1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_deoptimization.cpp.incl"
  27 
  28 bool DeoptimizationMarker::_is_active = false;
  29 
  30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  31                                          int  caller_adjustment,
  32                                          int  number_of_frames,
  33                                          intptr_t* frame_sizes,
  34                                          address* frame_pcs,
  35                                          BasicType return_type) {
  36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  37   _caller_adjustment         = caller_adjustment;
  38   _number_of_frames          = number_of_frames;
  39   _frame_sizes               = frame_sizes;
  40   _frame_pcs                 = frame_pcs;
  41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  42   _return_type               = return_type;
  43   // PD (x86 only)
  44   _counter_temp              = 0;
  45   _initial_fp                = 0;
  46   _unpack_kind               = 0;
  47   _sender_sp_temp            = 0;
  48 
  49   _total_frame_sizes         = size_of_frames();
  50 }
  51 
  52 
  53 Deoptimization::UnrollBlock::~UnrollBlock() {
  54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  57 }
  58 
  59 
  60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  61   assert(register_number < RegisterMap::reg_count, "checking register number");
  62   return &_register_block[register_number * 2];
  63 }
  64 
  65 
  66 
  67 int Deoptimization::UnrollBlock::size_of_frames() const {
  68   // Acount first for the adjustment of the initial frame
  69   int result = _caller_adjustment;
  70   for (int index = 0; index < number_of_frames(); index++) {
  71     result += frame_sizes()[index];
  72   }
  73   return result;
  74 }
  75 
  76 
  77 void Deoptimization::UnrollBlock::print() {
  78   ttyLocker ttyl;
  79   tty->print_cr("UnrollBlock");
  80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  81   tty->print(   "  frame_sizes: ");
  82   for (int index = 0; index < number_of_frames(); index++) {
  83     tty->print("%d ", frame_sizes()[index]);
  84   }
  85   tty->cr();
  86 }
  87 
  88 
  89 // In order to make fetch_unroll_info work properly with escape
  90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
  91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
  92 // of previously eliminated objects occurs in realloc_objects, which is
  93 // called from the method fetch_unroll_info_helper below.
  94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  96   // but makes the entry a little slower. There is however a little dance we have to
  97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  98 
  99   // fetch_unroll_info() is called at the beginning of the deoptimization
 100   // handler. Note this fact before we start generating temporary frames
 101   // that can confuse an asynchronous stack walker. This counter is
 102   // decremented at the end of unpack_frames().
 103   thread->inc_in_deopt_handler();
 104 
 105   return fetch_unroll_info_helper(thread);
 106 JRT_END
 107 
 108 
 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 111 
 112   // Note: there is a safepoint safety issue here. No matter whether we enter
 113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 114   // the vframeArray is created.
 115   //
 116 
 117   // Allocate our special deoptimization ResourceMark
 118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 120   thread->set_deopt_mark(dmark);
 121 
 122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 123   RegisterMap map(thread, true);
 124   RegisterMap dummy_map(thread, false);
 125   // Now get the deoptee with a valid map
 126   frame deoptee = stub_frame.sender(&map);
 127 
 128   // Create a growable array of VFrames where each VFrame represents an inlined
 129   // Java frame.  This storage is allocated with the usual system arena.
 130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 133   while (!vf->is_top()) {
 134     assert(vf->is_compiled_frame(), "Wrong frame type");
 135     chunk->push(compiledVFrame::cast(vf));
 136     vf = vf->sender();
 137   }
 138   assert(vf->is_compiled_frame(), "Wrong frame type");
 139   chunk->push(compiledVFrame::cast(vf));
 140 
 141 #ifdef COMPILER2
 142   // Reallocate the non-escaping objects and restore their fields. Then
 143   // relock objects if synchronization on them was eliminated.
 144   if (DoEscapeAnalysis) {
 145     if (EliminateAllocations) {
 146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 148       bool reallocated = false;
 149       if (objects != NULL) {
 150         JRT_BLOCK
 151           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 152         JRT_END
 153       }
 154       if (reallocated) {
 155         reassign_fields(&deoptee, &map, objects);
 156 #ifndef PRODUCT
 157         if (TraceDeoptimization) {
 158           ttyLocker ttyl;
 159           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 160           print_objects(objects);
 161       }
 162 #endif
 163       }
 164     }
 165     if (EliminateLocks) {
 166 #ifndef PRODUCT
 167       bool first = true;
 168 #endif
 169       for (int i = 0; i < chunk->length(); i++) {
 170         compiledVFrame* cvf = chunk->at(i);
 171         assert (cvf->scope() != NULL,"expect only compiled java frames");
 172         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 173         if (monitors->is_nonempty()) {
 174           relock_objects(monitors, thread);
 175 #ifndef PRODUCT
 176           if (TraceDeoptimization) {
 177             ttyLocker ttyl;
 178             for (int j = 0; j < monitors->length(); j++) {
 179               MonitorInfo* mi = monitors->at(j);
 180               if (mi->eliminated()) {
 181                 if (first) {
 182                   first = false;
 183                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 184                 }
 185                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 186               }
 187             }
 188           }
 189 #endif
 190         }
 191       }
 192     }
 193   }
 194 #endif // COMPILER2
 195   // Ensure that no safepoint is taken after pointers have been stored
 196   // in fields of rematerialized objects.  If a safepoint occurs from here on
 197   // out the java state residing in the vframeArray will be missed.
 198   No_Safepoint_Verifier no_safepoint;
 199 
 200   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 201 
 202   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 203   thread->set_vframe_array_head(array);
 204 
 205   // Now that the vframeArray has been created if we have any deferred local writes
 206   // added by jvmti then we can free up that structure as the data is now in the
 207   // vframeArray
 208 
 209   if (thread->deferred_locals() != NULL) {
 210     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 211     int i = 0;
 212     do {
 213       // Because of inlining we could have multiple vframes for a single frame
 214       // and several of the vframes could have deferred writes. Find them all.
 215       if (list->at(i)->id() == array->original().id()) {
 216         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 217         list->remove_at(i);
 218         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 219         delete dlv;
 220       } else {
 221         i++;
 222       }
 223     } while ( i < list->length() );
 224     if (list->length() == 0) {
 225       thread->set_deferred_locals(NULL);
 226       // free the list and elements back to C heap.
 227       delete list;
 228     }
 229 
 230   }
 231 
 232   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 233   CodeBlob* cb = stub_frame.cb();
 234   // Verify we have the right vframeArray
 235   assert(cb->frame_size() >= 0, "Unexpected frame size");
 236   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 237 
 238   // If the deopt call site is a MethodHandle invoke call site we have
 239   // to adjust the unpack_sp.
 240   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 241   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 242     unpack_sp = deoptee.unextended_sp();
 243 
 244 #ifdef ASSERT
 245   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 246   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 247 #endif
 248   // This is a guarantee instead of an assert because if vframe doesn't match
 249   // we will unpack the wrong deoptimized frame and wind up in strange places
 250   // where it will be very difficult to figure out what went wrong. Better
 251   // to die an early death here than some very obscure death later when the
 252   // trail is cold.
 253   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 254   // in that it will fail to detect a problem when there is one. This needs
 255   // more work in tiger timeframe.
 256   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 257 
 258   int number_of_frames = array->frames();
 259 
 260   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 261   // virtual activation, which is the reverse of the elements in the vframes array.
 262   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 263   // +1 because we always have an interpreter return address for the final slot.
 264   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 265   int callee_parameters = 0;
 266   int callee_locals = 0;
 267   int popframe_extra_args = 0;
 268   // Create an interpreter return address for the stub to use as its return
 269   // address so the skeletal frames are perfectly walkable
 270   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 271 
 272   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 273   // activation be put back on the expression stack of the caller for reexecution
 274   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 275     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 276   }
 277 
 278   //
 279   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 280   // frame_sizes/frame_pcs[1] next oldest frame (int)
 281   // frame_sizes/frame_pcs[n] youngest frame (int)
 282   //
 283   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 284   // owns the space for the return address to it's caller).  Confusing ain't it.
 285   //
 286   // The vframe array can address vframes with indices running from
 287   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 288   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 289   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 290   // so things look a little strange in this loop.
 291   //
 292   for (int index = 0; index < array->frames(); index++ ) {
 293     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 294     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 295     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 296     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 297                                                                                                     callee_locals,
 298                                                                                                     index == 0,
 299                                                                                                     popframe_extra_args);
 300     // This pc doesn't have to be perfect just good enough to identify the frame
 301     // as interpreted so the skeleton frame will be walkable
 302     // The correct pc will be set when the skeleton frame is completely filled out
 303     // The final pc we store in the loop is wrong and will be overwritten below
 304     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 305 
 306     callee_parameters = array->element(index)->method()->size_of_parameters();
 307     callee_locals = array->element(index)->method()->max_locals();
 308     popframe_extra_args = 0;
 309   }
 310 
 311   // Compute whether the root vframe returns a float or double value.
 312   BasicType return_type;
 313   {
 314     HandleMark hm;
 315     methodHandle method(thread, array->element(0)->method());
 316     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 317     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 318   }
 319 
 320   // Compute information for handling adapters and adjusting the frame size of the caller.
 321   int caller_adjustment = 0;
 322 
 323   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 324   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 325   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 326   //
 327   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 328   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 329 
 330   // Compute the amount the oldest interpreter frame will have to adjust
 331   // its caller's stack by. If the caller is a compiled frame then
 332   // we pretend that the callee has no parameters so that the
 333   // extension counts for the full amount of locals and not just
 334   // locals-parms. This is because without a c2i adapter the parm
 335   // area as created by the compiled frame will not be usable by
 336   // the interpreter. (Depending on the calling convention there
 337   // may not even be enough space).
 338 
 339   // QQQ I'd rather see this pushed down into last_frame_adjust
 340   // and have it take the sender (aka caller).
 341 
 342   if (deopt_sender.is_compiled_frame()) {
 343     caller_adjustment = last_frame_adjust(0, callee_locals);
 344   } else if (callee_locals > callee_parameters) {
 345     // The caller frame may need extending to accommodate
 346     // non-parameter locals of the first unpacked interpreted frame.
 347     // Compute that adjustment.
 348     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 349   }
 350 
 351 
 352   // If the sender is deoptimized the we must retrieve the address of the handler
 353   // since the frame will "magically" show the original pc before the deopt
 354   // and we'd undo the deopt.
 355 
 356   frame_pcs[0] = deopt_sender.raw_pc();
 357 
 358   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 359 
 360   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 361                                       caller_adjustment * BytesPerWord,
 362                                       number_of_frames,
 363                                       frame_sizes,
 364                                       frame_pcs,
 365                                       return_type);
 366 #if defined(IA32) || defined(AMD64)
 367   // We need a way to pass fp to the unpacking code so the skeletal frames
 368   // come out correct. This is only needed for x86 because of c2 using ebp
 369   // as an allocatable register. So this update is useless (and harmless)
 370   // on the other platforms. It would be nice to do this in a different
 371   // way but even the old style deoptimization had a problem with deriving
 372   // this value. NEEDS_CLEANUP
 373   // Note: now that c1 is using c2's deopt blob we must do this on all
 374   // x86 based platforms
 375   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 376   *fp_addr = array->sender().fp(); // was adapter_caller
 377 #endif /* IA32 || AMD64 */
 378 
 379   if (array->frames() > 1) {
 380     if (VerifyStack && TraceDeoptimization) {
 381       tty->print_cr("Deoptimizing method containing inlining");
 382     }
 383   }
 384 
 385   array->set_unroll_block(info);
 386   return info;
 387 }
 388 
 389 // Called to cleanup deoptimization data structures in normal case
 390 // after unpacking to stack and when stack overflow error occurs
 391 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 392                                         vframeArray *array) {
 393 
 394   // Get array if coming from exception
 395   if (array == NULL) {
 396     array = thread->vframe_array_head();
 397   }
 398   thread->set_vframe_array_head(NULL);
 399 
 400   // Free the previous UnrollBlock
 401   vframeArray* old_array = thread->vframe_array_last();
 402   thread->set_vframe_array_last(array);
 403 
 404   if (old_array != NULL) {
 405     UnrollBlock* old_info = old_array->unroll_block();
 406     old_array->set_unroll_block(NULL);
 407     delete old_info;
 408     delete old_array;
 409   }
 410 
 411   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 412   // inside the vframeArray (StackValueCollections)
 413 
 414   delete thread->deopt_mark();
 415   thread->set_deopt_mark(NULL);
 416 
 417 
 418   if (JvmtiExport::can_pop_frame()) {
 419 #ifndef CC_INTERP
 420     // Regardless of whether we entered this routine with the pending
 421     // popframe condition bit set, we should always clear it now
 422     thread->clear_popframe_condition();
 423 #else
 424     // C++ interpeter will clear has_pending_popframe when it enters
 425     // with method_resume. For deopt_resume2 we clear it now.
 426     if (thread->popframe_forcing_deopt_reexecution())
 427         thread->clear_popframe_condition();
 428 #endif /* CC_INTERP */
 429   }
 430 
 431   // unpack_frames() is called at the end of the deoptimization handler
 432   // and (in C2) at the end of the uncommon trap handler. Note this fact
 433   // so that an asynchronous stack walker can work again. This counter is
 434   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 435   // the beginning of uncommon_trap().
 436   thread->dec_in_deopt_handler();
 437 }
 438 
 439 
 440 // Return BasicType of value being returned
 441 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 442 
 443   // We are already active int he special DeoptResourceMark any ResourceObj's we
 444   // allocate will be freed at the end of the routine.
 445 
 446   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 447   // but makes the entry a little slower. There is however a little dance we have to
 448   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 449   ResetNoHandleMark rnhm; // No-op in release/product versions
 450   HandleMark hm;
 451 
 452   frame stub_frame = thread->last_frame();
 453 
 454   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 455   // must point to the vframeArray for the unpack frame.
 456   vframeArray* array = thread->vframe_array_head();
 457 
 458 #ifndef PRODUCT
 459   if (TraceDeoptimization) {
 460     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 461   }
 462 #endif
 463 
 464   UnrollBlock* info = array->unroll_block();
 465 
 466   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 467   array->unpack_to_stack(stub_frame, exec_mode);
 468 
 469   BasicType bt = info->return_type();
 470 
 471   // If we have an exception pending, claim that the return type is an oop
 472   // so the deopt_blob does not overwrite the exception_oop.
 473 
 474   if (exec_mode == Unpack_exception)
 475     bt = T_OBJECT;
 476 
 477   // Cleanup thread deopt data
 478   cleanup_deopt_info(thread, array);
 479 
 480 #ifndef PRODUCT
 481   if (VerifyStack) {
 482     ResourceMark res_mark;
 483 
 484     // Verify that the just-unpacked frames match the interpreter's
 485     // notions of expression stack and locals
 486     vframeArray* cur_array = thread->vframe_array_last();
 487     RegisterMap rm(thread, false);
 488     rm.set_include_argument_oops(false);
 489     bool is_top_frame = true;
 490     int callee_size_of_parameters = 0;
 491     int callee_max_locals = 0;
 492     for (int i = 0; i < cur_array->frames(); i++) {
 493       vframeArrayElement* el = cur_array->element(i);
 494       frame* iframe = el->iframe();
 495       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 496 
 497       // Get the oop map for this bci
 498       InterpreterOopMap mask;
 499       int cur_invoke_parameter_size = 0;
 500       bool try_next_mask = false;
 501       int next_mask_expression_stack_size = -1;
 502       int top_frame_expression_stack_adjustment = 0;
 503       methodHandle mh(thread, iframe->interpreter_frame_method());
 504       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 505       BytecodeStream str(mh);
 506       str.set_start(iframe->interpreter_frame_bci());
 507       int max_bci = mh->code_size();
 508       // Get to the next bytecode if possible
 509       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 510       // Check to see if we can grab the number of outgoing arguments
 511       // at an uncommon trap for an invoke (where the compiler
 512       // generates debug info before the invoke has executed)
 513       Bytecodes::Code cur_code = str.next();
 514       if (cur_code == Bytecodes::_invokevirtual ||
 515           cur_code == Bytecodes::_invokespecial ||
 516           cur_code == Bytecodes::_invokestatic  ||
 517           cur_code == Bytecodes::_invokeinterface) {
 518         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 519         symbolHandle signature(thread, invoke->signature());
 520         ArgumentSizeComputer asc(signature);
 521         cur_invoke_parameter_size = asc.size();
 522         if (cur_code != Bytecodes::_invokestatic) {
 523           // Add in receiver
 524           ++cur_invoke_parameter_size;
 525         }
 526       }
 527       if (str.bci() < max_bci) {
 528         Bytecodes::Code bc = str.next();
 529         if (bc >= 0) {
 530           // The interpreter oop map generator reports results before
 531           // the current bytecode has executed except in the case of
 532           // calls. It seems to be hard to tell whether the compiler
 533           // has emitted debug information matching the "state before"
 534           // a given bytecode or the state after, so we try both
 535           switch (cur_code) {
 536             case Bytecodes::_invokevirtual:
 537             case Bytecodes::_invokespecial:
 538             case Bytecodes::_invokestatic:
 539             case Bytecodes::_invokeinterface:
 540             case Bytecodes::_athrow:
 541               break;
 542             default: {
 543               InterpreterOopMap next_mask;
 544               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 545               next_mask_expression_stack_size = next_mask.expression_stack_size();
 546               // Need to subtract off the size of the result type of
 547               // the bytecode because this is not described in the
 548               // debug info but returned to the interpreter in the TOS
 549               // caching register
 550               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 551               if (bytecode_result_type != T_ILLEGAL) {
 552                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 553               }
 554               assert(top_frame_expression_stack_adjustment >= 0, "");
 555               try_next_mask = true;
 556               break;
 557             }
 558           }
 559         }
 560       }
 561 
 562       // Verify stack depth and oops in frame
 563       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 564       if (!(
 565             /* SPARC */
 566             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 567             /* x86 */
 568             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 569             (try_next_mask &&
 570              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 571                                                                     top_frame_expression_stack_adjustment))) ||
 572             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 573             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 574              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 575             )) {
 576         ttyLocker ttyl;
 577 
 578         // Print out some information that will help us debug the problem
 579         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 580         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 581         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 582                       iframe->interpreter_frame_expression_stack_size());
 583         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 584         tty->print_cr("  try_next_mask = %d", try_next_mask);
 585         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 586         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 587         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 588         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 589         tty->print_cr("  exec_mode = %d", exec_mode);
 590         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 591         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 592         tty->print_cr("  Interpreted frames:");
 593         for (int k = 0; k < cur_array->frames(); k++) {
 594           vframeArrayElement* el = cur_array->element(k);
 595           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 596         }
 597         cur_array->print_on_2(tty);
 598         guarantee(false, "wrong number of expression stack elements during deopt");
 599       }
 600       VerifyOopClosure verify;
 601       iframe->oops_interpreted_do(&verify, &rm, false);
 602       callee_size_of_parameters = mh->size_of_parameters();
 603       callee_max_locals = mh->max_locals();
 604       is_top_frame = false;
 605     }
 606   }
 607 #endif /* !PRODUCT */
 608 
 609 
 610   return bt;
 611 JRT_END
 612 
 613 
 614 int Deoptimization::deoptimize_dependents() {
 615   Threads::deoptimized_wrt_marked_nmethods();
 616   return 0;
 617 }
 618 
 619 
 620 #ifdef COMPILER2
 621 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 622   Handle pending_exception(thread->pending_exception());
 623   const char* exception_file = thread->exception_file();
 624   int exception_line = thread->exception_line();
 625   thread->clear_pending_exception();
 626 
 627   for (int i = 0; i < objects->length(); i++) {
 628     assert(objects->at(i)->is_object(), "invalid debug information");
 629     ObjectValue* sv = (ObjectValue*) objects->at(i);
 630 
 631     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 632     oop obj = NULL;
 633 
 634     if (k->oop_is_instance()) {
 635       instanceKlass* ik = instanceKlass::cast(k());
 636       obj = ik->allocate_instance(CHECK_(false));
 637     } else if (k->oop_is_typeArray()) {
 638       typeArrayKlass* ak = typeArrayKlass::cast(k());
 639       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 640       int len = sv->field_size() / type2size[ak->element_type()];
 641       obj = ak->allocate(len, CHECK_(false));
 642     } else if (k->oop_is_objArray()) {
 643       objArrayKlass* ak = objArrayKlass::cast(k());
 644       obj = ak->allocate(sv->field_size(), CHECK_(false));
 645     }
 646 
 647     assert(obj != NULL, "allocation failed");
 648     assert(sv->value().is_null(), "redundant reallocation");
 649     sv->set_value(obj);
 650   }
 651 
 652   if (pending_exception.not_null()) {
 653     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 654   }
 655 
 656   return true;
 657 }
 658 
 659 // This assumes that the fields are stored in ObjectValue in the same order
 660 // they are yielded by do_nonstatic_fields.
 661 class FieldReassigner: public FieldClosure {
 662   frame* _fr;
 663   RegisterMap* _reg_map;
 664   ObjectValue* _sv;
 665   instanceKlass* _ik;
 666   oop _obj;
 667 
 668   int _i;
 669 public:
 670   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 671     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 672 
 673   int i() const { return _i; }
 674 
 675 
 676   void do_field(fieldDescriptor* fd) {
 677     intptr_t val;
 678     StackValue* value =
 679       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 680     int offset = fd->offset();
 681     switch (fd->field_type()) {
 682     case T_OBJECT: case T_ARRAY:
 683       assert(value->type() == T_OBJECT, "Agreement.");
 684       _obj->obj_field_put(offset, value->get_obj()());
 685       break;
 686 
 687     case T_LONG: case T_DOUBLE: {
 688       assert(value->type() == T_INT, "Agreement.");
 689       StackValue* low =
 690         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 691 #ifdef _LP64
 692       jlong res = (jlong)low->get_int();
 693 #else
 694 #ifdef SPARC
 695       // For SPARC we have to swap high and low words.
 696       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 697 #else
 698       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 699 #endif //SPARC
 700 #endif
 701       _obj->long_field_put(offset, res);
 702       break;
 703     }
 704     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 705     case T_INT: case T_FLOAT: // 4 bytes.
 706       assert(value->type() == T_INT, "Agreement.");
 707       val = value->get_int();
 708       _obj->int_field_put(offset, (jint)*((jint*)&val));
 709       break;
 710 
 711     case T_SHORT: case T_CHAR: // 2 bytes
 712       assert(value->type() == T_INT, "Agreement.");
 713       val = value->get_int();
 714       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 715       break;
 716 
 717     case T_BOOLEAN: case T_BYTE: // 1 byte
 718       assert(value->type() == T_INT, "Agreement.");
 719       val = value->get_int();
 720       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 721       break;
 722 
 723     default:
 724       ShouldNotReachHere();
 725     }
 726     _i++;
 727   }
 728 };
 729 
 730 // restore elements of an eliminated type array
 731 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 732   int index = 0;
 733   intptr_t val;
 734 
 735   for (int i = 0; i < sv->field_size(); i++) {
 736     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 737     switch(type) {
 738     case T_LONG: case T_DOUBLE: {
 739       assert(value->type() == T_INT, "Agreement.");
 740       StackValue* low =
 741         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 742 #ifdef _LP64
 743       jlong res = (jlong)low->get_int();
 744 #else
 745 #ifdef SPARC
 746       // For SPARC we have to swap high and low words.
 747       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 748 #else
 749       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 750 #endif //SPARC
 751 #endif
 752       obj->long_at_put(index, res);
 753       break;
 754     }
 755 
 756     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 757     case T_INT: case T_FLOAT: // 4 bytes.
 758       assert(value->type() == T_INT, "Agreement.");
 759       val = value->get_int();
 760       obj->int_at_put(index, (jint)*((jint*)&val));
 761       break;
 762 
 763     case T_SHORT: case T_CHAR: // 2 bytes
 764       assert(value->type() == T_INT, "Agreement.");
 765       val = value->get_int();
 766       obj->short_at_put(index, (jshort)*((jint*)&val));
 767       break;
 768 
 769     case T_BOOLEAN: case T_BYTE: // 1 byte
 770       assert(value->type() == T_INT, "Agreement.");
 771       val = value->get_int();
 772       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 773       break;
 774 
 775       default:
 776         ShouldNotReachHere();
 777     }
 778     index++;
 779   }
 780 }
 781 
 782 
 783 // restore fields of an eliminated object array
 784 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 785   for (int i = 0; i < sv->field_size(); i++) {
 786     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 787     assert(value->type() == T_OBJECT, "object element expected");
 788     obj->obj_at_put(i, value->get_obj()());
 789   }
 790 }
 791 
 792 
 793 // restore fields of all eliminated objects and arrays
 794 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 795   for (int i = 0; i < objects->length(); i++) {
 796     ObjectValue* sv = (ObjectValue*) objects->at(i);
 797     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 798     Handle obj = sv->value();
 799     assert(obj.not_null(), "reallocation was missed");
 800 
 801     if (k->oop_is_instance()) {
 802       instanceKlass* ik = instanceKlass::cast(k());
 803       FieldReassigner reassign(fr, reg_map, sv, obj());
 804       ik->do_nonstatic_fields(&reassign);
 805     } else if (k->oop_is_typeArray()) {
 806       typeArrayKlass* ak = typeArrayKlass::cast(k());
 807       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 808     } else if (k->oop_is_objArray()) {
 809       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 810     }
 811   }
 812 }
 813 
 814 
 815 // relock objects for which synchronization was eliminated
 816 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 817   for (int i = 0; i < monitors->length(); i++) {
 818     MonitorInfo* mon_info = monitors->at(i);
 819     if (mon_info->eliminated()) {
 820       assert(mon_info->owner() != NULL, "reallocation was missed");
 821       Handle obj = Handle(mon_info->owner());
 822       markOop mark = obj->mark();
 823       if (UseBiasedLocking && mark->has_bias_pattern()) {
 824         // New allocated objects may have the mark set to anonymously biased.
 825         // Also the deoptimized method may called methods with synchronization
 826         // where the thread-local object is bias locked to the current thread.
 827         assert(mark->is_biased_anonymously() ||
 828                mark->biased_locker() == thread, "should be locked to current thread");
 829         // Reset mark word to unbiased prototype.
 830         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 831         obj->set_mark(unbiased_prototype);
 832       }
 833       BasicLock* lock = mon_info->lock();
 834       ObjectSynchronizer::slow_enter(obj, lock, thread);
 835     }
 836     assert(mon_info->owner()->is_locked(), "object must be locked now");
 837   }
 838 }
 839 
 840 
 841 #ifndef PRODUCT
 842 // print information about reallocated objects
 843 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 844   fieldDescriptor fd;
 845 
 846   for (int i = 0; i < objects->length(); i++) {
 847     ObjectValue* sv = (ObjectValue*) objects->at(i);
 848     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 849     Handle obj = sv->value();
 850 
 851     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 852     k->as_klassOop()->print_value();
 853     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 854     tty->cr();
 855 
 856     if (Verbose) {
 857       k->oop_print_on(obj(), tty);
 858     }
 859   }
 860 }
 861 #endif
 862 #endif // COMPILER2
 863 
 864 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 865 
 866 #ifndef PRODUCT
 867   if (TraceDeoptimization) {
 868     ttyLocker ttyl;
 869     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 870     fr.print_on(tty);
 871     tty->print_cr("     Virtual frames (innermost first):");
 872     for (int index = 0; index < chunk->length(); index++) {
 873       compiledVFrame* vf = chunk->at(index);
 874       tty->print("       %2d - ", index);
 875       vf->print_value();
 876       int bci = chunk->at(index)->raw_bci();
 877       const char* code_name;
 878       if (bci == SynchronizationEntryBCI) {
 879         code_name = "sync entry";
 880       } else {
 881         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 882         code_name = Bytecodes::name(code);
 883       }
 884       tty->print(" - %s", code_name);
 885       tty->print_cr(" @ bci %d ", bci);
 886       if (Verbose) {
 887         vf->print();
 888         tty->cr();
 889       }
 890     }
 891   }
 892 #endif
 893 
 894   // Register map for next frame (used for stack crawl).  We capture
 895   // the state of the deopt'ing frame's caller.  Thus if we need to
 896   // stuff a C2I adapter we can properly fill in the callee-save
 897   // register locations.
 898   frame caller = fr.sender(reg_map);
 899   int frame_size = caller.sp() - fr.sp();
 900 
 901   frame sender = caller;
 902 
 903   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 904   // the vframeArray containing the unpacking information is allocated in the C heap.
 905   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 906   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 907 
 908   // Compare the vframeArray to the collected vframes
 909   assert(array->structural_compare(thread, chunk), "just checking");
 910   Events::log("# vframes = %d", (intptr_t)chunk->length());
 911 
 912 #ifndef PRODUCT
 913   if (TraceDeoptimization) {
 914     ttyLocker ttyl;
 915     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 916     if (Verbose) {
 917       int count = 0;
 918       // this used to leak deoptimizedVFrame like it was going out of style!!!
 919       for (int index = 0; index < array->frames(); index++ ) {
 920         vframeArrayElement* e = array->element(index);
 921         e->print(tty);
 922 
 923         /*
 924           No printing yet.
 925         array->vframe_at(index)->print_activation(count++);
 926         // better as...
 927         array->print_activation_for(index, count++);
 928         */
 929       }
 930     }
 931   }
 932 #endif // PRODUCT
 933 
 934   return array;
 935 }
 936 
 937 
 938 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
 939   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 940   for (int i = 0; i < monitors->length(); i++) {
 941     MonitorInfo* mon_info = monitors->at(i);
 942     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
 943       objects_to_revoke->append(Handle(mon_info->owner()));
 944     }
 945   }
 946 }
 947 
 948 
 949 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
 950   if (!UseBiasedLocking) {
 951     return;
 952   }
 953 
 954   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 955 
 956   // Unfortunately we don't have a RegisterMap available in most of
 957   // the places we want to call this routine so we need to walk the
 958   // stack again to update the register map.
 959   if (map == NULL || !map->update_map()) {
 960     StackFrameStream sfs(thread, true);
 961     bool found = false;
 962     while (!found && !sfs.is_done()) {
 963       frame* cur = sfs.current();
 964       sfs.next();
 965       found = cur->id() == fr.id();
 966     }
 967     assert(found, "frame to be deoptimized not found on target thread's stack");
 968     map = sfs.register_map();
 969   }
 970 
 971   vframe* vf = vframe::new_vframe(&fr, map, thread);
 972   compiledVFrame* cvf = compiledVFrame::cast(vf);
 973   // Revoke monitors' biases in all scopes
 974   while (!cvf->is_top()) {
 975     collect_monitors(cvf, objects_to_revoke);
 976     cvf = compiledVFrame::cast(cvf->sender());
 977   }
 978   collect_monitors(cvf, objects_to_revoke);
 979 
 980   if (SafepointSynchronize::is_at_safepoint()) {
 981     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
 982   } else {
 983     BiasedLocking::revoke(objects_to_revoke);
 984   }
 985 }
 986 
 987 
 988 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
 989   if (!UseBiasedLocking) {
 990     return;
 991   }
 992 
 993   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
 994   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 995   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
 996     if (jt->has_last_Java_frame()) {
 997       StackFrameStream sfs(jt, true);
 998       while (!sfs.is_done()) {
 999         frame* cur = sfs.current();
1000         if (cb->contains(cur->pc())) {
1001           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1002           compiledVFrame* cvf = compiledVFrame::cast(vf);
1003           // Revoke monitors' biases in all scopes
1004           while (!cvf->is_top()) {
1005             collect_monitors(cvf, objects_to_revoke);
1006             cvf = compiledVFrame::cast(cvf->sender());
1007           }
1008           collect_monitors(cvf, objects_to_revoke);
1009         }
1010         sfs.next();
1011       }
1012     }
1013   }
1014   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1015 }
1016 
1017 
1018 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1019   assert(fr.can_be_deoptimized(), "checking frame type");
1020 
1021   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1022 
1023   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1024 
1025   // Patch the nmethod so that when execution returns to it we will
1026   // deopt the execution state and return to the interpreter.
1027   fr.deoptimize(thread);
1028 }
1029 
1030 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1031   // Deoptimize only if the frame comes from compile code.
1032   // Do not deoptimize the frame which is already patched
1033   // during the execution of the loops below.
1034   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1035     return;
1036   }
1037   ResourceMark rm;
1038   DeoptimizationMarker dm;
1039   if (UseBiasedLocking) {
1040     revoke_biases_of_monitors(thread, fr, map);
1041   }
1042   deoptimize_single_frame(thread, fr);
1043 
1044 }
1045 
1046 
1047 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1048   // Compute frame and register map based on thread and sp.
1049   RegisterMap reg_map(thread, UseBiasedLocking);
1050   frame fr = thread->last_frame();
1051   while (fr.id() != id) {
1052     fr = fr.sender(&reg_map);
1053   }
1054   deoptimize(thread, fr, &reg_map);
1055 }
1056 
1057 
1058 // JVMTI PopFrame support
1059 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1060 {
1061   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1062 }
1063 JRT_END
1064 
1065 
1066 #ifdef COMPILER2
1067 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1068   // in case of an unresolved klass entry, load the class.
1069   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1070     klassOop tk = constant_pool->klass_at(index, CHECK);
1071     return;
1072   }
1073 
1074   if (!constant_pool->tag_at(index).is_symbol()) return;
1075 
1076   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1077   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1078 
1079   // class name?
1080   if (symbol->byte_at(0) != '(') {
1081     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1082     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1083     return;
1084   }
1085 
1086   // then it must be a signature!
1087   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1088     if (ss.is_object()) {
1089       symbolOop s = ss.as_symbol(CHECK);
1090       symbolHandle class_name (THREAD, s);
1091       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1092       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1093     }
1094   }
1095 }
1096 
1097 
1098 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1099   EXCEPTION_MARK;
1100   load_class_by_index(constant_pool, index, THREAD);
1101   if (HAS_PENDING_EXCEPTION) {
1102     // Exception happened during classloading. We ignore the exception here, since it
1103     // is going to be rethrown since the current activation is going to be deoptimzied and
1104     // the interpreter will re-execute the bytecode.
1105     CLEAR_PENDING_EXCEPTION;
1106   }
1107 }
1108 
1109 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1110   HandleMark hm;
1111 
1112   // uncommon_trap() is called at the beginning of the uncommon trap
1113   // handler. Note this fact before we start generating temporary frames
1114   // that can confuse an asynchronous stack walker. This counter is
1115   // decremented at the end of unpack_frames().
1116   thread->inc_in_deopt_handler();
1117 
1118   // We need to update the map if we have biased locking.
1119   RegisterMap reg_map(thread, UseBiasedLocking);
1120   frame stub_frame = thread->last_frame();
1121   frame fr = stub_frame.sender(&reg_map);
1122   // Make sure the calling nmethod is not getting deoptimized and removed
1123   // before we are done with it.
1124   nmethodLocker nl(fr.pc());
1125 
1126   {
1127     ResourceMark rm;
1128 
1129     // Revoke biases of any monitors in the frame to ensure we can migrate them
1130     revoke_biases_of_monitors(thread, fr, &reg_map);
1131 
1132     DeoptReason reason = trap_request_reason(trap_request);
1133     DeoptAction action = trap_request_action(trap_request);
1134     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1135 
1136     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1137     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1138     compiledVFrame* cvf = compiledVFrame::cast(vf);
1139 
1140     nmethod* nm = cvf->code();
1141 
1142     ScopeDesc*      trap_scope  = cvf->scope();
1143     methodHandle    trap_method = trap_scope->method();
1144     int             trap_bci    = trap_scope->bci();
1145     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1146 
1147     // Record this event in the histogram.
1148     gather_statistics(reason, action, trap_bc);
1149 
1150     // Ensure that we can record deopt. history:
1151     bool create_if_missing = ProfileTraps;
1152 
1153     methodDataHandle trap_mdo
1154       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1155 
1156     // Print a bunch of diagnostics, if requested.
1157     if (TraceDeoptimization || LogCompilation) {
1158       ResourceMark rm;
1159       ttyLocker ttyl;
1160       char buf[100];
1161       if (xtty != NULL) {
1162         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1163                          os::current_thread_id(),
1164                          format_trap_request(buf, sizeof(buf), trap_request));
1165         nm->log_identity(xtty);
1166       }
1167       symbolHandle class_name;
1168       bool unresolved = false;
1169       if (unloaded_class_index >= 0) {
1170         constantPoolHandle constants (THREAD, trap_method->constants());
1171         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1172           class_name = symbolHandle(THREAD,
1173             constants->klass_name_at(unloaded_class_index));
1174           unresolved = true;
1175           if (xtty != NULL)
1176             xtty->print(" unresolved='1'");
1177         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1178           class_name = symbolHandle(THREAD,
1179             constants->symbol_at(unloaded_class_index));
1180         }
1181         if (xtty != NULL)
1182           xtty->name(class_name);
1183       }
1184       if (xtty != NULL && trap_mdo.not_null()) {
1185         // Dump the relevant MDO state.
1186         // This is the deopt count for the current reason, any previous
1187         // reasons or recompiles seen at this point.
1188         int dcnt = trap_mdo->trap_count(reason);
1189         if (dcnt != 0)
1190           xtty->print(" count='%d'", dcnt);
1191         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1192         int dos = (pdata == NULL)? 0: pdata->trap_state();
1193         if (dos != 0) {
1194           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1195           if (trap_state_is_recompiled(dos)) {
1196             int recnt2 = trap_mdo->overflow_recompile_count();
1197             if (recnt2 != 0)
1198               xtty->print(" recompiles2='%d'", recnt2);
1199           }
1200         }
1201       }
1202       if (xtty != NULL) {
1203         xtty->stamp();
1204         xtty->end_head();
1205       }
1206       if (TraceDeoptimization) {  // make noise on the tty
1207         tty->print("Uncommon trap occurred in");
1208         nm->method()->print_short_name(tty);
1209         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1210                    fr.pc(),
1211                    (int) os::current_thread_id(),
1212                    trap_reason_name(reason),
1213                    trap_action_name(action),
1214                    unloaded_class_index);
1215         if (class_name.not_null()) {
1216           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1217           class_name->print_symbol_on(tty);
1218         }
1219         tty->cr();
1220       }
1221       if (xtty != NULL) {
1222         // Log the precise location of the trap.
1223         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1224           xtty->begin_elem("jvms bci='%d'", sd->bci());
1225           xtty->method(sd->method());
1226           xtty->end_elem();
1227           if (sd->is_top())  break;
1228         }
1229         xtty->tail("uncommon_trap");
1230       }
1231     }
1232     // (End diagnostic printout.)
1233 
1234     // Load class if necessary
1235     if (unloaded_class_index >= 0) {
1236       constantPoolHandle constants(THREAD, trap_method->constants());
1237       load_class_by_index(constants, unloaded_class_index);
1238     }
1239 
1240     // Flush the nmethod if necessary and desirable.
1241     //
1242     // We need to avoid situations where we are re-flushing the nmethod
1243     // because of a hot deoptimization site.  Repeated flushes at the same
1244     // point need to be detected by the compiler and avoided.  If the compiler
1245     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1246     // module must take measures to avoid an infinite cycle of recompilation
1247     // and deoptimization.  There are several such measures:
1248     //
1249     //   1. If a recompilation is ordered a second time at some site X
1250     //   and for the same reason R, the action is adjusted to 'reinterpret',
1251     //   to give the interpreter time to exercise the method more thoroughly.
1252     //   If this happens, the method's overflow_recompile_count is incremented.
1253     //
1254     //   2. If the compiler fails to reduce the deoptimization rate, then
1255     //   the method's overflow_recompile_count will begin to exceed the set
1256     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1257     //   is adjusted to 'make_not_compilable', and the method is abandoned
1258     //   to the interpreter.  This is a performance hit for hot methods,
1259     //   but is better than a disastrous infinite cycle of recompilations.
1260     //   (Actually, only the method containing the site X is abandoned.)
1261     //
1262     //   3. In parallel with the previous measures, if the total number of
1263     //   recompilations of a method exceeds the much larger set limit
1264     //   PerMethodRecompilationCutoff, the method is abandoned.
1265     //   This should only happen if the method is very large and has
1266     //   many "lukewarm" deoptimizations.  The code which enforces this
1267     //   limit is elsewhere (class nmethod, class methodOopDesc).
1268     //
1269     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1270     // to recompile at each bytecode independently of the per-BCI cutoff.
1271     //
1272     // The decision to update code is up to the compiler, and is encoded
1273     // in the Action_xxx code.  If the compiler requests Action_none
1274     // no trap state is changed, no compiled code is changed, and the
1275     // computation suffers along in the interpreter.
1276     //
1277     // The other action codes specify various tactics for decompilation
1278     // and recompilation.  Action_maybe_recompile is the loosest, and
1279     // allows the compiled code to stay around until enough traps are seen,
1280     // and until the compiler gets around to recompiling the trapping method.
1281     //
1282     // The other actions cause immediate removal of the present code.
1283 
1284     bool update_trap_state = true;
1285     bool make_not_entrant = false;
1286     bool make_not_compilable = false;
1287     bool reset_counters = false;
1288     switch (action) {
1289     case Action_none:
1290       // Keep the old code.
1291       update_trap_state = false;
1292       break;
1293     case Action_maybe_recompile:
1294       // Do not need to invalidate the present code, but we can
1295       // initiate another
1296       // Start compiler without (necessarily) invalidating the nmethod.
1297       // The system will tolerate the old code, but new code should be
1298       // generated when possible.
1299       break;
1300     case Action_reinterpret:
1301       // Go back into the interpreter for a while, and then consider
1302       // recompiling form scratch.
1303       make_not_entrant = true;
1304       // Reset invocation counter for outer most method.
1305       // This will allow the interpreter to exercise the bytecodes
1306       // for a while before recompiling.
1307       // By contrast, Action_make_not_entrant is immediate.
1308       //
1309       // Note that the compiler will track null_check, null_assert,
1310       // range_check, and class_check events and log them as if they
1311       // had been traps taken from compiled code.  This will update
1312       // the MDO trap history so that the next compilation will
1313       // properly detect hot trap sites.
1314       reset_counters = true;
1315       break;
1316     case Action_make_not_entrant:
1317       // Request immediate recompilation, and get rid of the old code.
1318       // Make them not entrant, so next time they are called they get
1319       // recompiled.  Unloaded classes are loaded now so recompile before next
1320       // time they are called.  Same for uninitialized.  The interpreter will
1321       // link the missing class, if any.
1322       make_not_entrant = true;
1323       break;
1324     case Action_make_not_compilable:
1325       // Give up on compiling this method at all.
1326       make_not_entrant = true;
1327       make_not_compilable = true;
1328       break;
1329     default:
1330       ShouldNotReachHere();
1331     }
1332 
1333     // Setting +ProfileTraps fixes the following, on all platforms:
1334     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1335     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1336     // recompile relies on a methodDataOop to record heroic opt failures.
1337 
1338     // Whether the interpreter is producing MDO data or not, we also need
1339     // to use the MDO to detect hot deoptimization points and control
1340     // aggressive optimization.
1341     bool inc_recompile_count = false;
1342     ProfileData* pdata = NULL;
1343     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1344       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1345       uint this_trap_count = 0;
1346       bool maybe_prior_trap = false;
1347       bool maybe_prior_recompile = false;
1348       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1349                                    //outputs:
1350                                    this_trap_count,
1351                                    maybe_prior_trap,
1352                                    maybe_prior_recompile);
1353       // Because the interpreter also counts null, div0, range, and class
1354       // checks, these traps from compiled code are double-counted.
1355       // This is harmless; it just means that the PerXTrapLimit values
1356       // are in effect a little smaller than they look.
1357 
1358       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1359       if (per_bc_reason != Reason_none) {
1360         // Now take action based on the partially known per-BCI history.
1361         if (maybe_prior_trap
1362             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1363           // If there are too many traps at this BCI, force a recompile.
1364           // This will allow the compiler to see the limit overflow, and
1365           // take corrective action, if possible.  The compiler generally
1366           // does not use the exact PerBytecodeTrapLimit value, but instead
1367           // changes its tactics if it sees any traps at all.  This provides
1368           // a little hysteresis, delaying a recompile until a trap happens
1369           // several times.
1370           //
1371           // Actually, since there is only one bit of counter per BCI,
1372           // the possible per-BCI counts are {0,1,(per-method count)}.
1373           // This produces accurate results if in fact there is only
1374           // one hot trap site, but begins to get fuzzy if there are
1375           // many sites.  For example, if there are ten sites each
1376           // trapping two or more times, they each get the blame for
1377           // all of their traps.
1378           make_not_entrant = true;
1379         }
1380 
1381         // Detect repeated recompilation at the same BCI, and enforce a limit.
1382         if (make_not_entrant && maybe_prior_recompile) {
1383           // More than one recompile at this point.
1384           inc_recompile_count = maybe_prior_trap;
1385         }
1386       } else {
1387         // For reasons which are not recorded per-bytecode, we simply
1388         // force recompiles unconditionally.
1389         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1390         make_not_entrant = true;
1391       }
1392 
1393       // Go back to the compiler if there are too many traps in this method.
1394       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1395         // If there are too many traps in this method, force a recompile.
1396         // This will allow the compiler to see the limit overflow, and
1397         // take corrective action, if possible.
1398         // (This condition is an unlikely backstop only, because the
1399         // PerBytecodeTrapLimit is more likely to take effect first,
1400         // if it is applicable.)
1401         make_not_entrant = true;
1402       }
1403 
1404       // Here's more hysteresis:  If there has been a recompile at
1405       // this trap point already, run the method in the interpreter
1406       // for a while to exercise it more thoroughly.
1407       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1408         reset_counters = true;
1409       }
1410 
1411     }
1412 
1413     // Take requested actions on the method:
1414 
1415     // Recompile
1416     if (make_not_entrant) {
1417       if (!nm->make_not_entrant()) {
1418         return; // the call did not change nmethod's state
1419       }
1420 
1421       if (pdata != NULL) {
1422         // Record the recompilation event, if any.
1423         int tstate0 = pdata->trap_state();
1424         int tstate1 = trap_state_set_recompiled(tstate0, true);
1425         if (tstate1 != tstate0)
1426           pdata->set_trap_state(tstate1);
1427       }
1428     }
1429 
1430     if (inc_recompile_count) {
1431       trap_mdo->inc_overflow_recompile_count();
1432       if ((uint)trap_mdo->overflow_recompile_count() >
1433           (uint)PerBytecodeRecompilationCutoff) {
1434         // Give up on the method containing the bad BCI.
1435         if (trap_method() == nm->method()) {
1436           make_not_compilable = true;
1437         } else {
1438           trap_method->set_not_compilable();
1439           // But give grace to the enclosing nm->method().
1440         }
1441       }
1442     }
1443 
1444     // Reset invocation counters
1445     if (reset_counters) {
1446       if (nm->is_osr_method())
1447         reset_invocation_counter(trap_scope, CompileThreshold);
1448       else
1449         reset_invocation_counter(trap_scope);
1450     }
1451 
1452     // Give up compiling
1453     if (make_not_compilable && !nm->method()->is_not_compilable()) {
1454       assert(make_not_entrant, "consistent");
1455       nm->method()->set_not_compilable();
1456     }
1457 
1458   } // Free marked resources
1459 
1460 }
1461 JRT_END
1462 
1463 methodDataOop
1464 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1465                                 bool create_if_missing) {
1466   Thread* THREAD = thread;
1467   methodDataOop mdo = m()->method_data();
1468   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1469     // Build an MDO.  Ignore errors like OutOfMemory;
1470     // that simply means we won't have an MDO to update.
1471     methodOopDesc::build_interpreter_method_data(m, THREAD);
1472     if (HAS_PENDING_EXCEPTION) {
1473       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1474       CLEAR_PENDING_EXCEPTION;
1475     }
1476     mdo = m()->method_data();
1477   }
1478   return mdo;
1479 }
1480 
1481 ProfileData*
1482 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1483                                          int trap_bci,
1484                                          Deoptimization::DeoptReason reason,
1485                                          //outputs:
1486                                          uint& ret_this_trap_count,
1487                                          bool& ret_maybe_prior_trap,
1488                                          bool& ret_maybe_prior_recompile) {
1489   uint prior_trap_count = trap_mdo->trap_count(reason);
1490   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1491 
1492   // If the runtime cannot find a place to store trap history,
1493   // it is estimated based on the general condition of the method.
1494   // If the method has ever been recompiled, or has ever incurred
1495   // a trap with the present reason , then this BCI is assumed
1496   // (pessimistically) to be the culprit.
1497   bool maybe_prior_trap      = (prior_trap_count != 0);
1498   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1499   ProfileData* pdata = NULL;
1500 
1501 
1502   // For reasons which are recorded per bytecode, we check per-BCI data.
1503   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1504   if (per_bc_reason != Reason_none) {
1505     // Find the profile data for this BCI.  If there isn't one,
1506     // try to allocate one from the MDO's set of spares.
1507     // This will let us detect a repeated trap at this point.
1508     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1509 
1510     if (pdata != NULL) {
1511       // Query the trap state of this profile datum.
1512       int tstate0 = pdata->trap_state();
1513       if (!trap_state_has_reason(tstate0, per_bc_reason))
1514         maybe_prior_trap = false;
1515       if (!trap_state_is_recompiled(tstate0))
1516         maybe_prior_recompile = false;
1517 
1518       // Update the trap state of this profile datum.
1519       int tstate1 = tstate0;
1520       // Record the reason.
1521       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1522       // Store the updated state on the MDO, for next time.
1523       if (tstate1 != tstate0)
1524         pdata->set_trap_state(tstate1);
1525     } else {
1526       if (LogCompilation && xtty != NULL) {
1527         ttyLocker ttyl;
1528         // Missing MDP?  Leave a small complaint in the log.
1529         xtty->elem("missing_mdp bci='%d'", trap_bci);
1530       }
1531     }
1532   }
1533 
1534   // Return results:
1535   ret_this_trap_count = this_trap_count;
1536   ret_maybe_prior_trap = maybe_prior_trap;
1537   ret_maybe_prior_recompile = maybe_prior_recompile;
1538   return pdata;
1539 }
1540 
1541 void
1542 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1543   ResourceMark rm;
1544   // Ignored outputs:
1545   uint ignore_this_trap_count;
1546   bool ignore_maybe_prior_trap;
1547   bool ignore_maybe_prior_recompile;
1548   query_update_method_data(trap_mdo, trap_bci,
1549                            (DeoptReason)reason,
1550                            ignore_this_trap_count,
1551                            ignore_maybe_prior_trap,
1552                            ignore_maybe_prior_recompile);
1553 }
1554 
1555 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
1556   ScopeDesc* sd = trap_scope;
1557   for (; !sd->is_top(); sd = sd->sender()) {
1558     // Reset ICs of inlined methods, since they can trigger compilations also.
1559     sd->method()->invocation_counter()->reset();
1560   }
1561   InvocationCounter* c = sd->method()->invocation_counter();
1562   if (top_count != _no_count) {
1563     // It was an OSR method, so bump the count higher.
1564     c->set(c->state(), top_count);
1565   } else {
1566     c->reset();
1567   }
1568   sd->method()->backedge_counter()->reset();
1569 }
1570 
1571 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1572 
1573   // Still in Java no safepoints
1574   {
1575     // This enters VM and may safepoint
1576     uncommon_trap_inner(thread, trap_request);
1577   }
1578   return fetch_unroll_info_helper(thread);
1579 }
1580 
1581 // Local derived constants.
1582 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1583 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1584 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1585 
1586 //---------------------------trap_state_reason---------------------------------
1587 Deoptimization::DeoptReason
1588 Deoptimization::trap_state_reason(int trap_state) {
1589   // This assert provides the link between the width of DataLayout::trap_bits
1590   // and the encoding of "recorded" reasons.  It ensures there are enough
1591   // bits to store all needed reasons in the per-BCI MDO profile.
1592   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1593   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1594   trap_state -= recompile_bit;
1595   if (trap_state == DS_REASON_MASK) {
1596     return Reason_many;
1597   } else {
1598     assert((int)Reason_none == 0, "state=0 => Reason_none");
1599     return (DeoptReason)trap_state;
1600   }
1601 }
1602 //-------------------------trap_state_has_reason-------------------------------
1603 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1604   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1605   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1606   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1607   trap_state -= recompile_bit;
1608   if (trap_state == DS_REASON_MASK) {
1609     return -1;  // true, unspecifically (bottom of state lattice)
1610   } else if (trap_state == reason) {
1611     return 1;   // true, definitely
1612   } else if (trap_state == 0) {
1613     return 0;   // false, definitely (top of state lattice)
1614   } else {
1615     return 0;   // false, definitely
1616   }
1617 }
1618 //-------------------------trap_state_add_reason-------------------------------
1619 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1620   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1621   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1622   trap_state -= recompile_bit;
1623   if (trap_state == DS_REASON_MASK) {
1624     return trap_state + recompile_bit;     // already at state lattice bottom
1625   } else if (trap_state == reason) {
1626     return trap_state + recompile_bit;     // the condition is already true
1627   } else if (trap_state == 0) {
1628     return reason + recompile_bit;          // no condition has yet been true
1629   } else {
1630     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1631   }
1632 }
1633 //-----------------------trap_state_is_recompiled------------------------------
1634 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1635   return (trap_state & DS_RECOMPILE_BIT) != 0;
1636 }
1637 //-----------------------trap_state_set_recompiled-----------------------------
1638 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1639   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1640   else    return trap_state & ~DS_RECOMPILE_BIT;
1641 }
1642 //---------------------------format_trap_state---------------------------------
1643 // This is used for debugging and diagnostics, including hotspot.log output.
1644 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1645                                               int trap_state) {
1646   DeoptReason reason      = trap_state_reason(trap_state);
1647   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1648   // Re-encode the state from its decoded components.
1649   int decoded_state = 0;
1650   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1651     decoded_state = trap_state_add_reason(decoded_state, reason);
1652   if (recomp_flag)
1653     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1654   // If the state re-encodes properly, format it symbolically.
1655   // Because this routine is used for debugging and diagnostics,
1656   // be robust even if the state is a strange value.
1657   size_t len;
1658   if (decoded_state != trap_state) {
1659     // Random buggy state that doesn't decode??
1660     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1661   } else {
1662     len = jio_snprintf(buf, buflen, "%s%s",
1663                        trap_reason_name(reason),
1664                        recomp_flag ? " recompiled" : "");
1665   }
1666   if (len >= buflen)
1667     buf[buflen-1] = '\0';
1668   return buf;
1669 }
1670 
1671 
1672 //--------------------------------statics--------------------------------------
1673 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1674   = Deoptimization::Action_reinterpret;
1675 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1676   // Note:  Keep this in sync. with enum DeoptReason.
1677   "none",
1678   "null_check",
1679   "null_assert",
1680   "range_check",
1681   "class_check",
1682   "array_check",
1683   "intrinsic",
1684   "bimorphic",
1685   "unloaded",
1686   "uninitialized",
1687   "unreached",
1688   "unhandled",
1689   "constraint",
1690   "div0_check",
1691   "age",
1692   "predicate"
1693 };
1694 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1695   // Note:  Keep this in sync. with enum DeoptAction.
1696   "none",
1697   "maybe_recompile",
1698   "reinterpret",
1699   "make_not_entrant",
1700   "make_not_compilable"
1701 };
1702 
1703 const char* Deoptimization::trap_reason_name(int reason) {
1704   if (reason == Reason_many)  return "many";
1705   if ((uint)reason < Reason_LIMIT)
1706     return _trap_reason_name[reason];
1707   static char buf[20];
1708   sprintf(buf, "reason%d", reason);
1709   return buf;
1710 }
1711 const char* Deoptimization::trap_action_name(int action) {
1712   if ((uint)action < Action_LIMIT)
1713     return _trap_action_name[action];
1714   static char buf[20];
1715   sprintf(buf, "action%d", action);
1716   return buf;
1717 }
1718 
1719 // This is used for debugging and diagnostics, including hotspot.log output.
1720 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1721                                                 int trap_request) {
1722   jint unloaded_class_index = trap_request_index(trap_request);
1723   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1724   const char* action = trap_action_name(trap_request_action(trap_request));
1725   size_t len;
1726   if (unloaded_class_index < 0) {
1727     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1728                        reason, action);
1729   } else {
1730     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1731                        reason, action, unloaded_class_index);
1732   }
1733   if (len >= buflen)
1734     buf[buflen-1] = '\0';
1735   return buf;
1736 }
1737 
1738 juint Deoptimization::_deoptimization_hist
1739         [Deoptimization::Reason_LIMIT]
1740     [1 + Deoptimization::Action_LIMIT]
1741         [Deoptimization::BC_CASE_LIMIT]
1742   = {0};
1743 
1744 enum {
1745   LSB_BITS = 8,
1746   LSB_MASK = right_n_bits(LSB_BITS)
1747 };
1748 
1749 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1750                                        Bytecodes::Code bc) {
1751   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1752   assert(action >= 0 && action < Action_LIMIT, "oob");
1753   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1754   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1755   juint* cases = _deoptimization_hist[reason][1+action];
1756   juint* bc_counter_addr = NULL;
1757   juint  bc_counter      = 0;
1758   // Look for an unused counter, or an exact match to this BC.
1759   if (bc != Bytecodes::_illegal) {
1760     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1761       juint* counter_addr = &cases[bc_case];
1762       juint  counter = *counter_addr;
1763       if ((counter == 0 && bc_counter_addr == NULL)
1764           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1765         // this counter is either free or is already devoted to this BC
1766         bc_counter_addr = counter_addr;
1767         bc_counter = counter | bc;
1768       }
1769     }
1770   }
1771   if (bc_counter_addr == NULL) {
1772     // Overflow, or no given bytecode.
1773     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1774     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1775   }
1776   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1777 }
1778 
1779 jint Deoptimization::total_deoptimization_count() {
1780   return _deoptimization_hist[Reason_none][0][0];
1781 }
1782 
1783 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1784   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1785   return _deoptimization_hist[reason][0][0];
1786 }
1787 
1788 void Deoptimization::print_statistics() {
1789   juint total = total_deoptimization_count();
1790   juint account = total;
1791   if (total != 0) {
1792     ttyLocker ttyl;
1793     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1794     tty->print_cr("Deoptimization traps recorded:");
1795     #define PRINT_STAT_LINE(name, r) \
1796       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1797     PRINT_STAT_LINE("total", total);
1798     // For each non-zero entry in the histogram, print the reason,
1799     // the action, and (if specifically known) the type of bytecode.
1800     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1801       for (int action = 0; action < Action_LIMIT; action++) {
1802         juint* cases = _deoptimization_hist[reason][1+action];
1803         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1804           juint counter = cases[bc_case];
1805           if (counter != 0) {
1806             char name[1*K];
1807             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1808             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1809               bc = Bytecodes::_illegal;
1810             sprintf(name, "%s/%s/%s",
1811                     trap_reason_name(reason),
1812                     trap_action_name(action),
1813                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1814             juint r = counter >> LSB_BITS;
1815             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1816             account -= r;
1817           }
1818         }
1819       }
1820     }
1821     if (account != 0) {
1822       PRINT_STAT_LINE("unaccounted", account);
1823     }
1824     #undef PRINT_STAT_LINE
1825     if (xtty != NULL)  xtty->tail("statistics");
1826   }
1827 }
1828 #else // COMPILER2
1829 
1830 
1831 // Stubs for C1 only system.
1832 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1833   return false;
1834 }
1835 
1836 const char* Deoptimization::trap_reason_name(int reason) {
1837   return "unknown";
1838 }
1839 
1840 void Deoptimization::print_statistics() {
1841   // no output
1842 }
1843 
1844 void
1845 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1846   // no udpate
1847 }
1848 
1849 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1850   return 0;
1851 }
1852 
1853 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1854                                        Bytecodes::Code bc) {
1855   // no update
1856 }
1857 
1858 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1859                                               int trap_state) {
1860   jio_snprintf(buf, buflen, "#%d", trap_state);
1861   return buf;
1862 }
1863 
1864 #endif // COMPILER2