   100  LoadP    _  80  20   ... alias_index=4
 913 //
 914 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 915   GrowableArray<Node *>  memnode_worklist;
 916   GrowableArray<PhiNode *>  orig_phis;
 917   PhaseGVN  *igvn = _compile->initial_gvn();
 918   uint new_index_start = (uint) _compile->num_alias_types();
 919   VectorSet visited(Thread::current()->resource_area());
 920   VectorSet ptset(Thread::current()->resource_area());
 921 
 922 
 923   //  Phase 1:  Process possible allocations from alloc_worklist.
 924   //  Create instance types for the CheckCastPP for allocations where possible.
 925   //
 926   // (Note: don't forget to change the order of the second AddP node on
 927   //  the alloc_worklist if the order of the worklist processing is changed,
 928   //  see the comment in find_second_addp().)
 929   //
 930   while (alloc_worklist.length() != 0) {
 931     Node *n = alloc_worklist.pop();
 932     uint ni = n->_idx;
 933     const TypeOopPtr* tinst = NULL;
 934     if (n->is_Call()) {
 935       CallNode *alloc = n->as_Call();
 936       // copy escape information to call node
 937       PointsToNode* ptn = ptnode_adr(alloc->_idx);
 938       PointsToNode::EscapeState es = escape_state(alloc, igvn);
 939       // We have an allocation or call which returns a Java object,
 940       // see if it is unescaped.
 941       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
 942         continue;
 943 
 944       // Find CheckCastPP for the allocate or for the return value of a call
 945       n = alloc->result_cast();
 946       if (n == NULL) {            // No uses except Initialize node
 947         if (alloc->is_Allocate()) {
 948           // Set the scalar_replaceable flag for allocation
 949           // so it could be eliminated if it has no uses.
 950           alloc->as_Allocate()->_is_scalar_replaceable = true;
 951         }
 952         continue;
 953       }
 954       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
 955         assert(!alloc->is_Allocate(), "allocation should have unique type");
 956         continue;
 957       }
 958 
 959       // The inline code for Object.clone() casts the allocation result to
 960       // java.lang.Object and then to the actual type of the allocated
 961       // object. Detect this case and use the second cast.
 962       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
 963       // the allocation result is cast to java.lang.Object and then
 964       // to the actual Array type.
 965       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
 966           && (alloc->is_AllocateArray() ||
 967               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
 968         Node *cast2 = NULL;
 969         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 970           Node *use = n->fast_out(i);
 971           if (use->is_CheckCastPP()) {
 972             cast2 = use;
 973             break;
 974           }
 975         }
 976         if (cast2 != NULL) {
 977           n = cast2;
 978         } else {
 979           // Non-scalar replaceable if the allocation type is unknown statically
 980           // (reflection allocation), the object can't be restored during
 981           // deoptimization without precise type.
 982           continue;
 983         }
 984       }
 985       if (alloc->is_Allocate()) {
 986         // Set the scalar_replaceable flag for allocation
 987         // so it could be eliminated.
 988         alloc->as_Allocate()->_is_scalar_replaceable = true;
 989       }
 990       set_escape_state(n->_idx, es);
 991       // in order for an object to be scalar-replaceable, it must be:
 992       //   - a direct allocation (not a call returning an object)
 993       //   - non-escaping
 994       //   - eligible to be a unique type
 995       //   - not determined to be ineligible by escape analysis
 996       set_map(alloc->_idx, n);
 997       set_map(n->_idx, alloc);
 998       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
 999       if (t == NULL)
1000         continue;  // not a TypeInstPtr
1001       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1002       igvn->hash_delete(n);
1003       igvn->set_type(n,  tinst);
1004       n->raise_bottom_type(tinst);
1005       igvn->hash_insert(n);
1006       record_for_optimizer(n);
1007       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
1008           (t->isa_instptr() || t->isa_aryptr())) {
1009 
1010         // First, put on the worklist all Field edges from Connection Graph
1011         // which is more accurate then putting immediate users from Ideal Graph.
1012         for (uint e = 0; e < ptn->edge_count(); e++) {
1013           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1014           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1015                  "only AddP nodes are Field edges in CG");
1016           if (use->outcnt() > 0) { // Don't process dead nodes
1017             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1018             if (addp2 != NULL) {
1019               assert(alloc->is_AllocateArray(),"array allocation was expected");
1020               alloc_worklist.append_if_missing(addp2);
1021             }
1022             alloc_worklist.append_if_missing(use);
1023           }
1024         }
1025 
1026         // An allocation may have an Initialize which has raw stores. Scan
1027         // the users of the raw allocation result and push AddP users
1028         // on alloc_worklist.
1029         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1030         assert (raw_result != NULL, "must have an allocation result");
1031         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1032           Node *use = raw_result->fast_out(i);
1033           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1034             Node* addp2 = find_second_addp(use, raw_result);
1035             if (addp2 != NULL) {
1036               assert(alloc->is_AllocateArray(),"array allocation was expected");
1037               alloc_worklist.append_if_missing(addp2);
1038             }
1039             alloc_worklist.append_if_missing(use);
1040           } else if (use->is_MemBar()) {
1041             memnode_worklist.append_if_missing(use);
1042           }
1043         }
1044       }
1045     } else if (n->is_AddP()) {
1046       ptset.Clear();
1047       PointsTo(ptset, get_addp_base(n), igvn);
1048       assert(ptset.Size() == 1, "AddP address is unique");
1049       uint elem = ptset.getelem(); // Allocation node's index
1050       if (elem == _phantom_object)
1051         continue; // Assume the value was set outside this method.
1052       Node *base = get_map(elem);  // CheckCastPP node
1053       if (!split_AddP(n, base, igvn)) continue; // wrong type
1054       tinst = igvn->type(base)->isa_oopptr();
1055     } else if (n->is_Phi() ||
1056                n->is_CheckCastPP() ||
1057                n->is_EncodeP() ||
1058                n->is_DecodeN() ||
1059                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1060       if (visited.test_set(n->_idx)) {
1061         assert(n->is_Phi(), "loops only through Phi's");
1062         continue;  // already processed
1063       }
1064       ptset.Clear();
1065       PointsTo(ptset, n, igvn);
1066       if (ptset.Size() == 1) {
1067         uint elem = ptset.getelem(); // Allocation node's index
1068         if (elem == _phantom_object)
1069           continue; // Assume the value was set outside this method.
1070         Node *val = get_map(elem);   // CheckCastPP node
1071         TypeNode *tn = n->as_Type();
1072         tinst = igvn->type(val)->isa_oopptr();
1073         assert(tinst != NULL && tinst->is_known_instance() &&
1074                (uint)tinst->instance_id() == elem , "instance type expected.");
1075 
1076         const Type *tn_type = igvn->type(tn);
1077         const TypeOopPtr *tn_t;
1078         if (tn_type->isa_narrowoop()) {
1079           tn_t = tn_type->make_ptr()->isa_oopptr();
1080         } else {
1081           tn_t = tn_type->isa_oopptr();
1082         }
1083 
1084         if (tn_t != NULL &&
1085             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1086           if (tn_type->isa_narrowoop()) {
1087             tn_type = tinst->make_narrowoop();
1088           } else {
1089             tn_type = tinst;
1090           }
1091           igvn->hash_delete(tn);
1092           igvn->set_type(tn, tn_type);
1093           tn->set_type(tn_type);
1094           igvn->hash_insert(tn);
1095           record_for_optimizer(n);
1096         } else {
1097           continue; // wrong type
1098         }
1099       }
1100     } else {
1101       continue;
1102     }
1103     // push allocation's users on appropriate worklist
1104     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1105       Node *use = n->fast_out(i);
1106       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1107         memnode_worklist.append_if_missing(use);
1108       } else if (use->is_MemBar()) {
1109         memnode_worklist.append_if_missing(use);
1110 #ifdef ASSERT
1111       } else if (use->is_MergeMem()) {
1112         assert(_mergemem_worklist.contains(use->as_MergeMem()), "missing MergeMem node in the worklist");
1113 #endif
1114       } else if (use->is_SafePoint() && tinst != NULL) {
1115         // Look for MergeMem nodes for calls which reference unique allocation
1116         // (through CheckCastPP nodes) even for debug info.
1117         Node* m = use->in(TypeFunc::Memory);
1118         uint iid = tinst->instance_id();
1119         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1120                m->in(0) != use && !m->in(0)->_idx != iid) {
1121           m = m->in(0)->in(TypeFunc::Memory);
1122         }
1123 #ifdef ASSERT
1124         if (m->is_MergeMem()) {
1125           assert(_mergemem_worklist.contains(m->as_MergeMem()), "missing MergeMem node in the worklist");
1126         }
1127 #endif
1128       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1129         Node* addp2 = find_second_addp(use, n);
1130         if (addp2 != NULL) {
1131           alloc_worklist.append_if_missing(addp2);
1132         }
1133         alloc_worklist.append_if_missing(use);
1134       } else if (use->is_Phi() ||
1135                  use->is_CheckCastPP() ||
1136                  use->is_EncodeP() ||
1137                  use->is_DecodeN() ||
1138                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1139         alloc_worklist.append_if_missing(use);
1140       }
1141     }
1142 
1143   }
1144   // New alias types were created in split_AddP().
1145   uint new_index_end = (uint) _compile->num_alias_types();
1146 
1147   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1148   //            compute new values for Memory inputs  (the Memory inputs are not
1149   //            actually updated until phase 4.)
1150   if (memnode_worklist.length() == 0)
1151     return;  // nothing to do
1152 
1153   while (memnode_worklist.length() != 0) {
1154     Node *n = memnode_worklist.pop();
1155     if (visited.test_set(n->_idx))
1156       continue;
1157     if (n->is_Phi() || n->Opcode() == Op_ClearArray) {
1158       // we don't need to do anything, but the users must be pushed if we haven't processed
1159     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
1160       // we don't need to do anything, but the users of the memory projection must be pushed
1161       // especially MergeMem nodes to populate the instance memory slices
1162       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
1163       if (n == NULL)
1164         continue;
1165     } else {
1166       assert(n->is_Mem(), "memory node required.");
1167       Node *addr = n->in(MemNode::Address);
1168       assert(addr->is_AddP(), "AddP required");
1169       const Type *addr_t = igvn->type(addr);
1170       if (addr_t == Type::TOP)
1171         continue;
1172       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1173       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1174       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1175       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1176       if (_compile->failing()) {
1177         return;
1178       }
1179       if (mem != n->in(MemNode::Memory)) {
1180         set_map(n->_idx, mem);
1181         ptnode_adr(n->_idx)->_node = n;
1182       }
1183       if (n->is_Load()) {
1184         continue;  // don't push users
1185       } else if (n->is_LoadStore()) {
1186         // get the memory projection
1187         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1188           Node *use = n->fast_out(i);
1189           if (use->Opcode() == Op_SCMemProj) {
1190             n = use;
1191             break;
1192           }
1193         }
1194         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1195       }
1196     }
1197     // push user on appropriate worklist
1198     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1199       Node *use = n->fast_out(i);
1200       if (use->is_Phi() || use->Opcode() == Op_ClearArray) {
1201         memnode_worklist.append_if_missing(use);
1202       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1203         memnode_worklist.append_if_missing(use);
1204       } else if (use->is_MemBar()) {
1205         memnode_worklist.append_if_missing(use);
1206 #ifdef ASSERT
1207       } else if (use->is_MergeMem()) {
1208         assert(_mergemem_worklist.contains(use->as_MergeMem()), "missing MergeMem node in the worklist");
1209       } else {
1210         uint op = use->Opcode();
1211         if (!(op = Op_StoreCM || op == Op_AryEq || op == Op_StrComp ||
1212               op == Op_StrEquals || op == Op_StrIndexOf)) {
1213           n->dump();
1214           use->dump();
1215           assert(false, "EA missing memory path");
1216         }
1217 #endif
1218       }
1219     }
1220   }
1221 
1222   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1223   //            Walk each memory slice moving the first node encountered of each
1224   //            instance type to the the input corresponding to its alias index.
1225   uint length = _mergemem_worklist.length();
1226   for( uint next = 0; next < length; ++next ) {
1227     MergeMemNode* nmm = _mergemem_worklist.at(next);
1228     assert(!visited.test_set(nmm->_idx), "should not be visited before");
1229     // Note: we don't want to use MergeMemStream here because we only want to
1230     // scan inputs which exist at the start, not ones we add during processing.
1231     // Note 2: MergeMem may already contains instance memory slices added
1232     // during find_inst_mem() call when memory nodes were processed above.
1233     igvn->hash_delete(nmm);
1234     uint nslices = nmm->req();
1235     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1236       Node* mem = nmm->in(i);
1237       Node* cur = NULL;
1238       if (mem == NULL || mem->is_top())
1239         continue;
1240       while (mem->is_Mem()) {
1241         const Type *at = igvn->type(mem->in(MemNode::Address));
1242         if (at != Type::TOP) {
1243           assert (at->isa_ptr() != NULL, "pointer type required.");
1244           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1245           if (idx == i) {
1246             if (cur == NULL)
1247               cur = mem;
1248           } else {
1249             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1250               nmm->set_memory_at(idx, mem);
1251             }
1252           }
1253         }
1254         mem = mem->in(MemNode::Memory);
1255       }
1256       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1257       // Find any instance of the current type if we haven't encountered
1258       // a value of the instance along the chain.
1259       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1260         if((uint)_compile->get_general_index(ni) == i) {
1261           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1262           if (nmm->is_empty_memory(m)) {
1263             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1264             if (_compile->failing()) {
1265               return;
1266             }
1267             nmm->set_memory_at(ni, result);
1268           }
1269         }
1270       }
1271     }
1272     // Find the rest of instances values
1273     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1274       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
1275       Node* result = step_through_mergemem(nmm, ni, tinst);
1276       if (result == nmm->base_memory()) {
1277         // Didn't find instance memory, search through general slice recursively.
1278         result = nmm->memory_at(igvn->C->get_general_index(ni));
1279         result = find_inst_mem(result, ni, orig_phis, igvn);
1280         if (_compile->failing()) {
1281           return;
1282         }
1283         nmm->set_memory_at(ni, result);
1284       }
1285     }
1286     igvn->hash_insert(nmm);
1287     record_for_optimizer(nmm);
1288   }
1289 
1290   //  Phase 4:  Update the inputs of non-instance memory Phis and
1291   //            the Memory input of memnodes
1292   // First update the inputs of any non-instance Phi's from
1293   // which we split out an instance Phi.  Note we don't have
1294   // to recursively process Phi's encounted on the input memory
1295   // chains as is done in split_memory_phi() since they  will
1296   // also be processed here.
1297   for (int j = 0; j < orig_phis.length(); j++) {
1298     PhiNode *phi = orig_phis.at(j);
1299     int alias_idx = _compile->get_alias_index(phi->adr_type());
1300     igvn->hash_delete(phi);
1301     for (uint i = 1; i < phi->req(); i++) {
1302       Node *mem = phi->in(i);
1303       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1304       if (_compile->failing()) {
1305         return;
1306       }
1307       if (mem != new_mem) {
1308         phi->set_req(i, new_mem);
1309       }
1310     }
1311     igvn->hash_insert(phi);
1312     record_for_optimizer(phi);
1313   }
1314 
1315   // Update the memory inputs of MemNodes with the value we computed
1316   // in Phase 2.
1317   for (uint i = 0; i < nodes_size(); i++) {
1318     Node *nmem = get_map(i);
1319     if (nmem != NULL) {
1320       Node *n = ptnode_adr(i)->_node;
1321       if (n != NULL && n->is_Mem()) {
1322         igvn->hash_delete(n);
1323         n->set_req(MemNode::Memory, nmem);
1324         igvn->hash_insert(n);
1325         record_for_optimizer(n);
1326       }
1327     }
1328   }
1329 }
1330 
1331 bool ConnectionGraph::has_candidates(Compile *C) {
1332   // EA brings benefits only when the code has allocations and/or locks which
1333   // are represented by ideal Macro nodes.
1334   int cnt = C->macro_count();
1335   for( int i=0; i < cnt; i++ ) {
1336     Node *n = C->macro_node(i);
1337     if ( n->is_Allocate() )
1338       return true;
1339     if( n->is_Lock() ) {
1340       Node* obj = n->as_Lock()->obj_node()->uncast();
1341       if( !(obj->is_Parm() || obj->is_Con()) )
1342         return true;
1343     }
1344   }
1345   return false;
1346 }
1347 
1348 bool ConnectionGraph::compute_escape() {
1349   Compile* C = _compile;
1350 
1351   // 1. Populate Connection Graph (CG) with Ideal nodes.
1352 
1353   Unique_Node_List worklist_init;
1354   worklist_init.map(C->unique(), NULL);  // preallocate space
1355 
1356   // Initialize worklist
1357   if (C->root() != NULL) {
1358     worklist_init.push(C->root());
1359   }
1360 
1361   GrowableArray<int> cg_worklist;
1362   PhaseGVN* igvn = C->initial_gvn();
1363   bool has_allocations = false;
1364 
1365   // Push all useful nodes onto CG list and set their type.
1366   for( uint next = 0; next < worklist_init.size(); ++next ) {
1367     Node* n = worklist_init.at(next);
1368     record_for_escape_analysis(n, igvn);
1369     // Only allocations and java static calls results are checked
1370     // for an escape status. See process_call_result() below.
1371     if (n->is_Allocate() || n->is_CallStaticJava() &&
1372         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1373       has_allocations = true;
1374     }
1375     if(n->is_AddP()) {
1376       // Collect address nodes which directly reference an allocation.
1377       // Use them during stage 3 below to build initial connection graph
1378       // field edges. Other field edges could be added after StoreP/LoadP
1379       // nodes are processed during stage 4 below.
1380       Node* base = get_addp_base(n);
1381       if(base->is_Proj() && base->in(0)->is_Allocate()) {
1382         cg_worklist.append(n->_idx);
1383       }
1384     } else if (n->is_MergeMem()) {
1385       // Collect all MergeMem nodes to add memory slices for
1386       // scalar replaceable objects in split_unique_types().
1387       _mergemem_worklist.append(n->as_MergeMem());
1388     }
1389     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1390       Node* m = n->fast_out(i);   // Get user
1391       worklist_init.push(m);
1392     }
1393   }
1394 
1395   if (!has_allocations) {
1396     _collecting = false;
1397     return false; // Nothing to do.
1398   }
1399 
1400   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1401   uint delayed_size = _delayed_worklist.size();
1402   for( uint next = 0; next < delayed_size; ++next ) {
1403     Node* n = _delayed_worklist.at(next);
1404     build_connection_graph(n, igvn);
1405   }
1406 
1407   // 3. Pass to create fields edges (Allocate -F-> AddP).
1408   uint cg_length = cg_worklist.length();
1409   for( uint next = 0; next < cg_length; ++next ) {
1410     int ni = cg_worklist.at(next);
1411     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1412   }
1413 
1414   cg_worklist.clear();
1415   cg_worklist.append(_phantom_object);
1416 
1417   // 4. Build Connection Graph which need
1418   //    to walk the connection graph.
1419   for (uint ni = 0; ni < nodes_size(); ni++) {
1420     PointsToNode* ptn = ptnode_adr(ni);
1421     Node *n = ptn->_node;
1422     if (n != NULL) { // Call, AddP, LoadP, StoreP
1423       build_connection_graph(n, igvn);
1424       if (ptn->node_type() != PointsToNode::UnknownType)
1425         cg_worklist.append(n->_idx); // Collect CG nodes
1426     }
1427   }
1428 
1429   Arena* arena = Thread::current()->resource_area();
1430   VectorSet ptset(arena);
1431   GrowableArray<uint>  deferred_edges;
1432   VectorSet visited(arena);
1433 
1434   // 5. Remove deferred edges from the graph and adjust
1435   //    escape state of nonescaping objects.
1436   cg_length = cg_worklist.length();
1437   for( uint next = 0; next < cg_length; ++next ) {
1438     int ni = cg_worklist.at(next);
1439     PointsToNode* ptn = ptnode_adr(ni);
1440     PointsToNode::NodeType nt = ptn->node_type();
1441     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1442       remove_deferred(ni, &deferred_edges, &visited);
1443       Node *n = ptn->_node;
1444       if (n->is_AddP()) {
1445         // Search for objects which are not scalar replaceable
1446         // and adjust their escape state.
1447         verify_escape_state(ni, ptset, igvn);
1448       }
1449     }
1450   }
1451 
1452   // 6. Propagate escape states.
1453   GrowableArray<int>  worklist;
1454   bool has_non_escaping_obj = false;
1455 
1456   // push all GlobalEscape nodes on the worklist
1457   for( uint next = 0; next < cg_length; ++next ) {
1458     int nk = cg_worklist.at(next);
1459     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1460       worklist.push(nk);
1461   }
1462   // mark all nodes reachable from GlobalEscape nodes
1463   while(worklist.length() > 0) {
1464     PointsToNode* ptn = ptnode_adr(worklist.pop());
1465     uint e_cnt = ptn->edge_count();
1466     for (uint ei = 0; ei < e_cnt; ei++) {
1467       uint npi = ptn->edge_target(ei);
1468       PointsToNode *np = ptnode_adr(npi);
1469       if (np->escape_state() < PointsToNode::GlobalEscape) {
1470         np->set_escape_state(PointsToNode::GlobalEscape);
1471         worklist.push(npi);
1472       }
1473     }
1474   }
1475 
1476   // push all ArgEscape nodes on the worklist
1477   for( uint next = 0; next < cg_length; ++next ) {
1478     int nk = cg_worklist.at(next);
1479     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1480       worklist.push(nk);
1481   }
1482   // mark all nodes reachable from ArgEscape nodes
1483   while(worklist.length() > 0) {
1484     PointsToNode* ptn = ptnode_adr(worklist.pop());
1485     if (ptn->node_type() == PointsToNode::JavaObject)
1486       has_non_escaping_obj = true; // Non GlobalEscape
1487     uint e_cnt = ptn->edge_count();
1488     for (uint ei = 0; ei < e_cnt; ei++) {
1489       uint npi = ptn->edge_target(ei);
1490       PointsToNode *np = ptnode_adr(npi);
1491       if (np->escape_state() < PointsToNode::ArgEscape) {
1492         np->set_escape_state(PointsToNode::ArgEscape);
1493         worklist.push(npi);
1494       }
1495     }
1496   }
1497 
1498   GrowableArray<Node*> alloc_worklist;
1499 
1500   // push all NoEscape nodes on the worklist
1501   for( uint next = 0; next < cg_length; ++next ) {
1502     int nk = cg_worklist.at(next);
1503     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1504       worklist.push(nk);
1505   }
1506   // mark all nodes reachable from NoEscape nodes
1507   while(worklist.length() > 0) {
1508     PointsToNode* ptn = ptnode_adr(worklist.pop());
1509     if (ptn->node_type() == PointsToNode::JavaObject)
1510       has_non_escaping_obj = true; // Non GlobalEscape
1511     Node* n = ptn->_node;
1512     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1513       // Push scalar replaceable allocations on alloc_worklist
1514       // for processing in split_unique_types().
1515       alloc_worklist.append(n);
1516     }
1517     uint e_cnt = ptn->edge_count();
1518     for (uint ei = 0; ei < e_cnt; ei++) {
1519       uint npi = ptn->edge_target(ei);
1520       PointsToNode *np = ptnode_adr(npi);
1521       if (np->escape_state() < PointsToNode::NoEscape) {
1522         np->set_escape_state(PointsToNode::NoEscape);
1523         worklist.push(npi);
1524       }
1525     }
1526   }
1527 
1528   _collecting = false;
1529   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1530 
1531   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1532   if ( has_scalar_replaceable_candidates &&
1533        C->AliasLevel() >= 3 && EliminateAllocations ) {
1534 
1535     // Now use the escape information to create unique types for
1536     // scalar replaceable objects.
1537     split_unique_types(alloc_worklist);
1538 
1539     if (C->failing())  return false;
1540 
1541     // Clean up after split unique types.
1542     ResourceMark rm;
1543     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1544 
1545     C->print_method("After Escape Analysis", 2);
1546 
1547 #ifdef ASSERT
1548   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1549     tty->print("=== No allocations eliminated for ");
1550     C->method()->print_short_name();
1551     if(!EliminateAllocations) {
1552       tty->print(" since EliminateAllocations is off ===");
1553     } else if(!has_scalar_replaceable_candidates) {
1554       tty->print(" since there are no scalar replaceable candidates ===");
1555     } else if(C->AliasLevel() < 3) {
1556       tty->print(" since AliasLevel < 3 ===");
1557     }
1558     tty->cr();
1559 #endif
1560   }
1561   return has_non_escaping_obj;
1562 }
1563 
1564 // Search for objects which are not scalar replaceable.
1565 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
1566   PointsToNode* ptn = ptnode_adr(nidx);
1567   Node* n = ptn->_node;
1568   assert(n->is_AddP(), "Should be called for AddP nodes only");
1569   // Search for objects which are not scalar replaceable.
1570   // Mark their escape state as ArgEscape to propagate the state
1571   // to referenced objects.
1572   // Note: currently there are no difference in compiler optimizations
1573   // for ArgEscape objects and NoEscape objects which are not
1574   // scalar replaceable.
1575 
1576   Compile* C = _compile;
1577 
1578   int offset = ptn->offset();
1579   Node* base = get_addp_base(n);
1580   ptset.Clear();
1581   PointsTo(ptset, base, phase);
1582   int ptset_size = ptset.Size();
1583 
1584   // Check if a oop field's initializing value is recorded and add
1585   // a corresponding NULL field's value if it is not recorded.
1586   // Connection Graph does not record a default initialization by NULL
1587   // captured by Initialize node.
1588   //
1589   // Note: it will disable scalar replacement in some cases:
1590   //
1591   //    Point p[] = new Point[1];
1592   //    p[0] = new Point(); // Will be not scalar replaced
1593   //
1594   // but it will save us from incorrect optimizations in next cases:
1595   //
1596   //    Point p[] = new Point[1];
1597   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1598   //
1599   // Do a simple control flow analysis to distinguish above cases.
1600   //
1601   if (offset != Type::OffsetBot && ptset_size == 1) {
1602     uint elem = ptset.getelem(); // Allocation node's index
1603     // It does not matter if it is not Allocation node since
1604     // only non-escaping allocations are scalar replaced.
1605     if (ptnode_adr(elem)->_node->is_Allocate() &&
1606         ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1607       AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1608       InitializeNode* ini = alloc->initialization();
1609 
1610       // Check only oop fields.
1611       const Type* adr_type = n->as_AddP()->bottom_type();
1612       BasicType basic_field_type = T_INT;
1613       if (adr_type->isa_instptr()) {
1614         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
1615         if (field != NULL) {
1616           basic_field_type = field->layout_type();
1617         } else {
1618           // Ignore non field load (for example, klass load)
1619         }
1620       } else if (adr_type->isa_aryptr()) {
1621         const Type* elemtype = adr_type->isa_aryptr()->elem();
1622         basic_field_type = elemtype->array_element_basic_type();
1623       } else {
1624         // Raw pointers are used for initializing stores so skip it.
1625         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1626                (base->in(0) == alloc),"unexpected pointer type");
1627       }
1628       if (basic_field_type == T_OBJECT ||
1629           basic_field_type == T_NARROWOOP ||
1630           basic_field_type == T_ARRAY) {
1631         Node* value = NULL;
1632         if (ini != NULL) {
1633           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1634           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
1635           if (store != NULL && store->is_Store()) {
1636             value = store->in(MemNode::ValueIn);
1637           } else if (ptn->edge_count() > 0) { // Are there oop stores?
1638             // Check for a store which follows allocation without branches.
1639             // For example, a volatile field store is not collected
1640             // by Initialize node. TODO: it would be nice to use idom() here.
1641             for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1642               store = n->fast_out(i);
1643               if (store->is_Store() && store->in(0) != NULL) {
1644                 Node* ctrl = store->in(0);
1645                 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
1646                         ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
1647                         ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
1648                    ctrl = ctrl->in(0);
1649                 }
1650                 if (ctrl == ini || ctrl == alloc) {
1651                   value = store->in(MemNode::ValueIn);
1652                   break;
1653                 }
1654               }
1655             }
1656           }
1657         }
1658         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1659           // A field's initializing value was not recorded. Add NULL.
1660           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1661           add_pointsto_edge(nidx, null_idx);
1662         }
1663       }
1664     }
1665   }
1666 
1667   // An object is not scalar replaceable if the field which may point
1668   // to it has unknown offset (unknown element of an array of objects).
1669   //
1670   if (offset == Type::OffsetBot) {
1671     uint e_cnt = ptn->edge_count();
1672     for (uint ei = 0; ei < e_cnt; ei++) {
1673       uint npi = ptn->edge_target(ei);
1674       set_escape_state(npi, PointsToNode::ArgEscape);
1675       ptnode_adr(npi)->_scalar_replaceable = false;
1676     }
1677   }
1678 
1679   // Currently an object is not scalar replaceable if a LoadStore node
1680   // access its field since the field value is unknown after it.
1681   //
1682   bool has_LoadStore = false;
1683   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1684     Node *use = n->fast_out(i);
1685     if (use->is_LoadStore()) {
1686       has_LoadStore = true;
1687       break;
1688     }
1689   }
1690   // An object is not scalar replaceable if the address points
1691   // to unknown field (unknown element for arrays, offset is OffsetBot).
1692   //
1693   // Or the address may point to more then one object. This may produce
1694   // the false positive result (set scalar_replaceable to false)
1695   // since the flow-insensitive escape analysis can't separate
1696   // the case when stores overwrite the field's value from the case
1697   // when stores happened on different control branches.
1698   //
1699   if (ptset_size > 1 || ptset_size != 0 &&
1700       (has_LoadStore || offset == Type::OffsetBot)) {
1701     for( VectorSetI j(&ptset); j.test(); ++j ) {
1702       set_escape_state(j.elem, PointsToNode::ArgEscape);
1703       ptnode_adr(j.elem)->_scalar_replaceable = false;
1704     }
1705   }
1706 }
1707 
1708 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1709 
1710     switch (call->Opcode()) {
1711 #ifdef ASSERT
1712     case Op_Allocate:
1713     case Op_AllocateArray:
1714     case Op_Lock:
1715     case Op_Unlock:
1716       assert(false, "should be done already");
1717       break;
1718 #endif
1719     case Op_CallLeafNoFP:
1720     {
1721       // Stub calls, objects do not escape but they are not scale replaceable.
1722       // Adjust escape state for outgoing arguments.
1723       const TypeTuple * d = call->tf()->domain();
1724       VectorSet ptset(Thread::current()->resource_area());
1725       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1726         const Type* at = d->field_at(i);
1727         Node *arg = call->in(i)->uncast();
1728         const Type *aat = phase->type(arg);
1729         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1730           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1731                  aat->isa_ptr() != NULL, "expecting an Ptr");
1732           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1733           if (arg->is_AddP()) {
1734             //
1735             // The inline_native_clone() case when the arraycopy stub is called
1736             // after the allocation before Initialize and CheckCastPP nodes.
1737             //
1738             // Set AddP's base (Allocate) as not scalar replaceable since
1739             // pointer to the base (with offset) is passed as argument.
1740             //
1741             arg = get_addp_base(arg);
1742           }
1743           ptset.Clear();
1744           PointsTo(ptset, arg, phase);
1745           for( VectorSetI j(&ptset); j.test(); ++j ) {
1746             uint pt = j.elem;
1747             set_escape_state(pt, PointsToNode::ArgEscape);
1748           }
1749         }
1750       }
1751       break;
1752     }
1753 
1754     case Op_CallStaticJava:
1755     // For a static call, we know exactly what method is being called.
1756     // Use bytecode estimator to record the call's escape affects
1757     {
1758       ciMethod *meth = call->as_CallJava()->method();
1759       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1760       // fall-through if not a Java method or no analyzer information
1761       if (call_analyzer != NULL) {
1762         const TypeTuple * d = call->tf()->domain();
1763         VectorSet ptset(Thread::current()->resource_area());
1764         bool copy_dependencies = false;
1765         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1766           const Type* at = d->field_at(i);
1767           int k = i - TypeFunc::Parms;
1768 
1769           if (at->isa_oopptr() != NULL) {
1770             Node *arg = call->in(i)->uncast();
1771 
1772             bool global_escapes = false;
1773             bool fields_escapes = false;
1774             if (!call_analyzer->is_arg_stack(k)) {
1775               // The argument global escapes, mark everything it could point to
1776               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1777               global_escapes = true;
1778             } else {
1779               if (!call_analyzer->is_arg_local(k)) {
1780                 // The argument itself doesn't escape, but any fields might
1781                 fields_escapes = true;
1782               }
1783               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1784               copy_dependencies = true;
1785             }
1786 
1787             ptset.Clear();
1788             PointsTo(ptset, arg, phase);
1789             for( VectorSetI j(&ptset); j.test(); ++j ) {
1790               uint pt = j.elem;
1791               if (global_escapes) {
1792                 //The argument global escapes, mark everything it could point to
1793                 set_escape_state(pt, PointsToNode::GlobalEscape);
1794               } else {
1795                 if (fields_escapes) {
1796                   // The argument itself doesn't escape, but any fields might
1797                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1798                 }
1799                 set_escape_state(pt, PointsToNode::ArgEscape);
1800               }
1801             }
1802           }
1803         }
1804         if (copy_dependencies)
1805           call_analyzer->copy_dependencies(_compile->dependencies());
1806         break;
1807       }
1808     }
1809 
1810     default:
1811     // Fall-through here if not a Java method or no analyzer information
1812     // or some other type of call, assume the worst case: all arguments
1813     // globally escape.
1814     {
1815       // adjust escape state for  outgoing arguments
1816       const TypeTuple * d = call->tf()->domain();
1817       VectorSet ptset(Thread::current()->resource_area());
1818       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1819         const Type* at = d->field_at(i);
1820         if (at->isa_oopptr() != NULL) {
1821           Node *arg = call->in(i)->uncast();
1822           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1823           ptset.Clear();
1824           PointsTo(ptset, arg, phase);
1825           for( VectorSetI j(&ptset); j.test(); ++j ) {
1826             uint pt = j.elem;
1827             set_escape_state(pt, PointsToNode::GlobalEscape);
1828           }
1829         }
1830       }
1831     }
1832   }
1833 }
1834 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1835   CallNode   *call = resproj->in(0)->as_Call();
1836   uint    call_idx = call->_idx;
1837   uint resproj_idx = resproj->_idx;
1838 
1839   switch (call->Opcode()) {
1840     case Op_Allocate:
1841     {
1842       Node *k = call->in(AllocateNode::KlassNode);
1843       const TypeKlassPtr *kt;
1844       if (k->Opcode() == Op_LoadKlass) {
1845         kt = k->as_Load()->type()->isa_klassptr();
1846       } else {
1847         // Also works for DecodeN(LoadNKlass).
1848         kt = k->as_Type()->type()->isa_klassptr();
1849       }
1850       assert(kt != NULL, "TypeKlassPtr  required.");
1851       ciKlass* cik = kt->klass();
1852       ciInstanceKlass* ciik = cik->as_instance_klass();
1853 
1854       PointsToNode::EscapeState es;
1855       uint edge_to;
1856       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1857         es = PointsToNode::GlobalEscape;
1858         edge_to = _phantom_object; // Could not be worse
1859       } else {
1860         es = PointsToNode::NoEscape;
1861         edge_to = call_idx;
1862       }
1863       set_escape_state(call_idx, es);
1864       add_pointsto_edge(resproj_idx, edge_to);
1865       _processed.set(resproj_idx);
1866       break;
1867     }
1868 
1869     case Op_AllocateArray:
1870     {
1871       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1872       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1873         // Not scalar replaceable if the length is not constant or too big.
1874         ptnode_adr(call_idx)->_scalar_replaceable = false;
1875       }
1876       set_escape_state(call_idx, PointsToNode::NoEscape);
1877       add_pointsto_edge(resproj_idx, call_idx);
1878       _processed.set(resproj_idx);
1879       break;
1880     }
1881 
1882     case Op_CallStaticJava:
1883     // For a static call, we know exactly what method is being called.
1884     // Use bytecode estimator to record whether the call's return value escapes
1885     {
1886       bool done = true;
1887       const TypeTuple *r = call->tf()->range();
1888       const Type* ret_type = NULL;
1889 
1890       if (r->cnt() > TypeFunc::Parms)
1891         ret_type = r->field_at(TypeFunc::Parms);
1892 
1893       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1894       //        _multianewarray functions return a TypeRawPtr.
1895       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1896         _processed.set(resproj_idx);
1897         break;  // doesn't return a pointer type
1898       }
1899       ciMethod *meth = call->as_CallJava()->method();
1900       const TypeTuple * d = call->tf()->domain();
1901       if (meth == NULL) {
1902         // not a Java method, assume global escape
1903         set_escape_state(call_idx, PointsToNode::GlobalEscape);
1904         add_pointsto_edge(resproj_idx, _phantom_object);
1905       } else {
1906         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1907         bool copy_dependencies = false;
1908 
1909         if (call_analyzer->is_return_allocated()) {
1910           // Returns a newly allocated unescaped object, simply
1911           // update dependency information.
1912           // Mark it as NoEscape so that objects referenced by
1913           // it's fields will be marked as NoEscape at least.
1914           set_escape_state(call_idx, PointsToNode::NoEscape);
1915           add_pointsto_edge(resproj_idx, call_idx);
1916           copy_dependencies = true;
1917         } else if (call_analyzer->is_return_local()) {
1918           // determine whether any arguments are returned
1919           set_escape_state(call_idx, PointsToNode::NoEscape);
1920           bool ret_arg = false;
1921           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1922             const Type* at = d->field_at(i);
1923 
1924             if (at->isa_oopptr() != NULL) {
1925               Node *arg = call->in(i)->uncast();
1926 
1927               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1928                 ret_arg = true;
1929                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1930                 if (arg_esp->node_type() == PointsToNode::UnknownType)
1931                   done = false;
1932                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
1933                   add_pointsto_edge(resproj_idx, arg->_idx);
1934                 else
1935                   add_deferred_edge(resproj_idx, arg->_idx);
1936                 arg_esp->_hidden_alias = true;
1937               }
1938             }
1939           }
1940           if (done && !ret_arg) {
1941             // Returns unknown object.
1942             set_escape_state(call_idx, PointsToNode::GlobalEscape);
1943             add_pointsto_edge(resproj_idx, _phantom_object);
1944           }
1945           copy_dependencies = true;
1946         } else {
1947           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1948           add_pointsto_edge(resproj_idx, _phantom_object);
1949           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1950             const Type* at = d->field_at(i);
1951             if (at->isa_oopptr() != NULL) {
1952               Node *arg = call->in(i)->uncast();
1953               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1954               arg_esp->_hidden_alias = true;
1955             }
1956           }
1957         }
1958         if (copy_dependencies)
1959           call_analyzer->copy_dependencies(_compile->dependencies());
1960       }
1961       if (done)
1962         _processed.set(resproj_idx);
1963       break;
1964     }
1965 
1966     default:
1967     // Some other type of call, assume the worst case that the
1968     // returned value, if any, globally escapes.
1969     {
1970       const TypeTuple *r = call->tf()->range();
1971       if (r->cnt() > TypeFunc::Parms) {
1972         const Type* ret_type = r->field_at(TypeFunc::Parms);
1973 
1974         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1975         //        _multianewarray functions return a TypeRawPtr.
1976         if (ret_type->isa_ptr() != NULL) {
1977           set_escape_state(call_idx, PointsToNode::GlobalEscape);
1978           add_pointsto_edge(resproj_idx, _phantom_object);
1979         }
1980       }
1981       _processed.set(resproj_idx);
1982     }
1983   }
1984 }
1985 
1986 // Populate Connection Graph with Ideal nodes and create simple
1987 // connection graph edges (do not need to check the node_type of inputs
1988 // or to call PointsTo() to walk the connection graph).
1989 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
1990   if (_processed.test(n->_idx))
1991     return; // No need to redefine node's state.
1992 
1993   if (n->is_Call()) {
1994     // Arguments to allocation and locking don't escape.
1995     if (n->is_Allocate()) {
1996       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
1997       record_for_optimizer(n);
1998     } else if (n->is_Lock() || n->is_Unlock()) {
1999       // Put Lock and Unlock nodes on IGVN worklist to process them during
2000       // the first IGVN optimization when escape information is still available.
2001       record_for_optimizer(n);
2002       _processed.set(n->_idx);
2003     } else {
2004       // Don't mark as processed since call's arguments have to be processed.
2005       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2006       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
2007 
2008       // Check if a call returns an object.
2009       const TypeTuple *r = n->as_Call()->tf()->range();
2010       if (r->cnt() > TypeFunc::Parms &&
2011           r->field_at(TypeFunc::Parms)->isa_ptr() &&
2012           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2013         nt = PointsToNode::JavaObject;
2014         if (!n->is_CallStaticJava()) {
2015           // Since the called mathod is statically unknown assume
2016           // the worst case that the returned value globally escapes.
2017           es = PointsToNode::GlobalEscape;
2018         }
2019       }
2020       add_node(n, nt, es, false);
2021     }
2022     return;
2023   }
2024 
2025   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2026   // ThreadLocal has RawPrt type.
2027   switch (n->Opcode()) {
2028     case Op_AddP:
2029     {
2030       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2031       break;
2032     }
2033     case Op_CastX2P:
2034     { // "Unsafe" memory access.
2035       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2036       break;
2037     }
2038     case Op_CastPP:
2039     case Op_CheckCastPP:
2040     case Op_EncodeP:
2041     case Op_DecodeN:
2042     {
2043       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2044       int ti = n->in(1)->_idx;
2045       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2046       if (nt == PointsToNode::UnknownType) {
2047         _delayed_worklist.push(n); // Process it later.
2048         break;
2049       } else if (nt == PointsToNode::JavaObject) {
2050         add_pointsto_edge(n->_idx, ti);
2051       } else {
2052         add_deferred_edge(n->_idx, ti);
2053       }
2054       _processed.set(n->_idx);
2055       break;
2056     }
2057     case Op_ConP:
2058     {
2059       // assume all pointer constants globally escape except for null
2060       PointsToNode::EscapeState es;
2061       if (phase->type(n) == TypePtr::NULL_PTR)
2062         es = PointsToNode::NoEscape;
2063       else
2064         es = PointsToNode::GlobalEscape;
2065 
2066       add_node(n, PointsToNode::JavaObject, es, true);
2067       break;
2068     }
2069     case Op_ConN:
2070     {
2071       // assume all narrow oop constants globally escape except for null
2072       PointsToNode::EscapeState es;
2073       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2074         es = PointsToNode::NoEscape;
2075       else
2076         es = PointsToNode::GlobalEscape;
2077 
2078       add_node(n, PointsToNode::JavaObject, es, true);
2079       break;
2080     }
2081     case Op_CreateEx:
2082     {
2083       // assume that all exception objects globally escape
2084       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2085       break;
2086     }
2087     case Op_LoadKlass:
2088     case Op_LoadNKlass:
2089     {
2090       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2091       break;
2092     }
2093     case Op_LoadP:
2094     case Op_LoadN:
2095     {
2096       const Type *t = phase->type(n);
2097       if (t->make_ptr() == NULL) {
2098         _processed.set(n->_idx);
2099         return;
2100       }
2101       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2102       break;
2103     }
2104     case Op_Parm:
2105     {
2106       _processed.set(n->_idx); // No need to redefine it state.
2107       uint con = n->as_Proj()->_con;
2108       if (con < TypeFunc::Parms)
2109         return;
2110       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2111       if (t->isa_ptr() == NULL)
2112         return;
2113       // We have to assume all input parameters globally escape
2114       // (Note: passing 'false' since _processed is already set).
2115       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2116       break;
2117     }
2118     case Op_Phi:
2119     {
2120       const Type *t = n->as_Phi()->type();
2121       if (t->make_ptr() == NULL) {
2122         // nothing to do if not an oop or narrow oop
2123         _processed.set(n->_idx);
2124         return;
2125       }
2126       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2127       uint i;
2128       for (i = 1; i < n->req() ; i++) {
2129         Node* in = n->in(i);
2130         if (in == NULL)
2131           continue;  // ignore NULL
2132         in = in->uncast();
2133         if (in->is_top() || in == n)
2134           continue;  // ignore top or inputs which go back this node
2135         int ti = in->_idx;
2136         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2137         if (nt == PointsToNode::UnknownType) {
2138           break;
2139         } else if (nt == PointsToNode::JavaObject) {
2140           add_pointsto_edge(n->_idx, ti);
2141         } else {
2142           add_deferred_edge(n->_idx, ti);
2143         }
2144       }
2145       if (i >= n->req())
2146         _processed.set(n->_idx);
2147       else
2148         _delayed_worklist.push(n);
2149       break;
2150     }
2151     case Op_Proj:
2152     {
2153       // we are only interested in the oop result projection from a call
2154       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2155         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2156         assert(r->cnt() > TypeFunc::Parms, "sanity");
2157         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2158           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2159           int ti = n->in(0)->_idx;
2160           // The call may not be registered yet (since not all its inputs are registered)
2161           // if this is the projection from backbranch edge of Phi.
2162           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
2163             process_call_result(n->as_Proj(), phase);
2164           }
2165           if (!_processed.test(n->_idx)) {
2166             // The call's result may need to be processed later if the call
2167             // returns it's argument and the argument is not processed yet.
2168             _delayed_worklist.push(n);
2169           }
2170           break;
2171         }
2172       }
2173       _processed.set(n->_idx);
2174       break;
2175     }
2176     case Op_Return:
2177     {
2178       if( n->req() > TypeFunc::Parms &&
2179           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2180         // Treat Return value as LocalVar with GlobalEscape escape state.
2181         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2182         int ti = n->in(TypeFunc::Parms)->_idx;
2183         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2184         if (nt == PointsToNode::UnknownType) {
2185           _delayed_worklist.push(n); // Process it later.
2186           break;
2187         } else if (nt == PointsToNode::JavaObject) {
2188           add_pointsto_edge(n->_idx, ti);
2189         } else {
2190           add_deferred_edge(n->_idx, ti);
2191         }
2192       }
2193       _processed.set(n->_idx);
2194       break;
2195     }
2196     case Op_StoreP:
2197     case Op_StoreN:
2198     {
2199       const Type *adr_type = phase->type(n->in(MemNode::Address));
2200       adr_type = adr_type->make_ptr();
2201       if (adr_type->isa_oopptr()) {
2202         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2203       } else {
2204         Node* adr = n->in(MemNode::Address);
2205         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2206             adr->in(AddPNode::Address)->is_Proj() &&
2207             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2208           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2209           // We are computing a raw address for a store captured
2210           // by an Initialize compute an appropriate address type.
2211           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2212           assert(offs != Type::OffsetBot, "offset must be a constant");
2213         } else {
2214           _processed.set(n->_idx);
2215           return;
2216         }
2217       }
2218       break;
2219     }
2220     case Op_StorePConditional:
2221     case Op_CompareAndSwapP:
2222     case Op_CompareAndSwapN:
2223     {
2224       const Type *adr_type = phase->type(n->in(MemNode::Address));
2225       adr_type = adr_type->make_ptr();
2226       if (adr_type->isa_oopptr()) {
2227         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2228       } else {
2229         _processed.set(n->_idx);
2230         return;
2231       }
2232       break;
2233     }
2234     case Op_AryEq:
2235     case Op_StrComp:
2236     case Op_StrEquals:
2237     case Op_StrIndexOf:
2238     {
2239       // char[] arrays passed to string intrinsics are not scalar replaceable.
2240       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2241       break;
2242     }
2243     case Op_ThreadLocal:
2244     {
2245       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2246       break;
2247     }
2248     default:
2249       ;
2250       // nothing to do
2251   }
2252   return;
2253 }
2254 
2255 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2256   uint n_idx = n->_idx;
2257   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
2258 
2259   // Don't set processed bit for AddP, LoadP, StoreP since
2260   // they may need more then one pass to process.
2261   if (_processed.test(n_idx))
2262     return; // No need to redefine node's state.
2263 
2264   if (n->is_Call()) {
2265     CallNode *call = n->as_Call();
2266     process_call_arguments(call, phase);
2267     _processed.set(n_idx);
2268     return;
2269   }
2270 
2271   switch (n->Opcode()) {
2272     case Op_AddP:
2273     {
2274       Node *base = get_addp_base(n);
2275       // Create a field edge to this node from everything base could point to.
2276       VectorSet ptset(Thread::current()->resource_area());
2277       PointsTo(ptset, base, phase);
2278       for( VectorSetI i(&ptset); i.test(); ++i ) {
2279         uint pt = i.elem;
2280         add_field_edge(pt, n_idx, address_offset(n, phase));
2281       }
2282       break;
2283     }
2284     case Op_CastX2P:
2285     {
2286       assert(false, "Op_CastX2P");
2287       break;
2288     }
2289     case Op_CastPP:
2290     case Op_CheckCastPP:
2291     case Op_EncodeP:
2292     case Op_DecodeN:
2293     {
2294       int ti = n->in(1)->_idx;
2295       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
2296       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2297         add_pointsto_edge(n_idx, ti);
2298       } else {
2299         add_deferred_edge(n_idx, ti);
2300       }
2301       _processed.set(n_idx);
2302       break;
2303     }
2304     case Op_ConP:
2305     {
2306       assert(false, "Op_ConP");
2307       break;
2308     }
2309     case Op_ConN:
2310     {
2311       assert(false, "Op_ConN");
2312       break;
2313     }
2314     case Op_CreateEx:
2315     {
2316       assert(false, "Op_CreateEx");
2317       break;
2318     }
2319     case Op_LoadKlass:
2320     case Op_LoadNKlass:
2321     {
2322       assert(false, "Op_LoadKlass");
2323       break;
2324     }
2325     case Op_LoadP:
2326     case Op_LoadN:
2327     {
2328       const Type *t = phase->type(n);
2329 #ifdef ASSERT
2330       if (t->make_ptr() == NULL)
2331         assert(false, "Op_LoadP");
2332 #endif
2333 
2334       Node* adr = n->in(MemNode::Address)->uncast();
2335       Node* adr_base;
2336       if (adr->is_AddP()) {
2337         adr_base = get_addp_base(adr);
2338       } else {
2339         adr_base = adr;
2340       }
2341 
2342       // For everything "adr_base" could point to, create a deferred edge from
2343       // this node to each field with the same offset.
2344       VectorSet ptset(Thread::current()->resource_area());
2345       PointsTo(ptset, adr_base, phase);
2346       int offset = address_offset(adr, phase);
2347       for( VectorSetI i(&ptset); i.test(); ++i ) {
2348         uint pt = i.elem;
2349         add_deferred_edge_to_fields(n_idx, pt, offset);
2350       }
2351       break;
2352     }
2353     case Op_Parm:
2354     {
2355       assert(false, "Op_Parm");
2356       break;
2357     }
2358     case Op_Phi:
2359     {
2360 #ifdef ASSERT
2361       const Type *t = n->as_Phi()->type();
2362       if (t->make_ptr() == NULL)
2363         assert(false, "Op_Phi");
2364 #endif
2365       for (uint i = 1; i < n->req() ; i++) {
2366         Node* in = n->in(i);
2367         if (in == NULL)
2368           continue;  // ignore NULL
2369         in = in->uncast();
2370         if (in->is_top() || in == n)
2371           continue;  // ignore top or inputs which go back this node
2372         int ti = in->_idx;
2373         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2374         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2375         if (nt == PointsToNode::JavaObject) {
2376           add_pointsto_edge(n_idx, ti);
2377         } else {
2378           add_deferred_edge(n_idx, ti);
2379         }
2380       }
2381       _processed.set(n_idx);
2382       break;
2383     }
2384     case Op_Proj:
2385     {
2386       // we are only interested in the oop result projection from a call
2387       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2388         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
2389                "all nodes should be registered");
2390         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
2391         assert(r->cnt() > TypeFunc::Parms, "sanity");
2392         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2393           process_call_result(n->as_Proj(), phase);
2394           assert(_processed.test(n_idx), "all call results should be processed");
2395           break;
2396         }
2397       }
2398       assert(false, "Op_Proj");
2399       break;
2400     }
2401     case Op_Return:
2402     {
2403 #ifdef ASSERT
2404       if( n->req() <= TypeFunc::Parms ||
2405           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2406         assert(false, "Op_Return");
2407       }
2408 #endif
2409       int ti = n->in(TypeFunc::Parms)->_idx;
2410       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
2411       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2412         add_pointsto_edge(n_idx, ti);
2413       } else {
2414         add_deferred_edge(n_idx, ti);
2415       }
2416       _processed.set(n_idx);
2417       break;
2418     }
2419     case Op_StoreP:
2420     case Op_StoreN:
2421     case Op_StorePConditional:
2422     case Op_CompareAndSwapP:
2423     case Op_CompareAndSwapN:
2424     {
2425       Node *adr = n->in(MemNode::Address);
2426       const Type *adr_type = phase->type(adr)->make_ptr();
2427 #ifdef ASSERT
2428       if (!adr_type->isa_oopptr())
2429         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2430 #endif
2431 
2432       assert(adr->is_AddP(), "expecting an AddP");
2433       Node *adr_base = get_addp_base(adr);
2434       Node *val = n->in(MemNode::ValueIn)->uncast();
2435       // For everything "adr_base" could point to, create a deferred edge
2436       // to "val" from each field with the same offset.
2437       VectorSet ptset(Thread::current()->resource_area());
2438       PointsTo(ptset, adr_base, phase);
2439       for( VectorSetI i(&ptset); i.test(); ++i ) {
2440         uint pt = i.elem;
2441         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2442       }
2443       break;
2444     }
2445     case Op_AryEq:
2446     case Op_StrComp:
2447     case Op_StrEquals:
2448     case Op_StrIndexOf:
2449     {
2450       // char[] arrays passed to string intrinsic do not escape but
2451       // they are not scalar replaceable. Adjust escape state for them.
2452       // Start from in(2) edge since in(1) is memory edge.
2453       for (uint i = 2; i < n->req(); i++) {
2454         Node* adr = n->in(i)->uncast();
2455         const Type *at = phase->type(adr);
2456         if (!adr->is_top() && at->isa_ptr()) {
2457           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
2458                  at->isa_ptr() != NULL, "expecting an Ptr");
2459           if (adr->is_AddP()) {
2460             adr = get_addp_base(adr);
2461           }
2462           // Mark as ArgEscape everything "adr" could point to.
2463           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
2464         }
2465       }
2466       _processed.set(n_idx);
2467       break;
2468     }
2469     case Op_ThreadLocal:
2470     {
2471       assert(false, "Op_ThreadLocal");
2472       break;
2473     }
2474     default:
2475       // This method should be called only for EA specific nodes.
2476       ShouldNotReachHere();
2477   }
2478 }
2479 
2480 #ifndef PRODUCT
2481 void ConnectionGraph::dump() {
2482   PhaseGVN  *igvn = _compile->initial_gvn();
2483   bool first = true;
2484 
2485   uint size = nodes_size();
2486   for (uint ni = 0; ni < size; ni++) {
2487     PointsToNode *ptn = ptnode_adr(ni);
2488     PointsToNode::NodeType ptn_type = ptn->node_type();
2489 
2490     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2491       continue;
2492     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2493     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2494       if (first) {
2495         tty->cr();
2496         tty->print("======== Connection graph for ");
2497         _compile->method()->print_short_name();
2498         tty->cr();
2499         first = false;
2500       }
2501       tty->print("%6d ", ni);
2502       ptn->dump();
2503       // Print all locals which reference this allocation
2504       for (uint li = ni; li < size; li++) {
2505         PointsToNode *ptn_loc = ptnode_adr(li);
2506         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2507         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2508              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2509           ptnode_adr(li)->dump(false);
2510         }
2511       }
2512       if (Verbose) {
2513         // Print all fields which reference this allocation
2514         for (uint i = 0; i < ptn->edge_count(); i++) {
2515           uint ei = ptn->edge_target(i);
2516           ptnode_adr(ei)->dump(false);
2517         }
2518       }
2519       tty->cr();
2520     }
2521   }
2522 }
2523 #endif