1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_memnode.cpp.incl"
  31 
  32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  33 
  34 //=============================================================================
  35 uint MemNode::size_of() const { return sizeof(*this); }
  36 
  37 const TypePtr *MemNode::adr_type() const {
  38   Node* adr = in(Address);
  39   const TypePtr* cross_check = NULL;
  40   DEBUG_ONLY(cross_check = _adr_type);
  41   return calculate_adr_type(adr->bottom_type(), cross_check);
  42 }
  43 
  44 #ifndef PRODUCT
  45 void MemNode::dump_spec(outputStream *st) const {
  46   if (in(Address) == NULL)  return; // node is dead
  47 #ifndef ASSERT
  48   // fake the missing field
  49   const TypePtr* _adr_type = NULL;
  50   if (in(Address) != NULL)
  51     _adr_type = in(Address)->bottom_type()->isa_ptr();
  52 #endif
  53   dump_adr_type(this, _adr_type, st);
  54 
  55   Compile* C = Compile::current();
  56   if( C->alias_type(_adr_type)->is_volatile() )
  57     st->print(" Volatile!");
  58 }
  59 
  60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  61   st->print(" @");
  62   if (adr_type == NULL) {
  63     st->print("NULL");
  64   } else {
  65     adr_type->dump_on(st);
  66     Compile* C = Compile::current();
  67     Compile::AliasType* atp = NULL;
  68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  69     if (atp == NULL)
  70       st->print(", idx=?\?;");
  71     else if (atp->index() == Compile::AliasIdxBot)
  72       st->print(", idx=Bot;");
  73     else if (atp->index() == Compile::AliasIdxTop)
  74       st->print(", idx=Top;");
  75     else if (atp->index() == Compile::AliasIdxRaw)
  76       st->print(", idx=Raw;");
  77     else {
  78       ciField* field = atp->field();
  79       if (field) {
  80         st->print(", name=");
  81         field->print_name_on(st);
  82       }
  83       st->print(", idx=%d;", atp->index());
  84     }
  85   }
  86 }
  87 
  88 extern void print_alias_types();
  89 
  90 #endif
  91 
  92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
  93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
  94   if (tinst == NULL || !tinst->is_known_instance_field())
  95     return mchain;  // don't try to optimize non-instance types
  96   uint instance_id = tinst->instance_id();
  97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
  98   Node *prev = NULL;
  99   Node *result = mchain;
 100   while (prev != result) {
 101     prev = result;
 102     if (result == start_mem)
 103       break;  // hit one of our sentinels
 104     // skip over a call which does not affect this memory slice
 105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 106       Node *proj_in = result->in(0);
 107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 108         break;  // hit one of our sentinels
 109       } else if (proj_in->is_Call()) {
 110         CallNode *call = proj_in->as_Call();
 111         if (!call->may_modify(t_adr, phase)) {
 112           result = call->in(TypeFunc::Memory);
 113         }
 114       } else if (proj_in->is_Initialize()) {
 115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 116         // Stop if this is the initialization for the object instance which
 117         // which contains this memory slice, otherwise skip over it.
 118         if (alloc != NULL && alloc->_idx != instance_id) {
 119           result = proj_in->in(TypeFunc::Memory);
 120         }
 121       } else if (proj_in->is_MemBar()) {
 122         result = proj_in->in(TypeFunc::Memory);
 123       } else {
 124         assert(false, "unexpected projection");
 125       }
 126     } else if (result->is_MergeMem()) {
 127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 128     }
 129   }
 130   return result;
 131 }
 132 
 133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 136   PhaseIterGVN *igvn = phase->is_IterGVN();
 137   Node *result = mchain;
 138   result = optimize_simple_memory_chain(result, t_adr, phase);
 139   if (is_instance && igvn != NULL  && result->is_Phi()) {
 140     PhiNode *mphi = result->as_Phi();
 141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 142     const TypePtr *t = mphi->adr_type();
 143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 145         t->is_oopptr()->cast_to_exactness(true)
 146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 148       // clone the Phi with our address type
 149       result = mphi->split_out_instance(t_adr, igvn);
 150     } else {
 151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 152     }
 153   }
 154   return result;
 155 }
 156 
 157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 158   uint alias_idx = phase->C->get_alias_index(tp);
 159   Node *mem = mmem;
 160 #ifdef ASSERT
 161   {
 162     // Check that current type is consistent with the alias index used during graph construction
 163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 164     bool consistent =  adr_check == NULL || adr_check->empty() ||
 165                        phase->C->must_alias(adr_check, alias_idx );
 166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 173       // don't assert if it is dead code.
 174       consistent = true;
 175     }
 176     if( !consistent ) {
 177       st->print("alias_idx==%d, adr_check==", alias_idx);
 178       if( adr_check == NULL ) {
 179         st->print("NULL");
 180       } else {
 181         adr_check->dump();
 182       }
 183       st->cr();
 184       print_alias_types();
 185       assert(consistent, "adr_check must match alias idx");
 186     }
 187   }
 188 #endif
 189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 190   // means an array I have not precisely typed yet.  Do not do any
 191   // alias stuff with it any time soon.
 192   const TypeOopPtr *tinst = tp->isa_oopptr();
 193   if( tp->base() != Type::AnyPtr &&
 194       !(tinst &&
 195         tinst->klass()->is_java_lang_Object() &&
 196         tinst->offset() == Type::OffsetBot) ) {
 197     // compress paths and change unreachable cycles to TOP
 198     // If not, we can update the input infinitely along a MergeMem cycle
 199     // Equivalent code in PhiNode::Ideal
 200     Node* m  = phase->transform(mmem);
 201     // If transformed to a MergeMem, get the desired slice
 202     // Otherwise the returned node represents memory for every slice
 203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 204     // Update input if it is progress over what we have now
 205   }
 206   return mem;
 207 }
 208 
 209 //--------------------------Ideal_common---------------------------------------
 210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 211 // Unhook non-raw memories from complete (macro-expanded) initializations.
 212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 213   // If our control input is a dead region, kill all below the region
 214   Node *ctl = in(MemNode::Control);
 215   if (ctl && remove_dead_region(phase, can_reshape))
 216     return this;
 217   ctl = in(MemNode::Control);
 218   // Don't bother trying to transform a dead node
 219   if( ctl && ctl->is_top() )  return NodeSentinel;
 220 
 221   PhaseIterGVN *igvn = phase->is_IterGVN();
 222   // Wait if control on the worklist.
 223   if (ctl && can_reshape && igvn != NULL) {
 224     Node* bol = NULL;
 225     Node* cmp = NULL;
 226     if (ctl->in(0)->is_If()) {
 227       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 228       bol = ctl->in(0)->in(1);
 229       if (bol->is_Bool())
 230         cmp = ctl->in(0)->in(1)->in(1);
 231     }
 232     if (igvn->_worklist.member(ctl) ||
 233         (bol != NULL && igvn->_worklist.member(bol)) ||
 234         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 235       // This control path may be dead.
 236       // Delay this memory node transformation until the control is processed.
 237       phase->is_IterGVN()->_worklist.push(this);
 238       return NodeSentinel; // caller will return NULL
 239     }
 240   }
 241   // Ignore if memory is dead, or self-loop
 242   Node *mem = in(MemNode::Memory);
 243   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 244   assert( mem != this, "dead loop in MemNode::Ideal" );
 245 
 246   Node *address = in(MemNode::Address);
 247   const Type *t_adr = phase->type( address );
 248   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 249 
 250   if( can_reshape && igvn != NULL &&
 251       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
 252     // The address's base and type may change when the address is processed.
 253     // Delay this mem node transformation until the address is processed.
 254     phase->is_IterGVN()->_worklist.push(this);
 255     return NodeSentinel; // caller will return NULL
 256   }
 257 
 258   // Do NOT remove or optimize the next lines: ensure a new alias index
 259   // is allocated for an oop pointer type before Escape Analysis.
 260   // Note: C++ will not remove it since the call has side effect.
 261   if ( t_adr->isa_oopptr() ) {
 262     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 263   }
 264 
 265 #ifdef ASSERT
 266   Node* base = NULL;
 267   if (address->is_AddP())
 268     base = address->in(AddPNode::Base);
 269   assert(base == NULL || t_adr->isa_rawptr() ||
 270         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 271 #endif
 272 
 273   // Avoid independent memory operations
 274   Node* old_mem = mem;
 275 
 276   // The code which unhooks non-raw memories from complete (macro-expanded)
 277   // initializations was removed. After macro-expansion all stores catched
 278   // by Initialize node became raw stores and there is no information
 279   // which memory slices they modify. So it is unsafe to move any memory
 280   // operation above these stores. Also in most cases hooked non-raw memories
 281   // were already unhooked by using information from detect_ptr_independence()
 282   // and find_previous_store().
 283 
 284   if (mem->is_MergeMem()) {
 285     MergeMemNode* mmem = mem->as_MergeMem();
 286     const TypePtr *tp = t_adr->is_ptr();
 287 
 288     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 289   }
 290 
 291   if (mem != old_mem) {
 292     set_req(MemNode::Memory, mem);
 293     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 294     return this;
 295   }
 296 
 297   // let the subclass continue analyzing...
 298   return NULL;
 299 }
 300 
 301 // Helper function for proving some simple control dominations.
 302 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 303 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 304 // is not a constant (dominated by the method's StartNode).
 305 // Used by MemNode::find_previous_store to prove that the
 306 // control input of a memory operation predates (dominates)
 307 // an allocation it wants to look past.
 308 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 309   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 310     return false; // Conservative answer for dead code
 311 
 312   // Check 'dom'. Skip Proj and CatchProj nodes.
 313   dom = dom->find_exact_control(dom);
 314   if (dom == NULL || dom->is_top())
 315     return false; // Conservative answer for dead code
 316 
 317   if (dom == sub) {
 318     // For the case when, for example, 'sub' is Initialize and the original
 319     // 'dom' is Proj node of the 'sub'.
 320     return false;
 321   }
 322 
 323   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 324     return true;
 325 
 326   // 'dom' dominates 'sub' if its control edge and control edges
 327   // of all its inputs dominate or equal to sub's control edge.
 328 
 329   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 330   // Or Region for the check in LoadNode::Ideal();
 331   // 'sub' should have sub->in(0) != NULL.
 332   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 333          sub->is_Region(), "expecting only these nodes");
 334 
 335   // Get control edge of 'sub'.
 336   Node* orig_sub = sub;
 337   sub = sub->find_exact_control(sub->in(0));
 338   if (sub == NULL || sub->is_top())
 339     return false; // Conservative answer for dead code
 340 
 341   assert(sub->is_CFG(), "expecting control");
 342 
 343   if (sub == dom)
 344     return true;
 345 
 346   if (sub->is_Start() || sub->is_Root())
 347     return false;
 348 
 349   {
 350     // Check all control edges of 'dom'.
 351 
 352     ResourceMark rm;
 353     Arena* arena = Thread::current()->resource_area();
 354     Node_List nlist(arena);
 355     Unique_Node_List dom_list(arena);
 356 
 357     dom_list.push(dom);
 358     bool only_dominating_controls = false;
 359 
 360     for (uint next = 0; next < dom_list.size(); next++) {
 361       Node* n = dom_list.at(next);
 362       if (n == orig_sub)
 363         return false; // One of dom's inputs dominated by sub.
 364       if (!n->is_CFG() && n->pinned()) {
 365         // Check only own control edge for pinned non-control nodes.
 366         n = n->find_exact_control(n->in(0));
 367         if (n == NULL || n->is_top())
 368           return false; // Conservative answer for dead code
 369         assert(n->is_CFG(), "expecting control");
 370         dom_list.push(n);
 371       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 372         only_dominating_controls = true;
 373       } else if (n->is_CFG()) {
 374         if (n->dominates(sub, nlist))
 375           only_dominating_controls = true;
 376         else
 377           return false;
 378       } else {
 379         // First, own control edge.
 380         Node* m = n->find_exact_control(n->in(0));
 381         if (m != NULL) {
 382           if (m->is_top())
 383             return false; // Conservative answer for dead code
 384           dom_list.push(m);
 385         }
 386         // Now, the rest of edges.
 387         uint cnt = n->req();
 388         for (uint i = 1; i < cnt; i++) {
 389           m = n->find_exact_control(n->in(i));
 390           if (m == NULL || m->is_top())
 391             continue;
 392           dom_list.push(m);
 393         }
 394       }
 395     }
 396     return only_dominating_controls;
 397   }
 398 }
 399 
 400 //---------------------detect_ptr_independence---------------------------------
 401 // Used by MemNode::find_previous_store to prove that two base
 402 // pointers are never equal.
 403 // The pointers are accompanied by their associated allocations,
 404 // if any, which have been previously discovered by the caller.
 405 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 406                                       Node* p2, AllocateNode* a2,
 407                                       PhaseTransform* phase) {
 408   // Attempt to prove that these two pointers cannot be aliased.
 409   // They may both manifestly be allocations, and they should differ.
 410   // Or, if they are not both allocations, they can be distinct constants.
 411   // Otherwise, one is an allocation and the other a pre-existing value.
 412   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 413     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 414   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 415     return (a1 != a2);
 416   } else if (a1 != NULL) {                  // one allocation a1
 417     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 418     return all_controls_dominate(p2, a1);
 419   } else { //(a2 != NULL)                   // one allocation a2
 420     return all_controls_dominate(p1, a2);
 421   }
 422   return false;
 423 }
 424 
 425 
 426 // The logic for reordering loads and stores uses four steps:
 427 // (a) Walk carefully past stores and initializations which we
 428 //     can prove are independent of this load.
 429 // (b) Observe that the next memory state makes an exact match
 430 //     with self (load or store), and locate the relevant store.
 431 // (c) Ensure that, if we were to wire self directly to the store,
 432 //     the optimizer would fold it up somehow.
 433 // (d) Do the rewiring, and return, depending on some other part of
 434 //     the optimizer to fold up the load.
 435 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 436 // specific to loads and stores, so they are handled by the callers.
 437 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 438 //
 439 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 440   Node*         ctrl   = in(MemNode::Control);
 441   Node*         adr    = in(MemNode::Address);
 442   intptr_t      offset = 0;
 443   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 444   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 445 
 446   if (offset == Type::OffsetBot)
 447     return NULL;            // cannot unalias unless there are precise offsets
 448 
 449   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 450 
 451   intptr_t size_in_bytes = memory_size();
 452 
 453   Node* mem = in(MemNode::Memory);   // start searching here...
 454 
 455   int cnt = 50;             // Cycle limiter
 456   for (;;) {                // While we can dance past unrelated stores...
 457     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 458 
 459     if (mem->is_Store()) {
 460       Node* st_adr = mem->in(MemNode::Address);
 461       intptr_t st_offset = 0;
 462       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 463       if (st_base == NULL)
 464         break;              // inscrutable pointer
 465       if (st_offset != offset && st_offset != Type::OffsetBot) {
 466         const int MAX_STORE = BytesPerLong;
 467         if (st_offset >= offset + size_in_bytes ||
 468             st_offset <= offset - MAX_STORE ||
 469             st_offset <= offset - mem->as_Store()->memory_size()) {
 470           // Success:  The offsets are provably independent.
 471           // (You may ask, why not just test st_offset != offset and be done?
 472           // The answer is that stores of different sizes can co-exist
 473           // in the same sequence of RawMem effects.  We sometimes initialize
 474           // a whole 'tile' of array elements with a single jint or jlong.)
 475           mem = mem->in(MemNode::Memory);
 476           continue;           // (a) advance through independent store memory
 477         }
 478       }
 479       if (st_base != base &&
 480           detect_ptr_independence(base, alloc,
 481                                   st_base,
 482                                   AllocateNode::Ideal_allocation(st_base, phase),
 483                                   phase)) {
 484         // Success:  The bases are provably independent.
 485         mem = mem->in(MemNode::Memory);
 486         continue;           // (a) advance through independent store memory
 487       }
 488 
 489       // (b) At this point, if the bases or offsets do not agree, we lose,
 490       // since we have not managed to prove 'this' and 'mem' independent.
 491       if (st_base == base && st_offset == offset) {
 492         return mem;         // let caller handle steps (c), (d)
 493       }
 494 
 495     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 496       InitializeNode* st_init = mem->in(0)->as_Initialize();
 497       AllocateNode*  st_alloc = st_init->allocation();
 498       if (st_alloc == NULL)
 499         break;              // something degenerated
 500       bool known_identical = false;
 501       bool known_independent = false;
 502       if (alloc == st_alloc)
 503         known_identical = true;
 504       else if (alloc != NULL)
 505         known_independent = true;
 506       else if (all_controls_dominate(this, st_alloc))
 507         known_independent = true;
 508 
 509       if (known_independent) {
 510         // The bases are provably independent: Either they are
 511         // manifestly distinct allocations, or else the control
 512         // of this load dominates the store's allocation.
 513         int alias_idx = phase->C->get_alias_index(adr_type());
 514         if (alias_idx == Compile::AliasIdxRaw) {
 515           mem = st_alloc->in(TypeFunc::Memory);
 516         } else {
 517           mem = st_init->memory(alias_idx);
 518         }
 519         continue;           // (a) advance through independent store memory
 520       }
 521 
 522       // (b) at this point, if we are not looking at a store initializing
 523       // the same allocation we are loading from, we lose.
 524       if (known_identical) {
 525         // From caller, can_see_stored_value will consult find_captured_store.
 526         return mem;         // let caller handle steps (c), (d)
 527       }
 528 
 529     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 530       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 531       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 532         CallNode *call = mem->in(0)->as_Call();
 533         if (!call->may_modify(addr_t, phase)) {
 534           mem = call->in(TypeFunc::Memory);
 535           continue;         // (a) advance through independent call memory
 536         }
 537       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 538         mem = mem->in(0)->in(TypeFunc::Memory);
 539         continue;           // (a) advance through independent MemBar memory
 540       } else if (mem->is_MergeMem()) {
 541         int alias_idx = phase->C->get_alias_index(adr_type());
 542         mem = mem->as_MergeMem()->memory_at(alias_idx);
 543         continue;           // (a) advance through independent MergeMem memory
 544       }
 545     }
 546 
 547     // Unless there is an explicit 'continue', we must bail out here,
 548     // because 'mem' is an inscrutable memory state (e.g., a call).
 549     break;
 550   }
 551 
 552   return NULL;              // bail out
 553 }
 554 
 555 //----------------------calculate_adr_type-------------------------------------
 556 // Helper function.  Notices when the given type of address hits top or bottom.
 557 // Also, asserts a cross-check of the type against the expected address type.
 558 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 559   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 560   #ifdef PRODUCT
 561   cross_check = NULL;
 562   #else
 563   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 564   #endif
 565   const TypePtr* tp = t->isa_ptr();
 566   if (tp == NULL) {
 567     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 568     return TypePtr::BOTTOM;           // touches lots of memory
 569   } else {
 570     #ifdef ASSERT
 571     // %%%% [phh] We don't check the alias index if cross_check is
 572     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 573     if (cross_check != NULL &&
 574         cross_check != TypePtr::BOTTOM &&
 575         cross_check != TypeRawPtr::BOTTOM) {
 576       // Recheck the alias index, to see if it has changed (due to a bug).
 577       Compile* C = Compile::current();
 578       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 579              "must stay in the original alias category");
 580       // The type of the address must be contained in the adr_type,
 581       // disregarding "null"-ness.
 582       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 583       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 584       assert(cross_check->meet(tp_notnull) == cross_check,
 585              "real address must not escape from expected memory type");
 586     }
 587     #endif
 588     return tp;
 589   }
 590 }
 591 
 592 //------------------------adr_phi_is_loop_invariant----------------------------
 593 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 594 // loop is loop invariant. Make a quick traversal of Phi and associated
 595 // CastPP nodes, looking to see if they are a closed group within the loop.
 596 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 597   // The idea is that the phi-nest must boil down to only CastPP nodes
 598   // with the same data. This implies that any path into the loop already
 599   // includes such a CastPP, and so the original cast, whatever its input,
 600   // must be covered by an equivalent cast, with an earlier control input.
 601   ResourceMark rm;
 602 
 603   // The loop entry input of the phi should be the unique dominating
 604   // node for every Phi/CastPP in the loop.
 605   Unique_Node_List closure;
 606   closure.push(adr_phi->in(LoopNode::EntryControl));
 607 
 608   // Add the phi node and the cast to the worklist.
 609   Unique_Node_List worklist;
 610   worklist.push(adr_phi);
 611   if( cast != NULL ){
 612     if( !cast->is_ConstraintCast() ) return false;
 613     worklist.push(cast);
 614   }
 615 
 616   // Begin recursive walk of phi nodes.
 617   while( worklist.size() ){
 618     // Take a node off the worklist
 619     Node *n = worklist.pop();
 620     if( !closure.member(n) ){
 621       // Add it to the closure.
 622       closure.push(n);
 623       // Make a sanity check to ensure we don't waste too much time here.
 624       if( closure.size() > 20) return false;
 625       // This node is OK if:
 626       //  - it is a cast of an identical value
 627       //  - or it is a phi node (then we add its inputs to the worklist)
 628       // Otherwise, the node is not OK, and we presume the cast is not invariant
 629       if( n->is_ConstraintCast() ){
 630         worklist.push(n->in(1));
 631       } else if( n->is_Phi() ) {
 632         for( uint i = 1; i < n->req(); i++ ) {
 633           worklist.push(n->in(i));
 634         }
 635       } else {
 636         return false;
 637       }
 638     }
 639   }
 640 
 641   // Quit when the worklist is empty, and we've found no offending nodes.
 642   return true;
 643 }
 644 
 645 //------------------------------Ideal_DU_postCCP-------------------------------
 646 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 647 // going away in this pass and we need to make this memory op depend on the
 648 // gating null check.
 649 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 650   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 651 }
 652 
 653 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 654 // some sense; we get to keep around the knowledge that an oop is not-null
 655 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 656 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 657 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 658 // some of the more trivial cases in the optimizer.  Removing more useless
 659 // Phi's started allowing Loads to illegally float above null checks.  I gave
 660 // up on this approach.  CNC 10/20/2000
 661 // This static method may be called not from MemNode (EncodePNode calls it).
 662 // Only the control edge of the node 'n' might be updated.
 663 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 664   Node *skipped_cast = NULL;
 665   // Need a null check?  Regular static accesses do not because they are
 666   // from constant addresses.  Array ops are gated by the range check (which
 667   // always includes a NULL check).  Just check field ops.
 668   if( n->in(MemNode::Control) == NULL ) {
 669     // Scan upwards for the highest location we can place this memory op.
 670     while( true ) {
 671       switch( adr->Opcode() ) {
 672 
 673       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 674         adr = adr->in(AddPNode::Base);
 675         continue;
 676 
 677       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 678         adr = adr->in(1);
 679         continue;
 680 
 681       case Op_CastPP:
 682         // If the CastPP is useless, just peek on through it.
 683         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 684           // Remember the cast that we've peeked though. If we peek
 685           // through more than one, then we end up remembering the highest
 686           // one, that is, if in a loop, the one closest to the top.
 687           skipped_cast = adr;
 688           adr = adr->in(1);
 689           continue;
 690         }
 691         // CastPP is going away in this pass!  We need this memory op to be
 692         // control-dependent on the test that is guarding the CastPP.
 693         ccp->hash_delete(n);
 694         n->set_req(MemNode::Control, adr->in(0));
 695         ccp->hash_insert(n);
 696         return n;
 697 
 698       case Op_Phi:
 699         // Attempt to float above a Phi to some dominating point.
 700         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 701           // If we've already peeked through a Cast (which could have set the
 702           // control), we can't float above a Phi, because the skipped Cast
 703           // may not be loop invariant.
 704           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 705             adr = adr->in(1);
 706             continue;
 707           }
 708         }
 709 
 710         // Intentional fallthrough!
 711 
 712         // No obvious dominating point.  The mem op is pinned below the Phi
 713         // by the Phi itself.  If the Phi goes away (no true value is merged)
 714         // then the mem op can float, but not indefinitely.  It must be pinned
 715         // behind the controls leading to the Phi.
 716       case Op_CheckCastPP:
 717         // These usually stick around to change address type, however a
 718         // useless one can be elided and we still need to pick up a control edge
 719         if (adr->in(0) == NULL) {
 720           // This CheckCastPP node has NO control and is likely useless. But we
 721           // need check further up the ancestor chain for a control input to keep
 722           // the node in place. 4959717.
 723           skipped_cast = adr;
 724           adr = adr->in(1);
 725           continue;
 726         }
 727         ccp->hash_delete(n);
 728         n->set_req(MemNode::Control, adr->in(0));
 729         ccp->hash_insert(n);
 730         return n;
 731 
 732         // List of "safe" opcodes; those that implicitly block the memory
 733         // op below any null check.
 734       case Op_CastX2P:          // no null checks on native pointers
 735       case Op_Parm:             // 'this' pointer is not null
 736       case Op_LoadP:            // Loading from within a klass
 737       case Op_LoadN:            // Loading from within a klass
 738       case Op_LoadKlass:        // Loading from within a klass
 739       case Op_LoadNKlass:       // Loading from within a klass
 740       case Op_ConP:             // Loading from a klass
 741       case Op_ConN:             // Loading from a klass
 742       case Op_CreateEx:         // Sucking up the guts of an exception oop
 743       case Op_Con:              // Reading from TLS
 744       case Op_CMoveP:           // CMoveP is pinned
 745       case Op_CMoveN:           // CMoveN is pinned
 746         break;                  // No progress
 747 
 748       case Op_Proj:             // Direct call to an allocation routine
 749       case Op_SCMemProj:        // Memory state from store conditional ops
 750 #ifdef ASSERT
 751         {
 752           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 753           const Node* call = adr->in(0);
 754           if (call->is_CallJava()) {
 755             const CallJavaNode* call_java = call->as_CallJava();
 756             const TypeTuple *r = call_java->tf()->range();
 757             assert(r->cnt() > TypeFunc::Parms, "must return value");
 758             const Type* ret_type = r->field_at(TypeFunc::Parms);
 759             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 760             // We further presume that this is one of
 761             // new_instance_Java, new_array_Java, or
 762             // the like, but do not assert for this.
 763           } else if (call->is_Allocate()) {
 764             // similar case to new_instance_Java, etc.
 765           } else if (!call->is_CallLeaf()) {
 766             // Projections from fetch_oop (OSR) are allowed as well.
 767             ShouldNotReachHere();
 768           }
 769         }
 770 #endif
 771         break;
 772       default:
 773         ShouldNotReachHere();
 774       }
 775       break;
 776     }
 777   }
 778 
 779   return  NULL;               // No progress
 780 }
 781 
 782 
 783 //=============================================================================
 784 uint LoadNode::size_of() const { return sizeof(*this); }
 785 uint LoadNode::cmp( const Node &n ) const
 786 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 787 const Type *LoadNode::bottom_type() const { return _type; }
 788 uint LoadNode::ideal_reg() const {
 789   return Matcher::base2reg[_type->base()];
 790 }
 791 
 792 #ifndef PRODUCT
 793 void LoadNode::dump_spec(outputStream *st) const {
 794   MemNode::dump_spec(st);
 795   if( !Verbose && !WizardMode ) {
 796     // standard dump does this in Verbose and WizardMode
 797     st->print(" #"); _type->dump_on(st);
 798   }
 799 }
 800 #endif
 801 
 802 
 803 //----------------------------LoadNode::make-----------------------------------
 804 // Polymorphic factory method:
 805 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 806   Compile* C = gvn.C;
 807 
 808   // sanity check the alias category against the created node type
 809   assert(!(adr_type->isa_oopptr() &&
 810            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 811          "use LoadKlassNode instead");
 812   assert(!(adr_type->isa_aryptr() &&
 813            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 814          "use LoadRangeNode instead");
 815   switch (bt) {
 816   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 817   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 818   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 819   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 820   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 821   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 822   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 823   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 824   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 825   case T_OBJECT:
 826 #ifdef _LP64
 827     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 828       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 829       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 830     } else
 831 #endif
 832     {
 833       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 834       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 835     }
 836   }
 837   ShouldNotReachHere();
 838   return (LoadNode*)NULL;
 839 }
 840 
 841 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 842   bool require_atomic = true;
 843   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 844 }
 845 
 846 
 847 
 848 
 849 //------------------------------hash-------------------------------------------
 850 uint LoadNode::hash() const {
 851   // unroll addition of interesting fields
 852   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 853 }
 854 
 855 //---------------------------can_see_stored_value------------------------------
 856 // This routine exists to make sure this set of tests is done the same
 857 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 858 // will change the graph shape in a way which makes memory alive twice at the
 859 // same time (uses the Oracle model of aliasing), then some
 860 // LoadXNode::Identity will fold things back to the equivalence-class model
 861 // of aliasing.
 862 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 863   Node* ld_adr = in(MemNode::Address);
 864 
 865   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 866   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 867   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 868       atp->field() != NULL && !atp->field()->is_volatile()) {
 869     uint alias_idx = atp->index();
 870     bool final = atp->field()->is_final();
 871     Node* result = NULL;
 872     Node* current = st;
 873     // Skip through chains of MemBarNodes checking the MergeMems for
 874     // new states for the slice of this load.  Stop once any other
 875     // kind of node is encountered.  Loads from final memory can skip
 876     // through any kind of MemBar but normal loads shouldn't skip
 877     // through MemBarAcquire since the could allow them to move out of
 878     // a synchronized region.
 879     while (current->is_Proj()) {
 880       int opc = current->in(0)->Opcode();
 881       if ((final && opc == Op_MemBarAcquire) ||
 882           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 883         Node* mem = current->in(0)->in(TypeFunc::Memory);
 884         if (mem->is_MergeMem()) {
 885           MergeMemNode* merge = mem->as_MergeMem();
 886           Node* new_st = merge->memory_at(alias_idx);
 887           if (new_st == merge->base_memory()) {
 888             // Keep searching
 889             current = merge->base_memory();
 890             continue;
 891           }
 892           // Save the new memory state for the slice and fall through
 893           // to exit.
 894           result = new_st;
 895         }
 896       }
 897       break;
 898     }
 899     if (result != NULL) {
 900       st = result;
 901     }
 902   }
 903 
 904 
 905   // Loop around twice in the case Load -> Initialize -> Store.
 906   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 907   for (int trip = 0; trip <= 1; trip++) {
 908 
 909     if (st->is_Store()) {
 910       Node* st_adr = st->in(MemNode::Address);
 911       if (!phase->eqv(st_adr, ld_adr)) {
 912         // Try harder before giving up...  Match raw and non-raw pointers.
 913         intptr_t st_off = 0;
 914         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 915         if (alloc == NULL)       return NULL;
 916         intptr_t ld_off = 0;
 917         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 918         if (alloc != allo2)      return NULL;
 919         if (ld_off != st_off)    return NULL;
 920         // At this point we have proven something like this setup:
 921         //  A = Allocate(...)
 922         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 923         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 924         // (Actually, we haven't yet proven the Q's are the same.)
 925         // In other words, we are loading from a casted version of
 926         // the same pointer-and-offset that we stored to.
 927         // Thus, we are able to replace L by V.
 928       }
 929       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 930       if (store_Opcode() != st->Opcode())
 931         return NULL;
 932       return st->in(MemNode::ValueIn);
 933     }
 934 
 935     intptr_t offset = 0;  // scratch
 936 
 937     // A load from a freshly-created object always returns zero.
 938     // (This can happen after LoadNode::Ideal resets the load's memory input
 939     // to find_captured_store, which returned InitializeNode::zero_memory.)
 940     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 941         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 942         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 943       // return a zero value for the load's basic type
 944       // (This is one of the few places where a generic PhaseTransform
 945       // can create new nodes.  Think of it as lazily manifesting
 946       // virtually pre-existing constants.)
 947       return phase->zerocon(memory_type());
 948     }
 949 
 950     // A load from an initialization barrier can match a captured store.
 951     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 952       InitializeNode* init = st->in(0)->as_Initialize();
 953       AllocateNode* alloc = init->allocation();
 954       if (alloc != NULL &&
 955           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
 956         // examine a captured store value
 957         st = init->find_captured_store(offset, memory_size(), phase);
 958         if (st != NULL)
 959           continue;             // take one more trip around
 960       }
 961     }
 962 
 963     break;
 964   }
 965 
 966   return NULL;
 967 }
 968 
 969 //----------------------is_instance_field_load_with_local_phi------------------
 970 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
 971   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
 972       in(MemNode::Address)->is_AddP() ) {
 973     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
 974     // Only instances.
 975     if( t_oop != NULL && t_oop->is_known_instance_field() &&
 976         t_oop->offset() != Type::OffsetBot &&
 977         t_oop->offset() != Type::OffsetTop) {
 978       return true;
 979     }
 980   }
 981   return false;
 982 }
 983 
 984 //------------------------------Identity---------------------------------------
 985 // Loads are identity if previous store is to same address
 986 Node *LoadNode::Identity( PhaseTransform *phase ) {
 987   // If the previous store-maker is the right kind of Store, and the store is
 988   // to the same address, then we are equal to the value stored.
 989   Node* mem = in(MemNode::Memory);
 990   Node* value = can_see_stored_value(mem, phase);
 991   if( value ) {
 992     // byte, short & char stores truncate naturally.
 993     // A load has to load the truncated value which requires
 994     // some sort of masking operation and that requires an
 995     // Ideal call instead of an Identity call.
 996     if (memory_size() < BytesPerInt) {
 997       // If the input to the store does not fit with the load's result type,
 998       // it must be truncated via an Ideal call.
 999       if (!phase->type(value)->higher_equal(phase->type(this)))
1000         return this;
1001     }
1002     // (This works even when value is a Con, but LoadNode::Value
1003     // usually runs first, producing the singleton type of the Con.)
1004     return value;
1005   }
1006 
1007   // Search for an existing data phi which was generated before for the same
1008   // instance's field to avoid infinite generation of phis in a loop.
1009   Node *region = mem->in(0);
1010   if (is_instance_field_load_with_local_phi(region)) {
1011     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1012     int this_index  = phase->C->get_alias_index(addr_t);
1013     int this_offset = addr_t->offset();
1014     int this_id    = addr_t->is_oopptr()->instance_id();
1015     const Type* this_type = bottom_type();
1016     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1017       Node* phi = region->fast_out(i);
1018       if (phi->is_Phi() && phi != mem &&
1019           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1020         return phi;
1021       }
1022     }
1023   }
1024 
1025   return this;
1026 }
1027 
1028 
1029 // Returns true if the AliasType refers to the field that holds the
1030 // cached box array.  Currently only handles the IntegerCache case.
1031 static bool is_autobox_cache(Compile::AliasType* atp) {
1032   if (atp != NULL && atp->field() != NULL) {
1033     ciField* field = atp->field();
1034     ciSymbol* klass = field->holder()->name();
1035     if (field->name() == ciSymbol::cache_field_name() &&
1036         field->holder()->uses_default_loader() &&
1037         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1038       return true;
1039     }
1040   }
1041   return false;
1042 }
1043 
1044 // Fetch the base value in the autobox array
1045 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1046   if (atp != NULL && atp->field() != NULL) {
1047     ciField* field = atp->field();
1048     ciSymbol* klass = field->holder()->name();
1049     if (field->name() == ciSymbol::cache_field_name() &&
1050         field->holder()->uses_default_loader() &&
1051         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1052       assert(field->is_constant(), "what?");
1053       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1054       // Fetch the box object at the base of the array and get its value
1055       ciInstance* box = array->obj_at(0)->as_instance();
1056       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1057       if (ik->nof_nonstatic_fields() == 1) {
1058         // This should be true nonstatic_field_at requires calling
1059         // nof_nonstatic_fields so check it anyway
1060         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1061         cache_offset = c.as_int();
1062       }
1063       return true;
1064     }
1065   }
1066   return false;
1067 }
1068 
1069 // Returns true if the AliasType refers to the value field of an
1070 // autobox object.  Currently only handles Integer.
1071 static bool is_autobox_object(Compile::AliasType* atp) {
1072   if (atp != NULL && atp->field() != NULL) {
1073     ciField* field = atp->field();
1074     ciSymbol* klass = field->holder()->name();
1075     if (field->name() == ciSymbol::value_name() &&
1076         field->holder()->uses_default_loader() &&
1077         klass == ciSymbol::java_lang_Integer()) {
1078       return true;
1079     }
1080   }
1081   return false;
1082 }
1083 
1084 
1085 // We're loading from an object which has autobox behaviour.
1086 // If this object is result of a valueOf call we'll have a phi
1087 // merging a newly allocated object and a load from the cache.
1088 // We want to replace this load with the original incoming
1089 // argument to the valueOf call.
1090 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1091   Node* base = in(Address)->in(AddPNode::Base);
1092   if (base->is_Phi() && base->req() == 3) {
1093     AllocateNode* allocation = NULL;
1094     int allocation_index = -1;
1095     int load_index = -1;
1096     for (uint i = 1; i < base->req(); i++) {
1097       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1098       if (allocation != NULL) {
1099         allocation_index = i;
1100         load_index = 3 - allocation_index;
1101         break;
1102       }
1103     }
1104     bool has_load = ( allocation != NULL &&
1105                       (base->in(load_index)->is_Load() ||
1106                        base->in(load_index)->is_DecodeN() &&
1107                        base->in(load_index)->in(1)->is_Load()) );
1108     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1109       // Push the loads from the phi that comes from valueOf up
1110       // through it to allow elimination of the loads and the recovery
1111       // of the original value.
1112       Node* mem_phi = in(Memory);
1113       Node* offset = in(Address)->in(AddPNode::Offset);
1114       Node* region = base->in(0);
1115 
1116       Node* in1 = clone();
1117       Node* in1_addr = in1->in(Address)->clone();
1118       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1119       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1120       in1_addr->set_req(AddPNode::Offset, offset);
1121       in1->set_req(0, region->in(allocation_index));
1122       in1->set_req(Address, in1_addr);
1123       in1->set_req(Memory, mem_phi->in(allocation_index));
1124 
1125       Node* in2 = clone();
1126       Node* in2_addr = in2->in(Address)->clone();
1127       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1128       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1129       in2_addr->set_req(AddPNode::Offset, offset);
1130       in2->set_req(0, region->in(load_index));
1131       in2->set_req(Address, in2_addr);
1132       in2->set_req(Memory, mem_phi->in(load_index));
1133 
1134       in1_addr = phase->transform(in1_addr);
1135       in1 =      phase->transform(in1);
1136       in2_addr = phase->transform(in2_addr);
1137       in2 =      phase->transform(in2);
1138 
1139       PhiNode* result = PhiNode::make_blank(region, this);
1140       result->set_req(allocation_index, in1);
1141       result->set_req(load_index, in2);
1142       return result;
1143     }
1144   } else if (base->is_Load() ||
1145              base->is_DecodeN() && base->in(1)->is_Load()) {
1146     if (base->is_DecodeN()) {
1147       // Get LoadN node which loads cached Integer object
1148       base = base->in(1);
1149     }
1150     // Eliminate the load of Integer.value for integers from the cache
1151     // array by deriving the value from the index into the array.
1152     // Capture the offset of the load and then reverse the computation.
1153     Node* load_base = base->in(Address)->in(AddPNode::Base);
1154     if (load_base->is_DecodeN()) {
1155       // Get LoadN node which loads IntegerCache.cache field
1156       load_base = load_base->in(1);
1157     }
1158     if (load_base != NULL) {
1159       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1160       intptr_t cache_offset;
1161       int shift = -1;
1162       Node* cache = NULL;
1163       if (is_autobox_cache(atp)) {
1164         shift  = exact_log2(type2aelembytes(T_OBJECT));
1165         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1166       }
1167       if (cache != NULL && base->in(Address)->is_AddP()) {
1168         Node* elements[4];
1169         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1170         int cache_low;
1171         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1172           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1173           // Add up all the offsets making of the address of the load
1174           Node* result = elements[0];
1175           for (int i = 1; i < count; i++) {
1176             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1177           }
1178           // Remove the constant offset from the address and then
1179           // remove the scaling of the offset to recover the original index.
1180           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1181           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1182             // Peel the shift off directly but wrap it in a dummy node
1183             // since Ideal can't return existing nodes
1184             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1185           } else {
1186             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1187           }
1188 #ifdef _LP64
1189           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1190 #endif
1191           return result;
1192         }
1193       }
1194     }
1195   }
1196   return NULL;
1197 }
1198 
1199 //------------------------------split_through_phi------------------------------
1200 // Split instance field load through Phi.
1201 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1202   Node* mem     = in(MemNode::Memory);
1203   Node* address = in(MemNode::Address);
1204   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1205   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1206 
1207   assert(mem->is_Phi() && (t_oop != NULL) &&
1208          t_oop->is_known_instance_field(), "invalide conditions");
1209 
1210   Node *region = mem->in(0);
1211   if (region == NULL) {
1212     return NULL; // Wait stable graph
1213   }
1214   uint cnt = mem->req();
1215   for( uint i = 1; i < cnt; i++ ) {
1216     Node *in = mem->in(i);
1217     if( in == NULL ) {
1218       return NULL; // Wait stable graph
1219     }
1220   }
1221   // Check for loop invariant.
1222   if (cnt == 3) {
1223     for( uint i = 1; i < cnt; i++ ) {
1224       Node *in = mem->in(i);
1225       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1226       if (m == mem) {
1227         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1228         return this;
1229       }
1230     }
1231   }
1232   // Split through Phi (see original code in loopopts.cpp).
1233   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1234 
1235   // Do nothing here if Identity will find a value
1236   // (to avoid infinite chain of value phis generation).
1237   if ( !phase->eqv(this, this->Identity(phase)) )
1238     return NULL;
1239 
1240   // Skip the split if the region dominates some control edge of the address.
1241   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1242     return NULL;
1243 
1244   const Type* this_type = this->bottom_type();
1245   int this_index  = phase->C->get_alias_index(addr_t);
1246   int this_offset = addr_t->offset();
1247   int this_iid    = addr_t->is_oopptr()->instance_id();
1248   int wins = 0;
1249   PhaseIterGVN *igvn = phase->is_IterGVN();
1250   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1251   for( uint i = 1; i < region->req(); i++ ) {
1252     Node *x;
1253     Node* the_clone = NULL;
1254     if( region->in(i) == phase->C->top() ) {
1255       x = phase->C->top();      // Dead path?  Use a dead data op
1256     } else {
1257       x = this->clone();        // Else clone up the data op
1258       the_clone = x;            // Remember for possible deletion.
1259       // Alter data node to use pre-phi inputs
1260       if( this->in(0) == region ) {
1261         x->set_req( 0, region->in(i) );
1262       } else {
1263         x->set_req( 0, NULL );
1264       }
1265       for( uint j = 1; j < this->req(); j++ ) {
1266         Node *in = this->in(j);
1267         if( in->is_Phi() && in->in(0) == region )
1268           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1269       }
1270     }
1271     // Check for a 'win' on some paths
1272     const Type *t = x->Value(igvn);
1273 
1274     bool singleton = t->singleton();
1275 
1276     // See comments in PhaseIdealLoop::split_thru_phi().
1277     if( singleton && t == Type::TOP ) {
1278       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1279     }
1280 
1281     if( singleton ) {
1282       wins++;
1283       x = igvn->makecon(t);
1284     } else {
1285       // We now call Identity to try to simplify the cloned node.
1286       // Note that some Identity methods call phase->type(this).
1287       // Make sure that the type array is big enough for
1288       // our new node, even though we may throw the node away.
1289       // (This tweaking with igvn only works because x is a new node.)
1290       igvn->set_type(x, t);
1291       // If x is a TypeNode, capture any more-precise type permanently into Node
1292       // otherwise it will be not updated during igvn->transform since
1293       // igvn->type(x) is set to x->Value() already.
1294       x->raise_bottom_type(t);
1295       Node *y = x->Identity(igvn);
1296       if( y != x ) {
1297         wins++;
1298         x = y;
1299       } else {
1300         y = igvn->hash_find(x);
1301         if( y ) {
1302           wins++;
1303           x = y;
1304         } else {
1305           // Else x is a new node we are keeping
1306           // We do not need register_new_node_with_optimizer
1307           // because set_type has already been called.
1308           igvn->_worklist.push(x);
1309         }
1310       }
1311     }
1312     if (x != the_clone && the_clone != NULL)
1313       igvn->remove_dead_node(the_clone);
1314     phi->set_req(i, x);
1315   }
1316   if( wins > 0 ) {
1317     // Record Phi
1318     igvn->register_new_node_with_optimizer(phi);
1319     return phi;
1320   }
1321   igvn->remove_dead_node(phi);
1322   return NULL;
1323 }
1324 
1325 //------------------------------Ideal------------------------------------------
1326 // If the load is from Field memory and the pointer is non-null, we can
1327 // zero out the control input.
1328 // If the offset is constant and the base is an object allocation,
1329 // try to hook me up to the exact initializing store.
1330 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1331   Node* p = MemNode::Ideal_common(phase, can_reshape);
1332   if (p)  return (p == NodeSentinel) ? NULL : p;
1333 
1334   Node* ctrl    = in(MemNode::Control);
1335   Node* address = in(MemNode::Address);
1336 
1337   // Skip up past a SafePoint control.  Cannot do this for Stores because
1338   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1339   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1340       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1341     ctrl = ctrl->in(0);
1342     set_req(MemNode::Control,ctrl);
1343   }
1344 
1345   intptr_t ignore = 0;
1346   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1347   if (base != NULL
1348       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1349     // Check for useless control edge in some common special cases
1350     if (in(MemNode::Control) != NULL
1351         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1352         && all_controls_dominate(base, phase->C->start())) {
1353       // A method-invariant, non-null address (constant or 'this' argument).
1354       set_req(MemNode::Control, NULL);
1355     }
1356 
1357     if (EliminateAutoBox && can_reshape) {
1358       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1359       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1360       if (is_autobox_object(atp)) {
1361         Node* result = eliminate_autobox(phase);
1362         if (result != NULL) return result;
1363       }
1364     }
1365   }
1366 
1367   Node* mem = in(MemNode::Memory);
1368   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1369 
1370   if (addr_t != NULL) {
1371     // try to optimize our memory input
1372     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1373     if (opt_mem != mem) {
1374       set_req(MemNode::Memory, opt_mem);
1375       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1376       return this;
1377     }
1378     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1379     if (can_reshape && opt_mem->is_Phi() &&
1380         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1381       // Split instance field load through Phi.
1382       Node* result = split_through_phi(phase);
1383       if (result != NULL) return result;
1384     }
1385   }
1386 
1387   // Check for prior store with a different base or offset; make Load
1388   // independent.  Skip through any number of them.  Bail out if the stores
1389   // are in an endless dead cycle and report no progress.  This is a key
1390   // transform for Reflection.  However, if after skipping through the Stores
1391   // we can't then fold up against a prior store do NOT do the transform as
1392   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1393   // array memory alive twice: once for the hoisted Load and again after the
1394   // bypassed Store.  This situation only works if EVERYBODY who does
1395   // anti-dependence work knows how to bypass.  I.e. we need all
1396   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1397   // the alias index stuff.  So instead, peek through Stores and IFF we can
1398   // fold up, do so.
1399   Node* prev_mem = find_previous_store(phase);
1400   // Steps (a), (b):  Walk past independent stores to find an exact match.
1401   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1402     // (c) See if we can fold up on the spot, but don't fold up here.
1403     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1404     // just return a prior value, which is done by Identity calls.
1405     if (can_see_stored_value(prev_mem, phase)) {
1406       // Make ready for step (d):
1407       set_req(MemNode::Memory, prev_mem);
1408       return this;
1409     }
1410   }
1411 
1412   return NULL;                  // No further progress
1413 }
1414 
1415 // Helper to recognize certain Klass fields which are invariant across
1416 // some group of array types (e.g., int[] or all T[] where T < Object).
1417 const Type*
1418 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1419                                  ciKlass* klass) const {
1420   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1421     // The field is Klass::_modifier_flags.  Return its (constant) value.
1422     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1423     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1424     return TypeInt::make(klass->modifier_flags());
1425   }
1426   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1427     // The field is Klass::_access_flags.  Return its (constant) value.
1428     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1429     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1430     return TypeInt::make(klass->access_flags());
1431   }
1432   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1433     // The field is Klass::_layout_helper.  Return its constant value if known.
1434     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1435     return TypeInt::make(klass->layout_helper());
1436   }
1437 
1438   // No match.
1439   return NULL;
1440 }
1441 
1442 //------------------------------Value-----------------------------------------
1443 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1444   // Either input is TOP ==> the result is TOP
1445   Node* mem = in(MemNode::Memory);
1446   const Type *t1 = phase->type(mem);
1447   if (t1 == Type::TOP)  return Type::TOP;
1448   Node* adr = in(MemNode::Address);
1449   const TypePtr* tp = phase->type(adr)->isa_ptr();
1450   if (tp == NULL || tp->empty())  return Type::TOP;
1451   int off = tp->offset();
1452   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1453 
1454   // Try to guess loaded type from pointer type
1455   if (tp->base() == Type::AryPtr) {
1456     const Type *t = tp->is_aryptr()->elem();
1457     // Don't do this for integer types. There is only potential profit if
1458     // the element type t is lower than _type; that is, for int types, if _type is
1459     // more restrictive than t.  This only happens here if one is short and the other
1460     // char (both 16 bits), and in those cases we've made an intentional decision
1461     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1462     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1463     //
1464     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1465     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1466     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1467     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1468     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1469     // In fact, that could have been the original type of p1, and p1 could have
1470     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1471     // expression (LShiftL quux 3) independently optimized to the constant 8.
1472     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1473         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1474       // t might actually be lower than _type, if _type is a unique
1475       // concrete subclass of abstract class t.
1476       // Make sure the reference is not into the header, by comparing
1477       // the offset against the offset of the start of the array's data.
1478       // Different array types begin at slightly different offsets (12 vs. 16).
1479       // We choose T_BYTE as an example base type that is least restrictive
1480       // as to alignment, which will therefore produce the smallest
1481       // possible base offset.
1482       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1483       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1484         const Type* jt = t->join(_type);
1485         // In any case, do not allow the join, per se, to empty out the type.
1486         if (jt->empty() && !t->empty()) {
1487           // This can happen if a interface-typed array narrows to a class type.
1488           jt = _type;
1489         }
1490 
1491         if (EliminateAutoBox && adr->is_AddP()) {
1492           // The pointers in the autobox arrays are always non-null
1493           Node* base = adr->in(AddPNode::Base);
1494           if (base != NULL &&
1495               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1496             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1497             if (is_autobox_cache(atp)) {
1498               return jt->join(TypePtr::NOTNULL)->is_ptr();
1499             }
1500           }
1501         }
1502         return jt;
1503       }
1504     }
1505   } else if (tp->base() == Type::InstPtr) {
1506     assert( off != Type::OffsetBot ||
1507             // arrays can be cast to Objects
1508             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1509             // unsafe field access may not have a constant offset
1510             phase->C->has_unsafe_access(),
1511             "Field accesses must be precise" );
1512     // For oop loads, we expect the _type to be precise
1513   } else if (tp->base() == Type::KlassPtr) {
1514     assert( off != Type::OffsetBot ||
1515             // arrays can be cast to Objects
1516             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1517             // also allow array-loading from the primary supertype
1518             // array during subtype checks
1519             Opcode() == Op_LoadKlass,
1520             "Field accesses must be precise" );
1521     // For klass/static loads, we expect the _type to be precise
1522   }
1523 
1524   const TypeKlassPtr *tkls = tp->isa_klassptr();
1525   if (tkls != NULL && !StressReflectiveCode) {
1526     ciKlass* klass = tkls->klass();
1527     if (klass->is_loaded() && tkls->klass_is_exact()) {
1528       // We are loading a field from a Klass metaobject whose identity
1529       // is known at compile time (the type is "exact" or "precise").
1530       // Check for fields we know are maintained as constants by the VM.
1531       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1532         // The field is Klass::_super_check_offset.  Return its (constant) value.
1533         // (Folds up type checking code.)
1534         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1535         return TypeInt::make(klass->super_check_offset());
1536       }
1537       // Compute index into primary_supers array
1538       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1539       // Check for overflowing; use unsigned compare to handle the negative case.
1540       if( depth < ciKlass::primary_super_limit() ) {
1541         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1542         // (Folds up type checking code.)
1543         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1544         ciKlass *ss = klass->super_of_depth(depth);
1545         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1546       }
1547       const Type* aift = load_array_final_field(tkls, klass);
1548       if (aift != NULL)  return aift;
1549       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1550           && klass->is_array_klass()) {
1551         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1552         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1553         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1554         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1555       }
1556       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1557         // The field is Klass::_java_mirror.  Return its (constant) value.
1558         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1559         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1560         return TypeInstPtr::make(klass->java_mirror());
1561       }
1562     }
1563 
1564     // We can still check if we are loading from the primary_supers array at a
1565     // shallow enough depth.  Even though the klass is not exact, entries less
1566     // than or equal to its super depth are correct.
1567     if (klass->is_loaded() ) {
1568       ciType *inner = klass->klass();
1569       while( inner->is_obj_array_klass() )
1570         inner = inner->as_obj_array_klass()->base_element_type();
1571       if( inner->is_instance_klass() &&
1572           !inner->as_instance_klass()->flags().is_interface() ) {
1573         // Compute index into primary_supers array
1574         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1575         // Check for overflowing; use unsigned compare to handle the negative case.
1576         if( depth < ciKlass::primary_super_limit() &&
1577             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1578           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1579           // (Folds up type checking code.)
1580           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1581           ciKlass *ss = klass->super_of_depth(depth);
1582           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1583         }
1584       }
1585     }
1586 
1587     // If the type is enough to determine that the thing is not an array,
1588     // we can give the layout_helper a positive interval type.
1589     // This will help short-circuit some reflective code.
1590     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1591         && !klass->is_array_klass() // not directly typed as an array
1592         && !klass->is_interface()  // specifically not Serializable & Cloneable
1593         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1594         ) {
1595       // Note:  When interfaces are reliable, we can narrow the interface
1596       // test to (klass != Serializable && klass != Cloneable).
1597       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1598       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1599       // The key property of this type is that it folds up tests
1600       // for array-ness, since it proves that the layout_helper is positive.
1601       // Thus, a generic value like the basic object layout helper works fine.
1602       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1603     }
1604   }
1605 
1606   // If we are loading from a freshly-allocated object, produce a zero,
1607   // if the load is provably beyond the header of the object.
1608   // (Also allow a variable load from a fresh array to produce zero.)
1609   if (ReduceFieldZeroing) {
1610     Node* value = can_see_stored_value(mem,phase);
1611     if (value != NULL && value->is_Con())
1612       return value->bottom_type();
1613   }
1614 
1615   const TypeOopPtr *tinst = tp->isa_oopptr();
1616   if (tinst != NULL && tinst->is_known_instance_field()) {
1617     // If we have an instance type and our memory input is the
1618     // programs's initial memory state, there is no matching store,
1619     // so just return a zero of the appropriate type
1620     Node *mem = in(MemNode::Memory);
1621     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1622       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1623       return Type::get_zero_type(_type->basic_type());
1624     }
1625   }
1626   return _type;
1627 }
1628 
1629 //------------------------------match_edge-------------------------------------
1630 // Do we Match on this edge index or not?  Match only the address.
1631 uint LoadNode::match_edge(uint idx) const {
1632   return idx == MemNode::Address;
1633 }
1634 
1635 //--------------------------LoadBNode::Ideal--------------------------------------
1636 //
1637 //  If the previous store is to the same address as this load,
1638 //  and the value stored was larger than a byte, replace this load
1639 //  with the value stored truncated to a byte.  If no truncation is
1640 //  needed, the replacement is done in LoadNode::Identity().
1641 //
1642 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1643   Node* mem = in(MemNode::Memory);
1644   Node* value = can_see_stored_value(mem,phase);
1645   if( value && !phase->type(value)->higher_equal( _type ) ) {
1646     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1647     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1648   }
1649   // Identity call will handle the case where truncation is not needed.
1650   return LoadNode::Ideal(phase, can_reshape);
1651 }
1652 
1653 //--------------------------LoadUBNode::Ideal-------------------------------------
1654 //
1655 //  If the previous store is to the same address as this load,
1656 //  and the value stored was larger than a byte, replace this load
1657 //  with the value stored truncated to a byte.  If no truncation is
1658 //  needed, the replacement is done in LoadNode::Identity().
1659 //
1660 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1661   Node* mem = in(MemNode::Memory);
1662   Node* value = can_see_stored_value(mem, phase);
1663   if (value && !phase->type(value)->higher_equal(_type))
1664     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1665   // Identity call will handle the case where truncation is not needed.
1666   return LoadNode::Ideal(phase, can_reshape);
1667 }
1668 
1669 //--------------------------LoadUSNode::Ideal-------------------------------------
1670 //
1671 //  If the previous store is to the same address as this load,
1672 //  and the value stored was larger than a char, replace this load
1673 //  with the value stored truncated to a char.  If no truncation is
1674 //  needed, the replacement is done in LoadNode::Identity().
1675 //
1676 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1677   Node* mem = in(MemNode::Memory);
1678   Node* value = can_see_stored_value(mem,phase);
1679   if( value && !phase->type(value)->higher_equal( _type ) )
1680     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1681   // Identity call will handle the case where truncation is not needed.
1682   return LoadNode::Ideal(phase, can_reshape);
1683 }
1684 
1685 //--------------------------LoadSNode::Ideal--------------------------------------
1686 //
1687 //  If the previous store is to the same address as this load,
1688 //  and the value stored was larger than a short, replace this load
1689 //  with the value stored truncated to a short.  If no truncation is
1690 //  needed, the replacement is done in LoadNode::Identity().
1691 //
1692 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1693   Node* mem = in(MemNode::Memory);
1694   Node* value = can_see_stored_value(mem,phase);
1695   if( value && !phase->type(value)->higher_equal( _type ) ) {
1696     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1697     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1698   }
1699   // Identity call will handle the case where truncation is not needed.
1700   return LoadNode::Ideal(phase, can_reshape);
1701 }
1702 
1703 //=============================================================================
1704 //----------------------------LoadKlassNode::make------------------------------
1705 // Polymorphic factory method:
1706 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1707   Compile* C = gvn.C;
1708   Node *ctl = NULL;
1709   // sanity check the alias category against the created node type
1710   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1711   assert(adr_type != NULL, "expecting TypeOopPtr");
1712 #ifdef _LP64
1713   if (adr_type->is_ptr_to_narrowoop()) {
1714     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1715     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1716   }
1717 #endif
1718   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1719   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1720 }
1721 
1722 //------------------------------Value------------------------------------------
1723 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1724   return klass_value_common(phase);
1725 }
1726 
1727 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1728   // Either input is TOP ==> the result is TOP
1729   const Type *t1 = phase->type( in(MemNode::Memory) );
1730   if (t1 == Type::TOP)  return Type::TOP;
1731   Node *adr = in(MemNode::Address);
1732   const Type *t2 = phase->type( adr );
1733   if (t2 == Type::TOP)  return Type::TOP;
1734   const TypePtr *tp = t2->is_ptr();
1735   if (TypePtr::above_centerline(tp->ptr()) ||
1736       tp->ptr() == TypePtr::Null)  return Type::TOP;
1737 
1738   // Return a more precise klass, if possible
1739   const TypeInstPtr *tinst = tp->isa_instptr();
1740   if (tinst != NULL) {
1741     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1742     int offset = tinst->offset();
1743     if (ik == phase->C->env()->Class_klass()
1744         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1745             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1746       // We are loading a special hidden field from a Class mirror object,
1747       // the field which points to the VM's Klass metaobject.
1748       ciType* t = tinst->java_mirror_type();
1749       // java_mirror_type returns non-null for compile-time Class constants.
1750       if (t != NULL) {
1751         // constant oop => constant klass
1752         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1753           return TypeKlassPtr::make(ciArrayKlass::make(t));
1754         }
1755         if (!t->is_klass()) {
1756           // a primitive Class (e.g., int.class) has NULL for a klass field
1757           return TypePtr::NULL_PTR;
1758         }
1759         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1760         return TypeKlassPtr::make(t->as_klass());
1761       }
1762       // non-constant mirror, so we can't tell what's going on
1763     }
1764     if( !ik->is_loaded() )
1765       return _type;             // Bail out if not loaded
1766     if (offset == oopDesc::klass_offset_in_bytes()) {
1767       if (tinst->klass_is_exact()) {
1768         return TypeKlassPtr::make(ik);
1769       }
1770       // See if we can become precise: no subklasses and no interface
1771       // (Note:  We need to support verified interfaces.)
1772       if (!ik->is_interface() && !ik->has_subklass()) {
1773         //assert(!UseExactTypes, "this code should be useless with exact types");
1774         // Add a dependence; if any subclass added we need to recompile
1775         if (!ik->is_final()) {
1776           // %%% should use stronger assert_unique_concrete_subtype instead
1777           phase->C->dependencies()->assert_leaf_type(ik);
1778         }
1779         // Return precise klass
1780         return TypeKlassPtr::make(ik);
1781       }
1782 
1783       // Return root of possible klass
1784       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1785     }
1786   }
1787 
1788   // Check for loading klass from an array
1789   const TypeAryPtr *tary = tp->isa_aryptr();
1790   if( tary != NULL ) {
1791     ciKlass *tary_klass = tary->klass();
1792     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1793         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1794       if (tary->klass_is_exact()) {
1795         return TypeKlassPtr::make(tary_klass);
1796       }
1797       ciArrayKlass *ak = tary->klass()->as_array_klass();
1798       // If the klass is an object array, we defer the question to the
1799       // array component klass.
1800       if( ak->is_obj_array_klass() ) {
1801         assert( ak->is_loaded(), "" );
1802         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1803         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1804           ciInstanceKlass* ik = base_k->as_instance_klass();
1805           // See if we can become precise: no subklasses and no interface
1806           if (!ik->is_interface() && !ik->has_subklass()) {
1807             //assert(!UseExactTypes, "this code should be useless with exact types");
1808             // Add a dependence; if any subclass added we need to recompile
1809             if (!ik->is_final()) {
1810               phase->C->dependencies()->assert_leaf_type(ik);
1811             }
1812             // Return precise array klass
1813             return TypeKlassPtr::make(ak);
1814           }
1815         }
1816         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1817       } else {                  // Found a type-array?
1818         //assert(!UseExactTypes, "this code should be useless with exact types");
1819         assert( ak->is_type_array_klass(), "" );
1820         return TypeKlassPtr::make(ak); // These are always precise
1821       }
1822     }
1823   }
1824 
1825   // Check for loading klass from an array klass
1826   const TypeKlassPtr *tkls = tp->isa_klassptr();
1827   if (tkls != NULL && !StressReflectiveCode) {
1828     ciKlass* klass = tkls->klass();
1829     if( !klass->is_loaded() )
1830       return _type;             // Bail out if not loaded
1831     if( klass->is_obj_array_klass() &&
1832         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1833       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1834       // // Always returning precise element type is incorrect,
1835       // // e.g., element type could be object and array may contain strings
1836       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1837 
1838       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1839       // according to the element type's subclassing.
1840       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1841     }
1842     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1843         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1844       ciKlass* sup = klass->as_instance_klass()->super();
1845       // The field is Klass::_super.  Return its (constant) value.
1846       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1847       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1848     }
1849   }
1850 
1851   // Bailout case
1852   return LoadNode::Value(phase);
1853 }
1854 
1855 //------------------------------Identity---------------------------------------
1856 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1857 // Also feed through the klass in Allocate(...klass...)._klass.
1858 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1859   return klass_identity_common(phase);
1860 }
1861 
1862 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1863   Node* x = LoadNode::Identity(phase);
1864   if (x != this)  return x;
1865 
1866   // Take apart the address into an oop and and offset.
1867   // Return 'this' if we cannot.
1868   Node*    adr    = in(MemNode::Address);
1869   intptr_t offset = 0;
1870   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1871   if (base == NULL)     return this;
1872   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1873   if (toop == NULL)     return this;
1874 
1875   // We can fetch the klass directly through an AllocateNode.
1876   // This works even if the klass is not constant (clone or newArray).
1877   if (offset == oopDesc::klass_offset_in_bytes()) {
1878     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1879     if (allocated_klass != NULL) {
1880       return allocated_klass;
1881     }
1882   }
1883 
1884   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1885   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1886   // See inline_native_Class_query for occurrences of these patterns.
1887   // Java Example:  x.getClass().isAssignableFrom(y)
1888   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1889   //
1890   // This improves reflective code, often making the Class
1891   // mirror go completely dead.  (Current exception:  Class
1892   // mirrors may appear in debug info, but we could clean them out by
1893   // introducing a new debug info operator for klassOop.java_mirror).
1894   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1895       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1896           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1897     // We are loading a special hidden field from a Class mirror,
1898     // the field which points to its Klass or arrayKlass metaobject.
1899     if (base->is_Load()) {
1900       Node* adr2 = base->in(MemNode::Address);
1901       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1902       if (tkls != NULL && !tkls->empty()
1903           && (tkls->klass()->is_instance_klass() ||
1904               tkls->klass()->is_array_klass())
1905           && adr2->is_AddP()
1906           ) {
1907         int mirror_field = Klass::java_mirror_offset_in_bytes();
1908         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1909           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1910         }
1911         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1912           return adr2->in(AddPNode::Base);
1913         }
1914       }
1915     }
1916   }
1917 
1918   return this;
1919 }
1920 
1921 
1922 //------------------------------Value------------------------------------------
1923 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1924   const Type *t = klass_value_common(phase);
1925   if (t == Type::TOP)
1926     return t;
1927 
1928   return t->make_narrowoop();
1929 }
1930 
1931 //------------------------------Identity---------------------------------------
1932 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1933 // Also feed through the klass in Allocate(...klass...)._klass.
1934 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1935   Node *x = klass_identity_common(phase);
1936 
1937   const Type *t = phase->type( x );
1938   if( t == Type::TOP ) return x;
1939   if( t->isa_narrowoop()) return x;
1940 
1941   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1942 }
1943 
1944 //------------------------------Value-----------------------------------------
1945 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1946   // Either input is TOP ==> the result is TOP
1947   const Type *t1 = phase->type( in(MemNode::Memory) );
1948   if( t1 == Type::TOP ) return Type::TOP;
1949   Node *adr = in(MemNode::Address);
1950   const Type *t2 = phase->type( adr );
1951   if( t2 == Type::TOP ) return Type::TOP;
1952   const TypePtr *tp = t2->is_ptr();
1953   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1954   const TypeAryPtr *tap = tp->isa_aryptr();
1955   if( !tap ) return _type;
1956   return tap->size();
1957 }
1958 
1959 //-------------------------------Ideal---------------------------------------
1960 // Feed through the length in AllocateArray(...length...)._length.
1961 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1962   Node* p = MemNode::Ideal_common(phase, can_reshape);
1963   if (p)  return (p == NodeSentinel) ? NULL : p;
1964 
1965   // Take apart the address into an oop and and offset.
1966   // Return 'this' if we cannot.
1967   Node*    adr    = in(MemNode::Address);
1968   intptr_t offset = 0;
1969   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
1970   if (base == NULL)     return NULL;
1971   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1972   if (tary == NULL)     return NULL;
1973 
1974   // We can fetch the length directly through an AllocateArrayNode.
1975   // This works even if the length is not constant (clone or newArray).
1976   if (offset == arrayOopDesc::length_offset_in_bytes()) {
1977     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
1978     if (alloc != NULL) {
1979       Node* allocated_length = alloc->Ideal_length();
1980       Node* len = alloc->make_ideal_length(tary, phase);
1981       if (allocated_length != len) {
1982         // New CastII improves on this.
1983         return len;
1984       }
1985     }
1986   }
1987 
1988   return NULL;
1989 }
1990 
1991 //------------------------------Identity---------------------------------------
1992 // Feed through the length in AllocateArray(...length...)._length.
1993 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1994   Node* x = LoadINode::Identity(phase);
1995   if (x != this)  return x;
1996 
1997   // Take apart the address into an oop and and offset.
1998   // Return 'this' if we cannot.
1999   Node*    adr    = in(MemNode::Address);
2000   intptr_t offset = 0;
2001   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2002   if (base == NULL)     return this;
2003   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2004   if (tary == NULL)     return this;
2005 
2006   // We can fetch the length directly through an AllocateArrayNode.
2007   // This works even if the length is not constant (clone or newArray).
2008   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2009     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2010     if (alloc != NULL) {
2011       Node* allocated_length = alloc->Ideal_length();
2012       // Do not allow make_ideal_length to allocate a CastII node.
2013       Node* len = alloc->make_ideal_length(tary, phase, false);
2014       if (allocated_length == len) {
2015         // Return allocated_length only if it would not be improved by a CastII.
2016         return allocated_length;
2017       }
2018     }
2019   }
2020 
2021   return this;
2022 
2023 }
2024 
2025 //=============================================================================
2026 //---------------------------StoreNode::make-----------------------------------
2027 // Polymorphic factory method:
2028 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2029   Compile* C = gvn.C;
2030 
2031   switch (bt) {
2032   case T_BOOLEAN:
2033   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2034   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2035   case T_CHAR:
2036   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2037   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2038   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2039   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2040   case T_ADDRESS:
2041   case T_OBJECT:
2042 #ifdef _LP64
2043     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2044         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2045          adr->bottom_type()->isa_rawptr())) {
2046       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2047       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2048     } else
2049 #endif
2050     {
2051       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2052     }
2053   }
2054   ShouldNotReachHere();
2055   return (StoreNode*)NULL;
2056 }
2057 
2058 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2059   bool require_atomic = true;
2060   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2061 }
2062 
2063 
2064 //--------------------------bottom_type----------------------------------------
2065 const Type *StoreNode::bottom_type() const {
2066   return Type::MEMORY;
2067 }
2068 
2069 //------------------------------hash-------------------------------------------
2070 uint StoreNode::hash() const {
2071   // unroll addition of interesting fields
2072   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2073 
2074   // Since they are not commoned, do not hash them:
2075   return NO_HASH;
2076 }
2077 
2078 //------------------------------Ideal------------------------------------------
2079 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2080 // When a store immediately follows a relevant allocation/initialization,
2081 // try to capture it into the initialization, or hoist it above.
2082 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2083   Node* p = MemNode::Ideal_common(phase, can_reshape);
2084   if (p)  return (p == NodeSentinel) ? NULL : p;
2085 
2086   Node* mem     = in(MemNode::Memory);
2087   Node* address = in(MemNode::Address);
2088 
2089   // Back-to-back stores to same address?  Fold em up.
2090   // Generally unsafe if I have intervening uses...
2091   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2092     // Looking at a dead closed cycle of memory?
2093     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2094 
2095     assert(Opcode() == mem->Opcode() ||
2096            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2097            "no mismatched stores, except on raw memory");
2098 
2099     if (mem->outcnt() == 1 &&           // check for intervening uses
2100         mem->as_Store()->memory_size() <= this->memory_size()) {
2101       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2102       // For example, 'mem' might be the final state at a conditional return.
2103       // Or, 'mem' might be used by some node which is live at the same time
2104       // 'this' is live, which might be unschedulable.  So, require exactly
2105       // ONE user, the 'this' store, until such time as we clone 'mem' for
2106       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2107       if (can_reshape) {  // (%%% is this an anachronism?)
2108         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2109                   phase->is_IterGVN());
2110       } else {
2111         // It's OK to do this in the parser, since DU info is always accurate,
2112         // and the parser always refers to nodes via SafePointNode maps.
2113         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2114       }
2115       return this;
2116     }
2117   }
2118 
2119   // Capture an unaliased, unconditional, simple store into an initializer.
2120   // Or, if it is independent of the allocation, hoist it above the allocation.
2121   if (ReduceFieldZeroing && /*can_reshape &&*/
2122       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2123     InitializeNode* init = mem->in(0)->as_Initialize();
2124     intptr_t offset = init->can_capture_store(this, phase);
2125     if (offset > 0) {
2126       Node* moved = init->capture_store(this, offset, phase);
2127       // If the InitializeNode captured me, it made a raw copy of me,
2128       // and I need to disappear.
2129       if (moved != NULL) {
2130         // %%% hack to ensure that Ideal returns a new node:
2131         mem = MergeMemNode::make(phase->C, mem);
2132         return mem;             // fold me away
2133       }
2134     }
2135   }
2136 
2137   return NULL;                  // No further progress
2138 }
2139 
2140 //------------------------------Value-----------------------------------------
2141 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2142   // Either input is TOP ==> the result is TOP
2143   const Type *t1 = phase->type( in(MemNode::Memory) );
2144   if( t1 == Type::TOP ) return Type::TOP;
2145   const Type *t2 = phase->type( in(MemNode::Address) );
2146   if( t2 == Type::TOP ) return Type::TOP;
2147   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2148   if( t3 == Type::TOP ) return Type::TOP;
2149   return Type::MEMORY;
2150 }
2151 
2152 //------------------------------Identity---------------------------------------
2153 // Remove redundant stores:
2154 //   Store(m, p, Load(m, p)) changes to m.
2155 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2156 Node *StoreNode::Identity( PhaseTransform *phase ) {
2157   Node* mem = in(MemNode::Memory);
2158   Node* adr = in(MemNode::Address);
2159   Node* val = in(MemNode::ValueIn);
2160 
2161   // Load then Store?  Then the Store is useless
2162   if (val->is_Load() &&
2163       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2164       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2165       val->as_Load()->store_Opcode() == Opcode()) {
2166     return mem;
2167   }
2168 
2169   // Two stores in a row of the same value?
2170   if (mem->is_Store() &&
2171       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2172       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2173       mem->Opcode() == Opcode()) {
2174     return mem;
2175   }
2176 
2177   // Store of zero anywhere into a freshly-allocated object?
2178   // Then the store is useless.
2179   // (It must already have been captured by the InitializeNode.)
2180   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2181     // a newly allocated object is already all-zeroes everywhere
2182     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2183       return mem;
2184     }
2185 
2186     // the store may also apply to zero-bits in an earlier object
2187     Node* prev_mem = find_previous_store(phase);
2188     // Steps (a), (b):  Walk past independent stores to find an exact match.
2189     if (prev_mem != NULL) {
2190       Node* prev_val = can_see_stored_value(prev_mem, phase);
2191       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2192         // prev_val and val might differ by a cast; it would be good
2193         // to keep the more informative of the two.
2194         return mem;
2195       }
2196     }
2197   }
2198 
2199   return this;
2200 }
2201 
2202 //------------------------------match_edge-------------------------------------
2203 // Do we Match on this edge index or not?  Match only memory & value
2204 uint StoreNode::match_edge(uint idx) const {
2205   return idx == MemNode::Address || idx == MemNode::ValueIn;
2206 }
2207 
2208 //------------------------------cmp--------------------------------------------
2209 // Do not common stores up together.  They generally have to be split
2210 // back up anyways, so do not bother.
2211 uint StoreNode::cmp( const Node &n ) const {
2212   return (&n == this);          // Always fail except on self
2213 }
2214 
2215 //------------------------------Ideal_masked_input-----------------------------
2216 // Check for a useless mask before a partial-word store
2217 // (StoreB ... (AndI valIn conIa) )
2218 // If (conIa & mask == mask) this simplifies to
2219 // (StoreB ... (valIn) )
2220 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2221   Node *val = in(MemNode::ValueIn);
2222   if( val->Opcode() == Op_AndI ) {
2223     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2224     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2225       set_req(MemNode::ValueIn, val->in(1));
2226       return this;
2227     }
2228   }
2229   return NULL;
2230 }
2231 
2232 
2233 //------------------------------Ideal_sign_extended_input----------------------
2234 // Check for useless sign-extension before a partial-word store
2235 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2236 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2237 // (StoreB ... (valIn) )
2238 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2239   Node *val = in(MemNode::ValueIn);
2240   if( val->Opcode() == Op_RShiftI ) {
2241     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2242     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2243       Node *shl = val->in(1);
2244       if( shl->Opcode() == Op_LShiftI ) {
2245         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2246         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2247           set_req(MemNode::ValueIn, shl->in(1));
2248           return this;
2249         }
2250       }
2251     }
2252   }
2253   return NULL;
2254 }
2255 
2256 //------------------------------value_never_loaded-----------------------------------
2257 // Determine whether there are any possible loads of the value stored.
2258 // For simplicity, we actually check if there are any loads from the
2259 // address stored to, not just for loads of the value stored by this node.
2260 //
2261 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2262   Node *adr = in(Address);
2263   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2264   if (adr_oop == NULL)
2265     return false;
2266   if (!adr_oop->is_known_instance_field())
2267     return false; // if not a distinct instance, there may be aliases of the address
2268   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2269     Node *use = adr->fast_out(i);
2270     int opc = use->Opcode();
2271     if (use->is_Load() || use->is_LoadStore()) {
2272       return false;
2273     }
2274   }
2275   return true;
2276 }
2277 
2278 //=============================================================================
2279 //------------------------------Ideal------------------------------------------
2280 // If the store is from an AND mask that leaves the low bits untouched, then
2281 // we can skip the AND operation.  If the store is from a sign-extension
2282 // (a left shift, then right shift) we can skip both.
2283 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2284   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2285   if( progress != NULL ) return progress;
2286 
2287   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2288   if( progress != NULL ) return progress;
2289 
2290   // Finally check the default case
2291   return StoreNode::Ideal(phase, can_reshape);
2292 }
2293 
2294 //=============================================================================
2295 //------------------------------Ideal------------------------------------------
2296 // If the store is from an AND mask that leaves the low bits untouched, then
2297 // we can skip the AND operation
2298 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2299   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2300   if( progress != NULL ) return progress;
2301 
2302   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2303   if( progress != NULL ) return progress;
2304 
2305   // Finally check the default case
2306   return StoreNode::Ideal(phase, can_reshape);
2307 }
2308 
2309 //=============================================================================
2310 //------------------------------Identity---------------------------------------
2311 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2312   // No need to card mark when storing a null ptr
2313   Node* my_store = in(MemNode::OopStore);
2314   if (my_store->is_Store()) {
2315     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2316     if( t1 == TypePtr::NULL_PTR ) {
2317       return in(MemNode::Memory);
2318     }
2319   }
2320   return this;
2321 }
2322 
2323 //=============================================================================
2324 //------------------------------Ideal---------------------------------------
2325 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2326   Node* progress = StoreNode::Ideal(phase, can_reshape);
2327   if (progress != NULL) return progress;
2328 
2329   Node* my_store = in(MemNode::OopStore);
2330   if (my_store->is_MergeMem()) {
2331     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2332     set_req(MemNode::OopStore, mem);
2333     return this;
2334   }
2335 
2336   return NULL;
2337 }
2338 
2339 //------------------------------Value-----------------------------------------
2340 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2341   // Either input is TOP ==> the result is TOP
2342   const Type *t = phase->type( in(MemNode::Memory) );
2343   if( t == Type::TOP ) return Type::TOP;
2344   t = phase->type( in(MemNode::Address) );
2345   if( t == Type::TOP ) return Type::TOP;
2346   t = phase->type( in(MemNode::ValueIn) );
2347   if( t == Type::TOP ) return Type::TOP;
2348   // If extra input is TOP ==> the result is TOP
2349   t = phase->type( in(MemNode::OopStore) );
2350   if( t == Type::TOP ) return Type::TOP;
2351 
2352   return StoreNode::Value( phase );
2353 }
2354 
2355 
2356 //=============================================================================
2357 //----------------------------------SCMemProjNode------------------------------
2358 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2359 {
2360   return bottom_type();
2361 }
2362 
2363 //=============================================================================
2364 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2365   init_req(MemNode::Control, c  );
2366   init_req(MemNode::Memory , mem);
2367   init_req(MemNode::Address, adr);
2368   init_req(MemNode::ValueIn, val);
2369   init_req(         ExpectedIn, ex );
2370   init_class_id(Class_LoadStore);
2371 
2372 }
2373 
2374 //=============================================================================
2375 //-------------------------------adr_type--------------------------------------
2376 // Do we Match on this edge index or not?  Do not match memory
2377 const TypePtr* ClearArrayNode::adr_type() const {
2378   Node *adr = in(3);
2379   return MemNode::calculate_adr_type(adr->bottom_type());
2380 }
2381 
2382 //------------------------------match_edge-------------------------------------
2383 // Do we Match on this edge index or not?  Do not match memory
2384 uint ClearArrayNode::match_edge(uint idx) const {
2385   return idx > 1;
2386 }
2387 
2388 //------------------------------Identity---------------------------------------
2389 // Clearing a zero length array does nothing
2390 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2391   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2392 }
2393 
2394 //------------------------------Idealize---------------------------------------
2395 // Clearing a short array is faster with stores
2396 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2397   const int unit = BytesPerLong;
2398   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2399   if (!t)  return NULL;
2400   if (!t->is_con())  return NULL;
2401   intptr_t raw_count = t->get_con();
2402   intptr_t size = raw_count;
2403   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2404   // Clearing nothing uses the Identity call.
2405   // Negative clears are possible on dead ClearArrays
2406   // (see jck test stmt114.stmt11402.val).
2407   if (size <= 0 || size % unit != 0)  return NULL;
2408   intptr_t count = size / unit;
2409   // Length too long; use fast hardware clear
2410   if (size > Matcher::init_array_short_size)  return NULL;
2411   Node *mem = in(1);
2412   if( phase->type(mem)==Type::TOP ) return NULL;
2413   Node *adr = in(3);
2414   const Type* at = phase->type(adr);
2415   if( at==Type::TOP ) return NULL;
2416   const TypePtr* atp = at->isa_ptr();
2417   // adjust atp to be the correct array element address type
2418   if (atp == NULL)  atp = TypePtr::BOTTOM;
2419   else              atp = atp->add_offset(Type::OffsetBot);
2420   // Get base for derived pointer purposes
2421   if( adr->Opcode() != Op_AddP ) Unimplemented();
2422   Node *base = adr->in(1);
2423 
2424   Node *zero = phase->makecon(TypeLong::ZERO);
2425   Node *off  = phase->MakeConX(BytesPerLong);
2426   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2427   count--;
2428   while( count-- ) {
2429     mem = phase->transform(mem);
2430     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2431     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2432   }
2433   return mem;
2434 }
2435 
2436 //----------------------------clear_memory-------------------------------------
2437 // Generate code to initialize object storage to zero.
2438 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2439                                    intptr_t start_offset,
2440                                    Node* end_offset,
2441                                    PhaseGVN* phase) {
2442   Compile* C = phase->C;
2443   intptr_t offset = start_offset;
2444 
2445   int unit = BytesPerLong;
2446   if ((offset % unit) != 0) {
2447     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2448     adr = phase->transform(adr);
2449     const TypePtr* atp = TypeRawPtr::BOTTOM;
2450     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2451     mem = phase->transform(mem);
2452     offset += BytesPerInt;
2453   }
2454   assert((offset % unit) == 0, "");
2455 
2456   // Initialize the remaining stuff, if any, with a ClearArray.
2457   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2458 }
2459 
2460 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2461                                    Node* start_offset,
2462                                    Node* end_offset,
2463                                    PhaseGVN* phase) {
2464   if (start_offset == end_offset) {
2465     // nothing to do
2466     return mem;
2467   }
2468 
2469   Compile* C = phase->C;
2470   int unit = BytesPerLong;
2471   Node* zbase = start_offset;
2472   Node* zend  = end_offset;
2473 
2474   // Scale to the unit required by the CPU:
2475   if (!Matcher::init_array_count_is_in_bytes) {
2476     Node* shift = phase->intcon(exact_log2(unit));
2477     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2478     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2479   }
2480 
2481   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2482   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2483 
2484   // Bulk clear double-words
2485   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2486   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2487   return phase->transform(mem);
2488 }
2489 
2490 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2491                                    intptr_t start_offset,
2492                                    intptr_t end_offset,
2493                                    PhaseGVN* phase) {
2494   if (start_offset == end_offset) {
2495     // nothing to do
2496     return mem;
2497   }
2498 
2499   Compile* C = phase->C;
2500   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2501   intptr_t done_offset = end_offset;
2502   if ((done_offset % BytesPerLong) != 0) {
2503     done_offset -= BytesPerInt;
2504   }
2505   if (done_offset > start_offset) {
2506     mem = clear_memory(ctl, mem, dest,
2507                        start_offset, phase->MakeConX(done_offset), phase);
2508   }
2509   if (done_offset < end_offset) { // emit the final 32-bit store
2510     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2511     adr = phase->transform(adr);
2512     const TypePtr* atp = TypeRawPtr::BOTTOM;
2513     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2514     mem = phase->transform(mem);
2515     done_offset += BytesPerInt;
2516   }
2517   assert(done_offset == end_offset, "");
2518   return mem;
2519 }
2520 
2521 //=============================================================================
2522 // Do we match on this edge? No memory edges
2523 uint StrCompNode::match_edge(uint idx) const {
2524   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
2525 }
2526 
2527 //------------------------------Ideal------------------------------------------
2528 // Return a node which is more "ideal" than the current node.  Strip out
2529 // control copies
2530 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2531   return remove_dead_region(phase, can_reshape) ? this : NULL;
2532 }
2533 
2534 //=============================================================================
2535 // Do we match on this edge? No memory edges
2536 uint StrEqualsNode::match_edge(uint idx) const {
2537   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
2538 }
2539 
2540 //------------------------------Ideal------------------------------------------
2541 // Return a node which is more "ideal" than the current node.  Strip out
2542 // control copies
2543 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2544   return remove_dead_region(phase, can_reshape) ? this : NULL;
2545 }
2546 
2547 //=============================================================================
2548 // Do we match on this edge? No memory edges
2549 uint StrIndexOfNode::match_edge(uint idx) const {
2550   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
2551 }
2552 
2553 //------------------------------Ideal------------------------------------------
2554 // Return a node which is more "ideal" than the current node.  Strip out
2555 // control copies
2556 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2557   return remove_dead_region(phase, can_reshape) ? this : NULL;
2558 }
2559 
2560 //=============================================================================
2561 // Do we match on this edge? No memory edges
2562 uint AryEqNode::match_edge(uint idx) const {
2563   return idx == 2 || idx == 3; // StrEquals ary1 ary2
2564 }
2565 //------------------------------Ideal------------------------------------------
2566 // Return a node which is more "ideal" than the current node.  Strip out
2567 // control copies
2568 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2569   return remove_dead_region(phase, can_reshape) ? this : NULL;
2570 }
2571 
2572 //=============================================================================
2573 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2574   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2575     _adr_type(C->get_adr_type(alias_idx))
2576 {
2577   init_class_id(Class_MemBar);
2578   Node* top = C->top();
2579   init_req(TypeFunc::I_O,top);
2580   init_req(TypeFunc::FramePtr,top);
2581   init_req(TypeFunc::ReturnAdr,top);
2582   if (precedent != NULL)
2583     init_req(TypeFunc::Parms, precedent);
2584 }
2585 
2586 //------------------------------cmp--------------------------------------------
2587 uint MemBarNode::hash() const { return NO_HASH; }
2588 uint MemBarNode::cmp( const Node &n ) const {
2589   return (&n == this);          // Always fail except on self
2590 }
2591 
2592 //------------------------------make-------------------------------------------
2593 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2594   int len = Precedent + (pn == NULL? 0: 1);
2595   switch (opcode) {
2596   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2597   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2598   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2599   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2600   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2601   default:                 ShouldNotReachHere(); return NULL;
2602   }
2603 }
2604 
2605 //------------------------------Ideal------------------------------------------
2606 // Return a node which is more "ideal" than the current node.  Strip out
2607 // control copies
2608 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2609   return remove_dead_region(phase, can_reshape) ? this : NULL;
2610 }
2611 
2612 //------------------------------Value------------------------------------------
2613 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2614   if( !in(0) ) return Type::TOP;
2615   if( phase->type(in(0)) == Type::TOP )
2616     return Type::TOP;
2617   return TypeTuple::MEMBAR;
2618 }
2619 
2620 //------------------------------match------------------------------------------
2621 // Construct projections for memory.
2622 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2623   switch (proj->_con) {
2624   case TypeFunc::Control:
2625   case TypeFunc::Memory:
2626     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2627   }
2628   ShouldNotReachHere();
2629   return NULL;
2630 }
2631 
2632 //===========================InitializeNode====================================
2633 // SUMMARY:
2634 // This node acts as a memory barrier on raw memory, after some raw stores.
2635 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2636 // The Initialize can 'capture' suitably constrained stores as raw inits.
2637 // It can coalesce related raw stores into larger units (called 'tiles').
2638 // It can avoid zeroing new storage for memory units which have raw inits.
2639 // At macro-expansion, it is marked 'complete', and does not optimize further.
2640 //
2641 // EXAMPLE:
2642 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2643 //   ctl = incoming control; mem* = incoming memory
2644 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2645 // First allocate uninitialized memory and fill in the header:
2646 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2647 //   ctl := alloc.Control; mem* := alloc.Memory*
2648 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2649 // Then initialize to zero the non-header parts of the raw memory block:
2650 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2651 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2652 // After the initialize node executes, the object is ready for service:
2653 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2654 // Suppose its body is immediately initialized as {1,2}:
2655 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2656 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2657 //   mem.SLICE(#short[*]) := store2
2658 //
2659 // DETAILS:
2660 // An InitializeNode collects and isolates object initialization after
2661 // an AllocateNode and before the next possible safepoint.  As a
2662 // memory barrier (MemBarNode), it keeps critical stores from drifting
2663 // down past any safepoint or any publication of the allocation.
2664 // Before this barrier, a newly-allocated object may have uninitialized bits.
2665 // After this barrier, it may be treated as a real oop, and GC is allowed.
2666 //
2667 // The semantics of the InitializeNode include an implicit zeroing of
2668 // the new object from object header to the end of the object.
2669 // (The object header and end are determined by the AllocateNode.)
2670 //
2671 // Certain stores may be added as direct inputs to the InitializeNode.
2672 // These stores must update raw memory, and they must be to addresses
2673 // derived from the raw address produced by AllocateNode, and with
2674 // a constant offset.  They must be ordered by increasing offset.
2675 // The first one is at in(RawStores), the last at in(req()-1).
2676 // Unlike most memory operations, they are not linked in a chain,
2677 // but are displayed in parallel as users of the rawmem output of
2678 // the allocation.
2679 //
2680 // (See comments in InitializeNode::capture_store, which continue
2681 // the example given above.)
2682 //
2683 // When the associated Allocate is macro-expanded, the InitializeNode
2684 // may be rewritten to optimize collected stores.  A ClearArrayNode
2685 // may also be created at that point to represent any required zeroing.
2686 // The InitializeNode is then marked 'complete', prohibiting further
2687 // capturing of nearby memory operations.
2688 //
2689 // During macro-expansion, all captured initializations which store
2690 // constant values of 32 bits or smaller are coalesced (if advantageous)
2691 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2692 // initialized in fewer memory operations.  Memory words which are
2693 // covered by neither tiles nor non-constant stores are pre-zeroed
2694 // by explicit stores of zero.  (The code shape happens to do all
2695 // zeroing first, then all other stores, with both sequences occurring
2696 // in order of ascending offsets.)
2697 //
2698 // Alternatively, code may be inserted between an AllocateNode and its
2699 // InitializeNode, to perform arbitrary initialization of the new object.
2700 // E.g., the object copying intrinsics insert complex data transfers here.
2701 // The initialization must then be marked as 'complete' disable the
2702 // built-in zeroing semantics and the collection of initializing stores.
2703 //
2704 // While an InitializeNode is incomplete, reads from the memory state
2705 // produced by it are optimizable if they match the control edge and
2706 // new oop address associated with the allocation/initialization.
2707 // They return a stored value (if the offset matches) or else zero.
2708 // A write to the memory state, if it matches control and address,
2709 // and if it is to a constant offset, may be 'captured' by the
2710 // InitializeNode.  It is cloned as a raw memory operation and rewired
2711 // inside the initialization, to the raw oop produced by the allocation.
2712 // Operations on addresses which are provably distinct (e.g., to
2713 // other AllocateNodes) are allowed to bypass the initialization.
2714 //
2715 // The effect of all this is to consolidate object initialization
2716 // (both arrays and non-arrays, both piecewise and bulk) into a
2717 // single location, where it can be optimized as a unit.
2718 //
2719 // Only stores with an offset less than TrackedInitializationLimit words
2720 // will be considered for capture by an InitializeNode.  This puts a
2721 // reasonable limit on the complexity of optimized initializations.
2722 
2723 //---------------------------InitializeNode------------------------------------
2724 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2725   : _is_complete(false),
2726     MemBarNode(C, adr_type, rawoop)
2727 {
2728   init_class_id(Class_Initialize);
2729 
2730   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2731   assert(in(RawAddress) == rawoop, "proper init");
2732   // Note:  allocation() can be NULL, for secondary initialization barriers
2733 }
2734 
2735 // Since this node is not matched, it will be processed by the
2736 // register allocator.  Declare that there are no constraints
2737 // on the allocation of the RawAddress edge.
2738 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2739   // This edge should be set to top, by the set_complete.  But be conservative.
2740   if (idx == InitializeNode::RawAddress)
2741     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2742   return RegMask::Empty;
2743 }
2744 
2745 Node* InitializeNode::memory(uint alias_idx) {
2746   Node* mem = in(Memory);
2747   if (mem->is_MergeMem()) {
2748     return mem->as_MergeMem()->memory_at(alias_idx);
2749   } else {
2750     // incoming raw memory is not split
2751     return mem;
2752   }
2753 }
2754 
2755 bool InitializeNode::is_non_zero() {
2756   if (is_complete())  return false;
2757   remove_extra_zeroes();
2758   return (req() > RawStores);
2759 }
2760 
2761 void InitializeNode::set_complete(PhaseGVN* phase) {
2762   assert(!is_complete(), "caller responsibility");
2763   _is_complete = true;
2764 
2765   // After this node is complete, it contains a bunch of
2766   // raw-memory initializations.  There is no need for
2767   // it to have anything to do with non-raw memory effects.
2768   // Therefore, tell all non-raw users to re-optimize themselves,
2769   // after skipping the memory effects of this initialization.
2770   PhaseIterGVN* igvn = phase->is_IterGVN();
2771   if (igvn)  igvn->add_users_to_worklist(this);
2772 }
2773 
2774 // convenience function
2775 // return false if the init contains any stores already
2776 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2777   InitializeNode* init = initialization();
2778   if (init == NULL || init->is_complete())  return false;
2779   init->remove_extra_zeroes();
2780   // for now, if this allocation has already collected any inits, bail:
2781   if (init->is_non_zero())  return false;
2782   init->set_complete(phase);
2783   return true;
2784 }
2785 
2786 void InitializeNode::remove_extra_zeroes() {
2787   if (req() == RawStores)  return;
2788   Node* zmem = zero_memory();
2789   uint fill = RawStores;
2790   for (uint i = fill; i < req(); i++) {
2791     Node* n = in(i);
2792     if (n->is_top() || n == zmem)  continue;  // skip
2793     if (fill < i)  set_req(fill, n);          // compact
2794     ++fill;
2795   }
2796   // delete any empty spaces created:
2797   while (fill < req()) {
2798     del_req(fill);
2799   }
2800 }
2801 
2802 // Helper for remembering which stores go with which offsets.
2803 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2804   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2805   intptr_t offset = -1;
2806   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2807                                                phase, offset);
2808   if (base == NULL)     return -1;  // something is dead,
2809   if (offset < 0)       return -1;  //        dead, dead
2810   return offset;
2811 }
2812 
2813 // Helper for proving that an initialization expression is
2814 // "simple enough" to be folded into an object initialization.
2815 // Attempts to prove that a store's initial value 'n' can be captured
2816 // within the initialization without creating a vicious cycle, such as:
2817 //     { Foo p = new Foo(); p.next = p; }
2818 // True for constants and parameters and small combinations thereof.
2819 bool InitializeNode::detect_init_independence(Node* n,
2820                                               bool st_is_pinned,
2821                                               int& count) {
2822   if (n == NULL)      return true;   // (can this really happen?)
2823   if (n->is_Proj())   n = n->in(0);
2824   if (n == this)      return false;  // found a cycle
2825   if (n->is_Con())    return true;
2826   if (n->is_Start())  return true;   // params, etc., are OK
2827   if (n->is_Root())   return true;   // even better
2828 
2829   Node* ctl = n->in(0);
2830   if (ctl != NULL && !ctl->is_top()) {
2831     if (ctl->is_Proj())  ctl = ctl->in(0);
2832     if (ctl == this)  return false;
2833 
2834     // If we already know that the enclosing memory op is pinned right after
2835     // the init, then any control flow that the store has picked up
2836     // must have preceded the init, or else be equal to the init.
2837     // Even after loop optimizations (which might change control edges)
2838     // a store is never pinned *before* the availability of its inputs.
2839     if (!MemNode::all_controls_dominate(n, this))
2840       return false;                  // failed to prove a good control
2841 
2842   }
2843 
2844   // Check data edges for possible dependencies on 'this'.
2845   if ((count += 1) > 20)  return false;  // complexity limit
2846   for (uint i = 1; i < n->req(); i++) {
2847     Node* m = n->in(i);
2848     if (m == NULL || m == n || m->is_top())  continue;
2849     uint first_i = n->find_edge(m);
2850     if (i != first_i)  continue;  // process duplicate edge just once
2851     if (!detect_init_independence(m, st_is_pinned, count)) {
2852       return false;
2853     }
2854   }
2855 
2856   return true;
2857 }
2858 
2859 // Here are all the checks a Store must pass before it can be moved into
2860 // an initialization.  Returns zero if a check fails.
2861 // On success, returns the (constant) offset to which the store applies,
2862 // within the initialized memory.
2863 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2864   const int FAIL = 0;
2865   if (st->req() != MemNode::ValueIn + 1)
2866     return FAIL;                // an inscrutable StoreNode (card mark?)
2867   Node* ctl = st->in(MemNode::Control);
2868   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2869     return FAIL;                // must be unconditional after the initialization
2870   Node* mem = st->in(MemNode::Memory);
2871   if (!(mem->is_Proj() && mem->in(0) == this))
2872     return FAIL;                // must not be preceded by other stores
2873   Node* adr = st->in(MemNode::Address);
2874   intptr_t offset;
2875   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2876   if (alloc == NULL)
2877     return FAIL;                // inscrutable address
2878   if (alloc != allocation())
2879     return FAIL;                // wrong allocation!  (store needs to float up)
2880   Node* val = st->in(MemNode::ValueIn);
2881   int complexity_count = 0;
2882   if (!detect_init_independence(val, true, complexity_count))
2883     return FAIL;                // stored value must be 'simple enough'
2884 
2885   return offset;                // success
2886 }
2887 
2888 // Find the captured store in(i) which corresponds to the range
2889 // [start..start+size) in the initialized object.
2890 // If there is one, return its index i.  If there isn't, return the
2891 // negative of the index where it should be inserted.
2892 // Return 0 if the queried range overlaps an initialization boundary
2893 // or if dead code is encountered.
2894 // If size_in_bytes is zero, do not bother with overlap checks.
2895 int InitializeNode::captured_store_insertion_point(intptr_t start,
2896                                                    int size_in_bytes,
2897                                                    PhaseTransform* phase) {
2898   const int FAIL = 0, MAX_STORE = BytesPerLong;
2899 
2900   if (is_complete())
2901     return FAIL;                // arraycopy got here first; punt
2902 
2903   assert(allocation() != NULL, "must be present");
2904 
2905   // no negatives, no header fields:
2906   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2907 
2908   // after a certain size, we bail out on tracking all the stores:
2909   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2910   if (start >= ti_limit)  return FAIL;
2911 
2912   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2913     if (i >= limit)  return -(int)i; // not found; here is where to put it
2914 
2915     Node*    st     = in(i);
2916     intptr_t st_off = get_store_offset(st, phase);
2917     if (st_off < 0) {
2918       if (st != zero_memory()) {
2919         return FAIL;            // bail out if there is dead garbage
2920       }
2921     } else if (st_off > start) {
2922       // ...we are done, since stores are ordered
2923       if (st_off < start + size_in_bytes) {
2924         return FAIL;            // the next store overlaps
2925       }
2926       return -(int)i;           // not found; here is where to put it
2927     } else if (st_off < start) {
2928       if (size_in_bytes != 0 &&
2929           start < st_off + MAX_STORE &&
2930           start < st_off + st->as_Store()->memory_size()) {
2931         return FAIL;            // the previous store overlaps
2932       }
2933     } else {
2934       if (size_in_bytes != 0 &&
2935           st->as_Store()->memory_size() != size_in_bytes) {
2936         return FAIL;            // mismatched store size
2937       }
2938       return i;
2939     }
2940 
2941     ++i;
2942   }
2943 }
2944 
2945 // Look for a captured store which initializes at the offset 'start'
2946 // with the given size.  If there is no such store, and no other
2947 // initialization interferes, then return zero_memory (the memory
2948 // projection of the AllocateNode).
2949 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2950                                           PhaseTransform* phase) {
2951   assert(stores_are_sane(phase), "");
2952   int i = captured_store_insertion_point(start, size_in_bytes, phase);
2953   if (i == 0) {
2954     return NULL;                // something is dead
2955   } else if (i < 0) {
2956     return zero_memory();       // just primordial zero bits here
2957   } else {
2958     Node* st = in(i);           // here is the store at this position
2959     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2960     return st;
2961   }
2962 }
2963 
2964 // Create, as a raw pointer, an address within my new object at 'offset'.
2965 Node* InitializeNode::make_raw_address(intptr_t offset,
2966                                        PhaseTransform* phase) {
2967   Node* addr = in(RawAddress);
2968   if (offset != 0) {
2969     Compile* C = phase->C;
2970     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2971                                                  phase->MakeConX(offset)) );
2972   }
2973   return addr;
2974 }
2975 
2976 // Clone the given store, converting it into a raw store
2977 // initializing a field or element of my new object.
2978 // Caller is responsible for retiring the original store,
2979 // with subsume_node or the like.
2980 //
2981 // From the example above InitializeNode::InitializeNode,
2982 // here are the old stores to be captured:
2983 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2984 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2985 //
2986 // Here is the changed code; note the extra edges on init:
2987 //   alloc = (Allocate ...)
2988 //   rawoop = alloc.RawAddress
2989 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2990 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2991 //   init = (Initialize alloc.Control alloc.Memory rawoop
2992 //                      rawstore1 rawstore2)
2993 //
2994 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2995                                     PhaseTransform* phase) {
2996   assert(stores_are_sane(phase), "");
2997 
2998   if (start < 0)  return NULL;
2999   assert(can_capture_store(st, phase) == start, "sanity");
3000 
3001   Compile* C = phase->C;
3002   int size_in_bytes = st->memory_size();
3003   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3004   if (i == 0)  return NULL;     // bail out
3005   Node* prev_mem = NULL;        // raw memory for the captured store
3006   if (i > 0) {
3007     prev_mem = in(i);           // there is a pre-existing store under this one
3008     set_req(i, C->top());       // temporarily disconnect it
3009     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3010   } else {
3011     i = -i;                     // no pre-existing store
3012     prev_mem = zero_memory();   // a slice of the newly allocated object
3013     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3014       set_req(--i, C->top());   // reuse this edge; it has been folded away
3015     else
3016       ins_req(i, C->top());     // build a new edge
3017   }
3018   Node* new_st = st->clone();
3019   new_st->set_req(MemNode::Control, in(Control));
3020   new_st->set_req(MemNode::Memory,  prev_mem);
3021   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3022   new_st = phase->transform(new_st);
3023 
3024   // At this point, new_st might have swallowed a pre-existing store
3025   // at the same offset, or perhaps new_st might have disappeared,
3026   // if it redundantly stored the same value (or zero to fresh memory).
3027 
3028   // In any case, wire it in:
3029   set_req(i, new_st);
3030 
3031   // The caller may now kill the old guy.
3032   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3033   assert(check_st == new_st || check_st == NULL, "must be findable");
3034   assert(!is_complete(), "");
3035   return new_st;
3036 }
3037 
3038 static bool store_constant(jlong* tiles, int num_tiles,
3039                            intptr_t st_off, int st_size,
3040                            jlong con) {
3041   if ((st_off & (st_size-1)) != 0)
3042     return false;               // strange store offset (assume size==2**N)
3043   address addr = (address)tiles + st_off;
3044   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3045   switch (st_size) {
3046   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3047   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3048   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3049   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3050   default: return false;        // strange store size (detect size!=2**N here)
3051   }
3052   return true;                  // return success to caller
3053 }
3054 
3055 // Coalesce subword constants into int constants and possibly
3056 // into long constants.  The goal, if the CPU permits,
3057 // is to initialize the object with a small number of 64-bit tiles.
3058 // Also, convert floating-point constants to bit patterns.
3059 // Non-constants are not relevant to this pass.
3060 //
3061 // In terms of the running example on InitializeNode::InitializeNode
3062 // and InitializeNode::capture_store, here is the transformation
3063 // of rawstore1 and rawstore2 into rawstore12:
3064 //   alloc = (Allocate ...)
3065 //   rawoop = alloc.RawAddress
3066 //   tile12 = 0x00010002
3067 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3068 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3069 //
3070 void
3071 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3072                                         Node* size_in_bytes,
3073                                         PhaseGVN* phase) {
3074   Compile* C = phase->C;
3075 
3076   assert(stores_are_sane(phase), "");
3077   // Note:  After this pass, they are not completely sane,
3078   // since there may be some overlaps.
3079 
3080   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3081 
3082   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3083   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3084   size_limit = MIN2(size_limit, ti_limit);
3085   size_limit = align_size_up(size_limit, BytesPerLong);
3086   int num_tiles = size_limit / BytesPerLong;
3087 
3088   // allocate space for the tile map:
3089   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3090   jlong  tiles_buf[small_len];
3091   Node*  nodes_buf[small_len];
3092   jlong  inits_buf[small_len];
3093   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3094                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3095   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3096                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3097   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3098                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3099   // tiles: exact bitwise model of all primitive constants
3100   // nodes: last constant-storing node subsumed into the tiles model
3101   // inits: which bytes (in each tile) are touched by any initializations
3102 
3103   //// Pass A: Fill in the tile model with any relevant stores.
3104 
3105   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3106   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3107   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3108   Node* zmem = zero_memory(); // initially zero memory state
3109   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3110     Node* st = in(i);
3111     intptr_t st_off = get_store_offset(st, phase);
3112 
3113     // Figure out the store's offset and constant value:
3114     if (st_off < header_size)             continue; //skip (ignore header)
3115     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3116     int st_size = st->as_Store()->memory_size();
3117     if (st_off + st_size > size_limit)    break;
3118 
3119     // Record which bytes are touched, whether by constant or not.
3120     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3121       continue;                 // skip (strange store size)
3122 
3123     const Type* val = phase->type(st->in(MemNode::ValueIn));
3124     if (!val->singleton())                continue; //skip (non-con store)
3125     BasicType type = val->basic_type();
3126 
3127     jlong con = 0;
3128     switch (type) {
3129     case T_INT:    con = val->is_int()->get_con();  break;
3130     case T_LONG:   con = val->is_long()->get_con(); break;
3131     case T_FLOAT:  con = jint_cast(val->getf());    break;
3132     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3133     default:                              continue; //skip (odd store type)
3134     }
3135 
3136     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3137         st->Opcode() == Op_StoreL) {
3138       continue;                 // This StoreL is already optimal.
3139     }
3140 
3141     // Store down the constant.
3142     store_constant(tiles, num_tiles, st_off, st_size, con);
3143 
3144     intptr_t j = st_off >> LogBytesPerLong;
3145 
3146     if (type == T_INT && st_size == BytesPerInt
3147         && (st_off & BytesPerInt) == BytesPerInt) {
3148       jlong lcon = tiles[j];
3149       if (!Matcher::isSimpleConstant64(lcon) &&
3150           st->Opcode() == Op_StoreI) {
3151         // This StoreI is already optimal by itself.
3152         jint* intcon = (jint*) &tiles[j];
3153         intcon[1] = 0;  // undo the store_constant()
3154 
3155         // If the previous store is also optimal by itself, back up and
3156         // undo the action of the previous loop iteration... if we can.
3157         // But if we can't, just let the previous half take care of itself.
3158         st = nodes[j];
3159         st_off -= BytesPerInt;
3160         con = intcon[0];
3161         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3162           assert(st_off >= header_size, "still ignoring header");
3163           assert(get_store_offset(st, phase) == st_off, "must be");
3164           assert(in(i-1) == zmem, "must be");
3165           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3166           assert(con == tcon->is_int()->get_con(), "must be");
3167           // Undo the effects of the previous loop trip, which swallowed st:
3168           intcon[0] = 0;        // undo store_constant()
3169           set_req(i-1, st);     // undo set_req(i, zmem)
3170           nodes[j] = NULL;      // undo nodes[j] = st
3171           --old_subword;        // undo ++old_subword
3172         }
3173         continue;               // This StoreI is already optimal.
3174       }
3175     }
3176 
3177     // This store is not needed.
3178     set_req(i, zmem);
3179     nodes[j] = st;              // record for the moment
3180     if (st_size < BytesPerLong) // something has changed
3181           ++old_subword;        // includes int/float, but who's counting...
3182     else  ++old_long;
3183   }
3184 
3185   if ((old_subword + old_long) == 0)
3186     return;                     // nothing more to do
3187 
3188   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3189   // Be sure to insert them before overlapping non-constant stores.
3190   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3191   for (int j = 0; j < num_tiles; j++) {
3192     jlong con  = tiles[j];
3193     jlong init = inits[j];
3194     if (con == 0)  continue;
3195     jint con0,  con1;           // split the constant, address-wise
3196     jint init0, init1;          // split the init map, address-wise
3197     { union { jlong con; jint intcon[2]; } u;
3198       u.con = con;
3199       con0  = u.intcon[0];
3200       con1  = u.intcon[1];
3201       u.con = init;
3202       init0 = u.intcon[0];
3203       init1 = u.intcon[1];
3204     }
3205 
3206     Node* old = nodes[j];
3207     assert(old != NULL, "need the prior store");
3208     intptr_t offset = (j * BytesPerLong);
3209 
3210     bool split = !Matcher::isSimpleConstant64(con);
3211 
3212     if (offset < header_size) {
3213       assert(offset + BytesPerInt >= header_size, "second int counts");
3214       assert(*(jint*)&tiles[j] == 0, "junk in header");
3215       split = true;             // only the second word counts
3216       // Example:  int a[] = { 42 ... }
3217     } else if (con0 == 0 && init0 == -1) {
3218       split = true;             // first word is covered by full inits
3219       // Example:  int a[] = { ... foo(), 42 ... }
3220     } else if (con1 == 0 && init1 == -1) {
3221       split = true;             // second word is covered by full inits
3222       // Example:  int a[] = { ... 42, foo() ... }
3223     }
3224 
3225     // Here's a case where init0 is neither 0 nor -1:
3226     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3227     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3228     // In this case the tile is not split; it is (jlong)42.
3229     // The big tile is stored down, and then the foo() value is inserted.
3230     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3231 
3232     Node* ctl = old->in(MemNode::Control);
3233     Node* adr = make_raw_address(offset, phase);
3234     const TypePtr* atp = TypeRawPtr::BOTTOM;
3235 
3236     // One or two coalesced stores to plop down.
3237     Node*    st[2];
3238     intptr_t off[2];
3239     int  nst = 0;
3240     if (!split) {
3241       ++new_long;
3242       off[nst] = offset;
3243       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3244                                   phase->longcon(con), T_LONG);
3245     } else {
3246       // Omit either if it is a zero.
3247       if (con0 != 0) {
3248         ++new_int;
3249         off[nst]  = offset;
3250         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3251                                     phase->intcon(con0), T_INT);
3252       }
3253       if (con1 != 0) {
3254         ++new_int;
3255         offset += BytesPerInt;
3256         adr = make_raw_address(offset, phase);
3257         off[nst]  = offset;
3258         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3259                                     phase->intcon(con1), T_INT);
3260       }
3261     }
3262 
3263     // Insert second store first, then the first before the second.
3264     // Insert each one just before any overlapping non-constant stores.
3265     while (nst > 0) {
3266       Node* st1 = st[--nst];
3267       C->copy_node_notes_to(st1, old);
3268       st1 = phase->transform(st1);
3269       offset = off[nst];
3270       assert(offset >= header_size, "do not smash header");
3271       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3272       guarantee(ins_idx != 0, "must re-insert constant store");
3273       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3274       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3275         set_req(--ins_idx, st1);
3276       else
3277         ins_req(ins_idx, st1);
3278     }
3279   }
3280 
3281   if (PrintCompilation && WizardMode)
3282     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3283                   old_subword, old_long, new_int, new_long);
3284   if (C->log() != NULL)
3285     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3286                    old_subword, old_long, new_int, new_long);
3287 
3288   // Clean up any remaining occurrences of zmem:
3289   remove_extra_zeroes();
3290 }
3291 
3292 // Explore forward from in(start) to find the first fully initialized
3293 // word, and return its offset.  Skip groups of subword stores which
3294 // together initialize full words.  If in(start) is itself part of a
3295 // fully initialized word, return the offset of in(start).  If there
3296 // are no following full-word stores, or if something is fishy, return
3297 // a negative value.
3298 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3299   int       int_map = 0;
3300   intptr_t  int_map_off = 0;
3301   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3302 
3303   for (uint i = start, limit = req(); i < limit; i++) {
3304     Node* st = in(i);
3305 
3306     intptr_t st_off = get_store_offset(st, phase);
3307     if (st_off < 0)  break;  // return conservative answer
3308 
3309     int st_size = st->as_Store()->memory_size();
3310     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3311       return st_off;            // we found a complete word init
3312     }
3313 
3314     // update the map:
3315 
3316     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3317     if (this_int_off != int_map_off) {
3318       // reset the map:
3319       int_map = 0;
3320       int_map_off = this_int_off;
3321     }
3322 
3323     int subword_off = st_off - this_int_off;
3324     int_map |= right_n_bits(st_size) << subword_off;
3325     if ((int_map & FULL_MAP) == FULL_MAP) {
3326       return this_int_off;      // we found a complete word init
3327     }
3328 
3329     // Did this store hit or cross the word boundary?
3330     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3331     if (next_int_off == this_int_off + BytesPerInt) {
3332       // We passed the current int, without fully initializing it.
3333       int_map_off = next_int_off;
3334       int_map >>= BytesPerInt;
3335     } else if (next_int_off > this_int_off + BytesPerInt) {
3336       // We passed the current and next int.
3337       return this_int_off + BytesPerInt;
3338     }
3339   }
3340 
3341   return -1;
3342 }
3343 
3344 
3345 // Called when the associated AllocateNode is expanded into CFG.
3346 // At this point, we may perform additional optimizations.
3347 // Linearize the stores by ascending offset, to make memory
3348 // activity as coherent as possible.
3349 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3350                                       intptr_t header_size,
3351                                       Node* size_in_bytes,
3352                                       PhaseGVN* phase) {
3353   assert(!is_complete(), "not already complete");
3354   assert(stores_are_sane(phase), "");
3355   assert(allocation() != NULL, "must be present");
3356 
3357   remove_extra_zeroes();
3358 
3359   if (ReduceFieldZeroing || ReduceBulkZeroing)
3360     // reduce instruction count for common initialization patterns
3361     coalesce_subword_stores(header_size, size_in_bytes, phase);
3362 
3363   Node* zmem = zero_memory();   // initially zero memory state
3364   Node* inits = zmem;           // accumulating a linearized chain of inits
3365   #ifdef ASSERT
3366   intptr_t first_offset = allocation()->minimum_header_size();
3367   intptr_t last_init_off = first_offset;  // previous init offset
3368   intptr_t last_init_end = first_offset;  // previous init offset+size
3369   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3370   #endif
3371   intptr_t zeroes_done = header_size;
3372 
3373   bool do_zeroing = true;       // we might give up if inits are very sparse
3374   int  big_init_gaps = 0;       // how many large gaps have we seen?
3375 
3376   if (ZeroTLAB)  do_zeroing = false;
3377   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3378 
3379   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3380     Node* st = in(i);
3381     intptr_t st_off = get_store_offset(st, phase);
3382     if (st_off < 0)
3383       break;                    // unknown junk in the inits
3384     if (st->in(MemNode::Memory) != zmem)
3385       break;                    // complicated store chains somehow in list
3386 
3387     int st_size = st->as_Store()->memory_size();
3388     intptr_t next_init_off = st_off + st_size;
3389 
3390     if (do_zeroing && zeroes_done < next_init_off) {
3391       // See if this store needs a zero before it or under it.
3392       intptr_t zeroes_needed = st_off;
3393 
3394       if (st_size < BytesPerInt) {
3395         // Look for subword stores which only partially initialize words.
3396         // If we find some, we must lay down some word-level zeroes first,
3397         // underneath the subword stores.
3398         //
3399         // Examples:
3400         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3401         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3402         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3403         //
3404         // Note:  coalesce_subword_stores may have already done this,
3405         // if it was prompted by constant non-zero subword initializers.
3406         // But this case can still arise with non-constant stores.
3407 
3408         intptr_t next_full_store = find_next_fullword_store(i, phase);
3409 
3410         // In the examples above:
3411         //   in(i)          p   q   r   s     x   y     z
3412         //   st_off        12  13  14  15    12  13    14
3413         //   st_size        1   1   1   1     1   1     1
3414         //   next_full_s.  12  16  16  16    16  16    16
3415         //   z's_done      12  16  16  16    12  16    12
3416         //   z's_needed    12  16  16  16    16  16    16
3417         //   zsize          0   0   0   0     4   0     4
3418         if (next_full_store < 0) {
3419           // Conservative tack:  Zero to end of current word.
3420           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3421         } else {
3422           // Zero to beginning of next fully initialized word.
3423           // Or, don't zero at all, if we are already in that word.
3424           assert(next_full_store >= zeroes_needed, "must go forward");
3425           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3426           zeroes_needed = next_full_store;
3427         }
3428       }
3429 
3430       if (zeroes_needed > zeroes_done) {
3431         intptr_t zsize = zeroes_needed - zeroes_done;
3432         // Do some incremental zeroing on rawmem, in parallel with inits.
3433         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3434         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3435                                               zeroes_done, zeroes_needed,
3436                                               phase);
3437         zeroes_done = zeroes_needed;
3438         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3439           do_zeroing = false;   // leave the hole, next time
3440       }
3441     }
3442 
3443     // Collect the store and move on:
3444     st->set_req(MemNode::Memory, inits);
3445     inits = st;                 // put it on the linearized chain
3446     set_req(i, zmem);           // unhook from previous position
3447 
3448     if (zeroes_done == st_off)
3449       zeroes_done = next_init_off;
3450 
3451     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3452 
3453     #ifdef ASSERT
3454     // Various order invariants.  Weaker than stores_are_sane because
3455     // a large constant tile can be filled in by smaller non-constant stores.
3456     assert(st_off >= last_init_off, "inits do not reverse");
3457     last_init_off = st_off;
3458     const Type* val = NULL;
3459     if (st_size >= BytesPerInt &&
3460         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3461         (int)val->basic_type() < (int)T_OBJECT) {
3462       assert(st_off >= last_tile_end, "tiles do not overlap");
3463       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3464       last_tile_end = MAX2(last_tile_end, next_init_off);
3465     } else {
3466       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3467       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3468       assert(st_off      >= last_init_end, "inits do not overlap");
3469       last_init_end = next_init_off;  // it's a non-tile
3470     }
3471     #endif //ASSERT
3472   }
3473 
3474   remove_extra_zeroes();        // clear out all the zmems left over
3475   add_req(inits);
3476 
3477   if (!ZeroTLAB) {
3478     // If anything remains to be zeroed, zero it all now.
3479     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3480     // if it is the last unused 4 bytes of an instance, forget about it
3481     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3482     if (zeroes_done + BytesPerLong >= size_limit) {
3483       assert(allocation() != NULL, "");
3484       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3485       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3486       if (zeroes_done == k->layout_helper())
3487         zeroes_done = size_limit;
3488     }
3489     if (zeroes_done < size_limit) {
3490       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3491                                             zeroes_done, size_in_bytes, phase);
3492     }
3493   }
3494 
3495   set_complete(phase);
3496   return rawmem;
3497 }
3498 
3499 
3500 #ifdef ASSERT
3501 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3502   if (is_complete())
3503     return true;                // stores could be anything at this point
3504   assert(allocation() != NULL, "must be present");
3505   intptr_t last_off = allocation()->minimum_header_size();
3506   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3507     Node* st = in(i);
3508     intptr_t st_off = get_store_offset(st, phase);
3509     if (st_off < 0)  continue;  // ignore dead garbage
3510     if (last_off > st_off) {
3511       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3512       this->dump(2);
3513       assert(false, "ascending store offsets");
3514       return false;
3515     }
3516     last_off = st_off + st->as_Store()->memory_size();
3517   }
3518   return true;
3519 }
3520 #endif //ASSERT
3521 
3522 
3523 
3524 
3525 //============================MergeMemNode=====================================
3526 //
3527 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3528 // contributing store or call operations.  Each contributor provides the memory
3529 // state for a particular "alias type" (see Compile::alias_type).  For example,
3530 // if a MergeMem has an input X for alias category #6, then any memory reference
3531 // to alias category #6 may use X as its memory state input, as an exact equivalent
3532 // to using the MergeMem as a whole.
3533 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3534 //
3535 // (Here, the <N> notation gives the index of the relevant adr_type.)
3536 //
3537 // In one special case (and more cases in the future), alias categories overlap.
3538 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3539 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3540 // it is exactly equivalent to that state W:
3541 //   MergeMem(<Bot>: W) <==> W
3542 //
3543 // Usually, the merge has more than one input.  In that case, where inputs
3544 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3545 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3546 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3547 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3548 //
3549 // A merge can take a "wide" memory state as one of its narrow inputs.
3550 // This simply means that the merge observes out only the relevant parts of
3551 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3552 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3553 //
3554 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3555 // and that memory slices "leak through":
3556 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3557 //
3558 // But, in such a cascade, repeated memory slices can "block the leak":
3559 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3560 //
3561 // In the last example, Y is not part of the combined memory state of the
3562 // outermost MergeMem.  The system must, of course, prevent unschedulable
3563 // memory states from arising, so you can be sure that the state Y is somehow
3564 // a precursor to state Y'.
3565 //
3566 //
3567 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3568 // of each MergeMemNode array are exactly the numerical alias indexes, including
3569 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3570 // Compile::alias_type (and kin) produce and manage these indexes.
3571 //
3572 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3573 // (Note that this provides quick access to the top node inside MergeMem methods,
3574 // without the need to reach out via TLS to Compile::current.)
3575 //
3576 // As a consequence of what was just described, a MergeMem that represents a full
3577 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3578 // containing all alias categories.
3579 //
3580 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3581 //
3582 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3583 // a memory state for the alias type <N>, or else the top node, meaning that
3584 // there is no particular input for that alias type.  Note that the length of
3585 // a MergeMem is variable, and may be extended at any time to accommodate new
3586 // memory states at larger alias indexes.  When merges grow, they are of course
3587 // filled with "top" in the unused in() positions.
3588 //
3589 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3590 // (Top was chosen because it works smoothly with passes like GCM.)
3591 //
3592 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3593 // the type of random VM bits like TLS references.)  Since it is always the
3594 // first non-Bot memory slice, some low-level loops use it to initialize an
3595 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3596 //
3597 //
3598 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3599 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3600 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3601 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3602 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3603 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3604 //
3605 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3606 // really that different from the other memory inputs.  An abbreviation called
3607 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3608 //
3609 //
3610 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3611 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3612 // that "emerges though" the base memory will be marked as excluding the alias types
3613 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3614 //
3615 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3616 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3617 //
3618 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3619 // (It is currently unimplemented.)  As you can see, the resulting merge is
3620 // actually a disjoint union of memory states, rather than an overlay.
3621 //
3622 
3623 //------------------------------MergeMemNode-----------------------------------
3624 Node* MergeMemNode::make_empty_memory() {
3625   Node* empty_memory = (Node*) Compile::current()->top();
3626   assert(empty_memory->is_top(), "correct sentinel identity");
3627   return empty_memory;
3628 }
3629 
3630 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3631   init_class_id(Class_MergeMem);
3632   // all inputs are nullified in Node::Node(int)
3633   // set_input(0, NULL);  // no control input
3634 
3635   // Initialize the edges uniformly to top, for starters.
3636   Node* empty_mem = make_empty_memory();
3637   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3638     init_req(i,empty_mem);
3639   }
3640   assert(empty_memory() == empty_mem, "");
3641 
3642   if( new_base != NULL && new_base->is_MergeMem() ) {
3643     MergeMemNode* mdef = new_base->as_MergeMem();
3644     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3645     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3646       mms.set_memory(mms.memory2());
3647     }
3648     assert(base_memory() == mdef->base_memory(), "");
3649   } else {
3650     set_base_memory(new_base);
3651   }
3652 }
3653 
3654 // Make a new, untransformed MergeMem with the same base as 'mem'.
3655 // If mem is itself a MergeMem, populate the result with the same edges.
3656 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3657   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3658 }
3659 
3660 //------------------------------cmp--------------------------------------------
3661 uint MergeMemNode::hash() const { return NO_HASH; }
3662 uint MergeMemNode::cmp( const Node &n ) const {
3663   return (&n == this);          // Always fail except on self
3664 }
3665 
3666 //------------------------------Identity---------------------------------------
3667 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3668   // Identity if this merge point does not record any interesting memory
3669   // disambiguations.
3670   Node* base_mem = base_memory();
3671   Node* empty_mem = empty_memory();
3672   if (base_mem != empty_mem) {  // Memory path is not dead?
3673     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3674       Node* mem = in(i);
3675       if (mem != empty_mem && mem != base_mem) {
3676         return this;            // Many memory splits; no change
3677       }
3678     }
3679   }
3680   return base_mem;              // No memory splits; ID on the one true input
3681 }
3682 
3683 //------------------------------Ideal------------------------------------------
3684 // This method is invoked recursively on chains of MergeMem nodes
3685 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3686   // Remove chain'd MergeMems
3687   //
3688   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3689   // relative to the "in(Bot)".  Since we are patching both at the same time,
3690   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3691   // but rewrite each "in(i)" relative to the new "in(Bot)".
3692   Node *progress = NULL;
3693 
3694 
3695   Node* old_base = base_memory();
3696   Node* empty_mem = empty_memory();
3697   if (old_base == empty_mem)
3698     return NULL; // Dead memory path.
3699 
3700   MergeMemNode* old_mbase;
3701   if (old_base != NULL && old_base->is_MergeMem())
3702     old_mbase = old_base->as_MergeMem();
3703   else
3704     old_mbase = NULL;
3705   Node* new_base = old_base;
3706 
3707   // simplify stacked MergeMems in base memory
3708   if (old_mbase)  new_base = old_mbase->base_memory();
3709 
3710   // the base memory might contribute new slices beyond my req()
3711   if (old_mbase)  grow_to_match(old_mbase);
3712 
3713   // Look carefully at the base node if it is a phi.
3714   PhiNode* phi_base;
3715   if (new_base != NULL && new_base->is_Phi())
3716     phi_base = new_base->as_Phi();
3717   else
3718     phi_base = NULL;
3719 
3720   Node*    phi_reg = NULL;
3721   uint     phi_len = (uint)-1;
3722   if (phi_base != NULL && !phi_base->is_copy()) {
3723     // do not examine phi if degraded to a copy
3724     phi_reg = phi_base->region();
3725     phi_len = phi_base->req();
3726     // see if the phi is unfinished
3727     for (uint i = 1; i < phi_len; i++) {
3728       if (phi_base->in(i) == NULL) {
3729         // incomplete phi; do not look at it yet!
3730         phi_reg = NULL;
3731         phi_len = (uint)-1;
3732         break;
3733       }
3734     }
3735   }
3736 
3737   // Note:  We do not call verify_sparse on entry, because inputs
3738   // can normalize to the base_memory via subsume_node or similar
3739   // mechanisms.  This method repairs that damage.
3740 
3741   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3742 
3743   // Look at each slice.
3744   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3745     Node* old_in = in(i);
3746     // calculate the old memory value
3747     Node* old_mem = old_in;
3748     if (old_mem == empty_mem)  old_mem = old_base;
3749     assert(old_mem == memory_at(i), "");
3750 
3751     // maybe update (reslice) the old memory value
3752 
3753     // simplify stacked MergeMems
3754     Node* new_mem = old_mem;
3755     MergeMemNode* old_mmem;
3756     if (old_mem != NULL && old_mem->is_MergeMem())
3757       old_mmem = old_mem->as_MergeMem();
3758     else
3759       old_mmem = NULL;
3760     if (old_mmem == this) {
3761       // This can happen if loops break up and safepoints disappear.
3762       // A merge of BotPtr (default) with a RawPtr memory derived from a
3763       // safepoint can be rewritten to a merge of the same BotPtr with
3764       // the BotPtr phi coming into the loop.  If that phi disappears
3765       // also, we can end up with a self-loop of the mergemem.
3766       // In general, if loops degenerate and memory effects disappear,
3767       // a mergemem can be left looking at itself.  This simply means
3768       // that the mergemem's default should be used, since there is
3769       // no longer any apparent effect on this slice.
3770       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3771       //       from start.  Update the input to TOP.
3772       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3773     }
3774     else if (old_mmem != NULL) {
3775       new_mem = old_mmem->memory_at(i);
3776     }
3777     // else preceding memory was not a MergeMem
3778 
3779     // replace equivalent phis (unfortunately, they do not GVN together)
3780     if (new_mem != NULL && new_mem != new_base &&
3781         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3782       if (new_mem->is_Phi()) {
3783         PhiNode* phi_mem = new_mem->as_Phi();
3784         for (uint i = 1; i < phi_len; i++) {
3785           if (phi_base->in(i) != phi_mem->in(i)) {
3786             phi_mem = NULL;
3787             break;
3788           }
3789         }
3790         if (phi_mem != NULL) {
3791           // equivalent phi nodes; revert to the def
3792           new_mem = new_base;
3793         }
3794       }
3795     }
3796 
3797     // maybe store down a new value
3798     Node* new_in = new_mem;
3799     if (new_in == new_base)  new_in = empty_mem;
3800 
3801     if (new_in != old_in) {
3802       // Warning:  Do not combine this "if" with the previous "if"
3803       // A memory slice might have be be rewritten even if it is semantically
3804       // unchanged, if the base_memory value has changed.
3805       set_req(i, new_in);
3806       progress = this;          // Report progress
3807     }
3808   }
3809 
3810   if (new_base != old_base) {
3811     set_req(Compile::AliasIdxBot, new_base);
3812     // Don't use set_base_memory(new_base), because we need to update du.
3813     assert(base_memory() == new_base, "");
3814     progress = this;
3815   }
3816 
3817   if( base_memory() == this ) {
3818     // a self cycle indicates this memory path is dead
3819     set_req(Compile::AliasIdxBot, empty_mem);
3820   }
3821 
3822   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3823   // Recursion must occur after the self cycle check above
3824   if( base_memory()->is_MergeMem() ) {
3825     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3826     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3827     if( m != NULL && (m->is_top() ||
3828         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3829       // propagate rollup of dead cycle to self
3830       set_req(Compile::AliasIdxBot, empty_mem);
3831     }
3832   }
3833 
3834   if( base_memory() == empty_mem ) {
3835     progress = this;
3836     // Cut inputs during Parse phase only.
3837     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3838     if( !can_reshape ) {
3839       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3840         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3841       }
3842     }
3843   }
3844 
3845   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3846     // Check if PhiNode::Ideal's "Split phis through memory merges"
3847     // transform should be attempted. Look for this->phi->this cycle.
3848     uint merge_width = req();
3849     if (merge_width > Compile::AliasIdxRaw) {
3850       PhiNode* phi = base_memory()->as_Phi();
3851       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3852         if (phi->in(i) == this) {
3853           phase->is_IterGVN()->_worklist.push(phi);
3854           break;
3855         }
3856       }
3857     }
3858   }
3859 
3860   assert(progress || verify_sparse(), "please, no dups of base");
3861   return progress;
3862 }
3863 
3864 //-------------------------set_base_memory-------------------------------------
3865 void MergeMemNode::set_base_memory(Node *new_base) {
3866   Node* empty_mem = empty_memory();
3867   set_req(Compile::AliasIdxBot, new_base);
3868   assert(memory_at(req()) == new_base, "must set default memory");
3869   // Clear out other occurrences of new_base:
3870   if (new_base != empty_mem) {
3871     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3872       if (in(i) == new_base)  set_req(i, empty_mem);
3873     }
3874   }
3875 }
3876 
3877 //------------------------------out_RegMask------------------------------------
3878 const RegMask &MergeMemNode::out_RegMask() const {
3879   return RegMask::Empty;
3880 }
3881 
3882 //------------------------------dump_spec--------------------------------------
3883 #ifndef PRODUCT
3884 void MergeMemNode::dump_spec(outputStream *st) const {
3885   st->print(" {");
3886   Node* base_mem = base_memory();
3887   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3888     Node* mem = memory_at(i);
3889     if (mem == base_mem) { st->print(" -"); continue; }
3890     st->print( " N%d:", mem->_idx );
3891     Compile::current()->get_adr_type(i)->dump_on(st);
3892   }
3893   st->print(" }");
3894 }
3895 #endif // !PRODUCT
3896 
3897 
3898 #ifdef ASSERT
3899 static bool might_be_same(Node* a, Node* b) {
3900   if (a == b)  return true;
3901   if (!(a->is_Phi() || b->is_Phi()))  return false;
3902   // phis shift around during optimization
3903   return true;  // pretty stupid...
3904 }
3905 
3906 // verify a narrow slice (either incoming or outgoing)
3907 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3908   if (!VerifyAliases)       return;  // don't bother to verify unless requested
3909   if (is_error_reported())  return;  // muzzle asserts when debugging an error
3910   if (Node::in_dump())      return;  // muzzle asserts when printing
3911   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3912   assert(n != NULL, "");
3913   // Elide intervening MergeMem's
3914   while (n->is_MergeMem()) {
3915     n = n->as_MergeMem()->memory_at(alias_idx);
3916   }
3917   Compile* C = Compile::current();
3918   const TypePtr* n_adr_type = n->adr_type();
3919   if (n == m->empty_memory()) {
3920     // Implicit copy of base_memory()
3921   } else if (n_adr_type != TypePtr::BOTTOM) {
3922     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3923     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3924   } else {
3925     // A few places like make_runtime_call "know" that VM calls are narrow,
3926     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3927     bool expected_wide_mem = false;
3928     if (n == m->base_memory()) {
3929       expected_wide_mem = true;
3930     } else if (alias_idx == Compile::AliasIdxRaw ||
3931                n == m->memory_at(Compile::AliasIdxRaw)) {
3932       expected_wide_mem = true;
3933     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3934       // memory can "leak through" calls on channels that
3935       // are write-once.  Allow this also.
3936       expected_wide_mem = true;
3937     }
3938     assert(expected_wide_mem, "expected narrow slice replacement");
3939   }
3940 }
3941 #else // !ASSERT
3942 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3943 #endif
3944 
3945 
3946 //-----------------------------memory_at---------------------------------------
3947 Node* MergeMemNode::memory_at(uint alias_idx) const {
3948   assert(alias_idx >= Compile::AliasIdxRaw ||
3949          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3950          "must avoid base_memory and AliasIdxTop");
3951 
3952   // Otherwise, it is a narrow slice.
3953   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3954   Compile *C = Compile::current();
3955   if (is_empty_memory(n)) {
3956     // the array is sparse; empty slots are the "top" node
3957     n = base_memory();
3958     assert(Node::in_dump()
3959            || n == NULL || n->bottom_type() == Type::TOP
3960            || n->adr_type() == TypePtr::BOTTOM
3961            || n->adr_type() == TypeRawPtr::BOTTOM
3962            || Compile::current()->AliasLevel() == 0,
3963            "must be a wide memory");
3964     // AliasLevel == 0 if we are organizing the memory states manually.
3965     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3966   } else {
3967     // make sure the stored slice is sane
3968     #ifdef ASSERT
3969     if (is_error_reported() || Node::in_dump()) {
3970     } else if (might_be_same(n, base_memory())) {
3971       // Give it a pass:  It is a mostly harmless repetition of the base.
3972       // This can arise normally from node subsumption during optimization.
3973     } else {
3974       verify_memory_slice(this, alias_idx, n);
3975     }
3976     #endif
3977   }
3978   return n;
3979 }
3980 
3981 //---------------------------set_memory_at-------------------------------------
3982 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3983   verify_memory_slice(this, alias_idx, n);
3984   Node* empty_mem = empty_memory();
3985   if (n == base_memory())  n = empty_mem;  // collapse default
3986   uint need_req = alias_idx+1;
3987   if (req() < need_req) {
3988     if (n == empty_mem)  return;  // already the default, so do not grow me
3989     // grow the sparse array
3990     do {
3991       add_req(empty_mem);
3992     } while (req() < need_req);
3993   }
3994   set_req( alias_idx, n );
3995 }
3996 
3997 
3998 
3999 //--------------------------iteration_setup------------------------------------
4000 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4001   if (other != NULL) {
4002     grow_to_match(other);
4003     // invariant:  the finite support of mm2 is within mm->req()
4004     #ifdef ASSERT
4005     for (uint i = req(); i < other->req(); i++) {
4006       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4007     }
4008     #endif
4009   }
4010   // Replace spurious copies of base_memory by top.
4011   Node* base_mem = base_memory();
4012   if (base_mem != NULL && !base_mem->is_top()) {
4013     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4014       if (in(i) == base_mem)
4015         set_req(i, empty_memory());
4016     }
4017   }
4018 }
4019 
4020 //---------------------------grow_to_match-------------------------------------
4021 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4022   Node* empty_mem = empty_memory();
4023   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4024   // look for the finite support of the other memory
4025   for (uint i = other->req(); --i >= req(); ) {
4026     if (other->in(i) != empty_mem) {
4027       uint new_len = i+1;
4028       while (req() < new_len)  add_req(empty_mem);
4029       break;
4030     }
4031   }
4032 }
4033 
4034 //---------------------------verify_sparse-------------------------------------
4035 #ifndef PRODUCT
4036 bool MergeMemNode::verify_sparse() const {
4037   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4038   Node* base_mem = base_memory();
4039   // The following can happen in degenerate cases, since empty==top.
4040   if (is_empty_memory(base_mem))  return true;
4041   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4042     assert(in(i) != NULL, "sane slice");
4043     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4044   }
4045   return true;
4046 }
4047 
4048 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4049   Node* n;
4050   n = mm->in(idx);
4051   if (mem == n)  return true;  // might be empty_memory()
4052   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4053   if (mem == n)  return true;
4054   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4055     if (mem == n)  return true;
4056     if (n == NULL)  break;
4057   }
4058   return false;
4059 }
4060 #endif // !PRODUCT