1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_phaseX.cpp.incl"
  27 
  28 //=============================================================================
  29 #define NODE_HASH_MINIMUM_SIZE    255
  30 //------------------------------NodeHash---------------------------------------
  31 NodeHash::NodeHash(uint est_max_size) :
  32   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  33   _a(Thread::current()->resource_area()),
  34   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
  35   _inserts(0), _insert_limit( insert_limit() ),
  36   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  37   _total_insert_probes(0), _total_inserts(0),
  38   _insert_probes(0), _grows(0) {
  39   // _sentinel must be in the current node space
  40   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  41   memset(_table,0,sizeof(Node*)*_max);
  42 }
  43 
  44 //------------------------------NodeHash---------------------------------------
  45 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
  46   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
  47   _a(arena),
  48   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
  49   _inserts(0), _insert_limit( insert_limit() ),
  50   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
  51   _delete_probes(0), _delete_hits(0), _delete_misses(0),
  52   _total_insert_probes(0), _total_inserts(0),
  53   _insert_probes(0), _grows(0) {
  54   // _sentinel must be in the current node space
  55   _sentinel = new (Compile::current(), 1) ProjNode(NULL, TypeFunc::Control);
  56   memset(_table,0,sizeof(Node*)*_max);
  57 }
  58 
  59 //------------------------------NodeHash---------------------------------------
  60 NodeHash::NodeHash(NodeHash *nh) {
  61   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
  62   // just copy in all the fields
  63   *this = *nh;
  64   // nh->_sentinel must be in the current node space
  65 }
  66 
  67 //------------------------------hash_find--------------------------------------
  68 // Find in hash table
  69 Node *NodeHash::hash_find( const Node *n ) {
  70   // ((Node*)n)->set_hash( n->hash() );
  71   uint hash = n->hash();
  72   if (hash == Node::NO_HASH) {
  73     debug_only( _lookup_misses++ );
  74     return NULL;
  75   }
  76   uint key = hash & (_max-1);
  77   uint stride = key | 0x01;
  78   debug_only( _look_probes++ );
  79   Node *k = _table[key];        // Get hashed value
  80   if( !k ) {                    // ?Miss?
  81     debug_only( _lookup_misses++ );
  82     return NULL;                // Miss!
  83   }
  84 
  85   int op = n->Opcode();
  86   uint req = n->req();
  87   while( 1 ) {                  // While probing hash table
  88     if( k->req() == req &&      // Same count of inputs
  89         k->Opcode() == op ) {   // Same Opcode
  90       for( uint i=0; i<req; i++ )
  91         if( n->in(i)!=k->in(i)) // Different inputs?
  92           goto collision;       // "goto" is a speed hack...
  93       if( n->cmp(*k) ) {        // Check for any special bits
  94         debug_only( _lookup_hits++ );
  95         return k;               // Hit!
  96       }
  97     }
  98   collision:
  99     debug_only( _look_probes++ );
 100     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
 101     k = _table[key];            // Get hashed value
 102     if( !k ) {                  // ?Miss?
 103       debug_only( _lookup_misses++ );
 104       return NULL;              // Miss!
 105     }
 106   }
 107   ShouldNotReachHere();
 108   return NULL;
 109 }
 110 
 111 //------------------------------hash_find_insert-------------------------------
 112 // Find in hash table, insert if not already present
 113 // Used to preserve unique entries in hash table
 114 Node *NodeHash::hash_find_insert( Node *n ) {
 115   // n->set_hash( );
 116   uint hash = n->hash();
 117   if (hash == Node::NO_HASH) {
 118     debug_only( _lookup_misses++ );
 119     return NULL;
 120   }
 121   uint key = hash & (_max-1);
 122   uint stride = key | 0x01;     // stride must be relatively prime to table siz
 123   uint first_sentinel = 0;      // replace a sentinel if seen.
 124   debug_only( _look_probes++ );
 125   Node *k = _table[key];        // Get hashed value
 126   if( !k ) {                    // ?Miss?
 127     debug_only( _lookup_misses++ );
 128     _table[key] = n;            // Insert into table!
 129     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 130     check_grow();               // Grow table if insert hit limit
 131     return NULL;                // Miss!
 132   }
 133   else if( k == _sentinel ) {
 134     first_sentinel = key;      // Can insert here
 135   }
 136 
 137   int op = n->Opcode();
 138   uint req = n->req();
 139   while( 1 ) {                  // While probing hash table
 140     if( k->req() == req &&      // Same count of inputs
 141         k->Opcode() == op ) {   // Same Opcode
 142       for( uint i=0; i<req; i++ )
 143         if( n->in(i)!=k->in(i)) // Different inputs?
 144           goto collision;       // "goto" is a speed hack...
 145       if( n->cmp(*k) ) {        // Check for any special bits
 146         debug_only( _lookup_hits++ );
 147         return k;               // Hit!
 148       }
 149     }
 150   collision:
 151     debug_only( _look_probes++ );
 152     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 153     k = _table[key];            // Get hashed value
 154     if( !k ) {                  // ?Miss?
 155       debug_only( _lookup_misses++ );
 156       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
 157       _table[key] = n;          // Insert into table!
 158       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 159       check_grow();             // Grow table if insert hit limit
 160       return NULL;              // Miss!
 161     }
 162     else if( first_sentinel == 0 && k == _sentinel ) {
 163       first_sentinel = key;    // Can insert here
 164     }
 165 
 166   }
 167   ShouldNotReachHere();
 168   return NULL;
 169 }
 170 
 171 //------------------------------hash_insert------------------------------------
 172 // Insert into hash table
 173 void NodeHash::hash_insert( Node *n ) {
 174   // // "conflict" comments -- print nodes that conflict
 175   // bool conflict = false;
 176   // n->set_hash();
 177   uint hash = n->hash();
 178   if (hash == Node::NO_HASH) {
 179     return;
 180   }
 181   check_grow();
 182   uint key = hash & (_max-1);
 183   uint stride = key | 0x01;
 184 
 185   while( 1 ) {                  // While probing hash table
 186     debug_only( _insert_probes++ );
 187     Node *k = _table[key];      // Get hashed value
 188     if( !k || (k == _sentinel) ) break;       // Found a slot
 189     assert( k != n, "already inserted" );
 190     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
 191     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
 192   }
 193   _table[key] = n;              // Insert into table!
 194   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
 195   // if( conflict ) { n->dump(); }
 196 }
 197 
 198 //------------------------------hash_delete------------------------------------
 199 // Replace in hash table with sentinel
 200 bool NodeHash::hash_delete( const Node *n ) {
 201   Node *k;
 202   uint hash = n->hash();
 203   if (hash == Node::NO_HASH) {
 204     debug_only( _delete_misses++ );
 205     return false;
 206   }
 207   uint key = hash & (_max-1);
 208   uint stride = key | 0x01;
 209   debug_only( uint counter = 0; );
 210   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
 211     debug_only( counter++ );
 212     debug_only( _delete_probes++ );
 213     k = _table[key];            // Get hashed value
 214     if( !k ) {                  // Miss?
 215       debug_only( _delete_misses++ );
 216 #ifdef ASSERT
 217       if( VerifyOpto ) {
 218         for( uint i=0; i < _max; i++ )
 219           assert( _table[i] != n, "changed edges with rehashing" );
 220       }
 221 #endif
 222       return false;             // Miss! Not in chain
 223     }
 224     else if( n == k ) {
 225       debug_only( _delete_hits++ );
 226       _table[key] = _sentinel;  // Hit! Label as deleted entry
 227       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
 228       return true;
 229     }
 230     else {
 231       // collision: move through table with prime offset
 232       key = (key + stride/*7*/) & (_max-1);
 233       assert( counter <= _insert_limit, "Cycle in hash-table");
 234     }
 235   }
 236   ShouldNotReachHere();
 237   return false;
 238 }
 239 
 240 //------------------------------round_up---------------------------------------
 241 // Round up to nearest power of 2
 242 uint NodeHash::round_up( uint x ) {
 243   x += (x>>2);                  // Add 25% slop
 244   if( x <16 ) return 16;        // Small stuff
 245   uint i=16;
 246   while( i < x ) i <<= 1;       // Double to fit
 247   return i;                     // Return hash table size
 248 }
 249 
 250 //------------------------------grow-------------------------------------------
 251 // Grow _table to next power of 2 and insert old entries
 252 void  NodeHash::grow() {
 253   // Record old state
 254   uint   old_max   = _max;
 255   Node **old_table = _table;
 256   // Construct new table with twice the space
 257   _grows++;
 258   _total_inserts       += _inserts;
 259   _total_insert_probes += _insert_probes;
 260   _inserts         = 0;
 261   _insert_probes   = 0;
 262   _max     = _max << 1;
 263   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
 264   memset(_table,0,sizeof(Node*)*_max);
 265   _insert_limit = insert_limit();
 266   // Insert old entries into the new table
 267   for( uint i = 0; i < old_max; i++ ) {
 268     Node *m = *old_table++;
 269     if( !m || m == _sentinel ) continue;
 270     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
 271     hash_insert(m);
 272   }
 273 }
 274 
 275 //------------------------------clear------------------------------------------
 276 // Clear all entries in _table to NULL but keep storage
 277 void  NodeHash::clear() {
 278 #ifdef ASSERT
 279   // Unlock all nodes upon removal from table.
 280   for (uint i = 0; i < _max; i++) {
 281     Node* n = _table[i];
 282     if (!n || n == _sentinel)  continue;
 283     n->exit_hash_lock();
 284   }
 285 #endif
 286 
 287   memset( _table, 0, _max * sizeof(Node*) );
 288 }
 289 
 290 //-----------------------remove_useless_nodes----------------------------------
 291 // Remove useless nodes from value table,
 292 // implementation does not depend on hash function
 293 void NodeHash::remove_useless_nodes(VectorSet &useful) {
 294 
 295   // Dead nodes in the hash table inherited from GVN should not replace
 296   // existing nodes, remove dead nodes.
 297   uint max = size();
 298   Node *sentinel_node = sentinel();
 299   for( uint i = 0; i < max; ++i ) {
 300     Node *n = at(i);
 301     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
 302       debug_only(n->exit_hash_lock()); // Unlock the node when removed
 303       _table[i] = sentinel_node;       // Replace with placeholder
 304     }
 305   }
 306 }
 307 
 308 #ifndef PRODUCT
 309 //------------------------------dump-------------------------------------------
 310 // Dump statistics for the hash table
 311 void NodeHash::dump() {
 312   _total_inserts       += _inserts;
 313   _total_insert_probes += _insert_probes;
 314   if( PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0) ) { // PrintOptoGVN
 315     if( PrintCompilation2 ) {
 316       for( uint i=0; i<_max; i++ )
 317       if( _table[i] )
 318         tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
 319     }
 320     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
 321     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
 322     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
 323     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
 324     // sentinels increase lookup cost, but not insert cost
 325     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
 326     assert( _inserts+(_inserts>>3) < _max, "table too full" );
 327     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
 328   }
 329 }
 330 
 331 Node *NodeHash::find_index(uint idx) { // For debugging
 332   // Find an entry by its index value
 333   for( uint i = 0; i < _max; i++ ) {
 334     Node *m = _table[i];
 335     if( !m || m == _sentinel ) continue;
 336     if( m->_idx == (uint)idx ) return m;
 337   }
 338   return NULL;
 339 }
 340 #endif
 341 
 342 #ifdef ASSERT
 343 NodeHash::~NodeHash() {
 344   // Unlock all nodes upon destruction of table.
 345   if (_table != (Node**)badAddress)  clear();
 346 }
 347 
 348 void NodeHash::operator=(const NodeHash& nh) {
 349   // Unlock all nodes upon replacement of table.
 350   if (&nh == this)  return;
 351   if (_table != (Node**)badAddress)  clear();
 352   memcpy(this, &nh, sizeof(*this));
 353   // Do not increment hash_lock counts again.
 354   // Instead, be sure we never again use the source table.
 355   ((NodeHash*)&nh)->_table = (Node**)badAddress;
 356 }
 357 
 358 
 359 #endif
 360 
 361 
 362 //=============================================================================
 363 //------------------------------PhaseRemoveUseless-----------------------------
 364 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
 365 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
 366   _useful(Thread::current()->resource_area()) {
 367 
 368   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
 369   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
 370   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
 371 
 372   // Identify nodes that are reachable from below, useful.
 373   C->identify_useful_nodes(_useful);
 374 
 375   // Remove all useless nodes from PhaseValues' recorded types
 376   // Must be done before disconnecting nodes to preserve hash-table-invariant
 377   gvn->remove_useless_nodes(_useful.member_set());
 378 
 379   // Remove all useless nodes from future worklist
 380   worklist->remove_useless_nodes(_useful.member_set());
 381 
 382   // Disconnect 'useless' nodes that are adjacent to useful nodes
 383   C->remove_useless_nodes(_useful);
 384 
 385   // Remove edges from "root" to each SafePoint at a backward branch.
 386   // They were inserted during parsing (see add_safepoint()) to make infinite
 387   // loops without calls or exceptions visible to root, i.e., useful.
 388   Node *root = C->root();
 389   if( root != NULL ) {
 390     for( uint i = root->req(); i < root->len(); ++i ) {
 391       Node *n = root->in(i);
 392       if( n != NULL && n->is_SafePoint() ) {
 393         root->rm_prec(i);
 394         --i;
 395       }
 396     }
 397   }
 398 }
 399 
 400 
 401 //=============================================================================
 402 //------------------------------PhaseTransform---------------------------------
 403 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
 404   _arena(Thread::current()->resource_area()),
 405   _nodes(_arena),
 406   _types(_arena)
 407 {
 408   init_con_caches();
 409 #ifndef PRODUCT
 410   clear_progress();
 411   clear_transforms();
 412   set_allow_progress(true);
 413 #endif
 414   // Force allocation for currently existing nodes
 415   _types.map(C->unique(), NULL);
 416 }
 417 
 418 //------------------------------PhaseTransform---------------------------------
 419 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
 420   _arena(arena),
 421   _nodes(arena),
 422   _types(arena)
 423 {
 424   init_con_caches();
 425 #ifndef PRODUCT
 426   clear_progress();
 427   clear_transforms();
 428   set_allow_progress(true);
 429 #endif
 430   // Force allocation for currently existing nodes
 431   _types.map(C->unique(), NULL);
 432 }
 433 
 434 //------------------------------PhaseTransform---------------------------------
 435 // Initialize with previously generated type information
 436 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
 437   _arena(pt->_arena),
 438   _nodes(pt->_nodes),
 439   _types(pt->_types)
 440 {
 441   init_con_caches();
 442 #ifndef PRODUCT
 443   clear_progress();
 444   clear_transforms();
 445   set_allow_progress(true);
 446 #endif
 447 }
 448 
 449 void PhaseTransform::init_con_caches() {
 450   memset(_icons,0,sizeof(_icons));
 451   memset(_lcons,0,sizeof(_lcons));
 452   memset(_zcons,0,sizeof(_zcons));
 453 }
 454 
 455 
 456 //--------------------------------find_int_type--------------------------------
 457 const TypeInt* PhaseTransform::find_int_type(Node* n) {
 458   if (n == NULL)  return NULL;
 459   // Call type_or_null(n) to determine node's type since we might be in
 460   // parse phase and call n->Value() may return wrong type.
 461   // (For example, a phi node at the beginning of loop parsing is not ready.)
 462   const Type* t = type_or_null(n);
 463   if (t == NULL)  return NULL;
 464   return t->isa_int();
 465 }
 466 
 467 
 468 //-------------------------------find_long_type--------------------------------
 469 const TypeLong* PhaseTransform::find_long_type(Node* n) {
 470   if (n == NULL)  return NULL;
 471   // (See comment above on type_or_null.)
 472   const Type* t = type_or_null(n);
 473   if (t == NULL)  return NULL;
 474   return t->isa_long();
 475 }
 476 
 477 
 478 #ifndef PRODUCT
 479 void PhaseTransform::dump_old2new_map() const {
 480   _nodes.dump();
 481 }
 482 
 483 void PhaseTransform::dump_new( uint nidx ) const {
 484   for( uint i=0; i<_nodes.Size(); i++ )
 485     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
 486       _nodes[i]->dump();
 487       tty->cr();
 488       tty->print_cr("Old index= %d",i);
 489       return;
 490     }
 491   tty->print_cr("Node %d not found in the new indices", nidx);
 492 }
 493 
 494 //------------------------------dump_types-------------------------------------
 495 void PhaseTransform::dump_types( ) const {
 496   _types.dump();
 497 }
 498 
 499 //------------------------------dump_nodes_and_types---------------------------
 500 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
 501   VectorSet visited(Thread::current()->resource_area());
 502   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
 503 }
 504 
 505 //------------------------------dump_nodes_and_types_recur---------------------
 506 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
 507   if( !n ) return;
 508   if( depth == 0 ) return;
 509   if( visited.test_set(n->_idx) ) return;
 510   for( uint i=0; i<n->len(); i++ ) {
 511     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
 512     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
 513   }
 514   n->dump();
 515   if (type_or_null(n) != NULL) {
 516     tty->print("      "); type(n)->dump(); tty->cr();
 517   }
 518 }
 519 
 520 #endif
 521 
 522 
 523 //=============================================================================
 524 //------------------------------PhaseValues------------------------------------
 525 // Set minimum table size to "255"
 526 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
 527   NOT_PRODUCT( clear_new_values(); )
 528 }
 529 
 530 //------------------------------PhaseValues------------------------------------
 531 // Set minimum table size to "255"
 532 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
 533   _table(&ptv->_table) {
 534   NOT_PRODUCT( clear_new_values(); )
 535 }
 536 
 537 //------------------------------PhaseValues------------------------------------
 538 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
 539 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
 540   _table(ptv->arena(),ptv->_table.size()) {
 541   NOT_PRODUCT( clear_new_values(); )
 542 }
 543 
 544 //------------------------------~PhaseValues-----------------------------------
 545 #ifndef PRODUCT
 546 PhaseValues::~PhaseValues() {
 547   _table.dump();
 548 
 549   // Statistics for value progress and efficiency
 550   if( PrintCompilation && Verbose && WizardMode ) {
 551     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
 552       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
 553     if( made_transforms() != 0 ) {
 554       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
 555     } else {
 556       tty->cr();
 557     }
 558   }
 559 }
 560 #endif
 561 
 562 //------------------------------makecon----------------------------------------
 563 ConNode* PhaseTransform::makecon(const Type *t) {
 564   assert(t->singleton(), "must be a constant");
 565   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
 566   switch (t->base()) {  // fast paths
 567   case Type::Half:
 568   case Type::Top:  return (ConNode*) C->top();
 569   case Type::Int:  return intcon( t->is_int()->get_con() );
 570   case Type::Long: return longcon( t->is_long()->get_con() );
 571   }
 572   if (t->is_zero_type())
 573     return zerocon(t->basic_type());
 574   return uncached_makecon(t);
 575 }
 576 
 577 //--------------------------uncached_makecon-----------------------------------
 578 // Make an idealized constant - one of ConINode, ConPNode, etc.
 579 ConNode* PhaseValues::uncached_makecon(const Type *t) {
 580   assert(t->singleton(), "must be a constant");
 581   ConNode* x = ConNode::make(C, t);
 582   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
 583   if (k == NULL) {
 584     set_type(x, t);             // Missed, provide type mapping
 585     GrowableArray<Node_Notes*>* nna = C->node_note_array();
 586     if (nna != NULL) {
 587       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
 588       loc->clear(); // do not put debug info on constants
 589     }
 590   } else {
 591     x->destruct();              // Hit, destroy duplicate constant
 592     x = k;                      // use existing constant
 593   }
 594   return x;
 595 }
 596 
 597 //------------------------------intcon-----------------------------------------
 598 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
 599 ConINode* PhaseTransform::intcon(int i) {
 600   // Small integer?  Check cache! Check that cached node is not dead
 601   if (i >= _icon_min && i <= _icon_max) {
 602     ConINode* icon = _icons[i-_icon_min];
 603     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
 604       return icon;
 605   }
 606   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
 607   assert(icon->is_Con(), "");
 608   if (i >= _icon_min && i <= _icon_max)
 609     _icons[i-_icon_min] = icon;   // Cache small integers
 610   return icon;
 611 }
 612 
 613 //------------------------------longcon----------------------------------------
 614 // Fast long constant.
 615 ConLNode* PhaseTransform::longcon(jlong l) {
 616   // Small integer?  Check cache! Check that cached node is not dead
 617   if (l >= _lcon_min && l <= _lcon_max) {
 618     ConLNode* lcon = _lcons[l-_lcon_min];
 619     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
 620       return lcon;
 621   }
 622   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
 623   assert(lcon->is_Con(), "");
 624   if (l >= _lcon_min && l <= _lcon_max)
 625     _lcons[l-_lcon_min] = lcon;      // Cache small integers
 626   return lcon;
 627 }
 628 
 629 //------------------------------zerocon-----------------------------------------
 630 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
 631 ConNode* PhaseTransform::zerocon(BasicType bt) {
 632   assert((uint)bt <= _zcon_max, "domain check");
 633   ConNode* zcon = _zcons[bt];
 634   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
 635     return zcon;
 636   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
 637   _zcons[bt] = zcon;
 638   return zcon;
 639 }
 640 
 641 
 642 
 643 //=============================================================================
 644 //------------------------------transform--------------------------------------
 645 // Return a node which computes the same function as this node, but in a
 646 // faster or cheaper fashion.
 647 Node *PhaseGVN::transform( Node *n ) {
 648   return transform_no_reclaim(n);
 649 }
 650 
 651 //------------------------------transform--------------------------------------
 652 // Return a node which computes the same function as this node, but
 653 // in a faster or cheaper fashion.
 654 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
 655   NOT_PRODUCT( set_transforms(); )
 656 
 657   // Apply the Ideal call in a loop until it no longer applies
 658   Node *k = n;
 659   NOT_PRODUCT( uint loop_count = 0; )
 660   while( 1 ) {
 661     Node *i = k->Ideal(this, /*can_reshape=*/false);
 662     if( !i ) break;
 663     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
 664     k = i;
 665     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
 666   }
 667   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
 668 
 669 
 670   // If brand new node, make space in type array.
 671   ensure_type_or_null(k);
 672 
 673   // Since I just called 'Value' to compute the set of run-time values
 674   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
 675   // cache Value.  Later requests for the local phase->type of this Node can
 676   // use the cached Value instead of suffering with 'bottom_type'.
 677   const Type *t = k->Value(this); // Get runtime Value set
 678   assert(t != NULL, "value sanity");
 679   if (type_or_null(k) != t) {
 680 #ifndef PRODUCT
 681     // Do not count initial visit to node as a transformation
 682     if (type_or_null(k) == NULL) {
 683       inc_new_values();
 684       set_progress();
 685     }
 686 #endif
 687     set_type(k, t);
 688     // If k is a TypeNode, capture any more-precise type permanently into Node
 689     k->raise_bottom_type(t);
 690   }
 691 
 692   if( t->singleton() && !k->is_Con() ) {
 693     NOT_PRODUCT( set_progress(); )
 694     return makecon(t);          // Turn into a constant
 695   }
 696 
 697   // Now check for Identities
 698   Node *i = k->Identity(this);  // Look for a nearby replacement
 699   if( i != k ) {                // Found? Return replacement!
 700     NOT_PRODUCT( set_progress(); )
 701     return i;
 702   }
 703 
 704   // Global Value Numbering
 705   i = hash_find_insert(k);      // Insert if new
 706   if( i && (i != k) ) {
 707     // Return the pre-existing node
 708     NOT_PRODUCT( set_progress(); )
 709     return i;
 710   }
 711 
 712   // Return Idealized original
 713   return k;
 714 }
 715 
 716 #ifdef ASSERT
 717 //------------------------------dead_loop_check--------------------------------
 718 // Check for a simple dead loop when a data node references itself directly
 719 // or through an other data node excluding cons and phis.
 720 void PhaseGVN::dead_loop_check( Node *n ) {
 721   // Phi may reference itself in a loop
 722   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
 723     // Do 2 levels check and only data inputs.
 724     bool no_dead_loop = true;
 725     uint cnt = n->req();
 726     for (uint i = 1; i < cnt && no_dead_loop; i++) {
 727       Node *in = n->in(i);
 728       if (in == n) {
 729         no_dead_loop = false;
 730       } else if (in != NULL && !in->is_dead_loop_safe()) {
 731         uint icnt = in->req();
 732         for (uint j = 1; j < icnt && no_dead_loop; j++) {
 733           if (in->in(j) == n || in->in(j) == in)
 734             no_dead_loop = false;
 735         }
 736       }
 737     }
 738     if (!no_dead_loop) n->dump(3);
 739     assert(no_dead_loop, "dead loop detected");
 740   }
 741 }
 742 #endif
 743 
 744 //=============================================================================
 745 //------------------------------PhaseIterGVN-----------------------------------
 746 // Initialize hash table to fresh and clean for +VerifyOpto
 747 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
 748                                                                       _delay_transform(false) {
 749 }
 750 
 751 //------------------------------PhaseIterGVN-----------------------------------
 752 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
 753 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
 754                                                    _worklist( igvn->_worklist ),
 755                                                    _delay_transform(igvn->_delay_transform)
 756 {
 757 }
 758 
 759 //------------------------------PhaseIterGVN-----------------------------------
 760 // Initialize with previous PhaseGVN info from Parser
 761 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
 762                                               _worklist(*C->for_igvn()),
 763                                               _delay_transform(false)
 764 {
 765   uint max;
 766 
 767   // Dead nodes in the hash table inherited from GVN were not treated as
 768   // roots during def-use info creation; hence they represent an invisible
 769   // use.  Clear them out.
 770   max = _table.size();
 771   for( uint i = 0; i < max; ++i ) {
 772     Node *n = _table.at(i);
 773     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
 774       if( n->is_top() ) continue;
 775       assert( false, "Parse::remove_useless_nodes missed this node");
 776       hash_delete(n);
 777     }
 778   }
 779 
 780   // Any Phis or Regions on the worklist probably had uses that could not
 781   // make more progress because the uses were made while the Phis and Regions
 782   // were in half-built states.  Put all uses of Phis and Regions on worklist.
 783   max = _worklist.size();
 784   for( uint j = 0; j < max; j++ ) {
 785     Node *n = _worklist.at(j);
 786     uint uop = n->Opcode();
 787     if( uop == Op_Phi || uop == Op_Region ||
 788         n->is_Type() ||
 789         n->is_Mem() )
 790       add_users_to_worklist(n);
 791   }
 792 }
 793 
 794 
 795 #ifndef PRODUCT
 796 void PhaseIterGVN::verify_step(Node* n) {
 797   _verify_window[_verify_counter % _verify_window_size] = n;
 798   ++_verify_counter;
 799   ResourceMark rm;
 800   ResourceArea *area = Thread::current()->resource_area();
 801   VectorSet old_space(area), new_space(area);
 802   if (C->unique() < 1000 ||
 803       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
 804     ++_verify_full_passes;
 805     Node::verify_recur(C->root(), -1, old_space, new_space);
 806   }
 807   const int verify_depth = 4;
 808   for ( int i = 0; i < _verify_window_size; i++ ) {
 809     Node* n = _verify_window[i];
 810     if ( n == NULL )  continue;
 811     if( n->in(0) == NodeSentinel ) {  // xform_idom
 812       _verify_window[i] = n->in(1);
 813       --i; continue;
 814     }
 815     // Typical fanout is 1-2, so this call visits about 6 nodes.
 816     Node::verify_recur(n, verify_depth, old_space, new_space);
 817   }
 818 }
 819 #endif
 820 
 821 
 822 //------------------------------init_worklist----------------------------------
 823 // Initialize worklist for each node.
 824 void PhaseIterGVN::init_worklist( Node *n ) {
 825   if( _worklist.member(n) ) return;
 826   _worklist.push(n);
 827   uint cnt = n->req();
 828   for( uint i =0 ; i < cnt; i++ ) {
 829     Node *m = n->in(i);
 830     if( m ) init_worklist(m);
 831   }
 832 }
 833 
 834 //------------------------------optimize---------------------------------------
 835 void PhaseIterGVN::optimize() {
 836   debug_only(uint num_processed  = 0;);
 837 #ifndef PRODUCT
 838   {
 839     _verify_counter = 0;
 840     _verify_full_passes = 0;
 841     for ( int i = 0; i < _verify_window_size; i++ ) {
 842       _verify_window[i] = NULL;
 843     }
 844   }
 845 #endif
 846 
 847 #ifdef ASSERT
 848   Node* prev = NULL;
 849   uint rep_cnt = 0;
 850 #endif
 851   uint loop_count = 0;
 852 
 853   // Pull from worklist; transform node;
 854   // If node has changed: update edge info and put uses on worklist.
 855   while( _worklist.size() ) {
 856     Node *n  = _worklist.pop();
 857     if (++loop_count >= K * C->unique()) {
 858       debug_only(n->dump(4);)
 859       assert(false, "infinite loop in PhaseIterGVN::optimize");
 860       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
 861       return;
 862     }
 863 #ifdef ASSERT
 864     if (n == prev) {
 865       if (++rep_cnt > 3) {
 866         n->dump(4);
 867         assert(false, "loop in Ideal transformation");
 868       }
 869     } else {
 870       rep_cnt = 0;
 871     }
 872     prev = n;
 873 #endif
 874     if (TraceIterativeGVN && Verbose) {
 875       tty->print("  Pop ");
 876       NOT_PRODUCT( n->dump(); )
 877       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
 878     }
 879 
 880     if (n->outcnt() != 0) {
 881 
 882 #ifndef PRODUCT
 883       uint wlsize = _worklist.size();
 884       const Type* oldtype = type_or_null(n);
 885 #endif //PRODUCT
 886 
 887       Node *nn = transform_old(n);
 888 
 889 #ifndef PRODUCT
 890       if (TraceIterativeGVN) {
 891         const Type* newtype = type_or_null(n);
 892         if (nn != n) {
 893           // print old node
 894           tty->print("< ");
 895           if (oldtype != newtype && oldtype != NULL) {
 896             oldtype->dump();
 897           }
 898           do { tty->print("\t"); } while (tty->position() < 16);
 899           tty->print("<");
 900           n->dump();
 901         }
 902         if (oldtype != newtype || nn != n) {
 903           // print new node and/or new type
 904           if (oldtype == NULL) {
 905             tty->print("* ");
 906           } else if (nn != n) {
 907             tty->print("> ");
 908           } else {
 909             tty->print("= ");
 910           }
 911           if (newtype == NULL) {
 912             tty->print("null");
 913           } else {
 914             newtype->dump();
 915           }
 916           do { tty->print("\t"); } while (tty->position() < 16);
 917           nn->dump();
 918         }
 919         if (Verbose && wlsize < _worklist.size()) {
 920           tty->print("  Push {");
 921           while (wlsize != _worklist.size()) {
 922             Node* pushed = _worklist.at(wlsize++);
 923             tty->print(" %d", pushed->_idx);
 924           }
 925           tty->print_cr(" }");
 926         }
 927       }
 928       if( VerifyIterativeGVN && nn != n ) {
 929         verify_step((Node*) NULL);  // ignore n, it might be subsumed
 930       }
 931 #endif
 932     } else if (!n->is_top()) {
 933       remove_dead_node(n);
 934     }
 935   }
 936 
 937 #ifndef PRODUCT
 938   C->verify_graph_edges();
 939   if( VerifyOpto && allow_progress() ) {
 940     // Must turn off allow_progress to enable assert and break recursion
 941     C->root()->verify();
 942     { // Check if any progress was missed using IterGVN
 943       // Def-Use info enables transformations not attempted in wash-pass
 944       // e.g. Region/Phi cleanup, ...
 945       // Null-check elision -- may not have reached fixpoint
 946       //                       do not propagate to dominated nodes
 947       ResourceMark rm;
 948       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
 949       // Fill worklist completely
 950       igvn2.init_worklist(C->root());
 951 
 952       igvn2.set_allow_progress(false);
 953       igvn2.optimize();
 954       igvn2.set_allow_progress(true);
 955     }
 956   }
 957   if ( VerifyIterativeGVN && PrintOpto ) {
 958     if ( _verify_counter == _verify_full_passes )
 959       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
 960                     _verify_full_passes);
 961     else
 962       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
 963                   _verify_counter, _verify_full_passes);
 964   }
 965 #endif
 966 }
 967 
 968 
 969 //------------------register_new_node_with_optimizer---------------------------
 970 // Register a new node with the optimizer.  Update the types array, the def-use
 971 // info.  Put on worklist.
 972 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
 973   set_type_bottom(n);
 974   _worklist.push(n);
 975   if (orig != NULL)  C->copy_node_notes_to(n, orig);
 976   return n;
 977 }
 978 
 979 //------------------------------transform--------------------------------------
 980 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
 981 Node *PhaseIterGVN::transform( Node *n ) {
 982   if (_delay_transform) {
 983     // Register the node but don't optimize for now
 984     register_new_node_with_optimizer(n);
 985     return n;
 986   }
 987 
 988   // If brand new node, make space in type array, and give it a type.
 989   ensure_type_or_null(n);
 990   if (type_or_null(n) == NULL) {
 991     set_type_bottom(n);
 992   }
 993 
 994   return transform_old(n);
 995 }
 996 
 997 //------------------------------transform_old----------------------------------
 998 Node *PhaseIterGVN::transform_old( Node *n ) {
 999 #ifndef PRODUCT
1000   debug_only(uint loop_count = 0;);
1001   set_transforms();
1002 #endif
1003   // Remove 'n' from hash table in case it gets modified
1004   _table.hash_delete(n);
1005   if( VerifyIterativeGVN ) {
1006    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
1007   }
1008 
1009   // Apply the Ideal call in a loop until it no longer applies
1010   Node *k = n;
1011   DEBUG_ONLY(dead_loop_check(k);)
1012   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
1013   Node *i = k->Ideal(this, /*can_reshape=*/true);
1014   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1015 #ifndef PRODUCT
1016   if( VerifyIterativeGVN )
1017     verify_step(k);
1018   if( i && VerifyOpto ) {
1019     if( !allow_progress() ) {
1020       if (i->is_Add() && i->outcnt() == 1) {
1021         // Switched input to left side because this is the only use
1022       } else if( i->is_If() && (i->in(0) == NULL) ) {
1023         // This IF is dead because it is dominated by an equivalent IF When
1024         // dominating if changed, info is not propagated sparsely to 'this'
1025         // Propagating this info further will spuriously identify other
1026         // progress.
1027         return i;
1028       } else
1029         set_progress();
1030     } else
1031       set_progress();
1032   }
1033 #endif
1034 
1035   while( i ) {
1036 #ifndef PRODUCT
1037     debug_only( if( loop_count >= K ) i->dump(4); )
1038     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
1039     debug_only( loop_count++; )
1040 #endif
1041     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
1042     // Made a change; put users of original Node on worklist
1043     add_users_to_worklist( k );
1044     // Replacing root of transform tree?
1045     if( k != i ) {
1046       // Make users of old Node now use new.
1047       subsume_node( k, i );
1048       k = i;
1049     }
1050     DEBUG_ONLY(dead_loop_check(k);)
1051     // Try idealizing again
1052     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
1053     i = k->Ideal(this, /*can_reshape=*/true);
1054     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
1055 #ifndef PRODUCT
1056     if( VerifyIterativeGVN )
1057       verify_step(k);
1058     if( i && VerifyOpto ) set_progress();
1059 #endif
1060   }
1061 
1062   // If brand new node, make space in type array.
1063   ensure_type_or_null(k);
1064 
1065   // See what kind of values 'k' takes on at runtime
1066   const Type *t = k->Value(this);
1067   assert(t != NULL, "value sanity");
1068 
1069   // Since I just called 'Value' to compute the set of run-time values
1070   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
1071   // cache Value.  Later requests for the local phase->type of this Node can
1072   // use the cached Value instead of suffering with 'bottom_type'.
1073   if (t != type_or_null(k)) {
1074     NOT_PRODUCT( set_progress(); )
1075     NOT_PRODUCT( inc_new_values();)
1076     set_type(k, t);
1077     // If k is a TypeNode, capture any more-precise type permanently into Node
1078     k->raise_bottom_type(t);
1079     // Move users of node to worklist
1080     add_users_to_worklist( k );
1081   }
1082 
1083   // If 'k' computes a constant, replace it with a constant
1084   if( t->singleton() && !k->is_Con() ) {
1085     NOT_PRODUCT( set_progress(); )
1086     Node *con = makecon(t);     // Make a constant
1087     add_users_to_worklist( k );
1088     subsume_node( k, con );     // Everybody using k now uses con
1089     return con;
1090   }
1091 
1092   // Now check for Identities
1093   i = k->Identity(this);        // Look for a nearby replacement
1094   if( i != k ) {                // Found? Return replacement!
1095     NOT_PRODUCT( set_progress(); )
1096     add_users_to_worklist( k );
1097     subsume_node( k, i );       // Everybody using k now uses i
1098     return i;
1099   }
1100 
1101   // Global Value Numbering
1102   i = hash_find_insert(k);      // Check for pre-existing node
1103   if( i && (i != k) ) {
1104     // Return the pre-existing node if it isn't dead
1105     NOT_PRODUCT( set_progress(); )
1106     add_users_to_worklist( k );
1107     subsume_node( k, i );       // Everybody using k now uses i
1108     return i;
1109   }
1110 
1111   // Return Idealized original
1112   return k;
1113 }
1114 
1115 //---------------------------------saturate------------------------------------
1116 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
1117                                    const Type* limit_type) const {
1118   return new_type->narrow(old_type);
1119 }
1120 
1121 //------------------------------remove_globally_dead_node----------------------
1122 // Kill a globally dead Node.  All uses are also globally dead and are
1123 // aggressively trimmed.
1124 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
1125   assert(dead != C->root(), "killing root, eh?");
1126   if (dead->is_top())  return;
1127   NOT_PRODUCT( set_progress(); )
1128   // Remove from iterative worklist
1129   _worklist.remove(dead);
1130   if (!dead->is_Con()) { // Don't kill cons but uses
1131     // Remove from hash table
1132     _table.hash_delete( dead );
1133     // Smash all inputs to 'dead', isolating him completely
1134     for( uint i = 0; i < dead->req(); i++ ) {
1135       Node *in = dead->in(i);
1136       if( in ) {                 // Points to something?
1137         dead->set_req(i,NULL);  // Kill the edge
1138         if (in->outcnt() == 0 && in != C->top()) {// Made input go dead?
1139           remove_dead_node(in); // Recursively remove
1140         } else if (in->outcnt() == 1 &&
1141                    in->has_special_unique_user()) {
1142           _worklist.push(in->unique_out());
1143         } else if (in->outcnt() <= 2 && dead->is_Phi()) {
1144           if( in->Opcode() == Op_Region )
1145             _worklist.push(in);
1146           else if( in->is_Store() ) {
1147             DUIterator_Fast imax, i = in->fast_outs(imax);
1148             _worklist.push(in->fast_out(i));
1149             i++;
1150             if(in->outcnt() == 2) {
1151               _worklist.push(in->fast_out(i));
1152               i++;
1153             }
1154             assert(!(i < imax), "sanity");
1155           }
1156         }
1157       }
1158     }
1159 
1160     if (dead->is_macro()) {
1161       C->remove_macro_node(dead);
1162     }
1163   }
1164   // Aggressively kill globally dead uses
1165   // (Cannot use DUIterator_Last because of the indefinite number
1166   // of edge deletions per loop trip.)
1167   while (dead->outcnt() > 0) {
1168     remove_globally_dead_node(dead->raw_out(0));
1169   }
1170 }
1171 
1172 //------------------------------subsume_node-----------------------------------
1173 // Remove users from node 'old' and add them to node 'nn'.
1174 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
1175   assert( old != hash_find(old), "should already been removed" );
1176   assert( old != C->top(), "cannot subsume top node");
1177   // Copy debug or profile information to the new version:
1178   C->copy_node_notes_to(nn, old);
1179   // Move users of node 'old' to node 'nn'
1180   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
1181     Node* use = old->last_out(i);  // for each use...
1182     // use might need re-hashing (but it won't if it's a new node)
1183     bool is_in_table = _table.hash_delete( use );
1184     // Update use-def info as well
1185     // We remove all occurrences of old within use->in,
1186     // so as to avoid rehashing any node more than once.
1187     // The hash table probe swamps any outer loop overhead.
1188     uint num_edges = 0;
1189     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
1190       if (use->in(j) == old) {
1191         use->set_req(j, nn);
1192         ++num_edges;
1193       }
1194     }
1195     // Insert into GVN hash table if unique
1196     // If a duplicate, 'use' will be cleaned up when pulled off worklist
1197     if( is_in_table ) {
1198       hash_find_insert(use);
1199     }
1200     i -= num_edges;    // we deleted 1 or more copies of this edge
1201   }
1202 
1203   // Smash all inputs to 'old', isolating him completely
1204   Node *temp = new (C, 1) Node(1);
1205   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
1206   remove_dead_node( old );
1207   temp->del_req(0);         // Yank bogus edge
1208 #ifndef PRODUCT
1209   if( VerifyIterativeGVN ) {
1210     for ( int i = 0; i < _verify_window_size; i++ ) {
1211       if ( _verify_window[i] == old )
1212         _verify_window[i] = nn;
1213     }
1214   }
1215 #endif
1216   _worklist.remove(temp);   // this can be necessary
1217   temp->destruct();         // reuse the _idx of this little guy
1218 }
1219 
1220 //------------------------------add_users_to_worklist--------------------------
1221 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
1222   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1223     _worklist.push(n->fast_out(i));  // Push on worklist
1224   }
1225 }
1226 
1227 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
1228   add_users_to_worklist0(n);
1229 
1230   // Move users of node to worklist
1231   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1232     Node* use = n->fast_out(i); // Get use
1233 
1234     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
1235         use->is_Store() )       // Enable store/load same address
1236       add_users_to_worklist0(use);
1237 
1238     // If we changed the receiver type to a call, we need to revisit
1239     // the Catch following the call.  It's looking for a non-NULL
1240     // receiver to know when to enable the regular fall-through path
1241     // in addition to the NullPtrException path.
1242     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
1243       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
1244       if (p != NULL) {
1245         add_users_to_worklist0(p);
1246       }
1247     }
1248 
1249     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
1250       add_users_to_worklist(use); // Put Bool on worklist
1251       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
1252       // phi merging either 0 or 1 onto the worklist
1253       if (use->outcnt() > 0) {
1254         Node* bol = use->raw_out(0);
1255         if (bol->outcnt() > 0) {
1256           Node* iff = bol->raw_out(0);
1257           if (iff->outcnt() == 2) {
1258             Node* ifproj0 = iff->raw_out(0);
1259             Node* ifproj1 = iff->raw_out(1);
1260             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
1261               Node* region0 = ifproj0->raw_out(0);
1262               Node* region1 = ifproj1->raw_out(0);
1263               if( region0 == region1 )
1264                 add_users_to_worklist0(region0);
1265             }
1266           }
1267         }
1268       }
1269     }
1270 
1271     uint use_op = use->Opcode();
1272     // If changed Cast input, check Phi users for simple cycles
1273     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
1274       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1275         Node* u = use->fast_out(i2);
1276         if (u->is_Phi())
1277           _worklist.push(u);
1278       }
1279     }
1280     // If changed LShift inputs, check RShift users for useless sign-ext
1281     if( use_op == Op_LShiftI ) {
1282       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1283         Node* u = use->fast_out(i2);
1284         if (u->Opcode() == Op_RShiftI)
1285           _worklist.push(u);
1286       }
1287     }
1288     // If changed AddP inputs, check Stores for loop invariant
1289     if( use_op == Op_AddP ) {
1290       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
1291         Node* u = use->fast_out(i2);
1292         if (u->is_Mem())
1293           _worklist.push(u);
1294       }
1295     }
1296     // If changed initialization activity, check dependent Stores
1297     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
1298       InitializeNode* init = use->as_Allocate()->initialization();
1299       if (init != NULL) {
1300         Node* imem = init->proj_out(TypeFunc::Memory);
1301         if (imem != NULL)  add_users_to_worklist0(imem);
1302       }
1303     }
1304     if (use_op == Op_Initialize) {
1305       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
1306       if (imem != NULL)  add_users_to_worklist0(imem);
1307     }
1308   }
1309 }
1310 
1311 //=============================================================================
1312 #ifndef PRODUCT
1313 uint PhaseCCP::_total_invokes   = 0;
1314 uint PhaseCCP::_total_constants = 0;
1315 #endif
1316 //------------------------------PhaseCCP---------------------------------------
1317 // Conditional Constant Propagation, ala Wegman & Zadeck
1318 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
1319   NOT_PRODUCT( clear_constants(); )
1320   assert( _worklist.size() == 0, "" );
1321   // Clear out _nodes from IterGVN.  Must be clear to transform call.
1322   _nodes.clear();               // Clear out from IterGVN
1323   analyze();
1324 }
1325 
1326 #ifndef PRODUCT
1327 //------------------------------~PhaseCCP--------------------------------------
1328 PhaseCCP::~PhaseCCP() {
1329   inc_invokes();
1330   _total_constants += count_constants();
1331 }
1332 #endif
1333 
1334 
1335 #ifdef ASSERT
1336 static bool ccp_type_widens(const Type* t, const Type* t0) {
1337   assert(t->meet(t0) == t, "Not monotonic");
1338   switch (t->base() == t0->base() ? t->base() : Type::Top) {
1339   case Type::Int:
1340     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
1341     break;
1342   case Type::Long:
1343     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
1344     break;
1345   }
1346   return true;
1347 }
1348 #endif //ASSERT
1349 
1350 //------------------------------analyze----------------------------------------
1351 void PhaseCCP::analyze() {
1352   // Initialize all types to TOP, optimistic analysis
1353   for (int i = C->unique() - 1; i >= 0; i--)  {
1354     _types.map(i,Type::TOP);
1355   }
1356 
1357   // Push root onto worklist
1358   Unique_Node_List worklist;
1359   worklist.push(C->root());
1360 
1361   // Pull from worklist; compute new value; push changes out.
1362   // This loop is the meat of CCP.
1363   while( worklist.size() ) {
1364     Node *n = worklist.pop();
1365     const Type *t = n->Value(this);
1366     if (t != type(n)) {
1367       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
1368 #ifndef PRODUCT
1369       if( TracePhaseCCP ) {
1370         t->dump();
1371         do { tty->print("\t"); } while (tty->position() < 16);
1372         n->dump();
1373       }
1374 #endif
1375       set_type(n, t);
1376       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1377         Node* m = n->fast_out(i);   // Get user
1378         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
1379           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1380             Node* p = m->fast_out(i2); // Propagate changes to uses
1381             if( p->bottom_type() != type(p) ) // If not already bottomed out
1382               worklist.push(p); // Propagate change to user
1383           }
1384         }
1385         // If we changed the receiver type to a call, we need to revisit
1386         // the Catch following the call.  It's looking for a non-NULL
1387         // receiver to know when to enable the regular fall-through path
1388         // in addition to the NullPtrException path
1389         if (m->is_Call()) {
1390           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
1391             Node* p = m->fast_out(i2);  // Propagate changes to uses
1392             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
1393               worklist.push(p->unique_out());
1394           }
1395         }
1396         if( m->bottom_type() != type(m) ) // If not already bottomed out
1397           worklist.push(m);     // Propagate change to user
1398       }
1399     }
1400   }
1401 }
1402 
1403 //------------------------------do_transform-----------------------------------
1404 // Top level driver for the recursive transformer
1405 void PhaseCCP::do_transform() {
1406   // Correct leaves of new-space Nodes; they point to old-space.
1407   C->set_root( transform(C->root())->as_Root() );
1408   assert( C->top(),  "missing TOP node" );
1409   assert( C->root(), "missing root" );
1410 }
1411 
1412 //------------------------------transform--------------------------------------
1413 // Given a Node in old-space, clone him into new-space.
1414 // Convert any of his old-space children into new-space children.
1415 Node *PhaseCCP::transform( Node *n ) {
1416   Node *new_node = _nodes[n->_idx]; // Check for transformed node
1417   if( new_node != NULL )
1418     return new_node;                // Been there, done that, return old answer
1419   new_node = transform_once(n);     // Check for constant
1420   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
1421 
1422   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
1423   GrowableArray <Node *> trstack(C->unique() >> 1);
1424 
1425   trstack.push(new_node);           // Process children of cloned node
1426   while ( trstack.is_nonempty() ) {
1427     Node *clone = trstack.pop();
1428     uint cnt = clone->req();
1429     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
1430       Node *input = clone->in(i);
1431       if( input != NULL ) {                    // Ignore NULLs
1432         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
1433         if( new_input == NULL ) {
1434           new_input = transform_once(input);   // Check for constant
1435           _nodes.map( input->_idx, new_input );// Flag as having been cloned
1436           trstack.push(new_input);
1437         }
1438         assert( new_input == clone->in(i), "insanity check");
1439       }
1440     }
1441   }
1442   return new_node;
1443 }
1444 
1445 
1446 //------------------------------transform_once---------------------------------
1447 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
1448 Node *PhaseCCP::transform_once( Node *n ) {
1449   const Type *t = type(n);
1450   // Constant?  Use constant Node instead
1451   if( t->singleton() ) {
1452     Node *nn = n;               // Default is to return the original constant
1453     if( t == Type::TOP ) {
1454       // cache my top node on the Compile instance
1455       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
1456         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
1457         set_type(C->top(), Type::TOP);
1458       }
1459       nn = C->top();
1460     }
1461     if( !n->is_Con() ) {
1462       if( t != Type::TOP ) {
1463         nn = makecon(t);        // ConNode::make(t);
1464         NOT_PRODUCT( inc_constants(); )
1465       } else if( n->is_Region() ) { // Unreachable region
1466         // Note: nn == C->top()
1467         n->set_req(0, NULL);        // Cut selfreference
1468         // Eagerly remove dead phis to avoid phis copies creation.
1469         for (DUIterator i = n->outs(); n->has_out(i); i++) {
1470           Node* m = n->out(i);
1471           if( m->is_Phi() ) {
1472             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
1473             replace_node(m, nn);
1474             --i; // deleted this phi; rescan starting with next position
1475           }
1476         }
1477       }
1478       replace_node(n,nn);       // Update DefUse edges for new constant
1479     }
1480     return nn;
1481   }
1482 
1483   // If x is a TypeNode, capture any more-precise type permanently into Node
1484   if (t != n->bottom_type()) {
1485     hash_delete(n);             // changing bottom type may force a rehash
1486     n->raise_bottom_type(t);
1487     _worklist.push(n);          // n re-enters the hash table via the worklist
1488   }
1489 
1490   // Idealize graph using DU info.  Must clone() into new-space.
1491   // DU info is generally used to show profitability, progress or safety
1492   // (but generally not needed for correctness).
1493   Node *nn = n->Ideal_DU_postCCP(this);
1494 
1495   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
1496   switch( n->Opcode() ) {
1497   case Op_FastLock:      // Revisit FastLocks for lock coarsening
1498   case Op_If:
1499   case Op_CountedLoopEnd:
1500   case Op_Region:
1501   case Op_Loop:
1502   case Op_CountedLoop:
1503   case Op_Conv2B:
1504   case Op_Opaque1:
1505   case Op_Opaque2:
1506     _worklist.push(n);
1507     break;
1508   default:
1509     break;
1510   }
1511   if( nn ) {
1512     _worklist.push(n);
1513     // Put users of 'n' onto worklist for second igvn transform
1514     add_users_to_worklist(n);
1515     return nn;
1516   }
1517 
1518   return  n;
1519 }
1520 
1521 //---------------------------------saturate------------------------------------
1522 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
1523                                const Type* limit_type) const {
1524   const Type* wide_type = new_type->widen(old_type, limit_type);
1525   if (wide_type != new_type) {          // did we widen?
1526     // If so, we may have widened beyond the limit type.  Clip it back down.
1527     new_type = wide_type->filter(limit_type);
1528   }
1529   return new_type;
1530 }
1531 
1532 //------------------------------print_statistics-------------------------------
1533 #ifndef PRODUCT
1534 void PhaseCCP::print_statistics() {
1535   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
1536 }
1537 #endif
1538 
1539 
1540 //=============================================================================
1541 #ifndef PRODUCT
1542 uint PhasePeephole::_total_peepholes = 0;
1543 #endif
1544 //------------------------------PhasePeephole----------------------------------
1545 // Conditional Constant Propagation, ala Wegman & Zadeck
1546 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
1547   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
1548   NOT_PRODUCT( clear_peepholes(); )
1549 }
1550 
1551 #ifndef PRODUCT
1552 //------------------------------~PhasePeephole---------------------------------
1553 PhasePeephole::~PhasePeephole() {
1554   _total_peepholes += count_peepholes();
1555 }
1556 #endif
1557 
1558 //------------------------------transform--------------------------------------
1559 Node *PhasePeephole::transform( Node *n ) {
1560   ShouldNotCallThis();
1561   return NULL;
1562 }
1563 
1564 //------------------------------do_transform-----------------------------------
1565 void PhasePeephole::do_transform() {
1566   bool method_name_not_printed = true;
1567 
1568   // Examine each basic block
1569   for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) {
1570     Block *block = _cfg._blocks[block_number];
1571     bool block_not_printed = true;
1572 
1573     // and each instruction within a block
1574     uint end_index = block->_nodes.size();
1575     // block->end_idx() not valid after PhaseRegAlloc
1576     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
1577       Node     *n = block->_nodes.at(instruction_index);
1578       if( n->is_Mach() ) {
1579         MachNode *m = n->as_Mach();
1580         int deleted_count = 0;
1581         // check for peephole opportunities
1582         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
1583         if( m2 != NULL ) {
1584 #ifndef PRODUCT
1585           if( PrintOptoPeephole ) {
1586             // Print method, first time only
1587             if( C->method() && method_name_not_printed ) {
1588               C->method()->print_short_name(); tty->cr();
1589               method_name_not_printed = false;
1590             }
1591             // Print this block
1592             if( Verbose && block_not_printed) {
1593               tty->print_cr("in block");
1594               block->dump();
1595               block_not_printed = false;
1596             }
1597             // Print instructions being deleted
1598             for( int i = (deleted_count - 1); i >= 0; --i ) {
1599               block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
1600             }
1601             tty->print_cr("replaced with");
1602             // Print new instruction
1603             m2->format(_regalloc);
1604             tty->print("\n\n");
1605           }
1606 #endif
1607           // Remove old nodes from basic block and update instruction_index
1608           // (old nodes still exist and may have edges pointing to them
1609           //  as register allocation info is stored in the allocator using
1610           //  the node index to live range mappings.)
1611           uint safe_instruction_index = (instruction_index - deleted_count);
1612           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
1613             block->_nodes.remove( instruction_index );
1614           }
1615           // install new node after safe_instruction_index
1616           block->_nodes.insert( safe_instruction_index + 1, m2 );
1617           end_index = block->_nodes.size() - 1; // Recompute new block size
1618           NOT_PRODUCT( inc_peepholes(); )
1619         }
1620       }
1621     }
1622   }
1623 }
1624 
1625 //------------------------------print_statistics-------------------------------
1626 #ifndef PRODUCT
1627 void PhasePeephole::print_statistics() {
1628   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
1629 }
1630 #endif
1631 
1632 
1633 //=============================================================================
1634 //------------------------------set_req_X--------------------------------------
1635 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
1636   assert( is_not_dead(n), "can not use dead node");
1637   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
1638   Node *old = in(i);
1639   set_req(i, n);
1640 
1641   // old goes dead?
1642   if( old ) {
1643     switch (old->outcnt()) {
1644     case 0:
1645       // Put into the worklist to kill later. We do not kill it now because the
1646       // recursive kill will delete the current node (this) if dead-loop exists
1647       if (!old->is_top())
1648         igvn->_worklist.push( old );
1649       break;
1650     case 1:
1651       if( old->is_Store() || old->has_special_unique_user() )
1652         igvn->add_users_to_worklist( old );
1653       break;
1654     case 2:
1655       if( old->is_Store() )
1656         igvn->add_users_to_worklist( old );
1657       if( old->Opcode() == Op_Region )
1658         igvn->_worklist.push(old);
1659       break;
1660     case 3:
1661       if( old->Opcode() == Op_Region ) {
1662         igvn->_worklist.push(old);
1663         igvn->add_users_to_worklist( old );
1664       }
1665       break;
1666     default:
1667       break;
1668     }
1669   }
1670 
1671 }
1672 
1673 //-------------------------------replace_by-----------------------------------
1674 // Using def-use info, replace one node for another.  Follow the def-use info
1675 // to all users of the OLD node.  Then make all uses point to the NEW node.
1676 void Node::replace_by(Node *new_node) {
1677   assert(!is_top(), "top node has no DU info");
1678   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
1679     Node* use = last_out(i);
1680     uint uses_found = 0;
1681     for (uint j = 0; j < use->len(); j++) {
1682       if (use->in(j) == this) {
1683         if (j < use->req())
1684               use->set_req(j, new_node);
1685         else  use->set_prec(j, new_node);
1686         uses_found++;
1687       }
1688     }
1689     i -= uses_found;    // we deleted 1 or more copies of this edge
1690   }
1691 }
1692 
1693 //=============================================================================
1694 //-----------------------------------------------------------------------------
1695 void Type_Array::grow( uint i ) {
1696   if( !_max ) {
1697     _max = 1;
1698     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
1699     _types[0] = NULL;
1700   }
1701   uint old = _max;
1702   while( i >= _max ) _max <<= 1;        // Double to fit
1703   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
1704   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
1705 }
1706 
1707 //------------------------------dump-------------------------------------------
1708 #ifndef PRODUCT
1709 void Type_Array::dump() const {
1710   uint max = Size();
1711   for( uint i = 0; i < max; i++ ) {
1712     if( _types[i] != NULL ) {
1713       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
1714     }
1715   }
1716 }
1717 #endif