1 /*
   2  * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime_x86_64.cpp.incl"
  27 
  28 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  29 #ifdef COMPILER2
  30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  31 ExceptionBlob      *OptoRuntime::_exception_blob;
  32 #endif // COMPILER2
  33 
  34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  41 
  42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  43 
  44 #define __ masm->
  45 
  46 class SimpleRuntimeFrame {
  47 
  48   public:
  49 
  50   // Most of the runtime stubs have this simple frame layout.
  51   // This class exists to make the layout shared in one place.
  52   // Offsets are for compiler stack slots, which are jints.
  53   enum layout {
  54     // The frame sender code expects that rbp will be in the "natural" place and
  55     // will override any oopMap setting for it. We must therefore force the layout
  56     // so that it agrees with the frame sender code.
  57     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  58     rbp_off2,
  59     return_off, return_off2,
  60     framesize
  61   };
  62 };
  63 
  64 class RegisterSaver {
  65   // Capture info about frame layout.  Layout offsets are in jint
  66   // units because compiler frame slots are jints.
  67 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  68   enum layout {
  69     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  70     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  71     DEF_XMM_OFFS(0),
  72     DEF_XMM_OFFS(1),
  73     DEF_XMM_OFFS(2),
  74     DEF_XMM_OFFS(3),
  75     DEF_XMM_OFFS(4),
  76     DEF_XMM_OFFS(5),
  77     DEF_XMM_OFFS(6),
  78     DEF_XMM_OFFS(7),
  79     DEF_XMM_OFFS(8),
  80     DEF_XMM_OFFS(9),
  81     DEF_XMM_OFFS(10),
  82     DEF_XMM_OFFS(11),
  83     DEF_XMM_OFFS(12),
  84     DEF_XMM_OFFS(13),
  85     DEF_XMM_OFFS(14),
  86     DEF_XMM_OFFS(15),
  87     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  88     fpu_stateH_end,
  89     r15_off, r15H_off,
  90     r14_off, r14H_off,
  91     r13_off, r13H_off,
  92     r12_off, r12H_off,
  93     r11_off, r11H_off,
  94     r10_off, r10H_off,
  95     r9_off,  r9H_off,
  96     r8_off,  r8H_off,
  97     rdi_off, rdiH_off,
  98     rsi_off, rsiH_off,
  99     ignore_off, ignoreH_off,  // extra copy of rbp
 100     rsp_off, rspH_off,
 101     rbx_off, rbxH_off,
 102     rdx_off, rdxH_off,
 103     rcx_off, rcxH_off,
 104     rax_off, raxH_off,
 105     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 106     align_off, alignH_off,
 107     flags_off, flagsH_off,
 108     // The frame sender code expects that rbp will be in the "natural" place and
 109     // will override any oopMap setting for it. We must therefore force the layout
 110     // so that it agrees with the frame sender code.
 111     rbp_off, rbpH_off,        // copy of rbp we will restore
 112     return_off, returnH_off,  // slot for return address
 113     reg_save_size             // size in compiler stack slots
 114   };
 115 
 116  public:
 117   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 118   static void restore_live_registers(MacroAssembler* masm);
 119 
 120   // Offsets into the register save area
 121   // Used by deoptimization when it is managing result register
 122   // values on its own
 123 
 124   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 125   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 126   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 127   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 128   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 129 
 130   // During deoptimization only the result registers need to be restored,
 131   // all the other values have already been extracted.
 132   static void restore_result_registers(MacroAssembler* masm);
 133 };
 134 
 135 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 136 
 137   // Always make the frame size 16-byte aligned
 138   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 139                                      reg_save_size*BytesPerInt, 16);
 140   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 141   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 142   // The caller will allocate additional_frame_words
 143   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 144   // CodeBlob frame size is in words.
 145   int frame_size_in_words = frame_size_in_bytes / wordSize;
 146   *total_frame_words = frame_size_in_words;
 147 
 148   // Save registers, fpu state, and flags.
 149   // We assume caller has already pushed the return address onto the
 150   // stack, so rsp is 8-byte aligned here.
 151   // We push rpb twice in this sequence because we want the real rbp
 152   // to be under the return like a normal enter.
 153 
 154   __ enter();          // rsp becomes 16-byte aligned here
 155   __ push_CPU_state(); // Push a multiple of 16 bytes
 156   if (frame::arg_reg_save_area_bytes != 0) {
 157     // Allocate argument register save area
 158     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 159   }
 160 
 161   // Set an oopmap for the call site.  This oopmap will map all
 162   // oop-registers and debug-info registers as callee-saved.  This
 163   // will allow deoptimization at this safepoint to find all possible
 164   // debug-info recordings, as well as let GC find all oops.
 165 
 166   OopMapSet *oop_maps = new OopMapSet();
 167   OopMap* map = new OopMap(frame_size_in_slots, 0);
 168   map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
 169   map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
 170   map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
 171   map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
 172   // rbp location is known implicitly by the frame sender code, needs no oopmap
 173   // and the location where rbp was saved by is ignored
 174   map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
 175   map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
 176   map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
 177   map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
 178   map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
 179   map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
 180   map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
 181   map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
 182   map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
 183   map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
 184   map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
 185   map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
 186   map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
 187   map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
 188   map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
 189   map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
 190   map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
 191   map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
 192   map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
 193   map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
 194   map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
 195   map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
 196   map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
 197   map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
 198   map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
 199   map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());
 200 
 201   // %%% These should all be a waste but we'll keep things as they were for now
 202   if (true) {
 203     map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
 204                           rax->as_VMReg()->next());
 205     map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
 206                           rcx->as_VMReg()->next());
 207     map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
 208                           rdx->as_VMReg()->next());
 209     map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
 210                           rbx->as_VMReg()->next());
 211     // rbp location is known implicitly by the frame sender code, needs no oopmap
 212     map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
 213                           rsi->as_VMReg()->next());
 214     map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
 215                           rdi->as_VMReg()->next());
 216     map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
 217                           r8->as_VMReg()->next());
 218     map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
 219                           r9->as_VMReg()->next());
 220     map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
 221                           r10->as_VMReg()->next());
 222     map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
 223                           r11->as_VMReg()->next());
 224     map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
 225                           r12->as_VMReg()->next());
 226     map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
 227                           r13->as_VMReg()->next());
 228     map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
 229                           r14->as_VMReg()->next());
 230     map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
 231                           r15->as_VMReg()->next());
 232     map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
 233                           xmm0->as_VMReg()->next());
 234     map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
 235                           xmm1->as_VMReg()->next());
 236     map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
 237                           xmm2->as_VMReg()->next());
 238     map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
 239                           xmm3->as_VMReg()->next());
 240     map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
 241                           xmm4->as_VMReg()->next());
 242     map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
 243                           xmm5->as_VMReg()->next());
 244     map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
 245                           xmm6->as_VMReg()->next());
 246     map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
 247                           xmm7->as_VMReg()->next());
 248     map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
 249                           xmm8->as_VMReg()->next());
 250     map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
 251                           xmm9->as_VMReg()->next());
 252     map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
 253                           xmm10->as_VMReg()->next());
 254     map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
 255                           xmm11->as_VMReg()->next());
 256     map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
 257                           xmm12->as_VMReg()->next());
 258     map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
 259                           xmm13->as_VMReg()->next());
 260     map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
 261                           xmm14->as_VMReg()->next());
 262     map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
 263                           xmm15->as_VMReg()->next());
 264   }
 265 
 266   return map;
 267 }
 268 
 269 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 270   if (frame::arg_reg_save_area_bytes != 0) {
 271     // Pop arg register save area
 272     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 273   }
 274   // Recover CPU state
 275   __ pop_CPU_state();
 276   // Get the rbp described implicitly by the calling convention (no oopMap)
 277   __ pop(rbp);
 278 }
 279 
 280 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 281 
 282   // Just restore result register. Only used by deoptimization. By
 283   // now any callee save register that needs to be restored to a c2
 284   // caller of the deoptee has been extracted into the vframeArray
 285   // and will be stuffed into the c2i adapter we create for later
 286   // restoration so only result registers need to be restored here.
 287 
 288   // Restore fp result register
 289   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 290   // Restore integer result register
 291   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 292   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 293 
 294   // Pop all of the register save are off the stack except the return address
 295   __ addptr(rsp, return_offset_in_bytes());
 296 }
 297 
 298 // The java_calling_convention describes stack locations as ideal slots on
 299 // a frame with no abi restrictions. Since we must observe abi restrictions
 300 // (like the placement of the register window) the slots must be biased by
 301 // the following value.
 302 static int reg2offset_in(VMReg r) {
 303   // Account for saved rbp and return address
 304   // This should really be in_preserve_stack_slots
 305   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 306 }
 307 
 308 static int reg2offset_out(VMReg r) {
 309   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 310 }
 311 
 312 // ---------------------------------------------------------------------------
 313 // Read the array of BasicTypes from a signature, and compute where the
 314 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 315 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 316 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 317 // as framesizes are fixed.
 318 // VMRegImpl::stack0 refers to the first slot 0(sp).
 319 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 320 // up to RegisterImpl::number_of_registers) are the 64-bit
 321 // integer registers.
 322 
 323 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 324 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 325 // units regardless of build. Of course for i486 there is no 64 bit build
 326 
 327 // The Java calling convention is a "shifted" version of the C ABI.
 328 // By skipping the first C ABI register we can call non-static jni methods
 329 // with small numbers of arguments without having to shuffle the arguments
 330 // at all. Since we control the java ABI we ought to at least get some
 331 // advantage out of it.
 332 
 333 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 334                                            VMRegPair *regs,
 335                                            int total_args_passed,
 336                                            int is_outgoing) {
 337 
 338   // Create the mapping between argument positions and
 339   // registers.
 340   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 341     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 342   };
 343   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 344     j_farg0, j_farg1, j_farg2, j_farg3,
 345     j_farg4, j_farg5, j_farg6, j_farg7
 346   };
 347 
 348 
 349   uint int_args = 0;
 350   uint fp_args = 0;
 351   uint stk_args = 0; // inc by 2 each time
 352 
 353   for (int i = 0; i < total_args_passed; i++) {
 354     switch (sig_bt[i]) {
 355     case T_BOOLEAN:
 356     case T_CHAR:
 357     case T_BYTE:
 358     case T_SHORT:
 359     case T_INT:
 360       if (int_args < Argument::n_int_register_parameters_j) {
 361         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 362       } else {
 363         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 364         stk_args += 2;
 365       }
 366       break;
 367     case T_VOID:
 368       // halves of T_LONG or T_DOUBLE
 369       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 370       regs[i].set_bad();
 371       break;
 372     case T_LONG:
 373       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 374       // fall through
 375     case T_OBJECT:
 376     case T_ARRAY:
 377     case T_ADDRESS:
 378       if (int_args < Argument::n_int_register_parameters_j) {
 379         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 380       } else {
 381         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 382         stk_args += 2;
 383       }
 384       break;
 385     case T_FLOAT:
 386       if (fp_args < Argument::n_float_register_parameters_j) {
 387         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 388       } else {
 389         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 390         stk_args += 2;
 391       }
 392       break;
 393     case T_DOUBLE:
 394       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 395       if (fp_args < Argument::n_float_register_parameters_j) {
 396         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 397       } else {
 398         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 399         stk_args += 2;
 400       }
 401       break;
 402     default:
 403       ShouldNotReachHere();
 404       break;
 405     }
 406   }
 407 
 408   return round_to(stk_args, 2);
 409 }
 410 
 411 // Patch the callers callsite with entry to compiled code if it exists.
 412 static void patch_callers_callsite(MacroAssembler *masm) {
 413   Label L;
 414   __ verify_oop(rbx);
 415   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 416   __ jcc(Assembler::equal, L);
 417 
 418   // Save the current stack pointer
 419   __ mov(r13, rsp);
 420   // Schedule the branch target address early.
 421   // Call into the VM to patch the caller, then jump to compiled callee
 422   // rax isn't live so capture return address while we easily can
 423   __ movptr(rax, Address(rsp, 0));
 424 
 425   // align stack so push_CPU_state doesn't fault
 426   __ andptr(rsp, -(StackAlignmentInBytes));
 427   __ push_CPU_state();
 428 
 429 
 430   __ verify_oop(rbx);
 431   // VM needs caller's callsite
 432   // VM needs target method
 433   // This needs to be a long call since we will relocate this adapter to
 434   // the codeBuffer and it may not reach
 435 
 436   // Allocate argument register save area
 437   if (frame::arg_reg_save_area_bytes != 0) {
 438     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 439   }
 440   __ mov(c_rarg0, rbx);
 441   __ mov(c_rarg1, rax);
 442   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 443 
 444   // De-allocate argument register save area
 445   if (frame::arg_reg_save_area_bytes != 0) {
 446     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 447   }
 448 
 449   __ pop_CPU_state();
 450   // restore sp
 451   __ mov(rsp, r13);
 452   __ bind(L);
 453 }
 454 
 455 // Helper function to put tags in interpreter stack.
 456 static void  tag_stack(MacroAssembler *masm, const BasicType sig, int st_off) {
 457   if (TaggedStackInterpreter) {
 458     int tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(0);
 459     if (sig == T_OBJECT || sig == T_ARRAY) {
 460       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagReference);
 461     } else if (sig == T_LONG || sig == T_DOUBLE) {
 462       int next_tag_offset = st_off + Interpreter::expr_tag_offset_in_bytes(1);
 463       __ movptr(Address(rsp, next_tag_offset), (int32_t) frame::TagValue);
 464       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
 465     } else {
 466       __ movptr(Address(rsp, tag_offset), (int32_t) frame::TagValue);
 467     }
 468   }
 469 }
 470 
 471 
 472 static void gen_c2i_adapter(MacroAssembler *masm,
 473                             int total_args_passed,
 474                             int comp_args_on_stack,
 475                             const BasicType *sig_bt,
 476                             const VMRegPair *regs,
 477                             Label& skip_fixup) {
 478   // Before we get into the guts of the C2I adapter, see if we should be here
 479   // at all.  We've come from compiled code and are attempting to jump to the
 480   // interpreter, which means the caller made a static call to get here
 481   // (vcalls always get a compiled target if there is one).  Check for a
 482   // compiled target.  If there is one, we need to patch the caller's call.
 483   patch_callers_callsite(masm);
 484 
 485   __ bind(skip_fixup);
 486 
 487   // Since all args are passed on the stack, total_args_passed *
 488   // Interpreter::stackElementSize is the space we need. Plus 1 because
 489   // we also account for the return address location since
 490   // we store it first rather than hold it in rax across all the shuffling
 491 
 492   int extraspace = (total_args_passed * Interpreter::stackElementSize()) + wordSize;
 493 
 494   // stack is aligned, keep it that way
 495   extraspace = round_to(extraspace, 2*wordSize);
 496 
 497   // Get return address
 498   __ pop(rax);
 499 
 500   // set senderSP value
 501   __ mov(r13, rsp);
 502 
 503   __ subptr(rsp, extraspace);
 504 
 505   // Store the return address in the expected location
 506   __ movptr(Address(rsp, 0), rax);
 507 
 508   // Now write the args into the outgoing interpreter space
 509   for (int i = 0; i < total_args_passed; i++) {
 510     if (sig_bt[i] == T_VOID) {
 511       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 512       continue;
 513     }
 514 
 515     // offset to start parameters
 516     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize() +
 517                    Interpreter::value_offset_in_bytes();
 518     int next_off = st_off - Interpreter::stackElementSize();
 519 
 520     // Say 4 args:
 521     // i   st_off
 522     // 0   32 T_LONG
 523     // 1   24 T_VOID
 524     // 2   16 T_OBJECT
 525     // 3    8 T_BOOL
 526     // -    0 return address
 527     //
 528     // However to make thing extra confusing. Because we can fit a long/double in
 529     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 530     // leaves one slot empty and only stores to a single slot. In this case the
 531     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 532 
 533     VMReg r_1 = regs[i].first();
 534     VMReg r_2 = regs[i].second();
 535     if (!r_1->is_valid()) {
 536       assert(!r_2->is_valid(), "");
 537       continue;
 538     }
 539     if (r_1->is_stack()) {
 540       // memory to memory use rax
 541       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 542       if (!r_2->is_valid()) {
 543         // sign extend??
 544         __ movl(rax, Address(rsp, ld_off));
 545         __ movptr(Address(rsp, st_off), rax);
 546         tag_stack(masm, sig_bt[i], st_off);
 547 
 548       } else {
 549 
 550         __ movq(rax, Address(rsp, ld_off));
 551 
 552         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 553         // T_DOUBLE and T_LONG use two slots in the interpreter
 554         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 555           // ld_off == LSW, ld_off+wordSize == MSW
 556           // st_off == MSW, next_off == LSW
 557           __ movq(Address(rsp, next_off), rax);
 558 #ifdef ASSERT
 559           // Overwrite the unused slot with known junk
 560           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 561           __ movptr(Address(rsp, st_off), rax);
 562 #endif /* ASSERT */
 563           tag_stack(masm, sig_bt[i], next_off);
 564         } else {
 565           __ movq(Address(rsp, st_off), rax);
 566           tag_stack(masm, sig_bt[i], st_off);
 567         }
 568       }
 569     } else if (r_1->is_Register()) {
 570       Register r = r_1->as_Register();
 571       if (!r_2->is_valid()) {
 572         // must be only an int (or less ) so move only 32bits to slot
 573         // why not sign extend??
 574         __ movl(Address(rsp, st_off), r);
 575         tag_stack(masm, sig_bt[i], st_off);
 576       } else {
 577         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 578         // T_DOUBLE and T_LONG use two slots in the interpreter
 579         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 580           // long/double in gpr
 581 #ifdef ASSERT
 582           // Overwrite the unused slot with known junk
 583           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 584           __ movptr(Address(rsp, st_off), rax);
 585 #endif /* ASSERT */
 586           __ movq(Address(rsp, next_off), r);
 587           tag_stack(masm, sig_bt[i], next_off);
 588         } else {
 589           __ movptr(Address(rsp, st_off), r);
 590           tag_stack(masm, sig_bt[i], st_off);
 591         }
 592       }
 593     } else {
 594       assert(r_1->is_XMMRegister(), "");
 595       if (!r_2->is_valid()) {
 596         // only a float use just part of the slot
 597         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 598         tag_stack(masm, sig_bt[i], st_off);
 599       } else {
 600 #ifdef ASSERT
 601         // Overwrite the unused slot with known junk
 602         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 603         __ movptr(Address(rsp, st_off), rax);
 604 #endif /* ASSERT */
 605         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 606         tag_stack(masm, sig_bt[i], next_off);
 607       }
 608     }
 609   }
 610 
 611   // Schedule the branch target address early.
 612   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 613   __ jmp(rcx);
 614 }
 615 
 616 static void gen_i2c_adapter(MacroAssembler *masm,
 617                             int total_args_passed,
 618                             int comp_args_on_stack,
 619                             const BasicType *sig_bt,
 620                             const VMRegPair *regs) {
 621 
 622   //
 623   // We will only enter here from an interpreted frame and never from after
 624   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 625   // race and use a c2i we will remain interpreted for the race loser(s).
 626   // This removes all sorts of headaches on the x86 side and also eliminates
 627   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 628 
 629 
 630   // Note: r13 contains the senderSP on entry. We must preserve it since
 631   // we may do a i2c -> c2i transition if we lose a race where compiled
 632   // code goes non-entrant while we get args ready.
 633   // In addition we use r13 to locate all the interpreter args as
 634   // we must align the stack to 16 bytes on an i2c entry else we
 635   // lose alignment we expect in all compiled code and register
 636   // save code can segv when fxsave instructions find improperly
 637   // aligned stack pointer.
 638 
 639   __ movptr(rax, Address(rsp, 0));
 640 
 641   // Must preserve original SP for loading incoming arguments because
 642   // we need to align the outgoing SP for compiled code.
 643   __ movptr(r11, rsp);
 644 
 645   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 646   // in registers, we will occasionally have no stack args.
 647   int comp_words_on_stack = 0;
 648   if (comp_args_on_stack) {
 649     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 650     // registers are below.  By subtracting stack0, we either get a negative
 651     // number (all values in registers) or the maximum stack slot accessed.
 652 
 653     // Convert 4-byte c2 stack slots to words.
 654     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 655     // Round up to miminum stack alignment, in wordSize
 656     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 657     __ subptr(rsp, comp_words_on_stack * wordSize);
 658   }
 659 
 660 
 661   // Ensure compiled code always sees stack at proper alignment
 662   __ andptr(rsp, -16);
 663 
 664   // push the return address and misalign the stack that youngest frame always sees
 665   // as far as the placement of the call instruction
 666   __ push(rax);
 667 
 668   // Put saved SP in another register
 669   const Register saved_sp = rax;
 670   __ movptr(saved_sp, r11);
 671 
 672   // Will jump to the compiled code just as if compiled code was doing it.
 673   // Pre-load the register-jump target early, to schedule it better.
 674   __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 675 
 676   // Now generate the shuffle code.  Pick up all register args and move the
 677   // rest through the floating point stack top.
 678   for (int i = 0; i < total_args_passed; i++) {
 679     if (sig_bt[i] == T_VOID) {
 680       // Longs and doubles are passed in native word order, but misaligned
 681       // in the 32-bit build.
 682       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 683       continue;
 684     }
 685 
 686     // Pick up 0, 1 or 2 words from SP+offset.
 687 
 688     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 689             "scrambled load targets?");
 690     // Load in argument order going down.
 691     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
 692     // Point to interpreter value (vs. tag)
 693     int next_off = ld_off - Interpreter::stackElementSize();
 694     //
 695     //
 696     //
 697     VMReg r_1 = regs[i].first();
 698     VMReg r_2 = regs[i].second();
 699     if (!r_1->is_valid()) {
 700       assert(!r_2->is_valid(), "");
 701       continue;
 702     }
 703     if (r_1->is_stack()) {
 704       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 705       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 706 
 707       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 708       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 709       // will be generated.
 710       if (!r_2->is_valid()) {
 711         // sign extend???
 712         __ movl(r13, Address(saved_sp, ld_off));
 713         __ movptr(Address(rsp, st_off), r13);
 714       } else {
 715         //
 716         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 717         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 718         // So we must adjust where to pick up the data to match the interpreter.
 719         //
 720         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 721         // are accessed as negative so LSW is at LOW address
 722 
 723         // ld_off is MSW so get LSW
 724         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 725                            next_off : ld_off;
 726         __ movq(r13, Address(saved_sp, offset));
 727         // st_off is LSW (i.e. reg.first())
 728         __ movq(Address(rsp, st_off), r13);
 729       }
 730     } else if (r_1->is_Register()) {  // Register argument
 731       Register r = r_1->as_Register();
 732       assert(r != rax, "must be different");
 733       if (r_2->is_valid()) {
 734         //
 735         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 736         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 737         // So we must adjust where to pick up the data to match the interpreter.
 738 
 739         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 740                            next_off : ld_off;
 741 
 742         // this can be a misaligned move
 743         __ movq(r, Address(saved_sp, offset));
 744       } else {
 745         // sign extend and use a full word?
 746         __ movl(r, Address(saved_sp, ld_off));
 747       }
 748     } else {
 749       if (!r_2->is_valid()) {
 750         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 751       } else {
 752         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 753       }
 754     }
 755   }
 756 
 757   // 6243940 We might end up in handle_wrong_method if
 758   // the callee is deoptimized as we race thru here. If that
 759   // happens we don't want to take a safepoint because the
 760   // caller frame will look interpreted and arguments are now
 761   // "compiled" so it is much better to make this transition
 762   // invisible to the stack walking code. Unfortunately if
 763   // we try and find the callee by normal means a safepoint
 764   // is possible. So we stash the desired callee in the thread
 765   // and the vm will find there should this case occur.
 766 
 767   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 768 
 769   // put methodOop where a c2i would expect should we end up there
 770   // only needed becaus eof c2 resolve stubs return methodOop as a result in
 771   // rax
 772   __ mov(rax, rbx);
 773   __ jmp(r11);
 774 }
 775 
 776 // ---------------------------------------------------------------
 777 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 778                                                             int total_args_passed,
 779                                                             int comp_args_on_stack,
 780                                                             const BasicType *sig_bt,
 781                                                             const VMRegPair *regs,
 782                                                             AdapterFingerPrint* fingerprint) {
 783   address i2c_entry = __ pc();
 784 
 785   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 786 
 787   // -------------------------------------------------------------------------
 788   // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
 789   // to the interpreter.  The args start out packed in the compiled layout.  They
 790   // need to be unpacked into the interpreter layout.  This will almost always
 791   // require some stack space.  We grow the current (compiled) stack, then repack
 792   // the args.  We  finally end in a jump to the generic interpreter entry point.
 793   // On exit from the interpreter, the interpreter will restore our SP (lest the
 794   // compiled code, which relys solely on SP and not RBP, get sick).
 795 
 796   address c2i_unverified_entry = __ pc();
 797   Label skip_fixup;
 798   Label ok;
 799 
 800   Register holder = rax;
 801   Register receiver = j_rarg0;
 802   Register temp = rbx;
 803 
 804   {
 805     __ verify_oop(holder);
 806     __ load_klass(temp, receiver);
 807     __ verify_oop(temp);
 808 
 809     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 810     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 811     __ jcc(Assembler::equal, ok);
 812     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 813 
 814     __ bind(ok);
 815     // Method might have been compiled since the call site was patched to
 816     // interpreted if that is the case treat it as a miss so we can get
 817     // the call site corrected.
 818     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 819     __ jcc(Assembler::equal, skip_fixup);
 820     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 821   }
 822 
 823   address c2i_entry = __ pc();
 824 
 825   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 826 
 827   __ flush();
 828   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 829 }
 830 
 831 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 832                                          VMRegPair *regs,
 833                                          int total_args_passed) {
 834 // We return the amount of VMRegImpl stack slots we need to reserve for all
 835 // the arguments NOT counting out_preserve_stack_slots.
 836 
 837 // NOTE: These arrays will have to change when c1 is ported
 838 #ifdef _WIN64
 839     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 840       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 841     };
 842     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 843       c_farg0, c_farg1, c_farg2, c_farg3
 844     };
 845 #else
 846     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 847       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 848     };
 849     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 850       c_farg0, c_farg1, c_farg2, c_farg3,
 851       c_farg4, c_farg5, c_farg6, c_farg7
 852     };
 853 #endif // _WIN64
 854 
 855 
 856     uint int_args = 0;
 857     uint fp_args = 0;
 858     uint stk_args = 0; // inc by 2 each time
 859 
 860     for (int i = 0; i < total_args_passed; i++) {
 861       switch (sig_bt[i]) {
 862       case T_BOOLEAN:
 863       case T_CHAR:
 864       case T_BYTE:
 865       case T_SHORT:
 866       case T_INT:
 867         if (int_args < Argument::n_int_register_parameters_c) {
 868           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 869 #ifdef _WIN64
 870           fp_args++;
 871           // Allocate slots for callee to stuff register args the stack.
 872           stk_args += 2;
 873 #endif
 874         } else {
 875           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 876           stk_args += 2;
 877         }
 878         break;
 879       case T_LONG:
 880         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 881         // fall through
 882       case T_OBJECT:
 883       case T_ARRAY:
 884       case T_ADDRESS:
 885         if (int_args < Argument::n_int_register_parameters_c) {
 886           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 887 #ifdef _WIN64
 888           fp_args++;
 889           stk_args += 2;
 890 #endif
 891         } else {
 892           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 893           stk_args += 2;
 894         }
 895         break;
 896       case T_FLOAT:
 897         if (fp_args < Argument::n_float_register_parameters_c) {
 898           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 899 #ifdef _WIN64
 900           int_args++;
 901           // Allocate slots for callee to stuff register args the stack.
 902           stk_args += 2;
 903 #endif
 904         } else {
 905           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 906           stk_args += 2;
 907         }
 908         break;
 909       case T_DOUBLE:
 910         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 911         if (fp_args < Argument::n_float_register_parameters_c) {
 912           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 913 #ifdef _WIN64
 914           int_args++;
 915           // Allocate slots for callee to stuff register args the stack.
 916           stk_args += 2;
 917 #endif
 918         } else {
 919           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 920           stk_args += 2;
 921         }
 922         break;
 923       case T_VOID: // Halves of longs and doubles
 924         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 925         regs[i].set_bad();
 926         break;
 927       default:
 928         ShouldNotReachHere();
 929         break;
 930       }
 931     }
 932 #ifdef _WIN64
 933   // windows abi requires that we always allocate enough stack space
 934   // for 4 64bit registers to be stored down.
 935   if (stk_args < 8) {
 936     stk_args = 8;
 937   }
 938 #endif // _WIN64
 939 
 940   return stk_args;
 941 }
 942 
 943 // On 64 bit we will store integer like items to the stack as
 944 // 64 bits items (sparc abi) even though java would only store
 945 // 32bits for a parameter. On 32bit it will simply be 32 bits
 946 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
 947 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 948   if (src.first()->is_stack()) {
 949     if (dst.first()->is_stack()) {
 950       // stack to stack
 951       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
 952       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
 953     } else {
 954       // stack to reg
 955       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
 956     }
 957   } else if (dst.first()->is_stack()) {
 958     // reg to stack
 959     // Do we really have to sign extend???
 960     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
 961     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 962   } else {
 963     // Do we really have to sign extend???
 964     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
 965     if (dst.first() != src.first()) {
 966       __ movq(dst.first()->as_Register(), src.first()->as_Register());
 967     }
 968   }
 969 }
 970 
 971 
 972 // An oop arg. Must pass a handle not the oop itself
 973 static void object_move(MacroAssembler* masm,
 974                         OopMap* map,
 975                         int oop_handle_offset,
 976                         int framesize_in_slots,
 977                         VMRegPair src,
 978                         VMRegPair dst,
 979                         bool is_receiver,
 980                         int* receiver_offset) {
 981 
 982   // must pass a handle. First figure out the location we use as a handle
 983 
 984   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
 985 
 986   // See if oop is NULL if it is we need no handle
 987 
 988   if (src.first()->is_stack()) {
 989 
 990     // Oop is already on the stack as an argument
 991     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 992     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
 993     if (is_receiver) {
 994       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
 995     }
 996 
 997     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
 998     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
 999     // conditionally move a NULL
1000     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1001   } else {
1002 
1003     // Oop is in an a register we must store it to the space we reserve
1004     // on the stack for oop_handles and pass a handle if oop is non-NULL
1005 
1006     const Register rOop = src.first()->as_Register();
1007     int oop_slot;
1008     if (rOop == j_rarg0)
1009       oop_slot = 0;
1010     else if (rOop == j_rarg1)
1011       oop_slot = 1;
1012     else if (rOop == j_rarg2)
1013       oop_slot = 2;
1014     else if (rOop == j_rarg3)
1015       oop_slot = 3;
1016     else if (rOop == j_rarg4)
1017       oop_slot = 4;
1018     else {
1019       assert(rOop == j_rarg5, "wrong register");
1020       oop_slot = 5;
1021     }
1022 
1023     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1024     int offset = oop_slot*VMRegImpl::stack_slot_size;
1025 
1026     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1027     // Store oop in handle area, may be NULL
1028     __ movptr(Address(rsp, offset), rOop);
1029     if (is_receiver) {
1030       *receiver_offset = offset;
1031     }
1032 
1033     __ cmpptr(rOop, (int32_t)NULL_WORD);
1034     __ lea(rHandle, Address(rsp, offset));
1035     // conditionally move a NULL from the handle area where it was just stored
1036     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1037   }
1038 
1039   // If arg is on the stack then place it otherwise it is already in correct reg.
1040   if (dst.first()->is_stack()) {
1041     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1042   }
1043 }
1044 
1045 // A float arg may have to do float reg int reg conversion
1046 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1047   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1048 
1049   // The calling conventions assures us that each VMregpair is either
1050   // all really one physical register or adjacent stack slots.
1051   // This greatly simplifies the cases here compared to sparc.
1052 
1053   if (src.first()->is_stack()) {
1054     if (dst.first()->is_stack()) {
1055       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1056       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1057     } else {
1058       // stack to reg
1059       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1060       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1061     }
1062   } else if (dst.first()->is_stack()) {
1063     // reg to stack
1064     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1065     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1066   } else {
1067     // reg to reg
1068     // In theory these overlap but the ordering is such that this is likely a nop
1069     if ( src.first() != dst.first()) {
1070       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1071     }
1072   }
1073 }
1074 
1075 // A long move
1076 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1077 
1078   // The calling conventions assures us that each VMregpair is either
1079   // all really one physical register or adjacent stack slots.
1080   // This greatly simplifies the cases here compared to sparc.
1081 
1082   if (src.is_single_phys_reg() ) {
1083     if (dst.is_single_phys_reg()) {
1084       if (dst.first() != src.first()) {
1085         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1086       }
1087     } else {
1088       assert(dst.is_single_reg(), "not a stack pair");
1089       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1090     }
1091   } else if (dst.is_single_phys_reg()) {
1092     assert(src.is_single_reg(),  "not a stack pair");
1093     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1094   } else {
1095     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1096     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1097     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1098   }
1099 }
1100 
1101 // A double move
1102 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1103 
1104   // The calling conventions assures us that each VMregpair is either
1105   // all really one physical register or adjacent stack slots.
1106   // This greatly simplifies the cases here compared to sparc.
1107 
1108   if (src.is_single_phys_reg() ) {
1109     if (dst.is_single_phys_reg()) {
1110       // In theory these overlap but the ordering is such that this is likely a nop
1111       if ( src.first() != dst.first()) {
1112         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1113       }
1114     } else {
1115       assert(dst.is_single_reg(), "not a stack pair");
1116       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1117     }
1118   } else if (dst.is_single_phys_reg()) {
1119     assert(src.is_single_reg(),  "not a stack pair");
1120     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1121   } else {
1122     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1123     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1124     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1125   }
1126 }
1127 
1128 
1129 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1130   // We always ignore the frame_slots arg and just use the space just below frame pointer
1131   // which by this time is free to use
1132   switch (ret_type) {
1133   case T_FLOAT:
1134     __ movflt(Address(rbp, -wordSize), xmm0);
1135     break;
1136   case T_DOUBLE:
1137     __ movdbl(Address(rbp, -wordSize), xmm0);
1138     break;
1139   case T_VOID:  break;
1140   default: {
1141     __ movptr(Address(rbp, -wordSize), rax);
1142     }
1143   }
1144 }
1145 
1146 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1147   // We always ignore the frame_slots arg and just use the space just below frame pointer
1148   // which by this time is free to use
1149   switch (ret_type) {
1150   case T_FLOAT:
1151     __ movflt(xmm0, Address(rbp, -wordSize));
1152     break;
1153   case T_DOUBLE:
1154     __ movdbl(xmm0, Address(rbp, -wordSize));
1155     break;
1156   case T_VOID:  break;
1157   default: {
1158     __ movptr(rax, Address(rbp, -wordSize));
1159     }
1160   }
1161 }
1162 
1163 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1164     for ( int i = first_arg ; i < arg_count ; i++ ) {
1165       if (args[i].first()->is_Register()) {
1166         __ push(args[i].first()->as_Register());
1167       } else if (args[i].first()->is_XMMRegister()) {
1168         __ subptr(rsp, 2*wordSize);
1169         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1170       }
1171     }
1172 }
1173 
1174 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1175     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1176       if (args[i].first()->is_Register()) {
1177         __ pop(args[i].first()->as_Register());
1178       } else if (args[i].first()->is_XMMRegister()) {
1179         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1180         __ addptr(rsp, 2*wordSize);
1181       }
1182     }
1183 }
1184 
1185 // ---------------------------------------------------------------------------
1186 // Generate a native wrapper for a given method.  The method takes arguments
1187 // in the Java compiled code convention, marshals them to the native
1188 // convention (handlizes oops, etc), transitions to native, makes the call,
1189 // returns to java state (possibly blocking), unhandlizes any result and
1190 // returns.
1191 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1192                                                 methodHandle method,
1193                                                 int total_in_args,
1194                                                 int comp_args_on_stack,
1195                                                 BasicType *in_sig_bt,
1196                                                 VMRegPair *in_regs,
1197                                                 BasicType ret_type) {
1198   // Native nmethod wrappers never take possesion of the oop arguments.
1199   // So the caller will gc the arguments. The only thing we need an
1200   // oopMap for is if the call is static
1201   //
1202   // An OopMap for lock (and class if static)
1203   OopMapSet *oop_maps = new OopMapSet();
1204   intptr_t start = (intptr_t)__ pc();
1205 
1206   // We have received a description of where all the java arg are located
1207   // on entry to the wrapper. We need to convert these args to where
1208   // the jni function will expect them. To figure out where they go
1209   // we convert the java signature to a C signature by inserting
1210   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1211 
1212   int total_c_args = total_in_args + 1;
1213   if (method->is_static()) {
1214     total_c_args++;
1215   }
1216 
1217   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1218   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1219 
1220   int argc = 0;
1221   out_sig_bt[argc++] = T_ADDRESS;
1222   if (method->is_static()) {
1223     out_sig_bt[argc++] = T_OBJECT;
1224   }
1225 
1226   for (int i = 0; i < total_in_args ; i++ ) {
1227     out_sig_bt[argc++] = in_sig_bt[i];
1228   }
1229 
1230   // Now figure out where the args must be stored and how much stack space
1231   // they require.
1232   //
1233   int out_arg_slots;
1234   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1235 
1236   // Compute framesize for the wrapper.  We need to handlize all oops in
1237   // incoming registers
1238 
1239   // Calculate the total number of stack slots we will need.
1240 
1241   // First count the abi requirement plus all of the outgoing args
1242   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1243 
1244   // Now the space for the inbound oop handle area
1245 
1246   int oop_handle_offset = stack_slots;
1247   stack_slots += 6*VMRegImpl::slots_per_word;
1248 
1249   // Now any space we need for handlizing a klass if static method
1250 
1251   int oop_temp_slot_offset = 0;
1252   int klass_slot_offset = 0;
1253   int klass_offset = -1;
1254   int lock_slot_offset = 0;
1255   bool is_static = false;
1256 
1257   if (method->is_static()) {
1258     klass_slot_offset = stack_slots;
1259     stack_slots += VMRegImpl::slots_per_word;
1260     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1261     is_static = true;
1262   }
1263 
1264   // Plus a lock if needed
1265 
1266   if (method->is_synchronized()) {
1267     lock_slot_offset = stack_slots;
1268     stack_slots += VMRegImpl::slots_per_word;
1269   }
1270 
1271   // Now a place (+2) to save return values or temp during shuffling
1272   // + 4 for return address (which we own) and saved rbp
1273   stack_slots += 6;
1274 
1275   // Ok The space we have allocated will look like:
1276   //
1277   //
1278   // FP-> |                     |
1279   //      |---------------------|
1280   //      | 2 slots for moves   |
1281   //      |---------------------|
1282   //      | lock box (if sync)  |
1283   //      |---------------------| <- lock_slot_offset
1284   //      | klass (if static)   |
1285   //      |---------------------| <- klass_slot_offset
1286   //      | oopHandle area      |
1287   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1288   //      | outbound memory     |
1289   //      | based arguments     |
1290   //      |                     |
1291   //      |---------------------|
1292   //      |                     |
1293   // SP-> | out_preserved_slots |
1294   //
1295   //
1296 
1297 
1298   // Now compute actual number of stack words we need rounding to make
1299   // stack properly aligned.
1300   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1301 
1302   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1303 
1304 
1305   // First thing make an ic check to see if we should even be here
1306 
1307   // We are free to use all registers as temps without saving them and
1308   // restoring them except rbp. rbp is the only callee save register
1309   // as far as the interpreter and the compiler(s) are concerned.
1310 
1311 
1312   const Register ic_reg = rax;
1313   const Register receiver = j_rarg0;
1314 
1315   Label ok;
1316   Label exception_pending;
1317 
1318   assert_different_registers(ic_reg, receiver, rscratch1);
1319   __ verify_oop(receiver);
1320   __ load_klass(rscratch1, receiver);
1321   __ cmpq(ic_reg, rscratch1);
1322   __ jcc(Assembler::equal, ok);
1323 
1324   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1325 
1326   __ bind(ok);
1327 
1328   // Verified entry point must be aligned
1329   __ align(8);
1330 
1331   int vep_offset = ((intptr_t)__ pc()) - start;
1332 
1333   // The instruction at the verified entry point must be 5 bytes or longer
1334   // because it can be patched on the fly by make_non_entrant. The stack bang
1335   // instruction fits that requirement.
1336 
1337   // Generate stack overflow check
1338 
1339   if (UseStackBanging) {
1340     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1341   } else {
1342     // need a 5 byte instruction to allow MT safe patching to non-entrant
1343     __ fat_nop();
1344   }
1345 
1346   // Generate a new frame for the wrapper.
1347   __ enter();
1348   // -2 because return address is already present and so is saved rbp
1349   __ subptr(rsp, stack_size - 2*wordSize);
1350 
1351     // Frame is now completed as far as size and linkage.
1352 
1353     int frame_complete = ((intptr_t)__ pc()) - start;
1354 
1355 #ifdef ASSERT
1356     {
1357       Label L;
1358       __ mov(rax, rsp);
1359       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1360       __ cmpptr(rax, rsp);
1361       __ jcc(Assembler::equal, L);
1362       __ stop("improperly aligned stack");
1363       __ bind(L);
1364     }
1365 #endif /* ASSERT */
1366 
1367 
1368   // We use r14 as the oop handle for the receiver/klass
1369   // It is callee save so it survives the call to native
1370 
1371   const Register oop_handle_reg = r14;
1372 
1373 
1374 
1375   //
1376   // We immediately shuffle the arguments so that any vm call we have to
1377   // make from here on out (sync slow path, jvmti, etc.) we will have
1378   // captured the oops from our caller and have a valid oopMap for
1379   // them.
1380 
1381   // -----------------
1382   // The Grand Shuffle
1383 
1384   // The Java calling convention is either equal (linux) or denser (win64) than the
1385   // c calling convention. However the because of the jni_env argument the c calling
1386   // convention always has at least one more (and two for static) arguments than Java.
1387   // Therefore if we move the args from java -> c backwards then we will never have
1388   // a register->register conflict and we don't have to build a dependency graph
1389   // and figure out how to break any cycles.
1390   //
1391 
1392   // Record esp-based slot for receiver on stack for non-static methods
1393   int receiver_offset = -1;
1394 
1395   // This is a trick. We double the stack slots so we can claim
1396   // the oops in the caller's frame. Since we are sure to have
1397   // more args than the caller doubling is enough to make
1398   // sure we can capture all the incoming oop args from the
1399   // caller.
1400   //
1401   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1402 
1403   // Mark location of rbp (someday)
1404   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
1405 
1406   // Use eax, ebx as temporaries during any memory-memory moves we have to do
1407   // All inbound args are referenced based on rbp and all outbound args via rsp.
1408 
1409 
1410 #ifdef ASSERT
1411   bool reg_destroyed[RegisterImpl::number_of_registers];
1412   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
1413   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1414     reg_destroyed[r] = false;
1415   }
1416   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
1417     freg_destroyed[f] = false;
1418   }
1419 
1420 #endif /* ASSERT */
1421 
1422 
1423   int c_arg = total_c_args - 1;
1424   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
1425 #ifdef ASSERT
1426     if (in_regs[i].first()->is_Register()) {
1427       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1428     } else if (in_regs[i].first()->is_XMMRegister()) {
1429       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
1430     }
1431     if (out_regs[c_arg].first()->is_Register()) {
1432       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1433     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
1434       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
1435     }
1436 #endif /* ASSERT */
1437     switch (in_sig_bt[i]) {
1438       case T_ARRAY:
1439       case T_OBJECT:
1440         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1441                     ((i == 0) && (!is_static)),
1442                     &receiver_offset);
1443         break;
1444       case T_VOID:
1445         break;
1446 
1447       case T_FLOAT:
1448         float_move(masm, in_regs[i], out_regs[c_arg]);
1449           break;
1450 
1451       case T_DOUBLE:
1452         assert( i + 1 < total_in_args &&
1453                 in_sig_bt[i + 1] == T_VOID &&
1454                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1455         double_move(masm, in_regs[i], out_regs[c_arg]);
1456         break;
1457 
1458       case T_LONG :
1459         long_move(masm, in_regs[i], out_regs[c_arg]);
1460         break;
1461 
1462       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1463 
1464       default:
1465         move32_64(masm, in_regs[i], out_regs[c_arg]);
1466     }
1467   }
1468 
1469   // point c_arg at the first arg that is already loaded in case we
1470   // need to spill before we call out
1471   c_arg++;
1472 
1473   // Pre-load a static method's oop into r14.  Used both by locking code and
1474   // the normal JNI call code.
1475   if (method->is_static()) {
1476 
1477     //  load oop into a register
1478     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1479 
1480     // Now handlize the static class mirror it's known not-null.
1481     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1482     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1483 
1484     // Now get the handle
1485     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1486     // store the klass handle as second argument
1487     __ movptr(c_rarg1, oop_handle_reg);
1488     // and protect the arg if we must spill
1489     c_arg--;
1490   }
1491 
1492   // Change state to native (we save the return address in the thread, since it might not
1493   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1494   // points into the right code segment. It does not have to be the correct return pc.
1495   // We use the same pc/oopMap repeatedly when we call out
1496 
1497   intptr_t the_pc = (intptr_t) __ pc();
1498   oop_maps->add_gc_map(the_pc - start, map);
1499 
1500   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
1501 
1502 
1503   // We have all of the arguments setup at this point. We must not touch any register
1504   // argument registers at this point (what if we save/restore them there are no oop?
1505 
1506   {
1507     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1508     // protect the args we've loaded
1509     save_args(masm, total_c_args, c_arg, out_regs);
1510     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1511     __ call_VM_leaf(
1512       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1513       r15_thread, c_rarg1);
1514     restore_args(masm, total_c_args, c_arg, out_regs);
1515   }
1516 
1517   // RedefineClasses() tracing support for obsolete method entry
1518   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1519     // protect the args we've loaded
1520     save_args(masm, total_c_args, c_arg, out_regs);
1521     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1522     __ call_VM_leaf(
1523       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1524       r15_thread, c_rarg1);
1525     restore_args(masm, total_c_args, c_arg, out_regs);
1526   }
1527 
1528   // Lock a synchronized method
1529 
1530   // Register definitions used by locking and unlocking
1531 
1532   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
1533   const Register obj_reg  = rbx;  // Will contain the oop
1534   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1535   const Register old_hdr  = r13;  // value of old header at unlock time
1536 
1537   Label slow_path_lock;
1538   Label lock_done;
1539 
1540   if (method->is_synchronized()) {
1541 
1542 
1543     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1544 
1545     // Get the handle (the 2nd argument)
1546     __ mov(oop_handle_reg, c_rarg1);
1547 
1548     // Get address of the box
1549 
1550     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1551 
1552     // Load the oop from the handle
1553     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1554 
1555     if (UseBiasedLocking) {
1556       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
1557     }
1558 
1559     // Load immediate 1 into swap_reg %rax
1560     __ movl(swap_reg, 1);
1561 
1562     // Load (object->mark() | 1) into swap_reg %rax
1563     __ orptr(swap_reg, Address(obj_reg, 0));
1564 
1565     // Save (object->mark() | 1) into BasicLock's displaced header
1566     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1567 
1568     if (os::is_MP()) {
1569       __ lock();
1570     }
1571 
1572     // src -> dest iff dest == rax else rax <- dest
1573     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1574     __ jcc(Assembler::equal, lock_done);
1575 
1576     // Hmm should this move to the slow path code area???
1577 
1578     // Test if the oopMark is an obvious stack pointer, i.e.,
1579     //  1) (mark & 3) == 0, and
1580     //  2) rsp <= mark < mark + os::pagesize()
1581     // These 3 tests can be done by evaluating the following
1582     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1583     // assuming both stack pointer and pagesize have their
1584     // least significant 2 bits clear.
1585     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1586 
1587     __ subptr(swap_reg, rsp);
1588     __ andptr(swap_reg, 3 - os::vm_page_size());
1589 
1590     // Save the test result, for recursive case, the result is zero
1591     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1592     __ jcc(Assembler::notEqual, slow_path_lock);
1593 
1594     // Slow path will re-enter here
1595 
1596     __ bind(lock_done);
1597   }
1598 
1599 
1600   // Finally just about ready to make the JNI call
1601 
1602 
1603   // get JNIEnv* which is first argument to native
1604 
1605   __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
1606 
1607   // Now set thread in native
1608   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
1609 
1610   __ call(RuntimeAddress(method->native_function()));
1611 
1612     // Either restore the MXCSR register after returning from the JNI Call
1613     // or verify that it wasn't changed.
1614     if (RestoreMXCSROnJNICalls) {
1615       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
1616 
1617     }
1618     else if (CheckJNICalls ) {
1619       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
1620     }
1621 
1622 
1623   // Unpack native results.
1624   switch (ret_type) {
1625   case T_BOOLEAN: __ c2bool(rax);            break;
1626   case T_CHAR   : __ movzwl(rax, rax);      break;
1627   case T_BYTE   : __ sign_extend_byte (rax); break;
1628   case T_SHORT  : __ sign_extend_short(rax); break;
1629   case T_INT    : /* nothing to do */        break;
1630   case T_DOUBLE :
1631   case T_FLOAT  :
1632     // Result is in xmm0 we'll save as needed
1633     break;
1634   case T_ARRAY:                 // Really a handle
1635   case T_OBJECT:                // Really a handle
1636       break; // can't de-handlize until after safepoint check
1637   case T_VOID: break;
1638   case T_LONG: break;
1639   default       : ShouldNotReachHere();
1640   }
1641 
1642   // Switch thread to "native transition" state before reading the synchronization state.
1643   // This additional state is necessary because reading and testing the synchronization
1644   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1645   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1646   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1647   //     Thread A is resumed to finish this native method, but doesn't block here since it
1648   //     didn't see any synchronization is progress, and escapes.
1649   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1650 
1651   if(os::is_MP()) {
1652     if (UseMembar) {
1653       // Force this write out before the read below
1654       __ membar(Assembler::Membar_mask_bits(
1655            Assembler::LoadLoad | Assembler::LoadStore |
1656            Assembler::StoreLoad | Assembler::StoreStore));
1657     } else {
1658       // Write serialization page so VM thread can do a pseudo remote membar.
1659       // We use the current thread pointer to calculate a thread specific
1660       // offset to write to within the page. This minimizes bus traffic
1661       // due to cache line collision.
1662       __ serialize_memory(r15_thread, rcx);
1663     }
1664   }
1665 
1666 
1667   // check for safepoint operation in progress and/or pending suspend requests
1668   {
1669     Label Continue;
1670 
1671     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1672              SafepointSynchronize::_not_synchronized);
1673 
1674     Label L;
1675     __ jcc(Assembler::notEqual, L);
1676     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
1677     __ jcc(Assembler::equal, Continue);
1678     __ bind(L);
1679 
1680     // Don't use call_VM as it will see a possible pending exception and forward it
1681     // and never return here preventing us from clearing _last_native_pc down below.
1682     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1683     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1684     // by hand.
1685     //
1686     save_native_result(masm, ret_type, stack_slots);
1687     __ mov(c_rarg0, r15_thread);
1688     __ mov(r12, rsp); // remember sp
1689     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1690     __ andptr(rsp, -16); // align stack as required by ABI
1691     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1692     __ mov(rsp, r12); // restore sp
1693     __ reinit_heapbase();
1694     // Restore any method result value
1695     restore_native_result(masm, ret_type, stack_slots);
1696     __ bind(Continue);
1697   }
1698 
1699   // change thread state
1700   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
1701 
1702   Label reguard;
1703   Label reguard_done;
1704   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1705   __ jcc(Assembler::equal, reguard);
1706   __ bind(reguard_done);
1707 
1708   // native result if any is live
1709 
1710   // Unlock
1711   Label unlock_done;
1712   Label slow_path_unlock;
1713   if (method->is_synchronized()) {
1714 
1715     // Get locked oop from the handle we passed to jni
1716     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1717 
1718     Label done;
1719 
1720     if (UseBiasedLocking) {
1721       __ biased_locking_exit(obj_reg, old_hdr, done);
1722     }
1723 
1724     // Simple recursive lock?
1725 
1726     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
1727     __ jcc(Assembler::equal, done);
1728 
1729     // Must save rax if if it is live now because cmpxchg must use it
1730     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1731       save_native_result(masm, ret_type, stack_slots);
1732     }
1733 
1734 
1735     // get address of the stack lock
1736     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1737     //  get old displaced header
1738     __ movptr(old_hdr, Address(rax, 0));
1739 
1740     // Atomic swap old header if oop still contains the stack lock
1741     if (os::is_MP()) {
1742       __ lock();
1743     }
1744     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
1745     __ jcc(Assembler::notEqual, slow_path_unlock);
1746 
1747     // slow path re-enters here
1748     __ bind(unlock_done);
1749     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1750       restore_native_result(masm, ret_type, stack_slots);
1751     }
1752 
1753     __ bind(done);
1754 
1755   }
1756   {
1757     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
1758     save_native_result(masm, ret_type, stack_slots);
1759     __ movoop(c_rarg1, JNIHandles::make_local(method()));
1760     __ call_VM_leaf(
1761          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1762          r15_thread, c_rarg1);
1763     restore_native_result(masm, ret_type, stack_slots);
1764   }
1765 
1766   __ reset_last_Java_frame(false, true);
1767 
1768   // Unpack oop result
1769   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1770       Label L;
1771       __ testptr(rax, rax);
1772       __ jcc(Assembler::zero, L);
1773       __ movptr(rax, Address(rax, 0));
1774       __ bind(L);
1775       __ verify_oop(rax);
1776   }
1777 
1778   // reset handle block
1779   __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
1780   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1781 
1782   // pop our frame
1783 
1784   __ leave();
1785 
1786   // Any exception pending?
1787   __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1788   __ jcc(Assembler::notEqual, exception_pending);
1789 
1790   // Return
1791 
1792   __ ret(0);
1793 
1794   // Unexpected paths are out of line and go here
1795 
1796   // forward the exception
1797   __ bind(exception_pending);
1798 
1799   // and forward the exception
1800   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1801 
1802 
1803   // Slow path locking & unlocking
1804   if (method->is_synchronized()) {
1805 
1806     // BEGIN Slow path lock
1807     __ bind(slow_path_lock);
1808 
1809     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1810     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1811 
1812     // protect the args we've loaded
1813     save_args(masm, total_c_args, c_arg, out_regs);
1814 
1815     __ mov(c_rarg0, obj_reg);
1816     __ mov(c_rarg1, lock_reg);
1817     __ mov(c_rarg2, r15_thread);
1818 
1819     // Not a leaf but we have last_Java_frame setup as we want
1820     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
1821     restore_args(masm, total_c_args, c_arg, out_regs);
1822 
1823 #ifdef ASSERT
1824     { Label L;
1825     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1826     __ jcc(Assembler::equal, L);
1827     __ stop("no pending exception allowed on exit from monitorenter");
1828     __ bind(L);
1829     }
1830 #endif
1831     __ jmp(lock_done);
1832 
1833     // END Slow path lock
1834 
1835     // BEGIN Slow path unlock
1836     __ bind(slow_path_unlock);
1837 
1838     // If we haven't already saved the native result we must save it now as xmm registers
1839     // are still exposed.
1840 
1841     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1842       save_native_result(masm, ret_type, stack_slots);
1843     }
1844 
1845     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
1846 
1847     __ mov(c_rarg0, obj_reg);
1848     __ mov(r12, rsp); // remember sp
1849     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1850     __ andptr(rsp, -16); // align stack as required by ABI
1851 
1852     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1853     // NOTE that obj_reg == rbx currently
1854     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
1855     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1856 
1857     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1858     __ mov(rsp, r12); // restore sp
1859     __ reinit_heapbase();
1860 #ifdef ASSERT
1861     {
1862       Label L;
1863       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1864       __ jcc(Assembler::equal, L);
1865       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1866       __ bind(L);
1867     }
1868 #endif /* ASSERT */
1869 
1870     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
1871 
1872     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1873       restore_native_result(masm, ret_type, stack_slots);
1874     }
1875     __ jmp(unlock_done);
1876 
1877     // END Slow path unlock
1878 
1879   } // synchronized
1880 
1881   // SLOW PATH Reguard the stack if needed
1882 
1883   __ bind(reguard);
1884   save_native_result(masm, ret_type, stack_slots);
1885   __ mov(r12, rsp); // remember sp
1886   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1887   __ andptr(rsp, -16); // align stack as required by ABI
1888   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1889   __ mov(rsp, r12); // restore sp
1890   __ reinit_heapbase();
1891   restore_native_result(masm, ret_type, stack_slots);
1892   // and continue
1893   __ jmp(reguard_done);
1894 
1895 
1896 
1897   __ flush();
1898 
1899   nmethod *nm = nmethod::new_native_nmethod(method,
1900                                             masm->code(),
1901                                             vep_offset,
1902                                             frame_complete,
1903                                             stack_slots / VMRegImpl::slots_per_word,
1904                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1905                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1906                                             oop_maps);
1907   return nm;
1908 
1909 }
1910 
1911 #ifdef HAVE_DTRACE_H
1912 // ---------------------------------------------------------------------------
1913 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1914 // in the Java compiled code convention, marshals them to the native
1915 // abi and then leaves nops at the position you would expect to call a native
1916 // function. When the probe is enabled the nops are replaced with a trap
1917 // instruction that dtrace inserts and the trace will cause a notification
1918 // to dtrace.
1919 //
1920 // The probes are only able to take primitive types and java/lang/String as
1921 // arguments.  No other java types are allowed. Strings are converted to utf8
1922 // strings so that from dtrace point of view java strings are converted to C
1923 // strings. There is an arbitrary fixed limit on the total space that a method
1924 // can use for converting the strings. (256 chars per string in the signature).
1925 // So any java string larger then this is truncated.
1926 
1927 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
1928 static bool offsets_initialized = false;
1929 
1930 
1931 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
1932                                                 methodHandle method) {
1933 
1934 
1935   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1936   // be single threaded in this method.
1937   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1938 
1939   if (!offsets_initialized) {
1940     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
1941     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
1942     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
1943     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
1944     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
1945     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
1946 
1947     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
1948     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
1949     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
1950     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
1951     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
1952     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
1953     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
1954     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
1955 
1956     offsets_initialized = true;
1957   }
1958   // Fill in the signature array, for the calling-convention call.
1959   int total_args_passed = method->size_of_parameters();
1960 
1961   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1962   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1963 
1964   // The signature we are going to use for the trap that dtrace will see
1965   // java/lang/String is converted. We drop "this" and any other object
1966   // is converted to NULL.  (A one-slot java/lang/Long object reference
1967   // is converted to a two-slot long, which is why we double the allocation).
1968   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1969   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1970 
1971   int i=0;
1972   int total_strings = 0;
1973   int first_arg_to_pass = 0;
1974   int total_c_args = 0;
1975 
1976   // Skip the receiver as dtrace doesn't want to see it
1977   if( !method->is_static() ) {
1978     in_sig_bt[i++] = T_OBJECT;
1979     first_arg_to_pass = 1;
1980   }
1981 
1982   // We need to convert the java args to where a native (non-jni) function
1983   // would expect them. To figure out where they go we convert the java
1984   // signature to a C signature.
1985 
1986   SignatureStream ss(method->signature());
1987   for ( ; !ss.at_return_type(); ss.next()) {
1988     BasicType bt = ss.type();
1989     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1990     out_sig_bt[total_c_args++] = bt;
1991     if( bt == T_OBJECT) {
1992       symbolOop s = ss.as_symbol_or_null();
1993       if (s == vmSymbols::java_lang_String()) {
1994         total_strings++;
1995         out_sig_bt[total_c_args-1] = T_ADDRESS;
1996       } else if (s == vmSymbols::java_lang_Boolean() ||
1997                  s == vmSymbols::java_lang_Character() ||
1998                  s == vmSymbols::java_lang_Byte() ||
1999                  s == vmSymbols::java_lang_Short() ||
2000                  s == vmSymbols::java_lang_Integer() ||
2001                  s == vmSymbols::java_lang_Float()) {
2002         out_sig_bt[total_c_args-1] = T_INT;
2003       } else if (s == vmSymbols::java_lang_Long() ||
2004                  s == vmSymbols::java_lang_Double()) {
2005         out_sig_bt[total_c_args-1] = T_LONG;
2006         out_sig_bt[total_c_args++] = T_VOID;
2007       }
2008     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2009       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2010       // We convert double to long
2011       out_sig_bt[total_c_args-1] = T_LONG;
2012       out_sig_bt[total_c_args++] = T_VOID;
2013     } else if ( bt == T_FLOAT) {
2014       // We convert float to int
2015       out_sig_bt[total_c_args-1] = T_INT;
2016     }
2017   }
2018 
2019   assert(i==total_args_passed, "validly parsed signature");
2020 
2021   // Now get the compiled-Java layout as input arguments
2022   int comp_args_on_stack;
2023   comp_args_on_stack = SharedRuntime::java_calling_convention(
2024       in_sig_bt, in_regs, total_args_passed, false);
2025 
2026   // Now figure out where the args must be stored and how much stack space
2027   // they require (neglecting out_preserve_stack_slots but space for storing
2028   // the 1st six register arguments). It's weird see int_stk_helper.
2029 
2030   int out_arg_slots;
2031   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2032 
2033   // Calculate the total number of stack slots we will need.
2034 
2035   // First count the abi requirement plus all of the outgoing args
2036   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2037 
2038   // Now space for the string(s) we must convert
2039   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2040   for (i = 0; i < total_strings ; i++) {
2041     string_locs[i] = stack_slots;
2042     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2043   }
2044 
2045   // Plus the temps we might need to juggle register args
2046   // regs take two slots each
2047   stack_slots += (Argument::n_int_register_parameters_c +
2048                   Argument::n_float_register_parameters_c) * 2;
2049 
2050 
2051   // + 4 for return address (which we own) and saved rbp,
2052 
2053   stack_slots += 4;
2054 
2055   // Ok The space we have allocated will look like:
2056   //
2057   //
2058   // FP-> |                     |
2059   //      |---------------------|
2060   //      | string[n]           |
2061   //      |---------------------| <- string_locs[n]
2062   //      | string[n-1]         |
2063   //      |---------------------| <- string_locs[n-1]
2064   //      | ...                 |
2065   //      | ...                 |
2066   //      |---------------------| <- string_locs[1]
2067   //      | string[0]           |
2068   //      |---------------------| <- string_locs[0]
2069   //      | outbound memory     |
2070   //      | based arguments     |
2071   //      |                     |
2072   //      |---------------------|
2073   //      |                     |
2074   // SP-> | out_preserved_slots |
2075   //
2076   //
2077 
2078   // Now compute actual number of stack words we need rounding to make
2079   // stack properly aligned.
2080   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2081 
2082   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2083 
2084   intptr_t start = (intptr_t)__ pc();
2085 
2086   // First thing make an ic check to see if we should even be here
2087 
2088   // We are free to use all registers as temps without saving them and
2089   // restoring them except rbp. rbp, is the only callee save register
2090   // as far as the interpreter and the compiler(s) are concerned.
2091 
2092   const Register ic_reg = rax;
2093   const Register receiver = rcx;
2094   Label hit;
2095   Label exception_pending;
2096 
2097 
2098   __ verify_oop(receiver);
2099   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2100   __ jcc(Assembler::equal, hit);
2101 
2102   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2103 
2104   // verified entry must be aligned for code patching.
2105   // and the first 5 bytes must be in the same cache line
2106   // if we align at 8 then we will be sure 5 bytes are in the same line
2107   __ align(8);
2108 
2109   __ bind(hit);
2110 
2111   int vep_offset = ((intptr_t)__ pc()) - start;
2112 
2113 
2114   // The instruction at the verified entry point must be 5 bytes or longer
2115   // because it can be patched on the fly by make_non_entrant. The stack bang
2116   // instruction fits that requirement.
2117 
2118   // Generate stack overflow check
2119 
2120   if (UseStackBanging) {
2121     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2122       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2123     } else {
2124       __ movl(rax, stack_size);
2125       __ bang_stack_size(rax, rbx);
2126     }
2127   } else {
2128     // need a 5 byte instruction to allow MT safe patching to non-entrant
2129     __ fat_nop();
2130   }
2131 
2132   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2133          "valid size for make_non_entrant");
2134 
2135   // Generate a new frame for the wrapper.
2136   __ enter();
2137 
2138   // -4 because return address is already present and so is saved rbp,
2139   if (stack_size - 2*wordSize != 0) {
2140     __ subq(rsp, stack_size - 2*wordSize);
2141   }
2142 
2143   // Frame is now completed as far a size and linkage.
2144 
2145   int frame_complete = ((intptr_t)__ pc()) - start;
2146 
2147   int c_arg, j_arg;
2148 
2149   // State of input register args
2150 
2151   bool  live[ConcreteRegisterImpl::number_of_registers];
2152 
2153   live[j_rarg0->as_VMReg()->value()] = false;
2154   live[j_rarg1->as_VMReg()->value()] = false;
2155   live[j_rarg2->as_VMReg()->value()] = false;
2156   live[j_rarg3->as_VMReg()->value()] = false;
2157   live[j_rarg4->as_VMReg()->value()] = false;
2158   live[j_rarg5->as_VMReg()->value()] = false;
2159 
2160   live[j_farg0->as_VMReg()->value()] = false;
2161   live[j_farg1->as_VMReg()->value()] = false;
2162   live[j_farg2->as_VMReg()->value()] = false;
2163   live[j_farg3->as_VMReg()->value()] = false;
2164   live[j_farg4->as_VMReg()->value()] = false;
2165   live[j_farg5->as_VMReg()->value()] = false;
2166   live[j_farg6->as_VMReg()->value()] = false;
2167   live[j_farg7->as_VMReg()->value()] = false;
2168 
2169 
2170   bool rax_is_zero = false;
2171 
2172   // All args (except strings) destined for the stack are moved first
2173   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2174        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2175     VMRegPair src = in_regs[j_arg];
2176     VMRegPair dst = out_regs[c_arg];
2177 
2178     // Get the real reg value or a dummy (rsp)
2179 
2180     int src_reg = src.first()->is_reg() ?
2181                   src.first()->value() :
2182                   rsp->as_VMReg()->value();
2183 
2184     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2185                     (in_sig_bt[j_arg] == T_OBJECT &&
2186                      out_sig_bt[c_arg] != T_INT &&
2187                      out_sig_bt[c_arg] != T_ADDRESS &&
2188                      out_sig_bt[c_arg] != T_LONG);
2189 
2190     live[src_reg] = !useless;
2191 
2192     if (dst.first()->is_stack()) {
2193 
2194       // Even though a string arg in a register is still live after this loop
2195       // after the string conversion loop (next) it will be dead so we take
2196       // advantage of that now for simpler code to manage live.
2197 
2198       live[src_reg] = false;
2199       switch (in_sig_bt[j_arg]) {
2200 
2201         case T_ARRAY:
2202         case T_OBJECT:
2203           {
2204             Address stack_dst(rsp, reg2offset_out(dst.first()));
2205 
2206             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2207               // need to unbox a one-word value
2208               Register in_reg = rax;
2209               if ( src.first()->is_reg() ) {
2210                 in_reg = src.first()->as_Register();
2211               } else {
2212                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2213                 rax_is_zero = false;
2214               }
2215               Label skipUnbox;
2216               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2217                         (int32_t)NULL_WORD);
2218               __ testq(in_reg, in_reg);
2219               __ jcc(Assembler::zero, skipUnbox);
2220 
2221               BasicType bt = out_sig_bt[c_arg];
2222               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2223               Address src1(in_reg, box_offset);
2224               if ( bt == T_LONG ) {
2225                 __ movq(in_reg,  src1);
2226                 __ movq(stack_dst, in_reg);
2227                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2228                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2229               } else {
2230                 __ movl(in_reg,  src1);
2231                 __ movl(stack_dst, in_reg);
2232               }
2233 
2234               __ bind(skipUnbox);
2235             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2236               // Convert the arg to NULL
2237               if (!rax_is_zero) {
2238                 __ xorq(rax, rax);
2239                 rax_is_zero = true;
2240               }
2241               __ movq(stack_dst, rax);
2242             }
2243           }
2244           break;
2245 
2246         case T_VOID:
2247           break;
2248 
2249         case T_FLOAT:
2250           // This does the right thing since we know it is destined for the
2251           // stack
2252           float_move(masm, src, dst);
2253           break;
2254 
2255         case T_DOUBLE:
2256           // This does the right thing since we know it is destined for the
2257           // stack
2258           double_move(masm, src, dst);
2259           break;
2260 
2261         case T_LONG :
2262           long_move(masm, src, dst);
2263           break;
2264 
2265         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2266 
2267         default:
2268           move32_64(masm, src, dst);
2269       }
2270     }
2271 
2272   }
2273 
2274   // If we have any strings we must store any register based arg to the stack
2275   // This includes any still live xmm registers too.
2276 
2277   int sid = 0;
2278 
2279   if (total_strings > 0 ) {
2280     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2281          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2282       VMRegPair src = in_regs[j_arg];
2283       VMRegPair dst = out_regs[c_arg];
2284 
2285       if (src.first()->is_reg()) {
2286         Address src_tmp(rbp, fp_offset[src.first()->value()]);
2287 
2288         // string oops were left untouched by the previous loop even if the
2289         // eventual (converted) arg is destined for the stack so park them
2290         // away now (except for first)
2291 
2292         if (out_sig_bt[c_arg] == T_ADDRESS) {
2293           Address utf8_addr = Address(
2294               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2295           if (sid != 1) {
2296             // The first string arg won't be killed until after the utf8
2297             // conversion
2298             __ movq(utf8_addr, src.first()->as_Register());
2299           }
2300         } else if (dst.first()->is_reg()) {
2301           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
2302 
2303             // Convert the xmm register to an int and store it in the reserved
2304             // location for the eventual c register arg
2305             XMMRegister f = src.first()->as_XMMRegister();
2306             if (in_sig_bt[j_arg] == T_FLOAT) {
2307               __ movflt(src_tmp, f);
2308             } else {
2309               __ movdbl(src_tmp, f);
2310             }
2311           } else {
2312             // If the arg is an oop type we don't support don't bother to store
2313             // it remember string was handled above.
2314             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2315                             (in_sig_bt[j_arg] == T_OBJECT &&
2316                              out_sig_bt[c_arg] != T_INT &&
2317                              out_sig_bt[c_arg] != T_LONG);
2318 
2319             if (!useless) {
2320               __ movq(src_tmp, src.first()->as_Register());
2321             }
2322           }
2323         }
2324       }
2325       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2326         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2327         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2328       }
2329     }
2330 
2331     // Now that the volatile registers are safe, convert all the strings
2332     sid = 0;
2333 
2334     for (j_arg = first_arg_to_pass, c_arg = 0 ;
2335          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2336       if (out_sig_bt[c_arg] == T_ADDRESS) {
2337         // It's a string
2338         Address utf8_addr = Address(
2339             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2340         // The first string we find might still be in the original java arg
2341         // register
2342 
2343         VMReg src = in_regs[j_arg].first();
2344 
2345         // We will need to eventually save the final argument to the trap
2346         // in the von-volatile location dedicated to src. This is the offset
2347         // from fp we will use.
2348         int src_off = src->is_reg() ?
2349             fp_offset[src->value()] : reg2offset_in(src);
2350 
2351         // This is where the argument will eventually reside
2352         VMRegPair dst = out_regs[c_arg];
2353 
2354         if (src->is_reg()) {
2355           if (sid == 1) {
2356             __ movq(c_rarg0, src->as_Register());
2357           } else {
2358             __ movq(c_rarg0, utf8_addr);
2359           }
2360         } else {
2361           // arg is still in the original location
2362           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
2363         }
2364         Label done, convert;
2365 
2366         // see if the oop is NULL
2367         __ testq(c_rarg0, c_rarg0);
2368         __ jcc(Assembler::notEqual, convert);
2369 
2370         if (dst.first()->is_reg()) {
2371           // Save the ptr to utf string in the origina src loc or the tmp
2372           // dedicated to it
2373           __ movq(Address(rbp, src_off), c_rarg0);
2374         } else {
2375           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
2376         }
2377         __ jmp(done);
2378 
2379         __ bind(convert);
2380 
2381         __ lea(c_rarg1, utf8_addr);
2382         if (dst.first()->is_reg()) {
2383           __ movq(Address(rbp, src_off), c_rarg1);
2384         } else {
2385           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
2386         }
2387         // And do the conversion
2388         __ call(RuntimeAddress(
2389                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
2390 
2391         __ bind(done);
2392       }
2393       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2394         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2395         ++c_arg; // skip over T_VOID to keep the loop indices in sync
2396       }
2397     }
2398     // The get_utf call killed all the c_arg registers
2399     live[c_rarg0->as_VMReg()->value()] = false;
2400     live[c_rarg1->as_VMReg()->value()] = false;
2401     live[c_rarg2->as_VMReg()->value()] = false;
2402     live[c_rarg3->as_VMReg()->value()] = false;
2403     live[c_rarg4->as_VMReg()->value()] = false;
2404     live[c_rarg5->as_VMReg()->value()] = false;
2405 
2406     live[c_farg0->as_VMReg()->value()] = false;
2407     live[c_farg1->as_VMReg()->value()] = false;
2408     live[c_farg2->as_VMReg()->value()] = false;
2409     live[c_farg3->as_VMReg()->value()] = false;
2410     live[c_farg4->as_VMReg()->value()] = false;
2411     live[c_farg5->as_VMReg()->value()] = false;
2412     live[c_farg6->as_VMReg()->value()] = false;
2413     live[c_farg7->as_VMReg()->value()] = false;
2414   }
2415 
2416   // Now we can finally move the register args to their desired locations
2417 
2418   rax_is_zero = false;
2419 
2420   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2421        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2422 
2423     VMRegPair src = in_regs[j_arg];
2424     VMRegPair dst = out_regs[c_arg];
2425 
2426     // Only need to look for args destined for the interger registers (since we
2427     // convert float/double args to look like int/long outbound)
2428     if (dst.first()->is_reg()) {
2429       Register r =  dst.first()->as_Register();
2430 
2431       // Check if the java arg is unsupported and thereofre useless
2432       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2433                       (in_sig_bt[j_arg] == T_OBJECT &&
2434                        out_sig_bt[c_arg] != T_INT &&
2435                        out_sig_bt[c_arg] != T_ADDRESS &&
2436                        out_sig_bt[c_arg] != T_LONG);
2437 
2438 
2439       // If we're going to kill an existing arg save it first
2440       if (live[dst.first()->value()]) {
2441         // you can't kill yourself
2442         if (src.first() != dst.first()) {
2443           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
2444         }
2445       }
2446       if (src.first()->is_reg()) {
2447         if (live[src.first()->value()] ) {
2448           if (in_sig_bt[j_arg] == T_FLOAT) {
2449             __ movdl(r, src.first()->as_XMMRegister());
2450           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
2451             __ movdq(r, src.first()->as_XMMRegister());
2452           } else if (r != src.first()->as_Register()) {
2453             if (!useless) {
2454               __ movq(r, src.first()->as_Register());
2455             }
2456           }
2457         } else {
2458           // If the arg is an oop type we don't support don't bother to store
2459           // it
2460           if (!useless) {
2461             if (in_sig_bt[j_arg] == T_DOUBLE ||
2462                 in_sig_bt[j_arg] == T_LONG  ||
2463                 in_sig_bt[j_arg] == T_OBJECT ) {
2464               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
2465             } else {
2466               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
2467             }
2468           }
2469         }
2470         live[src.first()->value()] = false;
2471       } else if (!useless) {
2472         // full sized move even for int should be ok
2473         __ movq(r, Address(rbp, reg2offset_in(src.first())));
2474       }
2475 
2476       // At this point r has the original java arg in the final location
2477       // (assuming it wasn't useless). If the java arg was an oop
2478       // we have a bit more to do
2479 
2480       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
2481         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2482           // need to unbox a one-word value
2483           Label skip;
2484           __ testq(r, r);
2485           __ jcc(Assembler::equal, skip);
2486           BasicType bt = out_sig_bt[c_arg];
2487           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2488           Address src1(r, box_offset);
2489           if ( bt == T_LONG ) {
2490             __ movq(r, src1);
2491           } else {
2492             __ movl(r, src1);
2493           }
2494           __ bind(skip);
2495 
2496         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2497           // Convert the arg to NULL
2498           __ xorq(r, r);
2499         }
2500       }
2501 
2502       // dst can longer be holding an input value
2503       live[dst.first()->value()] = false;
2504     }
2505     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2506       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2507       ++c_arg; // skip over T_VOID to keep the loop indices in sync
2508     }
2509   }
2510 
2511 
2512   // Ok now we are done. Need to place the nop that dtrace wants in order to
2513   // patch in the trap
2514   int patch_offset = ((intptr_t)__ pc()) - start;
2515 
2516   __ nop();
2517 
2518 
2519   // Return
2520 
2521   __ leave();
2522   __ ret(0);
2523 
2524   __ flush();
2525 
2526   nmethod *nm = nmethod::new_dtrace_nmethod(
2527       method, masm->code(), vep_offset, patch_offset, frame_complete,
2528       stack_slots / VMRegImpl::slots_per_word);
2529   return nm;
2530 
2531 }
2532 
2533 #endif // HAVE_DTRACE_H
2534 
2535 // this function returns the adjust size (in number of words) to a c2i adapter
2536 // activation for use during deoptimization
2537 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2538   return (callee_locals - callee_parameters) * Interpreter::stackElementWords();
2539 }
2540 
2541 
2542 uint SharedRuntime::out_preserve_stack_slots() {
2543   return 0;
2544 }
2545 
2546 
2547 //------------------------------generate_deopt_blob----------------------------
2548 void SharedRuntime::generate_deopt_blob() {
2549   // Allocate space for the code
2550   ResourceMark rm;
2551   // Setup code generation tools
2552   CodeBuffer buffer("deopt_blob", 2048, 1024);
2553   MacroAssembler* masm = new MacroAssembler(&buffer);
2554   int frame_size_in_words;
2555   OopMap* map = NULL;
2556   OopMapSet *oop_maps = new OopMapSet();
2557 
2558   // -------------
2559   // This code enters when returning to a de-optimized nmethod.  A return
2560   // address has been pushed on the the stack, and return values are in
2561   // registers.
2562   // If we are doing a normal deopt then we were called from the patched
2563   // nmethod from the point we returned to the nmethod. So the return
2564   // address on the stack is wrong by NativeCall::instruction_size
2565   // We will adjust the value so it looks like we have the original return
2566   // address on the stack (like when we eagerly deoptimized).
2567   // In the case of an exception pending when deoptimizing, we enter
2568   // with a return address on the stack that points after the call we patched
2569   // into the exception handler. We have the following register state from,
2570   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2571   //    rax: exception oop
2572   //    rbx: exception handler
2573   //    rdx: throwing pc
2574   // So in this case we simply jam rdx into the useless return address and
2575   // the stack looks just like we want.
2576   //
2577   // At this point we need to de-opt.  We save the argument return
2578   // registers.  We call the first C routine, fetch_unroll_info().  This
2579   // routine captures the return values and returns a structure which
2580   // describes the current frame size and the sizes of all replacement frames.
2581   // The current frame is compiled code and may contain many inlined
2582   // functions, each with their own JVM state.  We pop the current frame, then
2583   // push all the new frames.  Then we call the C routine unpack_frames() to
2584   // populate these frames.  Finally unpack_frames() returns us the new target
2585   // address.  Notice that callee-save registers are BLOWN here; they have
2586   // already been captured in the vframeArray at the time the return PC was
2587   // patched.
2588   address start = __ pc();
2589   Label cont;
2590 
2591   // Prolog for non exception case!
2592 
2593   // Save everything in sight.
2594   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2595 
2596   // Normal deoptimization.  Save exec mode for unpack_frames.
2597   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2598   __ jmp(cont);
2599 
2600   int reexecute_offset = __ pc() - start;
2601 
2602   // Reexecute case
2603   // return address is the pc describes what bci to do re-execute at
2604 
2605   // No need to update map as each call to save_live_registers will produce identical oopmap
2606   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2607 
2608   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2609   __ jmp(cont);
2610 
2611   int exception_offset = __ pc() - start;
2612 
2613   // Prolog for exception case
2614 
2615   // all registers are dead at this entry point, except for rax, and
2616   // rdx which contain the exception oop and exception pc
2617   // respectively.  Set them in TLS and fall thru to the
2618   // unpack_with_exception_in_tls entry point.
2619 
2620   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2621   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2622 
2623   int exception_in_tls_offset = __ pc() - start;
2624 
2625   // new implementation because exception oop is now passed in JavaThread
2626 
2627   // Prolog for exception case
2628   // All registers must be preserved because they might be used by LinearScan
2629   // Exceptiop oop and throwing PC are passed in JavaThread
2630   // tos: stack at point of call to method that threw the exception (i.e. only
2631   // args are on the stack, no return address)
2632 
2633   // make room on stack for the return address
2634   // It will be patched later with the throwing pc. The correct value is not
2635   // available now because loading it from memory would destroy registers.
2636   __ push(0);
2637 
2638   // Save everything in sight.
2639   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2640 
2641   // Now it is safe to overwrite any register
2642 
2643   // Deopt during an exception.  Save exec mode for unpack_frames.
2644   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2645 
2646   // load throwing pc from JavaThread and patch it as the return address
2647   // of the current frame. Then clear the field in JavaThread
2648 
2649   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2650   __ movptr(Address(rbp, wordSize), rdx);
2651   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2652 
2653 #ifdef ASSERT
2654   // verify that there is really an exception oop in JavaThread
2655   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2656   __ verify_oop(rax);
2657 
2658   // verify that there is no pending exception
2659   Label no_pending_exception;
2660   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2661   __ testptr(rax, rax);
2662   __ jcc(Assembler::zero, no_pending_exception);
2663   __ stop("must not have pending exception here");
2664   __ bind(no_pending_exception);
2665 #endif
2666 
2667   __ bind(cont);
2668 
2669   // Call C code.  Need thread and this frame, but NOT official VM entry
2670   // crud.  We cannot block on this call, no GC can happen.
2671   //
2672   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2673 
2674   // fetch_unroll_info needs to call last_java_frame().
2675 
2676   __ set_last_Java_frame(noreg, noreg, NULL);
2677 #ifdef ASSERT
2678   { Label L;
2679     __ cmpptr(Address(r15_thread,
2680                     JavaThread::last_Java_fp_offset()),
2681             (int32_t)0);
2682     __ jcc(Assembler::equal, L);
2683     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2684     __ bind(L);
2685   }
2686 #endif // ASSERT
2687   __ mov(c_rarg0, r15_thread);
2688   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2689 
2690   // Need to have an oopmap that tells fetch_unroll_info where to
2691   // find any register it might need.
2692   oop_maps->add_gc_map(__ pc() - start, map);
2693 
2694   __ reset_last_Java_frame(false, false);
2695 
2696   // Load UnrollBlock* into rdi
2697   __ mov(rdi, rax);
2698 
2699    Label noException;
2700   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2701   __ jcc(Assembler::notEqual, noException);
2702   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2703   // QQQ this is useless it was NULL above
2704   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2705   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2706   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2707 
2708   __ verify_oop(rax);
2709 
2710   // Overwrite the result registers with the exception results.
2711   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2712   // I think this is useless
2713   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2714 
2715   __ bind(noException);
2716 
2717   // Only register save data is on the stack.
2718   // Now restore the result registers.  Everything else is either dead
2719   // or captured in the vframeArray.
2720   RegisterSaver::restore_result_registers(masm);
2721 
2722   // All of the register save area has been popped of the stack. Only the
2723   // return address remains.
2724 
2725   // Pop all the frames we must move/replace.
2726   //
2727   // Frame picture (youngest to oldest)
2728   // 1: self-frame (no frame link)
2729   // 2: deopting frame  (no frame link)
2730   // 3: caller of deopting frame (could be compiled/interpreted).
2731   //
2732   // Note: by leaving the return address of self-frame on the stack
2733   // and using the size of frame 2 to adjust the stack
2734   // when we are done the return to frame 3 will still be on the stack.
2735 
2736   // Pop deoptimized frame
2737   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2738   __ addptr(rsp, rcx);
2739 
2740   // rsp should be pointing at the return address to the caller (3)
2741 
2742   // Stack bang to make sure there's enough room for these interpreter frames.
2743   if (UseStackBanging) {
2744     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2745     __ bang_stack_size(rbx, rcx);
2746   }
2747 
2748   // Load address of array of frame pcs into rcx
2749   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2750 
2751   // Trash the old pc
2752   __ addptr(rsp, wordSize);
2753 
2754   // Load address of array of frame sizes into rsi
2755   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2756 
2757   // Load counter into rdx
2758   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2759 
2760   // Pick up the initial fp we should save
2761   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2762 
2763   // Now adjust the caller's stack to make up for the extra locals
2764   // but record the original sp so that we can save it in the skeletal interpreter
2765   // frame and the stack walking of interpreter_sender will get the unextended sp
2766   // value and not the "real" sp value.
2767 
2768   const Register sender_sp = r8;
2769 
2770   __ mov(sender_sp, rsp);
2771   __ movl(rbx, Address(rdi,
2772                        Deoptimization::UnrollBlock::
2773                        caller_adjustment_offset_in_bytes()));
2774   __ subptr(rsp, rbx);
2775 
2776   // Push interpreter frames in a loop
2777   Label loop;
2778   __ bind(loop);
2779   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2780 #ifdef CC_INTERP
2781   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2782 #ifdef ASSERT
2783   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2784   __ push(0xDEADDEAD);
2785 #else /* ASSERT */
2786   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2787 #endif /* ASSERT */
2788 #else
2789   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2790 #endif // CC_INTERP
2791   __ pushptr(Address(rcx, 0));          // Save return address
2792   __ enter();                           // Save old & set new ebp
2793   __ subptr(rsp, rbx);                  // Prolog
2794 #ifdef CC_INTERP
2795   __ movptr(Address(rbp,
2796                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2797             sender_sp); // Make it walkable
2798 #else /* CC_INTERP */
2799   // This value is corrected by layout_activation_impl
2800   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2801   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2802 #endif /* CC_INTERP */
2803   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2804   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2805   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2806   __ decrementl(rdx);                   // Decrement counter
2807   __ jcc(Assembler::notZero, loop);
2808   __ pushptr(Address(rcx, 0));          // Save final return address
2809 
2810   // Re-push self-frame
2811   __ enter();                           // Save old & set new ebp
2812 
2813   // Allocate a full sized register save area.
2814   // Return address and rbp are in place, so we allocate two less words.
2815   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2816 
2817   // Restore frame locals after moving the frame
2818   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2819   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2820 
2821   // Call C code.  Need thread but NOT official VM entry
2822   // crud.  We cannot block on this call, no GC can happen.  Call should
2823   // restore return values to their stack-slots with the new SP.
2824   //
2825   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2826 
2827   // Use rbp because the frames look interpreted now
2828   __ set_last_Java_frame(noreg, rbp, NULL);
2829 
2830   __ mov(c_rarg0, r15_thread);
2831   __ movl(c_rarg1, r14); // second arg: exec_mode
2832   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2833 
2834   // Set an oopmap for the call site
2835   oop_maps->add_gc_map(__ pc() - start,
2836                        new OopMap( frame_size_in_words, 0 ));
2837 
2838   __ reset_last_Java_frame(true, false);
2839 
2840   // Collect return values
2841   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2842   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2843   // I think this is useless (throwing pc?)
2844   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2845 
2846   // Pop self-frame.
2847   __ leave();                           // Epilog
2848 
2849   // Jump to interpreter
2850   __ ret(0);
2851 
2852   // Make sure all code is generated
2853   masm->flush();
2854 
2855   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2856   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2857 }
2858 
2859 #ifdef COMPILER2
2860 //------------------------------generate_uncommon_trap_blob--------------------
2861 void SharedRuntime::generate_uncommon_trap_blob() {
2862   // Allocate space for the code
2863   ResourceMark rm;
2864   // Setup code generation tools
2865   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2866   MacroAssembler* masm = new MacroAssembler(&buffer);
2867 
2868   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2869 
2870   address start = __ pc();
2871 
2872   // Push self-frame.  We get here with a return address on the
2873   // stack, so rsp is 8-byte aligned until we allocate our frame.
2874   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
2875 
2876   // No callee saved registers. rbp is assumed implicitly saved
2877   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
2878 
2879   // compiler left unloaded_class_index in j_rarg0 move to where the
2880   // runtime expects it.
2881   __ movl(c_rarg1, j_rarg0);
2882 
2883   __ set_last_Java_frame(noreg, noreg, NULL);
2884 
2885   // Call C code.  Need thread but NOT official VM entry
2886   // crud.  We cannot block on this call, no GC can happen.  Call should
2887   // capture callee-saved registers as well as return values.
2888   // Thread is in rdi already.
2889   //
2890   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2891 
2892   __ mov(c_rarg0, r15_thread);
2893   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2894 
2895   // Set an oopmap for the call site
2896   OopMapSet* oop_maps = new OopMapSet();
2897   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2898 
2899   // location of rbp is known implicitly by the frame sender code
2900 
2901   oop_maps->add_gc_map(__ pc() - start, map);
2902 
2903   __ reset_last_Java_frame(false, false);
2904 
2905   // Load UnrollBlock* into rdi
2906   __ mov(rdi, rax);
2907 
2908   // Pop all the frames we must move/replace.
2909   //
2910   // Frame picture (youngest to oldest)
2911   // 1: self-frame (no frame link)
2912   // 2: deopting frame  (no frame link)
2913   // 3: caller of deopting frame (could be compiled/interpreted).
2914 
2915   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2916   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
2917 
2918   // Pop deoptimized frame (int)
2919   __ movl(rcx, Address(rdi,
2920                        Deoptimization::UnrollBlock::
2921                        size_of_deoptimized_frame_offset_in_bytes()));
2922   __ addptr(rsp, rcx);
2923 
2924   // rsp should be pointing at the return address to the caller (3)
2925 
2926   // Stack bang to make sure there's enough room for these interpreter frames.
2927   if (UseStackBanging) {
2928     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2929     __ bang_stack_size(rbx, rcx);
2930   }
2931 
2932   // Load address of array of frame pcs into rcx (address*)
2933   __ movptr(rcx,
2934             Address(rdi,
2935                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2936 
2937   // Trash the return pc
2938   __ addptr(rsp, wordSize);
2939 
2940   // Load address of array of frame sizes into rsi (intptr_t*)
2941   __ movptr(rsi, Address(rdi,
2942                          Deoptimization::UnrollBlock::
2943                          frame_sizes_offset_in_bytes()));
2944 
2945   // Counter
2946   __ movl(rdx, Address(rdi,
2947                        Deoptimization::UnrollBlock::
2948                        number_of_frames_offset_in_bytes())); // (int)
2949 
2950   // Pick up the initial fp we should save
2951   __ movptr(rbp,
2952             Address(rdi,
2953                     Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2954 
2955   // Now adjust the caller's stack to make up for the extra locals but
2956   // record the original sp so that we can save it in the skeletal
2957   // interpreter frame and the stack walking of interpreter_sender
2958   // will get the unextended sp value and not the "real" sp value.
2959 
2960   const Register sender_sp = r8;
2961 
2962   __ mov(sender_sp, rsp);
2963   __ movl(rbx, Address(rdi,
2964                        Deoptimization::UnrollBlock::
2965                        caller_adjustment_offset_in_bytes())); // (int)
2966   __ subptr(rsp, rbx);
2967 
2968   // Push interpreter frames in a loop
2969   Label loop;
2970   __ bind(loop);
2971   __ movptr(rbx, Address(rsi, 0)); // Load frame size
2972   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
2973   __ pushptr(Address(rcx, 0));     // Save return address
2974   __ enter();                      // Save old & set new rbp
2975   __ subptr(rsp, rbx);             // Prolog
2976 #ifdef CC_INTERP
2977   __ movptr(Address(rbp,
2978                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2979             sender_sp); // Make it walkable
2980 #else // CC_INTERP
2981   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
2982             sender_sp);            // Make it walkable
2983   // This value is corrected by layout_activation_impl
2984   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2985 #endif // CC_INTERP
2986   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
2987   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
2988   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
2989   __ decrementl(rdx);              // Decrement counter
2990   __ jcc(Assembler::notZero, loop);
2991   __ pushptr(Address(rcx, 0));     // Save final return address
2992 
2993   // Re-push self-frame
2994   __ enter();                 // Save old & set new rbp
2995   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
2996                               // Prolog
2997 
2998   // Use rbp because the frames look interpreted now
2999   __ set_last_Java_frame(noreg, rbp, NULL);
3000 
3001   // Call C code.  Need thread but NOT official VM entry
3002   // crud.  We cannot block on this call, no GC can happen.  Call should
3003   // restore return values to their stack-slots with the new SP.
3004   // Thread is in rdi already.
3005   //
3006   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3007 
3008   __ mov(c_rarg0, r15_thread);
3009   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3010   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3011 
3012   // Set an oopmap for the call site
3013   oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3014 
3015   __ reset_last_Java_frame(true, false);
3016 
3017   // Pop self-frame.
3018   __ leave();                 // Epilog
3019 
3020   // Jump to interpreter
3021   __ ret(0);
3022 
3023   // Make sure all code is generated
3024   masm->flush();
3025 
3026   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3027                                                  SimpleRuntimeFrame::framesize >> 1);
3028 }
3029 #endif // COMPILER2
3030 
3031 
3032 //------------------------------generate_handler_blob------
3033 //
3034 // Generate a special Compile2Runtime blob that saves all registers,
3035 // and setup oopmap.
3036 //
3037 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
3038   assert(StubRoutines::forward_exception_entry() != NULL,
3039          "must be generated before");
3040 
3041   ResourceMark rm;
3042   OopMapSet *oop_maps = new OopMapSet();
3043   OopMap* map;
3044 
3045   // Allocate space for the code.  Setup code generation tools.
3046   CodeBuffer buffer("handler_blob", 2048, 1024);
3047   MacroAssembler* masm = new MacroAssembler(&buffer);
3048 
3049   address start   = __ pc();
3050   address call_pc = NULL;
3051   int frame_size_in_words;
3052 
3053   // Make room for return address (or push it again)
3054   if (!cause_return) {
3055     __ push(rbx);
3056   }
3057 
3058   // Save registers, fpu state, and flags
3059   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3060 
3061   // The following is basically a call_VM.  However, we need the precise
3062   // address of the call in order to generate an oopmap. Hence, we do all the
3063   // work outselves.
3064 
3065   __ set_last_Java_frame(noreg, noreg, NULL);
3066 
3067   // The return address must always be correct so that frame constructor never
3068   // sees an invalid pc.
3069 
3070   if (!cause_return) {
3071     // overwrite the dummy value we pushed on entry
3072     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3073     __ movptr(Address(rbp, wordSize), c_rarg0);
3074   }
3075 
3076   // Do the call
3077   __ mov(c_rarg0, r15_thread);
3078   __ call(RuntimeAddress(call_ptr));
3079 
3080   // Set an oopmap for the call site.  This oopmap will map all
3081   // oop-registers and debug-info registers as callee-saved.  This
3082   // will allow deoptimization at this safepoint to find all possible
3083   // debug-info recordings, as well as let GC find all oops.
3084 
3085   oop_maps->add_gc_map( __ pc() - start, map);
3086 
3087   Label noException;
3088 
3089   __ reset_last_Java_frame(false, false);
3090 
3091   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3092   __ jcc(Assembler::equal, noException);
3093 
3094   // Exception pending
3095 
3096   RegisterSaver::restore_live_registers(masm);
3097 
3098   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3099 
3100   // No exception case
3101   __ bind(noException);
3102 
3103   // Normal exit, restore registers and exit.
3104   RegisterSaver::restore_live_registers(masm);
3105 
3106   __ ret(0);
3107 
3108   // Make sure all code is generated
3109   masm->flush();
3110 
3111   // Fill-out other meta info
3112   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3113 }
3114 
3115 //
3116 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3117 //
3118 // Generate a stub that calls into vm to find out the proper destination
3119 // of a java call. All the argument registers are live at this point
3120 // but since this is generic code we don't know what they are and the caller
3121 // must do any gc of the args.
3122 //
3123 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
3124   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3125 
3126   // allocate space for the code
3127   ResourceMark rm;
3128 
3129   CodeBuffer buffer(name, 1000, 512);
3130   MacroAssembler* masm                = new MacroAssembler(&buffer);
3131 
3132   int frame_size_in_words;
3133 
3134   OopMapSet *oop_maps = new OopMapSet();
3135   OopMap* map = NULL;
3136 
3137   int start = __ offset();
3138 
3139   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3140 
3141   int frame_complete = __ offset();
3142 
3143   __ set_last_Java_frame(noreg, noreg, NULL);
3144 
3145   __ mov(c_rarg0, r15_thread);
3146 
3147   __ call(RuntimeAddress(destination));
3148 
3149 
3150   // Set an oopmap for the call site.
3151   // We need this not only for callee-saved registers, but also for volatile
3152   // registers that the compiler might be keeping live across a safepoint.
3153 
3154   oop_maps->add_gc_map( __ offset() - start, map);
3155 
3156   // rax contains the address we are going to jump to assuming no exception got installed
3157 
3158   // clear last_Java_sp
3159   __ reset_last_Java_frame(false, false);
3160   // check for pending exceptions
3161   Label pending;
3162   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3163   __ jcc(Assembler::notEqual, pending);
3164 
3165   // get the returned methodOop
3166   __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
3167   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3168 
3169   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3170 
3171   RegisterSaver::restore_live_registers(masm);
3172 
3173   // We are back the the original state on entry and ready to go.
3174 
3175   __ jmp(rax);
3176 
3177   // Pending exception after the safepoint
3178 
3179   __ bind(pending);
3180 
3181   RegisterSaver::restore_live_registers(masm);
3182 
3183   // exception pending => remove activation and forward to exception handler
3184 
3185   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3186 
3187   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3188   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3189 
3190   // -------------
3191   // make sure all code is generated
3192   masm->flush();
3193 
3194   // return the  blob
3195   // frame_size_words or bytes??
3196   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3197 }
3198 
3199 
3200 void SharedRuntime::generate_stubs() {
3201 
3202   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3203                                         "wrong_method_stub");
3204   _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3205                                         "ic_miss_stub");
3206   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3207                                         "resolve_opt_virtual_call");
3208 
3209   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3210                                         "resolve_virtual_call");
3211 
3212   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3213                                         "resolve_static_call");
3214   _polling_page_safepoint_handler_blob =
3215     generate_handler_blob(CAST_FROM_FN_PTR(address,
3216                    SafepointSynchronize::handle_polling_page_exception), false);
3217 
3218   _polling_page_return_handler_blob =
3219     generate_handler_blob(CAST_FROM_FN_PTR(address,
3220                    SafepointSynchronize::handle_polling_page_exception), true);
3221 
3222   generate_deopt_blob();
3223 
3224 #ifdef COMPILER2
3225   generate_uncommon_trap_blob();
3226 #endif // COMPILER2
3227 }
3228 
3229 
3230 #ifdef COMPILER2
3231 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3232 //
3233 //------------------------------generate_exception_blob---------------------------
3234 // creates exception blob at the end
3235 // Using exception blob, this code is jumped from a compiled method.
3236 // (see emit_exception_handler in x86_64.ad file)
3237 //
3238 // Given an exception pc at a call we call into the runtime for the
3239 // handler in this method. This handler might merely restore state
3240 // (i.e. callee save registers) unwind the frame and jump to the
3241 // exception handler for the nmethod if there is no Java level handler
3242 // for the nmethod.
3243 //
3244 // This code is entered with a jmp.
3245 //
3246 // Arguments:
3247 //   rax: exception oop
3248 //   rdx: exception pc
3249 //
3250 // Results:
3251 //   rax: exception oop
3252 //   rdx: exception pc in caller or ???
3253 //   destination: exception handler of caller
3254 //
3255 // Note: the exception pc MUST be at a call (precise debug information)
3256 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3257 //
3258 
3259 void OptoRuntime::generate_exception_blob() {
3260   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3261   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3262   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3263 
3264   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3265 
3266   // Allocate space for the code
3267   ResourceMark rm;
3268   // Setup code generation tools
3269   CodeBuffer buffer("exception_blob", 2048, 1024);
3270   MacroAssembler* masm = new MacroAssembler(&buffer);
3271 
3272 
3273   address start = __ pc();
3274 
3275   // Exception pc is 'return address' for stack walker
3276   __ push(rdx);
3277   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3278 
3279   // Save callee-saved registers.  See x86_64.ad.
3280 
3281   // rbp is an implicitly saved callee saved register (i.e. the calling
3282   // convention will save restore it in prolog/epilog) Other than that
3283   // there are no callee save registers now that adapter frames are gone.
3284 
3285   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3286 
3287   // Store exception in Thread object. We cannot pass any arguments to the
3288   // handle_exception call, since we do not want to make any assumption
3289   // about the size of the frame where the exception happened in.
3290   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3291   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3292   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3293 
3294   // This call does all the hard work.  It checks if an exception handler
3295   // exists in the method.
3296   // If so, it returns the handler address.
3297   // If not, it prepares for stack-unwinding, restoring the callee-save
3298   // registers of the frame being removed.
3299   //
3300   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3301 
3302   __ set_last_Java_frame(noreg, noreg, NULL);
3303   __ mov(c_rarg0, r15_thread);
3304   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3305 
3306   // Set an oopmap for the call site.  This oopmap will only be used if we
3307   // are unwinding the stack.  Hence, all locations will be dead.
3308   // Callee-saved registers will be the same as the frame above (i.e.,
3309   // handle_exception_stub), since they were restored when we got the
3310   // exception.
3311 
3312   OopMapSet* oop_maps = new OopMapSet();
3313 
3314   oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3315 
3316   __ reset_last_Java_frame(false, false);
3317 
3318   // Restore callee-saved registers
3319 
3320   // rbp is an implicitly saved callee saved register (i.e. the calling
3321   // convention will save restore it in prolog/epilog) Other than that
3322   // there are no callee save registers no that adapter frames are gone.
3323 
3324   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3325 
3326   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3327   __ pop(rdx);                  // No need for exception pc anymore
3328 
3329   // rax: exception handler
3330 
3331   // Restore SP from BP if the exception PC is a MethodHandle call.
3332   __ cmpl(Address(r15_thread, JavaThread::is_method_handle_exception_offset()), 0);
3333   __ cmovptr(Assembler::notEqual, rsp, rbp);
3334 
3335   // We have a handler in rax (could be deopt blob).
3336   __ mov(r8, rax);
3337 
3338   // Get the exception oop
3339   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3340   // Get the exception pc in case we are deoptimized
3341   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3342 #ifdef ASSERT
3343   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
3344   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
3345 #endif
3346   // Clear the exception oop so GC no longer processes it as a root.
3347   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
3348 
3349   // rax: exception oop
3350   // r8:  exception handler
3351   // rdx: exception pc
3352   // Jump to handler
3353 
3354   __ jmp(r8);
3355 
3356   // Make sure all code is generated
3357   masm->flush();
3358 
3359   // Set exception blob
3360   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3361 }
3362 #endif // COMPILER2