1 //
   2 // Copyright 1998-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 // Macros to extract hi & lo halves from a long pair.
 464 // G0 is not part of any long pair, so assert on that.
 465 // Prevents accidentally using G1 instead of G0.
 466 #define LONG_HI_REG(x) (x)
 467 #define LONG_LO_REG(x) (x)
 468 
 469 %}
 470 
 471 source %{
 472 #define __ _masm.
 473 
 474 // tertiary op of a LoadP or StoreP encoding
 475 #define REGP_OP true
 476 
 477 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 478 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 479 static Register reg_to_register_object(int register_encoding);
 480 
 481 // Used by the DFA in dfa_sparc.cpp.
 482 // Check for being able to use a V9 branch-on-register.  Requires a
 483 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 484 // extended.  Doesn't work following an integer ADD, for example, because of
 485 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 486 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 487 // replace them with zero, which could become sign-extension in a different OS
 488 // release.  There's no obvious reason why an interrupt will ever fill these
 489 // bits with non-zero junk (the registers are reloaded with standard LD
 490 // instructions which either zero-fill or sign-fill).
 491 bool can_branch_register( Node *bol, Node *cmp ) {
 492   if( !BranchOnRegister ) return false;
 493 #ifdef _LP64
 494   if( cmp->Opcode() == Op_CmpP )
 495     return true;  // No problems with pointer compares
 496 #endif
 497   if( cmp->Opcode() == Op_CmpL )
 498     return true;  // No problems with long compares
 499 
 500   if( !SparcV9RegsHiBitsZero ) return false;
 501   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 502       bol->as_Bool()->_test._test != BoolTest::eq )
 503      return false;
 504 
 505   // Check for comparing against a 'safe' value.  Any operation which
 506   // clears out the high word is safe.  Thus, loads and certain shifts
 507   // are safe, as are non-negative constants.  Any operation which
 508   // preserves zero bits in the high word is safe as long as each of its
 509   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 510   // inputs are safe.  At present, the only important case to recognize
 511   // seems to be loads.  Constants should fold away, and shifts &
 512   // logicals can use the 'cc' forms.
 513   Node *x = cmp->in(1);
 514   if( x->is_Load() ) return true;
 515   if( x->is_Phi() ) {
 516     for( uint i = 1; i < x->req(); i++ )
 517       if( !x->in(i)->is_Load() )
 518         return false;
 519     return true;
 520   }
 521   return false;
 522 }
 523 
 524 // ****************************************************************************
 525 
 526 // REQUIRED FUNCTIONALITY
 527 
 528 // !!!!! Special hack to get all type of calls to specify the byte offset
 529 //       from the start of the call to the point where the return address
 530 //       will point.
 531 //       The "return address" is the address of the call instruction, plus 8.
 532 
 533 int MachCallStaticJavaNode::ret_addr_offset() {
 534   return NativeCall::instruction_size;  // call; delay slot
 535 }
 536 
 537 int MachCallDynamicJavaNode::ret_addr_offset() {
 538   int vtable_index = this->_vtable_index;
 539   if (vtable_index < 0) {
 540     // must be invalid_vtable_index, not nonvirtual_vtable_index
 541     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 542     return (NativeMovConstReg::instruction_size +
 543            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 544   } else {
 545     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 546     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 547     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 548     int klass_load_size;
 549     if (UseCompressedOops) {
 550       assert(Universe::heap() != NULL, "java heap should be initialized");
 551       if (Universe::narrow_oop_base() == NULL)
 552         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 553       else
 554         klass_load_size = 3*BytesPerInstWord;
 555     } else {
 556       klass_load_size = 1*BytesPerInstWord;
 557     }
 558     if( Assembler::is_simm13(v_off) ) {
 559       return klass_load_size +
 560              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 561              NativeCall::instruction_size);  // call; delay slot
 562     } else {
 563       return klass_load_size +
 564              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 565              NativeCall::instruction_size);  // call; delay slot
 566     }
 567   }
 568 }
 569 
 570 int MachCallRuntimeNode::ret_addr_offset() {
 571 #ifdef _LP64
 572   return NativeFarCall::instruction_size;  // farcall; delay slot
 573 #else
 574   return NativeCall::instruction_size;  // call; delay slot
 575 #endif
 576 }
 577 
 578 // Indicate if the safepoint node needs the polling page as an input.
 579 // Since Sparc does not have absolute addressing, it does.
 580 bool SafePointNode::needs_polling_address_input() {
 581   return true;
 582 }
 583 
 584 // emit an interrupt that is caught by the debugger (for debugging compiler)
 585 void emit_break(CodeBuffer &cbuf) {
 586   MacroAssembler _masm(&cbuf);
 587   __ breakpoint_trap();
 588 }
 589 
 590 #ifndef PRODUCT
 591 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 592   st->print("TA");
 593 }
 594 #endif
 595 
 596 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 597   emit_break(cbuf);
 598 }
 599 
 600 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 601   return MachNode::size(ra_);
 602 }
 603 
 604 // Traceable jump
 605 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 606   MacroAssembler _masm(&cbuf);
 607   Register rdest = reg_to_register_object(jump_target);
 608   __ JMP(rdest, 0);
 609   __ delayed()->nop();
 610 }
 611 
 612 // Traceable jump and set exception pc
 613 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 614   MacroAssembler _masm(&cbuf);
 615   Register rdest = reg_to_register_object(jump_target);
 616   __ JMP(rdest, 0);
 617   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 618 }
 619 
 620 void emit_nop(CodeBuffer &cbuf) {
 621   MacroAssembler _masm(&cbuf);
 622   __ nop();
 623 }
 624 
 625 void emit_illtrap(CodeBuffer &cbuf) {
 626   MacroAssembler _masm(&cbuf);
 627   __ illtrap(0);
 628 }
 629 
 630 
 631 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 632   assert(n->rule() != loadUB_rule, "");
 633 
 634   intptr_t offset = 0;
 635   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 636   const Node* addr = n->get_base_and_disp(offset, adr_type);
 637   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 638   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 639   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 640   atype = atype->add_offset(offset);
 641   assert(disp32 == offset, "wrong disp32");
 642   return atype->_offset;
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   Node* addr = n->in(2);
 651   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 652   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 653     Node* a = addr->in(2/*AddPNode::Address*/);
 654     Node* o = addr->in(3/*AddPNode::Offset*/);
 655     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 656     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 657     assert(atype->isa_oop_ptr(), "still an oop");
 658   }
 659   offset = atype->is_ptr()->_offset;
 660   if (offset != Type::OffsetBot)  offset += disp32;
 661   return offset;
 662 }
 663 
 664 // Standard Sparc opcode form2 field breakdown
 665 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 666   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 667   int op = (f30 << 30) |
 668            (f29 << 29) |
 669            (f25 << 25) |
 670            (f22 << 22) |
 671            (f20 << 20) |
 672            (f19 << 19) |
 673            (f0  <<  0);
 674   *((int*)(cbuf.code_end())) = op;
 675   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 676 }
 677 
 678 // Standard Sparc opcode form2 field breakdown
 679 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 680   f0 >>= 10;           // Drop 10 bits
 681   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 682   int op = (f30 << 30) |
 683            (f25 << 25) |
 684            (f22 << 22) |
 685            (f0  <<  0);
 686   *((int*)(cbuf.code_end())) = op;
 687   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 688 }
 689 
 690 // Standard Sparc opcode form3 field breakdown
 691 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 692   int op = (f30 << 30) |
 693            (f25 << 25) |
 694            (f19 << 19) |
 695            (f14 << 14) |
 696            (f5  <<  5) |
 697            (f0  <<  0);
 698   *((int*)(cbuf.code_end())) = op;
 699   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 700 }
 701 
 702 // Standard Sparc opcode form3 field breakdown
 703 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 704   simm13 &= (1<<13)-1; // Mask to 13 bits
 705   int op = (f30 << 30) |
 706            (f25 << 25) |
 707            (f19 << 19) |
 708            (f14 << 14) |
 709            (1   << 13) | // bit to indicate immediate-mode
 710            (simm13<<0);
 711   *((int*)(cbuf.code_end())) = op;
 712   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 713 }
 714 
 715 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 716   simm10 &= (1<<10)-1; // Mask to 10 bits
 717   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 718 }
 719 
 720 #ifdef ASSERT
 721 // Helper function for VerifyOops in emit_form3_mem_reg
 722 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 723   warning("VerifyOops encountered unexpected instruction:");
 724   n->dump(2);
 725   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 726 }
 727 #endif
 728 
 729 
 730 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 731                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 732 
 733 #ifdef ASSERT
 734   // The following code implements the +VerifyOops feature.
 735   // It verifies oop values which are loaded into or stored out of
 736   // the current method activation.  +VerifyOops complements techniques
 737   // like ScavengeALot, because it eagerly inspects oops in transit,
 738   // as they enter or leave the stack, as opposed to ScavengeALot,
 739   // which inspects oops "at rest", in the stack or heap, at safepoints.
 740   // For this reason, +VerifyOops can sometimes detect bugs very close
 741   // to their point of creation.  It can also serve as a cross-check
 742   // on the validity of oop maps, when used toegether with ScavengeALot.
 743 
 744   // It would be good to verify oops at other points, especially
 745   // when an oop is used as a base pointer for a load or store.
 746   // This is presently difficult, because it is hard to know when
 747   // a base address is biased or not.  (If we had such information,
 748   // it would be easy and useful to make a two-argument version of
 749   // verify_oop which unbiases the base, and performs verification.)
 750 
 751   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 752   bool is_verified_oop_base  = false;
 753   bool is_verified_oop_load  = false;
 754   bool is_verified_oop_store = false;
 755   int tmp_enc = -1;
 756   if (VerifyOops && src1_enc != R_SP_enc) {
 757     // classify the op, mainly for an assert check
 758     int st_op = 0, ld_op = 0;
 759     switch (primary) {
 760     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 761     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 762     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 763     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 764     case Assembler::std_op3:  st_op = Op_StoreL; break;
 765     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 766     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 767 
 768     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 769     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 770     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 771     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 772     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 773     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 774     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 775     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 776     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 777     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
 778     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 779 
 780     default: ShouldNotReachHere();
 781     }
 782     if (tertiary == REGP_OP) {
 783       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 784       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 785       else                          ShouldNotReachHere();
 786       if (st_op) {
 787         // a store
 788         // inputs are (0:control, 1:memory, 2:address, 3:value)
 789         Node* n2 = n->in(3);
 790         if (n2 != NULL) {
 791           const Type* t = n2->bottom_type();
 792           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 793         }
 794       } else {
 795         // a load
 796         const Type* t = n->bottom_type();
 797         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 798       }
 799     }
 800 
 801     if (ld_op) {
 802       // a Load
 803       // inputs are (0:control, 1:memory, 2:address)
 804       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 805           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
 806           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 807           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 808           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 809           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 810           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 811           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 812           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 813           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 814           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 815           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 816           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 817           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 818           !(n->rule() == loadUB_rule)) {
 819         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 820       }
 821     } else if (st_op) {
 822       // a Store
 823       // inputs are (0:control, 1:memory, 2:address, 3:value)
 824       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 825           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 826           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 827           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 828           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 829           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 830         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 831       }
 832     }
 833 
 834     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 835       Node* addr = n->in(2);
 836       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 837         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 838         if (atype != NULL) {
 839           intptr_t offset = get_offset_from_base(n, atype, disp32);
 840           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 841           if (offset != offset_2) {
 842             get_offset_from_base(n, atype, disp32);
 843             get_offset_from_base_2(n, atype, disp32);
 844           }
 845           assert(offset == offset_2, "different offsets");
 846           if (offset == disp32) {
 847             // we now know that src1 is a true oop pointer
 848             is_verified_oop_base = true;
 849             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 850               if( primary == Assembler::ldd_op3 ) {
 851                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 852               } else {
 853                 tmp_enc = dst_enc;
 854                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 855                 assert(src1_enc != dst_enc, "");
 856               }
 857             }
 858           }
 859           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 860                        || offset == oopDesc::mark_offset_in_bytes())) {
 861                       // loading the mark should not be allowed either, but
 862                       // we don't check this since it conflicts with InlineObjectHash
 863                       // usage of LoadINode to get the mark. We could keep the
 864                       // check if we create a new LoadMarkNode
 865             // but do not verify the object before its header is initialized
 866             ShouldNotReachHere();
 867           }
 868         }
 869       }
 870     }
 871   }
 872 #endif
 873 
 874   uint instr;
 875   instr = (Assembler::ldst_op << 30)
 876         | (dst_enc        << 25)
 877         | (primary        << 19)
 878         | (src1_enc       << 14);
 879 
 880   uint index = src2_enc;
 881   int disp = disp32;
 882 
 883   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 884     disp += STACK_BIAS;
 885 
 886   // We should have a compiler bailout here rather than a guarantee.
 887   // Better yet would be some mechanism to handle variable-size matches correctly.
 888   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 889 
 890   if( disp == 0 ) {
 891     // use reg-reg form
 892     // bit 13 is already zero
 893     instr |= index;
 894   } else {
 895     // use reg-imm form
 896     instr |= 0x00002000;          // set bit 13 to one
 897     instr |= disp & 0x1FFF;
 898   }
 899 
 900   uint *code = (uint*)cbuf.code_end();
 901   *code = instr;
 902   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 903 
 904 #ifdef ASSERT
 905   {
 906     MacroAssembler _masm(&cbuf);
 907     if (is_verified_oop_base) {
 908       __ verify_oop(reg_to_register_object(src1_enc));
 909     }
 910     if (is_verified_oop_store) {
 911       __ verify_oop(reg_to_register_object(dst_enc));
 912     }
 913     if (tmp_enc != -1) {
 914       __ mov(O7, reg_to_register_object(tmp_enc));
 915     }
 916     if (is_verified_oop_load) {
 917       __ verify_oop(reg_to_register_object(dst_enc));
 918     }
 919   }
 920 #endif
 921 }
 922 
 923 void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 924                         int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) {
 925 
 926   uint instr;
 927   instr = (Assembler::ldst_op << 30)
 928         | (dst_enc        << 25)
 929         | (primary        << 19)
 930         | (src1_enc       << 14);
 931 
 932   int disp = disp32;
 933   int index    = src2_enc;
 934 
 935   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 936     disp += STACK_BIAS;
 937 
 938   // We should have a compiler bailout here rather than a guarantee.
 939   // Better yet would be some mechanism to handle variable-size matches correctly.
 940   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 941 
 942   if( disp != 0 ) {
 943     // use reg-reg form
 944     // set src2=R_O7 contains offset
 945     index = R_O7_enc;
 946     emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp);
 947   }
 948   instr |= (asi << 5);
 949   instr |= index;
 950   uint *code = (uint*)cbuf.code_end();
 951   *code = instr;
 952   cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
 953 }
 954 
 955 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
 956   // The method which records debug information at every safepoint
 957   // expects the call to be the first instruction in the snippet as
 958   // it creates a PcDesc structure which tracks the offset of a call
 959   // from the start of the codeBlob. This offset is computed as
 960   // code_end() - code_begin() of the code which has been emitted
 961   // so far.
 962   // In this particular case we have skirted around the problem by
 963   // putting the "mov" instruction in the delay slot but the problem
 964   // may bite us again at some other point and a cleaner/generic
 965   // solution using relocations would be needed.
 966   MacroAssembler _masm(&cbuf);
 967   __ set_inst_mark();
 968 
 969   // We flush the current window just so that there is a valid stack copy
 970   // the fact that the current window becomes active again instantly is
 971   // not a problem there is nothing live in it.
 972 
 973 #ifdef ASSERT
 974   int startpos = __ offset();
 975 #endif /* ASSERT */
 976 
 977 #ifdef _LP64
 978   // Calls to the runtime or native may not be reachable from compiled code,
 979   // so we generate the far call sequence on 64 bit sparc.
 980   // This code sequence is relocatable to any address, even on LP64.
 981   if ( force_far_call ) {
 982     __ relocate(rtype);
 983     AddressLiteral dest(entry_point);
 984     __ jumpl_to(dest, O7, O7);
 985   }
 986   else
 987 #endif
 988   {
 989      __ call((address)entry_point, rtype);
 990   }
 991 
 992   if (preserve_g2)   __ delayed()->mov(G2, L7);
 993   else __ delayed()->nop();
 994 
 995   if (preserve_g2)   __ mov(L7, G2);
 996 
 997 #ifdef ASSERT
 998   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 999 #ifdef _LP64
1000     // Trash argument dump slots.
1001     __ set(0xb0b8ac0db0b8ac0d, G1);
1002     __ mov(G1, G5);
1003     __ stx(G1, SP, STACK_BIAS + 0x80);
1004     __ stx(G1, SP, STACK_BIAS + 0x88);
1005     __ stx(G1, SP, STACK_BIAS + 0x90);
1006     __ stx(G1, SP, STACK_BIAS + 0x98);
1007     __ stx(G1, SP, STACK_BIAS + 0xA0);
1008     __ stx(G1, SP, STACK_BIAS + 0xA8);
1009 #else // _LP64
1010     // this is also a native call, so smash the first 7 stack locations,
1011     // and the various registers
1012 
1013     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1014     // while [SP+0x44..0x58] are the argument dump slots.
1015     __ set((intptr_t)0xbaadf00d, G1);
1016     __ mov(G1, G5);
1017     __ sllx(G1, 32, G1);
1018     __ or3(G1, G5, G1);
1019     __ mov(G1, G5);
1020     __ stx(G1, SP, 0x40);
1021     __ stx(G1, SP, 0x48);
1022     __ stx(G1, SP, 0x50);
1023     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1024 #endif // _LP64
1025   }
1026 #endif /*ASSERT*/
1027 }
1028 
1029 //=============================================================================
1030 // REQUIRED FUNCTIONALITY for encoding
1031 void emit_lo(CodeBuffer &cbuf, int val) {  }
1032 void emit_hi(CodeBuffer &cbuf, int val) {  }
1033 
1034 
1035 //=============================================================================
1036 
1037 #ifndef PRODUCT
1038 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1039   Compile* C = ra_->C;
1040 
1041   for (int i = 0; i < OptoPrologueNops; i++) {
1042     st->print_cr("NOP"); st->print("\t");
1043   }
1044 
1045   if( VerifyThread ) {
1046     st->print_cr("Verify_Thread"); st->print("\t");
1047   }
1048 
1049   size_t framesize = C->frame_slots() << LogBytesPerInt;
1050 
1051   // Calls to C2R adapters often do not accept exceptional returns.
1052   // We require that their callers must bang for them.  But be careful, because
1053   // some VM calls (such as call site linkage) can use several kilobytes of
1054   // stack.  But the stack safety zone should account for that.
1055   // See bugs 4446381, 4468289, 4497237.
1056   if (C->need_stack_bang(framesize)) {
1057     st->print_cr("! stack bang"); st->print("\t");
1058   }
1059 
1060   if (Assembler::is_simm13(-framesize)) {
1061     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1062   } else {
1063     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1064     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1065     st->print   ("SAVE   R_SP,R_G3,R_SP");
1066   }
1067 
1068 }
1069 #endif
1070 
1071 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1072   Compile* C = ra_->C;
1073   MacroAssembler _masm(&cbuf);
1074 
1075   for (int i = 0; i < OptoPrologueNops; i++) {
1076     __ nop();
1077   }
1078 
1079   __ verify_thread();
1080 
1081   size_t framesize = C->frame_slots() << LogBytesPerInt;
1082   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1083   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1084 
1085   // Calls to C2R adapters often do not accept exceptional returns.
1086   // We require that their callers must bang for them.  But be careful, because
1087   // some VM calls (such as call site linkage) can use several kilobytes of
1088   // stack.  But the stack safety zone should account for that.
1089   // See bugs 4446381, 4468289, 4497237.
1090   if (C->need_stack_bang(framesize)) {
1091     __ generate_stack_overflow_check(framesize);
1092   }
1093 
1094   if (Assembler::is_simm13(-framesize)) {
1095     __ save(SP, -framesize, SP);
1096   } else {
1097     __ sethi(-framesize & ~0x3ff, G3);
1098     __ add(G3, -framesize & 0x3ff, G3);
1099     __ save(SP, G3, SP);
1100   }
1101   C->set_frame_complete( __ offset() );
1102 }
1103 
1104 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1105   return MachNode::size(ra_);
1106 }
1107 
1108 int MachPrologNode::reloc() const {
1109   return 10; // a large enough number
1110 }
1111 
1112 //=============================================================================
1113 #ifndef PRODUCT
1114 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1115   Compile* C = ra_->C;
1116 
1117   if( do_polling() && ra_->C->is_method_compilation() ) {
1118     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1119 #ifdef _LP64
1120     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1121 #else
1122     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1123 #endif
1124   }
1125 
1126   if( do_polling() )
1127     st->print("RET\n\t");
1128 
1129   st->print("RESTORE");
1130 }
1131 #endif
1132 
1133 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1134   MacroAssembler _masm(&cbuf);
1135   Compile* C = ra_->C;
1136 
1137   __ verify_thread();
1138 
1139   // If this does safepoint polling, then do it here
1140   if( do_polling() && ra_->C->is_method_compilation() ) {
1141     AddressLiteral polling_page(os::get_polling_page());
1142     __ sethi(polling_page, L0);
1143     __ relocate(relocInfo::poll_return_type);
1144     __ ld_ptr( L0, 0, G0 );
1145   }
1146 
1147   // If this is a return, then stuff the restore in the delay slot
1148   if( do_polling() ) {
1149     __ ret();
1150     __ delayed()->restore();
1151   } else {
1152     __ restore();
1153   }
1154 }
1155 
1156 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1157   return MachNode::size(ra_);
1158 }
1159 
1160 int MachEpilogNode::reloc() const {
1161   return 16; // a large enough number
1162 }
1163 
1164 const Pipeline * MachEpilogNode::pipeline() const {
1165   return MachNode::pipeline_class();
1166 }
1167 
1168 int MachEpilogNode::safepoint_offset() const {
1169   assert( do_polling(), "no return for this epilog node");
1170   return MacroAssembler::size_of_sethi(os::get_polling_page());
1171 }
1172 
1173 //=============================================================================
1174 
1175 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1176 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1177 static enum RC rc_class( OptoReg::Name reg ) {
1178   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1179   if (OptoReg::is_stack(reg)) return rc_stack;
1180   VMReg r = OptoReg::as_VMReg(reg);
1181   if (r->is_Register()) return rc_int;
1182   assert(r->is_FloatRegister(), "must be");
1183   return rc_float;
1184 }
1185 
1186 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1187   if( cbuf ) {
1188     // Better yet would be some mechanism to handle variable-size matches correctly
1189     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1190       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1191     } else {
1192       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1193     }
1194   }
1195 #ifndef PRODUCT
1196   else if( !do_size ) {
1197     if( size != 0 ) st->print("\n\t");
1198     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1199     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1200   }
1201 #endif
1202   return size+4;
1203 }
1204 
1205 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1206   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1207 #ifndef PRODUCT
1208   else if( !do_size ) {
1209     if( size != 0 ) st->print("\n\t");
1210     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1211   }
1212 #endif
1213   return size+4;
1214 }
1215 
1216 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1217                                         PhaseRegAlloc *ra_,
1218                                         bool do_size,
1219                                         outputStream* st ) const {
1220   // Get registers to move
1221   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1222   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1223   OptoReg::Name dst_second = ra_->get_reg_second(this );
1224   OptoReg::Name dst_first = ra_->get_reg_first(this );
1225 
1226   enum RC src_second_rc = rc_class(src_second);
1227   enum RC src_first_rc = rc_class(src_first);
1228   enum RC dst_second_rc = rc_class(dst_second);
1229   enum RC dst_first_rc = rc_class(dst_first);
1230 
1231   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1232 
1233   // Generate spill code!
1234   int size = 0;
1235 
1236   if( src_first == dst_first && src_second == dst_second )
1237     return size;            // Self copy, no move
1238 
1239   // --------------------------------------
1240   // Check for mem-mem move.  Load into unused float registers and fall into
1241   // the float-store case.
1242   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1243     int offset = ra_->reg2offset(src_first);
1244     // Further check for aligned-adjacent pair, so we can use a double load
1245     if( (src_first&1)==0 && src_first+1 == src_second ) {
1246       src_second    = OptoReg::Name(R_F31_num);
1247       src_second_rc = rc_float;
1248       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1249     } else {
1250       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1251     }
1252     src_first    = OptoReg::Name(R_F30_num);
1253     src_first_rc = rc_float;
1254   }
1255 
1256   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1257     int offset = ra_->reg2offset(src_second);
1258     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1259     src_second    = OptoReg::Name(R_F31_num);
1260     src_second_rc = rc_float;
1261   }
1262 
1263   // --------------------------------------
1264   // Check for float->int copy; requires a trip through memory
1265   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
1266     int offset = frame::register_save_words*wordSize;
1267     if( cbuf ) {
1268       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1269       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1270       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1271       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1272     }
1273 #ifndef PRODUCT
1274     else if( !do_size ) {
1275       if( size != 0 ) st->print("\n\t");
1276       st->print(  "SUB    R_SP,16,R_SP\n");
1277       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1278       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1279       st->print("\tADD    R_SP,16,R_SP\n");
1280     }
1281 #endif
1282     size += 16;
1283   }
1284 
1285   // --------------------------------------
1286   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1287   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1288   // hardware does the flop for me.  Doubles are always aligned, so no problem
1289   // there.  Misaligned sources only come from native-long-returns (handled
1290   // special below).
1291 #ifndef _LP64
1292   if( src_first_rc == rc_int &&     // source is already big-endian
1293       src_second_rc != rc_bad &&    // 64-bit move
1294       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1295     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1296     // Do the big-endian flop.
1297     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1298     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1299   }
1300 #endif
1301 
1302   // --------------------------------------
1303   // Check for integer reg-reg copy
1304   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1305 #ifndef _LP64
1306     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1307       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1308       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1309       //       operand contains the least significant word of the 64-bit value and vice versa.
1310       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1311       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1312       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1313       if( cbuf ) {
1314         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1315         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1316         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1317 #ifndef PRODUCT
1318       } else if( !do_size ) {
1319         if( size != 0 ) st->print("\n\t");
1320         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1321         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1322         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1323 #endif
1324       }
1325       return size+12;
1326     }
1327     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1328       // returning a long value in I0/I1
1329       // a SpillCopy must be able to target a return instruction's reg_class
1330       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1331       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1332       //       operand contains the least significant word of the 64-bit value and vice versa.
1333       OptoReg::Name tdest = dst_first;
1334 
1335       if (src_first == dst_first) {
1336         tdest = OptoReg::Name(R_O7_num);
1337         size += 4;
1338       }
1339 
1340       if( cbuf ) {
1341         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1342         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1343         // ShrL_reg_imm6
1344         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1345         // ShrR_reg_imm6  src, 0, dst
1346         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1347         if (tdest != dst_first) {
1348           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1349         }
1350       }
1351 #ifndef PRODUCT
1352       else if( !do_size ) {
1353         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1354         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1355         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1356         if (tdest != dst_first) {
1357           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1358         }
1359       }
1360 #endif // PRODUCT
1361       return size+8;
1362     }
1363 #endif // !_LP64
1364     // Else normal reg-reg copy
1365     assert( src_second != dst_first, "smashed second before evacuating it" );
1366     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1367     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1368     // This moves an aligned adjacent pair.
1369     // See if we are done.
1370     if( src_first+1 == src_second && dst_first+1 == dst_second )
1371       return size;
1372   }
1373 
1374   // Check for integer store
1375   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1376     int offset = ra_->reg2offset(dst_first);
1377     // Further check for aligned-adjacent pair, so we can use a double store
1378     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1379       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1380     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1381   }
1382 
1383   // Check for integer load
1384   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1385     int offset = ra_->reg2offset(src_first);
1386     // Further check for aligned-adjacent pair, so we can use a double load
1387     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1388       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1389     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1390   }
1391 
1392   // Check for float reg-reg copy
1393   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1394     // Further check for aligned-adjacent pair, so we can use a double move
1395     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1396       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1397     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1398   }
1399 
1400   // Check for float store
1401   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1402     int offset = ra_->reg2offset(dst_first);
1403     // Further check for aligned-adjacent pair, so we can use a double store
1404     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1405       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1406     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1407   }
1408 
1409   // Check for float load
1410   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1411     int offset = ra_->reg2offset(src_first);
1412     // Further check for aligned-adjacent pair, so we can use a double load
1413     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1414       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1415     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1416   }
1417 
1418   // --------------------------------------------------------------------
1419   // Check for hi bits still needing moving.  Only happens for misaligned
1420   // arguments to native calls.
1421   if( src_second == dst_second )
1422     return size;               // Self copy; no move
1423   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1424 
1425 #ifndef _LP64
1426   // In the LP64 build, all registers can be moved as aligned/adjacent
1427   // pairs, so there's never any need to move the high bits separately.
1428   // The 32-bit builds have to deal with the 32-bit ABI which can force
1429   // all sorts of silly alignment problems.
1430 
1431   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1432   // 32-bits of a 64-bit register, but are needed in low bits of another
1433   // register (else it's a hi-bits-to-hi-bits copy which should have
1434   // happened already as part of a 64-bit move)
1435   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1436     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1437     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1438     // Shift src_second down to dst_second's low bits.
1439     if( cbuf ) {
1440       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1441 #ifndef PRODUCT
1442     } else if( !do_size ) {
1443       if( size != 0 ) st->print("\n\t");
1444       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1445 #endif
1446     }
1447     return size+4;
1448   }
1449 
1450   // Check for high word integer store.  Must down-shift the hi bits
1451   // into a temp register, then fall into the case of storing int bits.
1452   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1453     // Shift src_second down to dst_second's low bits.
1454     if( cbuf ) {
1455       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1456 #ifndef PRODUCT
1457     } else if( !do_size ) {
1458       if( size != 0 ) st->print("\n\t");
1459       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1460 #endif
1461     }
1462     size+=4;
1463     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1464   }
1465 
1466   // Check for high word integer load
1467   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1468     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1469 
1470   // Check for high word integer store
1471   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1472     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1473 
1474   // Check for high word float store
1475   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1476     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1477 
1478 #endif // !_LP64
1479 
1480   Unimplemented();
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1485   implementation( NULL, ra_, false, st );
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation( &cbuf, ra_, false, NULL );
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return implementation( NULL, ra_, true, NULL );
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1500   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1501 }
1502 #endif
1503 
1504 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1505   MacroAssembler _masm(&cbuf);
1506   for(int i = 0; i < _count; i += 1) {
1507     __ nop();
1508   }
1509 }
1510 
1511 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1512   return 4 * _count;
1513 }
1514 
1515 
1516 //=============================================================================
1517 #ifndef PRODUCT
1518 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1519   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1520   int reg = ra_->get_reg_first(this);
1521   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1522 }
1523 #endif
1524 
1525 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1526   MacroAssembler _masm(&cbuf);
1527   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1528   int reg = ra_->get_encode(this);
1529 
1530   if (Assembler::is_simm13(offset)) {
1531      __ add(SP, offset, reg_to_register_object(reg));
1532   } else {
1533      __ set(offset, O7);
1534      __ add(SP, O7, reg_to_register_object(reg));
1535   }
1536 }
1537 
1538 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1539   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1540   assert(ra_ == ra_->C->regalloc(), "sanity");
1541   return ra_->C->scratch_emit_size(this);
1542 }
1543 
1544 //=============================================================================
1545 
1546 // emit call stub, compiled java to interpretor
1547 void emit_java_to_interp(CodeBuffer &cbuf ) {
1548 
1549   // Stub is fixed up when the corresponding call is converted from calling
1550   // compiled code to calling interpreted code.
1551   // set (empty), G5
1552   // jmp -1
1553 
1554   address mark = cbuf.inst_mark();  // get mark within main instrs section
1555 
1556   MacroAssembler _masm(&cbuf);
1557 
1558   address base =
1559   __ start_a_stub(Compile::MAX_stubs_size);
1560   if (base == NULL)  return;  // CodeBuffer::expand failed
1561 
1562   // static stub relocation stores the instruction address of the call
1563   __ relocate(static_stub_Relocation::spec(mark));
1564 
1565   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1566 
1567   __ set_inst_mark();
1568   AddressLiteral addrlit(-1);
1569   __ JUMP(addrlit, G3, 0);
1570 
1571   __ delayed()->nop();
1572 
1573   // Update current stubs pointer and restore code_end.
1574   __ end_a_stub();
1575 }
1576 
1577 // size of call stub, compiled java to interpretor
1578 uint size_java_to_interp() {
1579   // This doesn't need to be accurate but it must be larger or equal to
1580   // the real size of the stub.
1581   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1582           NativeJump::instruction_size + // sethi; jmp; nop
1583           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1584 }
1585 // relocation entries for call stub, compiled java to interpretor
1586 uint reloc_java_to_interp() {
1587   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1588 }
1589 
1590 
1591 //=============================================================================
1592 #ifndef PRODUCT
1593 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1594   st->print_cr("\nUEP:");
1595 #ifdef    _LP64
1596   if (UseCompressedOops) {
1597     assert(Universe::heap() != NULL, "java heap should be initialized");
1598     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1599     st->print_cr("\tSLL    R_G5,3,R_G5");
1600     if (Universe::narrow_oop_base() != NULL)
1601       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1602   } else {
1603     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1604   }
1605   st->print_cr("\tCMP    R_G5,R_G3" );
1606   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1607 #else  // _LP64
1608   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1609   st->print_cr("\tCMP    R_G5,R_G3" );
1610   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1611 #endif // _LP64
1612 }
1613 #endif
1614 
1615 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1616   MacroAssembler _masm(&cbuf);
1617   Label L;
1618   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1619   Register temp_reg   = G3;
1620   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1621 
1622   // Load klass from receiver
1623   __ load_klass(O0, temp_reg);
1624   // Compare against expected klass
1625   __ cmp(temp_reg, G5_ic_reg);
1626   // Branch to miss code, checks xcc or icc depending
1627   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1628 }
1629 
1630 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1631   return MachNode::size(ra_);
1632 }
1633 
1634 
1635 //=============================================================================
1636 
1637 uint size_exception_handler() {
1638   if (TraceJumps) {
1639     return (400); // just a guess
1640   }
1641   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1642 }
1643 
1644 uint size_deopt_handler() {
1645   if (TraceJumps) {
1646     return (400); // just a guess
1647   }
1648   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1649 }
1650 
1651 // Emit exception handler code.
1652 int emit_exception_handler(CodeBuffer& cbuf) {
1653   Register temp_reg = G3;
1654   AddressLiteral exception_blob(OptoRuntime::exception_blob()->instructions_begin());
1655   MacroAssembler _masm(&cbuf);
1656 
1657   address base =
1658   __ start_a_stub(size_exception_handler());
1659   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1660 
1661   int offset = __ offset();
1662 
1663   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1664   __ delayed()->nop();
1665 
1666   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1667 
1668   __ end_a_stub();
1669 
1670   return offset;
1671 }
1672 
1673 int emit_deopt_handler(CodeBuffer& cbuf) {
1674   // Can't use any of the current frame's registers as we may have deopted
1675   // at a poll and everything (including G3) can be live.
1676   Register temp_reg = L0;
1677   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1678   MacroAssembler _masm(&cbuf);
1679 
1680   address base =
1681   __ start_a_stub(size_deopt_handler());
1682   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1683 
1684   int offset = __ offset();
1685   __ save_frame(0);
1686   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1687   __ delayed()->restore();
1688 
1689   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1690 
1691   __ end_a_stub();
1692   return offset;
1693 
1694 }
1695 
1696 // Given a register encoding, produce a Integer Register object
1697 static Register reg_to_register_object(int register_encoding) {
1698   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1699   return as_Register(register_encoding);
1700 }
1701 
1702 // Given a register encoding, produce a single-precision Float Register object
1703 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1704   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1705   return as_SingleFloatRegister(register_encoding);
1706 }
1707 
1708 // Given a register encoding, produce a double-precision Float Register object
1709 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1710   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1711   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1712   return as_DoubleFloatRegister(register_encoding);
1713 }
1714 
1715 const bool Matcher::match_rule_supported(int opcode) {
1716   if (!has_match_rule(opcode))
1717     return false;
1718 
1719   switch (opcode) {
1720   case Op_CountLeadingZerosI:
1721   case Op_CountLeadingZerosL:
1722   case Op_CountTrailingZerosI:
1723   case Op_CountTrailingZerosL:
1724     if (!UsePopCountInstruction)
1725       return false;
1726     break;
1727   }
1728 
1729   return true;  // Per default match rules are supported.
1730 }
1731 
1732 int Matcher::regnum_to_fpu_offset(int regnum) {
1733   return regnum - 32; // The FP registers are in the second chunk
1734 }
1735 
1736 #ifdef ASSERT
1737 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1738 #endif
1739 
1740 // Vector width in bytes
1741 const uint Matcher::vector_width_in_bytes(void) {
1742   return 8;
1743 }
1744 
1745 // Vector ideal reg
1746 const uint Matcher::vector_ideal_reg(void) {
1747   return Op_RegD;
1748 }
1749 
1750 // USII supports fxtof through the whole range of number, USIII doesn't
1751 const bool Matcher::convL2FSupported(void) {
1752   return VM_Version::has_fast_fxtof();
1753 }
1754 
1755 // Is this branch offset short enough that a short branch can be used?
1756 //
1757 // NOTE: If the platform does not provide any short branch variants, then
1758 //       this method should return false for offset 0.
1759 bool Matcher::is_short_branch_offset(int rule, int offset) {
1760   return false;
1761 }
1762 
1763 const bool Matcher::isSimpleConstant64(jlong value) {
1764   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1765   // Depends on optimizations in MacroAssembler::setx.
1766   int hi = (int)(value >> 32);
1767   int lo = (int)(value & ~0);
1768   return (hi == 0) || (hi == -1) || (lo == 0);
1769 }
1770 
1771 // No scaling for the parameter the ClearArray node.
1772 const bool Matcher::init_array_count_is_in_bytes = true;
1773 
1774 // Threshold size for cleararray.
1775 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1776 
1777 // Should the Matcher clone shifts on addressing modes, expecting them to
1778 // be subsumed into complex addressing expressions or compute them into
1779 // registers?  True for Intel but false for most RISCs
1780 const bool Matcher::clone_shift_expressions = false;
1781 
1782 // Is it better to copy float constants, or load them directly from memory?
1783 // Intel can load a float constant from a direct address, requiring no
1784 // extra registers.  Most RISCs will have to materialize an address into a
1785 // register first, so they would do better to copy the constant from stack.
1786 const bool Matcher::rematerialize_float_constants = false;
1787 
1788 // If CPU can load and store mis-aligned doubles directly then no fixup is
1789 // needed.  Else we split the double into 2 integer pieces and move it
1790 // piece-by-piece.  Only happens when passing doubles into C code as the
1791 // Java calling convention forces doubles to be aligned.
1792 #ifdef _LP64
1793 const bool Matcher::misaligned_doubles_ok = true;
1794 #else
1795 const bool Matcher::misaligned_doubles_ok = false;
1796 #endif
1797 
1798 // No-op on SPARC.
1799 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1800 }
1801 
1802 // Advertise here if the CPU requires explicit rounding operations
1803 // to implement the UseStrictFP mode.
1804 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1805 
1806 // Do floats are conerted to double when stored to stack during deoptimization.
1807 // Sparc does not handle callee-save floats.
1808 bool Matcher::float_in_double() { return false; }
1809 
1810 // Do ints take an entire long register or just half?
1811 // Note that we if-def off of _LP64.
1812 // The relevant question is how the int is callee-saved.  In _LP64
1813 // the whole long is written but de-opt'ing will have to extract
1814 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1815 #ifdef _LP64
1816 const bool Matcher::int_in_long = true;
1817 #else
1818 const bool Matcher::int_in_long = false;
1819 #endif
1820 
1821 // Return whether or not this register is ever used as an argument.  This
1822 // function is used on startup to build the trampoline stubs in generateOptoStub.
1823 // Registers not mentioned will be killed by the VM call in the trampoline, and
1824 // arguments in those registers not be available to the callee.
1825 bool Matcher::can_be_java_arg( int reg ) {
1826   // Standard sparc 6 args in registers
1827   if( reg == R_I0_num ||
1828       reg == R_I1_num ||
1829       reg == R_I2_num ||
1830       reg == R_I3_num ||
1831       reg == R_I4_num ||
1832       reg == R_I5_num ) return true;
1833 #ifdef _LP64
1834   // 64-bit builds can pass 64-bit pointers and longs in
1835   // the high I registers
1836   if( reg == R_I0H_num ||
1837       reg == R_I1H_num ||
1838       reg == R_I2H_num ||
1839       reg == R_I3H_num ||
1840       reg == R_I4H_num ||
1841       reg == R_I5H_num ) return true;
1842 
1843   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1844     return true;
1845   }
1846 
1847 #else
1848   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1849   // Longs cannot be passed in O regs, because O regs become I regs
1850   // after a 'save' and I regs get their high bits chopped off on
1851   // interrupt.
1852   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1853   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1854 #endif
1855   // A few float args in registers
1856   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1857 
1858   return false;
1859 }
1860 
1861 bool Matcher::is_spillable_arg( int reg ) {
1862   return can_be_java_arg(reg);
1863 }
1864 
1865 // Register for DIVI projection of divmodI
1866 RegMask Matcher::divI_proj_mask() {
1867   ShouldNotReachHere();
1868   return RegMask();
1869 }
1870 
1871 // Register for MODI projection of divmodI
1872 RegMask Matcher::modI_proj_mask() {
1873   ShouldNotReachHere();
1874   return RegMask();
1875 }
1876 
1877 // Register for DIVL projection of divmodL
1878 RegMask Matcher::divL_proj_mask() {
1879   ShouldNotReachHere();
1880   return RegMask();
1881 }
1882 
1883 // Register for MODL projection of divmodL
1884 RegMask Matcher::modL_proj_mask() {
1885   ShouldNotReachHere();
1886   return RegMask();
1887 }
1888 
1889 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1890   return RegMask();
1891 }
1892 
1893 %}
1894 
1895 
1896 // The intptr_t operand types, defined by textual substitution.
1897 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1898 #ifdef _LP64
1899 #define immX      immL
1900 #define immX13    immL13
1901 #define immX13m7  immL13m7
1902 #define iRegX     iRegL
1903 #define g1RegX    g1RegL
1904 #else
1905 #define immX      immI
1906 #define immX13    immI13
1907 #define immX13m7  immI13m7
1908 #define iRegX     iRegI
1909 #define g1RegX    g1RegI
1910 #endif
1911 
1912 //----------ENCODING BLOCK-----------------------------------------------------
1913 // This block specifies the encoding classes used by the compiler to output
1914 // byte streams.  Encoding classes are parameterized macros used by
1915 // Machine Instruction Nodes in order to generate the bit encoding of the
1916 // instruction.  Operands specify their base encoding interface with the
1917 // interface keyword.  There are currently supported four interfaces,
1918 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1919 // operand to generate a function which returns its register number when
1920 // queried.   CONST_INTER causes an operand to generate a function which
1921 // returns the value of the constant when queried.  MEMORY_INTER causes an
1922 // operand to generate four functions which return the Base Register, the
1923 // Index Register, the Scale Value, and the Offset Value of the operand when
1924 // queried.  COND_INTER causes an operand to generate six functions which
1925 // return the encoding code (ie - encoding bits for the instruction)
1926 // associated with each basic boolean condition for a conditional instruction.
1927 //
1928 // Instructions specify two basic values for encoding.  Again, a function
1929 // is available to check if the constant displacement is an oop. They use the
1930 // ins_encode keyword to specify their encoding classes (which must be
1931 // a sequence of enc_class names, and their parameters, specified in
1932 // the encoding block), and they use the
1933 // opcode keyword to specify, in order, their primary, secondary, and
1934 // tertiary opcode.  Only the opcode sections which a particular instruction
1935 // needs for encoding need to be specified.
1936 encode %{
1937   enc_class enc_untested %{
1938 #ifdef ASSERT
1939     MacroAssembler _masm(&cbuf);
1940     __ untested("encoding");
1941 #endif
1942   %}
1943 
1944   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1945     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
1946                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1947   %}
1948 
1949   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1950     emit_form3_mem_reg(cbuf, this, $primary, -1,
1951                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1952   %}
1953 
1954   enc_class form3_mem_reg_little( memory mem, iRegI dst) %{
1955     emit_form3_mem_reg_asi(cbuf, this, $primary, -1,
1956                      $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE);
1957   %}
1958 
1959   enc_class form3_mem_prefetch_read( memory mem ) %{
1960     emit_form3_mem_reg(cbuf, this, $primary, -1,
1961                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1962   %}
1963 
1964   enc_class form3_mem_prefetch_write( memory mem ) %{
1965     emit_form3_mem_reg(cbuf, this, $primary, -1,
1966                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
1967   %}
1968 
1969   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
1970     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1971     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1972     guarantee($mem$$index == R_G0_enc, "double index?");
1973     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
1974     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
1975     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
1976     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
1977   %}
1978 
1979   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
1980     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
1981     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
1982     guarantee($mem$$index == R_G0_enc, "double index?");
1983     // Load long with 2 instructions
1984     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
1985     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
1986   %}
1987 
1988   //%%% form3_mem_plus_4_reg is a hack--get rid of it
1989   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
1990     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
1991     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
1992   %}
1993 
1994   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
1995     // Encode a reg-reg copy.  If it is useless, then empty encoding.
1996     if( $rs2$$reg != $rd$$reg )
1997       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
1998   %}
1999 
2000   // Target lo half of long
2001   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2002     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2003     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2004       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2005   %}
2006 
2007   // Source lo half of long
2008   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2009     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2010     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2011       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2012   %}
2013 
2014   // Target hi half of long
2015   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2016     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2017   %}
2018 
2019   // Source lo half of long, and leave it sign extended.
2020   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2021     // Sign extend low half
2022     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2023   %}
2024 
2025   // Source hi half of long, and leave it sign extended.
2026   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2027     // Shift high half to low half
2028     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2029   %}
2030 
2031   // Source hi half of long
2032   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2033     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2034     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2035       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2036   %}
2037 
2038   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2039     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2040   %}
2041 
2042   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2043     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2044     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2045   %}
2046 
2047   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2048     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2049     // clear if nothing else is happening
2050     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2051     // blt,a,pn done
2052     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2053     // mov dst,-1 in delay slot
2054     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2055   %}
2056 
2057   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2058     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2059   %}
2060 
2061   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2062     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2063   %}
2064 
2065   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2066     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2067   %}
2068 
2069   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2070     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2071   %}
2072 
2073   enc_class move_return_pc_to_o1() %{
2074     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2075   %}
2076 
2077 #ifdef _LP64
2078   /* %%% merge with enc_to_bool */
2079   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2080     MacroAssembler _masm(&cbuf);
2081 
2082     Register   src_reg = reg_to_register_object($src$$reg);
2083     Register   dst_reg = reg_to_register_object($dst$$reg);
2084     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2085   %}
2086 #endif
2087 
2088   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2089     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2090     MacroAssembler _masm(&cbuf);
2091 
2092     Register   p_reg = reg_to_register_object($p$$reg);
2093     Register   q_reg = reg_to_register_object($q$$reg);
2094     Register   y_reg = reg_to_register_object($y$$reg);
2095     Register tmp_reg = reg_to_register_object($tmp$$reg);
2096 
2097     __ subcc( p_reg, q_reg,   p_reg );
2098     __ add  ( p_reg, y_reg, tmp_reg );
2099     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2100   %}
2101 
2102   enc_class form_d2i_helper(regD src, regF dst) %{
2103     // fcmp %fcc0,$src,$src
2104     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2105     // branch %fcc0 not-nan, predict taken
2106     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2107     // fdtoi $src,$dst
2108     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2109     // fitos $dst,$dst (if nan)
2110     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2111     // clear $dst (if nan)
2112     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2113     // carry on here...
2114   %}
2115 
2116   enc_class form_d2l_helper(regD src, regD dst) %{
2117     // fcmp %fcc0,$src,$src  check for NAN
2118     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2119     // branch %fcc0 not-nan, predict taken
2120     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2121     // fdtox $src,$dst   convert in delay slot
2122     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2123     // fxtod $dst,$dst  (if nan)
2124     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2125     // clear $dst (if nan)
2126     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2127     // carry on here...
2128   %}
2129 
2130   enc_class form_f2i_helper(regF src, regF dst) %{
2131     // fcmps %fcc0,$src,$src
2132     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2133     // branch %fcc0 not-nan, predict taken
2134     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2135     // fstoi $src,$dst
2136     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2137     // fitos $dst,$dst (if nan)
2138     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2139     // clear $dst (if nan)
2140     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2141     // carry on here...
2142   %}
2143 
2144   enc_class form_f2l_helper(regF src, regD dst) %{
2145     // fcmps %fcc0,$src,$src
2146     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2147     // branch %fcc0 not-nan, predict taken
2148     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2149     // fstox $src,$dst
2150     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2151     // fxtod $dst,$dst (if nan)
2152     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2153     // clear $dst (if nan)
2154     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2155     // carry on here...
2156   %}
2157 
2158   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2159   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2160   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2161   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2162 
2163   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2164 
2165   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2166   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2167 
2168   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2169     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2170   %}
2171 
2172   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2173     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2174   %}
2175 
2176   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2177     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2178   %}
2179 
2180   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2181     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2182   %}
2183 
2184   enc_class form3_convI2F(regF rs2, regF rd) %{
2185     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2186   %}
2187 
2188   // Encloding class for traceable jumps
2189   enc_class form_jmpl(g3RegP dest) %{
2190     emit_jmpl(cbuf, $dest$$reg);
2191   %}
2192 
2193   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2194     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2195   %}
2196 
2197   enc_class form2_nop() %{
2198     emit_nop(cbuf);
2199   %}
2200 
2201   enc_class form2_illtrap() %{
2202     emit_illtrap(cbuf);
2203   %}
2204 
2205 
2206   // Compare longs and convert into -1, 0, 1.
2207   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2208     // CMP $src1,$src2
2209     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2210     // blt,a,pn done
2211     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2212     // mov dst,-1 in delay slot
2213     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2214     // bgt,a,pn done
2215     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2216     // mov dst,1 in delay slot
2217     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2218     // CLR    $dst
2219     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2220   %}
2221 
2222   enc_class enc_PartialSubtypeCheck() %{
2223     MacroAssembler _masm(&cbuf);
2224     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2225     __ delayed()->nop();
2226   %}
2227 
2228   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
2229     MacroAssembler _masm(&cbuf);
2230     Label &L = *($labl$$label);
2231     Assembler::Predict predict_taken =
2232       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2233 
2234     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
2235     __ delayed()->nop();
2236   %}
2237 
2238   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
2239     MacroAssembler _masm(&cbuf);
2240     Label &L = *($labl$$label);
2241     Assembler::Predict predict_taken =
2242       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2243 
2244     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
2245     __ delayed()->nop();
2246   %}
2247 
2248   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
2249     MacroAssembler _masm(&cbuf);
2250     Label &L = *($labl$$label);
2251     Assembler::Predict predict_taken =
2252       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2253 
2254     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
2255     __ delayed()->nop();
2256   %}
2257 
2258   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
2259     MacroAssembler _masm(&cbuf);
2260     Label &L = *($labl$$label);
2261     Assembler::Predict predict_taken =
2262       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2263 
2264     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
2265     __ delayed()->nop();
2266   %}
2267 
2268   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
2269     MacroAssembler _masm(&cbuf);
2270 
2271     Register switch_reg       = as_Register($switch_val$$reg);
2272     Register table_reg        = O7;
2273 
2274     address table_base = __ address_table_constant(_index2label);
2275     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
2276 
2277     // Move table address into a register.
2278     __ set(table_base, table_reg, rspec);
2279 
2280     // Jump to base address + switch value
2281     __ ld_ptr(table_reg, switch_reg, table_reg);
2282     __ jmp(table_reg, G0);
2283     __ delayed()->nop();
2284 
2285   %}
2286 
2287   enc_class enc_ba( Label labl ) %{
2288     MacroAssembler _masm(&cbuf);
2289     Label &L = *($labl$$label);
2290     __ ba(false, L);
2291     __ delayed()->nop();
2292   %}
2293 
2294   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
2295     MacroAssembler _masm(&cbuf);
2296     Label &L = *$labl$$label;
2297     Assembler::Predict predict_taken =
2298       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
2299 
2300     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
2301     __ delayed()->nop();
2302   %}
2303 
2304   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2305     int op = (Assembler::arith_op << 30) |
2306              ($dst$$reg << 25) |
2307              (Assembler::movcc_op3 << 19) |
2308              (1 << 18) |                    // cc2 bit for 'icc'
2309              ($cmp$$cmpcode << 14) |
2310              (0 << 13) |                    // select register move
2311              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2312              ($src$$reg << 0);
2313     *((int*)(cbuf.code_end())) = op;
2314     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2315   %}
2316 
2317   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2318     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2319     int op = (Assembler::arith_op << 30) |
2320              ($dst$$reg << 25) |
2321              (Assembler::movcc_op3 << 19) |
2322              (1 << 18) |                    // cc2 bit for 'icc'
2323              ($cmp$$cmpcode << 14) |
2324              (1 << 13) |                    // select immediate move
2325              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2326              (simm11 << 0);
2327     *((int*)(cbuf.code_end())) = op;
2328     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2329   %}
2330 
2331   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2332     int op = (Assembler::arith_op << 30) |
2333              ($dst$$reg << 25) |
2334              (Assembler::movcc_op3 << 19) |
2335              (0 << 18) |                    // cc2 bit for 'fccX'
2336              ($cmp$$cmpcode << 14) |
2337              (0 << 13) |                    // select register move
2338              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2339              ($src$$reg << 0);
2340     *((int*)(cbuf.code_end())) = op;
2341     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2342   %}
2343 
2344   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2345     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2346     int op = (Assembler::arith_op << 30) |
2347              ($dst$$reg << 25) |
2348              (Assembler::movcc_op3 << 19) |
2349              (0 << 18) |                    // cc2 bit for 'fccX'
2350              ($cmp$$cmpcode << 14) |
2351              (1 << 13) |                    // select immediate move
2352              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2353              (simm11 << 0);
2354     *((int*)(cbuf.code_end())) = op;
2355     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2356   %}
2357 
2358   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2359     int op = (Assembler::arith_op << 30) |
2360              ($dst$$reg << 25) |
2361              (Assembler::fpop2_op3 << 19) |
2362              (0 << 18) |
2363              ($cmp$$cmpcode << 14) |
2364              (1 << 13) |                    // select register move
2365              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2366              ($primary << 5) |              // select single, double or quad
2367              ($src$$reg << 0);
2368     *((int*)(cbuf.code_end())) = op;
2369     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2370   %}
2371 
2372   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2373     int op = (Assembler::arith_op << 30) |
2374              ($dst$$reg << 25) |
2375              (Assembler::fpop2_op3 << 19) |
2376              (0 << 18) |
2377              ($cmp$$cmpcode << 14) |
2378              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2379              ($primary << 5) |              // select single, double or quad
2380              ($src$$reg << 0);
2381     *((int*)(cbuf.code_end())) = op;
2382     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2383   %}
2384 
2385   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2386   // the condition comes from opcode-field instead of an argument.
2387   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2388     int op = (Assembler::arith_op << 30) |
2389              ($dst$$reg << 25) |
2390              (Assembler::movcc_op3 << 19) |
2391              (1 << 18) |                    // cc2 bit for 'icc'
2392              ($primary << 14) |
2393              (0 << 13) |                    // select register move
2394              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2395              ($src$$reg << 0);
2396     *((int*)(cbuf.code_end())) = op;
2397     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2398   %}
2399 
2400   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2401     int op = (Assembler::arith_op << 30) |
2402              ($dst$$reg << 25) |
2403              (Assembler::movcc_op3 << 19) |
2404              (6 << 16) |                    // cc2 bit for 'xcc'
2405              ($primary << 14) |
2406              (0 << 13) |                    // select register move
2407              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2408              ($src$$reg << 0);
2409     *((int*)(cbuf.code_end())) = op;
2410     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
2411   %}
2412 
2413   // Utility encoding for loading a 64 bit Pointer into a register
2414   // The 64 bit pointer is stored in the generated code stream
2415   enc_class SetPtr( immP src, iRegP rd ) %{
2416     Register dest = reg_to_register_object($rd$$reg);
2417     MacroAssembler _masm(&cbuf);
2418     // [RGV] This next line should be generated from ADLC
2419     if ( _opnds[1]->constant_is_oop() ) {
2420       intptr_t val = $src$$constant;
2421       __ set_oop_constant((jobject)val, dest);
2422     } else {          // non-oop pointers, e.g. card mark base, heap top
2423       __ set($src$$constant, dest);
2424     }
2425   %}
2426 
2427   enc_class Set13( immI13 src, iRegI rd ) %{
2428     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2429   %}
2430 
2431   enc_class SetHi22( immI src, iRegI rd ) %{
2432     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2433   %}
2434 
2435   enc_class Set32( immI src, iRegI rd ) %{
2436     MacroAssembler _masm(&cbuf);
2437     __ set($src$$constant, reg_to_register_object($rd$$reg));
2438   %}
2439 
2440   enc_class SetNull( iRegI rd ) %{
2441     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
2442   %}
2443 
2444   enc_class call_epilog %{
2445     if( VerifyStackAtCalls ) {
2446       MacroAssembler _masm(&cbuf);
2447       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2448       Register temp_reg = G3;
2449       __ add(SP, framesize, temp_reg);
2450       __ cmp(temp_reg, FP);
2451       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2452     }
2453   %}
2454 
2455   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2456   // to G1 so the register allocator will not have to deal with the misaligned register
2457   // pair.
2458   enc_class adjust_long_from_native_call %{
2459 #ifndef _LP64
2460     if (returns_long()) {
2461       //    sllx  O0,32,O0
2462       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2463       //    srl   O1,0,O1
2464       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2465       //    or    O0,O1,G1
2466       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2467     }
2468 #endif
2469   %}
2470 
2471   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2472     // CALL directly to the runtime
2473     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2474     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2475                     /*preserve_g2=*/true, /*force far call*/true);
2476   %}
2477 
2478   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2479     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2480     // who we intended to call.
2481     if ( !_method ) {
2482       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2483     } else if (_optimized_virtual) {
2484       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2485     } else {
2486       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2487     }
2488     if( _method ) {  // Emit stub for static call
2489       emit_java_to_interp(cbuf);
2490     }
2491   %}
2492 
2493   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2494     MacroAssembler _masm(&cbuf);
2495     __ set_inst_mark();
2496     int vtable_index = this->_vtable_index;
2497     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2498     if (vtable_index < 0) {
2499       // must be invalid_vtable_index, not nonvirtual_vtable_index
2500       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2501       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2502       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2503       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2504       // !!!!!
2505       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2506       // emit_call_dynamic_prologue( cbuf );
2507       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2508 
2509       address  virtual_call_oop_addr = __ inst_mark();
2510       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2511       // who we intended to call.
2512       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2513       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2514     } else {
2515       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2516       // Just go thru the vtable
2517       // get receiver klass (receiver already checked for non-null)
2518       // If we end up going thru a c2i adapter interpreter expects method in G5
2519       int off = __ offset();
2520       __ load_klass(O0, G3_scratch);
2521       int klass_load_size;
2522       if (UseCompressedOops) {
2523         assert(Universe::heap() != NULL, "java heap should be initialized");
2524         if (Universe::narrow_oop_base() == NULL)
2525           klass_load_size = 2*BytesPerInstWord;
2526         else
2527           klass_load_size = 3*BytesPerInstWord;
2528       } else {
2529         klass_load_size = 1*BytesPerInstWord;
2530       }
2531       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2532       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2533       if( __ is_simm13(v_off) ) {
2534         __ ld_ptr(G3, v_off, G5_method);
2535       } else {
2536         // Generate 2 instructions
2537         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2538         __ or3(G5_method, v_off & 0x3ff, G5_method);
2539         // ld_ptr, set_hi, set
2540         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2541                "Unexpected instruction size(s)");
2542         __ ld_ptr(G3, G5_method, G5_method);
2543       }
2544       // NOTE: for vtable dispatches, the vtable entry will never be null.
2545       // However it may very well end up in handle_wrong_method if the
2546       // method is abstract for the particular class.
2547       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2548       // jump to target (either compiled code or c2iadapter)
2549       __ jmpl(G3_scratch, G0, O7);
2550       __ delayed()->nop();
2551     }
2552   %}
2553 
2554   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2555     MacroAssembler _masm(&cbuf);
2556 
2557     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2558     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2559                               // we might be calling a C2I adapter which needs it.
2560 
2561     assert(temp_reg != G5_ic_reg, "conflicting registers");
2562     // Load nmethod
2563     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2564 
2565     // CALL to compiled java, indirect the contents of G3
2566     __ set_inst_mark();
2567     __ callr(temp_reg, G0);
2568     __ delayed()->nop();
2569   %}
2570 
2571 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2572     MacroAssembler _masm(&cbuf);
2573     Register Rdividend = reg_to_register_object($src1$$reg);
2574     Register Rdivisor = reg_to_register_object($src2$$reg);
2575     Register Rresult = reg_to_register_object($dst$$reg);
2576 
2577     __ sra(Rdivisor, 0, Rdivisor);
2578     __ sra(Rdividend, 0, Rdividend);
2579     __ sdivx(Rdividend, Rdivisor, Rresult);
2580 %}
2581 
2582 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2583     MacroAssembler _masm(&cbuf);
2584 
2585     Register Rdividend = reg_to_register_object($src1$$reg);
2586     int divisor = $imm$$constant;
2587     Register Rresult = reg_to_register_object($dst$$reg);
2588 
2589     __ sra(Rdividend, 0, Rdividend);
2590     __ sdivx(Rdividend, divisor, Rresult);
2591 %}
2592 
2593 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2594     MacroAssembler _masm(&cbuf);
2595     Register Rsrc1 = reg_to_register_object($src1$$reg);
2596     Register Rsrc2 = reg_to_register_object($src2$$reg);
2597     Register Rdst  = reg_to_register_object($dst$$reg);
2598 
2599     __ sra( Rsrc1, 0, Rsrc1 );
2600     __ sra( Rsrc2, 0, Rsrc2 );
2601     __ mulx( Rsrc1, Rsrc2, Rdst );
2602     __ srlx( Rdst, 32, Rdst );
2603 %}
2604 
2605 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2606     MacroAssembler _masm(&cbuf);
2607     Register Rdividend = reg_to_register_object($src1$$reg);
2608     Register Rdivisor = reg_to_register_object($src2$$reg);
2609     Register Rresult = reg_to_register_object($dst$$reg);
2610     Register Rscratch = reg_to_register_object($scratch$$reg);
2611 
2612     assert(Rdividend != Rscratch, "");
2613     assert(Rdivisor  != Rscratch, "");
2614 
2615     __ sra(Rdividend, 0, Rdividend);
2616     __ sra(Rdivisor, 0, Rdivisor);
2617     __ sdivx(Rdividend, Rdivisor, Rscratch);
2618     __ mulx(Rscratch, Rdivisor, Rscratch);
2619     __ sub(Rdividend, Rscratch, Rresult);
2620 %}
2621 
2622 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2623     MacroAssembler _masm(&cbuf);
2624 
2625     Register Rdividend = reg_to_register_object($src1$$reg);
2626     int divisor = $imm$$constant;
2627     Register Rresult = reg_to_register_object($dst$$reg);
2628     Register Rscratch = reg_to_register_object($scratch$$reg);
2629 
2630     assert(Rdividend != Rscratch, "");
2631 
2632     __ sra(Rdividend, 0, Rdividend);
2633     __ sdivx(Rdividend, divisor, Rscratch);
2634     __ mulx(Rscratch, divisor, Rscratch);
2635     __ sub(Rdividend, Rscratch, Rresult);
2636 %}
2637 
2638 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2639     MacroAssembler _masm(&cbuf);
2640 
2641     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2642     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2643 
2644     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2645 %}
2646 
2647 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2648     MacroAssembler _masm(&cbuf);
2649 
2650     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2651     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2652 
2653     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2654 %}
2655 
2656 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2657     MacroAssembler _masm(&cbuf);
2658 
2659     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2660     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2661 
2662     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2663 %}
2664 
2665 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2666     MacroAssembler _masm(&cbuf);
2667 
2668     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2669     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2670 
2671     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2672 %}
2673 
2674 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2675     MacroAssembler _masm(&cbuf);
2676 
2677     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2678     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2679 
2680     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2681 %}
2682 
2683 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2684     MacroAssembler _masm(&cbuf);
2685 
2686     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2687     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2688 
2689     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2690 %}
2691 
2692 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2693     MacroAssembler _masm(&cbuf);
2694 
2695     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2696     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2697 
2698     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2699 %}
2700 
2701 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2702     MacroAssembler _masm(&cbuf);
2703 
2704     Register Roop  = reg_to_register_object($oop$$reg);
2705     Register Rbox  = reg_to_register_object($box$$reg);
2706     Register Rscratch = reg_to_register_object($scratch$$reg);
2707     Register Rmark =    reg_to_register_object($scratch2$$reg);
2708 
2709     assert(Roop  != Rscratch, "");
2710     assert(Roop  != Rmark, "");
2711     assert(Rbox  != Rscratch, "");
2712     assert(Rbox  != Rmark, "");
2713 
2714     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2715 %}
2716 
2717 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2718     MacroAssembler _masm(&cbuf);
2719 
2720     Register Roop  = reg_to_register_object($oop$$reg);
2721     Register Rbox  = reg_to_register_object($box$$reg);
2722     Register Rscratch = reg_to_register_object($scratch$$reg);
2723     Register Rmark =    reg_to_register_object($scratch2$$reg);
2724 
2725     assert(Roop  != Rscratch, "");
2726     assert(Roop  != Rmark, "");
2727     assert(Rbox  != Rscratch, "");
2728     assert(Rbox  != Rmark, "");
2729 
2730     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2731   %}
2732 
2733   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2734     MacroAssembler _masm(&cbuf);
2735     Register Rmem = reg_to_register_object($mem$$reg);
2736     Register Rold = reg_to_register_object($old$$reg);
2737     Register Rnew = reg_to_register_object($new$$reg);
2738 
2739     // casx_under_lock picks 1 of 3 encodings:
2740     // For 32-bit pointers you get a 32-bit CAS
2741     // For 64-bit pointers you get a 64-bit CASX
2742     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2743     __ cmp( Rold, Rnew );
2744   %}
2745 
2746   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2747     Register Rmem = reg_to_register_object($mem$$reg);
2748     Register Rold = reg_to_register_object($old$$reg);
2749     Register Rnew = reg_to_register_object($new$$reg);
2750 
2751     MacroAssembler _masm(&cbuf);
2752     __ mov(Rnew, O7);
2753     __ casx(Rmem, Rold, O7);
2754     __ cmp( Rold, O7 );
2755   %}
2756 
2757   // raw int cas, used for compareAndSwap
2758   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2759     Register Rmem = reg_to_register_object($mem$$reg);
2760     Register Rold = reg_to_register_object($old$$reg);
2761     Register Rnew = reg_to_register_object($new$$reg);
2762 
2763     MacroAssembler _masm(&cbuf);
2764     __ mov(Rnew, O7);
2765     __ cas(Rmem, Rold, O7);
2766     __ cmp( Rold, O7 );
2767   %}
2768 
2769   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2770     Register Rres = reg_to_register_object($res$$reg);
2771 
2772     MacroAssembler _masm(&cbuf);
2773     __ mov(1, Rres);
2774     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2775   %}
2776 
2777   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2778     Register Rres = reg_to_register_object($res$$reg);
2779 
2780     MacroAssembler _masm(&cbuf);
2781     __ mov(1, Rres);
2782     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2783   %}
2784 
2785   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2786     MacroAssembler _masm(&cbuf);
2787     Register Rdst = reg_to_register_object($dst$$reg);
2788     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2789                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2790     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2791                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2792 
2793     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2794     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2795   %}
2796 
2797   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
2798     MacroAssembler _masm(&cbuf);
2799     Register dest = reg_to_register_object($dst$$reg);
2800     Register temp = reg_to_register_object($tmp$$reg);
2801     __ set64( $src$$constant, dest, temp );
2802   %}
2803 
2804   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
2805     // Load a constant replicated "count" times with width "width"
2806     int bit_width = $width$$constant * 8;
2807     jlong elt_val = $src$$constant;
2808     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
2809     jlong val = elt_val;
2810     for (int i = 0; i < $count$$constant - 1; i++) {
2811         val <<= bit_width;
2812         val |= elt_val;
2813     }
2814     jdouble dval = *(jdouble*)&val; // coerce to double type
2815     MacroAssembler _masm(&cbuf);
2816     address double_address = __ double_constant(dval);
2817     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
2818     AddressLiteral addrlit(double_address, rspec);
2819 
2820     __ sethi(addrlit, $tmp$$Register);
2821     // XXX This is a quick fix for 6833573.
2822     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
2823     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
2824   %}
2825 
2826   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
2827   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
2828     MacroAssembler _masm(&cbuf);
2829     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
2830     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
2831     Register    base_pointer_arg = reg_to_register_object($base$$reg);
2832 
2833     Label loop;
2834     __ mov(nof_bytes_arg, nof_bytes_tmp);
2835 
2836     // Loop and clear, walking backwards through the array.
2837     // nof_bytes_tmp (if >0) is always the number of bytes to zero
2838     __ bind(loop);
2839     __ deccc(nof_bytes_tmp, 8);
2840     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
2841     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
2842     // %%%% this mini-loop must not cross a cache boundary!
2843   %}
2844 
2845 
2846   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2847     Label Ldone, Lloop;
2848     MacroAssembler _masm(&cbuf);
2849 
2850     Register   str1_reg = reg_to_register_object($str1$$reg);
2851     Register   str2_reg = reg_to_register_object($str2$$reg);
2852     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2853     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2854     Register result_reg = reg_to_register_object($result$$reg);
2855 
2856     assert(result_reg != str1_reg &&
2857            result_reg != str2_reg &&
2858            result_reg != cnt1_reg &&
2859            result_reg != cnt2_reg ,
2860            "need different registers");
2861 
2862     // Compute the minimum of the string lengths(str1_reg) and the
2863     // difference of the string lengths (stack)
2864 
2865     // See if the lengths are different, and calculate min in str1_reg.
2866     // Stash diff in O7 in case we need it for a tie-breaker.
2867     Label Lskip;
2868     __ subcc(cnt1_reg, cnt2_reg, O7);
2869     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2870     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2871     // cnt2 is shorter, so use its count:
2872     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2873     __ bind(Lskip);
2874 
2875     // reallocate cnt1_reg, cnt2_reg, result_reg
2876     // Note:  limit_reg holds the string length pre-scaled by 2
2877     Register limit_reg =   cnt1_reg;
2878     Register  chr2_reg =   cnt2_reg;
2879     Register  chr1_reg = result_reg;
2880     // str{12} are the base pointers
2881 
2882     // Is the minimum length zero?
2883     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2884     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2885     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2886 
2887     // Load first characters
2888     __ lduh(str1_reg, 0, chr1_reg);
2889     __ lduh(str2_reg, 0, chr2_reg);
2890 
2891     // Compare first characters
2892     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2893     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2894     assert(chr1_reg == result_reg, "result must be pre-placed");
2895     __ delayed()->nop();
2896 
2897     {
2898       // Check after comparing first character to see if strings are equivalent
2899       Label LSkip2;
2900       // Check if the strings start at same location
2901       __ cmp(str1_reg, str2_reg);
2902       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2903       __ delayed()->nop();
2904 
2905       // Check if the length difference is zero (in O7)
2906       __ cmp(G0, O7);
2907       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2908       __ delayed()->mov(G0, result_reg);  // result is zero
2909 
2910       // Strings might not be equal
2911       __ bind(LSkip2);
2912     }
2913 
2914     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2915     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2916     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2917 
2918     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2919     __ add(str1_reg, limit_reg, str1_reg);
2920     __ add(str2_reg, limit_reg, str2_reg);
2921     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2922 
2923     // Compare the rest of the characters
2924     __ lduh(str1_reg, limit_reg, chr1_reg);
2925     __ bind(Lloop);
2926     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2927     __ lduh(str2_reg, limit_reg, chr2_reg);
2928     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2929     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2930     assert(chr1_reg == result_reg, "result must be pre-placed");
2931     __ delayed()->inccc(limit_reg, sizeof(jchar));
2932     // annul LDUH if branch is not taken to prevent access past end of string
2933     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2934     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2935 
2936     // If strings are equal up to min length, return the length difference.
2937     __ mov(O7, result_reg);
2938 
2939     // Otherwise, return the difference between the first mismatched chars.
2940     __ bind(Ldone);
2941   %}
2942 
2943 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2944     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2945     MacroAssembler _masm(&cbuf);
2946 
2947     Register   str1_reg = reg_to_register_object($str1$$reg);
2948     Register   str2_reg = reg_to_register_object($str2$$reg);
2949     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2950     Register   tmp1_reg = O7;
2951     Register result_reg = reg_to_register_object($result$$reg);
2952 
2953     assert(result_reg != str1_reg &&
2954            result_reg != str2_reg &&
2955            result_reg !=  cnt_reg &&
2956            result_reg != tmp1_reg ,
2957            "need different registers");
2958 
2959     __ cmp(str1_reg, str2_reg); //same char[] ?
2960     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2961     __ delayed()->add(G0, 1, result_reg);
2962 
2963     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
2964     __ delayed()->add(G0, 1, result_reg); // count == 0
2965 
2966     //rename registers
2967     Register limit_reg =    cnt_reg;
2968     Register  chr1_reg = result_reg;
2969     Register  chr2_reg =   tmp1_reg;
2970 
2971     //check for alignment and position the pointers to the ends
2972     __ or3(str1_reg, str2_reg, chr1_reg);
2973     __ andcc(chr1_reg, 0x3, chr1_reg);
2974     // notZero means at least one not 4-byte aligned.
2975     // We could optimize the case when both arrays are not aligned
2976     // but it is not frequent case and it requires additional checks.
2977     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2978     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2979 
2980     // Compare char[] arrays aligned to 4 bytes.
2981     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2982                           chr1_reg, chr2_reg, Ldone);
2983     __ ba(false,Ldone);
2984     __ delayed()->add(G0, 1, result_reg);
2985 
2986     // char by char compare
2987     __ bind(Lchar);
2988     __ add(str1_reg, limit_reg, str1_reg);
2989     __ add(str2_reg, limit_reg, str2_reg);
2990     __ neg(limit_reg); //negate count
2991 
2992     __ lduh(str1_reg, limit_reg, chr1_reg);
2993     // Lchar_loop
2994     __ bind(Lchar_loop);
2995     __ lduh(str2_reg, limit_reg, chr2_reg);
2996     __ cmp(chr1_reg, chr2_reg);
2997     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2998     __ delayed()->mov(G0, result_reg); //not equal
2999     __ inccc(limit_reg, sizeof(jchar));
3000     // annul LDUH if branch is not taken to prevent access past end of string
3001     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3002     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3003 
3004     __ add(G0, 1, result_reg);  //equal
3005 
3006     __ bind(Ldone);
3007   %}
3008 
3009 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3010     Label Lvector, Ldone, Lloop;
3011     MacroAssembler _masm(&cbuf);
3012 
3013     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3014     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3015     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3016     Register   tmp2_reg = O7;
3017     Register result_reg = reg_to_register_object($result$$reg);
3018 
3019     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3020     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3021 
3022     // return true if the same array
3023     __ cmp(ary1_reg, ary2_reg);
3024     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3025     __ delayed()->add(G0, 1, result_reg); // equal
3026 
3027     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3028     __ delayed()->mov(G0, result_reg);    // not equal
3029 
3030     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3031     __ delayed()->mov(G0, result_reg);    // not equal
3032 
3033     //load the lengths of arrays
3034     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3035     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3036 
3037     // return false if the two arrays are not equal length
3038     __ cmp(tmp1_reg, tmp2_reg);
3039     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3040     __ delayed()->mov(G0, result_reg);     // not equal
3041 
3042     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
3043     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3044 
3045     // load array addresses
3046     __ add(ary1_reg, base_offset, ary1_reg);
3047     __ add(ary2_reg, base_offset, ary2_reg);
3048 
3049     // renaming registers
3050     Register chr1_reg  =  result_reg; // for characters in ary1
3051     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3052     Register limit_reg =  tmp1_reg;   // length
3053 
3054     // set byte count
3055     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3056 
3057     // Compare char[] arrays aligned to 4 bytes.
3058     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3059                           chr1_reg, chr2_reg, Ldone);
3060     __ add(G0, 1, result_reg); // equals
3061 
3062     __ bind(Ldone);
3063   %}
3064 
3065   enc_class enc_rethrow() %{
3066     cbuf.set_inst_mark();
3067     Register temp_reg = G3;
3068     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3069     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3070     MacroAssembler _masm(&cbuf);
3071 #ifdef ASSERT
3072     __ save_frame(0);
3073     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3074     __ sethi(last_rethrow_addrlit, L1);
3075     Address addr(L1, last_rethrow_addrlit.low10());
3076     __ get_pc(L2);
3077     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3078     __ st_ptr(L2, addr);
3079     __ restore();
3080 #endif
3081     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3082     __ delayed()->nop();
3083   %}
3084 
3085   enc_class emit_mem_nop() %{
3086     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3087     unsigned int *code = (unsigned int*)cbuf.code_end();
3088     *code = (unsigned int)0xc0839040;
3089     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3090   %}
3091 
3092   enc_class emit_fadd_nop() %{
3093     // Generates the instruction FMOVS f31,f31
3094     unsigned int *code = (unsigned int*)cbuf.code_end();
3095     *code = (unsigned int)0xbfa0003f;
3096     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3097   %}
3098 
3099   enc_class emit_br_nop() %{
3100     // Generates the instruction BPN,PN .
3101     unsigned int *code = (unsigned int*)cbuf.code_end();
3102     *code = (unsigned int)0x00400000;
3103     cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord);
3104   %}
3105 
3106   enc_class enc_membar_acquire %{
3107     MacroAssembler _masm(&cbuf);
3108     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3109   %}
3110 
3111   enc_class enc_membar_release %{
3112     MacroAssembler _masm(&cbuf);
3113     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3114   %}
3115 
3116   enc_class enc_membar_volatile %{
3117     MacroAssembler _masm(&cbuf);
3118     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3119   %}
3120 
3121   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
3122     MacroAssembler _masm(&cbuf);
3123     Register src_reg = reg_to_register_object($src$$reg);
3124     Register dst_reg = reg_to_register_object($dst$$reg);
3125     __ sllx(src_reg, 56, dst_reg);
3126     __ srlx(dst_reg,  8, O7);
3127     __ or3 (dst_reg, O7, dst_reg);
3128     __ srlx(dst_reg, 16, O7);
3129     __ or3 (dst_reg, O7, dst_reg);
3130     __ srlx(dst_reg, 32, O7);
3131     __ or3 (dst_reg, O7, dst_reg);
3132   %}
3133 
3134   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
3135     MacroAssembler _masm(&cbuf);
3136     Register src_reg = reg_to_register_object($src$$reg);
3137     Register dst_reg = reg_to_register_object($dst$$reg);
3138     __ sll(src_reg, 24, dst_reg);
3139     __ srl(dst_reg,  8, O7);
3140     __ or3(dst_reg, O7, dst_reg);
3141     __ srl(dst_reg, 16, O7);
3142     __ or3(dst_reg, O7, dst_reg);
3143   %}
3144 
3145   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
3146     MacroAssembler _masm(&cbuf);
3147     Register src_reg = reg_to_register_object($src$$reg);
3148     Register dst_reg = reg_to_register_object($dst$$reg);
3149     __ sllx(src_reg, 48, dst_reg);
3150     __ srlx(dst_reg, 16, O7);
3151     __ or3 (dst_reg, O7, dst_reg);
3152     __ srlx(dst_reg, 32, O7);
3153     __ or3 (dst_reg, O7, dst_reg);
3154   %}
3155 
3156   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
3157     MacroAssembler _masm(&cbuf);
3158     Register src_reg = reg_to_register_object($src$$reg);
3159     Register dst_reg = reg_to_register_object($dst$$reg);
3160     __ sllx(src_reg, 32, dst_reg);
3161     __ srlx(dst_reg, 32, O7);
3162     __ or3 (dst_reg, O7, dst_reg);
3163   %}
3164 
3165 %}
3166 
3167 //----------FRAME--------------------------------------------------------------
3168 // Definition of frame structure and management information.
3169 //
3170 //  S T A C K   L A Y O U T    Allocators stack-slot number
3171 //                             |   (to get allocators register number
3172 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3173 //  r   CALLER     |        |
3174 //  o     |        +--------+      pad to even-align allocators stack-slot
3175 //  w     V        |  pad0  |        numbers; owned by CALLER
3176 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3177 //  h     ^        |   in   |  5
3178 //        |        |  args  |  4   Holes in incoming args owned by SELF
3179 //  |     |        |        |  3
3180 //  |     |        +--------+
3181 //  V     |        | old out|      Empty on Intel, window on Sparc
3182 //        |    old |preserve|      Must be even aligned.
3183 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3184 //        |        |   in   |  3   area for Intel ret address
3185 //     Owned by    |preserve|      Empty on Sparc.
3186 //       SELF      +--------+
3187 //        |        |  pad2  |  2   pad to align old SP
3188 //        |        +--------+  1
3189 //        |        | locks  |  0
3190 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3191 //        |        |  pad1  | 11   pad to align new SP
3192 //        |        +--------+
3193 //        |        |        | 10
3194 //        |        | spills |  9   spills
3195 //        V        |        |  8   (pad0 slot for callee)
3196 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3197 //        ^        |  out   |  7
3198 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3199 //     Owned by    +--------+
3200 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3201 //        |    new |preserve|      Must be even-aligned.
3202 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3203 //        |        |        |
3204 //
3205 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3206 //         known from SELF's arguments and the Java calling convention.
3207 //         Region 6-7 is determined per call site.
3208 // Note 2: If the calling convention leaves holes in the incoming argument
3209 //         area, those holes are owned by SELF.  Holes in the outgoing area
3210 //         are owned by the CALLEE.  Holes should not be nessecary in the
3211 //         incoming area, as the Java calling convention is completely under
3212 //         the control of the AD file.  Doubles can be sorted and packed to
3213 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3214 //         varargs C calling conventions.
3215 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3216 //         even aligned with pad0 as needed.
3217 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3218 //         region 6-11 is even aligned; it may be padded out more so that
3219 //         the region from SP to FP meets the minimum stack alignment.
3220 
3221 frame %{
3222   // What direction does stack grow in (assumed to be same for native & Java)
3223   stack_direction(TOWARDS_LOW);
3224 
3225   // These two registers define part of the calling convention
3226   // between compiled code and the interpreter.
3227   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3228   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3229 
3230   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3231   cisc_spilling_operand_name(indOffset);
3232 
3233   // Number of stack slots consumed by a Monitor enter
3234 #ifdef _LP64
3235   sync_stack_slots(2);
3236 #else
3237   sync_stack_slots(1);
3238 #endif
3239 
3240   // Compiled code's Frame Pointer
3241   frame_pointer(R_SP);
3242 
3243   // Stack alignment requirement
3244   stack_alignment(StackAlignmentInBytes);
3245   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3246   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3247 
3248   // Number of stack slots between incoming argument block and the start of
3249   // a new frame.  The PROLOG must add this many slots to the stack.  The
3250   // EPILOG must remove this many slots.
3251   in_preserve_stack_slots(0);
3252 
3253   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3254   // for calls to C.  Supports the var-args backing area for register parms.
3255   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3256 #ifdef _LP64
3257   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3258   varargs_C_out_slots_killed(12);
3259 #else
3260   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3261   varargs_C_out_slots_killed( 7);
3262 #endif
3263 
3264   // The after-PROLOG location of the return address.  Location of
3265   // return address specifies a type (REG or STACK) and a number
3266   // representing the register number (i.e. - use a register name) or
3267   // stack slot.
3268   return_addr(REG R_I7);          // Ret Addr is in register I7
3269 
3270   // Body of function which returns an OptoRegs array locating
3271   // arguments either in registers or in stack slots for calling
3272   // java
3273   calling_convention %{
3274     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3275 
3276   %}
3277 
3278   // Body of function which returns an OptoRegs array locating
3279   // arguments either in registers or in stack slots for callin
3280   // C.
3281   c_calling_convention %{
3282     // This is obviously always outgoing
3283     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3284   %}
3285 
3286   // Location of native (C/C++) and interpreter return values.  This is specified to
3287   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3288   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3289   // to and from the register pairs is done by the appropriate call and epilog
3290   // opcodes.  This simplifies the register allocator.
3291   c_return_value %{
3292     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3293 #ifdef     _LP64
3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3298 #else  // !_LP64
3299     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3300     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3301     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3302     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3303 #endif
3304     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3305                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3306   %}
3307 
3308   // Location of compiled Java return values.  Same as C
3309   return_value %{
3310     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3311 #ifdef     _LP64
3312     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3313     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3314     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3315     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3316 #else  // !_LP64
3317     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3318     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3319     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3320     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3321 #endif
3322     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3323                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3324   %}
3325 
3326 %}
3327 
3328 
3329 //----------ATTRIBUTES---------------------------------------------------------
3330 //----------Operand Attributes-------------------------------------------------
3331 op_attrib op_cost(1);          // Required cost attribute
3332 
3333 //----------Instruction Attributes---------------------------------------------
3334 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3335 ins_attrib ins_size(32);       // Required size attribute (in bits)
3336 ins_attrib ins_pc_relative(0); // Required PC Relative flag
3337 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3338                                 // non-matching short branch variant of some
3339                                                             // long branch?
3340 
3341 //----------OPERANDS-----------------------------------------------------------
3342 // Operand definitions must precede instruction definitions for correct parsing
3343 // in the ADLC because operands constitute user defined types which are used in
3344 // instruction definitions.
3345 
3346 //----------Simple Operands----------------------------------------------------
3347 // Immediate Operands
3348 // Integer Immediate: 32-bit
3349 operand immI() %{
3350   match(ConI);
3351 
3352   op_cost(0);
3353   // formats are generated automatically for constants and base registers
3354   format %{ %}
3355   interface(CONST_INTER);
3356 %}
3357 
3358 // Integer Immediate: 8-bit
3359 operand immI8() %{
3360   predicate(Assembler::is_simm(n->get_int(), 8));
3361   match(ConI);
3362   op_cost(0);
3363   format %{ %}
3364   interface(CONST_INTER);
3365 %}
3366 
3367 // Integer Immediate: 13-bit
3368 operand immI13() %{
3369   predicate(Assembler::is_simm13(n->get_int()));
3370   match(ConI);
3371   op_cost(0);
3372 
3373   format %{ %}
3374   interface(CONST_INTER);
3375 %}
3376 
3377 // Integer Immediate: 13-bit minus 7
3378 operand immI13m7() %{
3379   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3380   match(ConI);
3381   op_cost(0);
3382 
3383   format %{ %}
3384   interface(CONST_INTER);
3385 %}
3386 
3387 // Integer Immediate: 16-bit
3388 operand immI16() %{
3389   predicate(Assembler::is_simm(n->get_int(), 16));
3390   match(ConI);
3391   op_cost(0);
3392   format %{ %}
3393   interface(CONST_INTER);
3394 %}
3395 
3396 // Unsigned (positive) Integer Immediate: 13-bit
3397 operand immU13() %{
3398   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3399   match(ConI);
3400   op_cost(0);
3401 
3402   format %{ %}
3403   interface(CONST_INTER);
3404 %}
3405 
3406 // Integer Immediate: 6-bit
3407 operand immU6() %{
3408   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3409   match(ConI);
3410   op_cost(0);
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // Integer Immediate: 11-bit
3416 operand immI11() %{
3417   predicate(Assembler::is_simm(n->get_int(),11));
3418   match(ConI);
3419   op_cost(0);
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Integer Immediate: 0-bit
3425 operand immI0() %{
3426   predicate(n->get_int() == 0);
3427   match(ConI);
3428   op_cost(0);
3429 
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Integer Immediate: the value 10
3435 operand immI10() %{
3436   predicate(n->get_int() == 10);
3437   match(ConI);
3438   op_cost(0);
3439 
3440   format %{ %}
3441   interface(CONST_INTER);
3442 %}
3443 
3444 // Integer Immediate: the values 0-31
3445 operand immU5() %{
3446   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3447   match(ConI);
3448   op_cost(0);
3449 
3450   format %{ %}
3451   interface(CONST_INTER);
3452 %}
3453 
3454 // Integer Immediate: the values 1-31
3455 operand immI_1_31() %{
3456   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3457   match(ConI);
3458   op_cost(0);
3459 
3460   format %{ %}
3461   interface(CONST_INTER);
3462 %}
3463 
3464 // Integer Immediate: the values 32-63
3465 operand immI_32_63() %{
3466   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3467   match(ConI);
3468   op_cost(0);
3469 
3470   format %{ %}
3471   interface(CONST_INTER);
3472 %}
3473 
3474 // Immediates for special shifts (sign extend)
3475 
3476 // Integer Immediate: the value 16
3477 operand immI_16() %{
3478   predicate(n->get_int() == 16);
3479   match(ConI);
3480   op_cost(0);
3481 
3482   format %{ %}
3483   interface(CONST_INTER);
3484 %}
3485 
3486 // Integer Immediate: the value 24
3487 operand immI_24() %{
3488   predicate(n->get_int() == 24);
3489   match(ConI);
3490   op_cost(0);
3491 
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 // Integer Immediate: the value 255
3497 operand immI_255() %{
3498   predicate( n->get_int() == 255 );
3499   match(ConI);
3500   op_cost(0);
3501 
3502   format %{ %}
3503   interface(CONST_INTER);
3504 %}
3505 
3506 // Integer Immediate: the value 65535
3507 operand immI_65535() %{
3508   predicate(n->get_int() == 65535);
3509   match(ConI);
3510   op_cost(0);
3511 
3512   format %{ %}
3513   interface(CONST_INTER);
3514 %}
3515 
3516 // Long Immediate: the value FF
3517 operand immL_FF() %{
3518   predicate( n->get_long() == 0xFFL );
3519   match(ConL);
3520   op_cost(0);
3521 
3522   format %{ %}
3523   interface(CONST_INTER);
3524 %}
3525 
3526 // Long Immediate: the value FFFF
3527 operand immL_FFFF() %{
3528   predicate( n->get_long() == 0xFFFFL );
3529   match(ConL);
3530   op_cost(0);
3531 
3532   format %{ %}
3533   interface(CONST_INTER);
3534 %}
3535 
3536 // Pointer Immediate: 32 or 64-bit
3537 operand immP() %{
3538   match(ConP);
3539 
3540   op_cost(5);
3541   // formats are generated automatically for constants and base registers
3542   format %{ %}
3543   interface(CONST_INTER);
3544 %}
3545 
3546 operand immP13() %{
3547   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3548   match(ConP);
3549   op_cost(0);
3550 
3551   format %{ %}
3552   interface(CONST_INTER);
3553 %}
3554 
3555 operand immP0() %{
3556   predicate(n->get_ptr() == 0);
3557   match(ConP);
3558   op_cost(0);
3559 
3560   format %{ %}
3561   interface(CONST_INTER);
3562 %}
3563 
3564 operand immP_poll() %{
3565   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3566   match(ConP);
3567 
3568   // formats are generated automatically for constants and base registers
3569   format %{ %}
3570   interface(CONST_INTER);
3571 %}
3572 
3573 // Pointer Immediate
3574 operand immN()
3575 %{
3576   match(ConN);
3577 
3578   op_cost(10);
3579   format %{ %}
3580   interface(CONST_INTER);
3581 %}
3582 
3583 // NULL Pointer Immediate
3584 operand immN0()
3585 %{
3586   predicate(n->get_narrowcon() == 0);
3587   match(ConN);
3588 
3589   op_cost(0);
3590   format %{ %}
3591   interface(CONST_INTER);
3592 %}
3593 
3594 operand immL() %{
3595   match(ConL);
3596   op_cost(40);
3597   // formats are generated automatically for constants and base registers
3598   format %{ %}
3599   interface(CONST_INTER);
3600 %}
3601 
3602 operand immL0() %{
3603   predicate(n->get_long() == 0L);
3604   match(ConL);
3605   op_cost(0);
3606   // formats are generated automatically for constants and base registers
3607   format %{ %}
3608   interface(CONST_INTER);
3609 %}
3610 
3611 // Long Immediate: 13-bit
3612 operand immL13() %{
3613   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3614   match(ConL);
3615   op_cost(0);
3616 
3617   format %{ %}
3618   interface(CONST_INTER);
3619 %}
3620 
3621 // Long Immediate: 13-bit minus 7
3622 operand immL13m7() %{
3623   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3624   match(ConL);
3625   op_cost(0);
3626 
3627   format %{ %}
3628   interface(CONST_INTER);
3629 %}
3630 
3631 // Long Immediate: low 32-bit mask
3632 operand immL_32bits() %{
3633   predicate(n->get_long() == 0xFFFFFFFFL);
3634   match(ConL);
3635   op_cost(0);
3636 
3637   format %{ %}
3638   interface(CONST_INTER);
3639 %}
3640 
3641 // Double Immediate
3642 operand immD() %{
3643   match(ConD);
3644 
3645   op_cost(40);
3646   format %{ %}
3647   interface(CONST_INTER);
3648 %}
3649 
3650 operand immD0() %{
3651 #ifdef _LP64
3652   // on 64-bit architectures this comparision is faster
3653   predicate(jlong_cast(n->getd()) == 0);
3654 #else
3655   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3656 #endif
3657   match(ConD);
3658 
3659   op_cost(0);
3660   format %{ %}
3661   interface(CONST_INTER);
3662 %}
3663 
3664 // Float Immediate
3665 operand immF() %{
3666   match(ConF);
3667 
3668   op_cost(20);
3669   format %{ %}
3670   interface(CONST_INTER);
3671 %}
3672 
3673 // Float Immediate: 0
3674 operand immF0() %{
3675   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3676   match(ConF);
3677 
3678   op_cost(0);
3679   format %{ %}
3680   interface(CONST_INTER);
3681 %}
3682 
3683 // Integer Register Operands
3684 // Integer Register
3685 operand iRegI() %{
3686   constraint(ALLOC_IN_RC(int_reg));
3687   match(RegI);
3688 
3689   match(notemp_iRegI);
3690   match(g1RegI);
3691   match(o0RegI);
3692   match(iRegIsafe);
3693 
3694   format %{ %}
3695   interface(REG_INTER);
3696 %}
3697 
3698 operand notemp_iRegI() %{
3699   constraint(ALLOC_IN_RC(notemp_int_reg));
3700   match(RegI);
3701 
3702   match(o0RegI);
3703 
3704   format %{ %}
3705   interface(REG_INTER);
3706 %}
3707 
3708 operand o0RegI() %{
3709   constraint(ALLOC_IN_RC(o0_regI));
3710   match(iRegI);
3711 
3712   format %{ %}
3713   interface(REG_INTER);
3714 %}
3715 
3716 // Pointer Register
3717 operand iRegP() %{
3718   constraint(ALLOC_IN_RC(ptr_reg));
3719   match(RegP);
3720 
3721   match(lock_ptr_RegP);
3722   match(g1RegP);
3723   match(g2RegP);
3724   match(g3RegP);
3725   match(g4RegP);
3726   match(i0RegP);
3727   match(o0RegP);
3728   match(o1RegP);
3729   match(l7RegP);
3730 
3731   format %{ %}
3732   interface(REG_INTER);
3733 %}
3734 
3735 operand sp_ptr_RegP() %{
3736   constraint(ALLOC_IN_RC(sp_ptr_reg));
3737   match(RegP);
3738   match(iRegP);
3739 
3740   format %{ %}
3741   interface(REG_INTER);
3742 %}
3743 
3744 operand lock_ptr_RegP() %{
3745   constraint(ALLOC_IN_RC(lock_ptr_reg));
3746   match(RegP);
3747   match(i0RegP);
3748   match(o0RegP);
3749   match(o1RegP);
3750   match(l7RegP);
3751 
3752   format %{ %}
3753   interface(REG_INTER);
3754 %}
3755 
3756 operand g1RegP() %{
3757   constraint(ALLOC_IN_RC(g1_regP));
3758   match(iRegP);
3759 
3760   format %{ %}
3761   interface(REG_INTER);
3762 %}
3763 
3764 operand g2RegP() %{
3765   constraint(ALLOC_IN_RC(g2_regP));
3766   match(iRegP);
3767 
3768   format %{ %}
3769   interface(REG_INTER);
3770 %}
3771 
3772 operand g3RegP() %{
3773   constraint(ALLOC_IN_RC(g3_regP));
3774   match(iRegP);
3775 
3776   format %{ %}
3777   interface(REG_INTER);
3778 %}
3779 
3780 operand g1RegI() %{
3781   constraint(ALLOC_IN_RC(g1_regI));
3782   match(iRegI);
3783 
3784   format %{ %}
3785   interface(REG_INTER);
3786 %}
3787 
3788 operand g3RegI() %{
3789   constraint(ALLOC_IN_RC(g3_regI));
3790   match(iRegI);
3791 
3792   format %{ %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 operand g4RegI() %{
3797   constraint(ALLOC_IN_RC(g4_regI));
3798   match(iRegI);
3799 
3800   format %{ %}
3801   interface(REG_INTER);
3802 %}
3803 
3804 operand g4RegP() %{
3805   constraint(ALLOC_IN_RC(g4_regP));
3806   match(iRegP);
3807 
3808   format %{ %}
3809   interface(REG_INTER);
3810 %}
3811 
3812 operand i0RegP() %{
3813   constraint(ALLOC_IN_RC(i0_regP));
3814   match(iRegP);
3815 
3816   format %{ %}
3817   interface(REG_INTER);
3818 %}
3819 
3820 operand o0RegP() %{
3821   constraint(ALLOC_IN_RC(o0_regP));
3822   match(iRegP);
3823 
3824   format %{ %}
3825   interface(REG_INTER);
3826 %}
3827 
3828 operand o1RegP() %{
3829   constraint(ALLOC_IN_RC(o1_regP));
3830   match(iRegP);
3831 
3832   format %{ %}
3833   interface(REG_INTER);
3834 %}
3835 
3836 operand o2RegP() %{
3837   constraint(ALLOC_IN_RC(o2_regP));
3838   match(iRegP);
3839 
3840   format %{ %}
3841   interface(REG_INTER);
3842 %}
3843 
3844 operand o7RegP() %{
3845   constraint(ALLOC_IN_RC(o7_regP));
3846   match(iRegP);
3847 
3848   format %{ %}
3849   interface(REG_INTER);
3850 %}
3851 
3852 operand l7RegP() %{
3853   constraint(ALLOC_IN_RC(l7_regP));
3854   match(iRegP);
3855 
3856   format %{ %}
3857   interface(REG_INTER);
3858 %}
3859 
3860 operand o7RegI() %{
3861   constraint(ALLOC_IN_RC(o7_regI));
3862   match(iRegI);
3863 
3864   format %{ %}
3865   interface(REG_INTER);
3866 %}
3867 
3868 operand iRegN() %{
3869   constraint(ALLOC_IN_RC(int_reg));
3870   match(RegN);
3871 
3872   format %{ %}
3873   interface(REG_INTER);
3874 %}
3875 
3876 // Long Register
3877 operand iRegL() %{
3878   constraint(ALLOC_IN_RC(long_reg));
3879   match(RegL);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand o2RegL() %{
3886   constraint(ALLOC_IN_RC(o2_regL));
3887   match(iRegL);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 operand o7RegL() %{
3894   constraint(ALLOC_IN_RC(o7_regL));
3895   match(iRegL);
3896 
3897   format %{ %}
3898   interface(REG_INTER);
3899 %}
3900 
3901 operand g1RegL() %{
3902   constraint(ALLOC_IN_RC(g1_regL));
3903   match(iRegL);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand g3RegL() %{
3910   constraint(ALLOC_IN_RC(g3_regL));
3911   match(iRegL);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 // Int Register safe
3918 // This is 64bit safe
3919 operand iRegIsafe() %{
3920   constraint(ALLOC_IN_RC(long_reg));
3921 
3922   match(iRegI);
3923 
3924   format %{ %}
3925   interface(REG_INTER);
3926 %}
3927 
3928 // Condition Code Flag Register
3929 operand flagsReg() %{
3930   constraint(ALLOC_IN_RC(int_flags));
3931   match(RegFlags);
3932 
3933   format %{ "ccr" %} // both ICC and XCC
3934   interface(REG_INTER);
3935 %}
3936 
3937 // Condition Code Register, unsigned comparisons.
3938 operand flagsRegU() %{
3939   constraint(ALLOC_IN_RC(int_flags));
3940   match(RegFlags);
3941 
3942   format %{ "icc_U" %}
3943   interface(REG_INTER);
3944 %}
3945 
3946 // Condition Code Register, pointer comparisons.
3947 operand flagsRegP() %{
3948   constraint(ALLOC_IN_RC(int_flags));
3949   match(RegFlags);
3950 
3951 #ifdef _LP64
3952   format %{ "xcc_P" %}
3953 #else
3954   format %{ "icc_P" %}
3955 #endif
3956   interface(REG_INTER);
3957 %}
3958 
3959 // Condition Code Register, long comparisons.
3960 operand flagsRegL() %{
3961   constraint(ALLOC_IN_RC(int_flags));
3962   match(RegFlags);
3963 
3964   format %{ "xcc_L" %}
3965   interface(REG_INTER);
3966 %}
3967 
3968 // Condition Code Register, floating comparisons, unordered same as "less".
3969 operand flagsRegF() %{
3970   constraint(ALLOC_IN_RC(float_flags));
3971   match(RegFlags);
3972   match(flagsRegF0);
3973 
3974   format %{ %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 operand flagsRegF0() %{
3979   constraint(ALLOC_IN_RC(float_flag0));
3980   match(RegFlags);
3981 
3982   format %{ %}
3983   interface(REG_INTER);
3984 %}
3985 
3986 
3987 // Condition Code Flag Register used by long compare
3988 operand flagsReg_long_LTGE() %{
3989   constraint(ALLOC_IN_RC(int_flags));
3990   match(RegFlags);
3991   format %{ "icc_LTGE" %}
3992   interface(REG_INTER);
3993 %}
3994 operand flagsReg_long_EQNE() %{
3995   constraint(ALLOC_IN_RC(int_flags));
3996   match(RegFlags);
3997   format %{ "icc_EQNE" %}
3998   interface(REG_INTER);
3999 %}
4000 operand flagsReg_long_LEGT() %{
4001   constraint(ALLOC_IN_RC(int_flags));
4002   match(RegFlags);
4003   format %{ "icc_LEGT" %}
4004   interface(REG_INTER);
4005 %}
4006 
4007 
4008 operand regD() %{
4009   constraint(ALLOC_IN_RC(dflt_reg));
4010   match(RegD);
4011 
4012   match(regD_low);
4013 
4014   format %{ %}
4015   interface(REG_INTER);
4016 %}
4017 
4018 operand regF() %{
4019   constraint(ALLOC_IN_RC(sflt_reg));
4020   match(RegF);
4021 
4022   format %{ %}
4023   interface(REG_INTER);
4024 %}
4025 
4026 operand regD_low() %{
4027   constraint(ALLOC_IN_RC(dflt_low_reg));
4028   match(regD);
4029 
4030   format %{ %}
4031   interface(REG_INTER);
4032 %}
4033 
4034 // Special Registers
4035 
4036 // Method Register
4037 operand inline_cache_regP(iRegP reg) %{
4038   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4039   match(reg);
4040   format %{ %}
4041   interface(REG_INTER);
4042 %}
4043 
4044 operand interpreter_method_oop_regP(iRegP reg) %{
4045   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4046   match(reg);
4047   format %{ %}
4048   interface(REG_INTER);
4049 %}
4050 
4051 
4052 //----------Complex Operands---------------------------------------------------
4053 // Indirect Memory Reference
4054 operand indirect(sp_ptr_RegP reg) %{
4055   constraint(ALLOC_IN_RC(sp_ptr_reg));
4056   match(reg);
4057 
4058   op_cost(100);
4059   format %{ "[$reg]" %}
4060   interface(MEMORY_INTER) %{
4061     base($reg);
4062     index(0x0);
4063     scale(0x0);
4064     disp(0x0);
4065   %}
4066 %}
4067 
4068 // Indirect with simm13 Offset
4069 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4070   constraint(ALLOC_IN_RC(sp_ptr_reg));
4071   match(AddP reg offset);
4072 
4073   op_cost(100);
4074   format %{ "[$reg + $offset]" %}
4075   interface(MEMORY_INTER) %{
4076     base($reg);
4077     index(0x0);
4078     scale(0x0);
4079     disp($offset);
4080   %}
4081 %}
4082 
4083 // Indirect with simm13 Offset minus 7
4084 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4085   constraint(ALLOC_IN_RC(sp_ptr_reg));
4086   match(AddP reg offset);
4087 
4088   op_cost(100);
4089   format %{ "[$reg + $offset]" %}
4090   interface(MEMORY_INTER) %{
4091     base($reg);
4092     index(0x0);
4093     scale(0x0);
4094     disp($offset);
4095   %}
4096 %}
4097 
4098 // Note:  Intel has a swapped version also, like this:
4099 //operand indOffsetX(iRegI reg, immP offset) %{
4100 //  constraint(ALLOC_IN_RC(int_reg));
4101 //  match(AddP offset reg);
4102 //
4103 //  op_cost(100);
4104 //  format %{ "[$reg + $offset]" %}
4105 //  interface(MEMORY_INTER) %{
4106 //    base($reg);
4107 //    index(0x0);
4108 //    scale(0x0);
4109 //    disp($offset);
4110 //  %}
4111 //%}
4112 //// However, it doesn't make sense for SPARC, since
4113 // we have no particularly good way to embed oops in
4114 // single instructions.
4115 
4116 // Indirect with Register Index
4117 operand indIndex(iRegP addr, iRegX index) %{
4118   constraint(ALLOC_IN_RC(ptr_reg));
4119   match(AddP addr index);
4120 
4121   op_cost(100);
4122   format %{ "[$addr + $index]" %}
4123   interface(MEMORY_INTER) %{
4124     base($addr);
4125     index($index);
4126     scale(0x0);
4127     disp(0x0);
4128   %}
4129 %}
4130 
4131 //----------Special Memory Operands--------------------------------------------
4132 // Stack Slot Operand - This operand is used for loading and storing temporary
4133 //                      values on the stack where a match requires a value to
4134 //                      flow through memory.
4135 operand stackSlotI(sRegI reg) %{
4136   constraint(ALLOC_IN_RC(stack_slots));
4137   op_cost(100);
4138   //match(RegI);
4139   format %{ "[$reg]" %}
4140   interface(MEMORY_INTER) %{
4141     base(0xE);   // R_SP
4142     index(0x0);
4143     scale(0x0);
4144     disp($reg);  // Stack Offset
4145   %}
4146 %}
4147 
4148 operand stackSlotP(sRegP reg) %{
4149   constraint(ALLOC_IN_RC(stack_slots));
4150   op_cost(100);
4151   //match(RegP);
4152   format %{ "[$reg]" %}
4153   interface(MEMORY_INTER) %{
4154     base(0xE);   // R_SP
4155     index(0x0);
4156     scale(0x0);
4157     disp($reg);  // Stack Offset
4158   %}
4159 %}
4160 
4161 operand stackSlotF(sRegF reg) %{
4162   constraint(ALLOC_IN_RC(stack_slots));
4163   op_cost(100);
4164   //match(RegF);
4165   format %{ "[$reg]" %}
4166   interface(MEMORY_INTER) %{
4167     base(0xE);   // R_SP
4168     index(0x0);
4169     scale(0x0);
4170     disp($reg);  // Stack Offset
4171   %}
4172 %}
4173 operand stackSlotD(sRegD reg) %{
4174   constraint(ALLOC_IN_RC(stack_slots));
4175   op_cost(100);
4176   //match(RegD);
4177   format %{ "[$reg]" %}
4178   interface(MEMORY_INTER) %{
4179     base(0xE);   // R_SP
4180     index(0x0);
4181     scale(0x0);
4182     disp($reg);  // Stack Offset
4183   %}
4184 %}
4185 operand stackSlotL(sRegL reg) %{
4186   constraint(ALLOC_IN_RC(stack_slots));
4187   op_cost(100);
4188   //match(RegL);
4189   format %{ "[$reg]" %}
4190   interface(MEMORY_INTER) %{
4191     base(0xE);   // R_SP
4192     index(0x0);
4193     scale(0x0);
4194     disp($reg);  // Stack Offset
4195   %}
4196 %}
4197 
4198 // Operands for expressing Control Flow
4199 // NOTE:  Label is a predefined operand which should not be redefined in
4200 //        the AD file.  It is generically handled within the ADLC.
4201 
4202 //----------Conditional Branch Operands----------------------------------------
4203 // Comparison Op  - This is the operation of the comparison, and is limited to
4204 //                  the following set of codes:
4205 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4206 //
4207 // Other attributes of the comparison, such as unsignedness, are specified
4208 // by the comparison instruction that sets a condition code flags register.
4209 // That result is represented by a flags operand whose subtype is appropriate
4210 // to the unsignedness (etc.) of the comparison.
4211 //
4212 // Later, the instruction which matches both the Comparison Op (a Bool) and
4213 // the flags (produced by the Cmp) specifies the coding of the comparison op
4214 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4215 
4216 operand cmpOp() %{
4217   match(Bool);
4218 
4219   format %{ "" %}
4220   interface(COND_INTER) %{
4221     equal(0x1);
4222     not_equal(0x9);
4223     less(0x3);
4224     greater_equal(0xB);
4225     less_equal(0x2);
4226     greater(0xA);
4227   %}
4228 %}
4229 
4230 // Comparison Op, unsigned
4231 operand cmpOpU() %{
4232   match(Bool);
4233 
4234   format %{ "u" %}
4235   interface(COND_INTER) %{
4236     equal(0x1);
4237     not_equal(0x9);
4238     less(0x5);
4239     greater_equal(0xD);
4240     less_equal(0x4);
4241     greater(0xC);
4242   %}
4243 %}
4244 
4245 // Comparison Op, pointer (same as unsigned)
4246 operand cmpOpP() %{
4247   match(Bool);
4248 
4249   format %{ "p" %}
4250   interface(COND_INTER) %{
4251     equal(0x1);
4252     not_equal(0x9);
4253     less(0x5);
4254     greater_equal(0xD);
4255     less_equal(0x4);
4256     greater(0xC);
4257   %}
4258 %}
4259 
4260 // Comparison Op, branch-register encoding
4261 operand cmpOp_reg() %{
4262   match(Bool);
4263 
4264   format %{ "" %}
4265   interface(COND_INTER) %{
4266     equal        (0x1);
4267     not_equal    (0x5);
4268     less         (0x3);
4269     greater_equal(0x7);
4270     less_equal   (0x2);
4271     greater      (0x6);
4272   %}
4273 %}
4274 
4275 // Comparison Code, floating, unordered same as less
4276 operand cmpOpF() %{
4277   match(Bool);
4278 
4279   format %{ "fl" %}
4280   interface(COND_INTER) %{
4281     equal(0x9);
4282     not_equal(0x1);
4283     less(0x3);
4284     greater_equal(0xB);
4285     less_equal(0xE);
4286     greater(0x6);
4287   %}
4288 %}
4289 
4290 // Used by long compare
4291 operand cmpOp_commute() %{
4292   match(Bool);
4293 
4294   format %{ "" %}
4295   interface(COND_INTER) %{
4296     equal(0x1);
4297     not_equal(0x9);
4298     less(0xA);
4299     greater_equal(0x2);
4300     less_equal(0xB);
4301     greater(0x3);
4302   %}
4303 %}
4304 
4305 //----------OPERAND CLASSES----------------------------------------------------
4306 // Operand Classes are groups of operands that are used to simplify
4307 // instruction definitions by not requiring the AD writer to specify separate
4308 // instructions for every form of operand when the instruction accepts
4309 // multiple operand types with the same basic encoding and format.  The classic
4310 // case of this is memory operands.
4311 // Indirect is not included since its use is limited to Compare & Swap
4312 opclass memory( indirect, indOffset13, indIndex );
4313 
4314 //----------PIPELINE-----------------------------------------------------------
4315 pipeline %{
4316 
4317 //----------ATTRIBUTES---------------------------------------------------------
4318 attributes %{
4319   fixed_size_instructions;           // Fixed size instructions
4320   branch_has_delay_slot;             // Branch has delay slot following
4321   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4322   instruction_unit_size = 4;         // An instruction is 4 bytes long
4323   instruction_fetch_unit_size = 16;  // The processor fetches one line
4324   instruction_fetch_units = 1;       // of 16 bytes
4325 
4326   // List of nop instructions
4327   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4328 %}
4329 
4330 //----------RESOURCES----------------------------------------------------------
4331 // Resources are the functional units available to the machine
4332 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4333 
4334 //----------PIPELINE DESCRIPTION-----------------------------------------------
4335 // Pipeline Description specifies the stages in the machine's pipeline
4336 
4337 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4338 
4339 //----------PIPELINE CLASSES---------------------------------------------------
4340 // Pipeline Classes describe the stages in which input and output are
4341 // referenced by the hardware pipeline.
4342 
4343 // Integer ALU reg-reg operation
4344 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4345     single_instruction;
4346     dst   : E(write);
4347     src1  : R(read);
4348     src2  : R(read);
4349     IALU  : R;
4350 %}
4351 
4352 // Integer ALU reg-reg long operation
4353 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4354     instruction_count(2);
4355     dst   : E(write);
4356     src1  : R(read);
4357     src2  : R(read);
4358     IALU  : R;
4359     IALU  : R;
4360 %}
4361 
4362 // Integer ALU reg-reg long dependent operation
4363 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4364     instruction_count(1); multiple_bundles;
4365     dst   : E(write);
4366     src1  : R(read);
4367     src2  : R(read);
4368     cr    : E(write);
4369     IALU  : R(2);
4370 %}
4371 
4372 // Integer ALU reg-imm operaion
4373 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4374     single_instruction;
4375     dst   : E(write);
4376     src1  : R(read);
4377     IALU  : R;
4378 %}
4379 
4380 // Integer ALU reg-reg operation with condition code
4381 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4382     single_instruction;
4383     dst   : E(write);
4384     cr    : E(write);
4385     src1  : R(read);
4386     src2  : R(read);
4387     IALU  : R;
4388 %}
4389 
4390 // Integer ALU reg-imm operation with condition code
4391 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4392     single_instruction;
4393     dst   : E(write);
4394     cr    : E(write);
4395     src1  : R(read);
4396     IALU  : R;
4397 %}
4398 
4399 // Integer ALU zero-reg operation
4400 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4401     single_instruction;
4402     dst   : E(write);
4403     src2  : R(read);
4404     IALU  : R;
4405 %}
4406 
4407 // Integer ALU zero-reg operation with condition code only
4408 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4409     single_instruction;
4410     cr    : E(write);
4411     src   : R(read);
4412     IALU  : R;
4413 %}
4414 
4415 // Integer ALU reg-reg operation with condition code only
4416 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4417     single_instruction;
4418     cr    : E(write);
4419     src1  : R(read);
4420     src2  : R(read);
4421     IALU  : R;
4422 %}
4423 
4424 // Integer ALU reg-imm operation with condition code only
4425 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4426     single_instruction;
4427     cr    : E(write);
4428     src1  : R(read);
4429     IALU  : R;
4430 %}
4431 
4432 // Integer ALU reg-reg-zero operation with condition code only
4433 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4434     single_instruction;
4435     cr    : E(write);
4436     src1  : R(read);
4437     src2  : R(read);
4438     IALU  : R;
4439 %}
4440 
4441 // Integer ALU reg-imm-zero operation with condition code only
4442 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4443     single_instruction;
4444     cr    : E(write);
4445     src1  : R(read);
4446     IALU  : R;
4447 %}
4448 
4449 // Integer ALU reg-reg operation with condition code, src1 modified
4450 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4451     single_instruction;
4452     cr    : E(write);
4453     src1  : E(write);
4454     src1  : R(read);
4455     src2  : R(read);
4456     IALU  : R;
4457 %}
4458 
4459 // Integer ALU reg-imm operation with condition code, src1 modified
4460 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4461     single_instruction;
4462     cr    : E(write);
4463     src1  : E(write);
4464     src1  : R(read);
4465     IALU  : R;
4466 %}
4467 
4468 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4469     multiple_bundles;
4470     dst   : E(write)+4;
4471     cr    : E(write);
4472     src1  : R(read);
4473     src2  : R(read);
4474     IALU  : R(3);
4475     BR    : R(2);
4476 %}
4477 
4478 // Integer ALU operation
4479 pipe_class ialu_none(iRegI dst) %{
4480     single_instruction;
4481     dst   : E(write);
4482     IALU  : R;
4483 %}
4484 
4485 // Integer ALU reg operation
4486 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4487     single_instruction; may_have_no_code;
4488     dst   : E(write);
4489     src   : R(read);
4490     IALU  : R;
4491 %}
4492 
4493 // Integer ALU reg conditional operation
4494 // This instruction has a 1 cycle stall, and cannot execute
4495 // in the same cycle as the instruction setting the condition
4496 // code. We kludge this by pretending to read the condition code
4497 // 1 cycle earlier, and by marking the functional units as busy
4498 // for 2 cycles with the result available 1 cycle later than
4499 // is really the case.
4500 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4501     single_instruction;
4502     op2_out : C(write);
4503     op1     : R(read);
4504     cr      : R(read);       // This is really E, with a 1 cycle stall
4505     BR      : R(2);
4506     MS      : R(2);
4507 %}
4508 
4509 #ifdef _LP64
4510 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4511     instruction_count(1); multiple_bundles;
4512     dst     : C(write)+1;
4513     src     : R(read)+1;
4514     IALU    : R(1);
4515     BR      : E(2);
4516     MS      : E(2);
4517 %}
4518 #endif
4519 
4520 // Integer ALU reg operation
4521 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4522     single_instruction; may_have_no_code;
4523     dst   : E(write);
4524     src   : R(read);
4525     IALU  : R;
4526 %}
4527 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4528     single_instruction; may_have_no_code;
4529     dst   : E(write);
4530     src   : R(read);
4531     IALU  : R;
4532 %}
4533 
4534 // Two integer ALU reg operations
4535 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4536     instruction_count(2);
4537     dst   : E(write);
4538     src   : R(read);
4539     A0    : R;
4540     A1    : R;
4541 %}
4542 
4543 // Two integer ALU reg operations
4544 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4545     instruction_count(2); may_have_no_code;
4546     dst   : E(write);
4547     src   : R(read);
4548     A0    : R;
4549     A1    : R;
4550 %}
4551 
4552 // Integer ALU imm operation
4553 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4554     single_instruction;
4555     dst   : E(write);
4556     IALU  : R;
4557 %}
4558 
4559 // Integer ALU reg-reg with carry operation
4560 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4561     single_instruction;
4562     dst   : E(write);
4563     src1  : R(read);
4564     src2  : R(read);
4565     IALU  : R;
4566 %}
4567 
4568 // Integer ALU cc operation
4569 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4570     single_instruction;
4571     dst   : E(write);
4572     cc    : R(read);
4573     IALU  : R;
4574 %}
4575 
4576 // Integer ALU cc / second IALU operation
4577 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4578     instruction_count(1); multiple_bundles;
4579     dst   : E(write)+1;
4580     src   : R(read);
4581     IALU  : R;
4582 %}
4583 
4584 // Integer ALU cc / second IALU operation
4585 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4586     instruction_count(1); multiple_bundles;
4587     dst   : E(write)+1;
4588     p     : R(read);
4589     q     : R(read);
4590     IALU  : R;
4591 %}
4592 
4593 // Integer ALU hi-lo-reg operation
4594 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4595     instruction_count(1); multiple_bundles;
4596     dst   : E(write)+1;
4597     IALU  : R(2);
4598 %}
4599 
4600 // Float ALU hi-lo-reg operation (with temp)
4601 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4602     instruction_count(1); multiple_bundles;
4603     dst   : E(write)+1;
4604     IALU  : R(2);
4605 %}
4606 
4607 // Long Constant
4608 pipe_class loadConL( iRegL dst, immL src ) %{
4609     instruction_count(2); multiple_bundles;
4610     dst   : E(write)+1;
4611     IALU  : R(2);
4612     IALU  : R(2);
4613 %}
4614 
4615 // Pointer Constant
4616 pipe_class loadConP( iRegP dst, immP src ) %{
4617     instruction_count(0); multiple_bundles;
4618     fixed_latency(6);
4619 %}
4620 
4621 // Polling Address
4622 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4623 #ifdef _LP64
4624     instruction_count(0); multiple_bundles;
4625     fixed_latency(6);
4626 #else
4627     dst   : E(write);
4628     IALU  : R;
4629 #endif
4630 %}
4631 
4632 // Long Constant small
4633 pipe_class loadConLlo( iRegL dst, immL src ) %{
4634     instruction_count(2);
4635     dst   : E(write);
4636     IALU  : R;
4637     IALU  : R;
4638 %}
4639 
4640 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4641 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4642     instruction_count(1); multiple_bundles;
4643     src   : R(read);
4644     dst   : M(write)+1;
4645     IALU  : R;
4646     MS    : E;
4647 %}
4648 
4649 // Integer ALU nop operation
4650 pipe_class ialu_nop() %{
4651     single_instruction;
4652     IALU  : R;
4653 %}
4654 
4655 // Integer ALU nop operation
4656 pipe_class ialu_nop_A0() %{
4657     single_instruction;
4658     A0    : R;
4659 %}
4660 
4661 // Integer ALU nop operation
4662 pipe_class ialu_nop_A1() %{
4663     single_instruction;
4664     A1    : R;
4665 %}
4666 
4667 // Integer Multiply reg-reg operation
4668 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4669     single_instruction;
4670     dst   : E(write);
4671     src1  : R(read);
4672     src2  : R(read);
4673     MS    : R(5);
4674 %}
4675 
4676 // Integer Multiply reg-imm operation
4677 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4678     single_instruction;
4679     dst   : E(write);
4680     src1  : R(read);
4681     MS    : R(5);
4682 %}
4683 
4684 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4685     single_instruction;
4686     dst   : E(write)+4;
4687     src1  : R(read);
4688     src2  : R(read);
4689     MS    : R(6);
4690 %}
4691 
4692 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4693     single_instruction;
4694     dst   : E(write)+4;
4695     src1  : R(read);
4696     MS    : R(6);
4697 %}
4698 
4699 // Integer Divide reg-reg
4700 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4701     instruction_count(1); multiple_bundles;
4702     dst   : E(write);
4703     temp  : E(write);
4704     src1  : R(read);
4705     src2  : R(read);
4706     temp  : R(read);
4707     MS    : R(38);
4708 %}
4709 
4710 // Integer Divide reg-imm
4711 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4712     instruction_count(1); multiple_bundles;
4713     dst   : E(write);
4714     temp  : E(write);
4715     src1  : R(read);
4716     temp  : R(read);
4717     MS    : R(38);
4718 %}
4719 
4720 // Long Divide
4721 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4722     dst  : E(write)+71;
4723     src1 : R(read);
4724     src2 : R(read)+1;
4725     MS   : R(70);
4726 %}
4727 
4728 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4729     dst  : E(write)+71;
4730     src1 : R(read);
4731     MS   : R(70);
4732 %}
4733 
4734 // Floating Point Add Float
4735 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4736     single_instruction;
4737     dst   : X(write);
4738     src1  : E(read);
4739     src2  : E(read);
4740     FA    : R;
4741 %}
4742 
4743 // Floating Point Add Double
4744 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4745     single_instruction;
4746     dst   : X(write);
4747     src1  : E(read);
4748     src2  : E(read);
4749     FA    : R;
4750 %}
4751 
4752 // Floating Point Conditional Move based on integer flags
4753 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4754     single_instruction;
4755     dst   : X(write);
4756     src   : E(read);
4757     cr    : R(read);
4758     FA    : R(2);
4759     BR    : R(2);
4760 %}
4761 
4762 // Floating Point Conditional Move based on integer flags
4763 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4764     single_instruction;
4765     dst   : X(write);
4766     src   : E(read);
4767     cr    : R(read);
4768     FA    : R(2);
4769     BR    : R(2);
4770 %}
4771 
4772 // Floating Point Multiply Float
4773 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4774     single_instruction;
4775     dst   : X(write);
4776     src1  : E(read);
4777     src2  : E(read);
4778     FM    : R;
4779 %}
4780 
4781 // Floating Point Multiply Double
4782 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4783     single_instruction;
4784     dst   : X(write);
4785     src1  : E(read);
4786     src2  : E(read);
4787     FM    : R;
4788 %}
4789 
4790 // Floating Point Divide Float
4791 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4792     single_instruction;
4793     dst   : X(write);
4794     src1  : E(read);
4795     src2  : E(read);
4796     FM    : R;
4797     FDIV  : C(14);
4798 %}
4799 
4800 // Floating Point Divide Double
4801 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4802     single_instruction;
4803     dst   : X(write);
4804     src1  : E(read);
4805     src2  : E(read);
4806     FM    : R;
4807     FDIV  : C(17);
4808 %}
4809 
4810 // Floating Point Move/Negate/Abs Float
4811 pipe_class faddF_reg(regF dst, regF src) %{
4812     single_instruction;
4813     dst   : W(write);
4814     src   : E(read);
4815     FA    : R(1);
4816 %}
4817 
4818 // Floating Point Move/Negate/Abs Double
4819 pipe_class faddD_reg(regD dst, regD src) %{
4820     single_instruction;
4821     dst   : W(write);
4822     src   : E(read);
4823     FA    : R;
4824 %}
4825 
4826 // Floating Point Convert F->D
4827 pipe_class fcvtF2D(regD dst, regF src) %{
4828     single_instruction;
4829     dst   : X(write);
4830     src   : E(read);
4831     FA    : R;
4832 %}
4833 
4834 // Floating Point Convert I->D
4835 pipe_class fcvtI2D(regD dst, regF src) %{
4836     single_instruction;
4837     dst   : X(write);
4838     src   : E(read);
4839     FA    : R;
4840 %}
4841 
4842 // Floating Point Convert LHi->D
4843 pipe_class fcvtLHi2D(regD dst, regD src) %{
4844     single_instruction;
4845     dst   : X(write);
4846     src   : E(read);
4847     FA    : R;
4848 %}
4849 
4850 // Floating Point Convert L->D
4851 pipe_class fcvtL2D(regD dst, regF src) %{
4852     single_instruction;
4853     dst   : X(write);
4854     src   : E(read);
4855     FA    : R;
4856 %}
4857 
4858 // Floating Point Convert L->F
4859 pipe_class fcvtL2F(regD dst, regF src) %{
4860     single_instruction;
4861     dst   : X(write);
4862     src   : E(read);
4863     FA    : R;
4864 %}
4865 
4866 // Floating Point Convert D->F
4867 pipe_class fcvtD2F(regD dst, regF src) %{
4868     single_instruction;
4869     dst   : X(write);
4870     src   : E(read);
4871     FA    : R;
4872 %}
4873 
4874 // Floating Point Convert I->L
4875 pipe_class fcvtI2L(regD dst, regF src) %{
4876     single_instruction;
4877     dst   : X(write);
4878     src   : E(read);
4879     FA    : R;
4880 %}
4881 
4882 // Floating Point Convert D->F
4883 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4884     instruction_count(1); multiple_bundles;
4885     dst   : X(write)+6;
4886     src   : E(read);
4887     FA    : R;
4888 %}
4889 
4890 // Floating Point Convert D->L
4891 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4892     instruction_count(1); multiple_bundles;
4893     dst   : X(write)+6;
4894     src   : E(read);
4895     FA    : R;
4896 %}
4897 
4898 // Floating Point Convert F->I
4899 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4900     instruction_count(1); multiple_bundles;
4901     dst   : X(write)+6;
4902     src   : E(read);
4903     FA    : R;
4904 %}
4905 
4906 // Floating Point Convert F->L
4907 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4908     instruction_count(1); multiple_bundles;
4909     dst   : X(write)+6;
4910     src   : E(read);
4911     FA    : R;
4912 %}
4913 
4914 // Floating Point Convert I->F
4915 pipe_class fcvtI2F(regF dst, regF src) %{
4916     single_instruction;
4917     dst   : X(write);
4918     src   : E(read);
4919     FA    : R;
4920 %}
4921 
4922 // Floating Point Compare
4923 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4924     single_instruction;
4925     cr    : X(write);
4926     src1  : E(read);
4927     src2  : E(read);
4928     FA    : R;
4929 %}
4930 
4931 // Floating Point Compare
4932 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4933     single_instruction;
4934     cr    : X(write);
4935     src1  : E(read);
4936     src2  : E(read);
4937     FA    : R;
4938 %}
4939 
4940 // Floating Add Nop
4941 pipe_class fadd_nop() %{
4942     single_instruction;
4943     FA  : R;
4944 %}
4945 
4946 // Integer Store to Memory
4947 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4948     single_instruction;
4949     mem   : R(read);
4950     src   : C(read);
4951     MS    : R;
4952 %}
4953 
4954 // Integer Store to Memory
4955 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4956     single_instruction;
4957     mem   : R(read);
4958     src   : C(read);
4959     MS    : R;
4960 %}
4961 
4962 // Integer Store Zero to Memory
4963 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4964     single_instruction;
4965     mem   : R(read);
4966     MS    : R;
4967 %}
4968 
4969 // Special Stack Slot Store
4970 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4971     single_instruction;
4972     stkSlot : R(read);
4973     src     : C(read);
4974     MS      : R;
4975 %}
4976 
4977 // Special Stack Slot Store
4978 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4979     instruction_count(2); multiple_bundles;
4980     stkSlot : R(read);
4981     src     : C(read);
4982     MS      : R(2);
4983 %}
4984 
4985 // Float Store
4986 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4987     single_instruction;
4988     mem : R(read);
4989     src : C(read);
4990     MS  : R;
4991 %}
4992 
4993 // Float Store
4994 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4995     single_instruction;
4996     mem : R(read);
4997     MS  : R;
4998 %}
4999 
5000 // Double Store
5001 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5002     instruction_count(1);
5003     mem : R(read);
5004     src : C(read);
5005     MS  : R;
5006 %}
5007 
5008 // Double Store
5009 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5010     single_instruction;
5011     mem : R(read);
5012     MS  : R;
5013 %}
5014 
5015 // Special Stack Slot Float Store
5016 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5017     single_instruction;
5018     stkSlot : R(read);
5019     src     : C(read);
5020     MS      : R;
5021 %}
5022 
5023 // Special Stack Slot Double Store
5024 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5025     single_instruction;
5026     stkSlot : R(read);
5027     src     : C(read);
5028     MS      : R;
5029 %}
5030 
5031 // Integer Load (when sign bit propagation not needed)
5032 pipe_class iload_mem(iRegI dst, memory mem) %{
5033     single_instruction;
5034     mem : R(read);
5035     dst : C(write);
5036     MS  : R;
5037 %}
5038 
5039 // Integer Load from stack operand
5040 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5041     single_instruction;
5042     mem : R(read);
5043     dst : C(write);
5044     MS  : R;
5045 %}
5046 
5047 // Integer Load (when sign bit propagation or masking is needed)
5048 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5049     single_instruction;
5050     mem : R(read);
5051     dst : M(write);
5052     MS  : R;
5053 %}
5054 
5055 // Float Load
5056 pipe_class floadF_mem(regF dst, memory mem) %{
5057     single_instruction;
5058     mem : R(read);
5059     dst : M(write);
5060     MS  : R;
5061 %}
5062 
5063 // Float Load
5064 pipe_class floadD_mem(regD dst, memory mem) %{
5065     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5066     mem : R(read);
5067     dst : M(write);
5068     MS  : R;
5069 %}
5070 
5071 // Float Load
5072 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5073     single_instruction;
5074     stkSlot : R(read);
5075     dst : M(write);
5076     MS  : R;
5077 %}
5078 
5079 // Float Load
5080 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5081     single_instruction;
5082     stkSlot : R(read);
5083     dst : M(write);
5084     MS  : R;
5085 %}
5086 
5087 // Memory Nop
5088 pipe_class mem_nop() %{
5089     single_instruction;
5090     MS  : R;
5091 %}
5092 
5093 pipe_class sethi(iRegP dst, immI src) %{
5094     single_instruction;
5095     dst  : E(write);
5096     IALU : R;
5097 %}
5098 
5099 pipe_class loadPollP(iRegP poll) %{
5100     single_instruction;
5101     poll : R(read);
5102     MS   : R;
5103 %}
5104 
5105 pipe_class br(Universe br, label labl) %{
5106     single_instruction_with_delay_slot;
5107     BR  : R;
5108 %}
5109 
5110 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5111     single_instruction_with_delay_slot;
5112     cr    : E(read);
5113     BR    : R;
5114 %}
5115 
5116 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5117     single_instruction_with_delay_slot;
5118     op1 : E(read);
5119     BR  : R;
5120     MS  : R;
5121 %}
5122 
5123 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5124     single_instruction_with_delay_slot;
5125     cr    : E(read);
5126     BR    : R;
5127 %}
5128 
5129 pipe_class br_nop() %{
5130     single_instruction;
5131     BR  : R;
5132 %}
5133 
5134 pipe_class simple_call(method meth) %{
5135     instruction_count(2); multiple_bundles; force_serialization;
5136     fixed_latency(100);
5137     BR  : R(1);
5138     MS  : R(1);
5139     A0  : R(1);
5140 %}
5141 
5142 pipe_class compiled_call(method meth) %{
5143     instruction_count(1); multiple_bundles; force_serialization;
5144     fixed_latency(100);
5145     MS  : R(1);
5146 %}
5147 
5148 pipe_class call(method meth) %{
5149     instruction_count(0); multiple_bundles; force_serialization;
5150     fixed_latency(100);
5151 %}
5152 
5153 pipe_class tail_call(Universe ignore, label labl) %{
5154     single_instruction; has_delay_slot;
5155     fixed_latency(100);
5156     BR  : R(1);
5157     MS  : R(1);
5158 %}
5159 
5160 pipe_class ret(Universe ignore) %{
5161     single_instruction; has_delay_slot;
5162     BR  : R(1);
5163     MS  : R(1);
5164 %}
5165 
5166 pipe_class ret_poll(g3RegP poll) %{
5167     instruction_count(3); has_delay_slot;
5168     poll : E(read);
5169     MS   : R;
5170 %}
5171 
5172 // The real do-nothing guy
5173 pipe_class empty( ) %{
5174     instruction_count(0);
5175 %}
5176 
5177 pipe_class long_memory_op() %{
5178     instruction_count(0); multiple_bundles; force_serialization;
5179     fixed_latency(25);
5180     MS  : R(1);
5181 %}
5182 
5183 // Check-cast
5184 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5185     array : R(read);
5186     match  : R(read);
5187     IALU   : R(2);
5188     BR     : R(2);
5189     MS     : R;
5190 %}
5191 
5192 // Convert FPU flags into +1,0,-1
5193 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5194     src1  : E(read);
5195     src2  : E(read);
5196     dst   : E(write);
5197     FA    : R;
5198     MS    : R(2);
5199     BR    : R(2);
5200 %}
5201 
5202 // Compare for p < q, and conditionally add y
5203 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5204     p     : E(read);
5205     q     : E(read);
5206     y     : E(read);
5207     IALU  : R(3)
5208 %}
5209 
5210 // Perform a compare, then move conditionally in a branch delay slot.
5211 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5212     src2   : E(read);
5213     srcdst : E(read);
5214     IALU   : R;
5215     BR     : R;
5216 %}
5217 
5218 // Define the class for the Nop node
5219 define %{
5220    MachNop = ialu_nop;
5221 %}
5222 
5223 %}
5224 
5225 //----------INSTRUCTIONS-------------------------------------------------------
5226 
5227 //------------Special Stack Slot instructions - no match rules-----------------
5228 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5229   // No match rule to avoid chain rule match.
5230   effect(DEF dst, USE src);
5231   ins_cost(MEMORY_REF_COST);
5232   size(4);
5233   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5234   opcode(Assembler::ldf_op3);
5235   ins_encode(simple_form3_mem_reg(src, dst));
5236   ins_pipe(floadF_stk);
5237 %}
5238 
5239 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5240   // No match rule to avoid chain rule match.
5241   effect(DEF dst, USE src);
5242   ins_cost(MEMORY_REF_COST);
5243   size(4);
5244   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5245   opcode(Assembler::lddf_op3);
5246   ins_encode(simple_form3_mem_reg(src, dst));
5247   ins_pipe(floadD_stk);
5248 %}
5249 
5250 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5251   // No match rule to avoid chain rule match.
5252   effect(DEF dst, USE src);
5253   ins_cost(MEMORY_REF_COST);
5254   size(4);
5255   format %{ "STF    $src,$dst\t! regF to stkI" %}
5256   opcode(Assembler::stf_op3);
5257   ins_encode(simple_form3_mem_reg(dst, src));
5258   ins_pipe(fstoreF_stk_reg);
5259 %}
5260 
5261 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5262   // No match rule to avoid chain rule match.
5263   effect(DEF dst, USE src);
5264   ins_cost(MEMORY_REF_COST);
5265   size(4);
5266   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5267   opcode(Assembler::stdf_op3);
5268   ins_encode(simple_form3_mem_reg(dst, src));
5269   ins_pipe(fstoreD_stk_reg);
5270 %}
5271 
5272 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5273   effect(DEF dst, USE src);
5274   ins_cost(MEMORY_REF_COST*2);
5275   size(8);
5276   format %{ "STW    $src,$dst.hi\t! long\n\t"
5277             "STW    R_G0,$dst.lo" %}
5278   opcode(Assembler::stw_op3);
5279   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5280   ins_pipe(lstoreI_stk_reg);
5281 %}
5282 
5283 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5284   // No match rule to avoid chain rule match.
5285   effect(DEF dst, USE src);
5286   ins_cost(MEMORY_REF_COST);
5287   size(4);
5288   format %{ "STX    $src,$dst\t! regL to stkD" %}
5289   opcode(Assembler::stx_op3);
5290   ins_encode(simple_form3_mem_reg( dst, src ) );
5291   ins_pipe(istore_stk_reg);
5292 %}
5293 
5294 //---------- Chain stack slots between similar types --------
5295 
5296 // Load integer from stack slot
5297 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5298   match(Set dst src);
5299   ins_cost(MEMORY_REF_COST);
5300 
5301   size(4);
5302   format %{ "LDUW   $src,$dst\t!stk" %}
5303   opcode(Assembler::lduw_op3);
5304   ins_encode(simple_form3_mem_reg( src, dst ) );
5305   ins_pipe(iload_mem);
5306 %}
5307 
5308 // Store integer to stack slot
5309 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5310   match(Set dst src);
5311   ins_cost(MEMORY_REF_COST);
5312 
5313   size(4);
5314   format %{ "STW    $src,$dst\t!stk" %}
5315   opcode(Assembler::stw_op3);
5316   ins_encode(simple_form3_mem_reg( dst, src ) );
5317   ins_pipe(istore_mem_reg);
5318 %}
5319 
5320 // Load long from stack slot
5321 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5322   match(Set dst src);
5323 
5324   ins_cost(MEMORY_REF_COST);
5325   size(4);
5326   format %{ "LDX    $src,$dst\t! long" %}
5327   opcode(Assembler::ldx_op3);
5328   ins_encode(simple_form3_mem_reg( src, dst ) );
5329   ins_pipe(iload_mem);
5330 %}
5331 
5332 // Store long to stack slot
5333 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5334   match(Set dst src);
5335 
5336   ins_cost(MEMORY_REF_COST);
5337   size(4);
5338   format %{ "STX    $src,$dst\t! long" %}
5339   opcode(Assembler::stx_op3);
5340   ins_encode(simple_form3_mem_reg( dst, src ) );
5341   ins_pipe(istore_mem_reg);
5342 %}
5343 
5344 #ifdef _LP64
5345 // Load pointer from stack slot, 64-bit encoding
5346 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5347   match(Set dst src);
5348   ins_cost(MEMORY_REF_COST);
5349   size(4);
5350   format %{ "LDX    $src,$dst\t!ptr" %}
5351   opcode(Assembler::ldx_op3);
5352   ins_encode(simple_form3_mem_reg( src, dst ) );
5353   ins_pipe(iload_mem);
5354 %}
5355 
5356 // Store pointer to stack slot
5357 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5358   match(Set dst src);
5359   ins_cost(MEMORY_REF_COST);
5360   size(4);
5361   format %{ "STX    $src,$dst\t!ptr" %}
5362   opcode(Assembler::stx_op3);
5363   ins_encode(simple_form3_mem_reg( dst, src ) );
5364   ins_pipe(istore_mem_reg);
5365 %}
5366 #else // _LP64
5367 // Load pointer from stack slot, 32-bit encoding
5368 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5369   match(Set dst src);
5370   ins_cost(MEMORY_REF_COST);
5371   format %{ "LDUW   $src,$dst\t!ptr" %}
5372   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5373   ins_encode(simple_form3_mem_reg( src, dst ) );
5374   ins_pipe(iload_mem);
5375 %}
5376 
5377 // Store pointer to stack slot
5378 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5379   match(Set dst src);
5380   ins_cost(MEMORY_REF_COST);
5381   format %{ "STW    $src,$dst\t!ptr" %}
5382   opcode(Assembler::stw_op3, Assembler::ldst_op);
5383   ins_encode(simple_form3_mem_reg( dst, src ) );
5384   ins_pipe(istore_mem_reg);
5385 %}
5386 #endif // _LP64
5387 
5388 //------------Special Nop instructions for bundling - no match rules-----------
5389 // Nop using the A0 functional unit
5390 instruct Nop_A0() %{
5391   ins_cost(0);
5392 
5393   format %{ "NOP    ! Alu Pipeline" %}
5394   opcode(Assembler::or_op3, Assembler::arith_op);
5395   ins_encode( form2_nop() );
5396   ins_pipe(ialu_nop_A0);
5397 %}
5398 
5399 // Nop using the A1 functional unit
5400 instruct Nop_A1( ) %{
5401   ins_cost(0);
5402 
5403   format %{ "NOP    ! Alu Pipeline" %}
5404   opcode(Assembler::or_op3, Assembler::arith_op);
5405   ins_encode( form2_nop() );
5406   ins_pipe(ialu_nop_A1);
5407 %}
5408 
5409 // Nop using the memory functional unit
5410 instruct Nop_MS( ) %{
5411   ins_cost(0);
5412 
5413   format %{ "NOP    ! Memory Pipeline" %}
5414   ins_encode( emit_mem_nop );
5415   ins_pipe(mem_nop);
5416 %}
5417 
5418 // Nop using the floating add functional unit
5419 instruct Nop_FA( ) %{
5420   ins_cost(0);
5421 
5422   format %{ "NOP    ! Floating Add Pipeline" %}
5423   ins_encode( emit_fadd_nop );
5424   ins_pipe(fadd_nop);
5425 %}
5426 
5427 // Nop using the branch functional unit
5428 instruct Nop_BR( ) %{
5429   ins_cost(0);
5430 
5431   format %{ "NOP    ! Branch Pipeline" %}
5432   ins_encode( emit_br_nop );
5433   ins_pipe(br_nop);
5434 %}
5435 
5436 //----------Load/Store/Move Instructions---------------------------------------
5437 //----------Load Instructions--------------------------------------------------
5438 // Load Byte (8bit signed)
5439 instruct loadB(iRegI dst, memory mem) %{
5440   match(Set dst (LoadB mem));
5441   ins_cost(MEMORY_REF_COST);
5442 
5443   size(4);
5444   format %{ "LDSB   $mem,$dst\t! byte" %}
5445   ins_encode %{
5446     __ ldsb($mem$$Address, $dst$$Register);
5447   %}
5448   ins_pipe(iload_mask_mem);
5449 %}
5450 
5451 // Load Byte (8bit signed) into a Long Register
5452 instruct loadB2L(iRegL dst, memory mem) %{
5453   match(Set dst (ConvI2L (LoadB mem)));
5454   ins_cost(MEMORY_REF_COST);
5455 
5456   size(4);
5457   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5458   ins_encode %{
5459     __ ldsb($mem$$Address, $dst$$Register);
5460   %}
5461   ins_pipe(iload_mask_mem);
5462 %}
5463 
5464 // Load Unsigned Byte (8bit UNsigned) into an int reg
5465 instruct loadUB(iRegI dst, memory mem) %{
5466   match(Set dst (LoadUB mem));
5467   ins_cost(MEMORY_REF_COST);
5468 
5469   size(4);
5470   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5471   ins_encode %{
5472     __ ldub($mem$$Address, $dst$$Register);
5473   %}
5474   ins_pipe(iload_mem);
5475 %}
5476 
5477 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5478 instruct loadUB2L(iRegL dst, memory mem) %{
5479   match(Set dst (ConvI2L (LoadUB mem)));
5480   ins_cost(MEMORY_REF_COST);
5481 
5482   size(4);
5483   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5484   ins_encode %{
5485     __ ldub($mem$$Address, $dst$$Register);
5486   %}
5487   ins_pipe(iload_mem);
5488 %}
5489 
5490 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5491 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5492   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5493   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5494 
5495   size(2*4);
5496   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5497             "AND    $dst,$mask,$dst" %}
5498   ins_encode %{
5499     __ ldub($mem$$Address, $dst$$Register);
5500     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5501   %}
5502   ins_pipe(iload_mem);
5503 %}
5504 
5505 // Load Short (16bit signed)
5506 instruct loadS(iRegI dst, memory mem) %{
5507   match(Set dst (LoadS mem));
5508   ins_cost(MEMORY_REF_COST);
5509 
5510   size(4);
5511   format %{ "LDSH   $mem,$dst\t! short" %}
5512   ins_encode %{
5513     __ ldsh($mem$$Address, $dst$$Register);
5514   %}
5515   ins_pipe(iload_mask_mem);
5516 %}
5517 
5518 // Load Short (16 bit signed) to Byte (8 bit signed)
5519 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5520   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5521   ins_cost(MEMORY_REF_COST);
5522 
5523   size(4);
5524 
5525   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5526   ins_encode %{
5527     __ ldsb($mem$$Address, $dst$$Register, 1);
5528   %}
5529   ins_pipe(iload_mask_mem);
5530 %}
5531 
5532 // Load Short (16bit signed) into a Long Register
5533 instruct loadS2L(iRegL dst, memory mem) %{
5534   match(Set dst (ConvI2L (LoadS mem)));
5535   ins_cost(MEMORY_REF_COST);
5536 
5537   size(4);
5538   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5539   ins_encode %{
5540     __ ldsh($mem$$Address, $dst$$Register);
5541   %}
5542   ins_pipe(iload_mask_mem);
5543 %}
5544 
5545 // Load Unsigned Short/Char (16bit UNsigned)
5546 instruct loadUS(iRegI dst, memory mem) %{
5547   match(Set dst (LoadUS mem));
5548   ins_cost(MEMORY_REF_COST);
5549 
5550   size(4);
5551   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5552   ins_encode %{
5553     __ lduh($mem$$Address, $dst$$Register);
5554   %}
5555   ins_pipe(iload_mem);
5556 %}
5557 
5558 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5559 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5560   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5561   ins_cost(MEMORY_REF_COST);
5562 
5563   size(4);
5564   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5565   ins_encode %{
5566     __ ldsb($mem$$Address, $dst$$Register, 1);
5567   %}
5568   ins_pipe(iload_mask_mem);
5569 %}
5570 
5571 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5572 instruct loadUS2L(iRegL dst, memory mem) %{
5573   match(Set dst (ConvI2L (LoadUS mem)));
5574   ins_cost(MEMORY_REF_COST);
5575 
5576   size(4);
5577   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5578   ins_encode %{
5579     __ lduh($mem$$Address, $dst$$Register);
5580   %}
5581   ins_pipe(iload_mem);
5582 %}
5583 
5584 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5585 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5586   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5587   ins_cost(MEMORY_REF_COST);
5588 
5589   size(4);
5590   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5591   ins_encode %{
5592     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5593   %}
5594   ins_pipe(iload_mem);
5595 %}
5596 
5597 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5598 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5599   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5600   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5601 
5602   size(2*4);
5603   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5604             "AND    $dst,$mask,$dst" %}
5605   ins_encode %{
5606     Register Rdst = $dst$$Register;
5607     __ lduh($mem$$Address, Rdst);
5608     __ and3(Rdst, $mask$$constant, Rdst);
5609   %}
5610   ins_pipe(iload_mem);
5611 %}
5612 
5613 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5614 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5615   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5616   effect(TEMP dst, TEMP tmp);
5617   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5618 
5619   size((3+1)*4);  // set may use two instructions.
5620   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5621             "SET    $mask,$tmp\n\t"
5622             "AND    $dst,$tmp,$dst" %}
5623   ins_encode %{
5624     Register Rdst = $dst$$Register;
5625     Register Rtmp = $tmp$$Register;
5626     __ lduh($mem$$Address, Rdst);
5627     __ set($mask$$constant, Rtmp);
5628     __ and3(Rdst, Rtmp, Rdst);
5629   %}
5630   ins_pipe(iload_mem);
5631 %}
5632 
5633 // Load Integer
5634 instruct loadI(iRegI dst, memory mem) %{
5635   match(Set dst (LoadI mem));
5636   ins_cost(MEMORY_REF_COST);
5637 
5638   size(4);
5639   format %{ "LDUW   $mem,$dst\t! int" %}
5640   ins_encode %{
5641     __ lduw($mem$$Address, $dst$$Register);
5642   %}
5643   ins_pipe(iload_mem);
5644 %}
5645 
5646 // Load Integer to Byte (8 bit signed)
5647 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5648   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5649   ins_cost(MEMORY_REF_COST);
5650 
5651   size(4);
5652 
5653   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5654   ins_encode %{
5655     __ ldsb($mem$$Address, $dst$$Register, 3);
5656   %}
5657   ins_pipe(iload_mask_mem);
5658 %}
5659 
5660 // Load Integer to Unsigned Byte (8 bit UNsigned)
5661 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5662   match(Set dst (AndI (LoadI mem) mask));
5663   ins_cost(MEMORY_REF_COST);
5664 
5665   size(4);
5666 
5667   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5668   ins_encode %{
5669     __ ldub($mem$$Address, $dst$$Register, 3);
5670   %}
5671   ins_pipe(iload_mask_mem);
5672 %}
5673 
5674 // Load Integer to Short (16 bit signed)
5675 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5676   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5677   ins_cost(MEMORY_REF_COST);
5678 
5679   size(4);
5680 
5681   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5682   ins_encode %{
5683     __ ldsh($mem$$Address, $dst$$Register, 2);
5684   %}
5685   ins_pipe(iload_mask_mem);
5686 %}
5687 
5688 // Load Integer to Unsigned Short (16 bit UNsigned)
5689 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5690   match(Set dst (AndI (LoadI mem) mask));
5691   ins_cost(MEMORY_REF_COST);
5692 
5693   size(4);
5694 
5695   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5696   ins_encode %{
5697     __ lduh($mem$$Address, $dst$$Register, 2);
5698   %}
5699   ins_pipe(iload_mask_mem);
5700 %}
5701 
5702 // Load Integer into a Long Register
5703 instruct loadI2L(iRegL dst, memory mem) %{
5704   match(Set dst (ConvI2L (LoadI mem)));
5705   ins_cost(MEMORY_REF_COST);
5706 
5707   size(4);
5708   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5709   ins_encode %{
5710     __ ldsw($mem$$Address, $dst$$Register);
5711   %}
5712   ins_pipe(iload_mask_mem);
5713 %}
5714 
5715 // Load Integer with mask 0xFF into a Long Register
5716 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5717   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5718   ins_cost(MEMORY_REF_COST);
5719 
5720   size(4);
5721   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5722   ins_encode %{
5723     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5724   %}
5725   ins_pipe(iload_mem);
5726 %}
5727 
5728 // Load Integer with mask 0xFFFF into a Long Register
5729 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5730   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5731   ins_cost(MEMORY_REF_COST);
5732 
5733   size(4);
5734   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5735   ins_encode %{
5736     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5737   %}
5738   ins_pipe(iload_mem);
5739 %}
5740 
5741 // Load Integer with a 13-bit mask into a Long Register
5742 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5743   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5744   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5745 
5746   size(2*4);
5747   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5748             "AND    $dst,$mask,$dst" %}
5749   ins_encode %{
5750     Register Rdst = $dst$$Register;
5751     __ lduw($mem$$Address, Rdst);
5752     __ and3(Rdst, $mask$$constant, Rdst);
5753   %}
5754   ins_pipe(iload_mem);
5755 %}
5756 
5757 // Load Integer with a 32-bit mask into a Long Register
5758 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5759   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5760   effect(TEMP dst, TEMP tmp);
5761   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5762 
5763   size((3+1)*4);  // set may use two instructions.
5764   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5765             "SET    $mask,$tmp\n\t"
5766             "AND    $dst,$tmp,$dst" %}
5767   ins_encode %{
5768     Register Rdst = $dst$$Register;
5769     Register Rtmp = $tmp$$Register;
5770     __ lduw($mem$$Address, Rdst);
5771     __ set($mask$$constant, Rtmp);
5772     __ and3(Rdst, Rtmp, Rdst);
5773   %}
5774   ins_pipe(iload_mem);
5775 %}
5776 
5777 // Load Unsigned Integer into a Long Register
5778 instruct loadUI2L(iRegL dst, memory mem) %{
5779   match(Set dst (LoadUI2L mem));
5780   ins_cost(MEMORY_REF_COST);
5781 
5782   size(4);
5783   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5784   ins_encode %{
5785     __ lduw($mem$$Address, $dst$$Register);
5786   %}
5787   ins_pipe(iload_mem);
5788 %}
5789 
5790 // Load Long - aligned
5791 instruct loadL(iRegL dst, memory mem ) %{
5792   match(Set dst (LoadL mem));
5793   ins_cost(MEMORY_REF_COST);
5794 
5795   size(4);
5796   format %{ "LDX    $mem,$dst\t! long" %}
5797   ins_encode %{
5798     __ ldx($mem$$Address, $dst$$Register);
5799   %}
5800   ins_pipe(iload_mem);
5801 %}
5802 
5803 // Load Long - UNaligned
5804 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5805   match(Set dst (LoadL_unaligned mem));
5806   effect(KILL tmp);
5807   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5808   size(16);
5809   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5810           "\tLDUW   $mem  ,$dst\n"
5811           "\tSLLX   #32, $dst, $dst\n"
5812           "\tOR     $dst, R_O7, $dst" %}
5813   opcode(Assembler::lduw_op3);
5814   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5815   ins_pipe(iload_mem);
5816 %}
5817 
5818 // Load Aligned Packed Byte into a Double Register
5819 instruct loadA8B(regD dst, memory mem) %{
5820   match(Set dst (Load8B mem));
5821   ins_cost(MEMORY_REF_COST);
5822   size(4);
5823   format %{ "LDDF   $mem,$dst\t! packed8B" %}
5824   opcode(Assembler::lddf_op3);
5825   ins_encode(simple_form3_mem_reg( mem, dst ) );
5826   ins_pipe(floadD_mem);
5827 %}
5828 
5829 // Load Aligned Packed Char into a Double Register
5830 instruct loadA4C(regD dst, memory mem) %{
5831   match(Set dst (Load4C mem));
5832   ins_cost(MEMORY_REF_COST);
5833   size(4);
5834   format %{ "LDDF   $mem,$dst\t! packed4C" %}
5835   opcode(Assembler::lddf_op3);
5836   ins_encode(simple_form3_mem_reg( mem, dst ) );
5837   ins_pipe(floadD_mem);
5838 %}
5839 
5840 // Load Aligned Packed Short into a Double Register
5841 instruct loadA4S(regD dst, memory mem) %{
5842   match(Set dst (Load4S mem));
5843   ins_cost(MEMORY_REF_COST);
5844   size(4);
5845   format %{ "LDDF   $mem,$dst\t! packed4S" %}
5846   opcode(Assembler::lddf_op3);
5847   ins_encode(simple_form3_mem_reg( mem, dst ) );
5848   ins_pipe(floadD_mem);
5849 %}
5850 
5851 // Load Aligned Packed Int into a Double Register
5852 instruct loadA2I(regD dst, memory mem) %{
5853   match(Set dst (Load2I mem));
5854   ins_cost(MEMORY_REF_COST);
5855   size(4);
5856   format %{ "LDDF   $mem,$dst\t! packed2I" %}
5857   opcode(Assembler::lddf_op3);
5858   ins_encode(simple_form3_mem_reg( mem, dst ) );
5859   ins_pipe(floadD_mem);
5860 %}
5861 
5862 // Load Range
5863 instruct loadRange(iRegI dst, memory mem) %{
5864   match(Set dst (LoadRange mem));
5865   ins_cost(MEMORY_REF_COST);
5866 
5867   size(4);
5868   format %{ "LDUW   $mem,$dst\t! range" %}
5869   opcode(Assembler::lduw_op3);
5870   ins_encode(simple_form3_mem_reg( mem, dst ) );
5871   ins_pipe(iload_mem);
5872 %}
5873 
5874 // Load Integer into %f register (for fitos/fitod)
5875 instruct loadI_freg(regF dst, memory mem) %{
5876   match(Set dst (LoadI mem));
5877   ins_cost(MEMORY_REF_COST);
5878   size(4);
5879 
5880   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5881   opcode(Assembler::ldf_op3);
5882   ins_encode(simple_form3_mem_reg( mem, dst ) );
5883   ins_pipe(floadF_mem);
5884 %}
5885 
5886 // Load Pointer
5887 instruct loadP(iRegP dst, memory mem) %{
5888   match(Set dst (LoadP mem));
5889   ins_cost(MEMORY_REF_COST);
5890   size(4);
5891 
5892 #ifndef _LP64
5893   format %{ "LDUW   $mem,$dst\t! ptr" %}
5894   ins_encode %{
5895     __ lduw($mem$$Address, $dst$$Register);
5896   %}
5897 #else
5898   format %{ "LDX    $mem,$dst\t! ptr" %}
5899   ins_encode %{
5900     __ ldx($mem$$Address, $dst$$Register);
5901   %}
5902 #endif
5903   ins_pipe(iload_mem);
5904 %}
5905 
5906 // Load Compressed Pointer
5907 instruct loadN(iRegN dst, memory mem) %{
5908   match(Set dst (LoadN mem));
5909   ins_cost(MEMORY_REF_COST);
5910   size(4);
5911 
5912   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5913   ins_encode %{
5914     __ lduw($mem$$Address, $dst$$Register);
5915   %}
5916   ins_pipe(iload_mem);
5917 %}
5918 
5919 // Load Klass Pointer
5920 instruct loadKlass(iRegP dst, memory mem) %{
5921   match(Set dst (LoadKlass mem));
5922   ins_cost(MEMORY_REF_COST);
5923   size(4);
5924 
5925 #ifndef _LP64
5926   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5927   ins_encode %{
5928     __ lduw($mem$$Address, $dst$$Register);
5929   %}
5930 #else
5931   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5932   ins_encode %{
5933     __ ldx($mem$$Address, $dst$$Register);
5934   %}
5935 #endif
5936   ins_pipe(iload_mem);
5937 %}
5938 
5939 // Load narrow Klass Pointer
5940 instruct loadNKlass(iRegN dst, memory mem) %{
5941   match(Set dst (LoadNKlass mem));
5942   ins_cost(MEMORY_REF_COST);
5943   size(4);
5944 
5945   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5946   ins_encode %{
5947     __ lduw($mem$$Address, $dst$$Register);
5948   %}
5949   ins_pipe(iload_mem);
5950 %}
5951 
5952 // Load Double
5953 instruct loadD(regD dst, memory mem) %{
5954   match(Set dst (LoadD mem));
5955   ins_cost(MEMORY_REF_COST);
5956 
5957   size(4);
5958   format %{ "LDDF   $mem,$dst" %}
5959   opcode(Assembler::lddf_op3);
5960   ins_encode(simple_form3_mem_reg( mem, dst ) );
5961   ins_pipe(floadD_mem);
5962 %}
5963 
5964 // Load Double - UNaligned
5965 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5966   match(Set dst (LoadD_unaligned mem));
5967   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5968   size(8);
5969   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5970           "\tLDF    $mem+4,$dst.lo\t!" %}
5971   opcode(Assembler::ldf_op3);
5972   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5973   ins_pipe(iload_mem);
5974 %}
5975 
5976 // Load Float
5977 instruct loadF(regF dst, memory mem) %{
5978   match(Set dst (LoadF mem));
5979   ins_cost(MEMORY_REF_COST);
5980 
5981   size(4);
5982   format %{ "LDF    $mem,$dst" %}
5983   opcode(Assembler::ldf_op3);
5984   ins_encode(simple_form3_mem_reg( mem, dst ) );
5985   ins_pipe(floadF_mem);
5986 %}
5987 
5988 // Load Constant
5989 instruct loadConI( iRegI dst, immI src ) %{
5990   match(Set dst src);
5991   ins_cost(DEFAULT_COST * 3/2);
5992   format %{ "SET    $src,$dst" %}
5993   ins_encode( Set32(src, dst) );
5994   ins_pipe(ialu_hi_lo_reg);
5995 %}
5996 
5997 instruct loadConI13( iRegI dst, immI13 src ) %{
5998   match(Set dst src);
5999 
6000   size(4);
6001   format %{ "MOV    $src,$dst" %}
6002   ins_encode( Set13( src, dst ) );
6003   ins_pipe(ialu_imm);
6004 %}
6005 
6006 instruct loadConP(iRegP dst, immP src) %{
6007   match(Set dst src);
6008   ins_cost(DEFAULT_COST * 3/2);
6009   format %{ "SET    $src,$dst\t!ptr" %}
6010   // This rule does not use "expand" unlike loadConI because then
6011   // the result type is not known to be an Oop.  An ADLC
6012   // enhancement will be needed to make that work - not worth it!
6013 
6014   ins_encode( SetPtr( src, dst ) );
6015   ins_pipe(loadConP);
6016 
6017 %}
6018 
6019 instruct loadConP0(iRegP dst, immP0 src) %{
6020   match(Set dst src);
6021 
6022   size(4);
6023   format %{ "CLR    $dst\t!ptr" %}
6024   ins_encode( SetNull( dst ) );
6025   ins_pipe(ialu_imm);
6026 %}
6027 
6028 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6029   match(Set dst src);
6030   ins_cost(DEFAULT_COST);
6031   format %{ "SET    $src,$dst\t!ptr" %}
6032   ins_encode %{
6033     AddressLiteral polling_page(os::get_polling_page());
6034     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6035   %}
6036   ins_pipe(loadConP_poll);
6037 %}
6038 
6039 instruct loadConN0(iRegN dst, immN0 src) %{
6040   match(Set dst src);
6041 
6042   size(4);
6043   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6044   ins_encode( SetNull( dst ) );
6045   ins_pipe(ialu_imm);
6046 %}
6047 
6048 instruct loadConN(iRegN dst, immN src) %{
6049   match(Set dst src);
6050   ins_cost(DEFAULT_COST * 3/2);
6051   format %{ "SET    $src,$dst\t! compressed ptr" %}
6052   ins_encode %{
6053     Register dst = $dst$$Register;
6054     __ set_narrow_oop((jobject)$src$$constant, dst);
6055   %}
6056   ins_pipe(ialu_hi_lo_reg);
6057 %}
6058 
6059 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
6060   // %%% maybe this should work like loadConD
6061   match(Set dst src);
6062   effect(KILL tmp);
6063   ins_cost(DEFAULT_COST * 4);
6064   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
6065   ins_encode( LdImmL(src, dst, tmp) );
6066   ins_pipe(loadConL);
6067 %}
6068 
6069 instruct loadConL0( iRegL dst, immL0 src ) %{
6070   match(Set dst src);
6071   ins_cost(DEFAULT_COST);
6072   size(4);
6073   format %{ "CLR    $dst\t! long" %}
6074   ins_encode( Set13( src, dst ) );
6075   ins_pipe(ialu_imm);
6076 %}
6077 
6078 instruct loadConL13( iRegL dst, immL13 src ) %{
6079   match(Set dst src);
6080   ins_cost(DEFAULT_COST * 2);
6081 
6082   size(4);
6083   format %{ "MOV    $src,$dst\t! long" %}
6084   ins_encode( Set13( src, dst ) );
6085   ins_pipe(ialu_imm);
6086 %}
6087 
6088 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
6089   match(Set dst src);
6090   effect(KILL tmp);
6091 
6092 #ifdef _LP64
6093   size(8*4);
6094 #else
6095   size(2*4);
6096 #endif
6097 
6098   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
6099             "LDF    [$tmp+lo(&$src)],$dst" %}
6100   ins_encode %{
6101     address float_address = __ float_constant($src$$constant);
6102     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
6103     AddressLiteral addrlit(float_address, rspec);
6104 
6105     __ sethi(addrlit, $tmp$$Register);
6106     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6107   %}
6108   ins_pipe(loadConFD);
6109 %}
6110 
6111 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
6112   match(Set dst src);
6113   effect(KILL tmp);
6114 
6115 #ifdef _LP64
6116   size(8*4);
6117 #else
6118   size(2*4);
6119 #endif
6120 
6121   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
6122             "LDDF   [$tmp+lo(&$src)],$dst" %}
6123   ins_encode %{
6124     address double_address = __ double_constant($src$$constant);
6125     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
6126     AddressLiteral addrlit(double_address, rspec);
6127 
6128     __ sethi(addrlit, $tmp$$Register);
6129     // XXX This is a quick fix for 6833573.
6130     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
6131     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
6132   %}
6133   ins_pipe(loadConFD);
6134 %}
6135 
6136 // Prefetch instructions.
6137 // Must be safe to execute with invalid address (cannot fault).
6138 
6139 instruct prefetchr( memory mem ) %{
6140   match( PrefetchRead mem );
6141   ins_cost(MEMORY_REF_COST);
6142 
6143   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6144   opcode(Assembler::prefetch_op3);
6145   ins_encode( form3_mem_prefetch_read( mem ) );
6146   ins_pipe(iload_mem);
6147 %}
6148 
6149 instruct prefetchw( memory mem ) %{
6150   match( PrefetchWrite mem );
6151   ins_cost(MEMORY_REF_COST);
6152 
6153   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6154   opcode(Assembler::prefetch_op3);
6155   ins_encode( form3_mem_prefetch_write( mem ) );
6156   ins_pipe(iload_mem);
6157 %}
6158 
6159 
6160 //----------Store Instructions-------------------------------------------------
6161 // Store Byte
6162 instruct storeB(memory mem, iRegI src) %{
6163   match(Set mem (StoreB mem src));
6164   ins_cost(MEMORY_REF_COST);
6165 
6166   size(4);
6167   format %{ "STB    $src,$mem\t! byte" %}
6168   opcode(Assembler::stb_op3);
6169   ins_encode(simple_form3_mem_reg( mem, src ) );
6170   ins_pipe(istore_mem_reg);
6171 %}
6172 
6173 instruct storeB0(memory mem, immI0 src) %{
6174   match(Set mem (StoreB mem src));
6175   ins_cost(MEMORY_REF_COST);
6176 
6177   size(4);
6178   format %{ "STB    $src,$mem\t! byte" %}
6179   opcode(Assembler::stb_op3);
6180   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6181   ins_pipe(istore_mem_zero);
6182 %}
6183 
6184 instruct storeCM0(memory mem, immI0 src) %{
6185   match(Set mem (StoreCM mem src));
6186   ins_cost(MEMORY_REF_COST);
6187 
6188   size(4);
6189   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6190   opcode(Assembler::stb_op3);
6191   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6192   ins_pipe(istore_mem_zero);
6193 %}
6194 
6195 // Store Char/Short
6196 instruct storeC(memory mem, iRegI src) %{
6197   match(Set mem (StoreC mem src));
6198   ins_cost(MEMORY_REF_COST);
6199 
6200   size(4);
6201   format %{ "STH    $src,$mem\t! short" %}
6202   opcode(Assembler::sth_op3);
6203   ins_encode(simple_form3_mem_reg( mem, src ) );
6204   ins_pipe(istore_mem_reg);
6205 %}
6206 
6207 instruct storeC0(memory mem, immI0 src) %{
6208   match(Set mem (StoreC mem src));
6209   ins_cost(MEMORY_REF_COST);
6210 
6211   size(4);
6212   format %{ "STH    $src,$mem\t! short" %}
6213   opcode(Assembler::sth_op3);
6214   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6215   ins_pipe(istore_mem_zero);
6216 %}
6217 
6218 // Store Integer
6219 instruct storeI(memory mem, iRegI src) %{
6220   match(Set mem (StoreI mem src));
6221   ins_cost(MEMORY_REF_COST);
6222 
6223   size(4);
6224   format %{ "STW    $src,$mem" %}
6225   opcode(Assembler::stw_op3);
6226   ins_encode(simple_form3_mem_reg( mem, src ) );
6227   ins_pipe(istore_mem_reg);
6228 %}
6229 
6230 // Store Long
6231 instruct storeL(memory mem, iRegL src) %{
6232   match(Set mem (StoreL mem src));
6233   ins_cost(MEMORY_REF_COST);
6234   size(4);
6235   format %{ "STX    $src,$mem\t! long" %}
6236   opcode(Assembler::stx_op3);
6237   ins_encode(simple_form3_mem_reg( mem, src ) );
6238   ins_pipe(istore_mem_reg);
6239 %}
6240 
6241 instruct storeI0(memory mem, immI0 src) %{
6242   match(Set mem (StoreI mem src));
6243   ins_cost(MEMORY_REF_COST);
6244 
6245   size(4);
6246   format %{ "STW    $src,$mem" %}
6247   opcode(Assembler::stw_op3);
6248   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6249   ins_pipe(istore_mem_zero);
6250 %}
6251 
6252 instruct storeL0(memory mem, immL0 src) %{
6253   match(Set mem (StoreL mem src));
6254   ins_cost(MEMORY_REF_COST);
6255 
6256   size(4);
6257   format %{ "STX    $src,$mem" %}
6258   opcode(Assembler::stx_op3);
6259   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6260   ins_pipe(istore_mem_zero);
6261 %}
6262 
6263 // Store Integer from float register (used after fstoi)
6264 instruct storeI_Freg(memory mem, regF src) %{
6265   match(Set mem (StoreI mem src));
6266   ins_cost(MEMORY_REF_COST);
6267 
6268   size(4);
6269   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6270   opcode(Assembler::stf_op3);
6271   ins_encode(simple_form3_mem_reg( mem, src ) );
6272   ins_pipe(fstoreF_mem_reg);
6273 %}
6274 
6275 // Store Pointer
6276 instruct storeP(memory dst, sp_ptr_RegP src) %{
6277   match(Set dst (StoreP dst src));
6278   ins_cost(MEMORY_REF_COST);
6279   size(4);
6280 
6281 #ifndef _LP64
6282   format %{ "STW    $src,$dst\t! ptr" %}
6283   opcode(Assembler::stw_op3, 0, REGP_OP);
6284 #else
6285   format %{ "STX    $src,$dst\t! ptr" %}
6286   opcode(Assembler::stx_op3, 0, REGP_OP);
6287 #endif
6288   ins_encode( form3_mem_reg( dst, src ) );
6289   ins_pipe(istore_mem_spORreg);
6290 %}
6291 
6292 instruct storeP0(memory dst, immP0 src) %{
6293   match(Set dst (StoreP dst src));
6294   ins_cost(MEMORY_REF_COST);
6295   size(4);
6296 
6297 #ifndef _LP64
6298   format %{ "STW    $src,$dst\t! ptr" %}
6299   opcode(Assembler::stw_op3, 0, REGP_OP);
6300 #else
6301   format %{ "STX    $src,$dst\t! ptr" %}
6302   opcode(Assembler::stx_op3, 0, REGP_OP);
6303 #endif
6304   ins_encode( form3_mem_reg( dst, R_G0 ) );
6305   ins_pipe(istore_mem_zero);
6306 %}
6307 
6308 // Store Compressed Pointer
6309 instruct storeN(memory dst, iRegN src) %{
6310    match(Set dst (StoreN dst src));
6311    ins_cost(MEMORY_REF_COST);
6312    size(4);
6313 
6314    format %{ "STW    $src,$dst\t! compressed ptr" %}
6315    ins_encode %{
6316      Register base = as_Register($dst$$base);
6317      Register index = as_Register($dst$$index);
6318      Register src = $src$$Register;
6319      if (index != G0) {
6320        __ stw(src, base, index);
6321      } else {
6322        __ stw(src, base, $dst$$disp);
6323      }
6324    %}
6325    ins_pipe(istore_mem_spORreg);
6326 %}
6327 
6328 instruct storeN0(memory dst, immN0 src) %{
6329    match(Set dst (StoreN dst src));
6330    ins_cost(MEMORY_REF_COST);
6331    size(4);
6332 
6333    format %{ "STW    $src,$dst\t! compressed ptr" %}
6334    ins_encode %{
6335      Register base = as_Register($dst$$base);
6336      Register index = as_Register($dst$$index);
6337      if (index != G0) {
6338        __ stw(0, base, index);
6339      } else {
6340        __ stw(0, base, $dst$$disp);
6341      }
6342    %}
6343    ins_pipe(istore_mem_zero);
6344 %}
6345 
6346 // Store Double
6347 instruct storeD( memory mem, regD src) %{
6348   match(Set mem (StoreD mem src));
6349   ins_cost(MEMORY_REF_COST);
6350 
6351   size(4);
6352   format %{ "STDF   $src,$mem" %}
6353   opcode(Assembler::stdf_op3);
6354   ins_encode(simple_form3_mem_reg( mem, src ) );
6355   ins_pipe(fstoreD_mem_reg);
6356 %}
6357 
6358 instruct storeD0( memory mem, immD0 src) %{
6359   match(Set mem (StoreD mem src));
6360   ins_cost(MEMORY_REF_COST);
6361 
6362   size(4);
6363   format %{ "STX    $src,$mem" %}
6364   opcode(Assembler::stx_op3);
6365   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6366   ins_pipe(fstoreD_mem_zero);
6367 %}
6368 
6369 // Store Float
6370 instruct storeF( memory mem, regF src) %{
6371   match(Set mem (StoreF mem src));
6372   ins_cost(MEMORY_REF_COST);
6373 
6374   size(4);
6375   format %{ "STF    $src,$mem" %}
6376   opcode(Assembler::stf_op3);
6377   ins_encode(simple_form3_mem_reg( mem, src ) );
6378   ins_pipe(fstoreF_mem_reg);
6379 %}
6380 
6381 instruct storeF0( memory mem, immF0 src) %{
6382   match(Set mem (StoreF mem src));
6383   ins_cost(MEMORY_REF_COST);
6384 
6385   size(4);
6386   format %{ "STW    $src,$mem\t! storeF0" %}
6387   opcode(Assembler::stw_op3);
6388   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6389   ins_pipe(fstoreF_mem_zero);
6390 %}
6391 
6392 // Store Aligned Packed Bytes in Double register to memory
6393 instruct storeA8B(memory mem, regD src) %{
6394   match(Set mem (Store8B mem src));
6395   ins_cost(MEMORY_REF_COST);
6396   size(4);
6397   format %{ "STDF   $src,$mem\t! packed8B" %}
6398   opcode(Assembler::stdf_op3);
6399   ins_encode(simple_form3_mem_reg( mem, src ) );
6400   ins_pipe(fstoreD_mem_reg);
6401 %}
6402 
6403 // Convert oop pointer into compressed form
6404 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6405   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6406   match(Set dst (EncodeP src));
6407   format %{ "encode_heap_oop $src, $dst" %}
6408   ins_encode %{
6409     __ encode_heap_oop($src$$Register, $dst$$Register);
6410   %}
6411   ins_pipe(ialu_reg);
6412 %}
6413 
6414 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6415   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6416   match(Set dst (EncodeP src));
6417   format %{ "encode_heap_oop_not_null $src, $dst" %}
6418   ins_encode %{
6419     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6420   %}
6421   ins_pipe(ialu_reg);
6422 %}
6423 
6424 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6425   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6426             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6427   match(Set dst (DecodeN src));
6428   format %{ "decode_heap_oop $src, $dst" %}
6429   ins_encode %{
6430     __ decode_heap_oop($src$$Register, $dst$$Register);
6431   %}
6432   ins_pipe(ialu_reg);
6433 %}
6434 
6435 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6436   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6437             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6438   match(Set dst (DecodeN src));
6439   format %{ "decode_heap_oop_not_null $src, $dst" %}
6440   ins_encode %{
6441     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6442   %}
6443   ins_pipe(ialu_reg);
6444 %}
6445 
6446 
6447 // Store Zero into Aligned Packed Bytes
6448 instruct storeA8B0(memory mem, immI0 zero) %{
6449   match(Set mem (Store8B mem zero));
6450   ins_cost(MEMORY_REF_COST);
6451   size(4);
6452   format %{ "STX    $zero,$mem\t! packed8B" %}
6453   opcode(Assembler::stx_op3);
6454   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6455   ins_pipe(fstoreD_mem_zero);
6456 %}
6457 
6458 // Store Aligned Packed Chars/Shorts in Double register to memory
6459 instruct storeA4C(memory mem, regD src) %{
6460   match(Set mem (Store4C mem src));
6461   ins_cost(MEMORY_REF_COST);
6462   size(4);
6463   format %{ "STDF   $src,$mem\t! packed4C" %}
6464   opcode(Assembler::stdf_op3);
6465   ins_encode(simple_form3_mem_reg( mem, src ) );
6466   ins_pipe(fstoreD_mem_reg);
6467 %}
6468 
6469 // Store Zero into Aligned Packed Chars/Shorts
6470 instruct storeA4C0(memory mem, immI0 zero) %{
6471   match(Set mem (Store4C mem (Replicate4C zero)));
6472   ins_cost(MEMORY_REF_COST);
6473   size(4);
6474   format %{ "STX    $zero,$mem\t! packed4C" %}
6475   opcode(Assembler::stx_op3);
6476   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6477   ins_pipe(fstoreD_mem_zero);
6478 %}
6479 
6480 // Store Aligned Packed Ints in Double register to memory
6481 instruct storeA2I(memory mem, regD src) %{
6482   match(Set mem (Store2I mem src));
6483   ins_cost(MEMORY_REF_COST);
6484   size(4);
6485   format %{ "STDF   $src,$mem\t! packed2I" %}
6486   opcode(Assembler::stdf_op3);
6487   ins_encode(simple_form3_mem_reg( mem, src ) );
6488   ins_pipe(fstoreD_mem_reg);
6489 %}
6490 
6491 // Store Zero into Aligned Packed Ints
6492 instruct storeA2I0(memory mem, immI0 zero) %{
6493   match(Set mem (Store2I mem zero));
6494   ins_cost(MEMORY_REF_COST);
6495   size(4);
6496   format %{ "STX    $zero,$mem\t! packed2I" %}
6497   opcode(Assembler::stx_op3);
6498   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6499   ins_pipe(fstoreD_mem_zero);
6500 %}
6501 
6502 
6503 //----------MemBar Instructions-----------------------------------------------
6504 // Memory barrier flavors
6505 
6506 instruct membar_acquire() %{
6507   match(MemBarAcquire);
6508   ins_cost(4*MEMORY_REF_COST);
6509 
6510   size(0);
6511   format %{ "MEMBAR-acquire" %}
6512   ins_encode( enc_membar_acquire );
6513   ins_pipe(long_memory_op);
6514 %}
6515 
6516 instruct membar_acquire_lock() %{
6517   match(MemBarAcquire);
6518   predicate(Matcher::prior_fast_lock(n));
6519   ins_cost(0);
6520 
6521   size(0);
6522   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6523   ins_encode( );
6524   ins_pipe(empty);
6525 %}
6526 
6527 instruct membar_release() %{
6528   match(MemBarRelease);
6529   ins_cost(4*MEMORY_REF_COST);
6530 
6531   size(0);
6532   format %{ "MEMBAR-release" %}
6533   ins_encode( enc_membar_release );
6534   ins_pipe(long_memory_op);
6535 %}
6536 
6537 instruct membar_release_lock() %{
6538   match(MemBarRelease);
6539   predicate(Matcher::post_fast_unlock(n));
6540   ins_cost(0);
6541 
6542   size(0);
6543   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6544   ins_encode( );
6545   ins_pipe(empty);
6546 %}
6547 
6548 instruct membar_volatile() %{
6549   match(MemBarVolatile);
6550   ins_cost(4*MEMORY_REF_COST);
6551 
6552   size(4);
6553   format %{ "MEMBAR-volatile" %}
6554   ins_encode( enc_membar_volatile );
6555   ins_pipe(long_memory_op);
6556 %}
6557 
6558 instruct unnecessary_membar_volatile() %{
6559   match(MemBarVolatile);
6560   predicate(Matcher::post_store_load_barrier(n));
6561   ins_cost(0);
6562 
6563   size(0);
6564   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6565   ins_encode( );
6566   ins_pipe(empty);
6567 %}
6568 
6569 //----------Register Move Instructions-----------------------------------------
6570 instruct roundDouble_nop(regD dst) %{
6571   match(Set dst (RoundDouble dst));
6572   ins_cost(0);
6573   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6574   ins_encode( );
6575   ins_pipe(empty);
6576 %}
6577 
6578 
6579 instruct roundFloat_nop(regF dst) %{
6580   match(Set dst (RoundFloat dst));
6581   ins_cost(0);
6582   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6583   ins_encode( );
6584   ins_pipe(empty);
6585 %}
6586 
6587 
6588 // Cast Index to Pointer for unsafe natives
6589 instruct castX2P(iRegX src, iRegP dst) %{
6590   match(Set dst (CastX2P src));
6591 
6592   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6593   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6594   ins_pipe(ialu_reg);
6595 %}
6596 
6597 // Cast Pointer to Index for unsafe natives
6598 instruct castP2X(iRegP src, iRegX dst) %{
6599   match(Set dst (CastP2X src));
6600 
6601   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6602   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6603   ins_pipe(ialu_reg);
6604 %}
6605 
6606 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6607   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6608   match(Set stkSlot src);   // chain rule
6609   ins_cost(MEMORY_REF_COST);
6610   format %{ "STDF   $src,$stkSlot\t!stk" %}
6611   opcode(Assembler::stdf_op3);
6612   ins_encode(simple_form3_mem_reg(stkSlot, src));
6613   ins_pipe(fstoreD_stk_reg);
6614 %}
6615 
6616 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6617   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6618   match(Set dst stkSlot);   // chain rule
6619   ins_cost(MEMORY_REF_COST);
6620   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6621   opcode(Assembler::lddf_op3);
6622   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6623   ins_pipe(floadD_stk);
6624 %}
6625 
6626 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6627   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6628   match(Set stkSlot src);   // chain rule
6629   ins_cost(MEMORY_REF_COST);
6630   format %{ "STF   $src,$stkSlot\t!stk" %}
6631   opcode(Assembler::stf_op3);
6632   ins_encode(simple_form3_mem_reg(stkSlot, src));
6633   ins_pipe(fstoreF_stk_reg);
6634 %}
6635 
6636 //----------Conditional Move---------------------------------------------------
6637 // Conditional move
6638 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6639   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6640   ins_cost(150);
6641   format %{ "MOV$cmp $pcc,$src,$dst" %}
6642   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6643   ins_pipe(ialu_reg);
6644 %}
6645 
6646 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6647   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6648   ins_cost(140);
6649   format %{ "MOV$cmp $pcc,$src,$dst" %}
6650   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6651   ins_pipe(ialu_imm);
6652 %}
6653 
6654 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6655   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6656   ins_cost(150);
6657   size(4);
6658   format %{ "MOV$cmp  $icc,$src,$dst" %}
6659   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6660   ins_pipe(ialu_reg);
6661 %}
6662 
6663 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6664   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6665   ins_cost(140);
6666   size(4);
6667   format %{ "MOV$cmp  $icc,$src,$dst" %}
6668   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6669   ins_pipe(ialu_imm);
6670 %}
6671 
6672 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6673   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6674   ins_cost(150);
6675   size(4);
6676   format %{ "MOV$cmp  $icc,$src,$dst" %}
6677   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6678   ins_pipe(ialu_reg);
6679 %}
6680 
6681 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6682   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6683   ins_cost(140);
6684   size(4);
6685   format %{ "MOV$cmp  $icc,$src,$dst" %}
6686   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6687   ins_pipe(ialu_imm);
6688 %}
6689 
6690 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6691   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6692   ins_cost(150);
6693   size(4);
6694   format %{ "MOV$cmp $fcc,$src,$dst" %}
6695   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6696   ins_pipe(ialu_reg);
6697 %}
6698 
6699 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6700   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6701   ins_cost(140);
6702   size(4);
6703   format %{ "MOV$cmp $fcc,$src,$dst" %}
6704   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6705   ins_pipe(ialu_imm);
6706 %}
6707 
6708 // Conditional move for RegN. Only cmov(reg,reg).
6709 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6710   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6711   ins_cost(150);
6712   format %{ "MOV$cmp $pcc,$src,$dst" %}
6713   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6714   ins_pipe(ialu_reg);
6715 %}
6716 
6717 // This instruction also works with CmpN so we don't need cmovNN_reg.
6718 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6719   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6720   ins_cost(150);
6721   size(4);
6722   format %{ "MOV$cmp  $icc,$src,$dst" %}
6723   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6724   ins_pipe(ialu_reg);
6725 %}
6726 
6727 // This instruction also works with CmpN so we don't need cmovNN_reg.
6728 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6729   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6730   ins_cost(150);
6731   size(4);
6732   format %{ "MOV$cmp  $icc,$src,$dst" %}
6733   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6734   ins_pipe(ialu_reg);
6735 %}
6736 
6737 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6738   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6739   ins_cost(150);
6740   size(4);
6741   format %{ "MOV$cmp $fcc,$src,$dst" %}
6742   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6743   ins_pipe(ialu_reg);
6744 %}
6745 
6746 // Conditional move
6747 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6748   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6749   ins_cost(150);
6750   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6751   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6752   ins_pipe(ialu_reg);
6753 %}
6754 
6755 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6756   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6757   ins_cost(140);
6758   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6759   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6760   ins_pipe(ialu_imm);
6761 %}
6762 
6763 // This instruction also works with CmpN so we don't need cmovPN_reg.
6764 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6765   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6766   ins_cost(150);
6767 
6768   size(4);
6769   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6770   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6771   ins_pipe(ialu_reg);
6772 %}
6773 
6774 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6775   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6776   ins_cost(150);
6777 
6778   size(4);
6779   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6780   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6781   ins_pipe(ialu_reg);
6782 %}
6783 
6784 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6785   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6786   ins_cost(140);
6787 
6788   size(4);
6789   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6790   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6791   ins_pipe(ialu_imm);
6792 %}
6793 
6794 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6795   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6796   ins_cost(140);
6797 
6798   size(4);
6799   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6800   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6801   ins_pipe(ialu_imm);
6802 %}
6803 
6804 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6805   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6806   ins_cost(150);
6807   size(4);
6808   format %{ "MOV$cmp $fcc,$src,$dst" %}
6809   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6810   ins_pipe(ialu_imm);
6811 %}
6812 
6813 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6814   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6815   ins_cost(140);
6816   size(4);
6817   format %{ "MOV$cmp $fcc,$src,$dst" %}
6818   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6819   ins_pipe(ialu_imm);
6820 %}
6821 
6822 // Conditional move
6823 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6824   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6825   ins_cost(150);
6826   opcode(0x101);
6827   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6828   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6829   ins_pipe(int_conditional_float_move);
6830 %}
6831 
6832 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6833   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6834   ins_cost(150);
6835 
6836   size(4);
6837   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6838   opcode(0x101);
6839   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6840   ins_pipe(int_conditional_float_move);
6841 %}
6842 
6843 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6844   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6845   ins_cost(150);
6846 
6847   size(4);
6848   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6849   opcode(0x101);
6850   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6851   ins_pipe(int_conditional_float_move);
6852 %}
6853 
6854 // Conditional move,
6855 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6856   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6857   ins_cost(150);
6858   size(4);
6859   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6860   opcode(0x1);
6861   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6862   ins_pipe(int_conditional_double_move);
6863 %}
6864 
6865 // Conditional move
6866 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6867   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6868   ins_cost(150);
6869   size(4);
6870   opcode(0x102);
6871   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6872   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6873   ins_pipe(int_conditional_double_move);
6874 %}
6875 
6876 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6877   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6878   ins_cost(150);
6879 
6880   size(4);
6881   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6882   opcode(0x102);
6883   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6884   ins_pipe(int_conditional_double_move);
6885 %}
6886 
6887 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6888   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6889   ins_cost(150);
6890 
6891   size(4);
6892   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6893   opcode(0x102);
6894   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6895   ins_pipe(int_conditional_double_move);
6896 %}
6897 
6898 // Conditional move,
6899 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6900   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6901   ins_cost(150);
6902   size(4);
6903   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6904   opcode(0x2);
6905   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6906   ins_pipe(int_conditional_double_move);
6907 %}
6908 
6909 // Conditional move
6910 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6911   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6912   ins_cost(150);
6913   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6914   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6915   ins_pipe(ialu_reg);
6916 %}
6917 
6918 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6919   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6920   ins_cost(140);
6921   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6922   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6923   ins_pipe(ialu_imm);
6924 %}
6925 
6926 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6927   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6928   ins_cost(150);
6929 
6930   size(4);
6931   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6932   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6933   ins_pipe(ialu_reg);
6934 %}
6935 
6936 
6937 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6938   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6939   ins_cost(150);
6940 
6941   size(4);
6942   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6943   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6944   ins_pipe(ialu_reg);
6945 %}
6946 
6947 
6948 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6949   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6950   ins_cost(150);
6951 
6952   size(4);
6953   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6954   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6955   ins_pipe(ialu_reg);
6956 %}
6957 
6958 
6959 
6960 //----------OS and Locking Instructions----------------------------------------
6961 
6962 // This name is KNOWN by the ADLC and cannot be changed.
6963 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6964 // for this guy.
6965 instruct tlsLoadP(g2RegP dst) %{
6966   match(Set dst (ThreadLocal));
6967 
6968   size(0);
6969   ins_cost(0);
6970   format %{ "# TLS is in G2" %}
6971   ins_encode( /*empty encoding*/ );
6972   ins_pipe(ialu_none);
6973 %}
6974 
6975 instruct checkCastPP( iRegP dst ) %{
6976   match(Set dst (CheckCastPP dst));
6977 
6978   size(0);
6979   format %{ "# checkcastPP of $dst" %}
6980   ins_encode( /*empty encoding*/ );
6981   ins_pipe(empty);
6982 %}
6983 
6984 
6985 instruct castPP( iRegP dst ) %{
6986   match(Set dst (CastPP dst));
6987   format %{ "# castPP of $dst" %}
6988   ins_encode( /*empty encoding*/ );
6989   ins_pipe(empty);
6990 %}
6991 
6992 instruct castII( iRegI dst ) %{
6993   match(Set dst (CastII dst));
6994   format %{ "# castII of $dst" %}
6995   ins_encode( /*empty encoding*/ );
6996   ins_cost(0);
6997   ins_pipe(empty);
6998 %}
6999 
7000 //----------Arithmetic Instructions--------------------------------------------
7001 // Addition Instructions
7002 // Register Addition
7003 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7004   match(Set dst (AddI src1 src2));
7005 
7006   size(4);
7007   format %{ "ADD    $src1,$src2,$dst" %}
7008   ins_encode %{
7009     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7010   %}
7011   ins_pipe(ialu_reg_reg);
7012 %}
7013 
7014 // Immediate Addition
7015 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7016   match(Set dst (AddI src1 src2));
7017 
7018   size(4);
7019   format %{ "ADD    $src1,$src2,$dst" %}
7020   opcode(Assembler::add_op3, Assembler::arith_op);
7021   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7022   ins_pipe(ialu_reg_imm);
7023 %}
7024 
7025 // Pointer Register Addition
7026 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7027   match(Set dst (AddP src1 src2));
7028 
7029   size(4);
7030   format %{ "ADD    $src1,$src2,$dst" %}
7031   opcode(Assembler::add_op3, Assembler::arith_op);
7032   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7033   ins_pipe(ialu_reg_reg);
7034 %}
7035 
7036 // Pointer Immediate Addition
7037 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7038   match(Set dst (AddP src1 src2));
7039 
7040   size(4);
7041   format %{ "ADD    $src1,$src2,$dst" %}
7042   opcode(Assembler::add_op3, Assembler::arith_op);
7043   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7044   ins_pipe(ialu_reg_imm);
7045 %}
7046 
7047 // Long Addition
7048 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7049   match(Set dst (AddL src1 src2));
7050 
7051   size(4);
7052   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7053   opcode(Assembler::add_op3, Assembler::arith_op);
7054   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7055   ins_pipe(ialu_reg_reg);
7056 %}
7057 
7058 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7059   match(Set dst (AddL src1 con));
7060 
7061   size(4);
7062   format %{ "ADD    $src1,$con,$dst" %}
7063   opcode(Assembler::add_op3, Assembler::arith_op);
7064   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7065   ins_pipe(ialu_reg_imm);
7066 %}
7067 
7068 //----------Conditional_store--------------------------------------------------
7069 // Conditional-store of the updated heap-top.
7070 // Used during allocation of the shared heap.
7071 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7072 
7073 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7074 instruct loadPLocked(iRegP dst, memory mem) %{
7075   match(Set dst (LoadPLocked mem));
7076   ins_cost(MEMORY_REF_COST);
7077 
7078 #ifndef _LP64
7079   size(4);
7080   format %{ "LDUW   $mem,$dst\t! ptr" %}
7081   opcode(Assembler::lduw_op3, 0, REGP_OP);
7082 #else
7083   format %{ "LDX    $mem,$dst\t! ptr" %}
7084   opcode(Assembler::ldx_op3, 0, REGP_OP);
7085 #endif
7086   ins_encode( form3_mem_reg( mem, dst ) );
7087   ins_pipe(iload_mem);
7088 %}
7089 
7090 // LoadL-locked.  Same as a regular long load when used with a compare-swap
7091 instruct loadLLocked(iRegL dst, memory mem) %{
7092   match(Set dst (LoadLLocked mem));
7093   ins_cost(MEMORY_REF_COST);
7094   size(4);
7095   format %{ "LDX    $mem,$dst\t! long" %}
7096   opcode(Assembler::ldx_op3);
7097   ins_encode(simple_form3_mem_reg( mem, dst ) );
7098   ins_pipe(iload_mem);
7099 %}
7100 
7101 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7102   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7103   effect( KILL newval );
7104   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7105             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7106   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7107   ins_pipe( long_memory_op );
7108 %}
7109 
7110 // Conditional-store of an int value.
7111 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7112   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7113   effect( KILL newval );
7114   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7115             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7116   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7117   ins_pipe( long_memory_op );
7118 %}
7119 
7120 // Conditional-store of a long value.
7121 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7122   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7123   effect( KILL newval );
7124   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7125             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7126   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7127   ins_pipe( long_memory_op );
7128 %}
7129 
7130 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7131 
7132 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7133   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7134   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7135   format %{
7136             "MOV    $newval,O7\n\t"
7137             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7138             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7139             "MOV    1,$res\n\t"
7140             "MOVne  xcc,R_G0,$res"
7141   %}
7142   ins_encode( enc_casx(mem_ptr, oldval, newval),
7143               enc_lflags_ne_to_boolean(res) );
7144   ins_pipe( long_memory_op );
7145 %}
7146 
7147 
7148 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7149   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7150   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7151   format %{
7152             "MOV    $newval,O7\n\t"
7153             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7154             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7155             "MOV    1,$res\n\t"
7156             "MOVne  icc,R_G0,$res"
7157   %}
7158   ins_encode( enc_casi(mem_ptr, oldval, newval),
7159               enc_iflags_ne_to_boolean(res) );
7160   ins_pipe( long_memory_op );
7161 %}
7162 
7163 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7164   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7165   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7166   format %{
7167             "MOV    $newval,O7\n\t"
7168             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7169             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7170             "MOV    1,$res\n\t"
7171             "MOVne  xcc,R_G0,$res"
7172   %}
7173 #ifdef _LP64
7174   ins_encode( enc_casx(mem_ptr, oldval, newval),
7175               enc_lflags_ne_to_boolean(res) );
7176 #else
7177   ins_encode( enc_casi(mem_ptr, oldval, newval),
7178               enc_iflags_ne_to_boolean(res) );
7179 #endif
7180   ins_pipe( long_memory_op );
7181 %}
7182 
7183 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7184   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7185   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7186   format %{
7187             "MOV    $newval,O7\n\t"
7188             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7189             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7190             "MOV    1,$res\n\t"
7191             "MOVne  icc,R_G0,$res"
7192   %}
7193   ins_encode( enc_casi(mem_ptr, oldval, newval),
7194               enc_iflags_ne_to_boolean(res) );
7195   ins_pipe( long_memory_op );
7196 %}
7197 
7198 //---------------------
7199 // Subtraction Instructions
7200 // Register Subtraction
7201 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7202   match(Set dst (SubI src1 src2));
7203 
7204   size(4);
7205   format %{ "SUB    $src1,$src2,$dst" %}
7206   opcode(Assembler::sub_op3, Assembler::arith_op);
7207   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7208   ins_pipe(ialu_reg_reg);
7209 %}
7210 
7211 // Immediate Subtraction
7212 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7213   match(Set dst (SubI src1 src2));
7214 
7215   size(4);
7216   format %{ "SUB    $src1,$src2,$dst" %}
7217   opcode(Assembler::sub_op3, Assembler::arith_op);
7218   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7219   ins_pipe(ialu_reg_imm);
7220 %}
7221 
7222 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7223   match(Set dst (SubI zero src2));
7224 
7225   size(4);
7226   format %{ "NEG    $src2,$dst" %}
7227   opcode(Assembler::sub_op3, Assembler::arith_op);
7228   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7229   ins_pipe(ialu_zero_reg);
7230 %}
7231 
7232 // Long subtraction
7233 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7234   match(Set dst (SubL src1 src2));
7235 
7236   size(4);
7237   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7238   opcode(Assembler::sub_op3, Assembler::arith_op);
7239   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7240   ins_pipe(ialu_reg_reg);
7241 %}
7242 
7243 // Immediate Subtraction
7244 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7245   match(Set dst (SubL src1 con));
7246 
7247   size(4);
7248   format %{ "SUB    $src1,$con,$dst\t! long" %}
7249   opcode(Assembler::sub_op3, Assembler::arith_op);
7250   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7251   ins_pipe(ialu_reg_imm);
7252 %}
7253 
7254 // Long negation
7255 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7256   match(Set dst (SubL zero src2));
7257 
7258   size(4);
7259   format %{ "NEG    $src2,$dst\t! long" %}
7260   opcode(Assembler::sub_op3, Assembler::arith_op);
7261   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7262   ins_pipe(ialu_zero_reg);
7263 %}
7264 
7265 // Multiplication Instructions
7266 // Integer Multiplication
7267 // Register Multiplication
7268 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7269   match(Set dst (MulI src1 src2));
7270 
7271   size(4);
7272   format %{ "MULX   $src1,$src2,$dst" %}
7273   opcode(Assembler::mulx_op3, Assembler::arith_op);
7274   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7275   ins_pipe(imul_reg_reg);
7276 %}
7277 
7278 // Immediate Multiplication
7279 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7280   match(Set dst (MulI src1 src2));
7281 
7282   size(4);
7283   format %{ "MULX   $src1,$src2,$dst" %}
7284   opcode(Assembler::mulx_op3, Assembler::arith_op);
7285   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7286   ins_pipe(imul_reg_imm);
7287 %}
7288 
7289 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7290   match(Set dst (MulL src1 src2));
7291   ins_cost(DEFAULT_COST * 5);
7292   size(4);
7293   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7294   opcode(Assembler::mulx_op3, Assembler::arith_op);
7295   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7296   ins_pipe(mulL_reg_reg);
7297 %}
7298 
7299 // Immediate Multiplication
7300 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7301   match(Set dst (MulL src1 src2));
7302   ins_cost(DEFAULT_COST * 5);
7303   size(4);
7304   format %{ "MULX   $src1,$src2,$dst" %}
7305   opcode(Assembler::mulx_op3, Assembler::arith_op);
7306   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7307   ins_pipe(mulL_reg_imm);
7308 %}
7309 
7310 // Integer Division
7311 // Register Division
7312 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7313   match(Set dst (DivI src1 src2));
7314   ins_cost((2+71)*DEFAULT_COST);
7315 
7316   format %{ "SRA     $src2,0,$src2\n\t"
7317             "SRA     $src1,0,$src1\n\t"
7318             "SDIVX   $src1,$src2,$dst" %}
7319   ins_encode( idiv_reg( src1, src2, dst ) );
7320   ins_pipe(sdiv_reg_reg);
7321 %}
7322 
7323 // Immediate Division
7324 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7325   match(Set dst (DivI src1 src2));
7326   ins_cost((2+71)*DEFAULT_COST);
7327 
7328   format %{ "SRA     $src1,0,$src1\n\t"
7329             "SDIVX   $src1,$src2,$dst" %}
7330   ins_encode( idiv_imm( src1, src2, dst ) );
7331   ins_pipe(sdiv_reg_imm);
7332 %}
7333 
7334 //----------Div-By-10-Expansion------------------------------------------------
7335 // Extract hi bits of a 32x32->64 bit multiply.
7336 // Expand rule only, not matched
7337 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7338   effect( DEF dst, USE src1, USE src2 );
7339   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7340             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7341   ins_encode( enc_mul_hi(dst,src1,src2));
7342   ins_pipe(sdiv_reg_reg);
7343 %}
7344 
7345 // Magic constant, reciprocal of 10
7346 instruct loadConI_x66666667(iRegIsafe dst) %{
7347   effect( DEF dst );
7348 
7349   size(8);
7350   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7351   ins_encode( Set32(0x66666667, dst) );
7352   ins_pipe(ialu_hi_lo_reg);
7353 %}
7354 
7355 // Register Shift Right Arithmetic Long by 32-63
7356 instruct sra_31( iRegI dst, iRegI src ) %{
7357   effect( DEF dst, USE src );
7358   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7359   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7360   ins_pipe(ialu_reg_reg);
7361 %}
7362 
7363 // Arithmetic Shift Right by 8-bit immediate
7364 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7365   effect( DEF dst, USE src );
7366   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7367   opcode(Assembler::sra_op3, Assembler::arith_op);
7368   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7369   ins_pipe(ialu_reg_imm);
7370 %}
7371 
7372 // Integer DIV with 10
7373 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7374   match(Set dst (DivI src div));
7375   ins_cost((6+6)*DEFAULT_COST);
7376   expand %{
7377     iRegIsafe tmp1;               // Killed temps;
7378     iRegIsafe tmp2;               // Killed temps;
7379     iRegI tmp3;                   // Killed temps;
7380     iRegI tmp4;                   // Killed temps;
7381     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7382     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7383     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7384     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7385     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7386   %}
7387 %}
7388 
7389 // Register Long Division
7390 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7391   match(Set dst (DivL src1 src2));
7392   ins_cost(DEFAULT_COST*71);
7393   size(4);
7394   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7395   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7396   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7397   ins_pipe(divL_reg_reg);
7398 %}
7399 
7400 // Register Long Division
7401 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7402   match(Set dst (DivL src1 src2));
7403   ins_cost(DEFAULT_COST*71);
7404   size(4);
7405   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7406   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7407   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7408   ins_pipe(divL_reg_imm);
7409 %}
7410 
7411 // Integer Remainder
7412 // Register Remainder
7413 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7414   match(Set dst (ModI src1 src2));
7415   effect( KILL ccr, KILL temp);
7416 
7417   format %{ "SREM   $src1,$src2,$dst" %}
7418   ins_encode( irem_reg(src1, src2, dst, temp) );
7419   ins_pipe(sdiv_reg_reg);
7420 %}
7421 
7422 // Immediate Remainder
7423 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7424   match(Set dst (ModI src1 src2));
7425   effect( KILL ccr, KILL temp);
7426 
7427   format %{ "SREM   $src1,$src2,$dst" %}
7428   ins_encode( irem_imm(src1, src2, dst, temp) );
7429   ins_pipe(sdiv_reg_imm);
7430 %}
7431 
7432 // Register Long Remainder
7433 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7434   effect(DEF dst, USE src1, USE src2);
7435   size(4);
7436   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7437   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7438   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7439   ins_pipe(divL_reg_reg);
7440 %}
7441 
7442 // Register Long Division
7443 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7444   effect(DEF dst, USE src1, USE src2);
7445   size(4);
7446   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7447   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7448   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7449   ins_pipe(divL_reg_imm);
7450 %}
7451 
7452 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7453   effect(DEF dst, USE src1, USE src2);
7454   size(4);
7455   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7456   opcode(Assembler::mulx_op3, Assembler::arith_op);
7457   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7458   ins_pipe(mulL_reg_reg);
7459 %}
7460 
7461 // Immediate Multiplication
7462 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7463   effect(DEF dst, USE src1, USE src2);
7464   size(4);
7465   format %{ "MULX   $src1,$src2,$dst" %}
7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
7467   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7468   ins_pipe(mulL_reg_imm);
7469 %}
7470 
7471 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7472   effect(DEF dst, USE src1, USE src2);
7473   size(4);
7474   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7475   opcode(Assembler::sub_op3, Assembler::arith_op);
7476   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7477   ins_pipe(ialu_reg_reg);
7478 %}
7479 
7480 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7481   effect(DEF dst, USE src1, USE src2);
7482   size(4);
7483   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7484   opcode(Assembler::sub_op3, Assembler::arith_op);
7485   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7486   ins_pipe(ialu_reg_reg);
7487 %}
7488 
7489 // Register Long Remainder
7490 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7491   match(Set dst (ModL src1 src2));
7492   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7493   expand %{
7494     iRegL tmp1;
7495     iRegL tmp2;
7496     divL_reg_reg_1(tmp1, src1, src2);
7497     mulL_reg_reg_1(tmp2, tmp1, src2);
7498     subL_reg_reg_1(dst,  src1, tmp2);
7499   %}
7500 %}
7501 
7502 // Register Long Remainder
7503 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7504   match(Set dst (ModL src1 src2));
7505   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7506   expand %{
7507     iRegL tmp1;
7508     iRegL tmp2;
7509     divL_reg_imm13_1(tmp1, src1, src2);
7510     mulL_reg_imm13_1(tmp2, tmp1, src2);
7511     subL_reg_reg_2  (dst,  src1, tmp2);
7512   %}
7513 %}
7514 
7515 // Integer Shift Instructions
7516 // Register Shift Left
7517 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7518   match(Set dst (LShiftI src1 src2));
7519 
7520   size(4);
7521   format %{ "SLL    $src1,$src2,$dst" %}
7522   opcode(Assembler::sll_op3, Assembler::arith_op);
7523   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7524   ins_pipe(ialu_reg_reg);
7525 %}
7526 
7527 // Register Shift Left Immediate
7528 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7529   match(Set dst (LShiftI src1 src2));
7530 
7531   size(4);
7532   format %{ "SLL    $src1,$src2,$dst" %}
7533   opcode(Assembler::sll_op3, Assembler::arith_op);
7534   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7535   ins_pipe(ialu_reg_imm);
7536 %}
7537 
7538 // Register Shift Left
7539 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7540   match(Set dst (LShiftL src1 src2));
7541 
7542   size(4);
7543   format %{ "SLLX   $src1,$src2,$dst" %}
7544   opcode(Assembler::sllx_op3, Assembler::arith_op);
7545   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7546   ins_pipe(ialu_reg_reg);
7547 %}
7548 
7549 // Register Shift Left Immediate
7550 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7551   match(Set dst (LShiftL src1 src2));
7552 
7553   size(4);
7554   format %{ "SLLX   $src1,$src2,$dst" %}
7555   opcode(Assembler::sllx_op3, Assembler::arith_op);
7556   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7557   ins_pipe(ialu_reg_imm);
7558 %}
7559 
7560 // Register Arithmetic Shift Right
7561 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7562   match(Set dst (RShiftI src1 src2));
7563   size(4);
7564   format %{ "SRA    $src1,$src2,$dst" %}
7565   opcode(Assembler::sra_op3, Assembler::arith_op);
7566   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7567   ins_pipe(ialu_reg_reg);
7568 %}
7569 
7570 // Register Arithmetic Shift Right Immediate
7571 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7572   match(Set dst (RShiftI src1 src2));
7573 
7574   size(4);
7575   format %{ "SRA    $src1,$src2,$dst" %}
7576   opcode(Assembler::sra_op3, Assembler::arith_op);
7577   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7578   ins_pipe(ialu_reg_imm);
7579 %}
7580 
7581 // Register Shift Right Arithmatic Long
7582 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7583   match(Set dst (RShiftL src1 src2));
7584 
7585   size(4);
7586   format %{ "SRAX   $src1,$src2,$dst" %}
7587   opcode(Assembler::srax_op3, Assembler::arith_op);
7588   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7589   ins_pipe(ialu_reg_reg);
7590 %}
7591 
7592 // Register Shift Left Immediate
7593 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7594   match(Set dst (RShiftL src1 src2));
7595 
7596   size(4);
7597   format %{ "SRAX   $src1,$src2,$dst" %}
7598   opcode(Assembler::srax_op3, Assembler::arith_op);
7599   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7600   ins_pipe(ialu_reg_imm);
7601 %}
7602 
7603 // Register Shift Right
7604 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7605   match(Set dst (URShiftI src1 src2));
7606 
7607   size(4);
7608   format %{ "SRL    $src1,$src2,$dst" %}
7609   opcode(Assembler::srl_op3, Assembler::arith_op);
7610   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7611   ins_pipe(ialu_reg_reg);
7612 %}
7613 
7614 // Register Shift Right Immediate
7615 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7616   match(Set dst (URShiftI src1 src2));
7617 
7618   size(4);
7619   format %{ "SRL    $src1,$src2,$dst" %}
7620   opcode(Assembler::srl_op3, Assembler::arith_op);
7621   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7622   ins_pipe(ialu_reg_imm);
7623 %}
7624 
7625 // Register Shift Right
7626 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7627   match(Set dst (URShiftL src1 src2));
7628 
7629   size(4);
7630   format %{ "SRLX   $src1,$src2,$dst" %}
7631   opcode(Assembler::srlx_op3, Assembler::arith_op);
7632   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7633   ins_pipe(ialu_reg_reg);
7634 %}
7635 
7636 // Register Shift Right Immediate
7637 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7638   match(Set dst (URShiftL src1 src2));
7639 
7640   size(4);
7641   format %{ "SRLX   $src1,$src2,$dst" %}
7642   opcode(Assembler::srlx_op3, Assembler::arith_op);
7643   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7644   ins_pipe(ialu_reg_imm);
7645 %}
7646 
7647 // Register Shift Right Immediate with a CastP2X
7648 #ifdef _LP64
7649 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7650   match(Set dst (URShiftL (CastP2X src1) src2));
7651   size(4);
7652   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7653   opcode(Assembler::srlx_op3, Assembler::arith_op);
7654   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7655   ins_pipe(ialu_reg_imm);
7656 %}
7657 #else
7658 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7659   match(Set dst (URShiftI (CastP2X src1) src2));
7660   size(4);
7661   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7662   opcode(Assembler::srl_op3, Assembler::arith_op);
7663   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7664   ins_pipe(ialu_reg_imm);
7665 %}
7666 #endif
7667 
7668 
7669 //----------Floating Point Arithmetic Instructions-----------------------------
7670 
7671 //  Add float single precision
7672 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7673   match(Set dst (AddF src1 src2));
7674 
7675   size(4);
7676   format %{ "FADDS  $src1,$src2,$dst" %}
7677   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7678   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7679   ins_pipe(faddF_reg_reg);
7680 %}
7681 
7682 //  Add float double precision
7683 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7684   match(Set dst (AddD src1 src2));
7685 
7686   size(4);
7687   format %{ "FADDD  $src1,$src2,$dst" %}
7688   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7689   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7690   ins_pipe(faddD_reg_reg);
7691 %}
7692 
7693 //  Sub float single precision
7694 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7695   match(Set dst (SubF src1 src2));
7696 
7697   size(4);
7698   format %{ "FSUBS  $src1,$src2,$dst" %}
7699   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7700   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7701   ins_pipe(faddF_reg_reg);
7702 %}
7703 
7704 //  Sub float double precision
7705 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7706   match(Set dst (SubD src1 src2));
7707 
7708   size(4);
7709   format %{ "FSUBD  $src1,$src2,$dst" %}
7710   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7711   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7712   ins_pipe(faddD_reg_reg);
7713 %}
7714 
7715 //  Mul float single precision
7716 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7717   match(Set dst (MulF src1 src2));
7718 
7719   size(4);
7720   format %{ "FMULS  $src1,$src2,$dst" %}
7721   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7722   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7723   ins_pipe(fmulF_reg_reg);
7724 %}
7725 
7726 //  Mul float double precision
7727 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7728   match(Set dst (MulD src1 src2));
7729 
7730   size(4);
7731   format %{ "FMULD  $src1,$src2,$dst" %}
7732   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7733   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7734   ins_pipe(fmulD_reg_reg);
7735 %}
7736 
7737 //  Div float single precision
7738 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7739   match(Set dst (DivF src1 src2));
7740 
7741   size(4);
7742   format %{ "FDIVS  $src1,$src2,$dst" %}
7743   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7744   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7745   ins_pipe(fdivF_reg_reg);
7746 %}
7747 
7748 //  Div float double precision
7749 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7750   match(Set dst (DivD src1 src2));
7751 
7752   size(4);
7753   format %{ "FDIVD  $src1,$src2,$dst" %}
7754   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7755   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7756   ins_pipe(fdivD_reg_reg);
7757 %}
7758 
7759 //  Absolute float double precision
7760 instruct absD_reg(regD dst, regD src) %{
7761   match(Set dst (AbsD src));
7762 
7763   format %{ "FABSd  $src,$dst" %}
7764   ins_encode(fabsd(dst, src));
7765   ins_pipe(faddD_reg);
7766 %}
7767 
7768 //  Absolute float single precision
7769 instruct absF_reg(regF dst, regF src) %{
7770   match(Set dst (AbsF src));
7771 
7772   format %{ "FABSs  $src,$dst" %}
7773   ins_encode(fabss(dst, src));
7774   ins_pipe(faddF_reg);
7775 %}
7776 
7777 instruct negF_reg(regF dst, regF src) %{
7778   match(Set dst (NegF src));
7779 
7780   size(4);
7781   format %{ "FNEGs  $src,$dst" %}
7782   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7783   ins_encode(form3_opf_rs2F_rdF(src, dst));
7784   ins_pipe(faddF_reg);
7785 %}
7786 
7787 instruct negD_reg(regD dst, regD src) %{
7788   match(Set dst (NegD src));
7789 
7790   format %{ "FNEGd  $src,$dst" %}
7791   ins_encode(fnegd(dst, src));
7792   ins_pipe(faddD_reg);
7793 %}
7794 
7795 //  Sqrt float double precision
7796 instruct sqrtF_reg_reg(regF dst, regF src) %{
7797   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7798 
7799   size(4);
7800   format %{ "FSQRTS $src,$dst" %}
7801   ins_encode(fsqrts(dst, src));
7802   ins_pipe(fdivF_reg_reg);
7803 %}
7804 
7805 //  Sqrt float double precision
7806 instruct sqrtD_reg_reg(regD dst, regD src) %{
7807   match(Set dst (SqrtD src));
7808 
7809   size(4);
7810   format %{ "FSQRTD $src,$dst" %}
7811   ins_encode(fsqrtd(dst, src));
7812   ins_pipe(fdivD_reg_reg);
7813 %}
7814 
7815 //----------Logical Instructions-----------------------------------------------
7816 // And Instructions
7817 // Register And
7818 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7819   match(Set dst (AndI src1 src2));
7820 
7821   size(4);
7822   format %{ "AND    $src1,$src2,$dst" %}
7823   opcode(Assembler::and_op3, Assembler::arith_op);
7824   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7825   ins_pipe(ialu_reg_reg);
7826 %}
7827 
7828 // Immediate And
7829 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7830   match(Set dst (AndI src1 src2));
7831 
7832   size(4);
7833   format %{ "AND    $src1,$src2,$dst" %}
7834   opcode(Assembler::and_op3, Assembler::arith_op);
7835   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7836   ins_pipe(ialu_reg_imm);
7837 %}
7838 
7839 // Register And Long
7840 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7841   match(Set dst (AndL src1 src2));
7842 
7843   ins_cost(DEFAULT_COST);
7844   size(4);
7845   format %{ "AND    $src1,$src2,$dst\t! long" %}
7846   opcode(Assembler::and_op3, Assembler::arith_op);
7847   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7848   ins_pipe(ialu_reg_reg);
7849 %}
7850 
7851 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7852   match(Set dst (AndL src1 con));
7853 
7854   ins_cost(DEFAULT_COST);
7855   size(4);
7856   format %{ "AND    $src1,$con,$dst\t! long" %}
7857   opcode(Assembler::and_op3, Assembler::arith_op);
7858   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7859   ins_pipe(ialu_reg_imm);
7860 %}
7861 
7862 // Or Instructions
7863 // Register Or
7864 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7865   match(Set dst (OrI src1 src2));
7866 
7867   size(4);
7868   format %{ "OR     $src1,$src2,$dst" %}
7869   opcode(Assembler::or_op3, Assembler::arith_op);
7870   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7871   ins_pipe(ialu_reg_reg);
7872 %}
7873 
7874 // Immediate Or
7875 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7876   match(Set dst (OrI src1 src2));
7877 
7878   size(4);
7879   format %{ "OR     $src1,$src2,$dst" %}
7880   opcode(Assembler::or_op3, Assembler::arith_op);
7881   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7882   ins_pipe(ialu_reg_imm);
7883 %}
7884 
7885 // Register Or Long
7886 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7887   match(Set dst (OrL src1 src2));
7888 
7889   ins_cost(DEFAULT_COST);
7890   size(4);
7891   format %{ "OR     $src1,$src2,$dst\t! long" %}
7892   opcode(Assembler::or_op3, Assembler::arith_op);
7893   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7894   ins_pipe(ialu_reg_reg);
7895 %}
7896 
7897 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7898   match(Set dst (OrL src1 con));
7899   ins_cost(DEFAULT_COST*2);
7900 
7901   ins_cost(DEFAULT_COST);
7902   size(4);
7903   format %{ "OR     $src1,$con,$dst\t! long" %}
7904   opcode(Assembler::or_op3, Assembler::arith_op);
7905   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7906   ins_pipe(ialu_reg_imm);
7907 %}
7908 
7909 #ifndef _LP64
7910 
7911 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7912 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7913   match(Set dst (OrI src1 (CastP2X src2)));
7914 
7915   size(4);
7916   format %{ "OR     $src1,$src2,$dst" %}
7917   opcode(Assembler::or_op3, Assembler::arith_op);
7918   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7919   ins_pipe(ialu_reg_reg);
7920 %}
7921 
7922 #else
7923 
7924 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7925   match(Set dst (OrL src1 (CastP2X src2)));
7926 
7927   ins_cost(DEFAULT_COST);
7928   size(4);
7929   format %{ "OR     $src1,$src2,$dst\t! long" %}
7930   opcode(Assembler::or_op3, Assembler::arith_op);
7931   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7932   ins_pipe(ialu_reg_reg);
7933 %}
7934 
7935 #endif
7936 
7937 // Xor Instructions
7938 // Register Xor
7939 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7940   match(Set dst (XorI src1 src2));
7941 
7942   size(4);
7943   format %{ "XOR    $src1,$src2,$dst" %}
7944   opcode(Assembler::xor_op3, Assembler::arith_op);
7945   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7946   ins_pipe(ialu_reg_reg);
7947 %}
7948 
7949 // Immediate Xor
7950 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7951   match(Set dst (XorI src1 src2));
7952 
7953   size(4);
7954   format %{ "XOR    $src1,$src2,$dst" %}
7955   opcode(Assembler::xor_op3, Assembler::arith_op);
7956   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7957   ins_pipe(ialu_reg_imm);
7958 %}
7959 
7960 // Register Xor Long
7961 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7962   match(Set dst (XorL src1 src2));
7963 
7964   ins_cost(DEFAULT_COST);
7965   size(4);
7966   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7967   opcode(Assembler::xor_op3, Assembler::arith_op);
7968   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7969   ins_pipe(ialu_reg_reg);
7970 %}
7971 
7972 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7973   match(Set dst (XorL src1 con));
7974 
7975   ins_cost(DEFAULT_COST);
7976   size(4);
7977   format %{ "XOR    $src1,$con,$dst\t! long" %}
7978   opcode(Assembler::xor_op3, Assembler::arith_op);
7979   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7980   ins_pipe(ialu_reg_imm);
7981 %}
7982 
7983 //----------Convert to Boolean-------------------------------------------------
7984 // Nice hack for 32-bit tests but doesn't work for
7985 // 64-bit pointers.
7986 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7987   match(Set dst (Conv2B src));
7988   effect( KILL ccr );
7989   ins_cost(DEFAULT_COST*2);
7990   format %{ "CMP    R_G0,$src\n\t"
7991             "ADDX   R_G0,0,$dst" %}
7992   ins_encode( enc_to_bool( src, dst ) );
7993   ins_pipe(ialu_reg_ialu);
7994 %}
7995 
7996 #ifndef _LP64
7997 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7998   match(Set dst (Conv2B src));
7999   effect( KILL ccr );
8000   ins_cost(DEFAULT_COST*2);
8001   format %{ "CMP    R_G0,$src\n\t"
8002             "ADDX   R_G0,0,$dst" %}
8003   ins_encode( enc_to_bool( src, dst ) );
8004   ins_pipe(ialu_reg_ialu);
8005 %}
8006 #else
8007 instruct convP2B( iRegI dst, iRegP src ) %{
8008   match(Set dst (Conv2B src));
8009   ins_cost(DEFAULT_COST*2);
8010   format %{ "MOV    $src,$dst\n\t"
8011             "MOVRNZ $src,1,$dst" %}
8012   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8013   ins_pipe(ialu_clr_and_mover);
8014 %}
8015 #endif
8016 
8017 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8018   match(Set dst (CmpLTMask p q));
8019   effect( KILL ccr );
8020   ins_cost(DEFAULT_COST*4);
8021   format %{ "CMP    $p,$q\n\t"
8022             "MOV    #0,$dst\n\t"
8023             "BLT,a  .+8\n\t"
8024             "MOV    #-1,$dst" %}
8025   ins_encode( enc_ltmask(p,q,dst) );
8026   ins_pipe(ialu_reg_reg_ialu);
8027 %}
8028 
8029 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8030   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8031   effect(KILL ccr, TEMP tmp);
8032   ins_cost(DEFAULT_COST*3);
8033 
8034   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8035             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8036             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8037   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8038   ins_pipe( cadd_cmpltmask );
8039 %}
8040 
8041 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8042   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
8043   effect( KILL ccr, TEMP tmp);
8044   ins_cost(DEFAULT_COST*3);
8045 
8046   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8047             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8048             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8049   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8050   ins_pipe( cadd_cmpltmask );
8051 %}
8052 
8053 //----------Arithmetic Conversion Instructions---------------------------------
8054 // The conversions operations are all Alpha sorted.  Please keep it that way!
8055 
8056 instruct convD2F_reg(regF dst, regD src) %{
8057   match(Set dst (ConvD2F src));
8058   size(4);
8059   format %{ "FDTOS  $src,$dst" %}
8060   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8061   ins_encode(form3_opf_rs2D_rdF(src, dst));
8062   ins_pipe(fcvtD2F);
8063 %}
8064 
8065 
8066 // Convert a double to an int in a float register.
8067 // If the double is a NAN, stuff a zero in instead.
8068 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8069   effect(DEF dst, USE src, KILL fcc0);
8070   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8071             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8072             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8073             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8074             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8075       "skip:" %}
8076   ins_encode(form_d2i_helper(src,dst));
8077   ins_pipe(fcvtD2I);
8078 %}
8079 
8080 instruct convD2I_reg(stackSlotI dst, regD src) %{
8081   match(Set dst (ConvD2I src));
8082   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8083   expand %{
8084     regF tmp;
8085     convD2I_helper(tmp, src);
8086     regF_to_stkI(dst, tmp);
8087   %}
8088 %}
8089 
8090 // Convert a double to a long in a double register.
8091 // If the double is a NAN, stuff a zero in instead.
8092 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8093   effect(DEF dst, USE src, KILL fcc0);
8094   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8095             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8096             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8097             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8098             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8099       "skip:" %}
8100   ins_encode(form_d2l_helper(src,dst));
8101   ins_pipe(fcvtD2L);
8102 %}
8103 
8104 
8105 // Double to Long conversion
8106 instruct convD2L_reg(stackSlotL dst, regD src) %{
8107   match(Set dst (ConvD2L src));
8108   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8109   expand %{
8110     regD tmp;
8111     convD2L_helper(tmp, src);
8112     regD_to_stkL(dst, tmp);
8113   %}
8114 %}
8115 
8116 
8117 instruct convF2D_reg(regD dst, regF src) %{
8118   match(Set dst (ConvF2D src));
8119   format %{ "FSTOD  $src,$dst" %}
8120   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8121   ins_encode(form3_opf_rs2F_rdD(src, dst));
8122   ins_pipe(fcvtF2D);
8123 %}
8124 
8125 
8126 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8127   effect(DEF dst, USE src, KILL fcc0);
8128   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8129             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8130             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8131             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8132             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8133       "skip:" %}
8134   ins_encode(form_f2i_helper(src,dst));
8135   ins_pipe(fcvtF2I);
8136 %}
8137 
8138 instruct convF2I_reg(stackSlotI dst, regF src) %{
8139   match(Set dst (ConvF2I src));
8140   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8141   expand %{
8142     regF tmp;
8143     convF2I_helper(tmp, src);
8144     regF_to_stkI(dst, tmp);
8145   %}
8146 %}
8147 
8148 
8149 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8150   effect(DEF dst, USE src, KILL fcc0);
8151   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8152             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8153             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8154             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8155             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8156       "skip:" %}
8157   ins_encode(form_f2l_helper(src,dst));
8158   ins_pipe(fcvtF2L);
8159 %}
8160 
8161 // Float to Long conversion
8162 instruct convF2L_reg(stackSlotL dst, regF src) %{
8163   match(Set dst (ConvF2L src));
8164   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8165   expand %{
8166     regD tmp;
8167     convF2L_helper(tmp, src);
8168     regD_to_stkL(dst, tmp);
8169   %}
8170 %}
8171 
8172 
8173 instruct convI2D_helper(regD dst, regF tmp) %{
8174   effect(USE tmp, DEF dst);
8175   format %{ "FITOD  $tmp,$dst" %}
8176   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8177   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8178   ins_pipe(fcvtI2D);
8179 %}
8180 
8181 instruct convI2D_reg(stackSlotI src, regD dst) %{
8182   match(Set dst (ConvI2D src));
8183   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8184   expand %{
8185     regF tmp;
8186     stkI_to_regF( tmp, src);
8187     convI2D_helper( dst, tmp);
8188   %}
8189 %}
8190 
8191 instruct convI2D_mem( regD_low dst, memory mem ) %{
8192   match(Set dst (ConvI2D (LoadI mem)));
8193   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8194   size(8);
8195   format %{ "LDF    $mem,$dst\n\t"
8196             "FITOD  $dst,$dst" %}
8197   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8198   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8199   ins_pipe(floadF_mem);
8200 %}
8201 
8202 
8203 instruct convI2F_helper(regF dst, regF tmp) %{
8204   effect(DEF dst, USE tmp);
8205   format %{ "FITOS  $tmp,$dst" %}
8206   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8207   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8208   ins_pipe(fcvtI2F);
8209 %}
8210 
8211 instruct convI2F_reg( regF dst, stackSlotI src ) %{
8212   match(Set dst (ConvI2F src));
8213   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8214   expand %{
8215     regF tmp;
8216     stkI_to_regF(tmp,src);
8217     convI2F_helper(dst, tmp);
8218   %}
8219 %}
8220 
8221 instruct convI2F_mem( regF dst, memory mem ) %{
8222   match(Set dst (ConvI2F (LoadI mem)));
8223   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8224   size(8);
8225   format %{ "LDF    $mem,$dst\n\t"
8226             "FITOS  $dst,$dst" %}
8227   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8228   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8229   ins_pipe(floadF_mem);
8230 %}
8231 
8232 
8233 instruct convI2L_reg(iRegL dst, iRegI src) %{
8234   match(Set dst (ConvI2L src));
8235   size(4);
8236   format %{ "SRA    $src,0,$dst\t! int->long" %}
8237   opcode(Assembler::sra_op3, Assembler::arith_op);
8238   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8239   ins_pipe(ialu_reg_reg);
8240 %}
8241 
8242 // Zero-extend convert int to long
8243 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8244   match(Set dst (AndL (ConvI2L src) mask) );
8245   size(4);
8246   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8247   opcode(Assembler::srl_op3, Assembler::arith_op);
8248   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8249   ins_pipe(ialu_reg_reg);
8250 %}
8251 
8252 // Zero-extend long
8253 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8254   match(Set dst (AndL src mask) );
8255   size(4);
8256   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8257   opcode(Assembler::srl_op3, Assembler::arith_op);
8258   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8259   ins_pipe(ialu_reg_reg);
8260 %}
8261 
8262 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8263   match(Set dst (MoveF2I src));
8264   effect(DEF dst, USE src);
8265   ins_cost(MEMORY_REF_COST);
8266 
8267   size(4);
8268   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8269   opcode(Assembler::lduw_op3);
8270   ins_encode(simple_form3_mem_reg( src, dst ) );
8271   ins_pipe(iload_mem);
8272 %}
8273 
8274 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8275   match(Set dst (MoveI2F src));
8276   effect(DEF dst, USE src);
8277   ins_cost(MEMORY_REF_COST);
8278 
8279   size(4);
8280   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8281   opcode(Assembler::ldf_op3);
8282   ins_encode(simple_form3_mem_reg(src, dst));
8283   ins_pipe(floadF_stk);
8284 %}
8285 
8286 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8287   match(Set dst (MoveD2L src));
8288   effect(DEF dst, USE src);
8289   ins_cost(MEMORY_REF_COST);
8290 
8291   size(4);
8292   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8293   opcode(Assembler::ldx_op3);
8294   ins_encode(simple_form3_mem_reg( src, dst ) );
8295   ins_pipe(iload_mem);
8296 %}
8297 
8298 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8299   match(Set dst (MoveL2D src));
8300   effect(DEF dst, USE src);
8301   ins_cost(MEMORY_REF_COST);
8302 
8303   size(4);
8304   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8305   opcode(Assembler::lddf_op3);
8306   ins_encode(simple_form3_mem_reg(src, dst));
8307   ins_pipe(floadD_stk);
8308 %}
8309 
8310 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8311   match(Set dst (MoveF2I src));
8312   effect(DEF dst, USE src);
8313   ins_cost(MEMORY_REF_COST);
8314 
8315   size(4);
8316   format %{ "STF   $src,$dst\t!MoveF2I" %}
8317   opcode(Assembler::stf_op3);
8318   ins_encode(simple_form3_mem_reg(dst, src));
8319   ins_pipe(fstoreF_stk_reg);
8320 %}
8321 
8322 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8323   match(Set dst (MoveI2F src));
8324   effect(DEF dst, USE src);
8325   ins_cost(MEMORY_REF_COST);
8326 
8327   size(4);
8328   format %{ "STW    $src,$dst\t!MoveI2F" %}
8329   opcode(Assembler::stw_op3);
8330   ins_encode(simple_form3_mem_reg( dst, src ) );
8331   ins_pipe(istore_mem_reg);
8332 %}
8333 
8334 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8335   match(Set dst (MoveD2L src));
8336   effect(DEF dst, USE src);
8337   ins_cost(MEMORY_REF_COST);
8338 
8339   size(4);
8340   format %{ "STDF   $src,$dst\t!MoveD2L" %}
8341   opcode(Assembler::stdf_op3);
8342   ins_encode(simple_form3_mem_reg(dst, src));
8343   ins_pipe(fstoreD_stk_reg);
8344 %}
8345 
8346 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8347   match(Set dst (MoveL2D src));
8348   effect(DEF dst, USE src);
8349   ins_cost(MEMORY_REF_COST);
8350 
8351   size(4);
8352   format %{ "STX    $src,$dst\t!MoveL2D" %}
8353   opcode(Assembler::stx_op3);
8354   ins_encode(simple_form3_mem_reg( dst, src ) );
8355   ins_pipe(istore_mem_reg);
8356 %}
8357 
8358 
8359 //-----------
8360 // Long to Double conversion using V8 opcodes.
8361 // Still useful because cheetah traps and becomes
8362 // amazingly slow for some common numbers.
8363 
8364 // Magic constant, 0x43300000
8365 instruct loadConI_x43300000(iRegI dst) %{
8366   effect(DEF dst);
8367   size(4);
8368   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8369   ins_encode(SetHi22(0x43300000, dst));
8370   ins_pipe(ialu_none);
8371 %}
8372 
8373 // Magic constant, 0x41f00000
8374 instruct loadConI_x41f00000(iRegI dst) %{
8375   effect(DEF dst);
8376   size(4);
8377   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8378   ins_encode(SetHi22(0x41f00000, dst));
8379   ins_pipe(ialu_none);
8380 %}
8381 
8382 // Construct a double from two float halves
8383 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8384   effect(DEF dst, USE src1, USE src2);
8385   size(8);
8386   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8387             "FMOVS  $src2.lo,$dst.lo" %}
8388   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8389   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8390   ins_pipe(faddD_reg_reg);
8391 %}
8392 
8393 // Convert integer in high half of a double register (in the lower half of
8394 // the double register file) to double
8395 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8396   effect(DEF dst, USE src);
8397   size(4);
8398   format %{ "FITOD  $src,$dst" %}
8399   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8400   ins_encode(form3_opf_rs2D_rdD(src, dst));
8401   ins_pipe(fcvtLHi2D);
8402 %}
8403 
8404 // Add float double precision
8405 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8406   effect(DEF dst, USE src1, USE src2);
8407   size(4);
8408   format %{ "FADDD  $src1,$src2,$dst" %}
8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8410   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8411   ins_pipe(faddD_reg_reg);
8412 %}
8413 
8414 // Sub float double precision
8415 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8416   effect(DEF dst, USE src1, USE src2);
8417   size(4);
8418   format %{ "FSUBD  $src1,$src2,$dst" %}
8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8420   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8421   ins_pipe(faddD_reg_reg);
8422 %}
8423 
8424 // Mul float double precision
8425 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8426   effect(DEF dst, USE src1, USE src2);
8427   size(4);
8428   format %{ "FMULD  $src1,$src2,$dst" %}
8429   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8430   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8431   ins_pipe(fmulD_reg_reg);
8432 %}
8433 
8434 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8435   match(Set dst (ConvL2D src));
8436   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8437 
8438   expand %{
8439     regD_low   tmpsrc;
8440     iRegI      ix43300000;
8441     iRegI      ix41f00000;
8442     stackSlotL lx43300000;
8443     stackSlotL lx41f00000;
8444     regD_low   dx43300000;
8445     regD       dx41f00000;
8446     regD       tmp1;
8447     regD_low   tmp2;
8448     regD       tmp3;
8449     regD       tmp4;
8450 
8451     stkL_to_regD(tmpsrc, src);
8452 
8453     loadConI_x43300000(ix43300000);
8454     loadConI_x41f00000(ix41f00000);
8455     regI_to_stkLHi(lx43300000, ix43300000);
8456     regI_to_stkLHi(lx41f00000, ix41f00000);
8457     stkL_to_regD(dx43300000, lx43300000);
8458     stkL_to_regD(dx41f00000, lx41f00000);
8459 
8460     convI2D_regDHi_regD(tmp1, tmpsrc);
8461     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8462     subD_regD_regD(tmp3, tmp2, dx43300000);
8463     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8464     addD_regD_regD(dst, tmp3, tmp4);
8465   %}
8466 %}
8467 
8468 // Long to Double conversion using fast fxtof
8469 instruct convL2D_helper(regD dst, regD tmp) %{
8470   effect(DEF dst, USE tmp);
8471   size(4);
8472   format %{ "FXTOD  $tmp,$dst" %}
8473   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8474   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8475   ins_pipe(fcvtL2D);
8476 %}
8477 
8478 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
8479   predicate(VM_Version::has_fast_fxtof());
8480   match(Set dst (ConvL2D src));
8481   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8482   expand %{
8483     regD tmp;
8484     stkL_to_regD(tmp, src);
8485     convL2D_helper(dst, tmp);
8486   %}
8487 %}
8488 
8489 //-----------
8490 // Long to Float conversion using V8 opcodes.
8491 // Still useful because cheetah traps and becomes
8492 // amazingly slow for some common numbers.
8493 
8494 // Long to Float conversion using fast fxtof
8495 instruct convL2F_helper(regF dst, regD tmp) %{
8496   effect(DEF dst, USE tmp);
8497   size(4);
8498   format %{ "FXTOS  $tmp,$dst" %}
8499   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8500   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8501   ins_pipe(fcvtL2F);
8502 %}
8503 
8504 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
8505   match(Set dst (ConvL2F src));
8506   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8507   expand %{
8508     regD tmp;
8509     stkL_to_regD(tmp, src);
8510     convL2F_helper(dst, tmp);
8511   %}
8512 %}
8513 //-----------
8514 
8515 instruct convL2I_reg(iRegI dst, iRegL src) %{
8516   match(Set dst (ConvL2I src));
8517 #ifndef _LP64
8518   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8519   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8520   ins_pipe(ialu_move_reg_I_to_L);
8521 #else
8522   size(4);
8523   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8524   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8525   ins_pipe(ialu_reg);
8526 #endif
8527 %}
8528 
8529 // Register Shift Right Immediate
8530 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8531   match(Set dst (ConvL2I (RShiftL src cnt)));
8532 
8533   size(4);
8534   format %{ "SRAX   $src,$cnt,$dst" %}
8535   opcode(Assembler::srax_op3, Assembler::arith_op);
8536   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8537   ins_pipe(ialu_reg_imm);
8538 %}
8539 
8540 // Replicate scalar to packed byte values in Double register
8541 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
8542   effect(DEF dst, USE src);
8543   format %{ "SLLX  $src,56,$dst\n\t"
8544             "SRLX  $dst, 8,O7\n\t"
8545             "OR    $dst,O7,$dst\n\t"
8546             "SRLX  $dst,16,O7\n\t"
8547             "OR    $dst,O7,$dst\n\t"
8548             "SRLX  $dst,32,O7\n\t"
8549             "OR    $dst,O7,$dst\t! replicate8B" %}
8550   ins_encode( enc_repl8b(src, dst));
8551   ins_pipe(ialu_reg);
8552 %}
8553 
8554 // Replicate scalar to packed byte values in Double register
8555 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
8556   match(Set dst (Replicate8B src));
8557   expand %{
8558     iRegL tmp;
8559     Repl8B_reg_helper(tmp, src);
8560     regL_to_stkD(dst, tmp);
8561   %}
8562 %}
8563 
8564 // Replicate scalar constant to packed byte values in Double register
8565 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
8566   match(Set dst (Replicate8B src));
8567 #ifdef _LP64
8568   size(36);
8569 #else
8570   size(8);
8571 #endif
8572   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
8573             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
8574   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
8575   ins_pipe(loadConFD);
8576 %}
8577 
8578 // Replicate scalar to packed char values into stack slot
8579 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
8580   effect(DEF dst, USE src);
8581   format %{ "SLLX  $src,48,$dst\n\t"
8582             "SRLX  $dst,16,O7\n\t"
8583             "OR    $dst,O7,$dst\n\t"
8584             "SRLX  $dst,32,O7\n\t"
8585             "OR    $dst,O7,$dst\t! replicate4C" %}
8586   ins_encode( enc_repl4s(src, dst) );
8587   ins_pipe(ialu_reg);
8588 %}
8589 
8590 // Replicate scalar to packed char values into stack slot
8591 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
8592   match(Set dst (Replicate4C src));
8593   expand %{
8594     iRegL tmp;
8595     Repl4C_reg_helper(tmp, src);
8596     regL_to_stkD(dst, tmp);
8597   %}
8598 %}
8599 
8600 // Replicate scalar constant to packed char values in Double register
8601 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
8602   match(Set dst (Replicate4C src));
8603 #ifdef _LP64
8604   size(36);
8605 #else
8606   size(8);
8607 #endif
8608   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
8609             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8610   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8611   ins_pipe(loadConFD);
8612 %}
8613 
8614 // Replicate scalar to packed short values into stack slot
8615 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
8616   effect(DEF dst, USE src);
8617   format %{ "SLLX  $src,48,$dst\n\t"
8618             "SRLX  $dst,16,O7\n\t"
8619             "OR    $dst,O7,$dst\n\t"
8620             "SRLX  $dst,32,O7\n\t"
8621             "OR    $dst,O7,$dst\t! replicate4S" %}
8622   ins_encode( enc_repl4s(src, dst) );
8623   ins_pipe(ialu_reg);
8624 %}
8625 
8626 // Replicate scalar to packed short values into stack slot
8627 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
8628   match(Set dst (Replicate4S src));
8629   expand %{
8630     iRegL tmp;
8631     Repl4S_reg_helper(tmp, src);
8632     regL_to_stkD(dst, tmp);
8633   %}
8634 %}
8635 
8636 // Replicate scalar constant to packed short values in Double register
8637 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
8638   match(Set dst (Replicate4S src));
8639 #ifdef _LP64
8640   size(36);
8641 #else
8642   size(8);
8643 #endif
8644   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
8645             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
8646   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
8647   ins_pipe(loadConFD);
8648 %}
8649 
8650 // Replicate scalar to packed int values in Double register
8651 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
8652   effect(DEF dst, USE src);
8653   format %{ "SLLX  $src,32,$dst\n\t"
8654             "SRLX  $dst,32,O7\n\t"
8655             "OR    $dst,O7,$dst\t! replicate2I" %}
8656   ins_encode( enc_repl2i(src, dst));
8657   ins_pipe(ialu_reg);
8658 %}
8659 
8660 // Replicate scalar to packed int values in Double register
8661 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
8662   match(Set dst (Replicate2I src));
8663   expand %{
8664     iRegL tmp;
8665     Repl2I_reg_helper(tmp, src);
8666     regL_to_stkD(dst, tmp);
8667   %}
8668 %}
8669 
8670 // Replicate scalar zero constant to packed int values in Double register
8671 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
8672   match(Set dst (Replicate2I src));
8673 #ifdef _LP64
8674   size(36);
8675 #else
8676   size(8);
8677 #endif
8678   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
8679             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
8680   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
8681   ins_pipe(loadConFD);
8682 %}
8683 
8684 //----------Control Flow Instructions------------------------------------------
8685 // Compare Instructions
8686 // Compare Integers
8687 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8688   match(Set icc (CmpI op1 op2));
8689   effect( DEF icc, USE op1, USE op2 );
8690 
8691   size(4);
8692   format %{ "CMP    $op1,$op2" %}
8693   opcode(Assembler::subcc_op3, Assembler::arith_op);
8694   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8695   ins_pipe(ialu_cconly_reg_reg);
8696 %}
8697 
8698 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8699   match(Set icc (CmpU op1 op2));
8700 
8701   size(4);
8702   format %{ "CMP    $op1,$op2\t! unsigned" %}
8703   opcode(Assembler::subcc_op3, Assembler::arith_op);
8704   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8705   ins_pipe(ialu_cconly_reg_reg);
8706 %}
8707 
8708 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8709   match(Set icc (CmpI op1 op2));
8710   effect( DEF icc, USE op1 );
8711 
8712   size(4);
8713   format %{ "CMP    $op1,$op2" %}
8714   opcode(Assembler::subcc_op3, Assembler::arith_op);
8715   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8716   ins_pipe(ialu_cconly_reg_imm);
8717 %}
8718 
8719 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8720   match(Set icc (CmpI (AndI op1 op2) zero));
8721 
8722   size(4);
8723   format %{ "BTST   $op2,$op1" %}
8724   opcode(Assembler::andcc_op3, Assembler::arith_op);
8725   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8726   ins_pipe(ialu_cconly_reg_reg_zero);
8727 %}
8728 
8729 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8730   match(Set icc (CmpI (AndI op1 op2) zero));
8731 
8732   size(4);
8733   format %{ "BTST   $op2,$op1" %}
8734   opcode(Assembler::andcc_op3, Assembler::arith_op);
8735   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8736   ins_pipe(ialu_cconly_reg_imm_zero);
8737 %}
8738 
8739 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8740   match(Set xcc (CmpL op1 op2));
8741   effect( DEF xcc, USE op1, USE op2 );
8742 
8743   size(4);
8744   format %{ "CMP    $op1,$op2\t\t! long" %}
8745   opcode(Assembler::subcc_op3, Assembler::arith_op);
8746   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8747   ins_pipe(ialu_cconly_reg_reg);
8748 %}
8749 
8750 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8751   match(Set xcc (CmpL op1 con));
8752   effect( DEF xcc, USE op1, USE con );
8753 
8754   size(4);
8755   format %{ "CMP    $op1,$con\t\t! long" %}
8756   opcode(Assembler::subcc_op3, Assembler::arith_op);
8757   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8758   ins_pipe(ialu_cconly_reg_reg);
8759 %}
8760 
8761 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8762   match(Set xcc (CmpL (AndL op1 op2) zero));
8763   effect( DEF xcc, USE op1, USE op2 );
8764 
8765   size(4);
8766   format %{ "BTST   $op1,$op2\t\t! long" %}
8767   opcode(Assembler::andcc_op3, Assembler::arith_op);
8768   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8769   ins_pipe(ialu_cconly_reg_reg);
8770 %}
8771 
8772 // useful for checking the alignment of a pointer:
8773 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8774   match(Set xcc (CmpL (AndL op1 con) zero));
8775   effect( DEF xcc, USE op1, USE con );
8776 
8777   size(4);
8778   format %{ "BTST   $op1,$con\t\t! long" %}
8779   opcode(Assembler::andcc_op3, Assembler::arith_op);
8780   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8781   ins_pipe(ialu_cconly_reg_reg);
8782 %}
8783 
8784 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8785   match(Set icc (CmpU op1 op2));
8786 
8787   size(4);
8788   format %{ "CMP    $op1,$op2\t! unsigned" %}
8789   opcode(Assembler::subcc_op3, Assembler::arith_op);
8790   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8791   ins_pipe(ialu_cconly_reg_imm);
8792 %}
8793 
8794 // Compare Pointers
8795 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8796   match(Set pcc (CmpP op1 op2));
8797 
8798   size(4);
8799   format %{ "CMP    $op1,$op2\t! ptr" %}
8800   opcode(Assembler::subcc_op3, Assembler::arith_op);
8801   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8802   ins_pipe(ialu_cconly_reg_reg);
8803 %}
8804 
8805 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8806   match(Set pcc (CmpP op1 op2));
8807 
8808   size(4);
8809   format %{ "CMP    $op1,$op2\t! ptr" %}
8810   opcode(Assembler::subcc_op3, Assembler::arith_op);
8811   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8812   ins_pipe(ialu_cconly_reg_imm);
8813 %}
8814 
8815 // Compare Narrow oops
8816 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8817   match(Set icc (CmpN op1 op2));
8818 
8819   size(4);
8820   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8821   opcode(Assembler::subcc_op3, Assembler::arith_op);
8822   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8823   ins_pipe(ialu_cconly_reg_reg);
8824 %}
8825 
8826 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8827   match(Set icc (CmpN op1 op2));
8828 
8829   size(4);
8830   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8831   opcode(Assembler::subcc_op3, Assembler::arith_op);
8832   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8833   ins_pipe(ialu_cconly_reg_imm);
8834 %}
8835 
8836 //----------Max and Min--------------------------------------------------------
8837 // Min Instructions
8838 // Conditional move for min
8839 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8840   effect( USE_DEF op2, USE op1, USE icc );
8841 
8842   size(4);
8843   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8844   opcode(Assembler::less);
8845   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8846   ins_pipe(ialu_reg_flags);
8847 %}
8848 
8849 // Min Register with Register.
8850 instruct minI_eReg(iRegI op1, iRegI op2) %{
8851   match(Set op2 (MinI op1 op2));
8852   ins_cost(DEFAULT_COST*2);
8853   expand %{
8854     flagsReg icc;
8855     compI_iReg(icc,op1,op2);
8856     cmovI_reg_lt(op2,op1,icc);
8857   %}
8858 %}
8859 
8860 // Max Instructions
8861 // Conditional move for max
8862 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8863   effect( USE_DEF op2, USE op1, USE icc );
8864   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8865   opcode(Assembler::greater);
8866   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8867   ins_pipe(ialu_reg_flags);
8868 %}
8869 
8870 // Max Register with Register
8871 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8872   match(Set op2 (MaxI op1 op2));
8873   ins_cost(DEFAULT_COST*2);
8874   expand %{
8875     flagsReg icc;
8876     compI_iReg(icc,op1,op2);
8877     cmovI_reg_gt(op2,op1,icc);
8878   %}
8879 %}
8880 
8881 
8882 //----------Float Compares----------------------------------------------------
8883 // Compare floating, generate condition code
8884 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8885   match(Set fcc (CmpF src1 src2));
8886 
8887   size(4);
8888   format %{ "FCMPs  $fcc,$src1,$src2" %}
8889   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8890   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8891   ins_pipe(faddF_fcc_reg_reg_zero);
8892 %}
8893 
8894 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8895   match(Set fcc (CmpD src1 src2));
8896 
8897   size(4);
8898   format %{ "FCMPd  $fcc,$src1,$src2" %}
8899   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8900   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8901   ins_pipe(faddD_fcc_reg_reg_zero);
8902 %}
8903 
8904 
8905 // Compare floating, generate -1,0,1
8906 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8907   match(Set dst (CmpF3 src1 src2));
8908   effect(KILL fcc0);
8909   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8910   format %{ "fcmpl  $dst,$src1,$src2" %}
8911   // Primary = float
8912   opcode( true );
8913   ins_encode( floating_cmp( dst, src1, src2 ) );
8914   ins_pipe( floating_cmp );
8915 %}
8916 
8917 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8918   match(Set dst (CmpD3 src1 src2));
8919   effect(KILL fcc0);
8920   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8921   format %{ "dcmpl  $dst,$src1,$src2" %}
8922   // Primary = double (not float)
8923   opcode( false );
8924   ins_encode( floating_cmp( dst, src1, src2 ) );
8925   ins_pipe( floating_cmp );
8926 %}
8927 
8928 //----------Branches---------------------------------------------------------
8929 // Jump
8930 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8931 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8932   match(Jump switch_val);
8933 
8934   ins_cost(350);
8935 
8936   format %{  "SETHI  [hi(table_base)],O7\n\t"
8937              "ADD    O7, lo(table_base), O7\n\t"
8938              "LD     [O7+$switch_val], O7\n\t"
8939              "JUMP   O7"
8940          %}
8941   ins_encode( jump_enc( switch_val, table) );
8942   ins_pc_relative(1);
8943   ins_pipe(ialu_reg_reg);
8944 %}
8945 
8946 // Direct Branch.  Use V8 version with longer range.
8947 instruct branch(label labl) %{
8948   match(Goto);
8949   effect(USE labl);
8950 
8951   size(8);
8952   ins_cost(BRANCH_COST);
8953   format %{ "BA     $labl" %}
8954   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
8955   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
8956   ins_encode( enc_ba( labl ) );
8957   ins_pc_relative(1);
8958   ins_pipe(br);
8959 %}
8960 
8961 // Conditional Direct Branch
8962 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8963   match(If cmp icc);
8964   effect(USE labl);
8965 
8966   size(8);
8967   ins_cost(BRANCH_COST);
8968   format %{ "BP$cmp   $icc,$labl" %}
8969   // Prim = bits 24-22, Secnd = bits 31-30
8970   ins_encode( enc_bp( labl, cmp, icc ) );
8971   ins_pc_relative(1);
8972   ins_pipe(br_cc);
8973 %}
8974 
8975 // Branch-on-register tests all 64 bits.  We assume that values
8976 // in 64-bit registers always remains zero or sign extended
8977 // unless our code munges the high bits.  Interrupts can chop
8978 // the high order bits to zero or sign at any time.
8979 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
8980   match(If cmp (CmpI op1 zero));
8981   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8982   effect(USE labl);
8983 
8984   size(8);
8985   ins_cost(BRANCH_COST);
8986   format %{ "BR$cmp   $op1,$labl" %}
8987   ins_encode( enc_bpr( labl, cmp, op1 ) );
8988   ins_pc_relative(1);
8989   ins_pipe(br_reg);
8990 %}
8991 
8992 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
8993   match(If cmp (CmpP op1 null));
8994   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
8995   effect(USE labl);
8996 
8997   size(8);
8998   ins_cost(BRANCH_COST);
8999   format %{ "BR$cmp   $op1,$labl" %}
9000   ins_encode( enc_bpr( labl, cmp, op1 ) );
9001   ins_pc_relative(1);
9002   ins_pipe(br_reg);
9003 %}
9004 
9005 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9006   match(If cmp (CmpL op1 zero));
9007   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9008   effect(USE labl);
9009 
9010   size(8);
9011   ins_cost(BRANCH_COST);
9012   format %{ "BR$cmp   $op1,$labl" %}
9013   ins_encode( enc_bpr( labl, cmp, op1 ) );
9014   ins_pc_relative(1);
9015   ins_pipe(br_reg);
9016 %}
9017 
9018 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9019   match(If cmp icc);
9020   effect(USE labl);
9021 
9022   format %{ "BP$cmp  $icc,$labl" %}
9023   // Prim = bits 24-22, Secnd = bits 31-30
9024   ins_encode( enc_bp( labl, cmp, icc ) );
9025   ins_pc_relative(1);
9026   ins_pipe(br_cc);
9027 %}
9028 
9029 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9030   match(If cmp pcc);
9031   effect(USE labl);
9032 
9033   size(8);
9034   ins_cost(BRANCH_COST);
9035   format %{ "BP$cmp  $pcc,$labl" %}
9036   // Prim = bits 24-22, Secnd = bits 31-30
9037   ins_encode( enc_bpx( labl, cmp, pcc ) );
9038   ins_pc_relative(1);
9039   ins_pipe(br_cc);
9040 %}
9041 
9042 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9043   match(If cmp fcc);
9044   effect(USE labl);
9045 
9046   size(8);
9047   ins_cost(BRANCH_COST);
9048   format %{ "FBP$cmp $fcc,$labl" %}
9049   // Prim = bits 24-22, Secnd = bits 31-30
9050   ins_encode( enc_fbp( labl, cmp, fcc ) );
9051   ins_pc_relative(1);
9052   ins_pipe(br_fcc);
9053 %}
9054 
9055 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9056   match(CountedLoopEnd cmp icc);
9057   effect(USE labl);
9058 
9059   size(8);
9060   ins_cost(BRANCH_COST);
9061   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9062   // Prim = bits 24-22, Secnd = bits 31-30
9063   ins_encode( enc_bp( labl, cmp, icc ) );
9064   ins_pc_relative(1);
9065   ins_pipe(br_cc);
9066 %}
9067 
9068 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9069   match(CountedLoopEnd cmp icc);
9070   effect(USE labl);
9071 
9072   size(8);
9073   ins_cost(BRANCH_COST);
9074   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9075   // Prim = bits 24-22, Secnd = bits 31-30
9076   ins_encode( enc_bp( labl, cmp, icc ) );
9077   ins_pc_relative(1);
9078   ins_pipe(br_cc);
9079 %}
9080 
9081 // ============================================================================
9082 // Long Compare
9083 //
9084 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9085 // is tricky.  The flavor of compare used depends on whether we are testing
9086 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9087 // The GE test is the negated LT test.  The LE test can be had by commuting
9088 // the operands (yielding a GE test) and then negating; negate again for the
9089 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9090 // NE test is negated from that.
9091 
9092 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9093 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9094 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9095 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9096 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9097 // foo match ends up with the wrong leaf.  One fix is to not match both
9098 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9099 // both forms beat the trinary form of long-compare and both are very useful
9100 // on Intel which has so few registers.
9101 
9102 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9103   match(If cmp xcc);
9104   effect(USE labl);
9105 
9106   size(8);
9107   ins_cost(BRANCH_COST);
9108   format %{ "BP$cmp   $xcc,$labl" %}
9109   // Prim = bits 24-22, Secnd = bits 31-30
9110   ins_encode( enc_bpl( labl, cmp, xcc ) );
9111   ins_pc_relative(1);
9112   ins_pipe(br_cc);
9113 %}
9114 
9115 // Manifest a CmpL3 result in an integer register.  Very painful.
9116 // This is the test to avoid.
9117 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9118   match(Set dst (CmpL3 src1 src2) );
9119   effect( KILL ccr );
9120   ins_cost(6*DEFAULT_COST);
9121   size(24);
9122   format %{ "CMP    $src1,$src2\t\t! long\n"
9123           "\tBLT,a,pn done\n"
9124           "\tMOV    -1,$dst\t! delay slot\n"
9125           "\tBGT,a,pn done\n"
9126           "\tMOV    1,$dst\t! delay slot\n"
9127           "\tCLR    $dst\n"
9128     "done:"     %}
9129   ins_encode( cmpl_flag(src1,src2,dst) );
9130   ins_pipe(cmpL_reg);
9131 %}
9132 
9133 // Conditional move
9134 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9135   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9136   ins_cost(150);
9137   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9138   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9139   ins_pipe(ialu_reg);
9140 %}
9141 
9142 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9143   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9144   ins_cost(140);
9145   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9146   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9147   ins_pipe(ialu_imm);
9148 %}
9149 
9150 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9151   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9152   ins_cost(150);
9153   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9154   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9155   ins_pipe(ialu_reg);
9156 %}
9157 
9158 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9159   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9160   ins_cost(140);
9161   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9162   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9163   ins_pipe(ialu_imm);
9164 %}
9165 
9166 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9167   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9168   ins_cost(150);
9169   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9170   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9171   ins_pipe(ialu_reg);
9172 %}
9173 
9174 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9175   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9176   ins_cost(150);
9177   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9178   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9179   ins_pipe(ialu_reg);
9180 %}
9181 
9182 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9183   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9184   ins_cost(140);
9185   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9186   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9187   ins_pipe(ialu_imm);
9188 %}
9189 
9190 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9191   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9192   ins_cost(150);
9193   opcode(0x101);
9194   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9195   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9196   ins_pipe(int_conditional_float_move);
9197 %}
9198 
9199 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9200   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9201   ins_cost(150);
9202   opcode(0x102);
9203   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9204   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9205   ins_pipe(int_conditional_float_move);
9206 %}
9207 
9208 // ============================================================================
9209 // Safepoint Instruction
9210 instruct safePoint_poll(iRegP poll) %{
9211   match(SafePoint poll);
9212   effect(USE poll);
9213 
9214   size(4);
9215 #ifdef _LP64
9216   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9217 #else
9218   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9219 #endif
9220   ins_encode %{
9221     __ relocate(relocInfo::poll_type);
9222     __ ld_ptr($poll$$Register, 0, G0);
9223   %}
9224   ins_pipe(loadPollP);
9225 %}
9226 
9227 // ============================================================================
9228 // Call Instructions
9229 // Call Java Static Instruction
9230 instruct CallStaticJavaDirect( method meth ) %{
9231   match(CallStaticJava);
9232   effect(USE meth);
9233 
9234   size(8);
9235   ins_cost(CALL_COST);
9236   format %{ "CALL,static  ; NOP ==> " %}
9237   ins_encode( Java_Static_Call( meth ), call_epilog );
9238   ins_pc_relative(1);
9239   ins_pipe(simple_call);
9240 %}
9241 
9242 // Call Java Dynamic Instruction
9243 instruct CallDynamicJavaDirect( method meth ) %{
9244   match(CallDynamicJava);
9245   effect(USE meth);
9246 
9247   ins_cost(CALL_COST);
9248   format %{ "SET    (empty),R_G5\n\t"
9249             "CALL,dynamic  ; NOP ==> " %}
9250   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9251   ins_pc_relative(1);
9252   ins_pipe(call);
9253 %}
9254 
9255 // Call Runtime Instruction
9256 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9257   match(CallRuntime);
9258   effect(USE meth, KILL l7);
9259   ins_cost(CALL_COST);
9260   format %{ "CALL,runtime" %}
9261   ins_encode( Java_To_Runtime( meth ),
9262               call_epilog, adjust_long_from_native_call );
9263   ins_pc_relative(1);
9264   ins_pipe(simple_call);
9265 %}
9266 
9267 // Call runtime without safepoint - same as CallRuntime
9268 instruct CallLeafDirect(method meth, l7RegP l7) %{
9269   match(CallLeaf);
9270   effect(USE meth, KILL l7);
9271   ins_cost(CALL_COST);
9272   format %{ "CALL,runtime leaf" %}
9273   ins_encode( Java_To_Runtime( meth ),
9274               call_epilog,
9275               adjust_long_from_native_call );
9276   ins_pc_relative(1);
9277   ins_pipe(simple_call);
9278 %}
9279 
9280 // Call runtime without safepoint - same as CallLeaf
9281 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9282   match(CallLeafNoFP);
9283   effect(USE meth, KILL l7);
9284   ins_cost(CALL_COST);
9285   format %{ "CALL,runtime leaf nofp" %}
9286   ins_encode( Java_To_Runtime( meth ),
9287               call_epilog,
9288               adjust_long_from_native_call );
9289   ins_pc_relative(1);
9290   ins_pipe(simple_call);
9291 %}
9292 
9293 // Tail Call; Jump from runtime stub to Java code.
9294 // Also known as an 'interprocedural jump'.
9295 // Target of jump will eventually return to caller.
9296 // TailJump below removes the return address.
9297 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9298   match(TailCall jump_target method_oop );
9299 
9300   ins_cost(CALL_COST);
9301   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9302   ins_encode(form_jmpl(jump_target));
9303   ins_pipe(tail_call);
9304 %}
9305 
9306 
9307 // Return Instruction
9308 instruct Ret() %{
9309   match(Return);
9310 
9311   // The epilogue node did the ret already.
9312   size(0);
9313   format %{ "! return" %}
9314   ins_encode();
9315   ins_pipe(empty);
9316 %}
9317 
9318 
9319 // Tail Jump; remove the return address; jump to target.
9320 // TailCall above leaves the return address around.
9321 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9322 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9323 // "restore" before this instruction (in Epilogue), we need to materialize it
9324 // in %i0.
9325 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9326   match( TailJump jump_target ex_oop );
9327   ins_cost(CALL_COST);
9328   format %{ "! discard R_O7\n\t"
9329             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9330   ins_encode(form_jmpl_set_exception_pc(jump_target));
9331   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9332   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9333   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9334   ins_pipe(tail_call);
9335 %}
9336 
9337 // Create exception oop: created by stack-crawling runtime code.
9338 // Created exception is now available to this handler, and is setup
9339 // just prior to jumping to this handler.  No code emitted.
9340 instruct CreateException( o0RegP ex_oop )
9341 %{
9342   match(Set ex_oop (CreateEx));
9343   ins_cost(0);
9344 
9345   size(0);
9346   // use the following format syntax
9347   format %{ "! exception oop is in R_O0; no code emitted" %}
9348   ins_encode();
9349   ins_pipe(empty);
9350 %}
9351 
9352 
9353 // Rethrow exception:
9354 // The exception oop will come in the first argument position.
9355 // Then JUMP (not call) to the rethrow stub code.
9356 instruct RethrowException()
9357 %{
9358   match(Rethrow);
9359   ins_cost(CALL_COST);
9360 
9361   // use the following format syntax
9362   format %{ "Jmp    rethrow_stub" %}
9363   ins_encode(enc_rethrow);
9364   ins_pipe(tail_call);
9365 %}
9366 
9367 
9368 // Die now
9369 instruct ShouldNotReachHere( )
9370 %{
9371   match(Halt);
9372   ins_cost(CALL_COST);
9373 
9374   size(4);
9375   // Use the following format syntax
9376   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9377   ins_encode( form2_illtrap() );
9378   ins_pipe(tail_call);
9379 %}
9380 
9381 // ============================================================================
9382 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9383 // array for an instance of the superklass.  Set a hidden internal cache on a
9384 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9385 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9386 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9387   match(Set index (PartialSubtypeCheck sub super));
9388   effect( KILL pcc, KILL o7 );
9389   ins_cost(DEFAULT_COST*10);
9390   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9391   ins_encode( enc_PartialSubtypeCheck() );
9392   ins_pipe(partial_subtype_check_pipe);
9393 %}
9394 
9395 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9396   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9397   effect( KILL idx, KILL o7 );
9398   ins_cost(DEFAULT_COST*10);
9399   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9400   ins_encode( enc_PartialSubtypeCheck() );
9401   ins_pipe(partial_subtype_check_pipe);
9402 %}
9403 
9404 
9405 // ============================================================================
9406 // inlined locking and unlocking
9407 
9408 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9409   match(Set pcc (FastLock object box));
9410 
9411   effect(KILL scratch, TEMP scratch2);
9412   ins_cost(100);
9413 
9414   size(4*112);       // conservative overestimation ...
9415   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9416   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9417   ins_pipe(long_memory_op);
9418 %}
9419 
9420 
9421 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
9422   match(Set pcc (FastUnlock object box));
9423   effect(KILL scratch, TEMP scratch2);
9424   ins_cost(100);
9425 
9426   size(4*120);       // conservative overestimation ...
9427   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
9428   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9429   ins_pipe(long_memory_op);
9430 %}
9431 
9432 // Count and Base registers are fixed because the allocator cannot
9433 // kill unknown registers.  The encodings are generic.
9434 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9435   match(Set dummy (ClearArray cnt base));
9436   effect(TEMP temp, KILL ccr);
9437   ins_cost(300);
9438   format %{ "MOV    $cnt,$temp\n"
9439     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9440     "        BRge   loop\t\t! Clearing loop\n"
9441     "        STX    G0,[$base+$temp]\t! delay slot" %}
9442   ins_encode( enc_Clear_Array(cnt, base, temp) );
9443   ins_pipe(long_memory_op);
9444 %}
9445 
9446 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9447                         o7RegI tmp, flagsReg ccr) %{
9448   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9449   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9450   ins_cost(300);
9451   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9452   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
9453   ins_pipe(long_memory_op);
9454 %}
9455 
9456 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9457                        o7RegI tmp, flagsReg ccr) %{
9458   match(Set result (StrEquals (Binary str1 str2) cnt));
9459   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9460   ins_cost(300);
9461   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9462   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
9463   ins_pipe(long_memory_op);
9464 %}
9465 
9466 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9467                       o7RegI tmp2, flagsReg ccr) %{
9468   match(Set result (AryEq ary1 ary2));
9469   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9470   ins_cost(300);
9471   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9472   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
9473   ins_pipe(long_memory_op);
9474 %}
9475 
9476 
9477 //---------- Zeros Count Instructions ------------------------------------------
9478 
9479 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
9480   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9481   match(Set dst (CountLeadingZerosI src));
9482   effect(TEMP dst, TEMP tmp, KILL cr);
9483 
9484   // x |= (x >> 1);
9485   // x |= (x >> 2);
9486   // x |= (x >> 4);
9487   // x |= (x >> 8);
9488   // x |= (x >> 16);
9489   // return (WORDBITS - popc(x));
9490   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9491             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9492             "OR      $dst,$tmp,$dst\n\t"
9493             "SRL     $dst,2,$tmp\n\t"
9494             "OR      $dst,$tmp,$dst\n\t"
9495             "SRL     $dst,4,$tmp\n\t"
9496             "OR      $dst,$tmp,$dst\n\t"
9497             "SRL     $dst,8,$tmp\n\t"
9498             "OR      $dst,$tmp,$dst\n\t"
9499             "SRL     $dst,16,$tmp\n\t"
9500             "OR      $dst,$tmp,$dst\n\t"
9501             "POPC    $dst,$dst\n\t"
9502             "MOV     32,$tmp\n\t"
9503             "SUB     $tmp,$dst,$dst" %}
9504   ins_encode %{
9505     Register Rdst = $dst$$Register;
9506     Register Rsrc = $src$$Register;
9507     Register Rtmp = $tmp$$Register;
9508     __ srl(Rsrc, 1, Rtmp);
9509     __ srl(Rsrc, 0, Rdst);
9510     __ or3(Rdst, Rtmp, Rdst);
9511     __ srl(Rdst, 2, Rtmp);
9512     __ or3(Rdst, Rtmp, Rdst);
9513     __ srl(Rdst, 4, Rtmp);
9514     __ or3(Rdst, Rtmp, Rdst);
9515     __ srl(Rdst, 8, Rtmp);
9516     __ or3(Rdst, Rtmp, Rdst);
9517     __ srl(Rdst, 16, Rtmp);
9518     __ or3(Rdst, Rtmp, Rdst);
9519     __ popc(Rdst, Rdst);
9520     __ mov(BitsPerInt, Rtmp);
9521     __ sub(Rtmp, Rdst, Rdst);
9522   %}
9523   ins_pipe(ialu_reg);
9524 %}
9525 
9526 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
9527   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9528   match(Set dst (CountLeadingZerosL src));
9529   effect(TEMP dst, TEMP tmp, KILL cr);
9530 
9531   // x |= (x >> 1);
9532   // x |= (x >> 2);
9533   // x |= (x >> 4);
9534   // x |= (x >> 8);
9535   // x |= (x >> 16);
9536   // x |= (x >> 32);
9537   // return (WORDBITS - popc(x));
9538   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9539             "OR      $src,$tmp,$dst\n\t"
9540             "SRLX    $dst,2,$tmp\n\t"
9541             "OR      $dst,$tmp,$dst\n\t"
9542             "SRLX    $dst,4,$tmp\n\t"
9543             "OR      $dst,$tmp,$dst\n\t"
9544             "SRLX    $dst,8,$tmp\n\t"
9545             "OR      $dst,$tmp,$dst\n\t"
9546             "SRLX    $dst,16,$tmp\n\t"
9547             "OR      $dst,$tmp,$dst\n\t"
9548             "SRLX    $dst,32,$tmp\n\t"
9549             "OR      $dst,$tmp,$dst\n\t"
9550             "POPC    $dst,$dst\n\t"
9551             "MOV     64,$tmp\n\t"
9552             "SUB     $tmp,$dst,$dst" %}
9553   ins_encode %{
9554     Register Rdst = $dst$$Register;
9555     Register Rsrc = $src$$Register;
9556     Register Rtmp = $tmp$$Register;
9557     __ srlx(Rsrc, 1, Rtmp);
9558     __ or3(Rsrc, Rtmp, Rdst);
9559     __ srlx(Rdst, 2, Rtmp);
9560     __ or3(Rdst, Rtmp, Rdst);
9561     __ srlx(Rdst, 4, Rtmp);
9562     __ or3(Rdst, Rtmp, Rdst);
9563     __ srlx(Rdst, 8, Rtmp);
9564     __ or3(Rdst, Rtmp, Rdst);
9565     __ srlx(Rdst, 16, Rtmp);
9566     __ or3(Rdst, Rtmp, Rdst);
9567     __ srlx(Rdst, 32, Rtmp);
9568     __ or3(Rdst, Rtmp, Rdst);
9569     __ popc(Rdst, Rdst);
9570     __ mov(BitsPerLong, Rtmp);
9571     __ sub(Rtmp, Rdst, Rdst);
9572   %}
9573   ins_pipe(ialu_reg);
9574 %}
9575 
9576 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
9577   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9578   match(Set dst (CountTrailingZerosI src));
9579   effect(TEMP dst, KILL cr);
9580 
9581   // return popc(~x & (x - 1));
9582   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
9583             "ANDN    $dst,$src,$dst\n\t"
9584             "SRL     $dst,R_G0,$dst\n\t"
9585             "POPC    $dst,$dst" %}
9586   ins_encode %{
9587     Register Rdst = $dst$$Register;
9588     Register Rsrc = $src$$Register;
9589     __ sub(Rsrc, 1, Rdst);
9590     __ andn(Rdst, Rsrc, Rdst);
9591     __ srl(Rdst, G0, Rdst);
9592     __ popc(Rdst, Rdst);
9593   %}
9594   ins_pipe(ialu_reg);
9595 %}
9596 
9597 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
9598   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9599   match(Set dst (CountTrailingZerosL src));
9600   effect(TEMP dst, KILL cr);
9601 
9602   // return popc(~x & (x - 1));
9603   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
9604             "ANDN    $dst,$src,$dst\n\t"
9605             "POPC    $dst,$dst" %}
9606   ins_encode %{
9607     Register Rdst = $dst$$Register;
9608     Register Rsrc = $src$$Register;
9609     __ sub(Rsrc, 1, Rdst);
9610     __ andn(Rdst, Rsrc, Rdst);
9611     __ popc(Rdst, Rdst);
9612   %}
9613   ins_pipe(ialu_reg);
9614 %}
9615 
9616 
9617 //---------- Population Count Instructions -------------------------------------
9618 
9619 instruct popCountI(iRegI dst, iRegI src) %{
9620   predicate(UsePopCountInstruction);
9621   match(Set dst (PopCountI src));
9622 
9623   format %{ "POPC   $src, $dst" %}
9624   ins_encode %{
9625     __ popc($src$$Register, $dst$$Register);
9626   %}
9627   ins_pipe(ialu_reg);
9628 %}
9629 
9630 // Note: Long.bitCount(long) returns an int.
9631 instruct popCountL(iRegI dst, iRegL src) %{
9632   predicate(UsePopCountInstruction);
9633   match(Set dst (PopCountL src));
9634 
9635   format %{ "POPC   $src, $dst" %}
9636   ins_encode %{
9637     __ popc($src$$Register, $dst$$Register);
9638   %}
9639   ins_pipe(ialu_reg);
9640 %}
9641 
9642 
9643 // ============================================================================
9644 //------------Bytes reverse--------------------------------------------------
9645 
9646 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
9647   match(Set dst (ReverseBytesI src));
9648   effect(DEF dst, USE src);
9649 
9650   // Op cost is artificially doubled to make sure that load or store
9651   // instructions are preferred over this one which requires a spill
9652   // onto a stack slot.
9653   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9654   size(8);
9655   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9656   opcode(Assembler::lduwa_op3);
9657   ins_encode( form3_mem_reg_little(src, dst) );
9658   ins_pipe( iload_mem );
9659 %}
9660 
9661 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
9662   match(Set dst (ReverseBytesL src));
9663   effect(DEF dst, USE src);
9664 
9665   // Op cost is artificially doubled to make sure that load or store
9666   // instructions are preferred over this one which requires a spill
9667   // onto a stack slot.
9668   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
9669   size(8);
9670   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9671 
9672   opcode(Assembler::ldxa_op3);
9673   ins_encode( form3_mem_reg_little(src, dst) );
9674   ins_pipe( iload_mem );
9675 %}
9676 
9677 // Load Integer reversed byte order
9678 instruct loadI_reversed(iRegI dst, memory src) %{
9679   match(Set dst (ReverseBytesI (LoadI src)));
9680 
9681   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9682   size(8);
9683   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
9684 
9685   opcode(Assembler::lduwa_op3);
9686   ins_encode( form3_mem_reg_little( src, dst) );
9687   ins_pipe(iload_mem);
9688 %}
9689 
9690 // Load Long - aligned and reversed
9691 instruct loadL_reversed(iRegL dst, memory src) %{
9692   match(Set dst (ReverseBytesL (LoadL src)));
9693 
9694   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
9695   size(8);
9696   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
9697 
9698   opcode(Assembler::ldxa_op3);
9699   ins_encode( form3_mem_reg_little( src, dst ) );
9700   ins_pipe(iload_mem);
9701 %}
9702 
9703 // Store Integer reversed byte order
9704 instruct storeI_reversed(memory dst, iRegI src) %{
9705   match(Set dst (StoreI dst (ReverseBytesI src)));
9706 
9707   ins_cost(MEMORY_REF_COST);
9708   size(8);
9709   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
9710 
9711   opcode(Assembler::stwa_op3);
9712   ins_encode( form3_mem_reg_little( dst, src) );
9713   ins_pipe(istore_mem_reg);
9714 %}
9715 
9716 // Store Long reversed byte order
9717 instruct storeL_reversed(memory dst, iRegL src) %{
9718   match(Set dst (StoreL dst (ReverseBytesL src)));
9719 
9720   ins_cost(MEMORY_REF_COST);
9721   size(8);
9722   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
9723 
9724   opcode(Assembler::stxa_op3);
9725   ins_encode( form3_mem_reg_little( dst, src) );
9726   ins_pipe(istore_mem_reg);
9727 %}
9728 
9729 //----------PEEPHOLE RULES-----------------------------------------------------
9730 // These must follow all instruction definitions as they use the names
9731 // defined in the instructions definitions.
9732 //
9733 // peepmatch ( root_instr_name [preceding_instruction]* );
9734 //
9735 // peepconstraint %{
9736 // (instruction_number.operand_name relational_op instruction_number.operand_name
9737 //  [, ...] );
9738 // // instruction numbers are zero-based using left to right order in peepmatch
9739 //
9740 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
9741 // // provide an instruction_number.operand_name for each operand that appears
9742 // // in the replacement instruction's match rule
9743 //
9744 // ---------VM FLAGS---------------------------------------------------------
9745 //
9746 // All peephole optimizations can be turned off using -XX:-OptoPeephole
9747 //
9748 // Each peephole rule is given an identifying number starting with zero and
9749 // increasing by one in the order seen by the parser.  An individual peephole
9750 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
9751 // on the command-line.
9752 //
9753 // ---------CURRENT LIMITATIONS----------------------------------------------
9754 //
9755 // Only match adjacent instructions in same basic block
9756 // Only equality constraints
9757 // Only constraints between operands, not (0.dest_reg == EAX_enc)
9758 // Only one replacement instruction
9759 //
9760 // ---------EXAMPLE----------------------------------------------------------
9761 //
9762 // // pertinent parts of existing instructions in architecture description
9763 // instruct movI(eRegI dst, eRegI src) %{
9764 //   match(Set dst (CopyI src));
9765 // %}
9766 //
9767 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
9768 //   match(Set dst (AddI dst src));
9769 //   effect(KILL cr);
9770 // %}
9771 //
9772 // // Change (inc mov) to lea
9773 // peephole %{
9774 //   // increment preceeded by register-register move
9775 //   peepmatch ( incI_eReg movI );
9776 //   // require that the destination register of the increment
9777 //   // match the destination register of the move
9778 //   peepconstraint ( 0.dst == 1.dst );
9779 //   // construct a replacement instruction that sets
9780 //   // the destination to ( move's source register + one )
9781 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
9782 // %}
9783 //
9784 
9785 // // Change load of spilled value to only a spill
9786 // instruct storeI(memory mem, eRegI src) %{
9787 //   match(Set mem (StoreI mem src));
9788 // %}
9789 //
9790 // instruct loadI(eRegI dst, memory mem) %{
9791 //   match(Set dst (LoadI mem));
9792 // %}
9793 //
9794 // peephole %{
9795 //   peepmatch ( loadI storeI );
9796 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
9797 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
9798 // %}
9799 
9800 //----------SMARTSPILL RULES---------------------------------------------------
9801 // These must follow all instruction definitions as they use the names
9802 // defined in the instructions definitions.
9803 //
9804 // SPARC will probably not have any of these rules due to RISC instruction set.
9805 
9806 //----------PIPELINE-----------------------------------------------------------
9807 // Rules which define the behavior of the target architectures pipeline.