1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_deoptimization.cpp.incl"
  27 
  28 bool DeoptimizationMarker::_is_active = false;
  29 
  30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  31                                          int  caller_adjustment,
  32                                          int  number_of_frames,
  33                                          intptr_t* frame_sizes,
  34                                          address* frame_pcs,
  35                                          BasicType return_type) {
  36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  37   _caller_adjustment         = caller_adjustment;
  38   _number_of_frames          = number_of_frames;
  39   _frame_sizes               = frame_sizes;
  40   _frame_pcs                 = frame_pcs;
  41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  42   _return_type               = return_type;
  43   // PD (x86 only)
  44   _counter_temp              = 0;
  45   _initial_fp                = 0;
  46   _unpack_kind               = 0;
  47   _sender_sp_temp            = 0;
  48 
  49   _total_frame_sizes         = size_of_frames();
  50 }
  51 
  52 
  53 Deoptimization::UnrollBlock::~UnrollBlock() {
  54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  57 }
  58 
  59 
  60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  61   assert(register_number < RegisterMap::reg_count, "checking register number");
  62   return &_register_block[register_number * 2];
  63 }
  64 
  65 
  66 
  67 int Deoptimization::UnrollBlock::size_of_frames() const {
  68   // Acount first for the adjustment of the initial frame
  69   int result = _caller_adjustment;
  70   for (int index = 0; index < number_of_frames(); index++) {
  71     result += frame_sizes()[index];
  72   }
  73   return result;
  74 }
  75 
  76 
  77 void Deoptimization::UnrollBlock::print() {
  78   ttyLocker ttyl;
  79   tty->print_cr("UnrollBlock");
  80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  81   tty->print(   "  frame_sizes: ");
  82   for (int index = 0; index < number_of_frames(); index++) {
  83     tty->print("%d ", frame_sizes()[index]);
  84   }
  85   tty->cr();
  86 }
  87 
  88 
  89 // In order to make fetch_unroll_info work properly with escape
  90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
  91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
  92 // of previously eliminated objects occurs in realloc_objects, which is
  93 // called from the method fetch_unroll_info_helper below.
  94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  96   // but makes the entry a little slower. There is however a little dance we have to
  97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  98 
  99   // fetch_unroll_info() is called at the beginning of the deoptimization
 100   // handler. Note this fact before we start generating temporary frames
 101   // that can confuse an asynchronous stack walker. This counter is
 102   // decremented at the end of unpack_frames().
 103   thread->inc_in_deopt_handler();
 104 
 105   return fetch_unroll_info_helper(thread);
 106 JRT_END
 107 
 108 
 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 111 
 112   // Note: there is a safepoint safety issue here. No matter whether we enter
 113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 114   // the vframeArray is created.
 115   //
 116 
 117   // Allocate our special deoptimization ResourceMark
 118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 120   thread->set_deopt_mark(dmark);
 121 
 122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 123   RegisterMap map(thread, true);
 124   RegisterMap dummy_map(thread, false);
 125   // Now get the deoptee with a valid map
 126   frame deoptee = stub_frame.sender(&map);
 127 
 128   // Create a growable array of VFrames where each VFrame represents an inlined
 129   // Java frame.  This storage is allocated with the usual system arena.
 130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 133   while (!vf->is_top()) {
 134     assert(vf->is_compiled_frame(), "Wrong frame type");
 135     chunk->push(compiledVFrame::cast(vf));
 136     vf = vf->sender();
 137   }
 138   assert(vf->is_compiled_frame(), "Wrong frame type");
 139   chunk->push(compiledVFrame::cast(vf));
 140 
 141 #ifdef COMPILER2
 142   // Reallocate the non-escaping objects and restore their fields. Then
 143   // relock objects if synchronization on them was eliminated.
 144   if (DoEscapeAnalysis) {
 145     if (EliminateAllocations) {
 146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 148 
 149       // The flag return_oop() indicates call sites which return oop
 150       // in compiled code. Such sites include java method calls,
 151       // runtime calls (for example, used to allocate new objects/arrays
 152       // on slow code path) and any other calls generated in compiled code.
 153       // It is not guaranty that we can get such information here only
 154       // by analyzing bytecode in deoptimized frames. This is why this flag
 155       // is set during method compilation (see Compile::Process_OopMap_Node()).
 156       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 157       Handle return_value;
 158       if (save_oop_result) {
 159         // Reallocation may trigger GC. If deoptimization happened on return from
 160         // call which returns oop we need to save it since it is not in oopmap.
 161         oop result = deoptee.saved_oop_result(&map);
 162         assert(result == NULL || result->is_oop(), "must be oop");
 163         return_value = Handle(thread, result);
 164         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 165         if (TraceDeoptimization) {
 166           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 167         }
 168       }
 169       bool reallocated = false;
 170       if (objects != NULL) {
 171         JRT_BLOCK
 172           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 173         JRT_END
 174       }
 175       if (reallocated) {
 176         reassign_fields(&deoptee, &map, objects);
 177 #ifndef PRODUCT
 178         if (TraceDeoptimization) {
 179           ttyLocker ttyl;
 180           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 181           print_objects(objects);
 182         }
 183 #endif
 184       }
 185       if (save_oop_result) {
 186         // Restore result.
 187         deoptee.set_saved_oop_result(&map, return_value());
 188       }
 189     }
 190     if (EliminateLocks) {
 191 #ifndef PRODUCT
 192       bool first = true;
 193 #endif
 194       for (int i = 0; i < chunk->length(); i++) {
 195         compiledVFrame* cvf = chunk->at(i);
 196         assert (cvf->scope() != NULL,"expect only compiled java frames");
 197         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 198         if (monitors->is_nonempty()) {
 199           relock_objects(monitors, thread);
 200 #ifndef PRODUCT
 201           if (TraceDeoptimization) {
 202             ttyLocker ttyl;
 203             for (int j = 0; j < monitors->length(); j++) {
 204               MonitorInfo* mi = monitors->at(j);
 205               if (mi->eliminated()) {
 206                 if (first) {
 207                   first = false;
 208                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 209                 }
 210                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 211               }
 212             }
 213           }
 214 #endif
 215         }
 216       }
 217     }
 218   }
 219 #endif // COMPILER2
 220   // Ensure that no safepoint is taken after pointers have been stored
 221   // in fields of rematerialized objects.  If a safepoint occurs from here on
 222   // out the java state residing in the vframeArray will be missed.
 223   No_Safepoint_Verifier no_safepoint;
 224 
 225   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 226 
 227   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 228   thread->set_vframe_array_head(array);
 229 
 230   // Now that the vframeArray has been created if we have any deferred local writes
 231   // added by jvmti then we can free up that structure as the data is now in the
 232   // vframeArray
 233 
 234   if (thread->deferred_locals() != NULL) {
 235     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 236     int i = 0;
 237     do {
 238       // Because of inlining we could have multiple vframes for a single frame
 239       // and several of the vframes could have deferred writes. Find them all.
 240       if (list->at(i)->id() == array->original().id()) {
 241         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 242         list->remove_at(i);
 243         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 244         delete dlv;
 245       } else {
 246         i++;
 247       }
 248     } while ( i < list->length() );
 249     if (list->length() == 0) {
 250       thread->set_deferred_locals(NULL);
 251       // free the list and elements back to C heap.
 252       delete list;
 253     }
 254 
 255   }
 256 
 257   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 258   CodeBlob* cb = stub_frame.cb();
 259   // Verify we have the right vframeArray
 260   assert(cb->frame_size() >= 0, "Unexpected frame size");
 261   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 262 
 263   // If the deopt call site is a MethodHandle invoke call site we have
 264   // to adjust the unpack_sp.
 265   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 266   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 267     unpack_sp = deoptee.unextended_sp();
 268 
 269 #ifdef ASSERT
 270   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 271   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 272 #endif
 273   // This is a guarantee instead of an assert because if vframe doesn't match
 274   // we will unpack the wrong deoptimized frame and wind up in strange places
 275   // where it will be very difficult to figure out what went wrong. Better
 276   // to die an early death here than some very obscure death later when the
 277   // trail is cold.
 278   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 279   // in that it will fail to detect a problem when there is one. This needs
 280   // more work in tiger timeframe.
 281   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 282 
 283   int number_of_frames = array->frames();
 284 
 285   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 286   // virtual activation, which is the reverse of the elements in the vframes array.
 287   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 288   // +1 because we always have an interpreter return address for the final slot.
 289   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 290   int callee_parameters = 0;
 291   int callee_locals = 0;
 292   int popframe_extra_args = 0;
 293   // Create an interpreter return address for the stub to use as its return
 294   // address so the skeletal frames are perfectly walkable
 295   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 296 
 297   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 298   // activation be put back on the expression stack of the caller for reexecution
 299   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 300     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 301   }
 302 
 303   //
 304   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 305   // frame_sizes/frame_pcs[1] next oldest frame (int)
 306   // frame_sizes/frame_pcs[n] youngest frame (int)
 307   //
 308   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 309   // owns the space for the return address to it's caller).  Confusing ain't it.
 310   //
 311   // The vframe array can address vframes with indices running from
 312   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 313   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 314   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 315   // so things look a little strange in this loop.
 316   //
 317   for (int index = 0; index < array->frames(); index++ ) {
 318     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 319     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 320     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 321     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 322                                                                                                     callee_locals,
 323                                                                                                     index == 0,
 324                                                                                                     popframe_extra_args);
 325     // This pc doesn't have to be perfect just good enough to identify the frame
 326     // as interpreted so the skeleton frame will be walkable
 327     // The correct pc will be set when the skeleton frame is completely filled out
 328     // The final pc we store in the loop is wrong and will be overwritten below
 329     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 330 
 331     callee_parameters = array->element(index)->method()->size_of_parameters();
 332     callee_locals = array->element(index)->method()->max_locals();
 333     popframe_extra_args = 0;
 334   }
 335 
 336   // Compute whether the root vframe returns a float or double value.
 337   BasicType return_type;
 338   {
 339     HandleMark hm;
 340     methodHandle method(thread, array->element(0)->method());
 341     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 342     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 343   }
 344 
 345   // Compute information for handling adapters and adjusting the frame size of the caller.
 346   int caller_adjustment = 0;
 347 
 348   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 349   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 350   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 351   //
 352   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 353   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 354 
 355   // Compute the amount the oldest interpreter frame will have to adjust
 356   // its caller's stack by. If the caller is a compiled frame then
 357   // we pretend that the callee has no parameters so that the
 358   // extension counts for the full amount of locals and not just
 359   // locals-parms. This is because without a c2i adapter the parm
 360   // area as created by the compiled frame will not be usable by
 361   // the interpreter. (Depending on the calling convention there
 362   // may not even be enough space).
 363 
 364   // QQQ I'd rather see this pushed down into last_frame_adjust
 365   // and have it take the sender (aka caller).
 366 
 367   if (deopt_sender.is_compiled_frame()) {
 368     caller_adjustment = last_frame_adjust(0, callee_locals);
 369   } else if (callee_locals > callee_parameters) {
 370     // The caller frame may need extending to accommodate
 371     // non-parameter locals of the first unpacked interpreted frame.
 372     // Compute that adjustment.
 373     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 374   }
 375 
 376 
 377   // If the sender is deoptimized the we must retrieve the address of the handler
 378   // since the frame will "magically" show the original pc before the deopt
 379   // and we'd undo the deopt.
 380 
 381   frame_pcs[0] = deopt_sender.raw_pc();
 382 
 383   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 384 
 385   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 386                                       caller_adjustment * BytesPerWord,
 387                                       number_of_frames,
 388                                       frame_sizes,
 389                                       frame_pcs,
 390                                       return_type);
 391 #if defined(IA32) || defined(AMD64)
 392   // We need a way to pass fp to the unpacking code so the skeletal frames
 393   // come out correct. This is only needed for x86 because of c2 using ebp
 394   // as an allocatable register. So this update is useless (and harmless)
 395   // on the other platforms. It would be nice to do this in a different
 396   // way but even the old style deoptimization had a problem with deriving
 397   // this value. NEEDS_CLEANUP
 398   // Note: now that c1 is using c2's deopt blob we must do this on all
 399   // x86 based platforms
 400   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 401   *fp_addr = array->sender().fp(); // was adapter_caller
 402 #endif /* IA32 || AMD64 */
 403 
 404   if (array->frames() > 1) {
 405     if (VerifyStack && TraceDeoptimization) {
 406       tty->print_cr("Deoptimizing method containing inlining");
 407     }
 408   }
 409 
 410   array->set_unroll_block(info);
 411   return info;
 412 }
 413 
 414 // Called to cleanup deoptimization data structures in normal case
 415 // after unpacking to stack and when stack overflow error occurs
 416 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 417                                         vframeArray *array) {
 418 
 419   // Get array if coming from exception
 420   if (array == NULL) {
 421     array = thread->vframe_array_head();
 422   }
 423   thread->set_vframe_array_head(NULL);
 424 
 425   // Free the previous UnrollBlock
 426   vframeArray* old_array = thread->vframe_array_last();
 427   thread->set_vframe_array_last(array);
 428 
 429   if (old_array != NULL) {
 430     UnrollBlock* old_info = old_array->unroll_block();
 431     old_array->set_unroll_block(NULL);
 432     delete old_info;
 433     delete old_array;
 434   }
 435 
 436   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 437   // inside the vframeArray (StackValueCollections)
 438 
 439   delete thread->deopt_mark();
 440   thread->set_deopt_mark(NULL);
 441 
 442 
 443   if (JvmtiExport::can_pop_frame()) {
 444 #ifndef CC_INTERP
 445     // Regardless of whether we entered this routine with the pending
 446     // popframe condition bit set, we should always clear it now
 447     thread->clear_popframe_condition();
 448 #else
 449     // C++ interpeter will clear has_pending_popframe when it enters
 450     // with method_resume. For deopt_resume2 we clear it now.
 451     if (thread->popframe_forcing_deopt_reexecution())
 452         thread->clear_popframe_condition();
 453 #endif /* CC_INTERP */
 454   }
 455 
 456   // unpack_frames() is called at the end of the deoptimization handler
 457   // and (in C2) at the end of the uncommon trap handler. Note this fact
 458   // so that an asynchronous stack walker can work again. This counter is
 459   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 460   // the beginning of uncommon_trap().
 461   thread->dec_in_deopt_handler();
 462 }
 463 
 464 
 465 // Return BasicType of value being returned
 466 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 467 
 468   // We are already active int he special DeoptResourceMark any ResourceObj's we
 469   // allocate will be freed at the end of the routine.
 470 
 471   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 472   // but makes the entry a little slower. There is however a little dance we have to
 473   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 474   ResetNoHandleMark rnhm; // No-op in release/product versions
 475   HandleMark hm;
 476 
 477   frame stub_frame = thread->last_frame();
 478 
 479   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 480   // must point to the vframeArray for the unpack frame.
 481   vframeArray* array = thread->vframe_array_head();
 482 
 483 #ifndef PRODUCT
 484   if (TraceDeoptimization) {
 485     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 486   }
 487 #endif
 488 
 489   UnrollBlock* info = array->unroll_block();
 490 
 491   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 492   array->unpack_to_stack(stub_frame, exec_mode);
 493 
 494   BasicType bt = info->return_type();
 495 
 496   // If we have an exception pending, claim that the return type is an oop
 497   // so the deopt_blob does not overwrite the exception_oop.
 498 
 499   if (exec_mode == Unpack_exception)
 500     bt = T_OBJECT;
 501 
 502   // Cleanup thread deopt data
 503   cleanup_deopt_info(thread, array);
 504 
 505 #ifndef PRODUCT
 506   if (VerifyStack) {
 507     ResourceMark res_mark;
 508 
 509     // Verify that the just-unpacked frames match the interpreter's
 510     // notions of expression stack and locals
 511     vframeArray* cur_array = thread->vframe_array_last();
 512     RegisterMap rm(thread, false);
 513     rm.set_include_argument_oops(false);
 514     bool is_top_frame = true;
 515     int callee_size_of_parameters = 0;
 516     int callee_max_locals = 0;
 517     for (int i = 0; i < cur_array->frames(); i++) {
 518       vframeArrayElement* el = cur_array->element(i);
 519       frame* iframe = el->iframe();
 520       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 521 
 522       // Get the oop map for this bci
 523       InterpreterOopMap mask;
 524       int cur_invoke_parameter_size = 0;
 525       bool try_next_mask = false;
 526       int next_mask_expression_stack_size = -1;
 527       int top_frame_expression_stack_adjustment = 0;
 528       methodHandle mh(thread, iframe->interpreter_frame_method());
 529       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 530       BytecodeStream str(mh);
 531       str.set_start(iframe->interpreter_frame_bci());
 532       int max_bci = mh->code_size();
 533       // Get to the next bytecode if possible
 534       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 535       // Check to see if we can grab the number of outgoing arguments
 536       // at an uncommon trap for an invoke (where the compiler
 537       // generates debug info before the invoke has executed)
 538       Bytecodes::Code cur_code = str.next();
 539       if (cur_code == Bytecodes::_invokevirtual ||
 540           cur_code == Bytecodes::_invokespecial ||
 541           cur_code == Bytecodes::_invokestatic  ||
 542           cur_code == Bytecodes::_invokeinterface) {
 543         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 544         symbolHandle signature(thread, invoke->signature());
 545         ArgumentSizeComputer asc(signature);
 546         cur_invoke_parameter_size = asc.size();
 547         if (cur_code != Bytecodes::_invokestatic) {
 548           // Add in receiver
 549           ++cur_invoke_parameter_size;
 550         }
 551       }
 552       if (str.bci() < max_bci) {
 553         Bytecodes::Code bc = str.next();
 554         if (bc >= 0) {
 555           // The interpreter oop map generator reports results before
 556           // the current bytecode has executed except in the case of
 557           // calls. It seems to be hard to tell whether the compiler
 558           // has emitted debug information matching the "state before"
 559           // a given bytecode or the state after, so we try both
 560           switch (cur_code) {
 561             case Bytecodes::_invokevirtual:
 562             case Bytecodes::_invokespecial:
 563             case Bytecodes::_invokestatic:
 564             case Bytecodes::_invokeinterface:
 565             case Bytecodes::_athrow:
 566               break;
 567             default: {
 568               InterpreterOopMap next_mask;
 569               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 570               next_mask_expression_stack_size = next_mask.expression_stack_size();
 571               // Need to subtract off the size of the result type of
 572               // the bytecode because this is not described in the
 573               // debug info but returned to the interpreter in the TOS
 574               // caching register
 575               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 576               if (bytecode_result_type != T_ILLEGAL) {
 577                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 578               }
 579               assert(top_frame_expression_stack_adjustment >= 0, "");
 580               try_next_mask = true;
 581               break;
 582             }
 583           }
 584         }
 585       }
 586 
 587       // Verify stack depth and oops in frame
 588       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 589       if (!(
 590             /* SPARC */
 591             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 592             /* x86 */
 593             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 594             (try_next_mask &&
 595              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 596                                                                     top_frame_expression_stack_adjustment))) ||
 597             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 598             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 599              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 600             )) {
 601         ttyLocker ttyl;
 602 
 603         // Print out some information that will help us debug the problem
 604         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 605         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 606         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 607                       iframe->interpreter_frame_expression_stack_size());
 608         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 609         tty->print_cr("  try_next_mask = %d", try_next_mask);
 610         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 611         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 612         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 613         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 614         tty->print_cr("  exec_mode = %d", exec_mode);
 615         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 616         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 617         tty->print_cr("  Interpreted frames:");
 618         for (int k = 0; k < cur_array->frames(); k++) {
 619           vframeArrayElement* el = cur_array->element(k);
 620           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 621         }
 622         cur_array->print_on_2(tty);
 623         guarantee(false, "wrong number of expression stack elements during deopt");
 624       }
 625       VerifyOopClosure verify;
 626       iframe->oops_interpreted_do(&verify, &rm, false);
 627       callee_size_of_parameters = mh->size_of_parameters();
 628       callee_max_locals = mh->max_locals();
 629       is_top_frame = false;
 630     }
 631   }
 632 #endif /* !PRODUCT */
 633 
 634 
 635   return bt;
 636 JRT_END
 637 
 638 
 639 int Deoptimization::deoptimize_dependents() {
 640   Threads::deoptimized_wrt_marked_nmethods();
 641   return 0;
 642 }
 643 
 644 
 645 #ifdef COMPILER2
 646 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 647   Handle pending_exception(thread->pending_exception());
 648   const char* exception_file = thread->exception_file();
 649   int exception_line = thread->exception_line();
 650   thread->clear_pending_exception();
 651 
 652   for (int i = 0; i < objects->length(); i++) {
 653     assert(objects->at(i)->is_object(), "invalid debug information");
 654     ObjectValue* sv = (ObjectValue*) objects->at(i);
 655 
 656     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 657     oop obj = NULL;
 658 
 659     if (k->oop_is_instance()) {
 660       instanceKlass* ik = instanceKlass::cast(k());
 661       obj = ik->allocate_instance(CHECK_(false));
 662     } else if (k->oop_is_typeArray()) {
 663       typeArrayKlass* ak = typeArrayKlass::cast(k());
 664       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 665       int len = sv->field_size() / type2size[ak->element_type()];
 666       obj = ak->allocate(len, CHECK_(false));
 667     } else if (k->oop_is_objArray()) {
 668       objArrayKlass* ak = objArrayKlass::cast(k());
 669       obj = ak->allocate(sv->field_size(), CHECK_(false));
 670     }
 671 
 672     assert(obj != NULL, "allocation failed");
 673     assert(sv->value().is_null(), "redundant reallocation");
 674     sv->set_value(obj);
 675   }
 676 
 677   if (pending_exception.not_null()) {
 678     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 679   }
 680 
 681   return true;
 682 }
 683 
 684 // This assumes that the fields are stored in ObjectValue in the same order
 685 // they are yielded by do_nonstatic_fields.
 686 class FieldReassigner: public FieldClosure {
 687   frame* _fr;
 688   RegisterMap* _reg_map;
 689   ObjectValue* _sv;
 690   instanceKlass* _ik;
 691   oop _obj;
 692 
 693   int _i;
 694 public:
 695   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 696     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 697 
 698   int i() const { return _i; }
 699 
 700 
 701   void do_field(fieldDescriptor* fd) {
 702     intptr_t val;
 703     StackValue* value =
 704       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 705     int offset = fd->offset();
 706     switch (fd->field_type()) {
 707     case T_OBJECT: case T_ARRAY:
 708       assert(value->type() == T_OBJECT, "Agreement.");
 709       _obj->obj_field_put(offset, value->get_obj()());
 710       break;
 711 
 712     case T_LONG: case T_DOUBLE: {
 713       assert(value->type() == T_INT, "Agreement.");
 714       StackValue* low =
 715         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 716 #ifdef _LP64
 717       jlong res = (jlong)low->get_int();
 718 #else
 719 #ifdef SPARC
 720       // For SPARC we have to swap high and low words.
 721       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 722 #else
 723       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 724 #endif //SPARC
 725 #endif
 726       _obj->long_field_put(offset, res);
 727       break;
 728     }
 729     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 730     case T_INT: case T_FLOAT: // 4 bytes.
 731       assert(value->type() == T_INT, "Agreement.");
 732       val = value->get_int();
 733       _obj->int_field_put(offset, (jint)*((jint*)&val));
 734       break;
 735 
 736     case T_SHORT: case T_CHAR: // 2 bytes
 737       assert(value->type() == T_INT, "Agreement.");
 738       val = value->get_int();
 739       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 740       break;
 741 
 742     case T_BOOLEAN: case T_BYTE: // 1 byte
 743       assert(value->type() == T_INT, "Agreement.");
 744       val = value->get_int();
 745       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 746       break;
 747 
 748     default:
 749       ShouldNotReachHere();
 750     }
 751     _i++;
 752   }
 753 };
 754 
 755 // restore elements of an eliminated type array
 756 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 757   int index = 0;
 758   intptr_t val;
 759 
 760   for (int i = 0; i < sv->field_size(); i++) {
 761     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 762     switch(type) {
 763     case T_LONG: case T_DOUBLE: {
 764       assert(value->type() == T_INT, "Agreement.");
 765       StackValue* low =
 766         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 767 #ifdef _LP64
 768       jlong res = (jlong)low->get_int();
 769 #else
 770 #ifdef SPARC
 771       // For SPARC we have to swap high and low words.
 772       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 773 #else
 774       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 775 #endif //SPARC
 776 #endif
 777       obj->long_at_put(index, res);
 778       break;
 779     }
 780 
 781     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 782     case T_INT: case T_FLOAT: // 4 bytes.
 783       assert(value->type() == T_INT, "Agreement.");
 784       val = value->get_int();
 785       obj->int_at_put(index, (jint)*((jint*)&val));
 786       break;
 787 
 788     case T_SHORT: case T_CHAR: // 2 bytes
 789       assert(value->type() == T_INT, "Agreement.");
 790       val = value->get_int();
 791       obj->short_at_put(index, (jshort)*((jint*)&val));
 792       break;
 793 
 794     case T_BOOLEAN: case T_BYTE: // 1 byte
 795       assert(value->type() == T_INT, "Agreement.");
 796       val = value->get_int();
 797       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 798       break;
 799 
 800       default:
 801         ShouldNotReachHere();
 802     }
 803     index++;
 804   }
 805 }
 806 
 807 
 808 // restore fields of an eliminated object array
 809 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 810   for (int i = 0; i < sv->field_size(); i++) {
 811     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 812     assert(value->type() == T_OBJECT, "object element expected");
 813     obj->obj_at_put(i, value->get_obj()());
 814   }
 815 }
 816 
 817 
 818 // restore fields of all eliminated objects and arrays
 819 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 820   for (int i = 0; i < objects->length(); i++) {
 821     ObjectValue* sv = (ObjectValue*) objects->at(i);
 822     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 823     Handle obj = sv->value();
 824     assert(obj.not_null(), "reallocation was missed");
 825 
 826     if (k->oop_is_instance()) {
 827       instanceKlass* ik = instanceKlass::cast(k());
 828       FieldReassigner reassign(fr, reg_map, sv, obj());
 829       ik->do_nonstatic_fields(&reassign);
 830     } else if (k->oop_is_typeArray()) {
 831       typeArrayKlass* ak = typeArrayKlass::cast(k());
 832       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 833     } else if (k->oop_is_objArray()) {
 834       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 835     }
 836   }
 837 }
 838 
 839 
 840 // relock objects for which synchronization was eliminated
 841 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 842   for (int i = 0; i < monitors->length(); i++) {
 843     MonitorInfo* mon_info = monitors->at(i);
 844     if (mon_info->eliminated()) {
 845       assert(mon_info->owner() != NULL, "reallocation was missed");
 846       Handle obj = Handle(mon_info->owner());
 847       markOop mark = obj->mark();
 848       if (UseBiasedLocking && mark->has_bias_pattern()) {
 849         // New allocated objects may have the mark set to anonymously biased.
 850         // Also the deoptimized method may called methods with synchronization
 851         // where the thread-local object is bias locked to the current thread.
 852         assert(mark->is_biased_anonymously() ||
 853                mark->biased_locker() == thread, "should be locked to current thread");
 854         // Reset mark word to unbiased prototype.
 855         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 856         obj->set_mark(unbiased_prototype);
 857       }
 858       BasicLock* lock = mon_info->lock();
 859       ObjectSynchronizer::slow_enter(obj, lock, thread);
 860     }
 861     assert(mon_info->owner()->is_locked(), "object must be locked now");
 862   }
 863 }
 864 
 865 
 866 #ifndef PRODUCT
 867 // print information about reallocated objects
 868 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 869   fieldDescriptor fd;
 870 
 871   for (int i = 0; i < objects->length(); i++) {
 872     ObjectValue* sv = (ObjectValue*) objects->at(i);
 873     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 874     Handle obj = sv->value();
 875 
 876     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 877     k->as_klassOop()->print_value();
 878     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 879     tty->cr();
 880 
 881     if (Verbose) {
 882       k->oop_print_on(obj(), tty);
 883     }
 884   }
 885 }
 886 #endif
 887 #endif // COMPILER2
 888 
 889 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 890 
 891 #ifndef PRODUCT
 892   if (TraceDeoptimization) {
 893     ttyLocker ttyl;
 894     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 895     fr.print_on(tty);
 896     tty->print_cr("     Virtual frames (innermost first):");
 897     for (int index = 0; index < chunk->length(); index++) {
 898       compiledVFrame* vf = chunk->at(index);
 899       tty->print("       %2d - ", index);
 900       vf->print_value();
 901       int bci = chunk->at(index)->raw_bci();
 902       const char* code_name;
 903       if (bci == SynchronizationEntryBCI) {
 904         code_name = "sync entry";
 905       } else {
 906         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 907         code_name = Bytecodes::name(code);
 908       }
 909       tty->print(" - %s", code_name);
 910       tty->print_cr(" @ bci %d ", bci);
 911       if (Verbose) {
 912         vf->print();
 913         tty->cr();
 914       }
 915     }
 916   }
 917 #endif
 918 
 919   // Register map for next frame (used for stack crawl).  We capture
 920   // the state of the deopt'ing frame's caller.  Thus if we need to
 921   // stuff a C2I adapter we can properly fill in the callee-save
 922   // register locations.
 923   frame caller = fr.sender(reg_map);
 924   int frame_size = caller.sp() - fr.sp();
 925 
 926   frame sender = caller;
 927 
 928   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 929   // the vframeArray containing the unpacking information is allocated in the C heap.
 930   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 931   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 932 
 933   // Compare the vframeArray to the collected vframes
 934   assert(array->structural_compare(thread, chunk), "just checking");
 935   Events::log("# vframes = %d", (intptr_t)chunk->length());
 936 
 937 #ifndef PRODUCT
 938   if (TraceDeoptimization) {
 939     ttyLocker ttyl;
 940     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 941     if (Verbose) {
 942       int count = 0;
 943       // this used to leak deoptimizedVFrame like it was going out of style!!!
 944       for (int index = 0; index < array->frames(); index++ ) {
 945         vframeArrayElement* e = array->element(index);
 946         e->print(tty);
 947 
 948         /*
 949           No printing yet.
 950         array->vframe_at(index)->print_activation(count++);
 951         // better as...
 952         array->print_activation_for(index, count++);
 953         */
 954       }
 955     }
 956   }
 957 #endif // PRODUCT
 958 
 959   return array;
 960 }
 961 
 962 
 963 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
 964   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 965   for (int i = 0; i < monitors->length(); i++) {
 966     MonitorInfo* mon_info = monitors->at(i);
 967     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
 968       objects_to_revoke->append(Handle(mon_info->owner()));
 969     }
 970   }
 971 }
 972 
 973 
 974 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
 975   if (!UseBiasedLocking) {
 976     return;
 977   }
 978 
 979   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 980 
 981   // Unfortunately we don't have a RegisterMap available in most of
 982   // the places we want to call this routine so we need to walk the
 983   // stack again to update the register map.
 984   if (map == NULL || !map->update_map()) {
 985     StackFrameStream sfs(thread, true);
 986     bool found = false;
 987     while (!found && !sfs.is_done()) {
 988       frame* cur = sfs.current();
 989       sfs.next();
 990       found = cur->id() == fr.id();
 991     }
 992     assert(found, "frame to be deoptimized not found on target thread's stack");
 993     map = sfs.register_map();
 994   }
 995 
 996   vframe* vf = vframe::new_vframe(&fr, map, thread);
 997   compiledVFrame* cvf = compiledVFrame::cast(vf);
 998   // Revoke monitors' biases in all scopes
 999   while (!cvf->is_top()) {
1000     collect_monitors(cvf, objects_to_revoke);
1001     cvf = compiledVFrame::cast(cvf->sender());
1002   }
1003   collect_monitors(cvf, objects_to_revoke);
1004 
1005   if (SafepointSynchronize::is_at_safepoint()) {
1006     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1007   } else {
1008     BiasedLocking::revoke(objects_to_revoke);
1009   }
1010 }
1011 
1012 
1013 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1014   if (!UseBiasedLocking) {
1015     return;
1016   }
1017 
1018   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1019   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1020   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1021     if (jt->has_last_Java_frame()) {
1022       StackFrameStream sfs(jt, true);
1023       while (!sfs.is_done()) {
1024         frame* cur = sfs.current();
1025         if (cb->contains(cur->pc())) {
1026           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1027           compiledVFrame* cvf = compiledVFrame::cast(vf);
1028           // Revoke monitors' biases in all scopes
1029           while (!cvf->is_top()) {
1030             collect_monitors(cvf, objects_to_revoke);
1031             cvf = compiledVFrame::cast(cvf->sender());
1032           }
1033           collect_monitors(cvf, objects_to_revoke);
1034         }
1035         sfs.next();
1036       }
1037     }
1038   }
1039   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1040 }
1041 
1042 
1043 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1044   assert(fr.can_be_deoptimized(), "checking frame type");
1045 
1046   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1047 
1048   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1049 
1050   // Patch the nmethod so that when execution returns to it we will
1051   // deopt the execution state and return to the interpreter.
1052   fr.deoptimize(thread);
1053 }
1054 
1055 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1056   // Deoptimize only if the frame comes from compile code.
1057   // Do not deoptimize the frame which is already patched
1058   // during the execution of the loops below.
1059   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1060     return;
1061   }
1062   ResourceMark rm;
1063   DeoptimizationMarker dm;
1064   if (UseBiasedLocking) {
1065     revoke_biases_of_monitors(thread, fr, map);
1066   }
1067   deoptimize_single_frame(thread, fr);
1068 
1069 }
1070 
1071 
1072 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1073   // Compute frame and register map based on thread and sp.
1074   RegisterMap reg_map(thread, UseBiasedLocking);
1075   frame fr = thread->last_frame();
1076   while (fr.id() != id) {
1077     fr = fr.sender(&reg_map);
1078   }
1079   deoptimize(thread, fr, &reg_map);
1080 }
1081 
1082 
1083 // JVMTI PopFrame support
1084 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1085 {
1086   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1087 }
1088 JRT_END
1089 
1090 
1091 #ifdef COMPILER2
1092 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1093   // in case of an unresolved klass entry, load the class.
1094   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1095     klassOop tk = constant_pool->klass_at(index, CHECK);
1096     return;
1097   }
1098 
1099   if (!constant_pool->tag_at(index).is_symbol()) return;
1100 
1101   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1102   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1103 
1104   // class name?
1105   if (symbol->byte_at(0) != '(') {
1106     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1107     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1108     return;
1109   }
1110 
1111   // then it must be a signature!
1112   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1113     if (ss.is_object()) {
1114       symbolOop s = ss.as_symbol(CHECK);
1115       symbolHandle class_name (THREAD, s);
1116       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1117       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1118     }
1119   }
1120 }
1121 
1122 
1123 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1124   EXCEPTION_MARK;
1125   load_class_by_index(constant_pool, index, THREAD);
1126   if (HAS_PENDING_EXCEPTION) {
1127     // Exception happened during classloading. We ignore the exception here, since it
1128     // is going to be rethrown since the current activation is going to be deoptimzied and
1129     // the interpreter will re-execute the bytecode.
1130     CLEAR_PENDING_EXCEPTION;
1131   }
1132 }
1133 
1134 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1135   HandleMark hm;
1136 
1137   // uncommon_trap() is called at the beginning of the uncommon trap
1138   // handler. Note this fact before we start generating temporary frames
1139   // that can confuse an asynchronous stack walker. This counter is
1140   // decremented at the end of unpack_frames().
1141   thread->inc_in_deopt_handler();
1142 
1143   // We need to update the map if we have biased locking.
1144   RegisterMap reg_map(thread, UseBiasedLocking);
1145   frame stub_frame = thread->last_frame();
1146   frame fr = stub_frame.sender(&reg_map);
1147   // Make sure the calling nmethod is not getting deoptimized and removed
1148   // before we are done with it.
1149   nmethodLocker nl(fr.pc());
1150 
1151   {
1152     ResourceMark rm;
1153 
1154     // Revoke biases of any monitors in the frame to ensure we can migrate them
1155     revoke_biases_of_monitors(thread, fr, &reg_map);
1156 
1157     DeoptReason reason = trap_request_reason(trap_request);
1158     DeoptAction action = trap_request_action(trap_request);
1159     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1160 
1161     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1162     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1163     compiledVFrame* cvf = compiledVFrame::cast(vf);
1164 
1165     nmethod* nm = cvf->code();
1166 
1167     ScopeDesc*      trap_scope  = cvf->scope();
1168     methodHandle    trap_method = trap_scope->method();
1169     int             trap_bci    = trap_scope->bci();
1170     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1171 
1172     // Record this event in the histogram.
1173     gather_statistics(reason, action, trap_bc);
1174 
1175     // Ensure that we can record deopt. history:
1176     bool create_if_missing = ProfileTraps;
1177 
1178     methodDataHandle trap_mdo
1179       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1180 
1181     // Print a bunch of diagnostics, if requested.
1182     if (TraceDeoptimization || LogCompilation) {
1183       ResourceMark rm;
1184       ttyLocker ttyl;
1185       char buf[100];
1186       if (xtty != NULL) {
1187         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1188                          os::current_thread_id(),
1189                          format_trap_request(buf, sizeof(buf), trap_request));
1190         nm->log_identity(xtty);
1191       }
1192       symbolHandle class_name;
1193       bool unresolved = false;
1194       if (unloaded_class_index >= 0) {
1195         constantPoolHandle constants (THREAD, trap_method->constants());
1196         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1197           class_name = symbolHandle(THREAD,
1198             constants->klass_name_at(unloaded_class_index));
1199           unresolved = true;
1200           if (xtty != NULL)
1201             xtty->print(" unresolved='1'");
1202         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1203           class_name = symbolHandle(THREAD,
1204             constants->symbol_at(unloaded_class_index));
1205         }
1206         if (xtty != NULL)
1207           xtty->name(class_name);
1208       }
1209       if (xtty != NULL && trap_mdo.not_null()) {
1210         // Dump the relevant MDO state.
1211         // This is the deopt count for the current reason, any previous
1212         // reasons or recompiles seen at this point.
1213         int dcnt = trap_mdo->trap_count(reason);
1214         if (dcnt != 0)
1215           xtty->print(" count='%d'", dcnt);
1216         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1217         int dos = (pdata == NULL)? 0: pdata->trap_state();
1218         if (dos != 0) {
1219           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1220           if (trap_state_is_recompiled(dos)) {
1221             int recnt2 = trap_mdo->overflow_recompile_count();
1222             if (recnt2 != 0)
1223               xtty->print(" recompiles2='%d'", recnt2);
1224           }
1225         }
1226       }
1227       if (xtty != NULL) {
1228         xtty->stamp();
1229         xtty->end_head();
1230       }
1231       if (TraceDeoptimization) {  // make noise on the tty
1232         tty->print("Uncommon trap occurred in");
1233         nm->method()->print_short_name(tty);
1234         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1235                    fr.pc(),
1236                    (int) os::current_thread_id(),
1237                    trap_reason_name(reason),
1238                    trap_action_name(action),
1239                    unloaded_class_index);
1240         if (class_name.not_null()) {
1241           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1242           class_name->print_symbol_on(tty);
1243         }
1244         tty->cr();
1245       }
1246       if (xtty != NULL) {
1247         // Log the precise location of the trap.
1248         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1249           xtty->begin_elem("jvms bci='%d'", sd->bci());
1250           xtty->method(sd->method());
1251           xtty->end_elem();
1252           if (sd->is_top())  break;
1253         }
1254         xtty->tail("uncommon_trap");
1255       }
1256     }
1257     // (End diagnostic printout.)
1258 
1259     // Load class if necessary
1260     if (unloaded_class_index >= 0) {
1261       constantPoolHandle constants(THREAD, trap_method->constants());
1262       load_class_by_index(constants, unloaded_class_index);
1263     }
1264 
1265     // Flush the nmethod if necessary and desirable.
1266     //
1267     // We need to avoid situations where we are re-flushing the nmethod
1268     // because of a hot deoptimization site.  Repeated flushes at the same
1269     // point need to be detected by the compiler and avoided.  If the compiler
1270     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1271     // module must take measures to avoid an infinite cycle of recompilation
1272     // and deoptimization.  There are several such measures:
1273     //
1274     //   1. If a recompilation is ordered a second time at some site X
1275     //   and for the same reason R, the action is adjusted to 'reinterpret',
1276     //   to give the interpreter time to exercise the method more thoroughly.
1277     //   If this happens, the method's overflow_recompile_count is incremented.
1278     //
1279     //   2. If the compiler fails to reduce the deoptimization rate, then
1280     //   the method's overflow_recompile_count will begin to exceed the set
1281     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1282     //   is adjusted to 'make_not_compilable', and the method is abandoned
1283     //   to the interpreter.  This is a performance hit for hot methods,
1284     //   but is better than a disastrous infinite cycle of recompilations.
1285     //   (Actually, only the method containing the site X is abandoned.)
1286     //
1287     //   3. In parallel with the previous measures, if the total number of
1288     //   recompilations of a method exceeds the much larger set limit
1289     //   PerMethodRecompilationCutoff, the method is abandoned.
1290     //   This should only happen if the method is very large and has
1291     //   many "lukewarm" deoptimizations.  The code which enforces this
1292     //   limit is elsewhere (class nmethod, class methodOopDesc).
1293     //
1294     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1295     // to recompile at each bytecode independently of the per-BCI cutoff.
1296     //
1297     // The decision to update code is up to the compiler, and is encoded
1298     // in the Action_xxx code.  If the compiler requests Action_none
1299     // no trap state is changed, no compiled code is changed, and the
1300     // computation suffers along in the interpreter.
1301     //
1302     // The other action codes specify various tactics for decompilation
1303     // and recompilation.  Action_maybe_recompile is the loosest, and
1304     // allows the compiled code to stay around until enough traps are seen,
1305     // and until the compiler gets around to recompiling the trapping method.
1306     //
1307     // The other actions cause immediate removal of the present code.
1308 
1309     bool update_trap_state = true;
1310     bool make_not_entrant = false;
1311     bool make_not_compilable = false;
1312     bool reset_counters = false;
1313     switch (action) {
1314     case Action_none:
1315       // Keep the old code.
1316       update_trap_state = false;
1317       break;
1318     case Action_maybe_recompile:
1319       // Do not need to invalidate the present code, but we can
1320       // initiate another
1321       // Start compiler without (necessarily) invalidating the nmethod.
1322       // The system will tolerate the old code, but new code should be
1323       // generated when possible.
1324       break;
1325     case Action_reinterpret:
1326       // Go back into the interpreter for a while, and then consider
1327       // recompiling form scratch.
1328       make_not_entrant = true;
1329       // Reset invocation counter for outer most method.
1330       // This will allow the interpreter to exercise the bytecodes
1331       // for a while before recompiling.
1332       // By contrast, Action_make_not_entrant is immediate.
1333       //
1334       // Note that the compiler will track null_check, null_assert,
1335       // range_check, and class_check events and log them as if they
1336       // had been traps taken from compiled code.  This will update
1337       // the MDO trap history so that the next compilation will
1338       // properly detect hot trap sites.
1339       reset_counters = true;
1340       break;
1341     case Action_make_not_entrant:
1342       // Request immediate recompilation, and get rid of the old code.
1343       // Make them not entrant, so next time they are called they get
1344       // recompiled.  Unloaded classes are loaded now so recompile before next
1345       // time they are called.  Same for uninitialized.  The interpreter will
1346       // link the missing class, if any.
1347       make_not_entrant = true;
1348       break;
1349     case Action_make_not_compilable:
1350       // Give up on compiling this method at all.
1351       make_not_entrant = true;
1352       make_not_compilable = true;
1353       break;
1354     default:
1355       ShouldNotReachHere();
1356     }
1357 
1358     // Setting +ProfileTraps fixes the following, on all platforms:
1359     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1360     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1361     // recompile relies on a methodDataOop to record heroic opt failures.
1362 
1363     // Whether the interpreter is producing MDO data or not, we also need
1364     // to use the MDO to detect hot deoptimization points and control
1365     // aggressive optimization.
1366     bool inc_recompile_count = false;
1367     ProfileData* pdata = NULL;
1368     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1369       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1370       uint this_trap_count = 0;
1371       bool maybe_prior_trap = false;
1372       bool maybe_prior_recompile = false;
1373       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1374                                    //outputs:
1375                                    this_trap_count,
1376                                    maybe_prior_trap,
1377                                    maybe_prior_recompile);
1378       // Because the interpreter also counts null, div0, range, and class
1379       // checks, these traps from compiled code are double-counted.
1380       // This is harmless; it just means that the PerXTrapLimit values
1381       // are in effect a little smaller than they look.
1382 
1383       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1384       if (per_bc_reason != Reason_none) {
1385         // Now take action based on the partially known per-BCI history.
1386         if (maybe_prior_trap
1387             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1388           // If there are too many traps at this BCI, force a recompile.
1389           // This will allow the compiler to see the limit overflow, and
1390           // take corrective action, if possible.  The compiler generally
1391           // does not use the exact PerBytecodeTrapLimit value, but instead
1392           // changes its tactics if it sees any traps at all.  This provides
1393           // a little hysteresis, delaying a recompile until a trap happens
1394           // several times.
1395           //
1396           // Actually, since there is only one bit of counter per BCI,
1397           // the possible per-BCI counts are {0,1,(per-method count)}.
1398           // This produces accurate results if in fact there is only
1399           // one hot trap site, but begins to get fuzzy if there are
1400           // many sites.  For example, if there are ten sites each
1401           // trapping two or more times, they each get the blame for
1402           // all of their traps.
1403           make_not_entrant = true;
1404         }
1405 
1406         // Detect repeated recompilation at the same BCI, and enforce a limit.
1407         if (make_not_entrant && maybe_prior_recompile) {
1408           // More than one recompile at this point.
1409           inc_recompile_count = maybe_prior_trap;
1410         }
1411       } else {
1412         // For reasons which are not recorded per-bytecode, we simply
1413         // force recompiles unconditionally.
1414         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1415         make_not_entrant = true;
1416       }
1417 
1418       // Go back to the compiler if there are too many traps in this method.
1419       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1420         // If there are too many traps in this method, force a recompile.
1421         // This will allow the compiler to see the limit overflow, and
1422         // take corrective action, if possible.
1423         // (This condition is an unlikely backstop only, because the
1424         // PerBytecodeTrapLimit is more likely to take effect first,
1425         // if it is applicable.)
1426         make_not_entrant = true;
1427       }
1428 
1429       // Here's more hysteresis:  If there has been a recompile at
1430       // this trap point already, run the method in the interpreter
1431       // for a while to exercise it more thoroughly.
1432       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1433         reset_counters = true;
1434       }
1435 
1436     }
1437 
1438     // Take requested actions on the method:
1439 
1440     // Recompile
1441     if (make_not_entrant) {
1442       if (!nm->make_not_entrant()) {
1443         return; // the call did not change nmethod's state
1444       }
1445 
1446       if (pdata != NULL) {
1447         // Record the recompilation event, if any.
1448         int tstate0 = pdata->trap_state();
1449         int tstate1 = trap_state_set_recompiled(tstate0, true);
1450         if (tstate1 != tstate0)
1451           pdata->set_trap_state(tstate1);
1452       }
1453     }
1454 
1455     if (inc_recompile_count) {
1456       trap_mdo->inc_overflow_recompile_count();
1457       if ((uint)trap_mdo->overflow_recompile_count() >
1458           (uint)PerBytecodeRecompilationCutoff) {
1459         // Give up on the method containing the bad BCI.
1460         if (trap_method() == nm->method()) {
1461           make_not_compilable = true;
1462         } else {
1463           trap_method->set_not_compilable();
1464           // But give grace to the enclosing nm->method().
1465         }
1466       }
1467     }
1468 
1469     // Reset invocation counters
1470     if (reset_counters) {
1471       if (nm->is_osr_method())
1472         reset_invocation_counter(trap_scope, CompileThreshold);
1473       else
1474         reset_invocation_counter(trap_scope);
1475     }
1476 
1477     // Give up compiling
1478     if (make_not_compilable && !nm->method()->is_not_compilable()) {
1479       assert(make_not_entrant, "consistent");
1480       nm->method()->set_not_compilable();
1481     }
1482 
1483   } // Free marked resources
1484 
1485 }
1486 JRT_END
1487 
1488 methodDataOop
1489 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1490                                 bool create_if_missing) {
1491   Thread* THREAD = thread;
1492   methodDataOop mdo = m()->method_data();
1493   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1494     // Build an MDO.  Ignore errors like OutOfMemory;
1495     // that simply means we won't have an MDO to update.
1496     methodOopDesc::build_interpreter_method_data(m, THREAD);
1497     if (HAS_PENDING_EXCEPTION) {
1498       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1499       CLEAR_PENDING_EXCEPTION;
1500     }
1501     mdo = m()->method_data();
1502   }
1503   return mdo;
1504 }
1505 
1506 ProfileData*
1507 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1508                                          int trap_bci,
1509                                          Deoptimization::DeoptReason reason,
1510                                          //outputs:
1511                                          uint& ret_this_trap_count,
1512                                          bool& ret_maybe_prior_trap,
1513                                          bool& ret_maybe_prior_recompile) {
1514   uint prior_trap_count = trap_mdo->trap_count(reason);
1515   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1516 
1517   // If the runtime cannot find a place to store trap history,
1518   // it is estimated based on the general condition of the method.
1519   // If the method has ever been recompiled, or has ever incurred
1520   // a trap with the present reason , then this BCI is assumed
1521   // (pessimistically) to be the culprit.
1522   bool maybe_prior_trap      = (prior_trap_count != 0);
1523   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1524   ProfileData* pdata = NULL;
1525 
1526 
1527   // For reasons which are recorded per bytecode, we check per-BCI data.
1528   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1529   if (per_bc_reason != Reason_none) {
1530     // Find the profile data for this BCI.  If there isn't one,
1531     // try to allocate one from the MDO's set of spares.
1532     // This will let us detect a repeated trap at this point.
1533     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1534 
1535     if (pdata != NULL) {
1536       // Query the trap state of this profile datum.
1537       int tstate0 = pdata->trap_state();
1538       if (!trap_state_has_reason(tstate0, per_bc_reason))
1539         maybe_prior_trap = false;
1540       if (!trap_state_is_recompiled(tstate0))
1541         maybe_prior_recompile = false;
1542 
1543       // Update the trap state of this profile datum.
1544       int tstate1 = tstate0;
1545       // Record the reason.
1546       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1547       // Store the updated state on the MDO, for next time.
1548       if (tstate1 != tstate0)
1549         pdata->set_trap_state(tstate1);
1550     } else {
1551       if (LogCompilation && xtty != NULL) {
1552         ttyLocker ttyl;
1553         // Missing MDP?  Leave a small complaint in the log.
1554         xtty->elem("missing_mdp bci='%d'", trap_bci);
1555       }
1556     }
1557   }
1558 
1559   // Return results:
1560   ret_this_trap_count = this_trap_count;
1561   ret_maybe_prior_trap = maybe_prior_trap;
1562   ret_maybe_prior_recompile = maybe_prior_recompile;
1563   return pdata;
1564 }
1565 
1566 void
1567 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1568   ResourceMark rm;
1569   // Ignored outputs:
1570   uint ignore_this_trap_count;
1571   bool ignore_maybe_prior_trap;
1572   bool ignore_maybe_prior_recompile;
1573   query_update_method_data(trap_mdo, trap_bci,
1574                            (DeoptReason)reason,
1575                            ignore_this_trap_count,
1576                            ignore_maybe_prior_trap,
1577                            ignore_maybe_prior_recompile);
1578 }
1579 
1580 void Deoptimization::reset_invocation_counter(ScopeDesc* trap_scope, jint top_count) {
1581   ScopeDesc* sd = trap_scope;
1582   for (; !sd->is_top(); sd = sd->sender()) {
1583     // Reset ICs of inlined methods, since they can trigger compilations also.
1584     sd->method()->invocation_counter()->reset();
1585   }
1586   InvocationCounter* c = sd->method()->invocation_counter();
1587   if (top_count != _no_count) {
1588     // It was an OSR method, so bump the count higher.
1589     c->set(c->state(), top_count);
1590   } else {
1591     c->reset();
1592   }
1593   sd->method()->backedge_counter()->reset();
1594 }
1595 
1596 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1597 
1598   // Still in Java no safepoints
1599   {
1600     // This enters VM and may safepoint
1601     uncommon_trap_inner(thread, trap_request);
1602   }
1603   return fetch_unroll_info_helper(thread);
1604 }
1605 
1606 // Local derived constants.
1607 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1608 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1609 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1610 
1611 //---------------------------trap_state_reason---------------------------------
1612 Deoptimization::DeoptReason
1613 Deoptimization::trap_state_reason(int trap_state) {
1614   // This assert provides the link between the width of DataLayout::trap_bits
1615   // and the encoding of "recorded" reasons.  It ensures there are enough
1616   // bits to store all needed reasons in the per-BCI MDO profile.
1617   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1618   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1619   trap_state -= recompile_bit;
1620   if (trap_state == DS_REASON_MASK) {
1621     return Reason_many;
1622   } else {
1623     assert((int)Reason_none == 0, "state=0 => Reason_none");
1624     return (DeoptReason)trap_state;
1625   }
1626 }
1627 //-------------------------trap_state_has_reason-------------------------------
1628 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1629   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1630   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1631   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1632   trap_state -= recompile_bit;
1633   if (trap_state == DS_REASON_MASK) {
1634     return -1;  // true, unspecifically (bottom of state lattice)
1635   } else if (trap_state == reason) {
1636     return 1;   // true, definitely
1637   } else if (trap_state == 0) {
1638     return 0;   // false, definitely (top of state lattice)
1639   } else {
1640     return 0;   // false, definitely
1641   }
1642 }
1643 //-------------------------trap_state_add_reason-------------------------------
1644 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1645   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1646   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1647   trap_state -= recompile_bit;
1648   if (trap_state == DS_REASON_MASK) {
1649     return trap_state + recompile_bit;     // already at state lattice bottom
1650   } else if (trap_state == reason) {
1651     return trap_state + recompile_bit;     // the condition is already true
1652   } else if (trap_state == 0) {
1653     return reason + recompile_bit;          // no condition has yet been true
1654   } else {
1655     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1656   }
1657 }
1658 //-----------------------trap_state_is_recompiled------------------------------
1659 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1660   return (trap_state & DS_RECOMPILE_BIT) != 0;
1661 }
1662 //-----------------------trap_state_set_recompiled-----------------------------
1663 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1664   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1665   else    return trap_state & ~DS_RECOMPILE_BIT;
1666 }
1667 //---------------------------format_trap_state---------------------------------
1668 // This is used for debugging and diagnostics, including hotspot.log output.
1669 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1670                                               int trap_state) {
1671   DeoptReason reason      = trap_state_reason(trap_state);
1672   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1673   // Re-encode the state from its decoded components.
1674   int decoded_state = 0;
1675   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1676     decoded_state = trap_state_add_reason(decoded_state, reason);
1677   if (recomp_flag)
1678     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1679   // If the state re-encodes properly, format it symbolically.
1680   // Because this routine is used for debugging and diagnostics,
1681   // be robust even if the state is a strange value.
1682   size_t len;
1683   if (decoded_state != trap_state) {
1684     // Random buggy state that doesn't decode??
1685     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1686   } else {
1687     len = jio_snprintf(buf, buflen, "%s%s",
1688                        trap_reason_name(reason),
1689                        recomp_flag ? " recompiled" : "");
1690   }
1691   if (len >= buflen)
1692     buf[buflen-1] = '\0';
1693   return buf;
1694 }
1695 
1696 
1697 //--------------------------------statics--------------------------------------
1698 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1699   = Deoptimization::Action_reinterpret;
1700 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1701   // Note:  Keep this in sync. with enum DeoptReason.
1702   "none",
1703   "null_check",
1704   "null_assert",
1705   "range_check",
1706   "class_check",
1707   "array_check",
1708   "intrinsic",
1709   "bimorphic",
1710   "unloaded",
1711   "uninitialized",
1712   "unreached",
1713   "unhandled",
1714   "constraint",
1715   "div0_check",
1716   "age",
1717   "predicate"
1718 };
1719 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1720   // Note:  Keep this in sync. with enum DeoptAction.
1721   "none",
1722   "maybe_recompile",
1723   "reinterpret",
1724   "make_not_entrant",
1725   "make_not_compilable"
1726 };
1727 
1728 const char* Deoptimization::trap_reason_name(int reason) {
1729   if (reason == Reason_many)  return "many";
1730   if ((uint)reason < Reason_LIMIT)
1731     return _trap_reason_name[reason];
1732   static char buf[20];
1733   sprintf(buf, "reason%d", reason);
1734   return buf;
1735 }
1736 const char* Deoptimization::trap_action_name(int action) {
1737   if ((uint)action < Action_LIMIT)
1738     return _trap_action_name[action];
1739   static char buf[20];
1740   sprintf(buf, "action%d", action);
1741   return buf;
1742 }
1743 
1744 // This is used for debugging and diagnostics, including hotspot.log output.
1745 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1746                                                 int trap_request) {
1747   jint unloaded_class_index = trap_request_index(trap_request);
1748   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1749   const char* action = trap_action_name(trap_request_action(trap_request));
1750   size_t len;
1751   if (unloaded_class_index < 0) {
1752     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1753                        reason, action);
1754   } else {
1755     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1756                        reason, action, unloaded_class_index);
1757   }
1758   if (len >= buflen)
1759     buf[buflen-1] = '\0';
1760   return buf;
1761 }
1762 
1763 juint Deoptimization::_deoptimization_hist
1764         [Deoptimization::Reason_LIMIT]
1765     [1 + Deoptimization::Action_LIMIT]
1766         [Deoptimization::BC_CASE_LIMIT]
1767   = {0};
1768 
1769 enum {
1770   LSB_BITS = 8,
1771   LSB_MASK = right_n_bits(LSB_BITS)
1772 };
1773 
1774 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1775                                        Bytecodes::Code bc) {
1776   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1777   assert(action >= 0 && action < Action_LIMIT, "oob");
1778   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1779   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1780   juint* cases = _deoptimization_hist[reason][1+action];
1781   juint* bc_counter_addr = NULL;
1782   juint  bc_counter      = 0;
1783   // Look for an unused counter, or an exact match to this BC.
1784   if (bc != Bytecodes::_illegal) {
1785     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1786       juint* counter_addr = &cases[bc_case];
1787       juint  counter = *counter_addr;
1788       if ((counter == 0 && bc_counter_addr == NULL)
1789           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1790         // this counter is either free or is already devoted to this BC
1791         bc_counter_addr = counter_addr;
1792         bc_counter = counter | bc;
1793       }
1794     }
1795   }
1796   if (bc_counter_addr == NULL) {
1797     // Overflow, or no given bytecode.
1798     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1799     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1800   }
1801   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1802 }
1803 
1804 jint Deoptimization::total_deoptimization_count() {
1805   return _deoptimization_hist[Reason_none][0][0];
1806 }
1807 
1808 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1809   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1810   return _deoptimization_hist[reason][0][0];
1811 }
1812 
1813 void Deoptimization::print_statistics() {
1814   juint total = total_deoptimization_count();
1815   juint account = total;
1816   if (total != 0) {
1817     ttyLocker ttyl;
1818     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1819     tty->print_cr("Deoptimization traps recorded:");
1820     #define PRINT_STAT_LINE(name, r) \
1821       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1822     PRINT_STAT_LINE("total", total);
1823     // For each non-zero entry in the histogram, print the reason,
1824     // the action, and (if specifically known) the type of bytecode.
1825     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1826       for (int action = 0; action < Action_LIMIT; action++) {
1827         juint* cases = _deoptimization_hist[reason][1+action];
1828         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1829           juint counter = cases[bc_case];
1830           if (counter != 0) {
1831             char name[1*K];
1832             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1833             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1834               bc = Bytecodes::_illegal;
1835             sprintf(name, "%s/%s/%s",
1836                     trap_reason_name(reason),
1837                     trap_action_name(action),
1838                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1839             juint r = counter >> LSB_BITS;
1840             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1841             account -= r;
1842           }
1843         }
1844       }
1845     }
1846     if (account != 0) {
1847       PRINT_STAT_LINE("unaccounted", account);
1848     }
1849     #undef PRINT_STAT_LINE
1850     if (xtty != NULL)  xtty->tail("statistics");
1851   }
1852 }
1853 #else // COMPILER2
1854 
1855 
1856 // Stubs for C1 only system.
1857 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1858   return false;
1859 }
1860 
1861 const char* Deoptimization::trap_reason_name(int reason) {
1862   return "unknown";
1863 }
1864 
1865 void Deoptimization::print_statistics() {
1866   // no output
1867 }
1868 
1869 void
1870 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1871   // no udpate
1872 }
1873 
1874 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1875   return 0;
1876 }
1877 
1878 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1879                                        Bytecodes::Code bc) {
1880   // no update
1881 }
1882 
1883 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1884                                               int trap_state) {
1885   jio_snprintf(buf, buflen, "#%d", trap_state);
1886   return buf;
1887 }
1888 
1889 #endif // COMPILER2