1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/exceptionHandlerTable.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/block.hpp"
  36 #include "opto/c2compiler.hpp"
  37 #include "opto/callGenerator.hpp"
  38 #include "opto/callnode.hpp"
  39 #include "opto/cfgnode.hpp"
  40 #include "opto/chaitin.hpp"
  41 #include "opto/compile.hpp"
  42 #include "opto/connode.hpp"
  43 #include "opto/divnode.hpp"
  44 #include "opto/escape.hpp"
  45 #include "opto/idealGraphPrinter.hpp"
  46 #include "opto/loopnode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/macro.hpp"
  49 #include "opto/matcher.hpp"
  50 #include "opto/memnode.hpp"
  51 #include "opto/mulnode.hpp"
  52 #include "opto/node.hpp"
  53 #include "opto/opcodes.hpp"
  54 #include "opto/output.hpp"
  55 #include "opto/parse.hpp"
  56 #include "opto/phaseX.hpp"
  57 #include "opto/rootnode.hpp"
  58 #include "opto/runtime.hpp"
  59 #include "opto/stringopts.hpp"
  60 #include "opto/type.hpp"
  61 #include "opto/vectornode.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/signature.hpp"
  64 #include "runtime/stubRoutines.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "utilities/copy.hpp"
  67 #ifdef TARGET_ARCH_MODEL_x86_32
  68 # include "adfiles/ad_x86_32.hpp"
  69 #endif
  70 #ifdef TARGET_ARCH_MODEL_x86_64
  71 # include "adfiles/ad_x86_64.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_MODEL_sparc
  74 # include "adfiles/ad_sparc.hpp"
  75 #endif
  76 #ifdef TARGET_ARCH_MODEL_zero
  77 # include "adfiles/ad_zero.hpp"
  78 #endif
  79 #ifdef TARGET_ARCH_MODEL_arm
  80 # include "adfiles/ad_arm.hpp"
  81 #endif
  82 #ifdef TARGET_ARCH_MODEL_ppc
  83 # include "adfiles/ad_ppc.hpp"
  84 #endif
  85 
  86 
  87 // -------------------- Compile::mach_constant_base_node -----------------------
  88 // Constant table base node singleton.
  89 MachConstantBaseNode* Compile::mach_constant_base_node() {
  90   if (_mach_constant_base_node == NULL) {
  91     _mach_constant_base_node = new (C) MachConstantBaseNode();
  92     _mach_constant_base_node->add_req(C->root());
  93   }
  94   return _mach_constant_base_node;
  95 }
  96 
  97 
  98 /// Support for intrinsics.
  99 
 100 // Return the index at which m must be inserted (or already exists).
 101 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 102 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 103 #ifdef ASSERT
 104   for (int i = 1; i < _intrinsics->length(); i++) {
 105     CallGenerator* cg1 = _intrinsics->at(i-1);
 106     CallGenerator* cg2 = _intrinsics->at(i);
 107     assert(cg1->method() != cg2->method()
 108            ? cg1->method()     < cg2->method()
 109            : cg1->is_virtual() < cg2->is_virtual(),
 110            "compiler intrinsics list must stay sorted");
 111   }
 112 #endif
 113   // Binary search sorted list, in decreasing intervals [lo, hi].
 114   int lo = 0, hi = _intrinsics->length()-1;
 115   while (lo <= hi) {
 116     int mid = (uint)(hi + lo) / 2;
 117     ciMethod* mid_m = _intrinsics->at(mid)->method();
 118     if (m < mid_m) {
 119       hi = mid-1;
 120     } else if (m > mid_m) {
 121       lo = mid+1;
 122     } else {
 123       // look at minor sort key
 124       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 125       if (is_virtual < mid_virt) {
 126         hi = mid-1;
 127       } else if (is_virtual > mid_virt) {
 128         lo = mid+1;
 129       } else {
 130         return mid;  // exact match
 131       }
 132     }
 133   }
 134   return lo;  // inexact match
 135 }
 136 
 137 void Compile::register_intrinsic(CallGenerator* cg) {
 138   if (_intrinsics == NULL) {
 139     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 140   }
 141   // This code is stolen from ciObjectFactory::insert.
 142   // Really, GrowableArray should have methods for
 143   // insert_at, remove_at, and binary_search.
 144   int len = _intrinsics->length();
 145   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 146   if (index == len) {
 147     _intrinsics->append(cg);
 148   } else {
 149 #ifdef ASSERT
 150     CallGenerator* oldcg = _intrinsics->at(index);
 151     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 152 #endif
 153     _intrinsics->append(_intrinsics->at(len-1));
 154     int pos;
 155     for (pos = len-2; pos >= index; pos--) {
 156       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 157     }
 158     _intrinsics->at_put(index, cg);
 159   }
 160   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 161 }
 162 
 163 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 164   assert(m->is_loaded(), "don't try this on unloaded methods");
 165   if (_intrinsics != NULL) {
 166     int index = intrinsic_insertion_index(m, is_virtual);
 167     if (index < _intrinsics->length()
 168         && _intrinsics->at(index)->method() == m
 169         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 170       return _intrinsics->at(index);
 171     }
 172   }
 173   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 174   if (m->intrinsic_id() != vmIntrinsics::_none &&
 175       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 176     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 177     if (cg != NULL) {
 178       // Save it for next time:
 179       register_intrinsic(cg);
 180       return cg;
 181     } else {
 182       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 183     }
 184   }
 185   return NULL;
 186 }
 187 
 188 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 189 // in library_call.cpp.
 190 
 191 
 192 #ifndef PRODUCT
 193 // statistics gathering...
 194 
 195 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 196 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 197 
 198 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 199   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 200   int oflags = _intrinsic_hist_flags[id];
 201   assert(flags != 0, "what happened?");
 202   if (is_virtual) {
 203     flags |= _intrinsic_virtual;
 204   }
 205   bool changed = (flags != oflags);
 206   if ((flags & _intrinsic_worked) != 0) {
 207     juint count = (_intrinsic_hist_count[id] += 1);
 208     if (count == 1) {
 209       changed = true;           // first time
 210     }
 211     // increment the overall count also:
 212     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 213   }
 214   if (changed) {
 215     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 216       // Something changed about the intrinsic's virtuality.
 217       if ((flags & _intrinsic_virtual) != 0) {
 218         // This is the first use of this intrinsic as a virtual call.
 219         if (oflags != 0) {
 220           // We already saw it as a non-virtual, so note both cases.
 221           flags |= _intrinsic_both;
 222         }
 223       } else if ((oflags & _intrinsic_both) == 0) {
 224         // This is the first use of this intrinsic as a non-virtual
 225         flags |= _intrinsic_both;
 226       }
 227     }
 228     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 229   }
 230   // update the overall flags also:
 231   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 232   return changed;
 233 }
 234 
 235 static char* format_flags(int flags, char* buf) {
 236   buf[0] = 0;
 237   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 238   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 239   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 240   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 241   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 242   if (buf[0] == 0)  strcat(buf, ",");
 243   assert(buf[0] == ',', "must be");
 244   return &buf[1];
 245 }
 246 
 247 void Compile::print_intrinsic_statistics() {
 248   char flagsbuf[100];
 249   ttyLocker ttyl;
 250   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 251   tty->print_cr("Compiler intrinsic usage:");
 252   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 253   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 254   #define PRINT_STAT_LINE(name, c, f) \
 255     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 256   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 257     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 258     int   flags = _intrinsic_hist_flags[id];
 259     juint count = _intrinsic_hist_count[id];
 260     if ((flags | count) != 0) {
 261       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 262     }
 263   }
 264   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 265   if (xtty != NULL)  xtty->tail("statistics");
 266 }
 267 
 268 void Compile::print_statistics() {
 269   { ttyLocker ttyl;
 270     if (xtty != NULL)  xtty->head("statistics type='opto'");
 271     Parse::print_statistics();
 272     PhaseCCP::print_statistics();
 273     PhaseRegAlloc::print_statistics();
 274     Scheduling::print_statistics();
 275     PhasePeephole::print_statistics();
 276     PhaseIdealLoop::print_statistics();
 277     if (xtty != NULL)  xtty->tail("statistics");
 278   }
 279   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 280     // put this under its own <statistics> element.
 281     print_intrinsic_statistics();
 282   }
 283 }
 284 #endif //PRODUCT
 285 
 286 // Support for bundling info
 287 Bundle* Compile::node_bundling(const Node *n) {
 288   assert(valid_bundle_info(n), "oob");
 289   return &_node_bundling_base[n->_idx];
 290 }
 291 
 292 bool Compile::valid_bundle_info(const Node *n) {
 293   return (_node_bundling_limit > n->_idx);
 294 }
 295 
 296 
 297 void Compile::gvn_replace_by(Node* n, Node* nn) {
 298   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 299     Node* use = n->last_out(i);
 300     bool is_in_table = initial_gvn()->hash_delete(use);
 301     uint uses_found = 0;
 302     for (uint j = 0; j < use->len(); j++) {
 303       if (use->in(j) == n) {
 304         if (j < use->req())
 305           use->set_req(j, nn);
 306         else
 307           use->set_prec(j, nn);
 308         uses_found++;
 309       }
 310     }
 311     if (is_in_table) {
 312       // reinsert into table
 313       initial_gvn()->hash_find_insert(use);
 314     }
 315     record_for_igvn(use);
 316     i -= uses_found;    // we deleted 1 or more copies of this edge
 317   }
 318 }
 319 
 320 
 321 static inline bool not_a_node(const Node* n) {
 322   if (n == NULL)                   return true;
 323   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 324   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 325   return false;
 326 }
 327 
 328 // Identify all nodes that are reachable from below, useful.
 329 // Use breadth-first pass that records state in a Unique_Node_List,
 330 // recursive traversal is slower.
 331 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 332   int estimated_worklist_size = unique();
 333   useful.map( estimated_worklist_size, NULL );  // preallocate space
 334 
 335   // Initialize worklist
 336   if (root() != NULL)     { useful.push(root()); }
 337   // If 'top' is cached, declare it useful to preserve cached node
 338   if( cached_top_node() ) { useful.push(cached_top_node()); }
 339 
 340   // Push all useful nodes onto the list, breadthfirst
 341   for( uint next = 0; next < useful.size(); ++next ) {
 342     assert( next < unique(), "Unique useful nodes < total nodes");
 343     Node *n  = useful.at(next);
 344     uint max = n->len();
 345     for( uint i = 0; i < max; ++i ) {
 346       Node *m = n->in(i);
 347       if (not_a_node(m))  continue;
 348       useful.push(m);
 349     }
 350   }
 351 }
 352 
 353 // Update dead_node_list with any missing dead nodes using useful
 354 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 355 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 356   uint max_idx = unique();
 357   VectorSet& useful_node_set = useful.member_set();
 358 
 359   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 360     // If node with index node_idx is not in useful set,
 361     // mark it as dead in dead node list.
 362     if (! useful_node_set.test(node_idx) ) {
 363       record_dead_node(node_idx);
 364     }
 365   }
 366 }
 367 
 368 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 369   int shift = 0;
 370   for (int i = 0; i < inlines->length(); i++) {
 371     CallGenerator* cg = inlines->at(i);
 372     CallNode* call = cg->call_node();
 373     if (shift > 0) {
 374       inlines->at_put(i-shift, cg);
 375     }
 376     if (!useful.member(call)) {
 377       shift++;
 378     }
 379   }
 380   inlines->trunc_to(inlines->length()-shift);
 381 }
 382 
 383 // Disconnect all useless nodes by disconnecting those at the boundary.
 384 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 385   uint next = 0;
 386   while (next < useful.size()) {
 387     Node *n = useful.at(next++);
 388     // Use raw traversal of out edges since this code removes out edges
 389     int max = n->outcnt();
 390     for (int j = 0; j < max; ++j) {
 391       Node* child = n->raw_out(j);
 392       if (! useful.member(child)) {
 393         assert(!child->is_top() || child != top(),
 394                "If top is cached in Compile object it is in useful list");
 395         // Only need to remove this out-edge to the useless node
 396         n->raw_del_out(j);
 397         --j;
 398         --max;
 399       }
 400     }
 401     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 402       record_for_igvn(n->unique_out());
 403     }
 404   }
 405   // Remove useless macro and predicate opaq nodes
 406   for (int i = C->macro_count()-1; i >= 0; i--) {
 407     Node* n = C->macro_node(i);
 408     if (!useful.member(n)) {
 409       remove_macro_node(n);
 410     }
 411   }
 412   // Remove useless expensive node
 413   for (int i = C->expensive_count()-1; i >= 0; i--) {
 414     Node* n = C->expensive_node(i);
 415     if (!useful.member(n)) {
 416       remove_expensive_node(n);
 417     }
 418   }
 419   // clean up the late inline lists
 420   remove_useless_late_inlines(&_string_late_inlines, useful);
 421   remove_useless_late_inlines(&_late_inlines, useful);
 422   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 423 }
 424 
 425 //------------------------------frame_size_in_words-----------------------------
 426 // frame_slots in units of words
 427 int Compile::frame_size_in_words() const {
 428   // shift is 0 in LP32 and 1 in LP64
 429   const int shift = (LogBytesPerWord - LogBytesPerInt);
 430   int words = _frame_slots >> shift;
 431   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 432   return words;
 433 }
 434 
 435 // ============================================================================
 436 //------------------------------CompileWrapper---------------------------------
 437 class CompileWrapper : public StackObj {
 438   Compile *const _compile;
 439  public:
 440   CompileWrapper(Compile* compile);
 441 
 442   ~CompileWrapper();
 443 };
 444 
 445 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 446   // the Compile* pointer is stored in the current ciEnv:
 447   ciEnv* env = compile->env();
 448   assert(env == ciEnv::current(), "must already be a ciEnv active");
 449   assert(env->compiler_data() == NULL, "compile already active?");
 450   env->set_compiler_data(compile);
 451   assert(compile == Compile::current(), "sanity");
 452 
 453   compile->set_type_dict(NULL);
 454   compile->set_type_hwm(NULL);
 455   compile->set_type_last_size(0);
 456   compile->set_last_tf(NULL, NULL);
 457   compile->set_indexSet_arena(NULL);
 458   compile->set_indexSet_free_block_list(NULL);
 459   compile->init_type_arena();
 460   Type::Initialize(compile);
 461   _compile->set_scratch_buffer_blob(NULL);
 462   _compile->begin_method();
 463 }
 464 CompileWrapper::~CompileWrapper() {
 465   _compile->end_method();
 466   if (_compile->scratch_buffer_blob() != NULL)
 467     BufferBlob::free(_compile->scratch_buffer_blob());
 468   _compile->env()->set_compiler_data(NULL);
 469 }
 470 
 471 
 472 //----------------------------print_compile_messages---------------------------
 473 void Compile::print_compile_messages() {
 474 #ifndef PRODUCT
 475   // Check if recompiling
 476   if (_subsume_loads == false && PrintOpto) {
 477     // Recompiling without allowing machine instructions to subsume loads
 478     tty->print_cr("*********************************************************");
 479     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 480     tty->print_cr("*********************************************************");
 481   }
 482   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 483     // Recompiling without escape analysis
 484     tty->print_cr("*********************************************************");
 485     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 486     tty->print_cr("*********************************************************");
 487   }
 488   if (env()->break_at_compile()) {
 489     // Open the debugger when compiling this method.
 490     tty->print("### Breaking when compiling: ");
 491     method()->print_short_name();
 492     tty->cr();
 493     BREAKPOINT;
 494   }
 495 
 496   if( PrintOpto ) {
 497     if (is_osr_compilation()) {
 498       tty->print("[OSR]%3d", _compile_id);
 499     } else {
 500       tty->print("%3d", _compile_id);
 501     }
 502   }
 503 #endif
 504 }
 505 
 506 
 507 //-----------------------init_scratch_buffer_blob------------------------------
 508 // Construct a temporary BufferBlob and cache it for this compile.
 509 void Compile::init_scratch_buffer_blob(int const_size) {
 510   // If there is already a scratch buffer blob allocated and the
 511   // constant section is big enough, use it.  Otherwise free the
 512   // current and allocate a new one.
 513   BufferBlob* blob = scratch_buffer_blob();
 514   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 515     // Use the current blob.
 516   } else {
 517     if (blob != NULL) {
 518       BufferBlob::free(blob);
 519     }
 520 
 521     ResourceMark rm;
 522     _scratch_const_size = const_size;
 523     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 524     blob = BufferBlob::create("Compile::scratch_buffer", size);
 525     // Record the buffer blob for next time.
 526     set_scratch_buffer_blob(blob);
 527     // Have we run out of code space?
 528     if (scratch_buffer_blob() == NULL) {
 529       // Let CompilerBroker disable further compilations.
 530       record_failure("Not enough space for scratch buffer in CodeCache");
 531       return;
 532     }
 533   }
 534 
 535   // Initialize the relocation buffers
 536   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 537   set_scratch_locs_memory(locs_buf);
 538 }
 539 
 540 
 541 //-----------------------scratch_emit_size-------------------------------------
 542 // Helper function that computes size by emitting code
 543 uint Compile::scratch_emit_size(const Node* n) {
 544   // Start scratch_emit_size section.
 545   set_in_scratch_emit_size(true);
 546 
 547   // Emit into a trash buffer and count bytes emitted.
 548   // This is a pretty expensive way to compute a size,
 549   // but it works well enough if seldom used.
 550   // All common fixed-size instructions are given a size
 551   // method by the AD file.
 552   // Note that the scratch buffer blob and locs memory are
 553   // allocated at the beginning of the compile task, and
 554   // may be shared by several calls to scratch_emit_size.
 555   // The allocation of the scratch buffer blob is particularly
 556   // expensive, since it has to grab the code cache lock.
 557   BufferBlob* blob = this->scratch_buffer_blob();
 558   assert(blob != NULL, "Initialize BufferBlob at start");
 559   assert(blob->size() > MAX_inst_size, "sanity");
 560   relocInfo* locs_buf = scratch_locs_memory();
 561   address blob_begin = blob->content_begin();
 562   address blob_end   = (address)locs_buf;
 563   assert(blob->content_contains(blob_end), "sanity");
 564   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 565   buf.initialize_consts_size(_scratch_const_size);
 566   buf.initialize_stubs_size(MAX_stubs_size);
 567   assert(locs_buf != NULL, "sanity");
 568   int lsize = MAX_locs_size / 3;
 569   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 570   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 571   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 572 
 573   // Do the emission.
 574 
 575   Label fakeL; // Fake label for branch instructions.
 576   Label*   saveL = NULL;
 577   uint save_bnum = 0;
 578   bool is_branch = n->is_MachBranch();
 579   if (is_branch) {
 580     MacroAssembler masm(&buf);
 581     masm.bind(fakeL);
 582     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 583     n->as_MachBranch()->label_set(&fakeL, 0);
 584   }
 585   n->emit(buf, this->regalloc());
 586   if (is_branch) // Restore label.
 587     n->as_MachBranch()->label_set(saveL, save_bnum);
 588 
 589   // End scratch_emit_size section.
 590   set_in_scratch_emit_size(false);
 591 
 592   return buf.insts_size();
 593 }
 594 
 595 
 596 // ============================================================================
 597 //------------------------------Compile standard-------------------------------
 598 debug_only( int Compile::_debug_idx = 100000; )
 599 
 600 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 601 // the continuation bci for on stack replacement.
 602 
 603 
 604 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 605                 : Phase(Compiler),
 606                   _env(ci_env),
 607                   _log(ci_env->log()),
 608                   _compile_id(ci_env->compile_id()),
 609                   _save_argument_registers(false),
 610                   _stub_name(NULL),
 611                   _stub_function(NULL),
 612                   _stub_entry_point(NULL),
 613                   _method(target),
 614                   _entry_bci(osr_bci),
 615                   _initial_gvn(NULL),
 616                   _for_igvn(NULL),
 617                   _warm_calls(NULL),
 618                   _subsume_loads(subsume_loads),
 619                   _do_escape_analysis(do_escape_analysis),
 620                   _failure_reason(NULL),
 621                   _code_buffer("Compile::Fill_buffer"),
 622                   _orig_pc_slot(0),
 623                   _orig_pc_slot_offset_in_bytes(0),
 624                   _has_method_handle_invokes(false),
 625                   _mach_constant_base_node(NULL),
 626                   _node_bundling_limit(0),
 627                   _node_bundling_base(NULL),
 628                   _java_calls(0),
 629                   _inner_loops(0),
 630                   _scratch_const_size(-1),
 631                   _in_scratch_emit_size(false),
 632                   _dead_node_list(comp_arena()),
 633                   _dead_node_count(0),
 634 #ifndef PRODUCT
 635                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 636                   _printer(IdealGraphPrinter::printer()),
 637 #endif
 638                   _congraph(NULL),
 639                   _late_inlines(comp_arena(), 2, 0, NULL),
 640                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 641                   _late_inlines_pos(0),
 642                   _number_of_mh_late_inlines(0),
 643                   _inlining_progress(false),
 644                   _inlining_incrementally(false),
 645                   _print_inlining_list(NULL),
 646                   _print_inlining(0) {
 647   C = this;
 648 
 649   CompileWrapper cw(this);
 650 #ifndef PRODUCT
 651   if (TimeCompiler2) {
 652     tty->print(" ");
 653     target->holder()->name()->print();
 654     tty->print(".");
 655     target->print_short_name();
 656     tty->print("  ");
 657   }
 658   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 659   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 660   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 661   if (!print_opto_assembly) {
 662     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 663     if (print_assembly && !Disassembler::can_decode()) {
 664       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 665       print_opto_assembly = true;
 666     }
 667   }
 668   set_print_assembly(print_opto_assembly);
 669   set_parsed_irreducible_loop(false);
 670 #endif
 671 
 672   if (ProfileTraps) {
 673     // Make sure the method being compiled gets its own MDO,
 674     // so we can at least track the decompile_count().
 675     method()->ensure_method_data();
 676   }
 677 
 678   Init(::AliasLevel);
 679 
 680 
 681   print_compile_messages();
 682 
 683   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 684     _ilt = InlineTree::build_inline_tree_root();
 685   else
 686     _ilt = NULL;
 687 
 688   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 689   assert(num_alias_types() >= AliasIdxRaw, "");
 690 
 691 #define MINIMUM_NODE_HASH  1023
 692   // Node list that Iterative GVN will start with
 693   Unique_Node_List for_igvn(comp_arena());
 694   set_for_igvn(&for_igvn);
 695 
 696   // GVN that will be run immediately on new nodes
 697   uint estimated_size = method()->code_size()*4+64;
 698   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 699   PhaseGVN gvn(node_arena(), estimated_size);
 700   set_initial_gvn(&gvn);
 701 
 702   if (PrintInlining  || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
 703     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 704   }
 705   { // Scope for timing the parser
 706     TracePhase t3("parse", &_t_parser, true);
 707 
 708     // Put top into the hash table ASAP.
 709     initial_gvn()->transform_no_reclaim(top());
 710 
 711     // Set up tf(), start(), and find a CallGenerator.
 712     CallGenerator* cg = NULL;
 713     if (is_osr_compilation()) {
 714       const TypeTuple *domain = StartOSRNode::osr_domain();
 715       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 716       init_tf(TypeFunc::make(domain, range));
 717       StartNode* s = new (this) StartOSRNode(root(), domain);
 718       initial_gvn()->set_type_bottom(s);
 719       init_start(s);
 720       cg = CallGenerator::for_osr(method(), entry_bci());
 721     } else {
 722       // Normal case.
 723       init_tf(TypeFunc::make(method()));
 724       StartNode* s = new (this) StartNode(root(), tf()->domain());
 725       initial_gvn()->set_type_bottom(s);
 726       init_start(s);
 727       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 728         // With java.lang.ref.reference.get() we must go through the
 729         // intrinsic when G1 is enabled - even when get() is the root
 730         // method of the compile - so that, if necessary, the value in
 731         // the referent field of the reference object gets recorded by
 732         // the pre-barrier code.
 733         // Specifically, if G1 is enabled, the value in the referent
 734         // field is recorded by the G1 SATB pre barrier. This will
 735         // result in the referent being marked live and the reference
 736         // object removed from the list of discovered references during
 737         // reference processing.
 738         cg = find_intrinsic(method(), false);
 739       }
 740       if (cg == NULL) {
 741         float past_uses = method()->interpreter_invocation_count();
 742         float expected_uses = past_uses;
 743         cg = CallGenerator::for_inline(method(), expected_uses);
 744       }
 745     }
 746     if (failing())  return;
 747     if (cg == NULL) {
 748       record_method_not_compilable_all_tiers("cannot parse method");
 749       return;
 750     }
 751     JVMState* jvms = build_start_state(start(), tf());
 752     if ((jvms = cg->generate(jvms)) == NULL) {
 753       record_method_not_compilable("method parse failed");
 754       return;
 755     }
 756     GraphKit kit(jvms);
 757 
 758     if (!kit.stopped()) {
 759       // Accept return values, and transfer control we know not where.
 760       // This is done by a special, unique ReturnNode bound to root.
 761       return_values(kit.jvms());
 762     }
 763 
 764     if (kit.has_exceptions()) {
 765       // Any exceptions that escape from this call must be rethrown
 766       // to whatever caller is dynamically above us on the stack.
 767       // This is done by a special, unique RethrowNode bound to root.
 768       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 769     }
 770 
 771     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 772 
 773     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 774       inline_string_calls(true);
 775     }
 776 
 777     if (failing())  return;
 778 
 779     print_method("Before RemoveUseless", 3);
 780 
 781     // Remove clutter produced by parsing.
 782     if (!failing()) {
 783       ResourceMark rm;
 784       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 785     }
 786   }
 787 
 788   // Note:  Large methods are capped off in do_one_bytecode().
 789   if (failing())  return;
 790 
 791   // After parsing, node notes are no longer automagic.
 792   // They must be propagated by register_new_node_with_optimizer(),
 793   // clone(), or the like.
 794   set_default_node_notes(NULL);
 795 
 796   for (;;) {
 797     int successes = Inline_Warm();
 798     if (failing())  return;
 799     if (successes == 0)  break;
 800   }
 801 
 802   // Drain the list.
 803   Finish_Warm();
 804 #ifndef PRODUCT
 805   if (_printer) {
 806     _printer->print_inlining(this);
 807   }
 808 #endif
 809 
 810   if (failing())  return;
 811   NOT_PRODUCT( verify_graph_edges(); )
 812 
 813   // Now optimize
 814   Optimize();
 815   if (failing())  return;
 816   NOT_PRODUCT( verify_graph_edges(); )
 817 
 818 #ifndef PRODUCT
 819   if (PrintIdeal) {
 820     ttyLocker ttyl;  // keep the following output all in one block
 821     // This output goes directly to the tty, not the compiler log.
 822     // To enable tools to match it up with the compilation activity,
 823     // be sure to tag this tty output with the compile ID.
 824     if (xtty != NULL) {
 825       xtty->head("ideal compile_id='%d'%s", compile_id(),
 826                  is_osr_compilation()    ? " compile_kind='osr'" :
 827                  "");
 828     }
 829     root()->dump(9999);
 830     if (xtty != NULL) {
 831       xtty->tail("ideal");
 832     }
 833   }
 834 #endif
 835 
 836   // Now that we know the size of all the monitors we can add a fixed slot
 837   // for the original deopt pc.
 838 
 839   _orig_pc_slot =  fixed_slots();
 840   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 841   set_fixed_slots(next_slot);
 842 
 843   // Now generate code
 844   Code_Gen();
 845   if (failing())  return;
 846 
 847   // Check if we want to skip execution of all compiled code.
 848   {
 849 #ifndef PRODUCT
 850     if (OptoNoExecute) {
 851       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 852       return;
 853     }
 854     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 855 #endif
 856 
 857     if (is_osr_compilation()) {
 858       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 859       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 860     } else {
 861       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 862       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 863     }
 864 
 865     env()->register_method(_method, _entry_bci,
 866                            &_code_offsets,
 867                            _orig_pc_slot_offset_in_bytes,
 868                            code_buffer(),
 869                            frame_size_in_words(), _oop_map_set,
 870                            &_handler_table, &_inc_table,
 871                            compiler,
 872                            env()->comp_level(),
 873                            has_unsafe_access(),
 874                            SharedRuntime::is_wide_vector(max_vector_size())
 875                            );
 876 
 877     if (log() != NULL) // Print code cache state into compiler log
 878       log()->code_cache_state();
 879   }
 880 }
 881 
 882 //------------------------------Compile----------------------------------------
 883 // Compile a runtime stub
 884 Compile::Compile( ciEnv* ci_env,
 885                   TypeFunc_generator generator,
 886                   address stub_function,
 887                   const char *stub_name,
 888                   int is_fancy_jump,
 889                   bool pass_tls,
 890                   bool save_arg_registers,
 891                   bool return_pc )
 892   : Phase(Compiler),
 893     _env(ci_env),
 894     _log(ci_env->log()),
 895     _compile_id(0),
 896     _save_argument_registers(save_arg_registers),
 897     _method(NULL),
 898     _stub_name(stub_name),
 899     _stub_function(stub_function),
 900     _stub_entry_point(NULL),
 901     _entry_bci(InvocationEntryBci),
 902     _initial_gvn(NULL),
 903     _for_igvn(NULL),
 904     _warm_calls(NULL),
 905     _orig_pc_slot(0),
 906     _orig_pc_slot_offset_in_bytes(0),
 907     _subsume_loads(true),
 908     _do_escape_analysis(false),
 909     _failure_reason(NULL),
 910     _code_buffer("Compile::Fill_buffer"),
 911     _has_method_handle_invokes(false),
 912     _mach_constant_base_node(NULL),
 913     _node_bundling_limit(0),
 914     _node_bundling_base(NULL),
 915     _java_calls(0),
 916     _inner_loops(0),
 917 #ifndef PRODUCT
 918     _trace_opto_output(TraceOptoOutput),
 919     _printer(NULL),
 920 #endif
 921     _dead_node_list(comp_arena()),
 922     _dead_node_count(0),
 923     _congraph(NULL),
 924     _number_of_mh_late_inlines(0),
 925     _inlining_progress(false),
 926     _inlining_incrementally(false),
 927     _print_inlining_list(NULL),
 928     _print_inlining(0) {
 929   C = this;
 930 
 931 #ifndef PRODUCT
 932   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 933   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 934   set_print_assembly(PrintFrameConverterAssembly);
 935   set_parsed_irreducible_loop(false);
 936 #endif
 937   CompileWrapper cw(this);
 938   Init(/*AliasLevel=*/ 0);
 939   init_tf((*generator)());
 940 
 941   {
 942     // The following is a dummy for the sake of GraphKit::gen_stub
 943     Unique_Node_List for_igvn(comp_arena());
 944     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 945     PhaseGVN gvn(Thread::current()->resource_area(),255);
 946     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 947     gvn.transform_no_reclaim(top());
 948 
 949     GraphKit kit;
 950     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 951   }
 952 
 953   NOT_PRODUCT( verify_graph_edges(); )
 954   Code_Gen();
 955   if (failing())  return;
 956 
 957 
 958   // Entry point will be accessed using compile->stub_entry_point();
 959   if (code_buffer() == NULL) {
 960     Matcher::soft_match_failure();
 961   } else {
 962     if (PrintAssembly && (WizardMode || Verbose))
 963       tty->print_cr("### Stub::%s", stub_name);
 964 
 965     if (!failing()) {
 966       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 967 
 968       // Make the NMethod
 969       // For now we mark the frame as never safe for profile stackwalking
 970       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 971                                                       code_buffer(),
 972                                                       CodeOffsets::frame_never_safe,
 973                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 974                                                       frame_size_in_words(),
 975                                                       _oop_map_set,
 976                                                       save_arg_registers);
 977       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 978 
 979       _stub_entry_point = rs->entry_point();
 980     }
 981   }
 982 }
 983 
 984 //------------------------------Init-------------------------------------------
 985 // Prepare for a single compilation
 986 void Compile::Init(int aliaslevel) {
 987   _unique  = 0;
 988   _regalloc = NULL;
 989 
 990   _tf      = NULL;  // filled in later
 991   _top     = NULL;  // cached later
 992   _matcher = NULL;  // filled in later
 993   _cfg     = NULL;  // filled in later
 994 
 995   set_24_bit_selection_and_mode(Use24BitFP, false);
 996 
 997   _node_note_array = NULL;
 998   _default_node_notes = NULL;
 999 
1000   _immutable_memory = NULL; // filled in at first inquiry
1001 
1002   // Globally visible Nodes
1003   // First set TOP to NULL to give safe behavior during creation of RootNode
1004   set_cached_top_node(NULL);
1005   set_root(new (this) RootNode());
1006   // Now that you have a Root to point to, create the real TOP
1007   set_cached_top_node( new (this) ConNode(Type::TOP) );
1008   set_recent_alloc(NULL, NULL);
1009 
1010   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1011   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1012   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1013   env()->set_dependencies(new Dependencies(env()));
1014 
1015   _fixed_slots = 0;
1016   set_has_split_ifs(false);
1017   set_has_loops(has_method() && method()->has_loops()); // first approximation
1018   set_has_stringbuilder(false);
1019   _trap_can_recompile = false;  // no traps emitted yet
1020   _major_progress = true; // start out assuming good things will happen
1021   set_has_unsafe_access(false);
1022   set_max_vector_size(0);
1023   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1024   set_decompile_count(0);
1025 
1026   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1027   set_num_loop_opts(LoopOptsCount);
1028   set_do_inlining(Inline);
1029   set_max_inline_size(MaxInlineSize);
1030   set_freq_inline_size(FreqInlineSize);
1031   set_do_scheduling(OptoScheduling);
1032   set_do_count_invocations(false);
1033   set_do_method_data_update(false);
1034 
1035   if (debug_info()->recording_non_safepoints()) {
1036     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1037                         (comp_arena(), 8, 0, NULL));
1038     set_default_node_notes(Node_Notes::make(this));
1039   }
1040 
1041   // // -- Initialize types before each compile --
1042   // // Update cached type information
1043   // if( _method && _method->constants() )
1044   //   Type::update_loaded_types(_method, _method->constants());
1045 
1046   // Init alias_type map.
1047   if (!_do_escape_analysis && aliaslevel == 3)
1048     aliaslevel = 2;  // No unique types without escape analysis
1049   _AliasLevel = aliaslevel;
1050   const int grow_ats = 16;
1051   _max_alias_types = grow_ats;
1052   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1053   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1054   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1055   {
1056     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1057   }
1058   // Initialize the first few types.
1059   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1060   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1061   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1062   _num_alias_types = AliasIdxRaw+1;
1063   // Zero out the alias type cache.
1064   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1065   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1066   probe_alias_cache(NULL)->_index = AliasIdxTop;
1067 
1068   _intrinsics = NULL;
1069   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1070   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1071   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1072   register_library_intrinsics();
1073 }
1074 
1075 //---------------------------init_start----------------------------------------
1076 // Install the StartNode on this compile object.
1077 void Compile::init_start(StartNode* s) {
1078   if (failing())
1079     return; // already failing
1080   assert(s == start(), "");
1081 }
1082 
1083 StartNode* Compile::start() const {
1084   assert(!failing(), "");
1085   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1086     Node* start = root()->fast_out(i);
1087     if( start->is_Start() )
1088       return start->as_Start();
1089   }
1090   ShouldNotReachHere();
1091   return NULL;
1092 }
1093 
1094 //-------------------------------immutable_memory-------------------------------------
1095 // Access immutable memory
1096 Node* Compile::immutable_memory() {
1097   if (_immutable_memory != NULL) {
1098     return _immutable_memory;
1099   }
1100   StartNode* s = start();
1101   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1102     Node *p = s->fast_out(i);
1103     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1104       _immutable_memory = p;
1105       return _immutable_memory;
1106     }
1107   }
1108   ShouldNotReachHere();
1109   return NULL;
1110 }
1111 
1112 //----------------------set_cached_top_node------------------------------------
1113 // Install the cached top node, and make sure Node::is_top works correctly.
1114 void Compile::set_cached_top_node(Node* tn) {
1115   if (tn != NULL)  verify_top(tn);
1116   Node* old_top = _top;
1117   _top = tn;
1118   // Calling Node::setup_is_top allows the nodes the chance to adjust
1119   // their _out arrays.
1120   if (_top != NULL)     _top->setup_is_top();
1121   if (old_top != NULL)  old_top->setup_is_top();
1122   assert(_top == NULL || top()->is_top(), "");
1123 }
1124 
1125 #ifdef ASSERT
1126 uint Compile::count_live_nodes_by_graph_walk() {
1127   Unique_Node_List useful(comp_arena());
1128   // Get useful node list by walking the graph.
1129   identify_useful_nodes(useful);
1130   return useful.size();
1131 }
1132 
1133 void Compile::print_missing_nodes() {
1134 
1135   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1136   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1137     return;
1138   }
1139 
1140   // This is an expensive function. It is executed only when the user
1141   // specifies VerifyIdealNodeCount option or otherwise knows the
1142   // additional work that needs to be done to identify reachable nodes
1143   // by walking the flow graph and find the missing ones using
1144   // _dead_node_list.
1145 
1146   Unique_Node_List useful(comp_arena());
1147   // Get useful node list by walking the graph.
1148   identify_useful_nodes(useful);
1149 
1150   uint l_nodes = C->live_nodes();
1151   uint l_nodes_by_walk = useful.size();
1152 
1153   if (l_nodes != l_nodes_by_walk) {
1154     if (_log != NULL) {
1155       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1156       _log->stamp();
1157       _log->end_head();
1158     }
1159     VectorSet& useful_member_set = useful.member_set();
1160     int last_idx = l_nodes_by_walk;
1161     for (int i = 0; i < last_idx; i++) {
1162       if (useful_member_set.test(i)) {
1163         if (_dead_node_list.test(i)) {
1164           if (_log != NULL) {
1165             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1166           }
1167           if (PrintIdealNodeCount) {
1168             // Print the log message to tty
1169               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1170               useful.at(i)->dump();
1171           }
1172         }
1173       }
1174       else if (! _dead_node_list.test(i)) {
1175         if (_log != NULL) {
1176           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1177         }
1178         if (PrintIdealNodeCount) {
1179           // Print the log message to tty
1180           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1181         }
1182       }
1183     }
1184     if (_log != NULL) {
1185       _log->tail("mismatched_nodes");
1186     }
1187   }
1188 }
1189 #endif
1190 
1191 #ifndef PRODUCT
1192 void Compile::verify_top(Node* tn) const {
1193   if (tn != NULL) {
1194     assert(tn->is_Con(), "top node must be a constant");
1195     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1196     assert(tn->in(0) != NULL, "must have live top node");
1197   }
1198 }
1199 #endif
1200 
1201 
1202 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1203 
1204 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1205   guarantee(arr != NULL, "");
1206   int num_blocks = arr->length();
1207   if (grow_by < num_blocks)  grow_by = num_blocks;
1208   int num_notes = grow_by * _node_notes_block_size;
1209   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1210   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1211   while (num_notes > 0) {
1212     arr->append(notes);
1213     notes     += _node_notes_block_size;
1214     num_notes -= _node_notes_block_size;
1215   }
1216   assert(num_notes == 0, "exact multiple, please");
1217 }
1218 
1219 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1220   if (source == NULL || dest == NULL)  return false;
1221 
1222   if (dest->is_Con())
1223     return false;               // Do not push debug info onto constants.
1224 
1225 #ifdef ASSERT
1226   // Leave a bread crumb trail pointing to the original node:
1227   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1228     dest->set_debug_orig(source);
1229   }
1230 #endif
1231 
1232   if (node_note_array() == NULL)
1233     return false;               // Not collecting any notes now.
1234 
1235   // This is a copy onto a pre-existing node, which may already have notes.
1236   // If both nodes have notes, do not overwrite any pre-existing notes.
1237   Node_Notes* source_notes = node_notes_at(source->_idx);
1238   if (source_notes == NULL || source_notes->is_clear())  return false;
1239   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1240   if (dest_notes == NULL || dest_notes->is_clear()) {
1241     return set_node_notes_at(dest->_idx, source_notes);
1242   }
1243 
1244   Node_Notes merged_notes = (*source_notes);
1245   // The order of operations here ensures that dest notes will win...
1246   merged_notes.update_from(dest_notes);
1247   return set_node_notes_at(dest->_idx, &merged_notes);
1248 }
1249 
1250 
1251 //--------------------------allow_range_check_smearing-------------------------
1252 // Gating condition for coalescing similar range checks.
1253 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1254 // single covering check that is at least as strong as any of them.
1255 // If the optimization succeeds, the simplified (strengthened) range check
1256 // will always succeed.  If it fails, we will deopt, and then give up
1257 // on the optimization.
1258 bool Compile::allow_range_check_smearing() const {
1259   // If this method has already thrown a range-check,
1260   // assume it was because we already tried range smearing
1261   // and it failed.
1262   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1263   return !already_trapped;
1264 }
1265 
1266 
1267 //------------------------------flatten_alias_type-----------------------------
1268 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1269   int offset = tj->offset();
1270   TypePtr::PTR ptr = tj->ptr();
1271 
1272   // Known instance (scalarizable allocation) alias only with itself.
1273   bool is_known_inst = tj->isa_oopptr() != NULL &&
1274                        tj->is_oopptr()->is_known_instance();
1275 
1276   // Process weird unsafe references.
1277   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1278     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1279     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1280     tj = TypeOopPtr::BOTTOM;
1281     ptr = tj->ptr();
1282     offset = tj->offset();
1283   }
1284 
1285   // Array pointers need some flattening
1286   const TypeAryPtr *ta = tj->isa_aryptr();
1287   if( ta && is_known_inst ) {
1288     if ( offset != Type::OffsetBot &&
1289          offset > arrayOopDesc::length_offset_in_bytes() ) {
1290       offset = Type::OffsetBot; // Flatten constant access into array body only
1291       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1292     }
1293   } else if( ta && _AliasLevel >= 2 ) {
1294     // For arrays indexed by constant indices, we flatten the alias
1295     // space to include all of the array body.  Only the header, klass
1296     // and array length can be accessed un-aliased.
1297     if( offset != Type::OffsetBot ) {
1298       if( ta->const_oop() ) { // MethodData* or Method*
1299         offset = Type::OffsetBot;   // Flatten constant access into array body
1300         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1301       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1302         // range is OK as-is.
1303         tj = ta = TypeAryPtr::RANGE;
1304       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1305         tj = TypeInstPtr::KLASS; // all klass loads look alike
1306         ta = TypeAryPtr::RANGE; // generic ignored junk
1307         ptr = TypePtr::BotPTR;
1308       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1309         tj = TypeInstPtr::MARK;
1310         ta = TypeAryPtr::RANGE; // generic ignored junk
1311         ptr = TypePtr::BotPTR;
1312       } else {                  // Random constant offset into array body
1313         offset = Type::OffsetBot;   // Flatten constant access into array body
1314         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1315       }
1316     }
1317     // Arrays of fixed size alias with arrays of unknown size.
1318     if (ta->size() != TypeInt::POS) {
1319       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1320       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1321     }
1322     // Arrays of known objects become arrays of unknown objects.
1323     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1324       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1325       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1326     }
1327     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1328       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1329       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1330     }
1331     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1332     // cannot be distinguished by bytecode alone.
1333     if (ta->elem() == TypeInt::BOOL) {
1334       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1335       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1336       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1337     }
1338     // During the 2nd round of IterGVN, NotNull castings are removed.
1339     // Make sure the Bottom and NotNull variants alias the same.
1340     // Also, make sure exact and non-exact variants alias the same.
1341     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1342       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1343     }
1344   }
1345 
1346   // Oop pointers need some flattening
1347   const TypeInstPtr *to = tj->isa_instptr();
1348   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1349     ciInstanceKlass *k = to->klass()->as_instance_klass();
1350     if( ptr == TypePtr::Constant ) {
1351       if (to->klass() != ciEnv::current()->Class_klass() ||
1352           offset < k->size_helper() * wordSize) {
1353         // No constant oop pointers (such as Strings); they alias with
1354         // unknown strings.
1355         assert(!is_known_inst, "not scalarizable allocation");
1356         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1357       }
1358     } else if( is_known_inst ) {
1359       tj = to; // Keep NotNull and klass_is_exact for instance type
1360     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1361       // During the 2nd round of IterGVN, NotNull castings are removed.
1362       // Make sure the Bottom and NotNull variants alias the same.
1363       // Also, make sure exact and non-exact variants alias the same.
1364       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1365     }
1366     // Canonicalize the holder of this field
1367     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1368       // First handle header references such as a LoadKlassNode, even if the
1369       // object's klass is unloaded at compile time (4965979).
1370       if (!is_known_inst) { // Do it only for non-instance types
1371         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1372       }
1373     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1374       // Static fields are in the space above the normal instance
1375       // fields in the java.lang.Class instance.
1376       if (to->klass() != ciEnv::current()->Class_klass()) {
1377         to = NULL;
1378         tj = TypeOopPtr::BOTTOM;
1379         offset = tj->offset();
1380       }
1381     } else {
1382       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1383       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1384         if( is_known_inst ) {
1385           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1386         } else {
1387           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1388         }
1389       }
1390     }
1391   }
1392 
1393   // Klass pointers to object array klasses need some flattening
1394   const TypeKlassPtr *tk = tj->isa_klassptr();
1395   if( tk ) {
1396     // If we are referencing a field within a Klass, we need
1397     // to assume the worst case of an Object.  Both exact and
1398     // inexact types must flatten to the same alias class so
1399     // use NotNull as the PTR.
1400     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1401 
1402       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1403                                    TypeKlassPtr::OBJECT->klass(),
1404                                    offset);
1405     }
1406 
1407     ciKlass* klass = tk->klass();
1408     if( klass->is_obj_array_klass() ) {
1409       ciKlass* k = TypeAryPtr::OOPS->klass();
1410       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1411         k = TypeInstPtr::BOTTOM->klass();
1412       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1413     }
1414 
1415     // Check for precise loads from the primary supertype array and force them
1416     // to the supertype cache alias index.  Check for generic array loads from
1417     // the primary supertype array and also force them to the supertype cache
1418     // alias index.  Since the same load can reach both, we need to merge
1419     // these 2 disparate memories into the same alias class.  Since the
1420     // primary supertype array is read-only, there's no chance of confusion
1421     // where we bypass an array load and an array store.
1422     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1423     if (offset == Type::OffsetBot ||
1424         (offset >= primary_supers_offset &&
1425          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1426         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1427       offset = in_bytes(Klass::secondary_super_cache_offset());
1428       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1429     }
1430   }
1431 
1432   // Flatten all Raw pointers together.
1433   if (tj->base() == Type::RawPtr)
1434     tj = TypeRawPtr::BOTTOM;
1435 
1436   if (tj->base() == Type::AnyPtr)
1437     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1438 
1439   // Flatten all to bottom for now
1440   switch( _AliasLevel ) {
1441   case 0:
1442     tj = TypePtr::BOTTOM;
1443     break;
1444   case 1:                       // Flatten to: oop, static, field or array
1445     switch (tj->base()) {
1446     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1447     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1448     case Type::AryPtr:   // do not distinguish arrays at all
1449     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1450     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1451     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1452     default: ShouldNotReachHere();
1453     }
1454     break;
1455   case 2:                       // No collapsing at level 2; keep all splits
1456   case 3:                       // No collapsing at level 3; keep all splits
1457     break;
1458   default:
1459     Unimplemented();
1460   }
1461 
1462   offset = tj->offset();
1463   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1464 
1465   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1466           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1467           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1468           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1469           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1470           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1471           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1472           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1473   assert( tj->ptr() != TypePtr::TopPTR &&
1474           tj->ptr() != TypePtr::AnyNull &&
1475           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1476 //    assert( tj->ptr() != TypePtr::Constant ||
1477 //            tj->base() == Type::RawPtr ||
1478 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1479 
1480   return tj;
1481 }
1482 
1483 void Compile::AliasType::Init(int i, const TypePtr* at) {
1484   _index = i;
1485   _adr_type = at;
1486   _field = NULL;
1487   _is_rewritable = true; // default
1488   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1489   if (atoop != NULL && atoop->is_known_instance()) {
1490     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1491     _general_index = Compile::current()->get_alias_index(gt);
1492   } else {
1493     _general_index = 0;
1494   }
1495 }
1496 
1497 //---------------------------------print_on------------------------------------
1498 #ifndef PRODUCT
1499 void Compile::AliasType::print_on(outputStream* st) {
1500   if (index() < 10)
1501         st->print("@ <%d> ", index());
1502   else  st->print("@ <%d>",  index());
1503   st->print(is_rewritable() ? "   " : " RO");
1504   int offset = adr_type()->offset();
1505   if (offset == Type::OffsetBot)
1506         st->print(" +any");
1507   else  st->print(" +%-3d", offset);
1508   st->print(" in ");
1509   adr_type()->dump_on(st);
1510   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1511   if (field() != NULL && tjp) {
1512     if (tjp->klass()  != field()->holder() ||
1513         tjp->offset() != field()->offset_in_bytes()) {
1514       st->print(" != ");
1515       field()->print();
1516       st->print(" ***");
1517     }
1518   }
1519 }
1520 
1521 void print_alias_types() {
1522   Compile* C = Compile::current();
1523   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1524   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1525     C->alias_type(idx)->print_on(tty);
1526     tty->cr();
1527   }
1528 }
1529 #endif
1530 
1531 
1532 //----------------------------probe_alias_cache--------------------------------
1533 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1534   intptr_t key = (intptr_t) adr_type;
1535   key ^= key >> logAliasCacheSize;
1536   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1537 }
1538 
1539 
1540 //-----------------------------grow_alias_types--------------------------------
1541 void Compile::grow_alias_types() {
1542   const int old_ats  = _max_alias_types; // how many before?
1543   const int new_ats  = old_ats;          // how many more?
1544   const int grow_ats = old_ats+new_ats;  // how many now?
1545   _max_alias_types = grow_ats;
1546   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1547   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1548   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1549   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1550 }
1551 
1552 
1553 //--------------------------------find_alias_type------------------------------
1554 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1555   if (_AliasLevel == 0)
1556     return alias_type(AliasIdxBot);
1557 
1558   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1559   if (ace->_adr_type == adr_type) {
1560     return alias_type(ace->_index);
1561   }
1562 
1563   // Handle special cases.
1564   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1565   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1566 
1567   // Do it the slow way.
1568   const TypePtr* flat = flatten_alias_type(adr_type);
1569 
1570 #ifdef ASSERT
1571   assert(flat == flatten_alias_type(flat), "idempotent");
1572   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1573   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1574     const TypeOopPtr* foop = flat->is_oopptr();
1575     // Scalarizable allocations have exact klass always.
1576     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1577     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1578     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1579   }
1580   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1581 #endif
1582 
1583   int idx = AliasIdxTop;
1584   for (int i = 0; i < num_alias_types(); i++) {
1585     if (alias_type(i)->adr_type() == flat) {
1586       idx = i;
1587       break;
1588     }
1589   }
1590 
1591   if (idx == AliasIdxTop) {
1592     if (no_create)  return NULL;
1593     // Grow the array if necessary.
1594     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1595     // Add a new alias type.
1596     idx = _num_alias_types++;
1597     _alias_types[idx]->Init(idx, flat);
1598     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1599     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1600     if (flat->isa_instptr()) {
1601       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1602           && flat->is_instptr()->klass() == env()->Class_klass())
1603         alias_type(idx)->set_rewritable(false);
1604     }
1605     if (flat->isa_klassptr()) {
1606       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1607         alias_type(idx)->set_rewritable(false);
1608       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1609         alias_type(idx)->set_rewritable(false);
1610       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1611         alias_type(idx)->set_rewritable(false);
1612       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1613         alias_type(idx)->set_rewritable(false);
1614     }
1615     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1616     // but the base pointer type is not distinctive enough to identify
1617     // references into JavaThread.)
1618 
1619     // Check for final fields.
1620     const TypeInstPtr* tinst = flat->isa_instptr();
1621     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1622       ciField* field;
1623       if (tinst->const_oop() != NULL &&
1624           tinst->klass() == ciEnv::current()->Class_klass() &&
1625           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1626         // static field
1627         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1628         field = k->get_field_by_offset(tinst->offset(), true);
1629       } else {
1630         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1631         field = k->get_field_by_offset(tinst->offset(), false);
1632       }
1633       assert(field == NULL ||
1634              original_field == NULL ||
1635              (field->holder() == original_field->holder() &&
1636               field->offset() == original_field->offset() &&
1637               field->is_static() == original_field->is_static()), "wrong field?");
1638       // Set field() and is_rewritable() attributes.
1639       if (field != NULL)  alias_type(idx)->set_field(field);
1640     }
1641   }
1642 
1643   // Fill the cache for next time.
1644   ace->_adr_type = adr_type;
1645   ace->_index    = idx;
1646   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1647 
1648   // Might as well try to fill the cache for the flattened version, too.
1649   AliasCacheEntry* face = probe_alias_cache(flat);
1650   if (face->_adr_type == NULL) {
1651     face->_adr_type = flat;
1652     face->_index    = idx;
1653     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1654   }
1655 
1656   return alias_type(idx);
1657 }
1658 
1659 
1660 Compile::AliasType* Compile::alias_type(ciField* field) {
1661   const TypeOopPtr* t;
1662   if (field->is_static())
1663     t = TypeInstPtr::make(field->holder()->java_mirror());
1664   else
1665     t = TypeOopPtr::make_from_klass_raw(field->holder());
1666   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1667   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1668   return atp;
1669 }
1670 
1671 
1672 //------------------------------have_alias_type--------------------------------
1673 bool Compile::have_alias_type(const TypePtr* adr_type) {
1674   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1675   if (ace->_adr_type == adr_type) {
1676     return true;
1677   }
1678 
1679   // Handle special cases.
1680   if (adr_type == NULL)             return true;
1681   if (adr_type == TypePtr::BOTTOM)  return true;
1682 
1683   return find_alias_type(adr_type, true, NULL) != NULL;
1684 }
1685 
1686 //-----------------------------must_alias--------------------------------------
1687 // True if all values of the given address type are in the given alias category.
1688 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1689   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1690   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1691   if (alias_idx == AliasIdxTop)         return false; // the empty category
1692   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1693 
1694   // the only remaining possible overlap is identity
1695   int adr_idx = get_alias_index(adr_type);
1696   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1697   assert(adr_idx == alias_idx ||
1698          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1699           && adr_type                       != TypeOopPtr::BOTTOM),
1700          "should not be testing for overlap with an unsafe pointer");
1701   return adr_idx == alias_idx;
1702 }
1703 
1704 //------------------------------can_alias--------------------------------------
1705 // True if any values of the given address type are in the given alias category.
1706 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1707   if (alias_idx == AliasIdxTop)         return false; // the empty category
1708   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1709   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1710   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1711 
1712   // the only remaining possible overlap is identity
1713   int adr_idx = get_alias_index(adr_type);
1714   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1715   return adr_idx == alias_idx;
1716 }
1717 
1718 
1719 
1720 //---------------------------pop_warm_call-------------------------------------
1721 WarmCallInfo* Compile::pop_warm_call() {
1722   WarmCallInfo* wci = _warm_calls;
1723   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1724   return wci;
1725 }
1726 
1727 //----------------------------Inline_Warm--------------------------------------
1728 int Compile::Inline_Warm() {
1729   // If there is room, try to inline some more warm call sites.
1730   // %%% Do a graph index compaction pass when we think we're out of space?
1731   if (!InlineWarmCalls)  return 0;
1732 
1733   int calls_made_hot = 0;
1734   int room_to_grow   = NodeCountInliningCutoff - unique();
1735   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1736   int amount_grown   = 0;
1737   WarmCallInfo* call;
1738   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1739     int est_size = (int)call->size();
1740     if (est_size > (room_to_grow - amount_grown)) {
1741       // This one won't fit anyway.  Get rid of it.
1742       call->make_cold();
1743       continue;
1744     }
1745     call->make_hot();
1746     calls_made_hot++;
1747     amount_grown   += est_size;
1748     amount_to_grow -= est_size;
1749   }
1750 
1751   if (calls_made_hot > 0)  set_major_progress();
1752   return calls_made_hot;
1753 }
1754 
1755 
1756 //----------------------------Finish_Warm--------------------------------------
1757 void Compile::Finish_Warm() {
1758   if (!InlineWarmCalls)  return;
1759   if (failing())  return;
1760   if (warm_calls() == NULL)  return;
1761 
1762   // Clean up loose ends, if we are out of space for inlining.
1763   WarmCallInfo* call;
1764   while ((call = pop_warm_call()) != NULL) {
1765     call->make_cold();
1766   }
1767 }
1768 
1769 //---------------------cleanup_loop_predicates-----------------------
1770 // Remove the opaque nodes that protect the predicates so that all unused
1771 // checks and uncommon_traps will be eliminated from the ideal graph
1772 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1773   if (predicate_count()==0) return;
1774   for (int i = predicate_count(); i > 0; i--) {
1775     Node * n = predicate_opaque1_node(i-1);
1776     assert(n->Opcode() == Op_Opaque1, "must be");
1777     igvn.replace_node(n, n->in(1));
1778   }
1779   assert(predicate_count()==0, "should be clean!");
1780 }
1781 
1782 // StringOpts and late inlining of string methods
1783 void Compile::inline_string_calls(bool parse_time) {
1784   {
1785     // remove useless nodes to make the usage analysis simpler
1786     ResourceMark rm;
1787     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1788   }
1789 
1790   {
1791     ResourceMark rm;
1792     print_method("Before StringOpts", 3);
1793     PhaseStringOpts pso(initial_gvn(), for_igvn());
1794     print_method("After StringOpts", 3);
1795   }
1796 
1797   // now inline anything that we skipped the first time around
1798   if (!parse_time) {
1799     _late_inlines_pos = _late_inlines.length();
1800   }
1801 
1802   while (_string_late_inlines.length() > 0) {
1803     CallGenerator* cg = _string_late_inlines.pop();
1804     cg->do_late_inline();
1805     if (failing())  return;
1806   }
1807   _string_late_inlines.trunc_to(0);
1808 }
1809 
1810 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1811   assert(IncrementalInline, "incremental inlining should be on");
1812   PhaseGVN* gvn = initial_gvn();
1813 
1814   set_inlining_progress(false);
1815   for_igvn()->clear();
1816   gvn->replace_with(&igvn);
1817 
1818   int i = 0;
1819 
1820   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1821     CallGenerator* cg = _late_inlines.at(i);
1822     _late_inlines_pos = i+1;
1823     cg->do_late_inline();
1824     if (failing())  return;
1825   }
1826   int j = 0;
1827   for (; i < _late_inlines.length(); i++, j++) {
1828     _late_inlines.at_put(j, _late_inlines.at(i));
1829   }
1830   _late_inlines.trunc_to(j);
1831 
1832   {
1833     ResourceMark rm;
1834     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
1835   }
1836 
1837   igvn = PhaseIterGVN(gvn);
1838 }
1839 
1840 // Perform incremental inlining until bound on number of live nodes is reached
1841 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1842   PhaseGVN* gvn = initial_gvn();
1843 
1844   set_inlining_incrementally(true);
1845   set_inlining_progress(true);
1846   uint low_live_nodes = 0;
1847 
1848   while(inlining_progress() && _late_inlines.length() > 0) {
1849 
1850     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1851       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1852         // PhaseIdealLoop is expensive so we only try it once we are
1853         // out of loop and we only try it again if the previous helped
1854         // got the number of nodes down significantly
1855         PhaseIdealLoop ideal_loop( igvn, false, true );
1856         if (failing())  return;
1857         low_live_nodes = live_nodes();
1858         _major_progress = true;
1859       }
1860 
1861       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1862         break;
1863       }
1864     }
1865 
1866     inline_incrementally_one(igvn);
1867 
1868     if (failing())  return;
1869 
1870     igvn.optimize();
1871 
1872     if (failing())  return;
1873   }
1874 
1875   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1876 
1877   if (_string_late_inlines.length() > 0) {
1878     assert(has_stringbuilder(), "inconsistent");
1879     for_igvn()->clear();
1880     initial_gvn()->replace_with(&igvn);
1881 
1882     inline_string_calls(false);
1883 
1884     if (failing())  return;
1885 
1886     {
1887       ResourceMark rm;
1888       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1889     }
1890 
1891     igvn = PhaseIterGVN(gvn);
1892 
1893     igvn.optimize();
1894   }
1895 
1896   set_inlining_incrementally(false);
1897 }
1898 
1899 
1900 //------------------------------Optimize---------------------------------------
1901 // Given a graph, optimize it.
1902 void Compile::Optimize() {
1903   TracePhase t1("optimizer", &_t_optimizer, true);
1904 
1905 #ifndef PRODUCT
1906   if (env()->break_at_compile()) {
1907     BREAKPOINT;
1908   }
1909 
1910 #endif
1911 
1912   ResourceMark rm;
1913   int          loop_opts_cnt;
1914 
1915   NOT_PRODUCT( verify_graph_edges(); )
1916 
1917   print_method("After Parsing");
1918 
1919  {
1920   // Iterative Global Value Numbering, including ideal transforms
1921   // Initialize IterGVN with types and values from parse-time GVN
1922   PhaseIterGVN igvn(initial_gvn());
1923   {
1924     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1925     igvn.optimize();
1926   }
1927 
1928   print_method("Iter GVN 1", 2);
1929 
1930   if (failing())  return;
1931 
1932   inline_incrementally(igvn);
1933 
1934   print_method("Incremental Inline", 2);
1935 
1936   if (failing())  return;
1937 
1938   // No more new expensive nodes will be added to the list from here
1939   // so keep only the actual candidates for optimizations.
1940   cleanup_expensive_nodes(igvn);
1941 
1942   // Perform escape analysis
1943   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1944     if (has_loops()) {
1945       // Cleanup graph (remove dead nodes).
1946       TracePhase t2("idealLoop", &_t_idealLoop, true);
1947       PhaseIdealLoop ideal_loop( igvn, false, true );
1948       if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
1949       if (failing())  return;
1950     }
1951     ConnectionGraph::do_analysis(this, &igvn);
1952 
1953     if (failing())  return;
1954 
1955     // Optimize out fields loads from scalar replaceable allocations.
1956     igvn.optimize();
1957     print_method("Iter GVN after EA", 2);
1958 
1959     if (failing())  return;
1960 
1961     if (congraph() != NULL && macro_count() > 0) {
1962       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
1963       PhaseMacroExpand mexp(igvn);
1964       mexp.eliminate_macro_nodes();
1965       igvn.set_delay_transform(false);
1966 
1967       igvn.optimize();
1968       print_method("Iter GVN after eliminating allocations and locks", 2);
1969 
1970       if (failing())  return;
1971     }
1972   }
1973 
1974   // Loop transforms on the ideal graph.  Range Check Elimination,
1975   // peeling, unrolling, etc.
1976 
1977   // Set loop opts counter
1978   loop_opts_cnt = num_loop_opts();
1979   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1980     {
1981       TracePhase t2("idealLoop", &_t_idealLoop, true);
1982       PhaseIdealLoop ideal_loop( igvn, true );
1983       loop_opts_cnt--;
1984       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1985       if (failing())  return;
1986     }
1987     // Loop opts pass if partial peeling occurred in previous pass
1988     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1989       TracePhase t3("idealLoop", &_t_idealLoop, true);
1990       PhaseIdealLoop ideal_loop( igvn, false );
1991       loop_opts_cnt--;
1992       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1993       if (failing())  return;
1994     }
1995     // Loop opts pass for loop-unrolling before CCP
1996     if(major_progress() && (loop_opts_cnt > 0)) {
1997       TracePhase t4("idealLoop", &_t_idealLoop, true);
1998       PhaseIdealLoop ideal_loop( igvn, false );
1999       loop_opts_cnt--;
2000       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
2001     }
2002     if (!failing()) {
2003       // Verify that last round of loop opts produced a valid graph
2004       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2005       PhaseIdealLoop::verify(igvn);
2006     }
2007   }
2008   if (failing())  return;
2009 
2010   // Conditional Constant Propagation;
2011   PhaseCCP ccp( &igvn );
2012   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2013   {
2014     TracePhase t2("ccp", &_t_ccp, true);
2015     ccp.do_transform();
2016   }
2017   print_method("PhaseCPP 1", 2);
2018 
2019   assert( true, "Break here to ccp.dump_old2new_map()");
2020 
2021   // Iterative Global Value Numbering, including ideal transforms
2022   {
2023     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2024     igvn = ccp;
2025     igvn.optimize();
2026   }
2027 
2028   print_method("Iter GVN 2", 2);
2029 
2030   if (failing())  return;
2031 
2032   // Loop transforms on the ideal graph.  Range Check Elimination,
2033   // peeling, unrolling, etc.
2034   if(loop_opts_cnt > 0) {
2035     debug_only( int cnt = 0; );
2036     while(major_progress() && (loop_opts_cnt > 0)) {
2037       TracePhase t2("idealLoop", &_t_idealLoop, true);
2038       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2039       PhaseIdealLoop ideal_loop( igvn, true);
2040       loop_opts_cnt--;
2041       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
2042       if (failing())  return;
2043     }
2044   }
2045 
2046   {
2047     // Verify that all previous optimizations produced a valid graph
2048     // at least to this point, even if no loop optimizations were done.
2049     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2050     PhaseIdealLoop::verify(igvn);
2051   }
2052 
2053   {
2054     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2055     PhaseMacroExpand  mex(igvn);
2056     if (mex.expand_macro_nodes()) {
2057       assert(failing(), "must bail out w/ explicit message");
2058       return;
2059     }
2060   }
2061 
2062  } // (End scope of igvn; run destructor if necessary for asserts.)
2063 
2064   dump_inlining();
2065   // A method with only infinite loops has no edges entering loops from root
2066   {
2067     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2068     if (final_graph_reshaping()) {
2069       assert(failing(), "must bail out w/ explicit message");
2070       return;
2071     }
2072   }
2073 
2074   print_method("Optimize finished", 2);
2075 }
2076 
2077 
2078 //------------------------------Code_Gen---------------------------------------
2079 // Given a graph, generate code for it
2080 void Compile::Code_Gen() {
2081   if (failing())  return;
2082 
2083   // Perform instruction selection.  You might think we could reclaim Matcher
2084   // memory PDQ, but actually the Matcher is used in generating spill code.
2085   // Internals of the Matcher (including some VectorSets) must remain live
2086   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2087   // set a bit in reclaimed memory.
2088 
2089   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2090   // nodes.  Mapping is only valid at the root of each matched subtree.
2091   NOT_PRODUCT( verify_graph_edges(); )
2092 
2093   Node_List proj_list;
2094   Matcher m(proj_list);
2095   _matcher = &m;
2096   {
2097     TracePhase t2("matcher", &_t_matcher, true);
2098     m.match();
2099   }
2100   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2101   // nodes.  Mapping is only valid at the root of each matched subtree.
2102   NOT_PRODUCT( verify_graph_edges(); )
2103 
2104   // If you have too many nodes, or if matching has failed, bail out
2105   check_node_count(0, "out of nodes matching instructions");
2106   if (failing())  return;
2107 
2108   // Build a proper-looking CFG
2109   PhaseCFG cfg(node_arena(), root(), m);
2110   _cfg = &cfg;
2111   {
2112     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2113     cfg.Dominators();
2114     if (failing())  return;
2115 
2116     NOT_PRODUCT( verify_graph_edges(); )
2117 
2118     cfg.Estimate_Block_Frequency();
2119     cfg.GlobalCodeMotion(m,unique(),proj_list);
2120     if (failing())  return;
2121 
2122     print_method("Global code motion", 2);
2123 
2124     NOT_PRODUCT( verify_graph_edges(); )
2125 
2126     debug_only( cfg.verify(); )
2127   }
2128   NOT_PRODUCT( verify_graph_edges(); )
2129 
2130   PhaseChaitin regalloc(unique(), cfg, m);
2131   _regalloc = &regalloc;
2132   {
2133     TracePhase t2("regalloc", &_t_registerAllocation, true);
2134     // Perform register allocation.  After Chaitin, use-def chains are
2135     // no longer accurate (at spill code) and so must be ignored.
2136     // Node->LRG->reg mappings are still accurate.
2137     _regalloc->Register_Allocate();
2138 
2139     // Bail out if the allocator builds too many nodes
2140     if (failing()) {
2141       return;
2142     }
2143   }
2144 
2145   // Prior to register allocation we kept empty basic blocks in case the
2146   // the allocator needed a place to spill.  After register allocation we
2147   // are not adding any new instructions.  If any basic block is empty, we
2148   // can now safely remove it.
2149   {
2150     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2151     cfg.remove_empty();
2152     if (do_freq_based_layout()) {
2153       PhaseBlockLayout layout(cfg);
2154     } else {
2155       cfg.set_loop_alignment();
2156     }
2157     cfg.fixup_flow();
2158   }
2159 
2160   // Apply peephole optimizations
2161   if( OptoPeephole ) {
2162     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2163     PhasePeephole peep( _regalloc, cfg);
2164     peep.do_transform();
2165   }
2166 
2167   // Convert Nodes to instruction bits in a buffer
2168   {
2169     // %%%% workspace merge brought two timers together for one job
2170     TracePhase t2a("output", &_t_output, true);
2171     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2172     Output();
2173   }
2174 
2175   print_method("Final Code");
2176 
2177   // He's dead, Jim.
2178   _cfg     = (PhaseCFG*)0xdeadbeef;
2179   _regalloc = (PhaseChaitin*)0xdeadbeef;
2180 }
2181 
2182 
2183 //------------------------------dump_asm---------------------------------------
2184 // Dump formatted assembly
2185 #ifndef PRODUCT
2186 void Compile::dump_asm(int *pcs, uint pc_limit) {
2187   bool cut_short = false;
2188   tty->print_cr("#");
2189   tty->print("#  ");  _tf->dump();  tty->cr();
2190   tty->print_cr("#");
2191 
2192   // For all blocks
2193   int pc = 0x0;                 // Program counter
2194   char starts_bundle = ' ';
2195   _regalloc->dump_frame();
2196 
2197   Node *n = NULL;
2198   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
2199     if (VMThread::should_terminate()) { cut_short = true; break; }
2200     Block *b = _cfg->_blocks[i];
2201     if (b->is_connector() && !Verbose) continue;
2202     n = b->_nodes[0];
2203     if (pcs && n->_idx < pc_limit)
2204       tty->print("%3.3x   ", pcs[n->_idx]);
2205     else
2206       tty->print("      ");
2207     b->dump_head( &_cfg->_bbs );
2208     if (b->is_connector()) {
2209       tty->print_cr("        # Empty connector block");
2210     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2211       tty->print_cr("        # Block is sole successor of call");
2212     }
2213 
2214     // For all instructions
2215     Node *delay = NULL;
2216     for( uint j = 0; j<b->_nodes.size(); j++ ) {
2217       if (VMThread::should_terminate()) { cut_short = true; break; }
2218       n = b->_nodes[j];
2219       if (valid_bundle_info(n)) {
2220         Bundle *bundle = node_bundling(n);
2221         if (bundle->used_in_unconditional_delay()) {
2222           delay = n;
2223           continue;
2224         }
2225         if (bundle->starts_bundle())
2226           starts_bundle = '+';
2227       }
2228 
2229       if (WizardMode) n->dump();
2230 
2231       if( !n->is_Region() &&    // Dont print in the Assembly
2232           !n->is_Phi() &&       // a few noisely useless nodes
2233           !n->is_Proj() &&
2234           !n->is_MachTemp() &&
2235           !n->is_SafePointScalarObject() &&
2236           !n->is_Catch() &&     // Would be nice to print exception table targets
2237           !n->is_MergeMem() &&  // Not very interesting
2238           !n->is_top() &&       // Debug info table constants
2239           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2240           ) {
2241         if (pcs && n->_idx < pc_limit)
2242           tty->print("%3.3x", pcs[n->_idx]);
2243         else
2244           tty->print("   ");
2245         tty->print(" %c ", starts_bundle);
2246         starts_bundle = ' ';
2247         tty->print("\t");
2248         n->format(_regalloc, tty);
2249         tty->cr();
2250       }
2251 
2252       // If we have an instruction with a delay slot, and have seen a delay,
2253       // then back up and print it
2254       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2255         assert(delay != NULL, "no unconditional delay instruction");
2256         if (WizardMode) delay->dump();
2257 
2258         if (node_bundling(delay)->starts_bundle())
2259           starts_bundle = '+';
2260         if (pcs && n->_idx < pc_limit)
2261           tty->print("%3.3x", pcs[n->_idx]);
2262         else
2263           tty->print("   ");
2264         tty->print(" %c ", starts_bundle);
2265         starts_bundle = ' ';
2266         tty->print("\t");
2267         delay->format(_regalloc, tty);
2268         tty->print_cr("");
2269         delay = NULL;
2270       }
2271 
2272       // Dump the exception table as well
2273       if( n->is_Catch() && (Verbose || WizardMode) ) {
2274         // Print the exception table for this offset
2275         _handler_table.print_subtable_for(pc);
2276       }
2277     }
2278 
2279     if (pcs && n->_idx < pc_limit)
2280       tty->print_cr("%3.3x", pcs[n->_idx]);
2281     else
2282       tty->print_cr("");
2283 
2284     assert(cut_short || delay == NULL, "no unconditional delay branch");
2285 
2286   } // End of per-block dump
2287   tty->print_cr("");
2288 
2289   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2290 }
2291 #endif
2292 
2293 //------------------------------Final_Reshape_Counts---------------------------
2294 // This class defines counters to help identify when a method
2295 // may/must be executed using hardware with only 24-bit precision.
2296 struct Final_Reshape_Counts : public StackObj {
2297   int  _call_count;             // count non-inlined 'common' calls
2298   int  _float_count;            // count float ops requiring 24-bit precision
2299   int  _double_count;           // count double ops requiring more precision
2300   int  _java_call_count;        // count non-inlined 'java' calls
2301   int  _inner_loop_count;       // count loops which need alignment
2302   VectorSet _visited;           // Visitation flags
2303   Node_List _tests;             // Set of IfNodes & PCTableNodes
2304 
2305   Final_Reshape_Counts() :
2306     _call_count(0), _float_count(0), _double_count(0),
2307     _java_call_count(0), _inner_loop_count(0),
2308     _visited( Thread::current()->resource_area() ) { }
2309 
2310   void inc_call_count  () { _call_count  ++; }
2311   void inc_float_count () { _float_count ++; }
2312   void inc_double_count() { _double_count++; }
2313   void inc_java_call_count() { _java_call_count++; }
2314   void inc_inner_loop_count() { _inner_loop_count++; }
2315 
2316   int  get_call_count  () const { return _call_count  ; }
2317   int  get_float_count () const { return _float_count ; }
2318   int  get_double_count() const { return _double_count; }
2319   int  get_java_call_count() const { return _java_call_count; }
2320   int  get_inner_loop_count() const { return _inner_loop_count; }
2321 };
2322 
2323 #ifdef ASSERT
2324 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2325   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2326   // Make sure the offset goes inside the instance layout.
2327   return k->contains_field_offset(tp->offset());
2328   // Note that OffsetBot and OffsetTop are very negative.
2329 }
2330 #endif
2331 
2332 // Eliminate trivially redundant StoreCMs and accumulate their
2333 // precedence edges.
2334 void Compile::eliminate_redundant_card_marks(Node* n) {
2335   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2336   if (n->in(MemNode::Address)->outcnt() > 1) {
2337     // There are multiple users of the same address so it might be
2338     // possible to eliminate some of the StoreCMs
2339     Node* mem = n->in(MemNode::Memory);
2340     Node* adr = n->in(MemNode::Address);
2341     Node* val = n->in(MemNode::ValueIn);
2342     Node* prev = n;
2343     bool done = false;
2344     // Walk the chain of StoreCMs eliminating ones that match.  As
2345     // long as it's a chain of single users then the optimization is
2346     // safe.  Eliminating partially redundant StoreCMs would require
2347     // cloning copies down the other paths.
2348     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2349       if (adr == mem->in(MemNode::Address) &&
2350           val == mem->in(MemNode::ValueIn)) {
2351         // redundant StoreCM
2352         if (mem->req() > MemNode::OopStore) {
2353           // Hasn't been processed by this code yet.
2354           n->add_prec(mem->in(MemNode::OopStore));
2355         } else {
2356           // Already converted to precedence edge
2357           for (uint i = mem->req(); i < mem->len(); i++) {
2358             // Accumulate any precedence edges
2359             if (mem->in(i) != NULL) {
2360               n->add_prec(mem->in(i));
2361             }
2362           }
2363           // Everything above this point has been processed.
2364           done = true;
2365         }
2366         // Eliminate the previous StoreCM
2367         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2368         assert(mem->outcnt() == 0, "should be dead");
2369         mem->disconnect_inputs(NULL, this);
2370       } else {
2371         prev = mem;
2372       }
2373       mem = prev->in(MemNode::Memory);
2374     }
2375   }
2376 }
2377 
2378 //------------------------------final_graph_reshaping_impl----------------------
2379 // Implement items 1-5 from final_graph_reshaping below.
2380 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2381 
2382   if ( n->outcnt() == 0 ) return; // dead node
2383   uint nop = n->Opcode();
2384 
2385   // Check for 2-input instruction with "last use" on right input.
2386   // Swap to left input.  Implements item (2).
2387   if( n->req() == 3 &&          // two-input instruction
2388       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2389       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2390       n->in(2)->outcnt() == 1 &&// right use IS a last use
2391       !n->in(2)->is_Con() ) {   // right use is not a constant
2392     // Check for commutative opcode
2393     switch( nop ) {
2394     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2395     case Op_MaxI:  case Op_MinI:
2396     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2397     case Op_AndL:  case Op_XorL:  case Op_OrL:
2398     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2399       // Move "last use" input to left by swapping inputs
2400       n->swap_edges(1, 2);
2401       break;
2402     }
2403     default:
2404       break;
2405     }
2406   }
2407 
2408 #ifdef ASSERT
2409   if( n->is_Mem() ) {
2410     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2411     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2412             // oop will be recorded in oop map if load crosses safepoint
2413             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2414                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2415             "raw memory operations should have control edge");
2416   }
2417 #endif
2418   // Count FPU ops and common calls, implements item (3)
2419   switch( nop ) {
2420   // Count all float operations that may use FPU
2421   case Op_AddF:
2422   case Op_SubF:
2423   case Op_MulF:
2424   case Op_DivF:
2425   case Op_NegF:
2426   case Op_ModF:
2427   case Op_ConvI2F:
2428   case Op_ConF:
2429   case Op_CmpF:
2430   case Op_CmpF3:
2431   // case Op_ConvL2F: // longs are split into 32-bit halves
2432     frc.inc_float_count();
2433     break;
2434 
2435   case Op_ConvF2D:
2436   case Op_ConvD2F:
2437     frc.inc_float_count();
2438     frc.inc_double_count();
2439     break;
2440 
2441   // Count all double operations that may use FPU
2442   case Op_AddD:
2443   case Op_SubD:
2444   case Op_MulD:
2445   case Op_DivD:
2446   case Op_NegD:
2447   case Op_ModD:
2448   case Op_ConvI2D:
2449   case Op_ConvD2I:
2450   // case Op_ConvL2D: // handled by leaf call
2451   // case Op_ConvD2L: // handled by leaf call
2452   case Op_ConD:
2453   case Op_CmpD:
2454   case Op_CmpD3:
2455     frc.inc_double_count();
2456     break;
2457   case Op_Opaque1:              // Remove Opaque Nodes before matching
2458   case Op_Opaque2:              // Remove Opaque Nodes before matching
2459     n->subsume_by(n->in(1), this);
2460     break;
2461   case Op_CallStaticJava:
2462   case Op_CallJava:
2463   case Op_CallDynamicJava:
2464     frc.inc_java_call_count(); // Count java call site;
2465   case Op_CallRuntime:
2466   case Op_CallLeaf:
2467   case Op_CallLeafNoFP: {
2468     assert( n->is_Call(), "" );
2469     CallNode *call = n->as_Call();
2470     // Count call sites where the FP mode bit would have to be flipped.
2471     // Do not count uncommon runtime calls:
2472     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2473     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2474     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2475       frc.inc_call_count();   // Count the call site
2476     } else {                  // See if uncommon argument is shared
2477       Node *n = call->in(TypeFunc::Parms);
2478       int nop = n->Opcode();
2479       // Clone shared simple arguments to uncommon calls, item (1).
2480       if( n->outcnt() > 1 &&
2481           !n->is_Proj() &&
2482           nop != Op_CreateEx &&
2483           nop != Op_CheckCastPP &&
2484           nop != Op_DecodeN &&
2485           nop != Op_DecodeNKlass &&
2486           !n->is_Mem() ) {
2487         Node *x = n->clone();
2488         call->set_req( TypeFunc::Parms, x );
2489       }
2490     }
2491     break;
2492   }
2493 
2494   case Op_StoreD:
2495   case Op_LoadD:
2496   case Op_LoadD_unaligned:
2497     frc.inc_double_count();
2498     goto handle_mem;
2499   case Op_StoreF:
2500   case Op_LoadF:
2501     frc.inc_float_count();
2502     goto handle_mem;
2503 
2504   case Op_StoreCM:
2505     {
2506       // Convert OopStore dependence into precedence edge
2507       Node* prec = n->in(MemNode::OopStore);
2508       n->del_req(MemNode::OopStore);
2509       n->add_prec(prec);
2510       eliminate_redundant_card_marks(n);
2511     }
2512 
2513     // fall through
2514 
2515   case Op_StoreB:
2516   case Op_StoreC:
2517   case Op_StorePConditional:
2518   case Op_StoreI:
2519   case Op_StoreL:
2520   case Op_StoreIConditional:
2521   case Op_StoreLConditional:
2522   case Op_CompareAndSwapI:
2523   case Op_CompareAndSwapL:
2524   case Op_CompareAndSwapP:
2525   case Op_CompareAndSwapN:
2526   case Op_GetAndAddI:
2527   case Op_GetAndAddL:
2528   case Op_GetAndSetI:
2529   case Op_GetAndSetL:
2530   case Op_GetAndSetP:
2531   case Op_GetAndSetN:
2532   case Op_StoreP:
2533   case Op_StoreN:
2534   case Op_StoreNKlass:
2535   case Op_LoadB:
2536   case Op_LoadUB:
2537   case Op_LoadUS:
2538   case Op_LoadI:
2539   case Op_LoadKlass:
2540   case Op_LoadNKlass:
2541   case Op_LoadL:
2542   case Op_LoadL_unaligned:
2543   case Op_LoadPLocked:
2544   case Op_LoadP:
2545   case Op_LoadN:
2546   case Op_LoadRange:
2547   case Op_LoadS: {
2548   handle_mem:
2549 #ifdef ASSERT
2550     if( VerifyOptoOopOffsets ) {
2551       assert( n->is_Mem(), "" );
2552       MemNode *mem  = (MemNode*)n;
2553       // Check to see if address types have grounded out somehow.
2554       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2555       assert( !tp || oop_offset_is_sane(tp), "" );
2556     }
2557 #endif
2558     break;
2559   }
2560 
2561   case Op_AddP: {               // Assert sane base pointers
2562     Node *addp = n->in(AddPNode::Address);
2563     assert( !addp->is_AddP() ||
2564             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2565             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2566             "Base pointers must match" );
2567 #ifdef _LP64
2568     if ((UseCompressedOops || UseCompressedKlassPointers) &&
2569         addp->Opcode() == Op_ConP &&
2570         addp == n->in(AddPNode::Base) &&
2571         n->in(AddPNode::Offset)->is_Con()) {
2572       // Use addressing with narrow klass to load with offset on x86.
2573       // On sparc loading 32-bits constant and decoding it have less
2574       // instructions (4) then load 64-bits constant (7).
2575       // Do this transformation here since IGVN will convert ConN back to ConP.
2576       const Type* t = addp->bottom_type();
2577       if (t->isa_oopptr() || t->isa_klassptr()) {
2578         Node* nn = NULL;
2579 
2580         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2581 
2582         // Look for existing ConN node of the same exact type.
2583         Node* r  = root();
2584         uint cnt = r->outcnt();
2585         for (uint i = 0; i < cnt; i++) {
2586           Node* m = r->raw_out(i);
2587           if (m!= NULL && m->Opcode() == op &&
2588               m->bottom_type()->make_ptr() == t) {
2589             nn = m;
2590             break;
2591           }
2592         }
2593         if (nn != NULL) {
2594           // Decode a narrow oop to match address
2595           // [R12 + narrow_oop_reg<<3 + offset]
2596           if (t->isa_oopptr()) {
2597             nn = new (this) DecodeNNode(nn, t);
2598           } else {
2599             nn = new (this) DecodeNKlassNode(nn, t);
2600           }
2601           n->set_req(AddPNode::Base, nn);
2602           n->set_req(AddPNode::Address, nn);
2603           if (addp->outcnt() == 0) {
2604             addp->disconnect_inputs(NULL, this);
2605           }
2606         }
2607       }
2608     }
2609 #endif
2610     break;
2611   }
2612 
2613 #ifdef _LP64
2614   case Op_CastPP:
2615     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2616       Node* in1 = n->in(1);
2617       const Type* t = n->bottom_type();
2618       Node* new_in1 = in1->clone();
2619       new_in1->as_DecodeN()->set_type(t);
2620 
2621       if (!Matcher::narrow_oop_use_complex_address()) {
2622         //
2623         // x86, ARM and friends can handle 2 adds in addressing mode
2624         // and Matcher can fold a DecodeN node into address by using
2625         // a narrow oop directly and do implicit NULL check in address:
2626         //
2627         // [R12 + narrow_oop_reg<<3 + offset]
2628         // NullCheck narrow_oop_reg
2629         //
2630         // On other platforms (Sparc) we have to keep new DecodeN node and
2631         // use it to do implicit NULL check in address:
2632         //
2633         // decode_not_null narrow_oop_reg, base_reg
2634         // [base_reg + offset]
2635         // NullCheck base_reg
2636         //
2637         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2638         // to keep the information to which NULL check the new DecodeN node
2639         // corresponds to use it as value in implicit_null_check().
2640         //
2641         new_in1->set_req(0, n->in(0));
2642       }
2643 
2644       n->subsume_by(new_in1, this);
2645       if (in1->outcnt() == 0) {
2646         in1->disconnect_inputs(NULL, this);
2647       }
2648     }
2649     break;
2650 
2651   case Op_CmpP:
2652     // Do this transformation here to preserve CmpPNode::sub() and
2653     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2654     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2655       Node* in1 = n->in(1);
2656       Node* in2 = n->in(2);
2657       if (!in1->is_DecodeNarrowPtr()) {
2658         in2 = in1;
2659         in1 = n->in(2);
2660       }
2661       assert(in1->is_DecodeNarrowPtr(), "sanity");
2662 
2663       Node* new_in2 = NULL;
2664       if (in2->is_DecodeNarrowPtr()) {
2665         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2666         new_in2 = in2->in(1);
2667       } else if (in2->Opcode() == Op_ConP) {
2668         const Type* t = in2->bottom_type();
2669         if (t == TypePtr::NULL_PTR) {
2670           assert(in1->is_DecodeN(), "compare klass to null?");
2671           // Don't convert CmpP null check into CmpN if compressed
2672           // oops implicit null check is not generated.
2673           // This will allow to generate normal oop implicit null check.
2674           if (Matcher::gen_narrow_oop_implicit_null_checks())
2675             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2676           //
2677           // This transformation together with CastPP transformation above
2678           // will generated code for implicit NULL checks for compressed oops.
2679           //
2680           // The original code after Optimize()
2681           //
2682           //    LoadN memory, narrow_oop_reg
2683           //    decode narrow_oop_reg, base_reg
2684           //    CmpP base_reg, NULL
2685           //    CastPP base_reg // NotNull
2686           //    Load [base_reg + offset], val_reg
2687           //
2688           // after these transformations will be
2689           //
2690           //    LoadN memory, narrow_oop_reg
2691           //    CmpN narrow_oop_reg, NULL
2692           //    decode_not_null narrow_oop_reg, base_reg
2693           //    Load [base_reg + offset], val_reg
2694           //
2695           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2696           // since narrow oops can be used in debug info now (see the code in
2697           // final_graph_reshaping_walk()).
2698           //
2699           // At the end the code will be matched to
2700           // on x86:
2701           //
2702           //    Load_narrow_oop memory, narrow_oop_reg
2703           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2704           //    NullCheck narrow_oop_reg
2705           //
2706           // and on sparc:
2707           //
2708           //    Load_narrow_oop memory, narrow_oop_reg
2709           //    decode_not_null narrow_oop_reg, base_reg
2710           //    Load [base_reg + offset], val_reg
2711           //    NullCheck base_reg
2712           //
2713         } else if (t->isa_oopptr()) {
2714           new_in2 = ConNode::make(this, t->make_narrowoop());
2715         } else if (t->isa_klassptr()) {
2716           new_in2 = ConNode::make(this, t->make_narrowklass());
2717         }
2718       }
2719       if (new_in2 != NULL) {
2720         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2721         n->subsume_by(cmpN, this);
2722         if (in1->outcnt() == 0) {
2723           in1->disconnect_inputs(NULL, this);
2724         }
2725         if (in2->outcnt() == 0) {
2726           in2->disconnect_inputs(NULL, this);
2727         }
2728       }
2729     }
2730     break;
2731 
2732   case Op_DecodeN:
2733   case Op_DecodeNKlass:
2734     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2735     // DecodeN could be pinned when it can't be fold into
2736     // an address expression, see the code for Op_CastPP above.
2737     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2738     break;
2739 
2740   case Op_EncodeP:
2741   case Op_EncodePKlass: {
2742     Node* in1 = n->in(1);
2743     if (in1->is_DecodeNarrowPtr()) {
2744       n->subsume_by(in1->in(1), this);
2745     } else if (in1->Opcode() == Op_ConP) {
2746       const Type* t = in1->bottom_type();
2747       if (t == TypePtr::NULL_PTR) {
2748         assert(t->isa_oopptr(), "null klass?");
2749         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2750       } else if (t->isa_oopptr()) {
2751         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2752       } else if (t->isa_klassptr()) {
2753         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2754       }
2755     }
2756     if (in1->outcnt() == 0) {
2757       in1->disconnect_inputs(NULL, this);
2758     }
2759     break;
2760   }
2761 
2762   case Op_Proj: {
2763     if (OptimizeStringConcat) {
2764       ProjNode* p = n->as_Proj();
2765       if (p->_is_io_use) {
2766         // Separate projections were used for the exception path which
2767         // are normally removed by a late inline.  If it wasn't inlined
2768         // then they will hang around and should just be replaced with
2769         // the original one.
2770         Node* proj = NULL;
2771         // Replace with just one
2772         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2773           Node *use = i.get();
2774           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2775             proj = use;
2776             break;
2777           }
2778         }
2779         assert(proj != NULL, "must be found");
2780         p->subsume_by(proj, this);
2781       }
2782     }
2783     break;
2784   }
2785 
2786   case Op_Phi:
2787     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2788       // The EncodeP optimization may create Phi with the same edges
2789       // for all paths. It is not handled well by Register Allocator.
2790       Node* unique_in = n->in(1);
2791       assert(unique_in != NULL, "");
2792       uint cnt = n->req();
2793       for (uint i = 2; i < cnt; i++) {
2794         Node* m = n->in(i);
2795         assert(m != NULL, "");
2796         if (unique_in != m)
2797           unique_in = NULL;
2798       }
2799       if (unique_in != NULL) {
2800         n->subsume_by(unique_in, this);
2801       }
2802     }
2803     break;
2804 
2805 #endif
2806 
2807   case Op_ModI:
2808     if (UseDivMod) {
2809       // Check if a%b and a/b both exist
2810       Node* d = n->find_similar(Op_DivI);
2811       if (d) {
2812         // Replace them with a fused divmod if supported
2813         if (Matcher::has_match_rule(Op_DivModI)) {
2814           DivModINode* divmod = DivModINode::make(this, n);
2815           d->subsume_by(divmod->div_proj(), this);
2816           n->subsume_by(divmod->mod_proj(), this);
2817         } else {
2818           // replace a%b with a-((a/b)*b)
2819           Node* mult = new (this) MulINode(d, d->in(2));
2820           Node* sub  = new (this) SubINode(d->in(1), mult);
2821           n->subsume_by(sub, this);
2822         }
2823       }
2824     }
2825     break;
2826 
2827   case Op_ModL:
2828     if (UseDivMod) {
2829       // Check if a%b and a/b both exist
2830       Node* d = n->find_similar(Op_DivL);
2831       if (d) {
2832         // Replace them with a fused divmod if supported
2833         if (Matcher::has_match_rule(Op_DivModL)) {
2834           DivModLNode* divmod = DivModLNode::make(this, n);
2835           d->subsume_by(divmod->div_proj(), this);
2836           n->subsume_by(divmod->mod_proj(), this);
2837         } else {
2838           // replace a%b with a-((a/b)*b)
2839           Node* mult = new (this) MulLNode(d, d->in(2));
2840           Node* sub  = new (this) SubLNode(d->in(1), mult);
2841           n->subsume_by(sub, this);
2842         }
2843       }
2844     }
2845     break;
2846 
2847   case Op_LoadVector:
2848   case Op_StoreVector:
2849     break;
2850 
2851   case Op_PackB:
2852   case Op_PackS:
2853   case Op_PackI:
2854   case Op_PackF:
2855   case Op_PackL:
2856   case Op_PackD:
2857     if (n->req()-1 > 2) {
2858       // Replace many operand PackNodes with a binary tree for matching
2859       PackNode* p = (PackNode*) n;
2860       Node* btp = p->binary_tree_pack(this, 1, n->req());
2861       n->subsume_by(btp, this);
2862     }
2863     break;
2864   case Op_Loop:
2865   case Op_CountedLoop:
2866     if (n->as_Loop()->is_inner_loop()) {
2867       frc.inc_inner_loop_count();
2868     }
2869     break;
2870   case Op_LShiftI:
2871   case Op_RShiftI:
2872   case Op_URShiftI:
2873   case Op_LShiftL:
2874   case Op_RShiftL:
2875   case Op_URShiftL:
2876     if (Matcher::need_masked_shift_count) {
2877       // The cpu's shift instructions don't restrict the count to the
2878       // lower 5/6 bits. We need to do the masking ourselves.
2879       Node* in2 = n->in(2);
2880       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2881       const TypeInt* t = in2->find_int_type();
2882       if (t != NULL && t->is_con()) {
2883         juint shift = t->get_con();
2884         if (shift > mask) { // Unsigned cmp
2885           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
2886         }
2887       } else {
2888         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2889           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
2890           n->set_req(2, shift);
2891         }
2892       }
2893       if (in2->outcnt() == 0) { // Remove dead node
2894         in2->disconnect_inputs(NULL, this);
2895       }
2896     }
2897     break;
2898   case Op_MemBarStoreStore:
2899     // Break the link with AllocateNode: it is no longer useful and
2900     // confuses register allocation.
2901     if (n->req() > MemBarNode::Precedent) {
2902       n->set_req(MemBarNode::Precedent, top());
2903     }
2904     break;
2905   default:
2906     assert( !n->is_Call(), "" );
2907     assert( !n->is_Mem(), "" );
2908     break;
2909   }
2910 
2911   // Collect CFG split points
2912   if (n->is_MultiBranch())
2913     frc._tests.push(n);
2914 }
2915 
2916 //------------------------------final_graph_reshaping_walk---------------------
2917 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2918 // requires that the walk visits a node's inputs before visiting the node.
2919 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2920   ResourceArea *area = Thread::current()->resource_area();
2921   Unique_Node_List sfpt(area);
2922 
2923   frc._visited.set(root->_idx); // first, mark node as visited
2924   uint cnt = root->req();
2925   Node *n = root;
2926   uint  i = 0;
2927   while (true) {
2928     if (i < cnt) {
2929       // Place all non-visited non-null inputs onto stack
2930       Node* m = n->in(i);
2931       ++i;
2932       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2933         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2934           sfpt.push(m);
2935         cnt = m->req();
2936         nstack.push(n, i); // put on stack parent and next input's index
2937         n = m;
2938         i = 0;
2939       }
2940     } else {
2941       // Now do post-visit work
2942       final_graph_reshaping_impl( n, frc );
2943       if (nstack.is_empty())
2944         break;             // finished
2945       n = nstack.node();   // Get node from stack
2946       cnt = n->req();
2947       i = nstack.index();
2948       nstack.pop();        // Shift to the next node on stack
2949     }
2950   }
2951 
2952   // Skip next transformation if compressed oops are not used.
2953   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
2954       (!UseCompressedOops && !UseCompressedKlassPointers))
2955     return;
2956 
2957   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
2958   // It could be done for an uncommon traps or any safepoints/calls
2959   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
2960   while (sfpt.size() > 0) {
2961     n = sfpt.pop();
2962     JVMState *jvms = n->as_SafePoint()->jvms();
2963     assert(jvms != NULL, "sanity");
2964     int start = jvms->debug_start();
2965     int end   = n->req();
2966     bool is_uncommon = (n->is_CallStaticJava() &&
2967                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2968     for (int j = start; j < end; j++) {
2969       Node* in = n->in(j);
2970       if (in->is_DecodeNarrowPtr()) {
2971         bool safe_to_skip = true;
2972         if (!is_uncommon ) {
2973           // Is it safe to skip?
2974           for (uint i = 0; i < in->outcnt(); i++) {
2975             Node* u = in->raw_out(i);
2976             if (!u->is_SafePoint() ||
2977                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2978               safe_to_skip = false;
2979             }
2980           }
2981         }
2982         if (safe_to_skip) {
2983           n->set_req(j, in->in(1));
2984         }
2985         if (in->outcnt() == 0) {
2986           in->disconnect_inputs(NULL, this);
2987         }
2988       }
2989     }
2990   }
2991 }
2992 
2993 //------------------------------final_graph_reshaping--------------------------
2994 // Final Graph Reshaping.
2995 //
2996 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2997 //     and not commoned up and forced early.  Must come after regular
2998 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2999 //     inputs to Loop Phis; these will be split by the allocator anyways.
3000 //     Remove Opaque nodes.
3001 // (2) Move last-uses by commutative operations to the left input to encourage
3002 //     Intel update-in-place two-address operations and better register usage
3003 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3004 //     calls canonicalizing them back.
3005 // (3) Count the number of double-precision FP ops, single-precision FP ops
3006 //     and call sites.  On Intel, we can get correct rounding either by
3007 //     forcing singles to memory (requires extra stores and loads after each
3008 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3009 //     clearing the mode bit around call sites).  The mode bit is only used
3010 //     if the relative frequency of single FP ops to calls is low enough.
3011 //     This is a key transform for SPEC mpeg_audio.
3012 // (4) Detect infinite loops; blobs of code reachable from above but not
3013 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3014 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3015 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3016 //     Detection is by looking for IfNodes where only 1 projection is
3017 //     reachable from below or CatchNodes missing some targets.
3018 // (5) Assert for insane oop offsets in debug mode.
3019 
3020 bool Compile::final_graph_reshaping() {
3021   // an infinite loop may have been eliminated by the optimizer,
3022   // in which case the graph will be empty.
3023   if (root()->req() == 1) {
3024     record_method_not_compilable("trivial infinite loop");
3025     return true;
3026   }
3027 
3028   // Expensive nodes have their control input set to prevent the GVN
3029   // from freely commoning them. There's no GVN beyond this point so
3030   // no need to keep the control input. We want the expensive nodes to
3031   // be freely moved to the least frequent code path by gcm.
3032   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3033   for (int i = 0; i < expensive_count(); i++) {
3034     _expensive_nodes->at(i)->set_req(0, NULL);
3035   }
3036 
3037   Final_Reshape_Counts frc;
3038 
3039   // Visit everybody reachable!
3040   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3041   Node_Stack nstack(unique() >> 1);
3042   final_graph_reshaping_walk(nstack, root(), frc);
3043 
3044   // Check for unreachable (from below) code (i.e., infinite loops).
3045   for( uint i = 0; i < frc._tests.size(); i++ ) {
3046     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3047     // Get number of CFG targets.
3048     // Note that PCTables include exception targets after calls.
3049     uint required_outcnt = n->required_outcnt();
3050     if (n->outcnt() != required_outcnt) {
3051       // Check for a few special cases.  Rethrow Nodes never take the
3052       // 'fall-thru' path, so expected kids is 1 less.
3053       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3054         if (n->in(0)->in(0)->is_Call()) {
3055           CallNode *call = n->in(0)->in(0)->as_Call();
3056           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3057             required_outcnt--;      // Rethrow always has 1 less kid
3058           } else if (call->req() > TypeFunc::Parms &&
3059                      call->is_CallDynamicJava()) {
3060             // Check for null receiver. In such case, the optimizer has
3061             // detected that the virtual call will always result in a null
3062             // pointer exception. The fall-through projection of this CatchNode
3063             // will not be populated.
3064             Node *arg0 = call->in(TypeFunc::Parms);
3065             if (arg0->is_Type() &&
3066                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3067               required_outcnt--;
3068             }
3069           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3070                      call->req() > TypeFunc::Parms+1 &&
3071                      call->is_CallStaticJava()) {
3072             // Check for negative array length. In such case, the optimizer has
3073             // detected that the allocation attempt will always result in an
3074             // exception. There is no fall-through projection of this CatchNode .
3075             Node *arg1 = call->in(TypeFunc::Parms+1);
3076             if (arg1->is_Type() &&
3077                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3078               required_outcnt--;
3079             }
3080           }
3081         }
3082       }
3083       // Recheck with a better notion of 'required_outcnt'
3084       if (n->outcnt() != required_outcnt) {
3085         record_method_not_compilable("malformed control flow");
3086         return true;            // Not all targets reachable!
3087       }
3088     }
3089     // Check that I actually visited all kids.  Unreached kids
3090     // must be infinite loops.
3091     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3092       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3093         record_method_not_compilable("infinite loop");
3094         return true;            // Found unvisited kid; must be unreach
3095       }
3096   }
3097 
3098   // If original bytecodes contained a mixture of floats and doubles
3099   // check if the optimizer has made it homogenous, item (3).
3100   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3101       frc.get_float_count() > 32 &&
3102       frc.get_double_count() == 0 &&
3103       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3104     set_24_bit_selection_and_mode( false,  true );
3105   }
3106 
3107   set_java_calls(frc.get_java_call_count());
3108   set_inner_loops(frc.get_inner_loop_count());
3109 
3110   // No infinite loops, no reason to bail out.
3111   return false;
3112 }
3113 
3114 //-----------------------------too_many_traps----------------------------------
3115 // Report if there are too many traps at the current method and bci.
3116 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3117 bool Compile::too_many_traps(ciMethod* method,
3118                              int bci,
3119                              Deoptimization::DeoptReason reason) {
3120   ciMethodData* md = method->method_data();
3121   if (md->is_empty()) {
3122     // Assume the trap has not occurred, or that it occurred only
3123     // because of a transient condition during start-up in the interpreter.
3124     return false;
3125   }
3126   if (md->has_trap_at(bci, reason) != 0) {
3127     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3128     // Also, if there are multiple reasons, or if there is no per-BCI record,
3129     // assume the worst.
3130     if (log())
3131       log()->elem("observe trap='%s' count='%d'",
3132                   Deoptimization::trap_reason_name(reason),
3133                   md->trap_count(reason));
3134     return true;
3135   } else {
3136     // Ignore method/bci and see if there have been too many globally.
3137     return too_many_traps(reason, md);
3138   }
3139 }
3140 
3141 // Less-accurate variant which does not require a method and bci.
3142 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3143                              ciMethodData* logmd) {
3144  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
3145     // Too many traps globally.
3146     // Note that we use cumulative trap_count, not just md->trap_count.
3147     if (log()) {
3148       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3149       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3150                   Deoptimization::trap_reason_name(reason),
3151                   mcount, trap_count(reason));
3152     }
3153     return true;
3154   } else {
3155     // The coast is clear.
3156     return false;
3157   }
3158 }
3159 
3160 //--------------------------too_many_recompiles--------------------------------
3161 // Report if there are too many recompiles at the current method and bci.
3162 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3163 // Is not eager to return true, since this will cause the compiler to use
3164 // Action_none for a trap point, to avoid too many recompilations.
3165 bool Compile::too_many_recompiles(ciMethod* method,
3166                                   int bci,
3167                                   Deoptimization::DeoptReason reason) {
3168   ciMethodData* md = method->method_data();
3169   if (md->is_empty()) {
3170     // Assume the trap has not occurred, or that it occurred only
3171     // because of a transient condition during start-up in the interpreter.
3172     return false;
3173   }
3174   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3175   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3176   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3177   Deoptimization::DeoptReason per_bc_reason
3178     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3179   if ((per_bc_reason == Deoptimization::Reason_none
3180        || md->has_trap_at(bci, reason) != 0)
3181       // The trap frequency measure we care about is the recompile count:
3182       && md->trap_recompiled_at(bci)
3183       && md->overflow_recompile_count() >= bc_cutoff) {
3184     // Do not emit a trap here if it has already caused recompilations.
3185     // Also, if there are multiple reasons, or if there is no per-BCI record,
3186     // assume the worst.
3187     if (log())
3188       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3189                   Deoptimization::trap_reason_name(reason),
3190                   md->trap_count(reason),
3191                   md->overflow_recompile_count());
3192     return true;
3193   } else if (trap_count(reason) != 0
3194              && decompile_count() >= m_cutoff) {
3195     // Too many recompiles globally, and we have seen this sort of trap.
3196     // Use cumulative decompile_count, not just md->decompile_count.
3197     if (log())
3198       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3199                   Deoptimization::trap_reason_name(reason),
3200                   md->trap_count(reason), trap_count(reason),
3201                   md->decompile_count(), decompile_count());
3202     return true;
3203   } else {
3204     // The coast is clear.
3205     return false;
3206   }
3207 }
3208 
3209 
3210 #ifndef PRODUCT
3211 //------------------------------verify_graph_edges---------------------------
3212 // Walk the Graph and verify that there is a one-to-one correspondence
3213 // between Use-Def edges and Def-Use edges in the graph.
3214 void Compile::verify_graph_edges(bool no_dead_code) {
3215   if (VerifyGraphEdges) {
3216     ResourceArea *area = Thread::current()->resource_area();
3217     Unique_Node_List visited(area);
3218     // Call recursive graph walk to check edges
3219     _root->verify_edges(visited);
3220     if (no_dead_code) {
3221       // Now make sure that no visited node is used by an unvisited node.
3222       bool dead_nodes = 0;
3223       Unique_Node_List checked(area);
3224       while (visited.size() > 0) {
3225         Node* n = visited.pop();
3226         checked.push(n);
3227         for (uint i = 0; i < n->outcnt(); i++) {
3228           Node* use = n->raw_out(i);
3229           if (checked.member(use))  continue;  // already checked
3230           if (visited.member(use))  continue;  // already in the graph
3231           if (use->is_Con())        continue;  // a dead ConNode is OK
3232           // At this point, we have found a dead node which is DU-reachable.
3233           if (dead_nodes++ == 0)
3234             tty->print_cr("*** Dead nodes reachable via DU edges:");
3235           use->dump(2);
3236           tty->print_cr("---");
3237           checked.push(use);  // No repeats; pretend it is now checked.
3238         }
3239       }
3240       assert(dead_nodes == 0, "using nodes must be reachable from root");
3241     }
3242   }
3243 }
3244 #endif
3245 
3246 // The Compile object keeps track of failure reasons separately from the ciEnv.
3247 // This is required because there is not quite a 1-1 relation between the
3248 // ciEnv and its compilation task and the Compile object.  Note that one
3249 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3250 // to backtrack and retry without subsuming loads.  Other than this backtracking
3251 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3252 // by the logic in C2Compiler.
3253 void Compile::record_failure(const char* reason) {
3254   if (log() != NULL) {
3255     log()->elem("failure reason='%s' phase='compile'", reason);
3256   }
3257   if (_failure_reason == NULL) {
3258     // Record the first failure reason.
3259     _failure_reason = reason;
3260   }
3261   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3262     C->print_method(_failure_reason);
3263   }
3264   _root = NULL;  // flush the graph, too
3265 }
3266 
3267 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3268   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3269     _phase_name(name), _dolog(dolog)
3270 {
3271   if (dolog) {
3272     C = Compile::current();
3273     _log = C->log();
3274   } else {
3275     C = NULL;
3276     _log = NULL;
3277   }
3278   if (_log != NULL) {
3279     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3280     _log->stamp();
3281     _log->end_head();
3282   }
3283 }
3284 
3285 Compile::TracePhase::~TracePhase() {
3286 
3287   C = Compile::current();
3288   if (_dolog) {
3289     _log = C->log();
3290   } else {
3291     _log = NULL;
3292   }
3293 
3294 #ifdef ASSERT
3295   if (PrintIdealNodeCount) {
3296     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3297                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3298   }
3299 
3300   if (VerifyIdealNodeCount) {
3301     Compile::current()->print_missing_nodes();
3302   }
3303 #endif
3304 
3305   if (_log != NULL) {
3306     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3307   }
3308 }
3309 
3310 //=============================================================================
3311 // Two Constant's are equal when the type and the value are equal.
3312 bool Compile::Constant::operator==(const Constant& other) {
3313   if (type()          != other.type()         )  return false;
3314   if (can_be_reused() != other.can_be_reused())  return false;
3315   // For floating point values we compare the bit pattern.
3316   switch (type()) {
3317   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3318   case T_LONG:
3319   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3320   case T_OBJECT:
3321   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3322   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3323   case T_METADATA: return (_v._metadata == other._v._metadata);
3324   default: ShouldNotReachHere();
3325   }
3326   return false;
3327 }
3328 
3329 static int type_to_size_in_bytes(BasicType t) {
3330   switch (t) {
3331   case T_LONG:    return sizeof(jlong  );
3332   case T_FLOAT:   return sizeof(jfloat );
3333   case T_DOUBLE:  return sizeof(jdouble);
3334   case T_METADATA: return sizeof(Metadata*);
3335     // We use T_VOID as marker for jump-table entries (labels) which
3336     // need an internal word relocation.
3337   case T_VOID:
3338   case T_ADDRESS:
3339   case T_OBJECT:  return sizeof(jobject);
3340   }
3341 
3342   ShouldNotReachHere();
3343   return -1;
3344 }
3345 
3346 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3347   // sort descending
3348   if (a->freq() > b->freq())  return -1;
3349   if (a->freq() < b->freq())  return  1;
3350   return 0;
3351 }
3352 
3353 void Compile::ConstantTable::calculate_offsets_and_size() {
3354   // First, sort the array by frequencies.
3355   _constants.sort(qsort_comparator);
3356 
3357 #ifdef ASSERT
3358   // Make sure all jump-table entries were sorted to the end of the
3359   // array (they have a negative frequency).
3360   bool found_void = false;
3361   for (int i = 0; i < _constants.length(); i++) {
3362     Constant con = _constants.at(i);
3363     if (con.type() == T_VOID)
3364       found_void = true;  // jump-tables
3365     else
3366       assert(!found_void, "wrong sorting");
3367   }
3368 #endif
3369 
3370   int offset = 0;
3371   for (int i = 0; i < _constants.length(); i++) {
3372     Constant* con = _constants.adr_at(i);
3373 
3374     // Align offset for type.
3375     int typesize = type_to_size_in_bytes(con->type());
3376     offset = align_size_up(offset, typesize);
3377     con->set_offset(offset);   // set constant's offset
3378 
3379     if (con->type() == T_VOID) {
3380       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3381       offset = offset + typesize * n->outcnt();  // expand jump-table
3382     } else {
3383       offset = offset + typesize;
3384     }
3385   }
3386 
3387   // Align size up to the next section start (which is insts; see
3388   // CodeBuffer::align_at_start).
3389   assert(_size == -1, "already set?");
3390   _size = align_size_up(offset, CodeEntryAlignment);
3391 }
3392 
3393 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3394   MacroAssembler _masm(&cb);
3395   for (int i = 0; i < _constants.length(); i++) {
3396     Constant con = _constants.at(i);
3397     address constant_addr;
3398     switch (con.type()) {
3399     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3400     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3401     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3402     case T_OBJECT: {
3403       jobject obj = con.get_jobject();
3404       int oop_index = _masm.oop_recorder()->find_index(obj);
3405       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3406       break;
3407     }
3408     case T_ADDRESS: {
3409       address addr = (address) con.get_jobject();
3410       constant_addr = _masm.address_constant(addr);
3411       break;
3412     }
3413     // We use T_VOID as marker for jump-table entries (labels) which
3414     // need an internal word relocation.
3415     case T_VOID: {
3416       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3417       // Fill the jump-table with a dummy word.  The real value is
3418       // filled in later in fill_jump_table.
3419       address dummy = (address) n;
3420       constant_addr = _masm.address_constant(dummy);
3421       // Expand jump-table
3422       for (uint i = 1; i < n->outcnt(); i++) {
3423         address temp_addr = _masm.address_constant(dummy + i);
3424         assert(temp_addr, "consts section too small");
3425       }
3426       break;
3427     }
3428     case T_METADATA: {
3429       Metadata* obj = con.get_metadata();
3430       int metadata_index = _masm.oop_recorder()->find_index(obj);
3431       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3432       break;
3433     }
3434     default: ShouldNotReachHere();
3435     }
3436     assert(constant_addr, "consts section too small");
3437     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3438   }
3439 }
3440 
3441 int Compile::ConstantTable::find_offset(Constant& con) const {
3442   int idx = _constants.find(con);
3443   assert(idx != -1, "constant must be in constant table");
3444   int offset = _constants.at(idx).offset();
3445   assert(offset != -1, "constant table not emitted yet?");
3446   return offset;
3447 }
3448 
3449 void Compile::ConstantTable::add(Constant& con) {
3450   if (con.can_be_reused()) {
3451     int idx = _constants.find(con);
3452     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3453       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3454       return;
3455     }
3456   }
3457   (void) _constants.append(con);
3458 }
3459 
3460 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3461   Block* b = Compile::current()->cfg()->_bbs[n->_idx];
3462   Constant con(type, value, b->_freq);
3463   add(con);
3464   return con;
3465 }
3466 
3467 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3468   Constant con(metadata);
3469   add(con);
3470   return con;
3471 }
3472 
3473 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3474   jvalue value;
3475   BasicType type = oper->type()->basic_type();
3476   switch (type) {
3477   case T_LONG:    value.j = oper->constantL(); break;
3478   case T_FLOAT:   value.f = oper->constantF(); break;
3479   case T_DOUBLE:  value.d = oper->constantD(); break;
3480   case T_OBJECT:
3481   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3482   case T_METADATA: return add((Metadata*)oper->constant()); break;
3483   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3484   }
3485   return add(n, type, value);
3486 }
3487 
3488 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3489   jvalue value;
3490   // We can use the node pointer here to identify the right jump-table
3491   // as this method is called from Compile::Fill_buffer right before
3492   // the MachNodes are emitted and the jump-table is filled (means the
3493   // MachNode pointers do not change anymore).
3494   value.l = (jobject) n;
3495   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3496   add(con);
3497   return con;
3498 }
3499 
3500 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3501   // If called from Compile::scratch_emit_size do nothing.
3502   if (Compile::current()->in_scratch_emit_size())  return;
3503 
3504   assert(labels.is_nonempty(), "must be");
3505   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3506 
3507   // Since MachConstantNode::constant_offset() also contains
3508   // table_base_offset() we need to subtract the table_base_offset()
3509   // to get the plain offset into the constant table.
3510   int offset = n->constant_offset() - table_base_offset();
3511 
3512   MacroAssembler _masm(&cb);
3513   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3514 
3515   for (uint i = 0; i < n->outcnt(); i++) {
3516     address* constant_addr = &jump_table_base[i];
3517     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3518     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3519     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3520   }
3521 }
3522 
3523 void Compile::dump_inlining() {
3524   if (PrintInlining || PrintIntrinsics NOT_PRODUCT( || PrintOptoInlining)) {
3525     // Print inlining message for candidates that we couldn't inline
3526     // for lack of space or non constant receiver
3527     for (int i = 0; i < _late_inlines.length(); i++) {
3528       CallGenerator* cg = _late_inlines.at(i);
3529       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3530     }
3531     Unique_Node_List useful;
3532     useful.push(root());
3533     for (uint next = 0; next < useful.size(); ++next) {
3534       Node* n  = useful.at(next);
3535       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3536         CallNode* call = n->as_Call();
3537         CallGenerator* cg = call->generator();
3538         cg->print_inlining_late("receiver not constant");
3539       }
3540       uint max = n->len();
3541       for ( uint i = 0; i < max; ++i ) {
3542         Node *m = n->in(i);
3543         if ( m == NULL ) continue;
3544         useful.push(m);
3545       }
3546     }
3547     for (int i = 0; i < _print_inlining_list->length(); i++) {
3548       tty->print(_print_inlining_list->at(i).ss()->as_string());
3549     }
3550   }
3551 }
3552 
3553 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3554   if (n1->Opcode() < n2->Opcode())      return -1;
3555   else if (n1->Opcode() > n2->Opcode()) return 1;
3556 
3557   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3558   for (uint i = 1; i < n1->req(); i++) {
3559     if (n1->in(i) < n2->in(i))      return -1;
3560     else if (n1->in(i) > n2->in(i)) return 1;
3561   }
3562 
3563   return 0;
3564 }
3565 
3566 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3567   Node* n1 = *n1p;
3568   Node* n2 = *n2p;
3569 
3570   return cmp_expensive_nodes(n1, n2);
3571 }
3572 
3573 void Compile::sort_expensive_nodes() {
3574   if (!expensive_nodes_sorted()) {
3575     _expensive_nodes->sort(cmp_expensive_nodes);
3576   }
3577 }
3578 
3579 bool Compile::expensive_nodes_sorted() const {
3580   for (int i = 1; i < _expensive_nodes->length(); i++) {
3581     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3582       return false;
3583     }
3584   }
3585   return true;
3586 }
3587 
3588 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3589   if (_expensive_nodes->length() == 0) {
3590     return false;
3591   }
3592 
3593   assert(OptimizeExpensiveOps, "optimization off?");
3594 
3595   // Take this opportunity to remove dead nodes from the list
3596   int j = 0;
3597   for (int i = 0; i < _expensive_nodes->length(); i++) {
3598     Node* n = _expensive_nodes->at(i);
3599     if (!n->is_unreachable(igvn)) {
3600       assert(n->is_expensive(), "should be expensive");
3601       _expensive_nodes->at_put(j, n);
3602       j++;
3603     }
3604   }
3605   _expensive_nodes->trunc_to(j);
3606 
3607   // Then sort the list so that similar nodes are next to each other
3608   // and check for at least two nodes of identical kind with same data
3609   // inputs.
3610   sort_expensive_nodes();
3611 
3612   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3613     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3614       return true;
3615     }
3616   }
3617 
3618   return false;
3619 }
3620 
3621 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3622   if (_expensive_nodes->length() == 0) {
3623     return;
3624   }
3625 
3626   assert(OptimizeExpensiveOps, "optimization off?");
3627 
3628   // Sort to bring similar nodes next to each other and clear the
3629   // control input of nodes for which there's only a single copy.
3630   sort_expensive_nodes();
3631 
3632   int j = 0;
3633   int identical = 0;
3634   int i = 0;
3635   for (; i < _expensive_nodes->length()-1; i++) {
3636     assert(j <= i, "can't write beyond current index");
3637     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3638       identical++;
3639       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3640       continue;
3641     }
3642     if (identical > 0) {
3643       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3644       identical = 0;
3645     } else {
3646       Node* n = _expensive_nodes->at(i);
3647       igvn.hash_delete(n);
3648       n->set_req(0, NULL);
3649       igvn.hash_insert(n);
3650     }
3651   }
3652   if (identical > 0) {
3653     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3654   } else if (_expensive_nodes->length() >= 1) {
3655     Node* n = _expensive_nodes->at(i);
3656     igvn.hash_delete(n);
3657     n->set_req(0, NULL);
3658     igvn.hash_insert(n);
3659   }
3660   _expensive_nodes->trunc_to(j);
3661 }
3662 
3663 void Compile::add_expensive_node(Node * n) {
3664   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3665   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3666   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3667   if (OptimizeExpensiveOps) {
3668     _expensive_nodes->append(n);
3669   } else {
3670     // Clear control input and let IGVN optimize expensive nodes if
3671     // OptimizeExpensiveOps is off.
3672     n->set_req(0, NULL);
3673   }
3674 }
3675 
3676 // Auxiliary method to support randomized stressing/fuzzing.
3677 //
3678 // This method can be called the arbitrary number of times, with current count
3679 // as the argument. The logic allows selecting a single candidate from the
3680 // running list of candidates as follows:
3681 //    int count = 0;
3682 //    Cand* selected = null;
3683 //    while(cand = cand->next()) {
3684 //      if (randomized_select(++count)) {
3685 //        selected = cand;
3686 //      }
3687 //    }
3688 //
3689 // Including count equalizes the chances any candidate is "selected".
3690 // This is useful when we don't have the complete list of candidates to choose
3691 // from uniformly. In this case, we need to adjust the randomicity of the
3692 // selection, or else we will end up biasing the selection towards the latter
3693 // candidates.
3694 //
3695 // Quick back-envelope calculation shows that for the list of n candidates
3696 // the equal probability for the candidate to persist as "best" can be
3697 // achieved by replacing it with "next" k-th candidate with the probability
3698 // of 1/k. It can be easily shown that by the end of the run, the
3699 // probability for any candidate is converged to 1/n, thus giving the
3700 // uniform distribution among all the candidates.
3701 //
3702 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
3703 #define RANDOMIZED_DOMAIN_POW 29
3704 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
3705 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
3706 bool Compile::randomized_select(int count) {
3707   assert(count > 0, "only positive");
3708   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
3709 }