1 /*
   2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_escape.cpp.incl"
  27 
  28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
  29   uint v = (targIdx << EdgeShift) + ((uint) et);
  30   if (_edges == NULL) {
  31      Arena *a = Compile::current()->comp_arena();
  32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
  33   }
  34   _edges->append_if_missing(v);
  35 }
  36 
  37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
  38   uint v = (targIdx << EdgeShift) + ((uint) et);
  39 
  40   _edges->remove(v);
  41 }
  42 
  43 #ifndef PRODUCT
  44 static const char *node_type_names[] = {
  45   "UnknownType",
  46   "JavaObject",
  47   "LocalVar",
  48   "Field"
  49 };
  50 
  51 static const char *esc_names[] = {
  52   "UnknownEscape",
  53   "NoEscape",
  54   "ArgEscape",
  55   "GlobalEscape"
  56 };
  57 
  58 static const char *edge_type_suffix[] = {
  59  "?", // UnknownEdge
  60  "P", // PointsToEdge
  61  "D", // DeferredEdge
  62  "F"  // FieldEdge
  63 };
  64 
  65 void PointsToNode::dump(bool print_state) const {
  66   NodeType nt = node_type();
  67   tty->print("%s ", node_type_names[(int) nt]);
  68   if (print_state) {
  69     EscapeState es = escape_state();
  70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
  71   }
  72   tty->print("[[");
  73   for (uint i = 0; i < edge_count(); i++) {
  74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
  75   }
  76   tty->print("]]  ");
  77   if (_node == NULL)
  78     tty->print_cr("<null>");
  79   else
  80     _node->dump();
  81 }
  82 #endif
  83 
  84 ConnectionGraph::ConnectionGraph(Compile * C) :
  85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
  86   _processed(C->comp_arena()),
  87   _collecting(true),
  88   _compile(C),
  89   _node_map(C->comp_arena()) {
  90 
  91   _phantom_object = C->top()->_idx,
  92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
  93 
  94   // Add ConP(#NULL) and ConN(#NULL) nodes.
  95   PhaseGVN* igvn = C->initial_gvn();
  96   Node* oop_null = igvn->zerocon(T_OBJECT);
  97   _oop_null = oop_null->_idx;
  98   assert(_oop_null < C->unique(), "should be created already");
  99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 100 
 101   if (UseCompressedOops) {
 102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 103     _noop_null = noop_null->_idx;
 104     assert(_noop_null < C->unique(), "should be created already");
 105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
 106   }
 107 }
 108 
 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
 110   PointsToNode *f = ptnode_adr(from_i);
 111   PointsToNode *t = ptnode_adr(to_i);
 112 
 113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
 115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
 116   f->add_edge(to_i, PointsToNode::PointsToEdge);
 117 }
 118 
 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
 120   PointsToNode *f = ptnode_adr(from_i);
 121   PointsToNode *t = ptnode_adr(to_i);
 122 
 123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
 125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
 126   // don't add a self-referential edge, this can occur during removal of
 127   // deferred edges
 128   if (from_i != to_i)
 129     f->add_edge(to_i, PointsToNode::DeferredEdge);
 130 }
 131 
 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
 133   const Type *adr_type = phase->type(adr);
 134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
 135       adr->in(AddPNode::Address)->is_Proj() &&
 136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
 137     // We are computing a raw address for a store captured by an Initialize
 138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
 139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 140     assert(offs != Type::OffsetBot ||
 141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
 142            "offset must be a constant or it is initialization of array");
 143     return offs;
 144   }
 145   const TypePtr *t_ptr = adr_type->isa_ptr();
 146   assert(t_ptr != NULL, "must be a pointer type");
 147   return t_ptr->offset();
 148 }
 149 
 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
 151   PointsToNode *f = ptnode_adr(from_i);
 152   PointsToNode *t = ptnode_adr(to_i);
 153 
 154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
 155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
 156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
 157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
 158   t->set_offset(offset);
 159 
 160   f->add_edge(to_i, PointsToNode::FieldEdge);
 161 }
 162 
 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
 164   PointsToNode *npt = ptnode_adr(ni);
 165   PointsToNode::EscapeState old_es = npt->escape_state();
 166   if (es > old_es)
 167     npt->set_escape_state(es);
 168 }
 169 
 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
 171                                PointsToNode::EscapeState es, bool done) {
 172   PointsToNode* ptadr = ptnode_adr(n->_idx);
 173   ptadr->_node = n;
 174   ptadr->set_node_type(nt);
 175 
 176   // inline set_escape_state(idx, es);
 177   PointsToNode::EscapeState old_es = ptadr->escape_state();
 178   if (es > old_es)
 179     ptadr->set_escape_state(es);
 180 
 181   if (done)
 182     _processed.set(n->_idx);
 183 }
 184 
 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
 186   uint idx = n->_idx;
 187   PointsToNode::EscapeState es;
 188 
 189   // If we are still collecting or there were no non-escaping allocations
 190   // we don't know the answer yet
 191   if (_collecting)
 192     return PointsToNode::UnknownEscape;
 193 
 194   // if the node was created after the escape computation, return
 195   // UnknownEscape
 196   if (idx >= nodes_size())
 197     return PointsToNode::UnknownEscape;
 198 
 199   es = ptnode_adr(idx)->escape_state();
 200 
 201   // if we have already computed a value, return it
 202   if (es != PointsToNode::UnknownEscape &&
 203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
 204     return es;
 205 
 206   // PointsTo() calls n->uncast() which can return a new ideal node.
 207   if (n->uncast()->_idx >= nodes_size())
 208     return PointsToNode::UnknownEscape;
 209 
 210   // compute max escape state of anything this node could point to
 211   VectorSet ptset(Thread::current()->resource_area());
 212   PointsTo(ptset, n, phase);
 213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
 214     uint pt = i.elem;
 215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
 216     if (pes > es)
 217       es = pes;
 218   }
 219   // cache the computed escape state
 220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
 221   ptnode_adr(idx)->set_escape_state(es);
 222   return es;
 223 }
 224 
 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
 226   VectorSet visited(Thread::current()->resource_area());
 227   GrowableArray<uint>  worklist;
 228 
 229 #ifdef ASSERT
 230   Node *orig_n = n;
 231 #endif
 232 
 233   n = n->uncast();
 234   PointsToNode* npt = ptnode_adr(n->_idx);
 235 
 236   // If we have a JavaObject, return just that object
 237   if (npt->node_type() == PointsToNode::JavaObject) {
 238     ptset.set(n->_idx);
 239     return;
 240   }
 241 #ifdef ASSERT
 242   if (npt->_node == NULL) {
 243     if (orig_n != n)
 244       orig_n->dump();
 245     n->dump();
 246     assert(npt->_node != NULL, "unregistered node");
 247   }
 248 #endif
 249   worklist.push(n->_idx);
 250   while(worklist.length() > 0) {
 251     int ni = worklist.pop();
 252     if (visited.test_set(ni))
 253       continue;
 254 
 255     PointsToNode* pn = ptnode_adr(ni);
 256     // ensure that all inputs of a Phi have been processed
 257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
 258 
 259     int edges_processed = 0;
 260     uint e_cnt = pn->edge_count();
 261     for (uint e = 0; e < e_cnt; e++) {
 262       uint etgt = pn->edge_target(e);
 263       PointsToNode::EdgeType et = pn->edge_type(e);
 264       if (et == PointsToNode::PointsToEdge) {
 265         ptset.set(etgt);
 266         edges_processed++;
 267       } else if (et == PointsToNode::DeferredEdge) {
 268         worklist.push(etgt);
 269         edges_processed++;
 270       } else {
 271         assert(false,"neither PointsToEdge or DeferredEdge");
 272       }
 273     }
 274     if (edges_processed == 0) {
 275       // no deferred or pointsto edges found.  Assume the value was set
 276       // outside this method.  Add the phantom object to the pointsto set.
 277       ptset.set(_phantom_object);
 278     }
 279   }
 280 }
 281 
 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
 283   // This method is most expensive during ConnectionGraph construction.
 284   // Reuse vectorSet and an additional growable array for deferred edges.
 285   deferred_edges->clear();
 286   visited->Clear();
 287 
 288   visited->set(ni);
 289   PointsToNode *ptn = ptnode_adr(ni);
 290 
 291   // Mark current edges as visited and move deferred edges to separate array.
 292   for (uint i = 0; i < ptn->edge_count(); ) {
 293     uint t = ptn->edge_target(i);
 294 #ifdef ASSERT
 295     assert(!visited->test_set(t), "expecting no duplications");
 296 #else
 297     visited->set(t);
 298 #endif
 299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
 300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
 301       deferred_edges->append(t);
 302     } else {
 303       i++;
 304     }
 305   }
 306   for (int next = 0; next < deferred_edges->length(); ++next) {
 307     uint t = deferred_edges->at(next);
 308     PointsToNode *ptt = ptnode_adr(t);
 309     uint e_cnt = ptt->edge_count();
 310     for (uint e = 0; e < e_cnt; e++) {
 311       uint etgt = ptt->edge_target(e);
 312       if (visited->test_set(etgt))
 313         continue;
 314 
 315       PointsToNode::EdgeType et = ptt->edge_type(e);
 316       if (et == PointsToNode::PointsToEdge) {
 317         add_pointsto_edge(ni, etgt);
 318         if(etgt == _phantom_object) {
 319           // Special case - field set outside (globally escaping).
 320           ptn->set_escape_state(PointsToNode::GlobalEscape);
 321         }
 322       } else if (et == PointsToNode::DeferredEdge) {
 323         deferred_edges->append(etgt);
 324       } else {
 325         assert(false,"invalid connection graph");
 326       }
 327     }
 328   }
 329 }
 330 
 331 
 332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
 333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
 334 //  a pointsto edge is added if it is a JavaObject
 335 
 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
 337   PointsToNode* an = ptnode_adr(adr_i);
 338   PointsToNode* to = ptnode_adr(to_i);
 339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
 340 
 341   for (uint fe = 0; fe < an->edge_count(); fe++) {
 342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 343     int fi = an->edge_target(fe);
 344     PointsToNode* pf = ptnode_adr(fi);
 345     int po = pf->offset();
 346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 347       if (deferred)
 348         add_deferred_edge(fi, to_i);
 349       else
 350         add_pointsto_edge(fi, to_i);
 351     }
 352   }
 353 }
 354 
 355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
 356 // whose offset matches "offset".
 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
 358   PointsToNode* an = ptnode_adr(adr_i);
 359   for (uint fe = 0; fe < an->edge_count(); fe++) {
 360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
 361     int fi = an->edge_target(fe);
 362     PointsToNode* pf = ptnode_adr(fi);
 363     int po = pf->offset();
 364     if (pf->edge_count() == 0) {
 365       // we have not seen any stores to this field, assume it was set outside this method
 366       add_pointsto_edge(fi, _phantom_object);
 367     }
 368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
 369       add_deferred_edge(from_i, fi);
 370     }
 371   }
 372 }
 373 
 374 // Helper functions
 375 
 376 static Node* get_addp_base(Node *addp) {
 377   assert(addp->is_AddP(), "must be AddP");
 378   //
 379   // AddP cases for Base and Address inputs:
 380   // case #1. Direct object's field reference:
 381   //     Allocate
 382   //       |
 383   //     Proj #5 ( oop result )
 384   //       |
 385   //     CheckCastPP (cast to instance type)
 386   //      | |
 387   //     AddP  ( base == address )
 388   //
 389   // case #2. Indirect object's field reference:
 390   //      Phi
 391   //       |
 392   //     CastPP (cast to instance type)
 393   //      | |
 394   //     AddP  ( base == address )
 395   //
 396   // case #3. Raw object's field reference for Initialize node:
 397   //      Allocate
 398   //        |
 399   //      Proj #5 ( oop result )
 400   //  top   |
 401   //     \  |
 402   //     AddP  ( base == top )
 403   //
 404   // case #4. Array's element reference:
 405   //   {CheckCastPP | CastPP}
 406   //     |  | |
 407   //     |  AddP ( array's element offset )
 408   //     |  |
 409   //     AddP ( array's offset )
 410   //
 411   // case #5. Raw object's field reference for arraycopy stub call:
 412   //          The inline_native_clone() case when the arraycopy stub is called
 413   //          after the allocation before Initialize and CheckCastPP nodes.
 414   //      Allocate
 415   //        |
 416   //      Proj #5 ( oop result )
 417   //       | |
 418   //       AddP  ( base == address )
 419   //
 420   // case #6. Constant Pool, ThreadLocal, CastX2P or
 421   //          Raw object's field reference:
 422   //      {ConP, ThreadLocal, CastX2P, raw Load}
 423   //  top   |
 424   //     \  |
 425   //     AddP  ( base == top )
 426   //
 427   // case #7. Klass's field reference.
 428   //      LoadKlass
 429   //       | |
 430   //       AddP  ( base == address )
 431   //
 432   // case #8. narrow Klass's field reference.
 433   //      LoadNKlass
 434   //       |
 435   //      DecodeN
 436   //       | |
 437   //       AddP  ( base == address )
 438   //
 439   Node *base = addp->in(AddPNode::Base)->uncast();
 440   if (base->is_top()) { // The AddP case #3 and #6.
 441     base = addp->in(AddPNode::Address)->uncast();
 442     while (base->is_AddP()) {
 443       // Case #6 (unsafe access) may have several chained AddP nodes.
 444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
 445       base = base->in(AddPNode::Address)->uncast();
 446     }
 447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
 448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
 449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
 450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
 451   }
 452   return base;
 453 }
 454 
 455 static Node* find_second_addp(Node* addp, Node* n) {
 456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
 457 
 458   Node* addp2 = addp->raw_out(0);
 459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
 460       addp2->in(AddPNode::Base) == n &&
 461       addp2->in(AddPNode::Address) == addp) {
 462 
 463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
 464     //
 465     // Find array's offset to push it on worklist first and
 466     // as result process an array's element offset first (pushed second)
 467     // to avoid CastPP for the array's offset.
 468     // Otherwise the inserted CastPP (LocalVar) will point to what
 469     // the AddP (Field) points to. Which would be wrong since
 470     // the algorithm expects the CastPP has the same point as
 471     // as AddP's base CheckCastPP (LocalVar).
 472     //
 473     //    ArrayAllocation
 474     //     |
 475     //    CheckCastPP
 476     //     |
 477     //    memProj (from ArrayAllocation CheckCastPP)
 478     //     |  ||
 479     //     |  ||   Int (element index)
 480     //     |  ||    |   ConI (log(element size))
 481     //     |  ||    |   /
 482     //     |  ||   LShift
 483     //     |  ||  /
 484     //     |  AddP (array's element offset)
 485     //     |  |
 486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
 487     //     | / /
 488     //     AddP (array's offset)
 489     //      |
 490     //     Load/Store (memory operation on array's element)
 491     //
 492     return addp2;
 493   }
 494   return NULL;
 495 }
 496 
 497 //
 498 // Adjust the type and inputs of an AddP which computes the
 499 // address of a field of an instance
 500 //
 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
 502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
 503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
 504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
 505   if (t == NULL) {
 506     // We are computing a raw address for a store captured by an Initialize
 507     // compute an appropriate address type (cases #3 and #5).
 508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
 509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
 510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
 511     assert(offs != Type::OffsetBot, "offset must be a constant");
 512     t = base_t->add_offset(offs)->is_oopptr();
 513   }
 514   int inst_id =  base_t->instance_id();
 515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
 516                              "old type must be non-instance or match new type");
 517 
 518   // The type 't' could be subclass of 'base_t'.
 519   // As result t->offset() could be large then base_t's size and it will
 520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
 521   // constructor verifies correctness of the offset.
 522   //
 523   // It could happened on subclass's branch (from the type profiling
 524   // inlining) which was not eliminated during parsing since the exactness
 525   // of the allocation type was not propagated to the subclass type check.
 526   //
 527   // Or the type 't' could be not related to 'base_t' at all.
 528   // It could happened when CHA type is different from MDO type on a dead path
 529   // (for example, from instanceof check) which is not collapsed during parsing.
 530   //
 531   // Do nothing for such AddP node and don't process its users since
 532   // this code branch will go away.
 533   //
 534   if (!t->is_known_instance() &&
 535       !base_t->klass()->is_subtype_of(t->klass())) {
 536      return false; // bail out
 537   }
 538 
 539   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
 540   // Do NOT remove the next line: ensure a new alias index is allocated
 541   // for the instance type. Note: C++ will not remove it since the call
 542   // has side effect.
 543   int alias_idx = _compile->get_alias_index(tinst);
 544   igvn->set_type(addp, tinst);
 545   // record the allocation in the node map
 546   assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
 547   set_map(addp->_idx, get_map(base->_idx));
 548 
 549   // Set addp's Base and Address to 'base'.
 550   Node *abase = addp->in(AddPNode::Base);
 551   Node *adr   = addp->in(AddPNode::Address);
 552   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
 553       adr->in(0)->_idx == (uint)inst_id) {
 554     // Skip AddP cases #3 and #5.
 555   } else {
 556     assert(!abase->is_top(), "sanity"); // AddP case #3
 557     if (abase != base) {
 558       igvn->hash_delete(addp);
 559       addp->set_req(AddPNode::Base, base);
 560       if (abase == adr) {
 561         addp->set_req(AddPNode::Address, base);
 562       } else {
 563         // AddP case #4 (adr is array's element offset AddP node)
 564 #ifdef ASSERT
 565         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
 566         assert(adr->is_AddP() && atype != NULL &&
 567                atype->instance_id() == inst_id, "array's element offset should be processed first");
 568 #endif
 569       }
 570       igvn->hash_insert(addp);
 571     }
 572   }
 573   // Put on IGVN worklist since at least addp's type was changed above.
 574   record_for_optimizer(addp);
 575   return true;
 576 }
 577 
 578 //
 579 // Create a new version of orig_phi if necessary. Returns either the newly
 580 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
 581 // phi was created.  Cache the last newly created phi in the node map.
 582 //
 583 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
 584   Compile *C = _compile;
 585   new_created = false;
 586   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
 587   // nothing to do if orig_phi is bottom memory or matches alias_idx
 588   if (phi_alias_idx == alias_idx) {
 589     return orig_phi;
 590   }
 591   // Have we recently created a Phi for this alias index?
 592   PhiNode *result = get_map_phi(orig_phi->_idx);
 593   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
 594     return result;
 595   }
 596   // Previous check may fail when the same wide memory Phi was split into Phis
 597   // for different memory slices. Search all Phis for this region.
 598   if (result != NULL) {
 599     Node* region = orig_phi->in(0);
 600     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
 601       Node* phi = region->fast_out(i);
 602       if (phi->is_Phi() &&
 603           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
 604         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
 605         return phi->as_Phi();
 606       }
 607     }
 608   }
 609   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
 610     if (C->do_escape_analysis() == true && !C->failing()) {
 611       // Retry compilation without escape analysis.
 612       // If this is the first failure, the sentinel string will "stick"
 613       // to the Compile object, and the C2Compiler will see it and retry.
 614       C->record_failure(C2Compiler::retry_no_escape_analysis());
 615     }
 616     return NULL;
 617   }
 618   orig_phi_worklist.append_if_missing(orig_phi);
 619   const TypePtr *atype = C->get_adr_type(alias_idx);
 620   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
 621   C->copy_node_notes_to(result, orig_phi);
 622   igvn->set_type(result, result->bottom_type());
 623   record_for_optimizer(result);
 624 
 625   debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
 626   assert(pn == NULL || pn == orig_phi, "wrong node");
 627   set_map(orig_phi->_idx, result);
 628   ptnode_adr(orig_phi->_idx)->_node = orig_phi;
 629 
 630   new_created = true;
 631   return result;
 632 }
 633 
 634 //
 635 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
 636 // specified alias index.
 637 //
 638 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
 639 
 640   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
 641   Compile *C = _compile;
 642   bool new_phi_created;
 643   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
 644   if (!new_phi_created) {
 645     return result;
 646   }
 647 
 648   GrowableArray<PhiNode *>  phi_list;
 649   GrowableArray<uint>  cur_input;
 650 
 651   PhiNode *phi = orig_phi;
 652   uint idx = 1;
 653   bool finished = false;
 654   while(!finished) {
 655     while (idx < phi->req()) {
 656       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
 657       if (mem != NULL && mem->is_Phi()) {
 658         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
 659         if (new_phi_created) {
 660           // found an phi for which we created a new split, push current one on worklist and begin
 661           // processing new one
 662           phi_list.push(phi);
 663           cur_input.push(idx);
 664           phi = mem->as_Phi();
 665           result = newphi;
 666           idx = 1;
 667           continue;
 668         } else {
 669           mem = newphi;
 670         }
 671       }
 672       if (C->failing()) {
 673         return NULL;
 674       }
 675       result->set_req(idx++, mem);
 676     }
 677 #ifdef ASSERT
 678     // verify that the new Phi has an input for each input of the original
 679     assert( phi->req() == result->req(), "must have same number of inputs.");
 680     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
 681 #endif
 682     // Check if all new phi's inputs have specified alias index.
 683     // Otherwise use old phi.
 684     for (uint i = 1; i < phi->req(); i++) {
 685       Node* in = result->in(i);
 686       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
 687     }
 688     // we have finished processing a Phi, see if there are any more to do
 689     finished = (phi_list.length() == 0 );
 690     if (!finished) {
 691       phi = phi_list.pop();
 692       idx = cur_input.pop();
 693       PhiNode *prev_result = get_map_phi(phi->_idx);
 694       prev_result->set_req(idx++, result);
 695       result = prev_result;
 696     }
 697   }
 698   return result;
 699 }
 700 
 701 
 702 //
 703 // The next methods are derived from methods in MemNode.
 704 //
 705 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
 706   Node *mem = mmem;
 707   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 708   // means an array I have not precisely typed yet.  Do not do any
 709   // alias stuff with it any time soon.
 710   if( tinst->base() != Type::AnyPtr &&
 711       !(tinst->klass()->is_java_lang_Object() &&
 712         tinst->offset() == Type::OffsetBot) ) {
 713     mem = mmem->memory_at(alias_idx);
 714     // Update input if it is progress over what we have now
 715   }
 716   return mem;
 717 }
 718 
 719 //
 720 // Move memory users to their memory slices.
 721 //
 722 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *igvn) {
 723   Compile* C = _compile;
 724 
 725   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
 726   assert(tp != NULL, "ptr type");
 727   int alias_idx = C->get_alias_index(tp);
 728   int general_idx = C->get_general_index(alias_idx);
 729 
 730   // Move users first
 731   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 732     Node* use = n->fast_out(i);
 733     if (use->is_MergeMem()) {
 734       MergeMemNode* mmem = use->as_MergeMem();
 735       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
 736       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
 737         continue; // Nothing to do
 738       }
 739       // Replace previous general reference to mem node.
 740       uint orig_uniq = C->unique();
 741       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 742       assert(orig_uniq == C->unique(), "no new nodes");
 743       mmem->set_memory_at(general_idx, m);
 744       --imax;
 745       --i;
 746     } else if (use->is_MemBar()) {
 747       assert(!use->is_Initialize(), "initializing stores should not be moved");
 748       if (use->req() > MemBarNode::Precedent &&
 749           use->in(MemBarNode::Precedent) == n) {
 750         // Don't move related membars.
 751         record_for_optimizer(use);      
 752         continue;
 753       }
 754       tp = use->as_MemBar()->adr_type()->isa_ptr();
 755       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
 756           alias_idx == general_idx) {
 757         continue; // Nothing to do
 758       }
 759       // Move to general memory slice.
 760       uint orig_uniq = C->unique();
 761       Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
 762       assert(orig_uniq == C->unique(), "no new nodes");
 763       igvn->hash_delete(use);
 764       imax -= use->replace_edge(n, m);
 765       igvn->hash_insert(use);
 766       record_for_optimizer(use);      
 767       --i;
 768 #ifdef ASSERT
 769     } else if (use->is_Mem()) {
 770       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
 771         // Don't move related cardmark.
 772         continue;
 773       }
 774       // Memory nodes should have new memory input.
 775       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
 776       assert(tp != NULL, "ptr type");
 777       int idx = C->get_alias_index(tp);
 778       assert(get_map(use->_idx) != NULL || idx == alias_idx,
 779              "Following memory nodes should have new memory input or be on the same memory slice");
 780     } else if (use->is_Phi()) {
 781       // Phi nodes should be split and moved already.
 782       tp = use->as_Phi()->adr_type()->isa_ptr();
 783       assert(tp != NULL, "ptr type");
 784       int idx = C->get_alias_index(tp);
 785       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
 786     } else {
 787       use->dump();
 788       assert(false, "should not be here");
 789 #endif
 790     }
 791   }
 792 }
 793 
 794 //
 795 // Search memory chain of "mem" to find a MemNode whose address
 796 // is the specified alias index.
 797 //
 798 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
 799   if (orig_mem == NULL)
 800     return orig_mem;
 801   Compile* C = phase->C;
 802   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
 803   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
 804   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 805   Node *prev = NULL;
 806   Node *result = orig_mem;
 807   while (prev != result) {
 808     prev = result;
 809     if (result == start_mem)
 810       break;  // hit one of our sentinels
 811     if (result->is_Mem()) {
 812       const Type *at = phase->type(result->in(MemNode::Address));
 813       if (at != Type::TOP) {
 814         assert (at->isa_ptr() != NULL, "pointer type required.");
 815         int idx = C->get_alias_index(at->is_ptr());
 816         if (idx == alias_idx)
 817           break;
 818       }
 819       result = result->in(MemNode::Memory);
 820     }
 821     if (!is_instance)
 822       continue;  // don't search further for non-instance types
 823     // skip over a call which does not affect this memory slice
 824     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 825       Node *proj_in = result->in(0);
 826       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
 827         break;  // hit one of our sentinels
 828       } else if (proj_in->is_Call()) {
 829         CallNode *call = proj_in->as_Call();
 830         if (!call->may_modify(tinst, phase)) {
 831           result = call->in(TypeFunc::Memory);
 832         }
 833       } else if (proj_in->is_Initialize()) {
 834         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 835         // Stop if this is the initialization for the object instance which
 836         // which contains this memory slice, otherwise skip over it.
 837         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
 838           result = proj_in->in(TypeFunc::Memory);
 839         }
 840       } else if (proj_in->is_MemBar()) {
 841         result = proj_in->in(TypeFunc::Memory);
 842       }
 843     } else if (result->is_MergeMem()) {
 844       MergeMemNode *mmem = result->as_MergeMem();
 845       result = step_through_mergemem(mmem, alias_idx, tinst);
 846       if (result == mmem->base_memory()) {
 847         // Didn't find instance memory, search through general slice recursively.
 848         result = mmem->memory_at(C->get_general_index(alias_idx));
 849         result = find_inst_mem(result, alias_idx, orig_phis, phase);
 850         if (C->failing()) {
 851           return NULL;
 852         }
 853         mmem->set_memory_at(alias_idx, result);
 854       }
 855     } else if (result->is_Phi() &&
 856                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
 857       Node *un = result->as_Phi()->unique_input(phase);
 858       if (un != NULL) {
 859         orig_phis.append_if_missing(result->as_Phi());
 860         result = un;
 861       } else {
 862         break;
 863       }
 864     } else if (result->Opcode() == Op_SCMemProj) {
 865       assert(result->in(0)->is_LoadStore(), "sanity");
 866       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
 867       if (at != Type::TOP) {
 868         assert (at->isa_ptr() != NULL, "pointer type required.");
 869         int idx = C->get_alias_index(at->is_ptr());
 870         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
 871         break;
 872       }
 873       result = result->in(0)->in(MemNode::Memory);
 874     }
 875   }
 876   if (result->is_Phi()) {
 877     PhiNode *mphi = result->as_Phi();
 878     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 879     const TypePtr *t = mphi->adr_type();
 880     if (C->get_alias_index(t) != alias_idx) {
 881       // Create a new Phi with the specified alias index type.
 882       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
 883     } else if (!is_instance) {
 884       // Push all non-instance Phis on the orig_phis worklist to update inputs
 885       // during Phase 4 if needed.
 886       orig_phis.append_if_missing(mphi);
 887     }
 888   }
 889   // the result is either MemNode, PhiNode, InitializeNode.
 890   return result;
 891 }
 892 
 893 
 894 //
 895 //  Convert the types of unescaped object to instance types where possible,
 896 //  propagate the new type information through the graph, and update memory
 897 //  edges and MergeMem inputs to reflect the new type.
 898 //
 899 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
 900 //  The processing is done in 4 phases:
 901 //
 902 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
 903 //            types for the CheckCastPP for allocations where possible.
 904 //            Propagate the the new types through users as follows:
 905 //               casts and Phi:  push users on alloc_worklist
 906 //               AddP:  cast Base and Address inputs to the instance type
 907 //                      push any AddP users on alloc_worklist and push any memnode
 908 //                      users onto memnode_worklist.
 909 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
 910 //            search the Memory chain for a store with the appropriate type
 911 //            address type.  If a Phi is found, create a new version with
 912 //            the appropriate memory slices from each of the Phi inputs.
 913 //            For stores, process the users as follows:
 914 //               MemNode:  push on memnode_worklist
 915 //               MergeMem: push on mergemem_worklist
 916 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
 917 //            moving the first node encountered of each  instance type to the
 918 //            the input corresponding to its alias index.
 919 //            appropriate memory slice.
 920 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
 921 //
 922 // In the following example, the CheckCastPP nodes are the cast of allocation
 923 // results and the allocation of node 29 is unescaped and eligible to be an
 924 // instance type.
 925 //
 926 // We start with:
 927 //
 928 //     7 Parm #memory
 929 //    10  ConI  "12"
 930 //    19  CheckCastPP   "Foo"
 931 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 932 //    29  CheckCastPP   "Foo"
 933 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
 934 //
 935 //    40  StoreP  25   7  20   ... alias_index=4
 936 //    50  StoreP  35  40  30   ... alias_index=4
 937 //    60  StoreP  45  50  20   ... alias_index=4
 938 //    70  LoadP    _  60  30   ... alias_index=4
 939 //    80  Phi     75  50  60   Memory alias_index=4
 940 //    90  LoadP    _  80  30   ... alias_index=4
 941 //   100  LoadP    _  80  20   ... alias_index=4
 942 //
 943 //
 944 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
 945 // and creating a new alias index for node 30.  This gives:
 946 //
 947 //     7 Parm #memory
 948 //    10  ConI  "12"
 949 //    19  CheckCastPP   "Foo"
 950 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 951 //    29  CheckCastPP   "Foo"  iid=24
 952 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 953 //
 954 //    40  StoreP  25   7  20   ... alias_index=4
 955 //    50  StoreP  35  40  30   ... alias_index=6
 956 //    60  StoreP  45  50  20   ... alias_index=4
 957 //    70  LoadP    _  60  30   ... alias_index=6
 958 //    80  Phi     75  50  60   Memory alias_index=4
 959 //    90  LoadP    _  80  30   ... alias_index=6
 960 //   100  LoadP    _  80  20   ... alias_index=4
 961 //
 962 // In phase 2, new memory inputs are computed for the loads and stores,
 963 // And a new version of the phi is created.  In phase 4, the inputs to
 964 // node 80 are updated and then the memory nodes are updated with the
 965 // values computed in phase 2.  This results in:
 966 //
 967 //     7 Parm #memory
 968 //    10  ConI  "12"
 969 //    19  CheckCastPP   "Foo"
 970 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
 971 //    29  CheckCastPP   "Foo"  iid=24
 972 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
 973 //
 974 //    40  StoreP  25  7   20   ... alias_index=4
 975 //    50  StoreP  35  7   30   ... alias_index=6
 976 //    60  StoreP  45  40  20   ... alias_index=4
 977 //    70  LoadP    _  50  30   ... alias_index=6
 978 //    80  Phi     75  40  60   Memory alias_index=4
 979 //   120  Phi     75  50  50   Memory alias_index=6
 980 //    90  LoadP    _ 120  30   ... alias_index=6
 981 //   100  LoadP    _  80  20   ... alias_index=4
 982 //
 983 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
 984   GrowableArray<Node *>  memnode_worklist;
 985   GrowableArray<Node *>  mergemem_worklist;
 986   GrowableArray<PhiNode *>  orig_phis;
 987 
 988   PhaseGVN  *igvn = _compile->initial_gvn();
 989   uint new_index_start = (uint) _compile->num_alias_types();
 990   Arena* arena = Thread::current()->resource_area();
 991   VectorSet visited(arena);
 992   VectorSet ptset(arena);
 993 
 994 
 995   //  Phase 1:  Process possible allocations from alloc_worklist.
 996   //  Create instance types for the CheckCastPP for allocations where possible.
 997   //
 998   // (Note: don't forget to change the order of the second AddP node on
 999   //  the alloc_worklist if the order of the worklist processing is changed,
1000   //  see the comment in find_second_addp().)
1001   //
1002   while (alloc_worklist.length() != 0) {
1003     Node *n = alloc_worklist.pop();
1004     uint ni = n->_idx;
1005     const TypeOopPtr* tinst = NULL;
1006     if (n->is_Call()) {
1007       CallNode *alloc = n->as_Call();
1008       // copy escape information to call node
1009       PointsToNode* ptn = ptnode_adr(alloc->_idx);
1010       PointsToNode::EscapeState es = escape_state(alloc, igvn);
1011       // We have an allocation or call which returns a Java object,
1012       // see if it is unescaped.
1013       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
1014         continue;
1015 
1016       // Find CheckCastPP for the allocate or for the return value of a call
1017       n = alloc->result_cast();
1018       if (n == NULL) {            // No uses except Initialize node
1019         if (alloc->is_Allocate()) {
1020           // Set the scalar_replaceable flag for allocation
1021           // so it could be eliminated if it has no uses.
1022           alloc->as_Allocate()->_is_scalar_replaceable = true;
1023         }
1024         continue;
1025       }
1026       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
1027         assert(!alloc->is_Allocate(), "allocation should have unique type");
1028         continue;
1029       }
1030 
1031       // The inline code for Object.clone() casts the allocation result to
1032       // java.lang.Object and then to the actual type of the allocated
1033       // object. Detect this case and use the second cast.
1034       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
1035       // the allocation result is cast to java.lang.Object and then
1036       // to the actual Array type.
1037       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
1038           && (alloc->is_AllocateArray() ||
1039               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
1040         Node *cast2 = NULL;
1041         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1042           Node *use = n->fast_out(i);
1043           if (use->is_CheckCastPP()) {
1044             cast2 = use;
1045             break;
1046           }
1047         }
1048         if (cast2 != NULL) {
1049           n = cast2;
1050         } else {
1051           // Non-scalar replaceable if the allocation type is unknown statically
1052           // (reflection allocation), the object can't be restored during
1053           // deoptimization without precise type.
1054           continue;
1055         }
1056       }
1057       if (alloc->is_Allocate()) {
1058         // Set the scalar_replaceable flag for allocation
1059         // so it could be eliminated.
1060         alloc->as_Allocate()->_is_scalar_replaceable = true;
1061       }
1062       set_escape_state(n->_idx, es);
1063       // in order for an object to be scalar-replaceable, it must be:
1064       //   - a direct allocation (not a call returning an object)
1065       //   - non-escaping
1066       //   - eligible to be a unique type
1067       //   - not determined to be ineligible by escape analysis
1068       assert(ptnode_adr(alloc->_idx)->_node != NULL &&
1069              ptnode_adr(n->_idx)->_node != NULL, "should be registered");
1070       set_map(alloc->_idx, n);
1071       set_map(n->_idx, alloc);
1072       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
1073       if (t == NULL)
1074         continue;  // not a TypeInstPtr
1075       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
1076       igvn->hash_delete(n);
1077       igvn->set_type(n,  tinst);
1078       n->raise_bottom_type(tinst);
1079       igvn->hash_insert(n);
1080       record_for_optimizer(n);
1081       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
1082           (t->isa_instptr() || t->isa_aryptr())) {
1083 
1084         // First, put on the worklist all Field edges from Connection Graph
1085         // which is more accurate then putting immediate users from Ideal Graph.
1086         for (uint e = 0; e < ptn->edge_count(); e++) {
1087           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
1088           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
1089                  "only AddP nodes are Field edges in CG");
1090           if (use->outcnt() > 0) { // Don't process dead nodes
1091             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
1092             if (addp2 != NULL) {
1093               assert(alloc->is_AllocateArray(),"array allocation was expected");
1094               alloc_worklist.append_if_missing(addp2);
1095             }
1096             alloc_worklist.append_if_missing(use);
1097           }
1098         }
1099 
1100         // An allocation may have an Initialize which has raw stores. Scan
1101         // the users of the raw allocation result and push AddP users
1102         // on alloc_worklist.
1103         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
1104         assert (raw_result != NULL, "must have an allocation result");
1105         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
1106           Node *use = raw_result->fast_out(i);
1107           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
1108             Node* addp2 = find_second_addp(use, raw_result);
1109             if (addp2 != NULL) {
1110               assert(alloc->is_AllocateArray(),"array allocation was expected");
1111               alloc_worklist.append_if_missing(addp2);
1112             }
1113             alloc_worklist.append_if_missing(use);
1114           } else if (use->is_Initialize()) {
1115             memnode_worklist.append_if_missing(use);
1116           }
1117         }
1118       }
1119     } else if (n->is_AddP()) {
1120       ptset.Clear();
1121       PointsTo(ptset, get_addp_base(n), igvn);
1122       assert(ptset.Size() == 1, "AddP address is unique");
1123       uint elem = ptset.getelem(); // Allocation node's index
1124       if (elem == _phantom_object)
1125         continue; // Assume the value was set outside this method.
1126       Node *base = get_map(elem);  // CheckCastPP node
1127       if (!split_AddP(n, base, igvn)) continue; // wrong type
1128       tinst = igvn->type(base)->isa_oopptr();
1129     } else if (n->is_Phi() ||
1130                n->is_CheckCastPP() ||
1131                n->is_EncodeP() ||
1132                n->is_DecodeN() ||
1133                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
1134       if (visited.test_set(n->_idx)) {
1135         assert(n->is_Phi(), "loops only through Phi's");
1136         continue;  // already processed
1137       }
1138       ptset.Clear();
1139       PointsTo(ptset, n, igvn);
1140       if (ptset.Size() == 1) {
1141         uint elem = ptset.getelem(); // Allocation node's index
1142         if (elem == _phantom_object)
1143           continue; // Assume the value was set outside this method.
1144         Node *val = get_map(elem);   // CheckCastPP node
1145         TypeNode *tn = n->as_Type();
1146         tinst = igvn->type(val)->isa_oopptr();
1147         assert(tinst != NULL && tinst->is_known_instance() &&
1148                (uint)tinst->instance_id() == elem , "instance type expected.");
1149 
1150         const Type *tn_type = igvn->type(tn);
1151         const TypeOopPtr *tn_t;
1152         if (tn_type->isa_narrowoop()) {
1153           tn_t = tn_type->make_ptr()->isa_oopptr();
1154         } else {
1155           tn_t = tn_type->isa_oopptr();
1156         }
1157 
1158         if (tn_t != NULL &&
1159             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
1160           if (tn_type->isa_narrowoop()) {
1161             tn_type = tinst->make_narrowoop();
1162           } else {
1163             tn_type = tinst;
1164           }
1165           igvn->hash_delete(tn);
1166           igvn->set_type(tn, tn_type);
1167           tn->set_type(tn_type);
1168           igvn->hash_insert(tn);
1169           record_for_optimizer(n);
1170         } else {
1171           continue; // wrong type
1172         }
1173       }
1174     } else {
1175       continue;
1176     }
1177     // push users on appropriate worklist
1178     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1179       Node *use = n->fast_out(i);
1180       if(use->is_Mem() && use->in(MemNode::Address) == n) {
1181         memnode_worklist.append_if_missing(use);
1182       } else if (use->is_Initialize()) {
1183         memnode_worklist.append_if_missing(use);
1184       } else if (use->is_MergeMem()) {
1185         mergemem_worklist.append_if_missing(use);
1186       } else if (use->is_SafePoint() && tinst != NULL) {
1187         // Look for MergeMem nodes for calls which reference unique allocation
1188         // (through CheckCastPP nodes) even for debug info.
1189         Node* m = use->in(TypeFunc::Memory);
1190         uint iid = tinst->instance_id();
1191         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
1192                m->in(0) != use && !m->in(0)->_idx != iid) {
1193           m = m->in(0)->in(TypeFunc::Memory);
1194         }
1195         if (m->is_MergeMem()) {
1196           mergemem_worklist.append_if_missing(m);
1197         }
1198       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
1199         Node* addp2 = find_second_addp(use, n);
1200         if (addp2 != NULL) {
1201           alloc_worklist.append_if_missing(addp2);
1202         }
1203         alloc_worklist.append_if_missing(use);
1204       } else if (use->is_Phi() ||
1205                  use->is_CheckCastPP() ||
1206                  use->is_EncodeP() ||
1207                  use->is_DecodeN() ||
1208                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
1209         alloc_worklist.append_if_missing(use);
1210       }
1211     }
1212 
1213   }
1214   // New alias types were created in split_AddP().
1215   uint new_index_end = (uint) _compile->num_alias_types();
1216 
1217   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
1218   //            compute new values for Memory inputs  (the Memory inputs are not
1219   //            actually updated until phase 4.)
1220   if (memnode_worklist.length() == 0)
1221     return;  // nothing to do
1222 
1223   while (memnode_worklist.length() != 0) {
1224     Node *n = memnode_worklist.pop();
1225     if (visited.test_set(n->_idx))
1226       continue;
1227     if (n->is_Phi()) {
1228       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
1229       // we don't need to do anything, but the users must be pushed if we haven't processed
1230       // this Phi before
1231     } else if (n->is_Initialize()) {
1232       // we don't need to do anything, but the users of the memory projection must be pushed
1233       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
1234       if (n == NULL)
1235         continue;
1236     } else {
1237       assert(n->is_Mem(), "memory node required.");
1238       Node *addr = n->in(MemNode::Address);
1239       assert(addr->is_AddP(), "AddP required");
1240       const Type *addr_t = igvn->type(addr);
1241       if (addr_t == Type::TOP)
1242         continue;
1243       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
1244       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
1245       assert ((uint)alias_idx < new_index_end, "wrong alias index");
1246       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
1247       if (_compile->failing()) {
1248         return;
1249       }
1250       if (mem != n->in(MemNode::Memory)) {
1251         // We delay the memory edge update since we need old one in
1252         // MergeMem code below when instances memory slices are separated.
1253         debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
1254         assert(pn == NULL || pn == n, "wrong node");
1255         set_map(n->_idx, mem);
1256         ptnode_adr(n->_idx)->_node = n;
1257       }
1258       if (n->is_Load()) {
1259         continue;  // don't push users
1260       } else if (n->is_LoadStore()) {
1261         // get the memory projection
1262         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1263           Node *use = n->fast_out(i);
1264           if (use->Opcode() == Op_SCMemProj) {
1265             n = use;
1266             break;
1267           }
1268         }
1269         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
1270       }
1271     }
1272     // push user on appropriate worklist
1273     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1274       Node *use = n->fast_out(i);
1275       if (use->is_Phi()) {
1276         memnode_worklist.append_if_missing(use);
1277       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
1278         memnode_worklist.append_if_missing(use);
1279       } else if (use->is_Initialize()) {
1280         memnode_worklist.append_if_missing(use);
1281       } else if (use->is_MergeMem()) {
1282         mergemem_worklist.append_if_missing(use);
1283       }
1284     }
1285   }
1286 
1287   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
1288   //            Walk each memory slice moving the first node encountered of each
1289   //            instance type to the the input corresponding to its alias index.
1290   while (mergemem_worklist.length() != 0) {
1291     Node *n = mergemem_worklist.pop();
1292     assert(n->is_MergeMem(), "MergeMem node required.");
1293     if (visited.test_set(n->_idx))
1294       continue;
1295     MergeMemNode *nmm = n->as_MergeMem();
1296     // Note: we don't want to use MergeMemStream here because we only want to
1297     //  scan inputs which exist at the start, not ones we add during processing.
1298     uint nslices = nmm->req();
1299     igvn->hash_delete(nmm);
1300     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
1301       Node* mem = nmm->in(i);
1302       Node* cur = NULL;
1303       if (mem == NULL || mem->is_top())
1304         continue;
1305       // First, update mergemem by moving memory nodes to corresponding slices
1306       // if their type became more precise since this mergemem was created.
1307       while (mem->is_Mem()) {
1308         const Type *at = igvn->type(mem->in(MemNode::Address));
1309         if (at != Type::TOP) {
1310           assert (at->isa_ptr() != NULL, "pointer type required.");
1311           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
1312           if (idx == i) {
1313             if (cur == NULL)
1314               cur = mem;
1315           } else {
1316             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
1317               nmm->set_memory_at(idx, mem);
1318             }
1319           }
1320         }
1321         mem = mem->in(MemNode::Memory);
1322       }
1323       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
1324       // Find any instance of the current type if we haven't encountered
1325       // already a memory slice of the instance along the memory chain.
1326       for (uint ni = new_index_start; ni < new_index_end; ni++) {
1327         if((uint)_compile->get_general_index(ni) == i) {
1328           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
1329           if (nmm->is_empty_memory(m)) {
1330             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
1331             if (_compile->failing()) {
1332               return;
1333             }
1334             nmm->set_memory_at(ni, result);
1335           }
1336         }
1337       }
1338     }
1339     // Find the rest of instances values
1340     for (uint ni = new_index_start; ni < new_index_end; ni++) {
1341       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
1342       Node* result = step_through_mergemem(nmm, ni, tinst);
1343       if (result == nmm->base_memory()) {
1344         // Didn't find instance memory, search through general slice recursively.
1345         result = nmm->memory_at(_compile->get_general_index(ni));
1346         result = find_inst_mem(result, ni, orig_phis, igvn);
1347         if (_compile->failing()) {
1348           return;
1349         }
1350         nmm->set_memory_at(ni, result);
1351       }
1352     }
1353     igvn->hash_insert(nmm);
1354     record_for_optimizer(nmm);
1355 
1356     // Propagate new memory slices to following MergeMem nodes.
1357     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1358       Node *use = n->fast_out(i);
1359       if (use->is_Call()) {
1360         CallNode* in = use->as_Call();
1361         if (in->proj_out(TypeFunc::Memory) != NULL) {
1362           Node* m = in->proj_out(TypeFunc::Memory);
1363           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1364             Node* mm = m->fast_out(j);
1365             if (mm->is_MergeMem()) {
1366               mergemem_worklist.append_if_missing(mm);
1367             }
1368           }
1369         }
1370         if (use->is_Allocate()) {
1371           use = use->as_Allocate()->initialization();
1372           if (use == NULL) {
1373             continue;
1374           }
1375         }
1376       }
1377       if (use->is_Initialize()) {
1378         InitializeNode* in = use->as_Initialize();
1379         if (in->proj_out(TypeFunc::Memory) != NULL) {
1380           Node* m = in->proj_out(TypeFunc::Memory);
1381           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
1382             Node* mm = m->fast_out(j);
1383             if (mm->is_MergeMem()) {
1384               mergemem_worklist.append_if_missing(mm);
1385             }
1386           }
1387         }
1388       }
1389     }
1390   }
1391 
1392   //  Phase 4:  Update the inputs of non-instance memory Phis and
1393   //            the Memory input of memnodes
1394   // First update the inputs of any non-instance Phi's from
1395   // which we split out an instance Phi.  Note we don't have
1396   // to recursively process Phi's encounted on the input memory
1397   // chains as is done in split_memory_phi() since they  will
1398   // also be processed here.
1399   for (int j = 0; j < orig_phis.length(); j++) {
1400     PhiNode *phi = orig_phis.at(j);
1401     int alias_idx = _compile->get_alias_index(phi->adr_type());
1402     igvn->hash_delete(phi);
1403     for (uint i = 1; i < phi->req(); i++) {
1404       Node *mem = phi->in(i);
1405       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
1406       if (_compile->failing()) {
1407         return;
1408       }
1409       if (mem != new_mem) {
1410         phi->set_req(i, new_mem);
1411       }
1412     }
1413     igvn->hash_insert(phi);
1414     record_for_optimizer(phi);
1415   }
1416 
1417   // Update the memory inputs of MemNodes with the value we computed
1418   // in Phase 2 and move stores memory users to corresponding memory slices.
1419 #ifdef ASSERT
1420   visited.Clear();
1421   Node_Stack old_mems(arena, _compile->unique() >> 2);
1422 #endif
1423   for (uint i = 0; i < nodes_size(); i++) {
1424     Node *nmem = get_map(i);
1425     if (nmem != NULL) {
1426       Node *n = ptnode_adr(i)->_node;
1427       assert(n != NULL, "sanity");
1428       if (n->is_Mem()) {
1429 #ifdef ASSERT
1430         Node* old_mem = n->in(MemNode::Memory);
1431         if (!visited.test_set(old_mem->_idx)) {
1432           old_mems.push(old_mem, old_mem->outcnt());
1433         }
1434 #endif
1435         assert(n->in(MemNode::Memory) != nmem, "sanity");
1436         if (!n->is_Load()) {
1437           // Move memory users of a store first.
1438           move_inst_mem(n, orig_phis, igvn);
1439         }
1440         // Now update memory input
1441         igvn->hash_delete(n);
1442         n->set_req(MemNode::Memory, nmem);
1443         igvn->hash_insert(n);
1444         record_for_optimizer(n);
1445       } else {
1446         assert(n->is_Allocate() || n->is_CheckCastPP() ||
1447                n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
1448       }
1449     }
1450   }
1451 #ifdef ASSERT
1452   // Verify that memory was split correctly
1453   while (old_mems.is_nonempty()) {
1454     Node* old_mem = old_mems.node();
1455     uint  old_cnt = old_mems.index();
1456     old_mems.pop();
1457     assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
1458   }
1459 #endif
1460 }
1461 
1462 bool ConnectionGraph::has_candidates(Compile *C) {
1463   // EA brings benefits only when the code has allocations and/or locks which
1464   // are represented by ideal Macro nodes.
1465   int cnt = C->macro_count();
1466   for( int i=0; i < cnt; i++ ) {
1467     Node *n = C->macro_node(i);
1468     if ( n->is_Allocate() )
1469       return true;
1470     if( n->is_Lock() ) {
1471       Node* obj = n->as_Lock()->obj_node()->uncast();
1472       if( !(obj->is_Parm() || obj->is_Con()) )
1473         return true;
1474     }
1475   }
1476   return false;
1477 }
1478 
1479 bool ConnectionGraph::compute_escape() {
1480   Compile* C = _compile;
1481 
1482   // 1. Populate Connection Graph (CG) with Ideal nodes.
1483 
1484   Unique_Node_List worklist_init;
1485   worklist_init.map(C->unique(), NULL);  // preallocate space
1486 
1487   // Initialize worklist
1488   if (C->root() != NULL) {
1489     worklist_init.push(C->root());
1490   }
1491 
1492   GrowableArray<int> cg_worklist;
1493   PhaseGVN* igvn = C->initial_gvn();
1494   bool has_allocations = false;
1495 
1496   // Push all useful nodes onto CG list and set their type.
1497   for( uint next = 0; next < worklist_init.size(); ++next ) {
1498     Node* n = worklist_init.at(next);
1499     record_for_escape_analysis(n, igvn);
1500     // Only allocations and java static calls results are checked
1501     // for an escape status. See process_call_result() below.
1502     if (n->is_Allocate() || n->is_CallStaticJava() &&
1503         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
1504       has_allocations = true;
1505     }
1506     if(n->is_AddP())
1507       cg_worklist.append(n->_idx);
1508     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1509       Node* m = n->fast_out(i);   // Get user
1510       worklist_init.push(m);
1511     }
1512   }
1513 
1514   if (!has_allocations) {
1515     _collecting = false;
1516     return false; // Nothing to do.
1517   }
1518 
1519   // 2. First pass to create simple CG edges (doesn't require to walk CG).
1520   uint delayed_size = _delayed_worklist.size();
1521   for( uint next = 0; next < delayed_size; ++next ) {
1522     Node* n = _delayed_worklist.at(next);
1523     build_connection_graph(n, igvn);
1524   }
1525 
1526   // 3. Pass to create fields edges (Allocate -F-> AddP).
1527   uint cg_length = cg_worklist.length();
1528   for( uint next = 0; next < cg_length; ++next ) {
1529     int ni = cg_worklist.at(next);
1530     build_connection_graph(ptnode_adr(ni)->_node, igvn);
1531   }
1532 
1533   cg_worklist.clear();
1534   cg_worklist.append(_phantom_object);
1535 
1536   // 4. Build Connection Graph which need
1537   //    to walk the connection graph.
1538   for (uint ni = 0; ni < nodes_size(); ni++) {
1539     PointsToNode* ptn = ptnode_adr(ni);
1540     Node *n = ptn->_node;
1541     if (n != NULL) { // Call, AddP, LoadP, StoreP
1542       build_connection_graph(n, igvn);
1543       if (ptn->node_type() != PointsToNode::UnknownType)
1544         cg_worklist.append(n->_idx); // Collect CG nodes
1545     }
1546   }
1547 
1548   VectorSet ptset(Thread::current()->resource_area());
1549   GrowableArray<uint>  deferred_edges;
1550   VectorSet visited(Thread::current()->resource_area());
1551 
1552   // 5. Remove deferred edges from the graph and collect
1553   //    information needed for type splitting.
1554   cg_length = cg_worklist.length();
1555   for( uint next = 0; next < cg_length; ++next ) {
1556     int ni = cg_worklist.at(next);
1557     PointsToNode* ptn = ptnode_adr(ni);
1558     PointsToNode::NodeType nt = ptn->node_type();
1559     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
1560       remove_deferred(ni, &deferred_edges, &visited);
1561       Node *n = ptn->_node;
1562       if (n->is_AddP()) {
1563         // Search for objects which are not scalar replaceable.
1564         // Mark their escape state as ArgEscape to propagate the state
1565         // to referenced objects.
1566         // Note: currently there are no difference in compiler optimizations
1567         // for ArgEscape objects and NoEscape objects which are not
1568         // scalar replaceable.
1569 
1570         int offset = ptn->offset();
1571         Node *base = get_addp_base(n);
1572         ptset.Clear();
1573         PointsTo(ptset, base, igvn);
1574         int ptset_size = ptset.Size();
1575 
1576         // Check if a field's initializing value is recorded and add
1577         // a corresponding NULL field's value if it is not recorded.
1578         // Connection Graph does not record a default initialization by NULL
1579         // captured by Initialize node.
1580         //
1581         // Note: it will disable scalar replacement in some cases:
1582         //
1583         //    Point p[] = new Point[1];
1584         //    p[0] = new Point(); // Will be not scalar replaced
1585         //
1586         // but it will save us from incorrect optimizations in next cases:
1587         //
1588         //    Point p[] = new Point[1];
1589         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1590         //
1591         // Without a control flow analysis we can't distinguish above cases.
1592         //
1593         if (offset != Type::OffsetBot && ptset_size == 1) {
1594           uint elem = ptset.getelem(); // Allocation node's index
1595           // It does not matter if it is not Allocation node since
1596           // only non-escaping allocations are scalar replaced.
1597           if (ptnode_adr(elem)->_node->is_Allocate() &&
1598               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
1599             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
1600             InitializeNode* ini = alloc->initialization();
1601             Node* value = NULL;
1602             if (ini != NULL) {
1603               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
1604               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
1605               if (store != NULL && store->is_Store())
1606                 value = store->in(MemNode::ValueIn);
1607             }
1608             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
1609               // A field's initializing value was not recorded. Add NULL.
1610               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
1611               add_pointsto_edge(ni, null_idx);
1612             }
1613           }
1614         }
1615 
1616         // An object is not scalar replaceable if the field which may point
1617         // to it has unknown offset (unknown element of an array of objects).
1618         //
1619         if (offset == Type::OffsetBot) {
1620           uint e_cnt = ptn->edge_count();
1621           for (uint ei = 0; ei < e_cnt; ei++) {
1622             uint npi = ptn->edge_target(ei);
1623             set_escape_state(npi, PointsToNode::ArgEscape);
1624             ptnode_adr(npi)->_scalar_replaceable = false;
1625           }
1626         }
1627 
1628         // Currently an object is not scalar replaceable if a LoadStore node
1629         // access its field since the field value is unknown after it.
1630         //
1631         bool has_LoadStore = false;
1632         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1633           Node *use = n->fast_out(i);
1634           if (use->is_LoadStore()) {
1635             has_LoadStore = true;
1636             break;
1637           }
1638         }
1639         // An object is not scalar replaceable if the address points
1640         // to unknown field (unknown element for arrays, offset is OffsetBot).
1641         //
1642         // Or the address may point to more then one object. This may produce
1643         // the false positive result (set scalar_replaceable to false)
1644         // since the flow-insensitive escape analysis can't separate
1645         // the case when stores overwrite the field's value from the case
1646         // when stores happened on different control branches.
1647         //
1648         if (ptset_size > 1 || ptset_size != 0 &&
1649             (has_LoadStore || offset == Type::OffsetBot)) {
1650           for( VectorSetI j(&ptset); j.test(); ++j ) {
1651             set_escape_state(j.elem, PointsToNode::ArgEscape);
1652             ptnode_adr(j.elem)->_scalar_replaceable = false;
1653           }
1654         }
1655       }
1656     }
1657   }
1658 
1659   // 6. Propagate escape states.
1660   GrowableArray<int>  worklist;
1661   bool has_non_escaping_obj = false;
1662 
1663   // push all GlobalEscape nodes on the worklist
1664   for( uint next = 0; next < cg_length; ++next ) {
1665     int nk = cg_worklist.at(next);
1666     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
1667       worklist.push(nk);
1668   }
1669   // mark all nodes reachable from GlobalEscape nodes
1670   while(worklist.length() > 0) {
1671     PointsToNode* ptn = ptnode_adr(worklist.pop());
1672     uint e_cnt = ptn->edge_count();
1673     for (uint ei = 0; ei < e_cnt; ei++) {
1674       uint npi = ptn->edge_target(ei);
1675       PointsToNode *np = ptnode_adr(npi);
1676       if (np->escape_state() < PointsToNode::GlobalEscape) {
1677         np->set_escape_state(PointsToNode::GlobalEscape);
1678         worklist.push(npi);
1679       }
1680     }
1681   }
1682 
1683   // push all ArgEscape nodes on the worklist
1684   for( uint next = 0; next < cg_length; ++next ) {
1685     int nk = cg_worklist.at(next);
1686     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
1687       worklist.push(nk);
1688   }
1689   // mark all nodes reachable from ArgEscape nodes
1690   while(worklist.length() > 0) {
1691     PointsToNode* ptn = ptnode_adr(worklist.pop());
1692     if (ptn->node_type() == PointsToNode::JavaObject)
1693       has_non_escaping_obj = true; // Non GlobalEscape
1694     uint e_cnt = ptn->edge_count();
1695     for (uint ei = 0; ei < e_cnt; ei++) {
1696       uint npi = ptn->edge_target(ei);
1697       PointsToNode *np = ptnode_adr(npi);
1698       if (np->escape_state() < PointsToNode::ArgEscape) {
1699         np->set_escape_state(PointsToNode::ArgEscape);
1700         worklist.push(npi);
1701       }
1702     }
1703   }
1704 
1705   GrowableArray<Node*> alloc_worklist;
1706 
1707   // push all NoEscape nodes on the worklist
1708   for( uint next = 0; next < cg_length; ++next ) {
1709     int nk = cg_worklist.at(next);
1710     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
1711       worklist.push(nk);
1712   }
1713   // mark all nodes reachable from NoEscape nodes
1714   while(worklist.length() > 0) {
1715     PointsToNode* ptn = ptnode_adr(worklist.pop());
1716     if (ptn->node_type() == PointsToNode::JavaObject)
1717       has_non_escaping_obj = true; // Non GlobalEscape
1718     Node* n = ptn->_node;
1719     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
1720       // Push scalar replaceable allocations on alloc_worklist
1721       // for processing in split_unique_types().
1722       alloc_worklist.append(n);
1723     }
1724     uint e_cnt = ptn->edge_count();
1725     for (uint ei = 0; ei < e_cnt; ei++) {
1726       uint npi = ptn->edge_target(ei);
1727       PointsToNode *np = ptnode_adr(npi);
1728       if (np->escape_state() < PointsToNode::NoEscape) {
1729         np->set_escape_state(PointsToNode::NoEscape);
1730         worklist.push(npi);
1731       }
1732     }
1733   }
1734 
1735   _collecting = false;
1736   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
1737 
1738   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
1739   if ( has_scalar_replaceable_candidates &&
1740        C->AliasLevel() >= 3 && EliminateAllocations ) {
1741 
1742     // Now use the escape information to create unique types for
1743     // scalar replaceable objects.
1744     split_unique_types(alloc_worklist);
1745 
1746     if (C->failing())  return false;
1747 
1748     // Clean up after split unique types.
1749     ResourceMark rm;
1750     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1751 
1752     C->print_method("After Escape Analysis", 2);
1753 
1754 #ifdef ASSERT
1755   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
1756     tty->print("=== No allocations eliminated for ");
1757     C->method()->print_short_name();
1758     if(!EliminateAllocations) {
1759       tty->print(" since EliminateAllocations is off ===");
1760     } else if(!has_scalar_replaceable_candidates) {
1761       tty->print(" since there are no scalar replaceable candidates ===");
1762     } else if(C->AliasLevel() < 3) {
1763       tty->print(" since AliasLevel < 3 ===");
1764     }
1765     tty->cr();
1766 #endif
1767   }
1768   return has_non_escaping_obj;
1769 }
1770 
1771 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
1772 
1773     switch (call->Opcode()) {
1774 #ifdef ASSERT
1775     case Op_Allocate:
1776     case Op_AllocateArray:
1777     case Op_Lock:
1778     case Op_Unlock:
1779       assert(false, "should be done already");
1780       break;
1781 #endif
1782     case Op_CallLeafNoFP:
1783     {
1784       // Stub calls, objects do not escape but they are not scale replaceable.
1785       // Adjust escape state for outgoing arguments.
1786       const TypeTuple * d = call->tf()->domain();
1787       VectorSet ptset(Thread::current()->resource_area());
1788       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1789         const Type* at = d->field_at(i);
1790         Node *arg = call->in(i)->uncast();
1791         const Type *aat = phase->type(arg);
1792         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
1793           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
1794                  aat->isa_ptr() != NULL, "expecting an Ptr");
1795           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1796           if (arg->is_AddP()) {
1797             //
1798             // The inline_native_clone() case when the arraycopy stub is called
1799             // after the allocation before Initialize and CheckCastPP nodes.
1800             //
1801             // Set AddP's base (Allocate) as not scalar replaceable since
1802             // pointer to the base (with offset) is passed as argument.
1803             //
1804             arg = get_addp_base(arg);
1805           }
1806           ptset.Clear();
1807           PointsTo(ptset, arg, phase);
1808           for( VectorSetI j(&ptset); j.test(); ++j ) {
1809             uint pt = j.elem;
1810             set_escape_state(pt, PointsToNode::ArgEscape);
1811           }
1812         }
1813       }
1814       break;
1815     }
1816 
1817     case Op_CallStaticJava:
1818     // For a static call, we know exactly what method is being called.
1819     // Use bytecode estimator to record the call's escape affects
1820     {
1821       ciMethod *meth = call->as_CallJava()->method();
1822       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1823       // fall-through if not a Java method or no analyzer information
1824       if (call_analyzer != NULL) {
1825         const TypeTuple * d = call->tf()->domain();
1826         VectorSet ptset(Thread::current()->resource_area());
1827         bool copy_dependencies = false;
1828         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1829           const Type* at = d->field_at(i);
1830           int k = i - TypeFunc::Parms;
1831 
1832           if (at->isa_oopptr() != NULL) {
1833             Node *arg = call->in(i)->uncast();
1834 
1835             bool global_escapes = false;
1836             bool fields_escapes = false;
1837             if (!call_analyzer->is_arg_stack(k)) {
1838               // The argument global escapes, mark everything it could point to
1839               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1840               global_escapes = true;
1841             } else {
1842               if (!call_analyzer->is_arg_local(k)) {
1843                 // The argument itself doesn't escape, but any fields might
1844                 fields_escapes = true;
1845               }
1846               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
1847               copy_dependencies = true;
1848             }
1849 
1850             ptset.Clear();
1851             PointsTo(ptset, arg, phase);
1852             for( VectorSetI j(&ptset); j.test(); ++j ) {
1853               uint pt = j.elem;
1854               if (global_escapes) {
1855                 //The argument global escapes, mark everything it could point to
1856                 set_escape_state(pt, PointsToNode::GlobalEscape);
1857               } else {
1858                 if (fields_escapes) {
1859                   // The argument itself doesn't escape, but any fields might
1860                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
1861                 }
1862                 set_escape_state(pt, PointsToNode::ArgEscape);
1863               }
1864             }
1865           }
1866         }
1867         if (copy_dependencies)
1868           call_analyzer->copy_dependencies(_compile->dependencies());
1869         break;
1870       }
1871     }
1872 
1873     default:
1874     // Fall-through here if not a Java method or no analyzer information
1875     // or some other type of call, assume the worst case: all arguments
1876     // globally escape.
1877     {
1878       // adjust escape state for  outgoing arguments
1879       const TypeTuple * d = call->tf()->domain();
1880       VectorSet ptset(Thread::current()->resource_area());
1881       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1882         const Type* at = d->field_at(i);
1883         if (at->isa_oopptr() != NULL) {
1884           Node *arg = call->in(i)->uncast();
1885           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
1886           ptset.Clear();
1887           PointsTo(ptset, arg, phase);
1888           for( VectorSetI j(&ptset); j.test(); ++j ) {
1889             uint pt = j.elem;
1890             set_escape_state(pt, PointsToNode::GlobalEscape);
1891           }
1892         }
1893       }
1894     }
1895   }
1896 }
1897 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
1898   CallNode   *call = resproj->in(0)->as_Call();
1899   uint    call_idx = call->_idx;
1900   uint resproj_idx = resproj->_idx;
1901 
1902   switch (call->Opcode()) {
1903     case Op_Allocate:
1904     {
1905       Node *k = call->in(AllocateNode::KlassNode);
1906       const TypeKlassPtr *kt;
1907       if (k->Opcode() == Op_LoadKlass) {
1908         kt = k->as_Load()->type()->isa_klassptr();
1909       } else {
1910         // Also works for DecodeN(LoadNKlass).
1911         kt = k->as_Type()->type()->isa_klassptr();
1912       }
1913       assert(kt != NULL, "TypeKlassPtr  required.");
1914       ciKlass* cik = kt->klass();
1915       ciInstanceKlass* ciik = cik->as_instance_klass();
1916 
1917       PointsToNode::EscapeState es;
1918       uint edge_to;
1919       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
1920         es = PointsToNode::GlobalEscape;
1921         edge_to = _phantom_object; // Could not be worse
1922       } else {
1923         es = PointsToNode::NoEscape;
1924         edge_to = call_idx;
1925       }
1926       set_escape_state(call_idx, es);
1927       add_pointsto_edge(resproj_idx, edge_to);
1928       _processed.set(resproj_idx);
1929       break;
1930     }
1931 
1932     case Op_AllocateArray:
1933     {
1934       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
1935       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
1936         // Not scalar replaceable if the length is not constant or too big.
1937         ptnode_adr(call_idx)->_scalar_replaceable = false;
1938       }
1939       set_escape_state(call_idx, PointsToNode::NoEscape);
1940       add_pointsto_edge(resproj_idx, call_idx);
1941       _processed.set(resproj_idx);
1942       break;
1943     }
1944 
1945     case Op_CallStaticJava:
1946     // For a static call, we know exactly what method is being called.
1947     // Use bytecode estimator to record whether the call's return value escapes
1948     {
1949       bool done = true;
1950       const TypeTuple *r = call->tf()->range();
1951       const Type* ret_type = NULL;
1952 
1953       if (r->cnt() > TypeFunc::Parms)
1954         ret_type = r->field_at(TypeFunc::Parms);
1955 
1956       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
1957       //        _multianewarray functions return a TypeRawPtr.
1958       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
1959         _processed.set(resproj_idx);
1960         break;  // doesn't return a pointer type
1961       }
1962       ciMethod *meth = call->as_CallJava()->method();
1963       const TypeTuple * d = call->tf()->domain();
1964       if (meth == NULL) {
1965         // not a Java method, assume global escape
1966         set_escape_state(call_idx, PointsToNode::GlobalEscape);
1967         add_pointsto_edge(resproj_idx, _phantom_object);
1968       } else {
1969         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
1970         bool copy_dependencies = false;
1971 
1972         if (call_analyzer->is_return_allocated()) {
1973           // Returns a newly allocated unescaped object, simply
1974           // update dependency information.
1975           // Mark it as NoEscape so that objects referenced by
1976           // it's fields will be marked as NoEscape at least.
1977           set_escape_state(call_idx, PointsToNode::NoEscape);
1978           add_pointsto_edge(resproj_idx, call_idx);
1979           copy_dependencies = true;
1980         } else if (call_analyzer->is_return_local()) {
1981           // determine whether any arguments are returned
1982           set_escape_state(call_idx, PointsToNode::NoEscape);
1983           bool ret_arg = false;
1984           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1985             const Type* at = d->field_at(i);
1986 
1987             if (at->isa_oopptr() != NULL) {
1988               Node *arg = call->in(i)->uncast();
1989 
1990               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
1991                 ret_arg = true;
1992                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
1993                 if (arg_esp->node_type() == PointsToNode::UnknownType)
1994                   done = false;
1995                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
1996                   add_pointsto_edge(resproj_idx, arg->_idx);
1997                 else
1998                   add_deferred_edge(resproj_idx, arg->_idx);
1999                 arg_esp->_hidden_alias = true;
2000               }
2001             }
2002           }
2003           if (done && !ret_arg) {
2004             // Returns unknown object.
2005             set_escape_state(call_idx, PointsToNode::GlobalEscape);
2006             add_pointsto_edge(resproj_idx, _phantom_object);
2007           }
2008           copy_dependencies = true;
2009         } else {
2010           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2011           add_pointsto_edge(resproj_idx, _phantom_object);
2012           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
2013             const Type* at = d->field_at(i);
2014             if (at->isa_oopptr() != NULL) {
2015               Node *arg = call->in(i)->uncast();
2016               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
2017               arg_esp->_hidden_alias = true;
2018             }
2019           }
2020         }
2021         if (copy_dependencies)
2022           call_analyzer->copy_dependencies(_compile->dependencies());
2023       }
2024       if (done)
2025         _processed.set(resproj_idx);
2026       break;
2027     }
2028 
2029     default:
2030     // Some other type of call, assume the worst case that the
2031     // returned value, if any, globally escapes.
2032     {
2033       const TypeTuple *r = call->tf()->range();
2034       if (r->cnt() > TypeFunc::Parms) {
2035         const Type* ret_type = r->field_at(TypeFunc::Parms);
2036 
2037         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
2038         //        _multianewarray functions return a TypeRawPtr.
2039         if (ret_type->isa_ptr() != NULL) {
2040           set_escape_state(call_idx, PointsToNode::GlobalEscape);
2041           add_pointsto_edge(resproj_idx, _phantom_object);
2042         }
2043       }
2044       _processed.set(resproj_idx);
2045     }
2046   }
2047 }
2048 
2049 // Populate Connection Graph with Ideal nodes and create simple
2050 // connection graph edges (do not need to check the node_type of inputs
2051 // or to call PointsTo() to walk the connection graph).
2052 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
2053   if (_processed.test(n->_idx))
2054     return; // No need to redefine node's state.
2055 
2056   if (n->is_Call()) {
2057     // Arguments to allocation and locking don't escape.
2058     if (n->is_Allocate()) {
2059       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
2060       record_for_optimizer(n);
2061     } else if (n->is_Lock() || n->is_Unlock()) {
2062       // Put Lock and Unlock nodes on IGVN worklist to process them during
2063       // the first IGVN optimization when escape information is still available.
2064       record_for_optimizer(n);
2065       _processed.set(n->_idx);
2066     } else {
2067       // Have to process call's arguments first.
2068       PointsToNode::NodeType nt = PointsToNode::UnknownType;
2069 
2070       // Check if a call returns an object.
2071       const TypeTuple *r = n->as_Call()->tf()->range();
2072       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
2073           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
2074         // Note:  use isa_ptr() instead of isa_oopptr() here because
2075         //        the _multianewarray functions return a TypeRawPtr.
2076         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
2077           nt = PointsToNode::JavaObject;
2078         }
2079       }
2080       add_node(n, nt, PointsToNode::UnknownEscape, false);
2081     }
2082     return;
2083   }
2084 
2085   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
2086   // ThreadLocal has RawPrt type.
2087   switch (n->Opcode()) {
2088     case Op_AddP:
2089     {
2090       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
2091       break;
2092     }
2093     case Op_CastX2P:
2094     { // "Unsafe" memory access.
2095       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2096       break;
2097     }
2098     case Op_CastPP:
2099     case Op_CheckCastPP:
2100     case Op_EncodeP:
2101     case Op_DecodeN:
2102     {
2103       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2104       int ti = n->in(1)->_idx;
2105       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2106       if (nt == PointsToNode::UnknownType) {
2107         _delayed_worklist.push(n); // Process it later.
2108         break;
2109       } else if (nt == PointsToNode::JavaObject) {
2110         add_pointsto_edge(n->_idx, ti);
2111       } else {
2112         add_deferred_edge(n->_idx, ti);
2113       }
2114       _processed.set(n->_idx);
2115       break;
2116     }
2117     case Op_ConP:
2118     {
2119       // assume all pointer constants globally escape except for null
2120       PointsToNode::EscapeState es;
2121       if (phase->type(n) == TypePtr::NULL_PTR)
2122         es = PointsToNode::NoEscape;
2123       else
2124         es = PointsToNode::GlobalEscape;
2125 
2126       add_node(n, PointsToNode::JavaObject, es, true);
2127       break;
2128     }
2129     case Op_ConN:
2130     {
2131       // assume all narrow oop constants globally escape except for null
2132       PointsToNode::EscapeState es;
2133       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
2134         es = PointsToNode::NoEscape;
2135       else
2136         es = PointsToNode::GlobalEscape;
2137 
2138       add_node(n, PointsToNode::JavaObject, es, true);
2139       break;
2140     }
2141     case Op_CreateEx:
2142     {
2143       // assume that all exception objects globally escape
2144       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2145       break;
2146     }
2147     case Op_LoadKlass:
2148     case Op_LoadNKlass:
2149     {
2150       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
2151       break;
2152     }
2153     case Op_LoadP:
2154     case Op_LoadN:
2155     {
2156       const Type *t = phase->type(n);
2157       if (t->make_ptr() == NULL) {
2158         _processed.set(n->_idx);
2159         return;
2160       }
2161       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2162       break;
2163     }
2164     case Op_Parm:
2165     {
2166       _processed.set(n->_idx); // No need to redefine it state.
2167       uint con = n->as_Proj()->_con;
2168       if (con < TypeFunc::Parms)
2169         return;
2170       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
2171       if (t->isa_ptr() == NULL)
2172         return;
2173       // We have to assume all input parameters globally escape
2174       // (Note: passing 'false' since _processed is already set).
2175       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
2176       break;
2177     }
2178     case Op_Phi:
2179     {
2180       const Type *t = n->as_Phi()->type();
2181       if (t->make_ptr() == NULL) {
2182         // nothing to do if not an oop or narrow oop
2183         _processed.set(n->_idx);
2184         return;
2185       }
2186       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2187       uint i;
2188       for (i = 1; i < n->req() ; i++) {
2189         Node* in = n->in(i);
2190         if (in == NULL)
2191           continue;  // ignore NULL
2192         in = in->uncast();
2193         if (in->is_top() || in == n)
2194           continue;  // ignore top or inputs which go back this node
2195         int ti = in->_idx;
2196         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2197         if (nt == PointsToNode::UnknownType) {
2198           break;
2199         } else if (nt == PointsToNode::JavaObject) {
2200           add_pointsto_edge(n->_idx, ti);
2201         } else {
2202           add_deferred_edge(n->_idx, ti);
2203         }
2204       }
2205       if (i >= n->req())
2206         _processed.set(n->_idx);
2207       else
2208         _delayed_worklist.push(n);
2209       break;
2210     }
2211     case Op_Proj:
2212     {
2213       // we are only interested in the result projection from a call
2214       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2215         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
2216         process_call_result(n->as_Proj(), phase);
2217         if (!_processed.test(n->_idx)) {
2218           // The call's result may need to be processed later if the call
2219           // returns it's argument and the argument is not processed yet.
2220           _delayed_worklist.push(n);
2221         }
2222       } else {
2223         _processed.set(n->_idx);
2224       }
2225       break;
2226     }
2227     case Op_Return:
2228     {
2229       if( n->req() > TypeFunc::Parms &&
2230           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2231         // Treat Return value as LocalVar with GlobalEscape escape state.
2232         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
2233         int ti = n->in(TypeFunc::Parms)->_idx;
2234         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2235         if (nt == PointsToNode::UnknownType) {
2236           _delayed_worklist.push(n); // Process it later.
2237           break;
2238         } else if (nt == PointsToNode::JavaObject) {
2239           add_pointsto_edge(n->_idx, ti);
2240         } else {
2241           add_deferred_edge(n->_idx, ti);
2242         }
2243       }
2244       _processed.set(n->_idx);
2245       break;
2246     }
2247     case Op_StoreP:
2248     case Op_StoreN:
2249     {
2250       const Type *adr_type = phase->type(n->in(MemNode::Address));
2251       adr_type = adr_type->make_ptr();
2252       if (adr_type->isa_oopptr()) {
2253         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2254       } else {
2255         Node* adr = n->in(MemNode::Address);
2256         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
2257             adr->in(AddPNode::Address)->is_Proj() &&
2258             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2259           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2260           // We are computing a raw address for a store captured
2261           // by an Initialize compute an appropriate address type.
2262           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2263           assert(offs != Type::OffsetBot, "offset must be a constant");
2264         } else {
2265           _processed.set(n->_idx);
2266           return;
2267         }
2268       }
2269       break;
2270     }
2271     case Op_StorePConditional:
2272     case Op_CompareAndSwapP:
2273     case Op_CompareAndSwapN:
2274     {
2275       const Type *adr_type = phase->type(n->in(MemNode::Address));
2276       adr_type = adr_type->make_ptr();
2277       if (adr_type->isa_oopptr()) {
2278         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
2279       } else {
2280         _processed.set(n->_idx);
2281         return;
2282       }
2283       break;
2284     }
2285     case Op_ThreadLocal:
2286     {
2287       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
2288       break;
2289     }
2290     default:
2291       ;
2292       // nothing to do
2293   }
2294   return;
2295 }
2296 
2297 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
2298   uint n_idx = n->_idx;
2299 
2300   // Don't set processed bit for AddP, LoadP, StoreP since
2301   // they may need more then one pass to process.
2302   if (_processed.test(n_idx))
2303     return; // No need to redefine node's state.
2304 
2305   if (n->is_Call()) {
2306     CallNode *call = n->as_Call();
2307     process_call_arguments(call, phase);
2308     _processed.set(n_idx);
2309     return;
2310   }
2311 
2312   switch (n->Opcode()) {
2313     case Op_AddP:
2314     {
2315       Node *base = get_addp_base(n);
2316       // Create a field edge to this node from everything base could point to.
2317       VectorSet ptset(Thread::current()->resource_area());
2318       PointsTo(ptset, base, phase);
2319       for( VectorSetI i(&ptset); i.test(); ++i ) {
2320         uint pt = i.elem;
2321         add_field_edge(pt, n_idx, address_offset(n, phase));
2322       }
2323       break;
2324     }
2325     case Op_CastX2P:
2326     {
2327       assert(false, "Op_CastX2P");
2328       break;
2329     }
2330     case Op_CastPP:
2331     case Op_CheckCastPP:
2332     case Op_EncodeP:
2333     case Op_DecodeN:
2334     {
2335       int ti = n->in(1)->_idx;
2336       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2337         add_pointsto_edge(n_idx, ti);
2338       } else {
2339         add_deferred_edge(n_idx, ti);
2340       }
2341       _processed.set(n_idx);
2342       break;
2343     }
2344     case Op_ConP:
2345     {
2346       assert(false, "Op_ConP");
2347       break;
2348     }
2349     case Op_ConN:
2350     {
2351       assert(false, "Op_ConN");
2352       break;
2353     }
2354     case Op_CreateEx:
2355     {
2356       assert(false, "Op_CreateEx");
2357       break;
2358     }
2359     case Op_LoadKlass:
2360     case Op_LoadNKlass:
2361     {
2362       assert(false, "Op_LoadKlass");
2363       break;
2364     }
2365     case Op_LoadP:
2366     case Op_LoadN:
2367     {
2368       const Type *t = phase->type(n);
2369 #ifdef ASSERT
2370       if (t->make_ptr() == NULL)
2371         assert(false, "Op_LoadP");
2372 #endif
2373 
2374       Node* adr = n->in(MemNode::Address)->uncast();
2375       const Type *adr_type = phase->type(adr);
2376       Node* adr_base;
2377       if (adr->is_AddP()) {
2378         adr_base = get_addp_base(adr);
2379       } else {
2380         adr_base = adr;
2381       }
2382 
2383       // For everything "adr_base" could point to, create a deferred edge from
2384       // this node to each field with the same offset.
2385       VectorSet ptset(Thread::current()->resource_area());
2386       PointsTo(ptset, adr_base, phase);
2387       int offset = address_offset(adr, phase);
2388       for( VectorSetI i(&ptset); i.test(); ++i ) {
2389         uint pt = i.elem;
2390         add_deferred_edge_to_fields(n_idx, pt, offset);
2391       }
2392       break;
2393     }
2394     case Op_Parm:
2395     {
2396       assert(false, "Op_Parm");
2397       break;
2398     }
2399     case Op_Phi:
2400     {
2401 #ifdef ASSERT
2402       const Type *t = n->as_Phi()->type();
2403       if (t->make_ptr() == NULL)
2404         assert(false, "Op_Phi");
2405 #endif
2406       for (uint i = 1; i < n->req() ; i++) {
2407         Node* in = n->in(i);
2408         if (in == NULL)
2409           continue;  // ignore NULL
2410         in = in->uncast();
2411         if (in->is_top() || in == n)
2412           continue;  // ignore top or inputs which go back this node
2413         int ti = in->_idx;
2414         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
2415         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
2416         if (nt == PointsToNode::JavaObject) {
2417           add_pointsto_edge(n_idx, ti);
2418         } else {
2419           add_deferred_edge(n_idx, ti);
2420         }
2421       }
2422       _processed.set(n_idx);
2423       break;
2424     }
2425     case Op_Proj:
2426     {
2427       // we are only interested in the result projection from a call
2428       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
2429         process_call_result(n->as_Proj(), phase);
2430         assert(_processed.test(n_idx), "all call results should be processed");
2431       } else {
2432         assert(false, "Op_Proj");
2433       }
2434       break;
2435     }
2436     case Op_Return:
2437     {
2438 #ifdef ASSERT
2439       if( n->req() <= TypeFunc::Parms ||
2440           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
2441         assert(false, "Op_Return");
2442       }
2443 #endif
2444       int ti = n->in(TypeFunc::Parms)->_idx;
2445       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
2446         add_pointsto_edge(n_idx, ti);
2447       } else {
2448         add_deferred_edge(n_idx, ti);
2449       }
2450       _processed.set(n_idx);
2451       break;
2452     }
2453     case Op_StoreP:
2454     case Op_StoreN:
2455     case Op_StorePConditional:
2456     case Op_CompareAndSwapP:
2457     case Op_CompareAndSwapN:
2458     {
2459       Node *adr = n->in(MemNode::Address);
2460       const Type *adr_type = phase->type(adr)->make_ptr();
2461 #ifdef ASSERT
2462       if (!adr_type->isa_oopptr())
2463         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
2464 #endif
2465 
2466       assert(adr->is_AddP(), "expecting an AddP");
2467       Node *adr_base = get_addp_base(adr);
2468       Node *val = n->in(MemNode::ValueIn)->uncast();
2469       // For everything "adr_base" could point to, create a deferred edge
2470       // to "val" from each field with the same offset.
2471       VectorSet ptset(Thread::current()->resource_area());
2472       PointsTo(ptset, adr_base, phase);
2473       for( VectorSetI i(&ptset); i.test(); ++i ) {
2474         uint pt = i.elem;
2475         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
2476       }
2477       break;
2478     }
2479     case Op_ThreadLocal:
2480     {
2481       assert(false, "Op_ThreadLocal");
2482       break;
2483     }
2484     default:
2485       ;
2486       // nothing to do
2487   }
2488 }
2489 
2490 #ifndef PRODUCT
2491 void ConnectionGraph::dump() {
2492   PhaseGVN  *igvn = _compile->initial_gvn();
2493   bool first = true;
2494 
2495   uint size = nodes_size();
2496   for (uint ni = 0; ni < size; ni++) {
2497     PointsToNode *ptn = ptnode_adr(ni);
2498     PointsToNode::NodeType ptn_type = ptn->node_type();
2499 
2500     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
2501       continue;
2502     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
2503     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
2504       if (first) {
2505         tty->cr();
2506         tty->print("======== Connection graph for ");
2507         _compile->method()->print_short_name();
2508         tty->cr();
2509         first = false;
2510       }
2511       tty->print("%6d ", ni);
2512       ptn->dump();
2513       // Print all locals which reference this allocation
2514       for (uint li = ni; li < size; li++) {
2515         PointsToNode *ptn_loc = ptnode_adr(li);
2516         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
2517         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
2518              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
2519           ptnode_adr(li)->dump(false);
2520         }
2521       }
2522       if (Verbose) {
2523         // Print all fields which reference this allocation
2524         for (uint i = 0; i < ptn->edge_count(); i++) {
2525           uint ei = ptn->edge_target(i);
2526           ptnode_adr(ei)->dump(false);
2527         }
2528       }
2529       tty->cr();
2530     }
2531   }
2532 }
2533 #endif