1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciMemberName.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 
  43 
  44 // Utility function.
  45 const TypeFunc* CallGenerator::tf() const {
  46   return TypeFunc::make(method());
  47 }
  48 
  49 //-----------------------------ParseGenerator---------------------------------
  50 // Internal class which handles all direct bytecode traversal.
  51 class ParseGenerator : public InlineCallGenerator {
  52 private:
  53   bool  _is_osr;
  54   float _expected_uses;
  55 
  56 public:
  57   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  58     : InlineCallGenerator(method)
  59   {
  60     _is_osr        = is_osr;
  61     _expected_uses = expected_uses;
  62     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  63   }
  64 
  65   virtual bool      is_parse() const           { return true; }
  66   virtual JVMState* generate(JVMState* jvms);
  67   int is_osr() { return _is_osr; }
  68 
  69 };
  70 
  71 JVMState* ParseGenerator::generate(JVMState* jvms) {
  72   Compile* C = Compile::current();
  73 
  74   if (is_osr()) {
  75     // The JVMS for a OSR has a single argument (see its TypeFunc).
  76     assert(jvms->depth() == 1, "no inline OSR");
  77   }
  78 
  79   if (C->failing()) {
  80     return NULL;  // bailing out of the compile; do not try to parse
  81   }
  82 
  83   Parse parser(jvms, method(), _expected_uses);
  84   // Grab signature for matching/allocation
  85 #ifdef ASSERT
  86   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  87     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  88     assert(C->env()->system_dictionary_modification_counter_changed(),
  89            "Must invalidate if TypeFuncs differ");
  90   }
  91 #endif
  92 
  93   GraphKit& exits = parser.exits();
  94 
  95   if (C->failing()) {
  96     while (exits.pop_exception_state() != NULL) ;
  97     return NULL;
  98   }
  99 
 100   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 101 
 102   // Simply return the exit state of the parser,
 103   // augmented by any exceptional states.
 104   return exits.transfer_exceptions_into_jvms();
 105 }
 106 
 107 //---------------------------DirectCallGenerator------------------------------
 108 // Internal class which handles all out-of-line calls w/o receiver type checks.
 109 class DirectCallGenerator : public CallGenerator {
 110  private:
 111   CallStaticJavaNode* _call_node;
 112   // Force separate memory and I/O projections for the exceptional
 113   // paths to facilitate late inlinig.
 114   bool                _separate_io_proj;
 115 
 116  public:
 117   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 118     : CallGenerator(method),
 119       _separate_io_proj(separate_io_proj)
 120   {
 121   }
 122   virtual JVMState* generate(JVMState* jvms);
 123 
 124   CallStaticJavaNode* call_node() const { return _call_node; }
 125 };
 126 
 127 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 128   GraphKit kit(jvms);
 129   bool is_static = method()->is_static();
 130   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 131                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 132 
 133   if (kit.C->log() != NULL) {
 134     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 135   }
 136 
 137   CallStaticJavaNode *call = new (kit.C) CallStaticJavaNode(tf(), target, method(), kit.bci());
 138   _call_node = call;  // Save the call node in case we need it later
 139   if (!is_static) {
 140     // Make an explicit receiver null_check as part of this call.
 141     // Since we share a map with the caller, his JVMS gets adjusted.
 142     kit.null_check_receiver_before_call(method());
 143     if (kit.stopped()) {
 144       // And dump it back to the caller, decorated with any exceptions:
 145       return kit.transfer_exceptions_into_jvms();
 146     }
 147     // Mark the call node as virtual, sort of:
 148     call->set_optimized_virtual(true);
 149     if (method()->is_method_handle_intrinsic() ||
 150         method()->is_compiled_lambda_form()) {
 151       call->set_method_handle_invoke(true);
 152     }
 153   }
 154   kit.set_arguments_for_java_call(call);
 155   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 156   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 157   kit.push_node(method()->return_type()->basic_type(), ret);
 158   return kit.transfer_exceptions_into_jvms();
 159 }
 160 
 161 //--------------------------VirtualCallGenerator------------------------------
 162 // Internal class which handles all out-of-line calls checking receiver type.
 163 class VirtualCallGenerator : public CallGenerator {
 164 private:
 165   int _vtable_index;
 166 public:
 167   VirtualCallGenerator(ciMethod* method, int vtable_index)
 168     : CallGenerator(method), _vtable_index(vtable_index)
 169   {
 170     assert(vtable_index == Method::invalid_vtable_index ||
 171            vtable_index >= 0, "either invalid or usable");
 172   }
 173   virtual bool      is_virtual() const          { return true; }
 174   virtual JVMState* generate(JVMState* jvms);
 175 };
 176 
 177 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 178   GraphKit kit(jvms);
 179   Node* receiver = kit.argument(0);
 180 
 181   if (kit.C->log() != NULL) {
 182     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 183   }
 184 
 185   // If the receiver is a constant null, do not torture the system
 186   // by attempting to call through it.  The compile will proceed
 187   // correctly, but may bail out in final_graph_reshaping, because
 188   // the call instruction will have a seemingly deficient out-count.
 189   // (The bailout says something misleading about an "infinite loop".)
 190   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 191     kit.inc_sp(method()->arg_size());  // restore arguments
 192     kit.uncommon_trap(Deoptimization::Reason_null_check,
 193                       Deoptimization::Action_none,
 194                       NULL, "null receiver");
 195     return kit.transfer_exceptions_into_jvms();
 196   }
 197 
 198   // Ideally we would unconditionally do a null check here and let it
 199   // be converted to an implicit check based on profile information.
 200   // However currently the conversion to implicit null checks in
 201   // Block::implicit_null_check() only looks for loads and stores, not calls.
 202   ciMethod *caller = kit.method();
 203   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 204   if (!UseInlineCaches || !ImplicitNullChecks ||
 205        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 206        (caller_md->trap_count(Deoptimization::Reason_null_check)
 207        >= (uint)ImplicitNullCheckThreshold))) {
 208     // Make an explicit receiver null_check as part of this call.
 209     // Since we share a map with the caller, his JVMS gets adjusted.
 210     receiver = kit.null_check_receiver_before_call(method());
 211     if (kit.stopped()) {
 212       // And dump it back to the caller, decorated with any exceptions:
 213       return kit.transfer_exceptions_into_jvms();
 214     }
 215   }
 216 
 217   assert(!method()->is_static(), "virtual call must not be to static");
 218   assert(!method()->is_final(), "virtual call should not be to final");
 219   assert(!method()->is_private(), "virtual call should not be to private");
 220   assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
 221          "no vtable calls if +UseInlineCaches ");
 222   address target = SharedRuntime::get_resolve_virtual_call_stub();
 223   // Normal inline cache used for call
 224   CallDynamicJavaNode *call = new (kit.C) CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 225   kit.set_arguments_for_java_call(call);
 226   kit.set_edges_for_java_call(call);
 227   Node* ret = kit.set_results_for_java_call(call);
 228   kit.push_node(method()->return_type()->basic_type(), ret);
 229 
 230   // Represent the effect of an implicit receiver null_check
 231   // as part of this call.  Since we share a map with the caller,
 232   // his JVMS gets adjusted.
 233   kit.cast_not_null(receiver);
 234   return kit.transfer_exceptions_into_jvms();
 235 }
 236 
 237 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 238   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 239   return new ParseGenerator(m, expected_uses);
 240 }
 241 
 242 // As a special case, the JVMS passed to this CallGenerator is
 243 // for the method execution already in progress, not just the JVMS
 244 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 245 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 246   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 247   float past_uses = m->interpreter_invocation_count();
 248   float expected_uses = past_uses;
 249   return new ParseGenerator(m, expected_uses, true);
 250 }
 251 
 252 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 253   assert(!m->is_abstract(), "for_direct_call mismatch");
 254   return new DirectCallGenerator(m, separate_io_proj);
 255 }
 256 
 257 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 258   assert(!m->is_static(), "for_virtual_call mismatch");
 259   assert(!m->is_method_handle_intrinsic(), "should be a direct call");
 260   return new VirtualCallGenerator(m, vtable_index);
 261 }
 262 
 263 // Allow inlining decisions to be delayed
 264 class LateInlineCallGenerator : public DirectCallGenerator {
 265  protected:
 266   CallGenerator* _inline_cg;
 267 
 268   virtual bool do_late_inline_check(JVMState* jvms) { return true; }
 269 
 270  public:
 271   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 272     DirectCallGenerator(method, true), _inline_cg(inline_cg) {}
 273 
 274   virtual bool      is_late_inline() const { return true; }
 275 
 276   // Convert the CallStaticJava into an inline
 277   virtual void do_late_inline();
 278 
 279   virtual JVMState* generate(JVMState* jvms) {
 280     Compile *C = Compile::current();
 281     C->print_inlining_skip(this);
 282 
 283     // Record that this call site should be revisited once the main
 284     // parse is finished.
 285     if (!is_mh_late_inline()) {
 286       C->add_late_inline(this);
 287     }
 288 
 289     // Emit the CallStaticJava and request separate projections so
 290     // that the late inlining logic can distinguish between fall
 291     // through and exceptional uses of the memory and io projections
 292     // as is done for allocations and macro expansion.
 293     return DirectCallGenerator::generate(jvms);
 294   }
 295 
 296   virtual void print_inlining_late(const char* msg) {
 297     CallNode* call = call_node();
 298     Compile* C = Compile::current();
 299     C->print_inlining_insert(this);
 300     C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
 301   }
 302 
 303 };
 304 
 305 void LateInlineCallGenerator::do_late_inline() {
 306   // Can't inline it
 307   if (call_node() == NULL || call_node()->outcnt() == 0 ||
 308       call_node()->in(0) == NULL || call_node()->in(0)->is_top()) {
 309     return;
 310   }
 311 
 312   const TypeTuple *r = call_node()->tf()->domain();
 313   for (int i1 = 0; i1 < method()->arg_size(); i1++) {
 314     if (call_node()->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
 315       assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 316       return;
 317     }
 318   }
 319 
 320   if (call_node()->in(TypeFunc::Memory)->is_top()) {
 321     assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 322     return;
 323   }
 324 
 325   CallStaticJavaNode* call = call_node();
 326 
 327   // Make a clone of the JVMState that appropriate to use for driving a parse
 328   Compile* C = Compile::current();
 329   JVMState* jvms     = call->jvms()->clone_shallow(C);
 330   uint size = call->req();
 331   SafePointNode* map = new (C) SafePointNode(size, jvms);
 332   for (uint i1 = 0; i1 < size; i1++) {
 333     map->init_req(i1, call->in(i1));
 334   }
 335 
 336   // Make sure the state is a MergeMem for parsing.
 337   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 338     Node* mem = MergeMemNode::make(C, map->in(TypeFunc::Memory));
 339     C->initial_gvn()->set_type_bottom(mem);
 340     map->set_req(TypeFunc::Memory, mem);
 341   }
 342 
 343   // Make enough space for the expression stack and transfer the incoming arguments
 344   int nargs    = method()->arg_size();
 345   jvms->set_map(map);
 346   map->ensure_stack(jvms, jvms->method()->max_stack());
 347   if (nargs > 0) {
 348     for (int i1 = 0; i1 < nargs; i1++) {
 349       map->set_req(i1 + jvms->argoff(), call->in(TypeFunc::Parms + i1));
 350     }
 351   }
 352 
 353   if (!do_late_inline_check(jvms)) {
 354     map->disconnect_inputs(NULL, C);
 355     return;
 356   }
 357 
 358   C->print_inlining_insert(this);
 359 
 360   CompileLog* log = C->log();
 361   if (log != NULL) {
 362     log->head("late_inline method='%d'", log->identify(method()));
 363     JVMState* p = jvms;
 364     while (p != NULL) {
 365       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 366       p = p->caller();
 367     }
 368     log->tail("late_inline");
 369   }
 370 
 371   // Setup default node notes to be picked up by the inlining
 372   Node_Notes* old_nn = C->default_node_notes();
 373   if (old_nn != NULL) {
 374     Node_Notes* entry_nn = old_nn->clone(C);
 375     entry_nn->set_jvms(jvms);
 376     C->set_default_node_notes(entry_nn);
 377   }
 378 
 379   // Now perform the inling using the synthesized JVMState
 380   JVMState* new_jvms = _inline_cg->generate(jvms);
 381   if (new_jvms == NULL)  return;  // no change
 382   if (C->failing())      return;
 383 
 384   // Capture any exceptional control flow
 385   GraphKit kit(new_jvms);
 386 
 387   // Find the result object
 388   Node* result = C->top();
 389   int   result_size = method()->return_type()->size();
 390   if (result_size != 0 && !kit.stopped()) {
 391     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 392   }
 393 
 394   C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
 395   C->env()->notice_inlined_method(_inline_cg->method());
 396   C->set_inlining_progress(true);
 397 
 398   kit.replace_call(call, result);
 399 }
 400 
 401 
 402 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 403   return new LateInlineCallGenerator(method, inline_cg);
 404 }
 405 
 406 class LateInlineMHCallGenerator : public LateInlineCallGenerator {
 407   ciMethod* _caller;
 408   int _attempt;
 409   bool _input_not_const;
 410 
 411   virtual bool do_late_inline_check(JVMState* jvms);
 412   virtual bool already_attempted() const { return _attempt > 0; }
 413 
 414  public:
 415   LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
 416     LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}
 417 
 418   virtual bool is_mh_late_inline() const { return true; }
 419 
 420   virtual JVMState* generate(JVMState* jvms) {
 421     JVMState* new_jvms = LateInlineCallGenerator::generate(jvms);
 422     if (_input_not_const) {
 423       // inlining won't be possible so no need to enqueue right now.
 424       call_node()->set_generator(this);
 425     } else {
 426       Compile::current()->add_late_inline(this);
 427     }
 428     return new_jvms;
 429   }
 430 
 431   virtual void print_inlining_late(const char* msg) {
 432     if (!_input_not_const) return;
 433     LateInlineCallGenerator::print_inlining_late(msg);
 434   }
 435 };
 436 
 437 bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {
 438 
 439   CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);
 440 
 441   if (!_input_not_const) {
 442     _attempt++;
 443   }
 444 
 445   if (cg != NULL) {
 446     assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
 447     _inline_cg = cg;
 448     Compile::current()->dec_number_of_mh_late_inlines();
 449     return true;
 450   }
 451 
 452   call_node()->set_generator(this);
 453   return false;
 454 }
 455 
 456 CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
 457   Compile::current()->inc_number_of_mh_late_inlines();
 458   CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
 459   return cg;
 460 }
 461 
 462 class LateInlineStringCallGenerator : public LateInlineCallGenerator {
 463 
 464  public:
 465   LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 466     LateInlineCallGenerator(method, inline_cg) {}
 467 
 468   virtual JVMState* generate(JVMState* jvms) {
 469     Compile *C = Compile::current();
 470     C->print_inlining_skip(this);
 471 
 472     C->add_string_late_inline(this);
 473 
 474     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 475     return new_jvms;
 476   }
 477 };
 478 
 479 CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 480   return new LateInlineStringCallGenerator(method, inline_cg);
 481 }
 482 
 483 
 484 //---------------------------WarmCallGenerator--------------------------------
 485 // Internal class which handles initial deferral of inlining decisions.
 486 class WarmCallGenerator : public CallGenerator {
 487   WarmCallInfo*   _call_info;
 488   CallGenerator*  _if_cold;
 489   CallGenerator*  _if_hot;
 490   bool            _is_virtual;   // caches virtuality of if_cold
 491   bool            _is_inline;    // caches inline-ness of if_hot
 492 
 493 public:
 494   WarmCallGenerator(WarmCallInfo* ci,
 495                     CallGenerator* if_cold,
 496                     CallGenerator* if_hot)
 497     : CallGenerator(if_cold->method())
 498   {
 499     assert(method() == if_hot->method(), "consistent choices");
 500     _call_info  = ci;
 501     _if_cold    = if_cold;
 502     _if_hot     = if_hot;
 503     _is_virtual = if_cold->is_virtual();
 504     _is_inline  = if_hot->is_inline();
 505   }
 506 
 507   virtual bool      is_inline() const           { return _is_inline; }
 508   virtual bool      is_virtual() const          { return _is_virtual; }
 509   virtual bool      is_deferred() const         { return true; }
 510 
 511   virtual JVMState* generate(JVMState* jvms);
 512 };
 513 
 514 
 515 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 516                                             CallGenerator* if_cold,
 517                                             CallGenerator* if_hot) {
 518   return new WarmCallGenerator(ci, if_cold, if_hot);
 519 }
 520 
 521 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 522   Compile* C = Compile::current();
 523   if (C->log() != NULL) {
 524     C->log()->elem("warm_call bci='%d'", jvms->bci());
 525   }
 526   jvms = _if_cold->generate(jvms);
 527   if (jvms != NULL) {
 528     Node* m = jvms->map()->control();
 529     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 530     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 531     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 532     if (m->is_CallJava()) {
 533       _call_info->set_call(m->as_Call());
 534       _call_info->set_hot_cg(_if_hot);
 535 #ifndef PRODUCT
 536       if (PrintOpto || PrintOptoInlining) {
 537         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 538         tty->print("WCI: ");
 539         _call_info->print();
 540       }
 541 #endif
 542       _call_info->set_heat(_call_info->compute_heat());
 543       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 544     }
 545   }
 546   return jvms;
 547 }
 548 
 549 void WarmCallInfo::make_hot() {
 550   Unimplemented();
 551 }
 552 
 553 void WarmCallInfo::make_cold() {
 554   // No action:  Just dequeue.
 555 }
 556 
 557 
 558 //------------------------PredictedCallGenerator------------------------------
 559 // Internal class which handles all out-of-line calls checking receiver type.
 560 class PredictedCallGenerator : public CallGenerator {
 561   ciKlass*       _predicted_receiver;
 562   CallGenerator* _if_missed;
 563   CallGenerator* _if_hit;
 564   float          _hit_prob;
 565 
 566 public:
 567   PredictedCallGenerator(ciKlass* predicted_receiver,
 568                          CallGenerator* if_missed,
 569                          CallGenerator* if_hit, float hit_prob)
 570     : CallGenerator(if_missed->method())
 571   {
 572     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 573     // Remove the extremes values from the range.
 574     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 575     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 576 
 577     _predicted_receiver = predicted_receiver;
 578     _if_missed          = if_missed;
 579     _if_hit             = if_hit;
 580     _hit_prob           = hit_prob;
 581   }
 582 
 583   virtual bool      is_virtual()   const    { return true; }
 584   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 585   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 586 
 587   virtual JVMState* generate(JVMState* jvms);
 588 };
 589 
 590 
 591 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 592                                                  CallGenerator* if_missed,
 593                                                  CallGenerator* if_hit,
 594                                                  float hit_prob) {
 595   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 596 }
 597 
 598 
 599 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 600   GraphKit kit(jvms);
 601   PhaseGVN& gvn = kit.gvn();
 602   // We need an explicit receiver null_check before checking its type.
 603   // We share a map with the caller, so his JVMS gets adjusted.
 604   Node* receiver = kit.argument(0);
 605 
 606   CompileLog* log = kit.C->log();
 607   if (log != NULL) {
 608     log->elem("predicted_call bci='%d' klass='%d'",
 609               jvms->bci(), log->identify(_predicted_receiver));
 610   }
 611 
 612   receiver = kit.null_check_receiver_before_call(method());
 613   if (kit.stopped()) {
 614     return kit.transfer_exceptions_into_jvms();
 615   }
 616 
 617   Node* exact_receiver = receiver;  // will get updated in place...
 618   Node* slow_ctl = kit.type_check_receiver(receiver,
 619                                            _predicted_receiver, _hit_prob,
 620                                            &exact_receiver);
 621 
 622   SafePointNode* slow_map = NULL;
 623   JVMState* slow_jvms;
 624   { PreserveJVMState pjvms(&kit);
 625     kit.set_control(slow_ctl);
 626     if (!kit.stopped()) {
 627       slow_jvms = _if_missed->generate(kit.sync_jvms());
 628       if (kit.failing())
 629         return NULL;  // might happen because of NodeCountInliningCutoff
 630       assert(slow_jvms != NULL, "must be");
 631       kit.add_exception_states_from(slow_jvms);
 632       kit.set_map(slow_jvms->map());
 633       if (!kit.stopped())
 634         slow_map = kit.stop();
 635     }
 636   }
 637 
 638   if (kit.stopped()) {
 639     // Instance exactly does not matches the desired type.
 640     kit.set_jvms(slow_jvms);
 641     return kit.transfer_exceptions_into_jvms();
 642   }
 643 
 644   // fall through if the instance exactly matches the desired type
 645   kit.replace_in_map(receiver, exact_receiver);
 646 
 647   // Make the hot call:
 648   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 649   if (new_jvms == NULL) {
 650     // Inline failed, so make a direct call.
 651     assert(_if_hit->is_inline(), "must have been a failed inline");
 652     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 653     new_jvms = cg->generate(kit.sync_jvms());
 654   }
 655   kit.add_exception_states_from(new_jvms);
 656   kit.set_jvms(new_jvms);
 657 
 658   // Need to merge slow and fast?
 659   if (slow_map == NULL) {
 660     // The fast path is the only path remaining.
 661     return kit.transfer_exceptions_into_jvms();
 662   }
 663 
 664   if (kit.stopped()) {
 665     // Inlined method threw an exception, so it's just the slow path after all.
 666     kit.set_jvms(slow_jvms);
 667     return kit.transfer_exceptions_into_jvms();
 668   }
 669 
 670   // Finish the diamond.
 671   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 672   RegionNode* region = new (kit.C) RegionNode(3);
 673   region->init_req(1, kit.control());
 674   region->init_req(2, slow_map->control());
 675   kit.set_control(gvn.transform(region));
 676   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 677   iophi->set_req(2, slow_map->i_o());
 678   kit.set_i_o(gvn.transform(iophi));
 679   kit.merge_memory(slow_map->merged_memory(), region, 2);
 680   uint tos = kit.jvms()->stkoff() + kit.sp();
 681   uint limit = slow_map->req();
 682   for (uint i = TypeFunc::Parms; i < limit; i++) {
 683     // Skip unused stack slots; fast forward to monoff();
 684     if (i == tos) {
 685       i = kit.jvms()->monoff();
 686       if( i >= limit ) break;
 687     }
 688     Node* m = kit.map()->in(i);
 689     Node* n = slow_map->in(i);
 690     if (m != n) {
 691       const Type* t = gvn.type(m)->meet(gvn.type(n));
 692       Node* phi = PhiNode::make(region, m, t);
 693       phi->set_req(2, n);
 694       kit.map()->set_req(i, gvn.transform(phi));
 695     }
 696   }
 697   return kit.transfer_exceptions_into_jvms();
 698 }
 699 
 700 
 701 CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
 702   assert(callee->is_method_handle_intrinsic() ||
 703          callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
 704   bool input_not_const;
 705   CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
 706   Compile* C = Compile::current();
 707   if (cg != NULL) {
 708     if (!delayed_forbidden && AlwaysIncrementalInline) {
 709       return CallGenerator::for_late_inline(callee, cg);
 710     } else {
 711       return cg;
 712     }
 713   }
 714   int bci = jvms->bci();
 715   ciCallProfile profile = caller->call_profile_at_bci(bci);
 716   int call_site_count = caller->scale_count(profile.count());
 717 
 718   if (IncrementalInline && call_site_count > 0 &&
 719       (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
 720     return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
 721   } else {
 722     // Out-of-line call.
 723     return CallGenerator::for_direct_call(callee);
 724   }
 725 }
 726 
 727 CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
 728   GraphKit kit(jvms);
 729   PhaseGVN& gvn = kit.gvn();
 730   Compile* C = kit.C;
 731   vmIntrinsics::ID iid = callee->intrinsic_id();
 732   input_not_const = true;
 733   switch (iid) {
 734   case vmIntrinsics::_invokeBasic:
 735     {
 736       // Get MethodHandle receiver:
 737       Node* receiver = kit.argument(0);
 738       if (receiver->Opcode() == Op_ConP) {
 739         input_not_const = false;
 740         const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
 741         ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
 742         guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
 743         const int vtable_index = Method::invalid_vtable_index;
 744         CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, true, true);
 745         assert(!cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 746         if (cg != NULL && cg->is_inline())
 747           return cg;
 748       }
 749     }
 750     break;
 751 
 752   case vmIntrinsics::_linkToVirtual:
 753   case vmIntrinsics::_linkToStatic:
 754   case vmIntrinsics::_linkToSpecial:
 755   case vmIntrinsics::_linkToInterface:
 756     {
 757       // Get MemberName argument:
 758       Node* member_name = kit.argument(callee->arg_size() - 1);
 759       if (member_name->Opcode() == Op_ConP) {
 760         input_not_const = false;
 761         const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
 762         ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();
 763 
 764         // In lamda forms we erase signature types to avoid resolving issues
 765         // involving class loaders.  When we optimize a method handle invoke
 766         // to a direct call we must cast the receiver and arguments to its
 767         // actual types.
 768         ciSignature* signature = target->signature();
 769         const int receiver_skip = target->is_static() ? 0 : 1;
 770         // Cast receiver to its type.
 771         if (!target->is_static()) {
 772           Node* arg = kit.argument(0);
 773           const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 774           const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
 775           if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 776             Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 777             kit.set_argument(0, cast_obj);
 778           }
 779         }
 780         // Cast reference arguments to its type.
 781         for (int i = 0; i < signature->count(); i++) {
 782           ciType* t = signature->type_at(i);
 783           if (t->is_klass()) {
 784             Node* arg = kit.argument(receiver_skip + i);
 785             const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 786             const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
 787             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 788               Node* cast_obj = gvn.transform(new (C) CheckCastPPNode(kit.control(), arg, sig_type));
 789               kit.set_argument(receiver_skip + i, cast_obj);
 790             }
 791           }
 792         }
 793 
 794         // Try to get the most accurate receiver type
 795         const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
 796         const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
 797         int  vtable_index       = Method::invalid_vtable_index;
 798         bool call_does_dispatch = false;
 799 
 800         if (is_virtual_or_interface) {
 801           ciInstanceKlass* klass = target->holder();
 802           Node*             receiver_node = kit.argument(0);
 803           const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
 804           // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 805           target = C->optimize_virtual_call(caller, jvms->bci(), klass, target, receiver_type,
 806                                             is_virtual,
 807                                             call_does_dispatch, vtable_index);  // out-parameters
 808         }
 809 
 810         CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, true, true);
 811         assert(!cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 812         if (cg != NULL && cg->is_inline())
 813           return cg;
 814       }
 815     }
 816     break;
 817 
 818   default:
 819     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 820     break;
 821   }
 822   return NULL;
 823 }
 824 
 825 
 826 //------------------------PredictedIntrinsicGenerator------------------------------
 827 // Internal class which handles all predicted Intrinsic calls.
 828 class PredictedIntrinsicGenerator : public CallGenerator {
 829   CallGenerator* _intrinsic;
 830   CallGenerator* _cg;
 831 
 832 public:
 833   PredictedIntrinsicGenerator(CallGenerator* intrinsic,
 834                               CallGenerator* cg)
 835     : CallGenerator(cg->method())
 836   {
 837     _intrinsic = intrinsic;
 838     _cg        = cg;
 839   }
 840 
 841   virtual bool      is_virtual()   const    { return true; }
 842   virtual bool      is_inlined()   const    { return true; }
 843   virtual bool      is_intrinsic() const    { return true; }
 844 
 845   virtual JVMState* generate(JVMState* jvms);
 846 };
 847 
 848 
 849 CallGenerator* CallGenerator::for_predicted_intrinsic(CallGenerator* intrinsic,
 850                                                       CallGenerator* cg) {
 851   return new PredictedIntrinsicGenerator(intrinsic, cg);
 852 }
 853 
 854 
 855 JVMState* PredictedIntrinsicGenerator::generate(JVMState* jvms) {
 856   GraphKit kit(jvms);
 857   PhaseGVN& gvn = kit.gvn();
 858 
 859   CompileLog* log = kit.C->log();
 860   if (log != NULL) {
 861     log->elem("predicted_intrinsic bci='%d' method='%d'",
 862               jvms->bci(), log->identify(method()));
 863   }
 864 
 865   Node* slow_ctl = _intrinsic->generate_predicate(kit.sync_jvms());
 866   if (kit.failing())
 867     return NULL;  // might happen because of NodeCountInliningCutoff
 868 
 869   SafePointNode* slow_map = NULL;
 870   JVMState* slow_jvms;
 871   if (slow_ctl != NULL) {
 872     PreserveJVMState pjvms(&kit);
 873     kit.set_control(slow_ctl);
 874     if (!kit.stopped()) {
 875       slow_jvms = _cg->generate(kit.sync_jvms());
 876       if (kit.failing())
 877         return NULL;  // might happen because of NodeCountInliningCutoff
 878       assert(slow_jvms != NULL, "must be");
 879       kit.add_exception_states_from(slow_jvms);
 880       kit.set_map(slow_jvms->map());
 881       if (!kit.stopped())
 882         slow_map = kit.stop();
 883     }
 884   }
 885 
 886   if (kit.stopped()) {
 887     // Predicate is always false.
 888     kit.set_jvms(slow_jvms);
 889     return kit.transfer_exceptions_into_jvms();
 890   }
 891 
 892   // Generate intrinsic code:
 893   JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms());
 894   if (new_jvms == NULL) {
 895     // Intrinsic failed, so use slow code or make a direct call.
 896     if (slow_map == NULL) {
 897       CallGenerator* cg = CallGenerator::for_direct_call(method());
 898       new_jvms = cg->generate(kit.sync_jvms());
 899     } else {
 900       kit.set_jvms(slow_jvms);
 901       return kit.transfer_exceptions_into_jvms();
 902     }
 903   }
 904   kit.add_exception_states_from(new_jvms);
 905   kit.set_jvms(new_jvms);
 906 
 907   // Need to merge slow and fast?
 908   if (slow_map == NULL) {
 909     // The fast path is the only path remaining.
 910     return kit.transfer_exceptions_into_jvms();
 911   }
 912 
 913   if (kit.stopped()) {
 914     // Intrinsic method threw an exception, so it's just the slow path after all.
 915     kit.set_jvms(slow_jvms);
 916     return kit.transfer_exceptions_into_jvms();
 917   }
 918 
 919   // Finish the diamond.
 920   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 921   RegionNode* region = new (kit.C) RegionNode(3);
 922   region->init_req(1, kit.control());
 923   region->init_req(2, slow_map->control());
 924   kit.set_control(gvn.transform(region));
 925   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 926   iophi->set_req(2, slow_map->i_o());
 927   kit.set_i_o(gvn.transform(iophi));
 928   kit.merge_memory(slow_map->merged_memory(), region, 2);
 929   uint tos = kit.jvms()->stkoff() + kit.sp();
 930   uint limit = slow_map->req();
 931   for (uint i = TypeFunc::Parms; i < limit; i++) {
 932     // Skip unused stack slots; fast forward to monoff();
 933     if (i == tos) {
 934       i = kit.jvms()->monoff();
 935       if( i >= limit ) break;
 936     }
 937     Node* m = kit.map()->in(i);
 938     Node* n = slow_map->in(i);
 939     if (m != n) {
 940       const Type* t = gvn.type(m)->meet(gvn.type(n));
 941       Node* phi = PhiNode::make(region, m, t);
 942       phi->set_req(2, n);
 943       kit.map()->set_req(i, gvn.transform(phi));
 944     }
 945   }
 946   return kit.transfer_exceptions_into_jvms();
 947 }
 948 
 949 //-------------------------UncommonTrapCallGenerator-----------------------------
 950 // Internal class which handles all out-of-line calls checking receiver type.
 951 class UncommonTrapCallGenerator : public CallGenerator {
 952   Deoptimization::DeoptReason _reason;
 953   Deoptimization::DeoptAction _action;
 954 
 955 public:
 956   UncommonTrapCallGenerator(ciMethod* m,
 957                             Deoptimization::DeoptReason reason,
 958                             Deoptimization::DeoptAction action)
 959     : CallGenerator(m)
 960   {
 961     _reason = reason;
 962     _action = action;
 963   }
 964 
 965   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
 966   virtual bool      is_trap() const             { return true; }
 967 
 968   virtual JVMState* generate(JVMState* jvms);
 969 };
 970 
 971 
 972 CallGenerator*
 973 CallGenerator::for_uncommon_trap(ciMethod* m,
 974                                  Deoptimization::DeoptReason reason,
 975                                  Deoptimization::DeoptAction action) {
 976   return new UncommonTrapCallGenerator(m, reason, action);
 977 }
 978 
 979 
 980 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
 981   GraphKit kit(jvms);
 982   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
 983   int nargs = method()->arg_size();
 984   kit.inc_sp(nargs);
 985   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
 986   if (_reason == Deoptimization::Reason_class_check &&
 987       _action == Deoptimization::Action_maybe_recompile) {
 988     // Temp fix for 6529811
 989     // Don't allow uncommon_trap to override our decision to recompile in the event
 990     // of a class cast failure for a monomorphic call as it will never let us convert
 991     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
 992     bool keep_exact_action = true;
 993     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
 994   } else {
 995     kit.uncommon_trap(_reason, _action);
 996   }
 997   return kit.transfer_exceptions_into_jvms();
 998 }
 999 
1000 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
1001 
1002 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
1003 
1004 #define NODES_OVERHEAD_PER_METHOD (30.0)
1005 #define NODES_PER_BYTECODE (9.5)
1006 
1007 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
1008   int call_count = profile.count();
1009   int code_size = call_method->code_size();
1010 
1011   // Expected execution count is based on the historical count:
1012   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
1013 
1014   // Expected profit from inlining, in units of simple call-overheads.
1015   _profit = 1.0;
1016 
1017   // Expected work performed by the call in units of call-overheads.
1018   // %%% need an empirical curve fit for "work" (time in call)
1019   float bytecodes_per_call = 3;
1020   _work = 1.0 + code_size / bytecodes_per_call;
1021 
1022   // Expected size of compilation graph:
1023   // -XX:+PrintParseStatistics once reported:
1024   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
1025   //  Histogram of 144298 parsed bytecodes:
1026   // %%% Need an better predictor for graph size.
1027   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
1028 }
1029 
1030 // is_cold:  Return true if the node should never be inlined.
1031 // This is true if any of the key metrics are extreme.
1032 bool WarmCallInfo::is_cold() const {
1033   if (count()  <  WarmCallMinCount)        return true;
1034   if (profit() <  WarmCallMinProfit)       return true;
1035   if (work()   >  WarmCallMaxWork)         return true;
1036   if (size()   >  WarmCallMaxSize)         return true;
1037   return false;
1038 }
1039 
1040 // is_hot:  Return true if the node should be inlined immediately.
1041 // This is true if any of the key metrics are extreme.
1042 bool WarmCallInfo::is_hot() const {
1043   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
1044   if (count()  >= HotCallCountThreshold)   return true;
1045   if (profit() >= HotCallProfitThreshold)  return true;
1046   if (work()   <= HotCallTrivialWork)      return true;
1047   if (size()   <= HotCallTrivialSize)      return true;
1048   return false;
1049 }
1050 
1051 // compute_heat:
1052 float WarmCallInfo::compute_heat() const {
1053   assert(!is_cold(), "compute heat only on warm nodes");
1054   assert(!is_hot(),  "compute heat only on warm nodes");
1055   int min_size = MAX2(0,   (int)HotCallTrivialSize);
1056   int max_size = MIN2(500, (int)WarmCallMaxSize);
1057   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
1058   float size_factor;
1059   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1060   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1061   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1062   else                          size_factor = 0.5; // worse than avg.
1063   return (count() * profit() * size_factor);
1064 }
1065 
1066 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1067   assert(this != that, "compare only different WCIs");
1068   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1069   if (this->heat() > that->heat())   return true;
1070   if (this->heat() < that->heat())   return false;
1071   assert(this->heat() == that->heat(), "no NaN heat allowed");
1072   // Equal heat.  Break the tie some other way.
1073   if (!this->call() || !that->call())  return (address)this > (address)that;
1074   return this->call()->_idx > that->call()->_idx;
1075 }
1076 
1077 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1078 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1079 
1080 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1081   assert(next() == UNINIT_NEXT, "not yet on any list");
1082   WarmCallInfo* prev_p = NULL;
1083   WarmCallInfo* next_p = head;
1084   while (next_p != NULL && next_p->warmer_than(this)) {
1085     prev_p = next_p;
1086     next_p = prev_p->next();
1087   }
1088   // Install this between prev_p and next_p.
1089   this->set_next(next_p);
1090   if (prev_p == NULL)
1091     head = this;
1092   else
1093     prev_p->set_next(this);
1094   return head;
1095 }
1096 
1097 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1098   WarmCallInfo* prev_p = NULL;
1099   WarmCallInfo* next_p = head;
1100   while (next_p != this) {
1101     assert(next_p != NULL, "this must be in the list somewhere");
1102     prev_p = next_p;
1103     next_p = prev_p->next();
1104   }
1105   next_p = this->next();
1106   debug_only(this->set_next(UNINIT_NEXT));
1107   // Remove this from between prev_p and next_p.
1108   if (prev_p == NULL)
1109     head = next_p;
1110   else
1111     prev_p->set_next(next_p);
1112   return head;
1113 }
1114 
1115 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1116                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1117 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1118                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1119 
1120 WarmCallInfo* WarmCallInfo::always_hot() {
1121   assert(_always_hot.is_hot(), "must always be hot");
1122   return &_always_hot;
1123 }
1124 
1125 WarmCallInfo* WarmCallInfo::always_cold() {
1126   assert(_always_cold.is_cold(), "must always be cold");
1127   return &_always_cold;
1128 }
1129 
1130 
1131 #ifndef PRODUCT
1132 
1133 void WarmCallInfo::print() const {
1134   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1135              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1136              count(), profit(), work(), size(), compute_heat(), next());
1137   tty->cr();
1138   if (call() != NULL)  call()->dump();
1139 }
1140 
1141 void print_wci(WarmCallInfo* ci) {
1142   ci->print();
1143 }
1144 
1145 void WarmCallInfo::print_all() const {
1146   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1147     p->print();
1148 }
1149 
1150 int WarmCallInfo::count_all() const {
1151   int cnt = 0;
1152   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1153     cnt++;
1154   return cnt;
1155 }
1156 
1157 #endif //PRODUCT