1 /*
   2  * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
  27 
  28 #define __ masm->
  29 #ifdef COMPILER2
  30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  31 #endif // COMPILER2
  32 
  33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  41 
  42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  43 
  44 class RegisterSaver {
  45   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
  46   // Capture info about frame layout
  47   enum layout {
  48                 fpu_state_off = 0,
  49                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
  50                 st0_off, st0H_off,
  51                 st1_off, st1H_off,
  52                 st2_off, st2H_off,
  53                 st3_off, st3H_off,
  54                 st4_off, st4H_off,
  55                 st5_off, st5H_off,
  56                 st6_off, st6H_off,
  57                 st7_off, st7H_off,
  58 
  59                 xmm0_off, xmm0H_off,
  60                 xmm1_off, xmm1H_off,
  61                 xmm2_off, xmm2H_off,
  62                 xmm3_off, xmm3H_off,
  63                 xmm4_off, xmm4H_off,
  64                 xmm5_off, xmm5H_off,
  65                 xmm6_off, xmm6H_off,
  66                 xmm7_off, xmm7H_off,
  67                 flags_off,
  68                 rdi_off,
  69                 rsi_off,
  70                 ignore_off,  // extra copy of rbp,
  71                 rsp_off,
  72                 rbx_off,
  73                 rdx_off,
  74                 rcx_off,
  75                 rax_off,
  76                 // The frame sender code expects that rbp will be in the "natural" place and
  77                 // will override any oopMap setting for it. We must therefore force the layout
  78                 // so that it agrees with the frame sender code.
  79                 rbp_off,
  80                 return_off,      // slot for return address
  81                 reg_save_size };
  82 
  83 
  84   public:
  85 
  86   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  87                                      int* total_frame_words, bool verify_fpu = true);
  88   static void restore_live_registers(MacroAssembler* masm);
  89 
  90   static int rax_offset() { return rax_off; }
  91   static int rbx_offset() { return rbx_off; }
  92 
  93   // Offsets into the register save area
  94   // Used by deoptimization when it is managing result register
  95   // values on its own
  96 
  97   static int raxOffset(void) { return rax_off; }
  98   static int rdxOffset(void) { return rdx_off; }
  99   static int rbxOffset(void) { return rbx_off; }
 100   static int xmm0Offset(void) { return xmm0_off; }
 101   // This really returns a slot in the fp save area, which one is not important
 102   static int fpResultOffset(void) { return st0_off; }
 103 
 104   // During deoptimization only the result register need to be restored
 105   // all the other values have already been extracted.
 106 
 107   static void restore_result_registers(MacroAssembler* masm);
 108 
 109 };
 110 
 111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 112                                            int* total_frame_words, bool verify_fpu) {
 113 
 114   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
 115   int frame_words = frame_size_in_bytes / wordSize;
 116   *total_frame_words = frame_words;
 117 
 118   assert(FPUStateSizeInWords == 27, "update stack layout");
 119 
 120   // save registers, fpu state, and flags
 121   // We assume caller has already has return address slot on the stack
 122   // We push epb twice in this sequence because we want the real rbp,
 123   // to be under the return like a normal enter and we want to use pusha
 124   // We push by hand instead of pusing push
 125   __ enter();
 126   __ pusha();
 127   __ pushf();
 128   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
 129   __ push_FPU_state();          // Save FPU state & init
 130 
 131   if (verify_fpu) {
 132     // Some stubs may have non standard FPU control word settings so
 133     // only check and reset the value when it required to be the
 134     // standard value.  The safepoint blob in particular can be used
 135     // in methods which are using the 24 bit control word for
 136     // optimized float math.
 137 
 138 #ifdef ASSERT
 139     // Make sure the control word has the expected value
 140     Label ok;
 141     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 142     __ jccb(Assembler::equal, ok);
 143     __ stop("corrupted control word detected");
 144     __ bind(ok);
 145 #endif
 146 
 147     // Reset the control word to guard against exceptions being unmasked
 148     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 149     // into the on stack copy and then reload that to make sure that the
 150     // current and future values are correct.
 151     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 152   }
 153 
 154   __ frstor(Address(rsp, 0));
 155   if (!verify_fpu) {
 156     // Set the control word so that exceptions are masked for the
 157     // following code.
 158     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 159   }
 160 
 161   // Save the FPU registers in de-opt-able form
 162 
 163   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 164   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 165   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 166   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 167   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 168   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 169   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 170   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 171 
 172   if( UseSSE == 1 ) {           // Save the XMM state
 173     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 174     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 175     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 176     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 177     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 178     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 179     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 180     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 181   } else if( UseSSE >= 2 ) {
 182     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
 183     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
 184     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
 185     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
 186     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
 187     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
 188     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
 189     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
 190   }
 191 
 192   // Set an oopmap for the call site.  This oopmap will map all
 193   // oop-registers and debug-info registers as callee-saved.  This
 194   // will allow deoptimization at this safepoint to find all possible
 195   // debug-info recordings, as well as let GC find all oops.
 196 
 197   OopMapSet *oop_maps = new OopMapSet();
 198   OopMap* map =  new OopMap( frame_words, 0 );
 199 
 200 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 201 
 202   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 203   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 204   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 205   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 206   // rbp, location is known implicitly, no oopMap
 207   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 208   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 209   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 210   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 211   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 212   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 213   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 214   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 215   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 225   // %%% This is really a waste but we'll keep things as they were for now
 226   if (true) {
 227 #define NEXTREG(x) (x)->as_VMReg()->next()
 228     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 229     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 230     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 231     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 232     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 233     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 234     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 235     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 236     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 237     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 238     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 239     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 240     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 241     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 242     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 243     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 244 #undef NEXTREG
 245 #undef STACK_OFFSET
 246   }
 247 
 248   return map;
 249 
 250 }
 251 
 252 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 253 
 254   // Recover XMM & FPU state
 255   if( UseSSE == 1 ) {
 256     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 257     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 258     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 259     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 260     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 261     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 262     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 263     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 264   } else if( UseSSE >= 2 ) {
 265     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
 266     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
 267     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
 268     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
 269     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
 270     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
 271     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
 272     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
 273   }
 274   __ pop_FPU_state();
 275   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
 276 
 277   __ popf();
 278   __ popa();
 279   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 280   __ pop(rbp);
 281 
 282 }
 283 
 284 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 285 
 286   // Just restore result register. Only used by deoptimization. By
 287   // now any callee save register that needs to be restore to a c2
 288   // caller of the deoptee has been extracted into the vframeArray
 289   // and will be stuffed into the c2i adapter we create for later
 290   // restoration so only result registers need to be restored here.
 291   //
 292 
 293   __ frstor(Address(rsp, 0));      // Restore fpu state
 294 
 295   // Recover XMM & FPU state
 296   if( UseSSE == 1 ) {
 297     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 298   } else if( UseSSE >= 2 ) {
 299     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 300   }
 301   __ movptr(rax, Address(rsp, rax_off*wordSize));
 302   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 303   // Pop all of the register save are off the stack except the return address
 304   __ addptr(rsp, return_off * wordSize);
 305 }
 306 
 307 // The java_calling_convention describes stack locations as ideal slots on
 308 // a frame with no abi restrictions. Since we must observe abi restrictions
 309 // (like the placement of the register window) the slots must be biased by
 310 // the following value.
 311 static int reg2offset_in(VMReg r) {
 312   // Account for saved rbp, and return address
 313   // This should really be in_preserve_stack_slots
 314   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 315 }
 316 
 317 static int reg2offset_out(VMReg r) {
 318   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 319 }
 320 
 321 // ---------------------------------------------------------------------------
 322 // Read the array of BasicTypes from a signature, and compute where the
 323 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 324 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 325 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 326 // as framesizes are fixed.
 327 // VMRegImpl::stack0 refers to the first slot 0(sp).
 328 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 329 // up to RegisterImpl::number_of_registers) are the 32-bit
 330 // integer registers.
 331 
 332 // Pass first two oop/int args in registers ECX and EDX.
 333 // Pass first two float/double args in registers XMM0 and XMM1.
 334 // Doubles have precedence, so if you pass a mix of floats and doubles
 335 // the doubles will grab the registers before the floats will.
 336 
 337 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 338 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 339 // units regardless of build. Of course for i486 there is no 64 bit build
 340 
 341 
 342 // ---------------------------------------------------------------------------
 343 // The compiled Java calling convention.
 344 // Pass first two oop/int args in registers ECX and EDX.
 345 // Pass first two float/double args in registers XMM0 and XMM1.
 346 // Doubles have precedence, so if you pass a mix of floats and doubles
 347 // the doubles will grab the registers before the floats will.
 348 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 349                                            VMRegPair *regs,
 350                                            int total_args_passed,
 351                                            int is_outgoing) {
 352   uint    stack = 0;          // Starting stack position for args on stack
 353 
 354 
 355   // Pass first two oop/int args in registers ECX and EDX.
 356   uint reg_arg0 = 9999;
 357   uint reg_arg1 = 9999;
 358 
 359   // Pass first two float/double args in registers XMM0 and XMM1.
 360   // Doubles have precedence, so if you pass a mix of floats and doubles
 361   // the doubles will grab the registers before the floats will.
 362   // CNC - TURNED OFF FOR non-SSE.
 363   //       On Intel we have to round all doubles (and most floats) at
 364   //       call sites by storing to the stack in any case.
 365   // UseSSE=0 ==> Don't Use ==> 9999+0
 366   // UseSSE=1 ==> Floats only ==> 9999+1
 367   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 368   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 369   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 370   uint freg_arg0 = 9999+fargs;
 371   uint freg_arg1 = 9999+fargs;
 372 
 373   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 374   int i;
 375   for( i = 0; i < total_args_passed; i++) {
 376     if( sig_bt[i] == T_DOUBLE ) {
 377       // first 2 doubles go in registers
 378       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 379       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 380       else // Else double is passed low on the stack to be aligned.
 381         stack += 2;
 382     } else if( sig_bt[i] == T_LONG ) {
 383       stack += 2;
 384     }
 385   }
 386   int dstack = 0;             // Separate counter for placing doubles
 387 
 388   // Now pick where all else goes.
 389   for( i = 0; i < total_args_passed; i++) {
 390     // From the type and the argument number (count) compute the location
 391     switch( sig_bt[i] ) {
 392     case T_SHORT:
 393     case T_CHAR:
 394     case T_BYTE:
 395     case T_BOOLEAN:
 396     case T_INT:
 397     case T_ARRAY:
 398     case T_OBJECT:
 399     case T_ADDRESS:
 400       if( reg_arg0 == 9999 )  {
 401         reg_arg0 = i;
 402         regs[i].set1(rcx->as_VMReg());
 403       } else if( reg_arg1 == 9999 )  {
 404         reg_arg1 = i;
 405         regs[i].set1(rdx->as_VMReg());
 406       } else {
 407         regs[i].set1(VMRegImpl::stack2reg(stack++));
 408       }
 409       break;
 410     case T_FLOAT:
 411       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 412         freg_arg0 = i;
 413         regs[i].set1(xmm0->as_VMReg());
 414       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 415         freg_arg1 = i;
 416         regs[i].set1(xmm1->as_VMReg());
 417       } else {
 418         regs[i].set1(VMRegImpl::stack2reg(stack++));
 419       }
 420       break;
 421     case T_LONG:
 422       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 423       regs[i].set2(VMRegImpl::stack2reg(dstack));
 424       dstack += 2;
 425       break;
 426     case T_DOUBLE:
 427       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 428       if( freg_arg0 == (uint)i ) {
 429         regs[i].set2(xmm0->as_VMReg());
 430       } else if( freg_arg1 == (uint)i ) {
 431         regs[i].set2(xmm1->as_VMReg());
 432       } else {
 433         regs[i].set2(VMRegImpl::stack2reg(dstack));
 434         dstack += 2;
 435       }
 436       break;
 437     case T_VOID: regs[i].set_bad(); break;
 438       break;
 439     default:
 440       ShouldNotReachHere();
 441       break;
 442     }
 443   }
 444 
 445   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 446   return round_to(stack, 2);
 447 }
 448 
 449 // Patch the callers callsite with entry to compiled code if it exists.
 450 static void patch_callers_callsite(MacroAssembler *masm) {
 451   Label L;
 452   __ verify_oop(rbx);
 453   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 454   __ jcc(Assembler::equal, L);
 455   // Schedule the branch target address early.
 456   // Call into the VM to patch the caller, then jump to compiled callee
 457   // rax, isn't live so capture return address while we easily can
 458   __ movptr(rax, Address(rsp, 0));
 459   __ pusha();
 460   __ pushf();
 461 
 462   if (UseSSE == 1) {
 463     __ subptr(rsp, 2*wordSize);
 464     __ movflt(Address(rsp, 0), xmm0);
 465     __ movflt(Address(rsp, wordSize), xmm1);
 466   }
 467   if (UseSSE >= 2) {
 468     __ subptr(rsp, 4*wordSize);
 469     __ movdbl(Address(rsp, 0), xmm0);
 470     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 471   }
 472 #ifdef COMPILER2
 473   // C2 may leave the stack dirty if not in SSE2+ mode
 474   if (UseSSE >= 2) {
 475     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 476   } else {
 477     __ empty_FPU_stack();
 478   }
 479 #endif /* COMPILER2 */
 480 
 481   // VM needs caller's callsite
 482   __ push(rax);
 483   // VM needs target method
 484   __ push(rbx);
 485   __ verify_oop(rbx);
 486   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 487   __ addptr(rsp, 2*wordSize);
 488 
 489   if (UseSSE == 1) {
 490     __ movflt(xmm0, Address(rsp, 0));
 491     __ movflt(xmm1, Address(rsp, wordSize));
 492     __ addptr(rsp, 2*wordSize);
 493   }
 494   if (UseSSE >= 2) {
 495     __ movdbl(xmm0, Address(rsp, 0));
 496     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 497     __ addptr(rsp, 4*wordSize);
 498   }
 499 
 500   __ popf();
 501   __ popa();
 502   __ bind(L);
 503 }
 504 
 505 
 506 // Helper function to put tags in interpreter stack.
 507 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
 508   if (TaggedStackInterpreter) {
 509     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
 510     if (sig == T_OBJECT || sig == T_ARRAY) {
 511       __ movptr(Address(rsp, tag_offset), frame::TagReference);
 512     } else if (sig == T_LONG || sig == T_DOUBLE) {
 513       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
 514       __ movptr(Address(rsp, next_tag_offset), frame::TagValue);
 515       __ movptr(Address(rsp, tag_offset), frame::TagValue);
 516     } else {
 517       __ movptr(Address(rsp, tag_offset), frame::TagValue);
 518     }
 519   }
 520 }
 521 
 522 // Double and long values with Tagged stacks are not contiguous.
 523 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 524   int next_off = st_off - Interpreter::stackElementSize();
 525   if (TaggedStackInterpreter) {
 526    __ movdbl(Address(rsp, next_off), r);
 527    // Move top half up and put tag in the middle.
 528    __ movl(rdi, Address(rsp, next_off+wordSize));
 529    __ movl(Address(rsp, st_off), rdi);
 530    tag_stack(masm, T_DOUBLE, next_off);
 531   } else {
 532    __ movdbl(Address(rsp, next_off), r);
 533   }
 534 }
 535 
 536 static void gen_c2i_adapter(MacroAssembler *masm,
 537                             int total_args_passed,
 538                             int comp_args_on_stack,
 539                             const BasicType *sig_bt,
 540                             const VMRegPair *regs,
 541                             Label& skip_fixup) {
 542   // Before we get into the guts of the C2I adapter, see if we should be here
 543   // at all.  We've come from compiled code and are attempting to jump to the
 544   // interpreter, which means the caller made a static call to get here
 545   // (vcalls always get a compiled target if there is one).  Check for a
 546   // compiled target.  If there is one, we need to patch the caller's call.
 547   patch_callers_callsite(masm);
 548 
 549   __ bind(skip_fixup);
 550 
 551 #ifdef COMPILER2
 552   // C2 may leave the stack dirty if not in SSE2+ mode
 553   if (UseSSE >= 2) {
 554     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 555   } else {
 556     __ empty_FPU_stack();
 557   }
 558 #endif /* COMPILER2 */
 559 
 560   // Since all args are passed on the stack, total_args_passed * interpreter_
 561   // stack_element_size  is the
 562   // space we need.
 563   int extraspace = total_args_passed * Interpreter::stackElementSize();
 564 
 565   // Get return address
 566   __ pop(rax);
 567 
 568   // set senderSP value
 569   __ movptr(rsi, rsp);
 570 
 571   __ subptr(rsp, extraspace);
 572 
 573   // Now write the args into the outgoing interpreter space
 574   for (int i = 0; i < total_args_passed; i++) {
 575     if (sig_bt[i] == T_VOID) {
 576       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 577       continue;
 578     }
 579 
 580     // st_off points to lowest address on stack.
 581     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize();
 582     int next_off = st_off - Interpreter::stackElementSize();
 583 
 584     // Say 4 args:
 585     // i   st_off
 586     // 0   12 T_LONG
 587     // 1    8 T_VOID
 588     // 2    4 T_OBJECT
 589     // 3    0 T_BOOL
 590     VMReg r_1 = regs[i].first();
 591     VMReg r_2 = regs[i].second();
 592     if (!r_1->is_valid()) {
 593       assert(!r_2->is_valid(), "");
 594       continue;
 595     }
 596 
 597     if (r_1->is_stack()) {
 598       // memory to memory use fpu stack top
 599       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 600 
 601       if (!r_2->is_valid()) {
 602         __ movl(rdi, Address(rsp, ld_off));
 603         __ movptr(Address(rsp, st_off), rdi);
 604         tag_stack(masm, sig_bt[i], st_off);
 605       } else {
 606 
 607         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 608         // st_off == MSW, st_off-wordSize == LSW
 609 
 610         __ movptr(rdi, Address(rsp, ld_off));
 611         __ movptr(Address(rsp, next_off), rdi);
 612 #ifndef _LP64
 613         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 614         __ movptr(Address(rsp, st_off), rdi);
 615 #else
 616 #ifdef ASSERT
 617         // Overwrite the unused slot with known junk
 618         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 619         __ movptr(Address(rsp, st_off), rax);
 620 #endif /* ASSERT */
 621 #endif // _LP64
 622         tag_stack(masm, sig_bt[i], next_off);
 623       }
 624     } else if (r_1->is_Register()) {
 625       Register r = r_1->as_Register();
 626       if (!r_2->is_valid()) {
 627         __ movl(Address(rsp, st_off), r);
 628         tag_stack(masm, sig_bt[i], st_off);
 629       } else {
 630         // long/double in gpr
 631         NOT_LP64(ShouldNotReachHere());
 632         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 633         // T_DOUBLE and T_LONG use two slots in the interpreter
 634         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 635           // long/double in gpr
 636 #ifdef ASSERT
 637           // Overwrite the unused slot with known junk
 638           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 639           __ movptr(Address(rsp, st_off), rax);
 640 #endif /* ASSERT */
 641           __ movptr(Address(rsp, next_off), r);
 642           tag_stack(masm, sig_bt[i], next_off);
 643         } else {
 644           __ movptr(Address(rsp, st_off), r);
 645           tag_stack(masm, sig_bt[i], st_off);
 646         }
 647       }
 648     } else {
 649       assert(r_1->is_XMMRegister(), "");
 650       if (!r_2->is_valid()) {
 651         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 652         tag_stack(masm, sig_bt[i], st_off);
 653       } else {
 654         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 655         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 656       }
 657     }
 658   }
 659 
 660   // Schedule the branch target address early.
 661   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 662   // And repush original return address
 663   __ push(rax);
 664   __ jmp(rcx);
 665 }
 666 
 667 
 668 // For tagged stacks, double or long value aren't contiguous on the stack
 669 // so get them contiguous for the xmm load
 670 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 671   int next_val_off = ld_off - Interpreter::stackElementSize();
 672   if (TaggedStackInterpreter) {
 673     // use tag slot temporarily for MSW
 674     __ movptr(rsi, Address(saved_sp, ld_off));
 675     __ movptr(Address(saved_sp, next_val_off+wordSize), rsi);
 676     __ movdbl(r, Address(saved_sp, next_val_off));
 677     // restore tag
 678     __ movptr(Address(saved_sp, next_val_off+wordSize), frame::TagValue);
 679   } else {
 680     __ movdbl(r, Address(saved_sp, next_val_off));
 681   }
 682 }
 683 
 684 static void gen_i2c_adapter(MacroAssembler *masm,
 685                             int total_args_passed,
 686                             int comp_args_on_stack,
 687                             const BasicType *sig_bt,
 688                             const VMRegPair *regs) {
 689   // we're being called from the interpreter but need to find the
 690   // compiled return entry point.  The return address on the stack
 691   // should point at it and we just need to pull the old value out.
 692   // load up the pointer to the compiled return entry point and
 693   // rewrite our return pc. The code is arranged like so:
 694   //
 695   // .word Interpreter::return_sentinel
 696   // .word address_of_compiled_return_point
 697   // return_entry_point: blah_blah_blah
 698   //
 699   // So we can find the appropriate return point by loading up the word
 700   // just prior to the current return address we have on the stack.
 701   //
 702   // We will only enter here from an interpreted frame and never from after
 703   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 704   // race and use a c2i we will remain interpreted for the race loser(s).
 705   // This removes all sorts of headaches on the x86 side and also eliminates
 706   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 707 
 708 
 709   // Note: rsi contains the senderSP on entry. We must preserve it since
 710   // we may do a i2c -> c2i transition if we lose a race where compiled
 711   // code goes non-entrant while we get args ready.
 712 
 713   // Pick up the return address
 714   __ movptr(rax, Address(rsp, 0));
 715 
 716   // If UseSSE >= 2 then no cleanup is needed on the return to the
 717   // interpreter so skip fixing up the return entry point unless
 718   // VerifyFPU is enabled.
 719   if (UseSSE < 2 || VerifyFPU) {
 720     Label skip, chk_int;
 721     // If we were called from the call stub we need to do a little bit different
 722     // cleanup than if the interpreter returned to the call stub.
 723 
 724     ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
 725     __ cmpptr(rax, stub_return_address.addr());
 726     __ jcc(Assembler::notEqual, chk_int);
 727     assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
 728     __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
 729     __ jmp(skip);
 730 
 731     // It must be the interpreter since we never get here via a c2i (unlike Azul)
 732 
 733     __ bind(chk_int);
 734 #ifdef ASSERT
 735     {
 736       Label ok;
 737       __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
 738       __ jcc(Assembler::equal, ok);
 739       __ int3();
 740       __ bind(ok);
 741     }
 742 #endif // ASSERT
 743     __ movptr(rax, Address(rax, -wordSize));
 744     __ bind(skip);
 745   }
 746 
 747   // rax, now contains the compiled return entry point which will do an
 748   // cleanup needed for the return from compiled to interpreted.
 749 
 750   // Must preserve original SP for loading incoming arguments because
 751   // we need to align the outgoing SP for compiled code.
 752   __ movptr(rdi, rsp);
 753 
 754   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 755   // in registers, we will occasionally have no stack args.
 756   int comp_words_on_stack = 0;
 757   if (comp_args_on_stack) {
 758     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 759     // registers are below.  By subtracting stack0, we either get a negative
 760     // number (all values in registers) or the maximum stack slot accessed.
 761     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 762     // Convert 4-byte stack slots to words.
 763     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 764     // Round up to miminum stack alignment, in wordSize
 765     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 766     __ subptr(rsp, comp_words_on_stack * wordSize);
 767   }
 768 
 769   // Align the outgoing SP
 770   __ andptr(rsp, -(StackAlignmentInBytes));
 771 
 772   // push the return address on the stack (note that pushing, rather
 773   // than storing it, yields the correct frame alignment for the callee)
 774   __ push(rax);
 775 
 776   // Put saved SP in another register
 777   const Register saved_sp = rax;
 778   __ movptr(saved_sp, rdi);
 779 
 780 
 781   // Will jump to the compiled code just as if compiled code was doing it.
 782   // Pre-load the register-jump target early, to schedule it better.
 783   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 784 
 785   // Now generate the shuffle code.  Pick up all register args and move the
 786   // rest through the floating point stack top.
 787   for (int i = 0; i < total_args_passed; i++) {
 788     if (sig_bt[i] == T_VOID) {
 789       // Longs and doubles are passed in native word order, but misaligned
 790       // in the 32-bit build.
 791       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 792       continue;
 793     }
 794 
 795     // Pick up 0, 1 or 2 words from SP+offset.
 796 
 797     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 798             "scrambled load targets?");
 799     // Load in argument order going down.
 800     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 801     // Point to interpreter value (vs. tag)
 802     int next_off = ld_off - Interpreter::stackElementSize();
 803     //
 804     //
 805     //
 806     VMReg r_1 = regs[i].first();
 807     VMReg r_2 = regs[i].second();
 808     if (!r_1->is_valid()) {
 809       assert(!r_2->is_valid(), "");
 810       continue;
 811     }
 812     if (r_1->is_stack()) {
 813       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 814       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 815 
 816       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 817       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 818       // we be generated.
 819       if (!r_2->is_valid()) {
 820         // __ fld_s(Address(saved_sp, ld_off));
 821         // __ fstp_s(Address(rsp, st_off));
 822         __ movl(rsi, Address(saved_sp, ld_off));
 823         __ movptr(Address(rsp, st_off), rsi);
 824       } else {
 825         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 826         // are accessed as negative so LSW is at LOW address
 827 
 828         // ld_off is MSW so get LSW
 829         // st_off is LSW (i.e. reg.first())
 830         // __ fld_d(Address(saved_sp, next_off));
 831         // __ fstp_d(Address(rsp, st_off));
 832         //
 833         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 834         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 835         // So we must adjust where to pick up the data to match the interpreter.
 836         //
 837         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 838         // are accessed as negative so LSW is at LOW address
 839 
 840         // ld_off is MSW so get LSW
 841         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 842                            next_off : ld_off;
 843         __ movptr(rsi, Address(saved_sp, offset));
 844         __ movptr(Address(rsp, st_off), rsi);
 845 #ifndef _LP64
 846         __ movptr(rsi, Address(saved_sp, ld_off));
 847         __ movptr(Address(rsp, st_off + wordSize), rsi);
 848 #endif // _LP64
 849       }
 850     } else if (r_1->is_Register()) {  // Register argument
 851       Register r = r_1->as_Register();
 852       assert(r != rax, "must be different");
 853       if (r_2->is_valid()) {
 854         //
 855         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 856         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 857         // So we must adjust where to pick up the data to match the interpreter.
 858 
 859         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 860                            next_off : ld_off;
 861 
 862         // this can be a misaligned move
 863         __ movptr(r, Address(saved_sp, offset));
 864 #ifndef _LP64
 865         assert(r_2->as_Register() != rax, "need another temporary register");
 866         // Remember r_1 is low address (and LSB on x86)
 867         // So r_2 gets loaded from high address regardless of the platform
 868         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 869 #endif // _LP64
 870       } else {
 871         __ movl(r, Address(saved_sp, ld_off));
 872       }
 873     } else {
 874       assert(r_1->is_XMMRegister(), "");
 875       if (!r_2->is_valid()) {
 876         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 877       } else {
 878         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 879       }
 880     }
 881   }
 882 
 883   // 6243940 We might end up in handle_wrong_method if
 884   // the callee is deoptimized as we race thru here. If that
 885   // happens we don't want to take a safepoint because the
 886   // caller frame will look interpreted and arguments are now
 887   // "compiled" so it is much better to make this transition
 888   // invisible to the stack walking code. Unfortunately if
 889   // we try and find the callee by normal means a safepoint
 890   // is possible. So we stash the desired callee in the thread
 891   // and the vm will find there should this case occur.
 892 
 893   __ get_thread(rax);
 894   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 895 
 896   // move methodOop to rax, in case we end up in an c2i adapter.
 897   // the c2i adapters expect methodOop in rax, (c2) because c2's
 898   // resolve stubs return the result (the method) in rax,.
 899   // I'd love to fix this.
 900   __ mov(rax, rbx);
 901 
 902   __ jmp(rdi);
 903 }
 904 
 905 // ---------------------------------------------------------------
 906 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 907                                                             int total_args_passed,
 908                                                             int comp_args_on_stack,
 909                                                             const BasicType *sig_bt,
 910                                                             const VMRegPair *regs,
 911                                                             AdapterFingerPrint* fingerprint) {
 912   address i2c_entry = __ pc();
 913 
 914   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 915 
 916   // -------------------------------------------------------------------------
 917   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
 918   // to the interpreter.  The args start out packed in the compiled layout.  They
 919   // need to be unpacked into the interpreter layout.  This will almost always
 920   // require some stack space.  We grow the current (compiled) stack, then repack
 921   // the args.  We  finally end in a jump to the generic interpreter entry point.
 922   // On exit from the interpreter, the interpreter will restore our SP (lest the
 923   // compiled code, which relys solely on SP and not EBP, get sick).
 924 
 925   address c2i_unverified_entry = __ pc();
 926   Label skip_fixup;
 927 
 928   Register holder = rax;
 929   Register receiver = rcx;
 930   Register temp = rbx;
 931 
 932   {
 933 
 934     Label missed;
 935 
 936     __ verify_oop(holder);
 937     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 938     __ verify_oop(temp);
 939 
 940     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 941     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 942     __ jcc(Assembler::notEqual, missed);
 943     // Method might have been compiled since the call site was patched to
 944     // interpreted if that is the case treat it as a miss so we can get
 945     // the call site corrected.
 946     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 947     __ jcc(Assembler::equal, skip_fixup);
 948 
 949     __ bind(missed);
 950     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 951   }
 952 
 953   address c2i_entry = __ pc();
 954 
 955   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 956 
 957   __ flush();
 958   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 959 }
 960 
 961 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 962                                          VMRegPair *regs,
 963                                          int total_args_passed) {
 964 // We return the amount of VMRegImpl stack slots we need to reserve for all
 965 // the arguments NOT counting out_preserve_stack_slots.
 966 
 967   uint    stack = 0;        // All arguments on stack
 968 
 969   for( int i = 0; i < total_args_passed; i++) {
 970     // From the type and the argument number (count) compute the location
 971     switch( sig_bt[i] ) {
 972     case T_BOOLEAN:
 973     case T_CHAR:
 974     case T_FLOAT:
 975     case T_BYTE:
 976     case T_SHORT:
 977     case T_INT:
 978     case T_OBJECT:
 979     case T_ARRAY:
 980     case T_ADDRESS:
 981       regs[i].set1(VMRegImpl::stack2reg(stack++));
 982       break;
 983     case T_LONG:
 984     case T_DOUBLE: // The stack numbering is reversed from Java
 985       // Since C arguments do not get reversed, the ordering for
 986       // doubles on the stack must be opposite the Java convention
 987       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 988       regs[i].set2(VMRegImpl::stack2reg(stack));
 989       stack += 2;
 990       break;
 991     case T_VOID: regs[i].set_bad(); break;
 992     default:
 993       ShouldNotReachHere();
 994       break;
 995     }
 996   }
 997   return stack;
 998 }
 999 
1000 // A simple move of integer like type
1001 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1002   if (src.first()->is_stack()) {
1003     if (dst.first()->is_stack()) {
1004       // stack to stack
1005       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1006       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1007       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
1008       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1009     } else {
1010       // stack to reg
1011       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
1012     }
1013   } else if (dst.first()->is_stack()) {
1014     // reg to stack
1015     // no need to sign extend on 64bit
1016     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1017   } else {
1018     if (dst.first() != src.first()) {
1019       __ mov(dst.first()->as_Register(), src.first()->as_Register());
1020     }
1021   }
1022 }
1023 
1024 // An oop arg. Must pass a handle not the oop itself
1025 static void object_move(MacroAssembler* masm,
1026                         OopMap* map,
1027                         int oop_handle_offset,
1028                         int framesize_in_slots,
1029                         VMRegPair src,
1030                         VMRegPair dst,
1031                         bool is_receiver,
1032                         int* receiver_offset) {
1033 
1034   // Because of the calling conventions we know that src can be a
1035   // register or a stack location. dst can only be a stack location.
1036 
1037   assert(dst.first()->is_stack(), "must be stack");
1038   // must pass a handle. First figure out the location we use as a handle
1039 
1040   if (src.first()->is_stack()) {
1041     // Oop is already on the stack as an argument
1042     Register rHandle = rax;
1043     Label nil;
1044     __ xorptr(rHandle, rHandle);
1045     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1046     __ jcc(Assembler::equal, nil);
1047     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1048     __ bind(nil);
1049     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1050 
1051     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1052     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1053     if (is_receiver) {
1054       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1055     }
1056   } else {
1057     // Oop is in an a register we must store it to the space we reserve
1058     // on the stack for oop_handles
1059     const Register rOop = src.first()->as_Register();
1060     const Register rHandle = rax;
1061     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1062     int offset = oop_slot*VMRegImpl::stack_slot_size;
1063     Label skip;
1064     __ movptr(Address(rsp, offset), rOop);
1065     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1066     __ xorptr(rHandle, rHandle);
1067     __ cmpptr(rOop, (int32_t)NULL_WORD);
1068     __ jcc(Assembler::equal, skip);
1069     __ lea(rHandle, Address(rsp, offset));
1070     __ bind(skip);
1071     // Store the handle parameter
1072     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1073     if (is_receiver) {
1074       *receiver_offset = offset;
1075     }
1076   }
1077 }
1078 
1079 // A float arg may have to do float reg int reg conversion
1080 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1081   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1082 
1083   // Because of the calling convention we know that src is either a stack location
1084   // or an xmm register. dst can only be a stack location.
1085 
1086   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1087 
1088   if (src.first()->is_stack()) {
1089     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1090     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1091   } else {
1092     // reg to stack
1093     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1094   }
1095 }
1096 
1097 // A long move
1098 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1099 
1100   // The only legal possibility for a long_move VMRegPair is:
1101   // 1: two stack slots (possibly unaligned)
1102   // as neither the java  or C calling convention will use registers
1103   // for longs.
1104 
1105   if (src.first()->is_stack() && dst.first()->is_stack()) {
1106     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1107     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1108     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1109     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1110     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1111   } else {
1112     ShouldNotReachHere();
1113   }
1114 }
1115 
1116 // A double move
1117 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1118 
1119   // The only legal possibilities for a double_move VMRegPair are:
1120   // The painful thing here is that like long_move a VMRegPair might be
1121 
1122   // Because of the calling convention we know that src is either
1123   //   1: a single physical register (xmm registers only)
1124   //   2: two stack slots (possibly unaligned)
1125   // dst can only be a pair of stack slots.
1126 
1127   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1128 
1129   if (src.first()->is_stack()) {
1130     // source is all stack
1131     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1132     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1133     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1134     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1135   } else {
1136     // reg to stack
1137     // No worries about stack alignment
1138     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1139   }
1140 }
1141 
1142 
1143 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1144   // We always ignore the frame_slots arg and just use the space just below frame pointer
1145   // which by this time is free to use
1146   switch (ret_type) {
1147   case T_FLOAT:
1148     __ fstp_s(Address(rbp, -wordSize));
1149     break;
1150   case T_DOUBLE:
1151     __ fstp_d(Address(rbp, -2*wordSize));
1152     break;
1153   case T_VOID:  break;
1154   case T_LONG:
1155     __ movptr(Address(rbp, -wordSize), rax);
1156     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1157     break;
1158   default: {
1159     __ movptr(Address(rbp, -wordSize), rax);
1160     }
1161   }
1162 }
1163 
1164 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1165   // We always ignore the frame_slots arg and just use the space just below frame pointer
1166   // which by this time is free to use
1167   switch (ret_type) {
1168   case T_FLOAT:
1169     __ fld_s(Address(rbp, -wordSize));
1170     break;
1171   case T_DOUBLE:
1172     __ fld_d(Address(rbp, -2*wordSize));
1173     break;
1174   case T_LONG:
1175     __ movptr(rax, Address(rbp, -wordSize));
1176     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1177     break;
1178   case T_VOID:  break;
1179   default: {
1180     __ movptr(rax, Address(rbp, -wordSize));
1181     }
1182   }
1183 }
1184 
1185 // ---------------------------------------------------------------------------
1186 // Generate a native wrapper for a given method.  The method takes arguments
1187 // in the Java compiled code convention, marshals them to the native
1188 // convention (handlizes oops, etc), transitions to native, makes the call,
1189 // returns to java state (possibly blocking), unhandlizes any result and
1190 // returns.
1191 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1192                                                 methodHandle method,
1193                                                 int total_in_args,
1194                                                 int comp_args_on_stack,
1195                                                 BasicType *in_sig_bt,
1196                                                 VMRegPair *in_regs,
1197                                                 BasicType ret_type) {
1198 
1199   // An OopMap for lock (and class if static)
1200   OopMapSet *oop_maps = new OopMapSet();
1201 
1202   // We have received a description of where all the java arg are located
1203   // on entry to the wrapper. We need to convert these args to where
1204   // the jni function will expect them. To figure out where they go
1205   // we convert the java signature to a C signature by inserting
1206   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1207 
1208   int total_c_args = total_in_args + 1;
1209   if (method->is_static()) {
1210     total_c_args++;
1211   }
1212 
1213   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1214   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1215 
1216   int argc = 0;
1217   out_sig_bt[argc++] = T_ADDRESS;
1218   if (method->is_static()) {
1219     out_sig_bt[argc++] = T_OBJECT;
1220   }
1221 
1222   int i;
1223   for (i = 0; i < total_in_args ; i++ ) {
1224     out_sig_bt[argc++] = in_sig_bt[i];
1225   }
1226 
1227 
1228   // Now figure out where the args must be stored and how much stack space
1229   // they require (neglecting out_preserve_stack_slots but space for storing
1230   // the 1st six register arguments). It's weird see int_stk_helper.
1231   //
1232   int out_arg_slots;
1233   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1234 
1235   // Compute framesize for the wrapper.  We need to handlize all oops in
1236   // registers a max of 2 on x86.
1237 
1238   // Calculate the total number of stack slots we will need.
1239 
1240   // First count the abi requirement plus all of the outgoing args
1241   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1242 
1243   // Now the space for the inbound oop handle area
1244 
1245   int oop_handle_offset = stack_slots;
1246   stack_slots += 2*VMRegImpl::slots_per_word;
1247 
1248   // Now any space we need for handlizing a klass if static method
1249 
1250   int klass_slot_offset = 0;
1251   int klass_offset = -1;
1252   int lock_slot_offset = 0;
1253   bool is_static = false;
1254   int oop_temp_slot_offset = 0;
1255 
1256   if (method->is_static()) {
1257     klass_slot_offset = stack_slots;
1258     stack_slots += VMRegImpl::slots_per_word;
1259     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1260     is_static = true;
1261   }
1262 
1263   // Plus a lock if needed
1264 
1265   if (method->is_synchronized()) {
1266     lock_slot_offset = stack_slots;
1267     stack_slots += VMRegImpl::slots_per_word;
1268   }
1269 
1270   // Now a place (+2) to save return values or temp during shuffling
1271   // + 2 for return address (which we own) and saved rbp,
1272   stack_slots += 4;
1273 
1274   // Ok The space we have allocated will look like:
1275   //
1276   //
1277   // FP-> |                     |
1278   //      |---------------------|
1279   //      | 2 slots for moves   |
1280   //      |---------------------|
1281   //      | lock box (if sync)  |
1282   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1283   //      | klass (if static)   |
1284   //      |---------------------| <- klass_slot_offset
1285   //      | oopHandle area      |
1286   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1287   //      | outbound memory     |
1288   //      | based arguments     |
1289   //      |                     |
1290   //      |---------------------|
1291   //      |                     |
1292   // SP-> | out_preserved_slots |
1293   //
1294   //
1295   // ****************************************************************************
1296   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1297   // arguments off of the stack after the jni call. Before the call we can use
1298   // instructions that are SP relative. After the jni call we switch to FP
1299   // relative instructions instead of re-adjusting the stack on windows.
1300   // ****************************************************************************
1301 
1302 
1303   // Now compute actual number of stack words we need rounding to make
1304   // stack properly aligned.
1305   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1306 
1307   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1308 
1309   intptr_t start = (intptr_t)__ pc();
1310 
1311   // First thing make an ic check to see if we should even be here
1312 
1313   // We are free to use all registers as temps without saving them and
1314   // restoring them except rbp,. rbp, is the only callee save register
1315   // as far as the interpreter and the compiler(s) are concerned.
1316 
1317 
1318   const Register ic_reg = rax;
1319   const Register receiver = rcx;
1320   Label hit;
1321   Label exception_pending;
1322 
1323 
1324   __ verify_oop(receiver);
1325   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1326   __ jcc(Assembler::equal, hit);
1327 
1328   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1329 
1330   // verified entry must be aligned for code patching.
1331   // and the first 5 bytes must be in the same cache line
1332   // if we align at 8 then we will be sure 5 bytes are in the same line
1333   __ align(8);
1334 
1335   __ bind(hit);
1336 
1337   int vep_offset = ((intptr_t)__ pc()) - start;
1338 
1339 #ifdef COMPILER1
1340   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1341     // Object.hashCode can pull the hashCode from the header word
1342     // instead of doing a full VM transition once it's been computed.
1343     // Since hashCode is usually polymorphic at call sites we can't do
1344     // this optimization at the call site without a lot of work.
1345     Label slowCase;
1346     Register receiver = rcx;
1347     Register result = rax;
1348     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1349 
1350     // check if locked
1351     __ testptr(result, markOopDesc::unlocked_value);
1352     __ jcc (Assembler::zero, slowCase);
1353 
1354     if (UseBiasedLocking) {
1355       // Check if biased and fall through to runtime if so
1356       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1357       __ jcc (Assembler::notZero, slowCase);
1358     }
1359 
1360     // get hash
1361     __ andptr(result, markOopDesc::hash_mask_in_place);
1362     // test if hashCode exists
1363     __ jcc  (Assembler::zero, slowCase);
1364     __ shrptr(result, markOopDesc::hash_shift);
1365     __ ret(0);
1366     __ bind (slowCase);
1367   }
1368 #endif // COMPILER1
1369 
1370   // The instruction at the verified entry point must be 5 bytes or longer
1371   // because it can be patched on the fly by make_non_entrant. The stack bang
1372   // instruction fits that requirement.
1373 
1374   // Generate stack overflow check
1375 
1376   if (UseStackBanging) {
1377     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1378   } else {
1379     // need a 5 byte instruction to allow MT safe patching to non-entrant
1380     __ fat_nop();
1381   }
1382 
1383   // Generate a new frame for the wrapper.
1384   __ enter();
1385   // -2 because return address is already present and so is saved rbp,
1386   __ subptr(rsp, stack_size - 2*wordSize);
1387 
1388   // Frame is now completed as far a size and linkage.
1389 
1390   int frame_complete = ((intptr_t)__ pc()) - start;
1391 
1392   // Calculate the difference between rsp and rbp,. We need to know it
1393   // after the native call because on windows Java Natives will pop
1394   // the arguments and it is painful to do rsp relative addressing
1395   // in a platform independent way. So after the call we switch to
1396   // rbp, relative addressing.
1397 
1398   int fp_adjustment = stack_size - 2*wordSize;
1399 
1400 #ifdef COMPILER2
1401   // C2 may leave the stack dirty if not in SSE2+ mode
1402   if (UseSSE >= 2) {
1403     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1404   } else {
1405     __ empty_FPU_stack();
1406   }
1407 #endif /* COMPILER2 */
1408 
1409   // Compute the rbp, offset for any slots used after the jni call
1410 
1411   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1412   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1413 
1414   // We use rdi as a thread pointer because it is callee save and
1415   // if we load it once it is usable thru the entire wrapper
1416   const Register thread = rdi;
1417 
1418   // We use rsi as the oop handle for the receiver/klass
1419   // It is callee save so it survives the call to native
1420 
1421   const Register oop_handle_reg = rsi;
1422 
1423   __ get_thread(thread);
1424 
1425 
1426   //
1427   // We immediately shuffle the arguments so that any vm call we have to
1428   // make from here on out (sync slow path, jvmti, etc.) we will have
1429   // captured the oops from our caller and have a valid oopMap for
1430   // them.
1431 
1432   // -----------------
1433   // The Grand Shuffle
1434   //
1435   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1436   // and, if static, the class mirror instead of a receiver.  This pretty much
1437   // guarantees that register layout will not match (and x86 doesn't use reg
1438   // parms though amd does).  Since the native abi doesn't use register args
1439   // and the java conventions does we don't have to worry about collisions.
1440   // All of our moved are reg->stack or stack->stack.
1441   // We ignore the extra arguments during the shuffle and handle them at the
1442   // last moment. The shuffle is described by the two calling convention
1443   // vectors we have in our possession. We simply walk the java vector to
1444   // get the source locations and the c vector to get the destinations.
1445 
1446   int c_arg = method->is_static() ? 2 : 1 ;
1447 
1448   // Record rsp-based slot for receiver on stack for non-static methods
1449   int receiver_offset = -1;
1450 
1451   // This is a trick. We double the stack slots so we can claim
1452   // the oops in the caller's frame. Since we are sure to have
1453   // more args than the caller doubling is enough to make
1454   // sure we can capture all the incoming oop args from the
1455   // caller.
1456   //
1457   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1458 
1459   // Mark location of rbp,
1460   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1461 
1462   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1463   // Are free to temporaries if we have to do  stack to steck moves.
1464   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1465 
1466   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
1467     switch (in_sig_bt[i]) {
1468       case T_ARRAY:
1469       case T_OBJECT:
1470         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1471                     ((i == 0) && (!is_static)),
1472                     &receiver_offset);
1473         break;
1474       case T_VOID:
1475         break;
1476 
1477       case T_FLOAT:
1478         float_move(masm, in_regs[i], out_regs[c_arg]);
1479           break;
1480 
1481       case T_DOUBLE:
1482         assert( i + 1 < total_in_args &&
1483                 in_sig_bt[i + 1] == T_VOID &&
1484                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1485         double_move(masm, in_regs[i], out_regs[c_arg]);
1486         break;
1487 
1488       case T_LONG :
1489         long_move(masm, in_regs[i], out_regs[c_arg]);
1490         break;
1491 
1492       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1493 
1494       default:
1495         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1496     }
1497   }
1498 
1499   // Pre-load a static method's oop into rsi.  Used both by locking code and
1500   // the normal JNI call code.
1501   if (method->is_static()) {
1502 
1503     //  load opp into a register
1504     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1505 
1506     // Now handlize the static class mirror it's known not-null.
1507     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1508     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1509 
1510     // Now get the handle
1511     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1512     // store the klass handle as second argument
1513     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1514   }
1515 
1516   // Change state to native (we save the return address in the thread, since it might not
1517   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1518   // points into the right code segment. It does not have to be the correct return pc.
1519   // We use the same pc/oopMap repeatedly when we call out
1520 
1521   intptr_t the_pc = (intptr_t) __ pc();
1522   oop_maps->add_gc_map(the_pc - start, map);
1523 
1524   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1525 
1526 
1527   // We have all of the arguments setup at this point. We must not touch any register
1528   // argument registers at this point (what if we save/restore them there are no oop?
1529 
1530   {
1531     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1532     __ movoop(rax, JNIHandles::make_local(method()));
1533     __ call_VM_leaf(
1534          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1535          thread, rax);
1536   }
1537 
1538   // RedefineClasses() tracing support for obsolete method entry
1539   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1540     __ movoop(rax, JNIHandles::make_local(method()));
1541     __ call_VM_leaf(
1542          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1543          thread, rax);
1544   }
1545 
1546   // These are register definitions we need for locking/unlocking
1547   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1548   const Register obj_reg  = rcx;  // Will contain the oop
1549   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1550 
1551   Label slow_path_lock;
1552   Label lock_done;
1553 
1554   // Lock a synchronized method
1555   if (method->is_synchronized()) {
1556 
1557 
1558     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1559 
1560     // Get the handle (the 2nd argument)
1561     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1562 
1563     // Get address of the box
1564 
1565     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1566 
1567     // Load the oop from the handle
1568     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1569 
1570     if (UseBiasedLocking) {
1571       // Note that oop_handle_reg is trashed during this call
1572       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1573     }
1574 
1575     // Load immediate 1 into swap_reg %rax,
1576     __ movptr(swap_reg, 1);
1577 
1578     // Load (object->mark() | 1) into swap_reg %rax,
1579     __ orptr(swap_reg, Address(obj_reg, 0));
1580 
1581     // Save (object->mark() | 1) into BasicLock's displaced header
1582     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1583 
1584     if (os::is_MP()) {
1585       __ lock();
1586     }
1587 
1588     // src -> dest iff dest == rax, else rax, <- dest
1589     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1590     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1591     __ jcc(Assembler::equal, lock_done);
1592 
1593     // Test if the oopMark is an obvious stack pointer, i.e.,
1594     //  1) (mark & 3) == 0, and
1595     //  2) rsp <= mark < mark + os::pagesize()
1596     // These 3 tests can be done by evaluating the following
1597     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1598     // assuming both stack pointer and pagesize have their
1599     // least significant 2 bits clear.
1600     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1601 
1602     __ subptr(swap_reg, rsp);
1603     __ andptr(swap_reg, 3 - os::vm_page_size());
1604 
1605     // Save the test result, for recursive case, the result is zero
1606     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1607     __ jcc(Assembler::notEqual, slow_path_lock);
1608     // Slow path will re-enter here
1609     __ bind(lock_done);
1610 
1611     if (UseBiasedLocking) {
1612       // Re-fetch oop_handle_reg as we trashed it above
1613       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1614     }
1615   }
1616 
1617 
1618   // Finally just about ready to make the JNI call
1619 
1620 
1621   // get JNIEnv* which is first argument to native
1622 
1623   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1624   __ movptr(Address(rsp, 0), rdx);
1625 
1626   // Now set thread in native
1627   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1628 
1629   __ call(RuntimeAddress(method->native_function()));
1630 
1631   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1632   // arguments off of the stack. We could just re-adjust the stack pointer here
1633   // and continue to do SP relative addressing but we instead switch to FP
1634   // relative addressing.
1635 
1636   // Unpack native results.
1637   switch (ret_type) {
1638   case T_BOOLEAN: __ c2bool(rax);            break;
1639   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1640   case T_BYTE   : __ sign_extend_byte (rax); break;
1641   case T_SHORT  : __ sign_extend_short(rax); break;
1642   case T_INT    : /* nothing to do */        break;
1643   case T_DOUBLE :
1644   case T_FLOAT  :
1645     // Result is in st0 we'll save as needed
1646     break;
1647   case T_ARRAY:                 // Really a handle
1648   case T_OBJECT:                // Really a handle
1649       break; // can't de-handlize until after safepoint check
1650   case T_VOID: break;
1651   case T_LONG: break;
1652   default       : ShouldNotReachHere();
1653   }
1654 
1655   // Switch thread to "native transition" state before reading the synchronization state.
1656   // This additional state is necessary because reading and testing the synchronization
1657   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1658   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1659   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1660   //     Thread A is resumed to finish this native method, but doesn't block here since it
1661   //     didn't see any synchronization is progress, and escapes.
1662   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1663 
1664   if(os::is_MP()) {
1665     if (UseMembar) {
1666       // Force this write out before the read below
1667       __ membar(Assembler::Membar_mask_bits(
1668            Assembler::LoadLoad | Assembler::LoadStore |
1669            Assembler::StoreLoad | Assembler::StoreStore));
1670     } else {
1671       // Write serialization page so VM thread can do a pseudo remote membar.
1672       // We use the current thread pointer to calculate a thread specific
1673       // offset to write to within the page. This minimizes bus traffic
1674       // due to cache line collision.
1675       __ serialize_memory(thread, rcx);
1676     }
1677   }
1678 
1679   if (AlwaysRestoreFPU) {
1680     // Make sure the control word is correct.
1681     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1682   }
1683 
1684   // check for safepoint operation in progress and/or pending suspend requests
1685   { Label Continue;
1686 
1687     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1688              SafepointSynchronize::_not_synchronized);
1689 
1690     Label L;
1691     __ jcc(Assembler::notEqual, L);
1692     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1693     __ jcc(Assembler::equal, Continue);
1694     __ bind(L);
1695 
1696     // Don't use call_VM as it will see a possible pending exception and forward it
1697     // and never return here preventing us from clearing _last_native_pc down below.
1698     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1699     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1700     // by hand.
1701     //
1702     save_native_result(masm, ret_type, stack_slots);
1703     __ push(thread);
1704     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1705                                             JavaThread::check_special_condition_for_native_trans)));
1706     __ increment(rsp, wordSize);
1707     // Restore any method result value
1708     restore_native_result(masm, ret_type, stack_slots);
1709 
1710     __ bind(Continue);
1711   }
1712 
1713   // change thread state
1714   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1715 
1716   Label reguard;
1717   Label reguard_done;
1718   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1719   __ jcc(Assembler::equal, reguard);
1720 
1721   // slow path reguard  re-enters here
1722   __ bind(reguard_done);
1723 
1724   // Handle possible exception (will unlock if necessary)
1725 
1726   // native result if any is live
1727 
1728   // Unlock
1729   Label slow_path_unlock;
1730   Label unlock_done;
1731   if (method->is_synchronized()) {
1732 
1733     Label done;
1734 
1735     // Get locked oop from the handle we passed to jni
1736     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1737 
1738     if (UseBiasedLocking) {
1739       __ biased_locking_exit(obj_reg, rbx, done);
1740     }
1741 
1742     // Simple recursive lock?
1743 
1744     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
1745     __ jcc(Assembler::equal, done);
1746 
1747     // Must save rax, if if it is live now because cmpxchg must use it
1748     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1749       save_native_result(masm, ret_type, stack_slots);
1750     }
1751 
1752     //  get old displaced header
1753     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1754 
1755     // get address of the stack lock
1756     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1757 
1758     // Atomic swap old header if oop still contains the stack lock
1759     if (os::is_MP()) {
1760     __ lock();
1761     }
1762 
1763     // src -> dest iff dest == rax, else rax, <- dest
1764     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1765     __ cmpxchgptr(rbx, Address(obj_reg, 0));
1766     __ jcc(Assembler::notEqual, slow_path_unlock);
1767 
1768     // slow path re-enters here
1769     __ bind(unlock_done);
1770     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1771       restore_native_result(masm, ret_type, stack_slots);
1772     }
1773 
1774     __ bind(done);
1775 
1776   }
1777 
1778   {
1779     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1780     // Tell dtrace about this method exit
1781     save_native_result(masm, ret_type, stack_slots);
1782     __ movoop(rax, JNIHandles::make_local(method()));
1783     __ call_VM_leaf(
1784          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1785          thread, rax);
1786     restore_native_result(masm, ret_type, stack_slots);
1787   }
1788 
1789   // We can finally stop using that last_Java_frame we setup ages ago
1790 
1791   __ reset_last_Java_frame(thread, false, true);
1792 
1793   // Unpack oop result
1794   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1795       Label L;
1796       __ cmpptr(rax, (int32_t)NULL_WORD);
1797       __ jcc(Assembler::equal, L);
1798       __ movptr(rax, Address(rax, 0));
1799       __ bind(L);
1800       __ verify_oop(rax);
1801   }
1802 
1803   // reset handle block
1804   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1805 
1806   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1807 
1808   // Any exception pending?
1809   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1810   __ jcc(Assembler::notEqual, exception_pending);
1811 
1812 
1813   // no exception, we're almost done
1814 
1815   // check that only result value is on FPU stack
1816   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1817 
1818   // Fixup floating pointer results so that result looks like a return from a compiled method
1819   if (ret_type == T_FLOAT) {
1820     if (UseSSE >= 1) {
1821       // Pop st0 and store as float and reload into xmm register
1822       __ fstp_s(Address(rbp, -4));
1823       __ movflt(xmm0, Address(rbp, -4));
1824     }
1825   } else if (ret_type == T_DOUBLE) {
1826     if (UseSSE >= 2) {
1827       // Pop st0 and store as double and reload into xmm register
1828       __ fstp_d(Address(rbp, -8));
1829       __ movdbl(xmm0, Address(rbp, -8));
1830     }
1831   }
1832 
1833   // Return
1834 
1835   __ leave();
1836   __ ret(0);
1837 
1838   // Unexpected paths are out of line and go here
1839 
1840   // Slow path locking & unlocking
1841   if (method->is_synchronized()) {
1842 
1843     // BEGIN Slow path lock
1844 
1845     __ bind(slow_path_lock);
1846 
1847     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1848     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1849     __ push(thread);
1850     __ push(lock_reg);
1851     __ push(obj_reg);
1852     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1853     __ addptr(rsp, 3*wordSize);
1854 
1855 #ifdef ASSERT
1856     { Label L;
1857     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1858     __ jcc(Assembler::equal, L);
1859     __ stop("no pending exception allowed on exit from monitorenter");
1860     __ bind(L);
1861     }
1862 #endif
1863     __ jmp(lock_done);
1864 
1865     // END Slow path lock
1866 
1867     // BEGIN Slow path unlock
1868     __ bind(slow_path_unlock);
1869 
1870     // Slow path unlock
1871 
1872     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1873       save_native_result(masm, ret_type, stack_slots);
1874     }
1875     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1876 
1877     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1878     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1879 
1880 
1881     // should be a peal
1882     // +wordSize because of the push above
1883     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1884     __ push(rax);
1885 
1886     __ push(obj_reg);
1887     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1888     __ addptr(rsp, 2*wordSize);
1889 #ifdef ASSERT
1890     {
1891       Label L;
1892       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1893       __ jcc(Assembler::equal, L);
1894       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1895       __ bind(L);
1896     }
1897 #endif /* ASSERT */
1898 
1899     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1900 
1901     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1902       restore_native_result(masm, ret_type, stack_slots);
1903     }
1904     __ jmp(unlock_done);
1905     // END Slow path unlock
1906 
1907   }
1908 
1909   // SLOW PATH Reguard the stack if needed
1910 
1911   __ bind(reguard);
1912   save_native_result(masm, ret_type, stack_slots);
1913   {
1914     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1915   }
1916   restore_native_result(masm, ret_type, stack_slots);
1917   __ jmp(reguard_done);
1918 
1919 
1920   // BEGIN EXCEPTION PROCESSING
1921 
1922   // Forward  the exception
1923   __ bind(exception_pending);
1924 
1925   // remove possible return value from FPU register stack
1926   __ empty_FPU_stack();
1927 
1928   // pop our frame
1929   __ leave();
1930   // and forward the exception
1931   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1932 
1933   __ flush();
1934 
1935   nmethod *nm = nmethod::new_native_nmethod(method,
1936                                             masm->code(),
1937                                             vep_offset,
1938                                             frame_complete,
1939                                             stack_slots / VMRegImpl::slots_per_word,
1940                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1941                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1942                                             oop_maps);
1943   return nm;
1944 
1945 }
1946 
1947 #ifdef HAVE_DTRACE_H
1948 // ---------------------------------------------------------------------------
1949 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1950 // in the Java compiled code convention, marshals them to the native
1951 // abi and then leaves nops at the position you would expect to call a native
1952 // function. When the probe is enabled the nops are replaced with a trap
1953 // instruction that dtrace inserts and the trace will cause a notification
1954 // to dtrace.
1955 //
1956 // The probes are only able to take primitive types and java/lang/String as
1957 // arguments.  No other java types are allowed. Strings are converted to utf8
1958 // strings so that from dtrace point of view java strings are converted to C
1959 // strings. There is an arbitrary fixed limit on the total space that a method
1960 // can use for converting the strings. (256 chars per string in the signature).
1961 // So any java string larger then this is truncated.
1962 
1963 nmethod *SharedRuntime::generate_dtrace_nmethod(
1964     MacroAssembler *masm, methodHandle method) {
1965 
1966   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1967   // be single threaded in this method.
1968   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1969 
1970   // Fill in the signature array, for the calling-convention call.
1971   int total_args_passed = method->size_of_parameters();
1972 
1973   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1974   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1975 
1976   // The signature we are going to use for the trap that dtrace will see
1977   // java/lang/String is converted. We drop "this" and any other object
1978   // is converted to NULL.  (A one-slot java/lang/Long object reference
1979   // is converted to a two-slot long, which is why we double the allocation).
1980   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1981   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1982 
1983   int i=0;
1984   int total_strings = 0;
1985   int first_arg_to_pass = 0;
1986   int total_c_args = 0;
1987 
1988   if( !method->is_static() ) {  // Pass in receiver first
1989     in_sig_bt[i++] = T_OBJECT;
1990     first_arg_to_pass = 1;
1991   }
1992 
1993   // We need to convert the java args to where a native (non-jni) function
1994   // would expect them. To figure out where they go we convert the java
1995   // signature to a C signature.
1996 
1997   SignatureStream ss(method->signature());
1998   for ( ; !ss.at_return_type(); ss.next()) {
1999     BasicType bt = ss.type();
2000     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2001     out_sig_bt[total_c_args++] = bt;
2002     if( bt == T_OBJECT) {
2003       symbolOop s = ss.as_symbol_or_null();
2004       if (s == vmSymbols::java_lang_String()) {
2005         total_strings++;
2006         out_sig_bt[total_c_args-1] = T_ADDRESS;
2007       } else if (s == vmSymbols::java_lang_Boolean() ||
2008                  s == vmSymbols::java_lang_Character() ||
2009                  s == vmSymbols::java_lang_Byte() ||
2010                  s == vmSymbols::java_lang_Short() ||
2011                  s == vmSymbols::java_lang_Integer() ||
2012                  s == vmSymbols::java_lang_Float()) {
2013         out_sig_bt[total_c_args-1] = T_INT;
2014       } else if (s == vmSymbols::java_lang_Long() ||
2015                  s == vmSymbols::java_lang_Double()) {
2016         out_sig_bt[total_c_args-1] = T_LONG;
2017         out_sig_bt[total_c_args++] = T_VOID;
2018       }
2019     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2020       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2021       out_sig_bt[total_c_args++] = T_VOID;
2022     }
2023   }
2024 
2025   assert(i==total_args_passed, "validly parsed signature");
2026 
2027   // Now get the compiled-Java layout as input arguments
2028   int comp_args_on_stack;
2029   comp_args_on_stack = SharedRuntime::java_calling_convention(
2030       in_sig_bt, in_regs, total_args_passed, false);
2031 
2032   // Now figure out where the args must be stored and how much stack space
2033   // they require (neglecting out_preserve_stack_slots).
2034 
2035   int out_arg_slots;
2036   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2037 
2038   // Calculate the total number of stack slots we will need.
2039 
2040   // First count the abi requirement plus all of the outgoing args
2041   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2042 
2043   // Now space for the string(s) we must convert
2044 
2045   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2046   for (i = 0; i < total_strings ; i++) {
2047     string_locs[i] = stack_slots;
2048     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2049   }
2050 
2051   // + 2 for return address (which we own) and saved rbp,
2052 
2053   stack_slots += 2;
2054 
2055   // Ok The space we have allocated will look like:
2056   //
2057   //
2058   // FP-> |                     |
2059   //      |---------------------|
2060   //      | string[n]           |
2061   //      |---------------------| <- string_locs[n]
2062   //      | string[n-1]         |
2063   //      |---------------------| <- string_locs[n-1]
2064   //      | ...                 |
2065   //      | ...                 |
2066   //      |---------------------| <- string_locs[1]
2067   //      | string[0]           |
2068   //      |---------------------| <- string_locs[0]
2069   //      | outbound memory     |
2070   //      | based arguments     |
2071   //      |                     |
2072   //      |---------------------|
2073   //      |                     |
2074   // SP-> | out_preserved_slots |
2075   //
2076   //
2077 
2078   // Now compute actual number of stack words we need rounding to make
2079   // stack properly aligned.
2080   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2081 
2082   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2083 
2084   intptr_t start = (intptr_t)__ pc();
2085 
2086   // First thing make an ic check to see if we should even be here
2087 
2088   // We are free to use all registers as temps without saving them and
2089   // restoring them except rbp. rbp, is the only callee save register
2090   // as far as the interpreter and the compiler(s) are concerned.
2091 
2092   const Register ic_reg = rax;
2093   const Register receiver = rcx;
2094   Label hit;
2095   Label exception_pending;
2096 
2097 
2098   __ verify_oop(receiver);
2099   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2100   __ jcc(Assembler::equal, hit);
2101 
2102   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2103 
2104   // verified entry must be aligned for code patching.
2105   // and the first 5 bytes must be in the same cache line
2106   // if we align at 8 then we will be sure 5 bytes are in the same line
2107   __ align(8);
2108 
2109   __ bind(hit);
2110 
2111   int vep_offset = ((intptr_t)__ pc()) - start;
2112 
2113 
2114   // The instruction at the verified entry point must be 5 bytes or longer
2115   // because it can be patched on the fly by make_non_entrant. The stack bang
2116   // instruction fits that requirement.
2117 
2118   // Generate stack overflow check
2119 
2120 
2121   if (UseStackBanging) {
2122     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2123       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2124     } else {
2125       __ movl(rax, stack_size);
2126       __ bang_stack_size(rax, rbx);
2127     }
2128   } else {
2129     // need a 5 byte instruction to allow MT safe patching to non-entrant
2130     __ fat_nop();
2131   }
2132 
2133   assert(((int)__ pc() - start - vep_offset) >= 5,
2134          "valid size for make_non_entrant");
2135 
2136   // Generate a new frame for the wrapper.
2137   __ enter();
2138 
2139   // -2 because return address is already present and so is saved rbp,
2140   if (stack_size - 2*wordSize != 0) {
2141     __ subl(rsp, stack_size - 2*wordSize);
2142   }
2143 
2144   // Frame is now completed as far a size and linkage.
2145 
2146   int frame_complete = ((intptr_t)__ pc()) - start;
2147 
2148   // First thing we do store all the args as if we are doing the call.
2149   // Since the C calling convention is stack based that ensures that
2150   // all the Java register args are stored before we need to convert any
2151   // string we might have.
2152 
2153   int sid = 0;
2154   int c_arg, j_arg;
2155   int string_reg = 0;
2156 
2157   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2158        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2159 
2160     VMRegPair src = in_regs[j_arg];
2161     VMRegPair dst = out_regs[c_arg];
2162     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2163            "stack based abi assumed");
2164 
2165     switch (in_sig_bt[j_arg]) {
2166 
2167       case T_ARRAY:
2168       case T_OBJECT:
2169         if (out_sig_bt[c_arg] == T_ADDRESS) {
2170           // Any register based arg for a java string after the first
2171           // will be destroyed by the call to get_utf so we store
2172           // the original value in the location the utf string address
2173           // will eventually be stored.
2174           if (src.first()->is_reg()) {
2175             if (string_reg++ != 0) {
2176               simple_move32(masm, src, dst);
2177             }
2178           }
2179         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2180           // need to unbox a one-word value
2181           Register in_reg = rax;
2182           if ( src.first()->is_reg() ) {
2183             in_reg = src.first()->as_Register();
2184           } else {
2185             simple_move32(masm, src, in_reg->as_VMReg());
2186           }
2187           Label skipUnbox;
2188           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2189           if ( out_sig_bt[c_arg] == T_LONG ) {
2190             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2191           }
2192           __ testl(in_reg, in_reg);
2193           __ jcc(Assembler::zero, skipUnbox);
2194           assert(dst.first()->is_stack() &&
2195                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2196                  "value(s) must go into stack slots");
2197 
2198           BasicType bt = out_sig_bt[c_arg];
2199           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2200           if ( bt == T_LONG ) {
2201             __ movl(rbx, Address(in_reg,
2202                                  box_offset + VMRegImpl::stack_slot_size));
2203             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2204           }
2205           __ movl(in_reg,  Address(in_reg, box_offset));
2206           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2207           __ bind(skipUnbox);
2208         } else {
2209           // Convert the arg to NULL
2210           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2211         }
2212         if (out_sig_bt[c_arg] == T_LONG) {
2213           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2214           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2215         }
2216         break;
2217 
2218       case T_VOID:
2219         break;
2220 
2221       case T_FLOAT:
2222         float_move(masm, src, dst);
2223         break;
2224 
2225       case T_DOUBLE:
2226         assert( j_arg + 1 < total_args_passed &&
2227                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2228         double_move(masm, src, dst);
2229         break;
2230 
2231       case T_LONG :
2232         long_move(masm, src, dst);
2233         break;
2234 
2235       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2236 
2237       default:
2238         simple_move32(masm, src, dst);
2239     }
2240   }
2241 
2242   // Now we must convert any string we have to utf8
2243   //
2244 
2245   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2246        sid < total_strings ; j_arg++, c_arg++ ) {
2247 
2248     if (out_sig_bt[c_arg] == T_ADDRESS) {
2249 
2250       Address utf8_addr = Address(
2251           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2252       __ leal(rax, utf8_addr);
2253 
2254       // The first string we find might still be in the original java arg
2255       // register
2256       VMReg orig_loc = in_regs[j_arg].first();
2257       Register string_oop;
2258 
2259       // This is where the argument will eventually reside
2260       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2261 
2262       if (sid == 1 && orig_loc->is_reg()) {
2263         string_oop = orig_loc->as_Register();
2264         assert(string_oop != rax, "smashed arg");
2265       } else {
2266 
2267         if (orig_loc->is_reg()) {
2268           // Get the copy of the jls object
2269           __ movl(rcx, dest);
2270         } else {
2271           // arg is still in the original location
2272           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2273         }
2274         string_oop = rcx;
2275 
2276       }
2277       Label nullString;
2278       __ movl(dest, NULL_WORD);
2279       __ testl(string_oop, string_oop);
2280       __ jcc(Assembler::zero, nullString);
2281 
2282       // Now we can store the address of the utf string as the argument
2283       __ movl(dest, rax);
2284 
2285       // And do the conversion
2286       __ call_VM_leaf(CAST_FROM_FN_PTR(
2287              address, SharedRuntime::get_utf), string_oop, rax);
2288       __ bind(nullString);
2289     }
2290 
2291     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2292       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2293       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2294     }
2295   }
2296 
2297 
2298   // Ok now we are done. Need to place the nop that dtrace wants in order to
2299   // patch in the trap
2300 
2301   int patch_offset = ((intptr_t)__ pc()) - start;
2302 
2303   __ nop();
2304 
2305 
2306   // Return
2307 
2308   __ leave();
2309   __ ret(0);
2310 
2311   __ flush();
2312 
2313   nmethod *nm = nmethod::new_dtrace_nmethod(
2314       method, masm->code(), vep_offset, patch_offset, frame_complete,
2315       stack_slots / VMRegImpl::slots_per_word);
2316   return nm;
2317 
2318 }
2319 
2320 #endif // HAVE_DTRACE_H
2321 
2322 // this function returns the adjust size (in number of words) to a c2i adapter
2323 // activation for use during deoptimization
2324 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2325   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
2326 }
2327 
2328 
2329 uint SharedRuntime::out_preserve_stack_slots() {
2330   return 0;
2331 }
2332 
2333 
2334 //------------------------------generate_deopt_blob----------------------------
2335 void SharedRuntime::generate_deopt_blob() {
2336   // allocate space for the code
2337   ResourceMark rm;
2338   // setup code generation tools
2339   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2340   MacroAssembler* masm = new MacroAssembler(&buffer);
2341   int frame_size_in_words;
2342   OopMap* map = NULL;
2343   // Account for the extra args we place on the stack
2344   // by the time we call fetch_unroll_info
2345   const int additional_words = 2; // deopt kind, thread
2346 
2347   OopMapSet *oop_maps = new OopMapSet();
2348 
2349   // -------------
2350   // This code enters when returning to a de-optimized nmethod.  A return
2351   // address has been pushed on the the stack, and return values are in
2352   // registers.
2353   // If we are doing a normal deopt then we were called from the patched
2354   // nmethod from the point we returned to the nmethod. So the return
2355   // address on the stack is wrong by NativeCall::instruction_size
2356   // We will adjust the value to it looks like we have the original return
2357   // address on the stack (like when we eagerly deoptimized).
2358   // In the case of an exception pending with deoptimized then we enter
2359   // with a return address on the stack that points after the call we patched
2360   // into the exception handler. We have the following register state:
2361   //    rax,: exception
2362   //    rbx,: exception handler
2363   //    rdx: throwing pc
2364   // So in this case we simply jam rdx into the useless return address and
2365   // the stack looks just like we want.
2366   //
2367   // At this point we need to de-opt.  We save the argument return
2368   // registers.  We call the first C routine, fetch_unroll_info().  This
2369   // routine captures the return values and returns a structure which
2370   // describes the current frame size and the sizes of all replacement frames.
2371   // The current frame is compiled code and may contain many inlined
2372   // functions, each with their own JVM state.  We pop the current frame, then
2373   // push all the new frames.  Then we call the C routine unpack_frames() to
2374   // populate these frames.  Finally unpack_frames() returns us the new target
2375   // address.  Notice that callee-save registers are BLOWN here; they have
2376   // already been captured in the vframeArray at the time the return PC was
2377   // patched.
2378   address start = __ pc();
2379   Label cont;
2380 
2381   // Prolog for non exception case!
2382 
2383   // Save everything in sight.
2384 
2385   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2386   // Normal deoptimization
2387   __ push(Deoptimization::Unpack_deopt);
2388   __ jmp(cont);
2389 
2390   int reexecute_offset = __ pc() - start;
2391 
2392   // Reexecute case
2393   // return address is the pc describes what bci to do re-execute at
2394 
2395   // No need to update map as each call to save_live_registers will produce identical oopmap
2396   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2397 
2398   __ push(Deoptimization::Unpack_reexecute);
2399   __ jmp(cont);
2400 
2401   int exception_offset = __ pc() - start;
2402 
2403   // Prolog for exception case
2404 
2405   // all registers are dead at this entry point, except for rax, and
2406   // rdx which contain the exception oop and exception pc
2407   // respectively.  Set them in TLS and fall thru to the
2408   // unpack_with_exception_in_tls entry point.
2409 
2410   __ get_thread(rdi);
2411   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2412   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2413 
2414   int exception_in_tls_offset = __ pc() - start;
2415 
2416   // new implementation because exception oop is now passed in JavaThread
2417 
2418   // Prolog for exception case
2419   // All registers must be preserved because they might be used by LinearScan
2420   // Exceptiop oop and throwing PC are passed in JavaThread
2421   // tos: stack at point of call to method that threw the exception (i.e. only
2422   // args are on the stack, no return address)
2423 
2424   // make room on stack for the return address
2425   // It will be patched later with the throwing pc. The correct value is not
2426   // available now because loading it from memory would destroy registers.
2427   __ push(0);
2428 
2429   // Save everything in sight.
2430 
2431   // No need to update map as each call to save_live_registers will produce identical oopmap
2432   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2433 
2434   // Now it is safe to overwrite any register
2435 
2436   // store the correct deoptimization type
2437   __ push(Deoptimization::Unpack_exception);
2438 
2439   // load throwing pc from JavaThread and patch it as the return address
2440   // of the current frame. Then clear the field in JavaThread
2441   __ get_thread(rdi);
2442   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2443   __ movptr(Address(rbp, wordSize), rdx);
2444   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2445 
2446 #ifdef ASSERT
2447   // verify that there is really an exception oop in JavaThread
2448   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2449   __ verify_oop(rax);
2450 
2451   // verify that there is no pending exception
2452   Label no_pending_exception;
2453   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2454   __ testptr(rax, rax);
2455   __ jcc(Assembler::zero, no_pending_exception);
2456   __ stop("must not have pending exception here");
2457   __ bind(no_pending_exception);
2458 #endif
2459 
2460   __ bind(cont);
2461 
2462   // Compiled code leaves the floating point stack dirty, empty it.
2463   __ empty_FPU_stack();
2464 
2465 
2466   // Call C code.  Need thread and this frame, but NOT official VM entry
2467   // crud.  We cannot block on this call, no GC can happen.
2468   __ get_thread(rcx);
2469   __ push(rcx);
2470   // fetch_unroll_info needs to call last_java_frame()
2471   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2472 
2473   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2474 
2475   // Need to have an oopmap that tells fetch_unroll_info where to
2476   // find any register it might need.
2477 
2478   oop_maps->add_gc_map( __ pc()-start, map);
2479 
2480   // Discard arg to fetch_unroll_info
2481   __ pop(rcx);
2482 
2483   __ get_thread(rcx);
2484   __ reset_last_Java_frame(rcx, false, false);
2485 
2486   // Load UnrollBlock into EDI
2487   __ mov(rdi, rax);
2488 
2489   // Move the unpack kind to a safe place in the UnrollBlock because
2490   // we are very short of registers
2491 
2492   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2493   // retrieve the deopt kind from where we left it.
2494   __ pop(rax);
2495   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2496 
2497    Label noException;
2498   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2499   __ jcc(Assembler::notEqual, noException);
2500   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2501   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2502   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2503   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2504 
2505   __ verify_oop(rax);
2506 
2507   // Overwrite the result registers with the exception results.
2508   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2509   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2510 
2511   __ bind(noException);
2512 
2513   // Stack is back to only having register save data on the stack.
2514   // Now restore the result registers. Everything else is either dead or captured
2515   // in the vframeArray.
2516 
2517   RegisterSaver::restore_result_registers(masm);
2518 
2519   // Non standard control word may be leaked out through a safepoint blob, and we can
2520   // deopt at a poll point with the non standard control word. However, we should make
2521   // sure the control word is correct after restore_result_registers.
2522   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2523 
2524   // All of the register save area has been popped of the stack. Only the
2525   // return address remains.
2526 
2527   // Pop all the frames we must move/replace.
2528   //
2529   // Frame picture (youngest to oldest)
2530   // 1: self-frame (no frame link)
2531   // 2: deopting frame  (no frame link)
2532   // 3: caller of deopting frame (could be compiled/interpreted).
2533   //
2534   // Note: by leaving the return address of self-frame on the stack
2535   // and using the size of frame 2 to adjust the stack
2536   // when we are done the return to frame 3 will still be on the stack.
2537 
2538   // Pop deoptimized frame
2539   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2540 
2541   // sp should be pointing at the return address to the caller (3)
2542 
2543   // Stack bang to make sure there's enough room for these interpreter frames.
2544   if (UseStackBanging) {
2545     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2546     __ bang_stack_size(rbx, rcx);
2547   }
2548 
2549   // Load array of frame pcs into ECX
2550   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2551 
2552   __ pop(rsi); // trash the old pc
2553 
2554   // Load array of frame sizes into ESI
2555   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2556 
2557   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2558 
2559   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2560   __ movl(counter, rbx);
2561 
2562   // Pick up the initial fp we should save
2563   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2564 
2565   // Now adjust the caller's stack to make up for the extra locals
2566   // but record the original sp so that we can save it in the skeletal interpreter
2567   // frame and the stack walking of interpreter_sender will get the unextended sp
2568   // value and not the "real" sp value.
2569 
2570   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2571   __ movptr(sp_temp, rsp);
2572   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2573   __ subptr(rsp, rbx);
2574 
2575   // Push interpreter frames in a loop
2576   Label loop;
2577   __ bind(loop);
2578   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2579 #ifdef CC_INTERP
2580   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2581 #ifdef ASSERT
2582   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2583   __ push(0xDEADDEAD);
2584 #else /* ASSERT */
2585   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2586 #endif /* ASSERT */
2587 #else /* CC_INTERP */
2588   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2589 #endif /* CC_INTERP */
2590   __ pushptr(Address(rcx, 0));          // save return address
2591   __ enter();                           // save old & set new rbp,
2592   __ subptr(rsp, rbx);                  // Prolog!
2593   __ movptr(rbx, sp_temp);              // sender's sp
2594 #ifdef CC_INTERP
2595   __ movptr(Address(rbp,
2596                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2597           rbx); // Make it walkable
2598 #else /* CC_INTERP */
2599   // This value is corrected by layout_activation_impl
2600   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2601   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2602 #endif /* CC_INTERP */
2603   __ movptr(sp_temp, rsp);              // pass to next frame
2604   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2605   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2606   __ decrementl(counter);             // decrement counter
2607   __ jcc(Assembler::notZero, loop);
2608   __ pushptr(Address(rcx, 0));          // save final return address
2609 
2610   // Re-push self-frame
2611   __ enter();                           // save old & set new rbp,
2612 
2613   //  Return address and rbp, are in place
2614   // We'll push additional args later. Just allocate a full sized
2615   // register save area
2616   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2617 
2618   // Restore frame locals after moving the frame
2619   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2620   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2621   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2622   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2623   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2624 
2625   // Set up the args to unpack_frame
2626 
2627   __ pushl(unpack_kind);                     // get the unpack_kind value
2628   __ get_thread(rcx);
2629   __ push(rcx);
2630 
2631   // set last_Java_sp, last_Java_fp
2632   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2633 
2634   // Call C code.  Need thread but NOT official VM entry
2635   // crud.  We cannot block on this call, no GC can happen.  Call should
2636   // restore return values to their stack-slots with the new SP.
2637   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2638   // Set an oopmap for the call site
2639   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2640 
2641   // rax, contains the return result type
2642   __ push(rax);
2643 
2644   __ get_thread(rcx);
2645   __ reset_last_Java_frame(rcx, false, false);
2646 
2647   // Collect return values
2648   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2649   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2650 
2651   // Clear floating point stack before returning to interpreter
2652   __ empty_FPU_stack();
2653 
2654   // Check if we should push the float or double return value.
2655   Label results_done, yes_double_value;
2656   __ cmpl(Address(rsp, 0), T_DOUBLE);
2657   __ jcc (Assembler::zero, yes_double_value);
2658   __ cmpl(Address(rsp, 0), T_FLOAT);
2659   __ jcc (Assembler::notZero, results_done);
2660 
2661   // return float value as expected by interpreter
2662   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2663   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2664   __ jmp(results_done);
2665 
2666   // return double value as expected by interpreter
2667   __ bind(yes_double_value);
2668   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2669   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2670 
2671   __ bind(results_done);
2672 
2673   // Pop self-frame.
2674   __ leave();                              // Epilog!
2675 
2676   // Jump to interpreter
2677   __ ret(0);
2678 
2679   // -------------
2680   // make sure all code is generated
2681   masm->flush();
2682 
2683   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2684   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2685 }
2686 
2687 
2688 #ifdef COMPILER2
2689 //------------------------------generate_uncommon_trap_blob--------------------
2690 void SharedRuntime::generate_uncommon_trap_blob() {
2691   // allocate space for the code
2692   ResourceMark rm;
2693   // setup code generation tools
2694   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2695   MacroAssembler* masm = new MacroAssembler(&buffer);
2696 
2697   enum frame_layout {
2698     arg0_off,      // thread                     sp + 0 // Arg location for
2699     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2700     // The frame sender code expects that rbp will be in the "natural" place and
2701     // will override any oopMap setting for it. We must therefore force the layout
2702     // so that it agrees with the frame sender code.
2703     rbp_off,       // callee saved register      sp + 2
2704     return_off,    // slot for return address    sp + 3
2705     framesize
2706   };
2707 
2708   address start = __ pc();
2709   // Push self-frame.
2710   __ subptr(rsp, return_off*wordSize);     // Epilog!
2711 
2712   // rbp, is an implicitly saved callee saved register (i.e. the calling
2713   // convention will save restore it in prolog/epilog) Other than that
2714   // there are no callee save registers no that adapter frames are gone.
2715   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2716 
2717   // Clear the floating point exception stack
2718   __ empty_FPU_stack();
2719 
2720   // set last_Java_sp
2721   __ get_thread(rdx);
2722   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2723 
2724   // Call C code.  Need thread but NOT official VM entry
2725   // crud.  We cannot block on this call, no GC can happen.  Call should
2726   // capture callee-saved registers as well as return values.
2727   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2728   // argument already in ECX
2729   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2730   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2731 
2732   // Set an oopmap for the call site
2733   OopMapSet *oop_maps = new OopMapSet();
2734   OopMap* map =  new OopMap( framesize, 0 );
2735   // No oopMap for rbp, it is known implicitly
2736 
2737   oop_maps->add_gc_map( __ pc()-start, map);
2738 
2739   __ get_thread(rcx);
2740 
2741   __ reset_last_Java_frame(rcx, false, false);
2742 
2743   // Load UnrollBlock into EDI
2744   __ movptr(rdi, rax);
2745 
2746   // Pop all the frames we must move/replace.
2747   //
2748   // Frame picture (youngest to oldest)
2749   // 1: self-frame (no frame link)
2750   // 2: deopting frame  (no frame link)
2751   // 3: caller of deopting frame (could be compiled/interpreted).
2752 
2753   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2754   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2755 
2756   // Pop deoptimized frame
2757   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2758   __ addptr(rsp, rcx);
2759 
2760   // sp should be pointing at the return address to the caller (3)
2761 
2762   // Stack bang to make sure there's enough room for these interpreter frames.
2763   if (UseStackBanging) {
2764     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2765     __ bang_stack_size(rbx, rcx);
2766   }
2767 
2768 
2769   // Load array of frame pcs into ECX
2770   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2771 
2772   __ pop(rsi); // trash the pc
2773 
2774   // Load array of frame sizes into ESI
2775   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2776 
2777   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2778 
2779   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2780   __ movl(counter, rbx);
2781 
2782   // Pick up the initial fp we should save
2783   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2784 
2785   // Now adjust the caller's stack to make up for the extra locals
2786   // but record the original sp so that we can save it in the skeletal interpreter
2787   // frame and the stack walking of interpreter_sender will get the unextended sp
2788   // value and not the "real" sp value.
2789 
2790   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2791   __ movptr(sp_temp, rsp);
2792   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2793   __ subptr(rsp, rbx);
2794 
2795   // Push interpreter frames in a loop
2796   Label loop;
2797   __ bind(loop);
2798   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2799 #ifdef CC_INTERP
2800   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2801 #ifdef ASSERT
2802   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2803   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2804 #else /* ASSERT */
2805   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2806 #endif /* ASSERT */
2807 #else /* CC_INTERP */
2808   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2809 #endif /* CC_INTERP */
2810   __ pushptr(Address(rcx, 0));          // save return address
2811   __ enter();                           // save old & set new rbp,
2812   __ subptr(rsp, rbx);                  // Prolog!
2813   __ movptr(rbx, sp_temp);              // sender's sp
2814 #ifdef CC_INTERP
2815   __ movptr(Address(rbp,
2816                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2817           rbx); // Make it walkable
2818 #else /* CC_INTERP */
2819   // This value is corrected by layout_activation_impl
2820   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2821   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2822 #endif /* CC_INTERP */
2823   __ movptr(sp_temp, rsp);              // pass to next frame
2824   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2825   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2826   __ decrementl(counter);             // decrement counter
2827   __ jcc(Assembler::notZero, loop);
2828   __ pushptr(Address(rcx, 0));            // save final return address
2829 
2830   // Re-push self-frame
2831   __ enter();                           // save old & set new rbp,
2832   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2833 
2834 
2835   // set last_Java_sp, last_Java_fp
2836   __ get_thread(rdi);
2837   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2838 
2839   // Call C code.  Need thread but NOT official VM entry
2840   // crud.  We cannot block on this call, no GC can happen.  Call should
2841   // restore return values to their stack-slots with the new SP.
2842   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2843   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2844   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2845   // Set an oopmap for the call site
2846   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2847 
2848   __ get_thread(rdi);
2849   __ reset_last_Java_frame(rdi, true, false);
2850 
2851   // Pop self-frame.
2852   __ leave();     // Epilog!
2853 
2854   // Jump to interpreter
2855   __ ret(0);
2856 
2857   // -------------
2858   // make sure all code is generated
2859   masm->flush();
2860 
2861    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2862 }
2863 #endif // COMPILER2
2864 
2865 //------------------------------generate_handler_blob------
2866 //
2867 // Generate a special Compile2Runtime blob that saves all registers,
2868 // setup oopmap, and calls safepoint code to stop the compiled code for
2869 // a safepoint.
2870 //
2871 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
2872 
2873   // Account for thread arg in our frame
2874   const int additional_words = 1;
2875   int frame_size_in_words;
2876 
2877   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2878 
2879   ResourceMark rm;
2880   OopMapSet *oop_maps = new OopMapSet();
2881   OopMap* map;
2882 
2883   // allocate space for the code
2884   // setup code generation tools
2885   CodeBuffer   buffer("handler_blob", 1024, 512);
2886   MacroAssembler* masm = new MacroAssembler(&buffer);
2887 
2888   const Register java_thread = rdi; // callee-saved for VC++
2889   address start   = __ pc();
2890   address call_pc = NULL;
2891 
2892   // If cause_return is true we are at a poll_return and there is
2893   // the return address on the stack to the caller on the nmethod
2894   // that is safepoint. We can leave this return on the stack and
2895   // effectively complete the return and safepoint in the caller.
2896   // Otherwise we push space for a return address that the safepoint
2897   // handler will install later to make the stack walking sensible.
2898   if( !cause_return )
2899     __ push(rbx);                // Make room for return address (or push it again)
2900 
2901   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2902 
2903   // The following is basically a call_VM. However, we need the precise
2904   // address of the call in order to generate an oopmap. Hence, we do all the
2905   // work ourselves.
2906 
2907   // Push thread argument and setup last_Java_sp
2908   __ get_thread(java_thread);
2909   __ push(java_thread);
2910   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2911 
2912   // if this was not a poll_return then we need to correct the return address now.
2913   if( !cause_return ) {
2914     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2915     __ movptr(Address(rbp, wordSize), rax);
2916   }
2917 
2918   // do the call
2919   __ call(RuntimeAddress(call_ptr));
2920 
2921   // Set an oopmap for the call site.  This oopmap will map all
2922   // oop-registers and debug-info registers as callee-saved.  This
2923   // will allow deoptimization at this safepoint to find all possible
2924   // debug-info recordings, as well as let GC find all oops.
2925 
2926   oop_maps->add_gc_map( __ pc() - start, map);
2927 
2928   // Discard arg
2929   __ pop(rcx);
2930 
2931   Label noException;
2932 
2933   // Clear last_Java_sp again
2934   __ get_thread(java_thread);
2935   __ reset_last_Java_frame(java_thread, false, false);
2936 
2937   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2938   __ jcc(Assembler::equal, noException);
2939 
2940   // Exception pending
2941 
2942   RegisterSaver::restore_live_registers(masm);
2943 
2944   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2945 
2946   __ bind(noException);
2947 
2948   // Normal exit, register restoring and exit
2949   RegisterSaver::restore_live_registers(masm);
2950 
2951   __ ret(0);
2952 
2953   // make sure all code is generated
2954   masm->flush();
2955 
2956   // Fill-out other meta info
2957   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2958 }
2959 
2960 //
2961 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2962 //
2963 // Generate a stub that calls into vm to find out the proper destination
2964 // of a java call. All the argument registers are live at this point
2965 // but since this is generic code we don't know what they are and the caller
2966 // must do any gc of the args.
2967 //
2968 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
2969   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2970 
2971   // allocate space for the code
2972   ResourceMark rm;
2973 
2974   CodeBuffer buffer(name, 1000, 512);
2975   MacroAssembler* masm                = new MacroAssembler(&buffer);
2976 
2977   int frame_size_words;
2978   enum frame_layout {
2979                 thread_off,
2980                 extra_words };
2981 
2982   OopMapSet *oop_maps = new OopMapSet();
2983   OopMap* map = NULL;
2984 
2985   int start = __ offset();
2986 
2987   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2988 
2989   int frame_complete = __ offset();
2990 
2991   const Register thread = rdi;
2992   __ get_thread(rdi);
2993 
2994   __ push(thread);
2995   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2996 
2997   __ call(RuntimeAddress(destination));
2998 
2999 
3000   // Set an oopmap for the call site.
3001   // We need this not only for callee-saved registers, but also for volatile
3002   // registers that the compiler might be keeping live across a safepoint.
3003 
3004   oop_maps->add_gc_map( __ offset() - start, map);
3005 
3006   // rax, contains the address we are going to jump to assuming no exception got installed
3007 
3008   __ addptr(rsp, wordSize);
3009 
3010   // clear last_Java_sp
3011   __ reset_last_Java_frame(thread, true, false);
3012   // check for pending exceptions
3013   Label pending;
3014   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3015   __ jcc(Assembler::notEqual, pending);
3016 
3017   // get the returned methodOop
3018   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
3019   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
3020 
3021   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
3022 
3023   RegisterSaver::restore_live_registers(masm);
3024 
3025   // We are back the the original state on entry and ready to go.
3026 
3027   __ jmp(rax);
3028 
3029   // Pending exception after the safepoint
3030 
3031   __ bind(pending);
3032 
3033   RegisterSaver::restore_live_registers(masm);
3034 
3035   // exception pending => remove activation and forward to exception handler
3036 
3037   __ get_thread(thread);
3038   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
3039   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
3040   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3041 
3042   // -------------
3043   // make sure all code is generated
3044   masm->flush();
3045 
3046   // return the  blob
3047   // frame_size_words or bytes??
3048   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3049 }
3050 
3051 void SharedRuntime::generate_stubs() {
3052 
3053   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3054                                         "wrong_method_stub");
3055 
3056   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3057                                         "ic_miss_stub");
3058 
3059   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3060                                         "resolve_opt_virtual_call");
3061 
3062   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3063                                         "resolve_virtual_call");
3064 
3065   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3066                                         "resolve_static_call");
3067 
3068   _polling_page_safepoint_handler_blob =
3069     generate_handler_blob(CAST_FROM_FN_PTR(address,
3070                    SafepointSynchronize::handle_polling_page_exception), false);
3071 
3072   _polling_page_return_handler_blob =
3073     generate_handler_blob(CAST_FROM_FN_PTR(address,
3074                    SafepointSynchronize::handle_polling_page_exception), true);
3075 
3076   generate_deopt_blob();
3077 #ifdef COMPILER2
3078   generate_uncommon_trap_blob();
3079 #endif // COMPILER2
3080 }