1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for (int i = 0; i < cnt; i++) {
  67     Node *n = C->macro_node(i);
  68     if (n->is_Allocate())
  69       return true;
  70     if (n->is_Lock()) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if (!(obj->is_Parm() || obj->is_Con()))
  73         return true;
  74     }
  75     if (n->is_CallStaticJava() &&
  76         n->as_CallStaticJava()->is_boxing_method()) {
  77       return true;
  78     }
  79   }
  80   return false;
  81 }
  82 
  83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  85   ResourceMark rm;
  86 
  87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  88   // to create space for them in ConnectionGraph::_nodes[].
  89   Node* oop_null = igvn->zerocon(T_OBJECT);
  90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  92   // Perform escape analysis
  93   if (congraph->compute_escape()) {
  94     // There are non escaping objects.
  95     C->set_congraph(congraph);
  96   }
  97   // Cleanup.
  98   if (oop_null->outcnt() == 0)
  99     igvn->hash_delete(oop_null);
 100   if (noop_null->outcnt() == 0)
 101     igvn->hash_delete(noop_null);
 102 }
 103 
 104 bool ConnectionGraph::compute_escape() {
 105   Compile* C = _compile;
 106   PhaseGVN* igvn = _igvn;
 107 
 108   // Worklists used by EA.
 109   Unique_Node_List delayed_worklist;
 110   GrowableArray<Node*> alloc_worklist;
 111   GrowableArray<Node*> ptr_cmp_worklist;
 112   GrowableArray<Node*> storestore_worklist;
 113   GrowableArray<PointsToNode*>   ptnodes_worklist;
 114   GrowableArray<JavaObjectNode*> java_objects_worklist;
 115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 116   GrowableArray<FieldNode*>      oop_fields_worklist;
 117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 118 
 119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 120 
 121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 123   // Initialize worklist
 124   if (C->root() != NULL) {
 125     ideal_nodes.push(C->root());
 126   }
 127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 128     Node* n = ideal_nodes.at(next);
 129     // Create PointsTo nodes and add them to Connection Graph. Called
 130     // only once per ideal node since ideal_nodes is Unique_Node list.
 131     add_node_to_connection_graph(n, &delayed_worklist);
 132     PointsToNode* ptn = ptnode_adr(n->_idx);
 133     if (ptn != NULL) {
 134       ptnodes_worklist.append(ptn);
 135       if (ptn->is_JavaObject()) {
 136         java_objects_worklist.append(ptn->as_JavaObject());
 137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 139           // Only allocations and java static calls results are interesting.
 140           non_escaped_worklist.append(ptn->as_JavaObject());
 141         }
 142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 143         oop_fields_worklist.append(ptn->as_Field());
 144       }
 145     }
 146     if (n->is_MergeMem()) {
 147       // Collect all MergeMem nodes to add memory slices for
 148       // scalar replaceable objects in split_unique_types().
 149       _mergemem_worklist.append(n->as_MergeMem());
 150     } else if (OptimizePtrCompare && n->is_Cmp() &&
 151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 152       // Collect compare pointers nodes.
 153       ptr_cmp_worklist.append(n);
 154     } else if (n->is_MemBarStoreStore()) {
 155       // Collect all MemBarStoreStore nodes so that depending on the
 156       // escape status of the associated Allocate node some of them
 157       // may be eliminated.
 158       storestore_worklist.append(n);
 159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 160                (n->req() > MemBarNode::Precedent)) {
 161       record_for_optimizer(n);
 162 #ifdef ASSERT
 163     } else if (n->is_AddP()) {
 164       // Collect address nodes for graph verification.
 165       addp_worklist.append(n);
 166 #endif
 167     }
 168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 169       Node* m = n->fast_out(i);   // Get user
 170       ideal_nodes.push(m);
 171     }
 172   }
 173   if (non_escaped_worklist.length() == 0) {
 174     _collecting = false;
 175     return false; // Nothing to do.
 176   }
 177   // Add final simple edges to graph.
 178   while(delayed_worklist.size() > 0) {
 179     Node* n = delayed_worklist.pop();
 180     add_final_edges(n);
 181   }
 182   int ptnodes_length = ptnodes_worklist.length();
 183 
 184 #ifdef ASSERT
 185   if (VerifyConnectionGraph) {
 186     // Verify that no new simple edges could be created and all
 187     // local vars has edges.
 188     _verify = true;
 189     for (int next = 0; next < ptnodes_length; ++next) {
 190       PointsToNode* ptn = ptnodes_worklist.at(next);
 191       add_final_edges(ptn->ideal_node());
 192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 193         ptn->dump();
 194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 195       }
 196     }
 197     _verify = false;
 198   }
 199 #endif
 200 
 201   // 2. Finish Graph construction by propagating references to all
 202   //    java objects through graph.
 203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 204                                  java_objects_worklist, oop_fields_worklist)) {
 205     // All objects escaped or hit time or iterations limits.
 206     _collecting = false;
 207     return false;
 208   }
 209 
 210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 211   //    scalar replaceable allocations on alloc_worklist for processing
 212   //    in split_unique_types().
 213   int non_escaped_length = non_escaped_worklist.length();
 214   for (int next = 0; next < non_escaped_length; next++) {
 215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 217     Node* n = ptn->ideal_node();
 218     if (n->is_Allocate()) {
 219       n->as_Allocate()->_is_non_escaping = noescape;
 220     }
 221     if (n->is_CallStaticJava()) {
 222       n->as_CallStaticJava()->_is_non_escaping = noescape;
 223     }
 224     if (noescape && ptn->scalar_replaceable()) {
 225       adjust_scalar_replaceable_state(ptn);
 226       if (ptn->scalar_replaceable()) {
 227         alloc_worklist.append(ptn->ideal_node());
 228       }
 229     }
 230   }
 231 
 232 #ifdef ASSERT
 233   if (VerifyConnectionGraph) {
 234     // Verify that graph is complete - no new edges could be added or needed.
 235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 236                             java_objects_worklist, addp_worklist);
 237   }
 238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 240          null_obj->edge_count() == 0 &&
 241          !null_obj->arraycopy_src() &&
 242          !null_obj->arraycopy_dst(), "sanity");
 243 #endif
 244 
 245   _collecting = false;
 246 
 247   } // TracePhase t3("connectionGraph")
 248 
 249   // 4. Optimize ideal graph based on EA information.
 250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 251   if (has_non_escaping_obj) {
 252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 253   }
 254 
 255 #ifndef PRODUCT
 256   if (PrintEscapeAnalysis) {
 257     dump(ptnodes_worklist); // Dump ConnectionGraph
 258   }
 259 #endif
 260 
 261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 262 #ifdef ASSERT
 263   if (VerifyConnectionGraph) {
 264     int alloc_length = alloc_worklist.length();
 265     for (int next = 0; next < alloc_length; ++next) {
 266       Node* n = alloc_worklist.at(next);
 267       PointsToNode* ptn = ptnode_adr(n->_idx);
 268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 269     }
 270   }
 271 #endif
 272 
 273   // 5. Separate memory graph for scalar replaceable allcations.
 274   if (has_scalar_replaceable_candidates &&
 275       C->AliasLevel() >= 3 && EliminateAllocations) {
 276     // Now use the escape information to create unique types for
 277     // scalar replaceable objects.
 278     split_unique_types(alloc_worklist);
 279     if (C->failing())  return false;
 280     C->print_method("After Escape Analysis", 2);
 281 
 282 #ifdef ASSERT
 283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 284     tty->print("=== No allocations eliminated for ");
 285     C->method()->print_short_name();
 286     if(!EliminateAllocations) {
 287       tty->print(" since EliminateAllocations is off ===");
 288     } else if(!has_scalar_replaceable_candidates) {
 289       tty->print(" since there are no scalar replaceable candidates ===");
 290     } else if(C->AliasLevel() < 3) {
 291       tty->print(" since AliasLevel < 3 ===");
 292     }
 293     tty->cr();
 294 #endif
 295   }
 296   return has_non_escaping_obj;
 297 }
 298 
 299 // Utility function for nodes that load an object
 300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 302   // ThreadLocal has RawPtr type.
 303   const Type* t = _igvn->type(n);
 304   if (t->make_ptr() != NULL) {
 305     Node* adr = n->in(MemNode::Address);
 306 #ifdef ASSERT
 307     if (!adr->is_AddP()) {
 308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 309     } else {
 310       assert((ptnode_adr(adr->_idx) == NULL ||
 311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 312     }
 313 #endif
 314     add_local_var_and_edge(n, PointsToNode::NoEscape,
 315                            adr, delayed_worklist);
 316   }
 317 }
 318 
 319 // Populate Connection Graph with PointsTo nodes and create simple
 320 // connection graph edges.
 321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 322   assert(!_verify, "this method sould not be called for verification");
 323   PhaseGVN* igvn = _igvn;
 324   uint n_idx = n->_idx;
 325   PointsToNode* n_ptn = ptnode_adr(n_idx);
 326   if (n_ptn != NULL)
 327     return; // No need to redefine PointsTo node during first iteration.
 328 
 329   if (n->is_Call()) {
 330     // Arguments to allocation and locking don't escape.
 331     if (n->is_AbstractLock()) {
 332       // Put Lock and Unlock nodes on IGVN worklist to process them during
 333       // first IGVN optimization when escape information is still available.
 334       record_for_optimizer(n);
 335     } else if (n->is_Allocate()) {
 336       add_call_node(n->as_Call());
 337       record_for_optimizer(n);
 338     } else {
 339       if (n->is_CallStaticJava()) {
 340         const char* name = n->as_CallStaticJava()->_name;
 341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 342           return; // Skip uncommon traps
 343       }
 344       // Don't mark as processed since call's arguments have to be processed.
 345       delayed_worklist->push(n);
 346       // Check if a call returns an object.
 347       if ((n->as_Call()->returns_pointer() &&
 348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 349           (n->is_CallStaticJava() &&
 350            n->as_CallStaticJava()->is_boxing_method())) {
 351         add_call_node(n->as_Call());
 352       }
 353     }
 354     return;
 355   }
 356   // Put this check here to process call arguments since some call nodes
 357   // point to phantom_obj.
 358   if (n_ptn == phantom_obj || n_ptn == null_obj)
 359     return; // Skip predefined nodes.
 360 
 361   int opcode = n->Opcode();
 362   switch (opcode) {
 363     case Op_AddP: {
 364       Node* base = get_addp_base(n);
 365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 366       // Field nodes are created for all field types. They are used in
 367       // adjust_scalar_replaceable_state() and split_unique_types().
 368       // Note, non-oop fields will have only base edges in Connection
 369       // Graph because such fields are not used for oop loads and stores.
 370       int offset = address_offset(n, igvn);
 371       add_field(n, PointsToNode::NoEscape, offset);
 372       if (ptn_base == NULL) {
 373         delayed_worklist->push(n); // Process it later.
 374       } else {
 375         n_ptn = ptnode_adr(n_idx);
 376         add_base(n_ptn->as_Field(), ptn_base);
 377       }
 378       break;
 379     }
 380     case Op_CastX2P: {
 381       map_ideal_node(n, phantom_obj);
 382       break;
 383     }
 384     case Op_CastPP:
 385     case Op_CheckCastPP:
 386     case Op_EncodeP:
 387     case Op_DecodeN:
 388     case Op_EncodePKlass:
 389     case Op_DecodeNKlass: {
 390       add_local_var_and_edge(n, PointsToNode::NoEscape,
 391                              n->in(1), delayed_worklist);
 392       break;
 393     }
 394     case Op_CMoveP: {
 395       add_local_var(n, PointsToNode::NoEscape);
 396       // Do not add edges during first iteration because some could be
 397       // not defined yet.
 398       delayed_worklist->push(n);
 399       break;
 400     }
 401     case Op_ConP:
 402     case Op_ConN:
 403     case Op_ConNKlass: {
 404       // assume all oop constants globally escape except for null
 405       PointsToNode::EscapeState es;
 406       const Type* t = igvn->type(n);
 407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 408         es = PointsToNode::NoEscape;
 409       } else {
 410         es = PointsToNode::GlobalEscape;
 411       }
 412       add_java_object(n, es);
 413       break;
 414     }
 415     case Op_CreateEx: {
 416       // assume that all exception objects globally escape
 417       add_java_object(n, PointsToNode::GlobalEscape);
 418       break;
 419     }
 420     case Op_LoadKlass:
 421     case Op_LoadNKlass: {
 422       // Unknown class is loaded
 423       map_ideal_node(n, phantom_obj);
 424       break;
 425     }
 426     case Op_LoadP:
 427     case Op_LoadN:
 428     case Op_LoadPLocked: {
 429       add_objload_to_connection_graph(n, delayed_worklist);
 430       break;
 431     }
 432     case Op_Parm: {
 433       map_ideal_node(n, phantom_obj);
 434       break;
 435     }
 436     case Op_PartialSubtypeCheck: {
 437       // Produces Null or notNull and is used in only in CmpP so
 438       // phantom_obj could be used.
 439       map_ideal_node(n, phantom_obj); // Result is unknown
 440       break;
 441     }
 442     case Op_Phi: {
 443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 444       // ThreadLocal has RawPtr type.
 445       const Type* t = n->as_Phi()->type();
 446       if (t->make_ptr() != NULL) {
 447         add_local_var(n, PointsToNode::NoEscape);
 448         // Do not add edges during first iteration because some could be
 449         // not defined yet.
 450         delayed_worklist->push(n);
 451       }
 452       break;
 453     }
 454     case Op_Proj: {
 455       // we are only interested in the oop result projection from a call
 456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 457           n->in(0)->as_Call()->returns_pointer()) {
 458         add_local_var_and_edge(n, PointsToNode::NoEscape,
 459                                n->in(0), delayed_worklist);
 460       }
 461       break;
 462     }
 463     case Op_Rethrow: // Exception object escapes
 464     case Op_Return: {
 465       if (n->req() > TypeFunc::Parms &&
 466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 467         // Treat Return value as LocalVar with GlobalEscape escape state.
 468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 469                                n->in(TypeFunc::Parms), delayed_worklist);
 470       }
 471       break;
 472     }
 473     case Op_GetAndSetP:
 474     case Op_GetAndSetN: {
 475       add_objload_to_connection_graph(n, delayed_worklist);
 476       // fallthrough
 477     }
 478     case Op_StoreP:
 479     case Op_StoreN:
 480     case Op_StoreNKlass:
 481     case Op_StorePConditional:
 482     case Op_CompareAndSwapP:
 483     case Op_CompareAndSwapN: {
 484       Node* adr = n->in(MemNode::Address);
 485       const Type *adr_type = igvn->type(adr);
 486       adr_type = adr_type->make_ptr();
 487       if (adr_type->isa_oopptr() ||
 488           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 489                         (adr_type == TypeRawPtr::NOTNULL &&
 490                          adr->in(AddPNode::Address)->is_Proj() &&
 491                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 492         delayed_worklist->push(n); // Process it later.
 493 #ifdef ASSERT
 494         assert(adr->is_AddP(), "expecting an AddP");
 495         if (adr_type == TypeRawPtr::NOTNULL) {
 496           // Verify a raw address for a store captured by Initialize node.
 497           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 498           assert(offs != Type::OffsetBot, "offset must be a constant");
 499         }
 500 #endif
 501       } else {
 502         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 503         if (adr->is_BoxLock())
 504           break;
 505         // Stored value escapes in unsafe access.
 506         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 507           // Pointer stores in G1 barriers looks like unsafe access.
 508           // Ignore such stores to be able scalar replace non-escaping
 509           // allocations.
 510           if (UseG1GC && adr->is_AddP()) {
 511             Node* base = get_addp_base(adr);
 512             if (base->Opcode() == Op_LoadP &&
 513                 base->in(MemNode::Address)->is_AddP()) {
 514               adr = base->in(MemNode::Address);
 515               Node* tls = get_addp_base(adr);
 516               if (tls->Opcode() == Op_ThreadLocal) {
 517                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 518                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 519                                      PtrQueue::byte_offset_of_buf())) {
 520                   break; // G1 pre barier previous oop value store.
 521                 }
 522                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 523                                      PtrQueue::byte_offset_of_buf())) {
 524                   break; // G1 post barier card address store.
 525                 }
 526               }
 527             }
 528           }
 529           delayed_worklist->push(n); // Process unsafe access later.
 530           break;
 531         }
 532 #ifdef ASSERT
 533         n->dump(1);
 534         assert(false, "not unsafe or G1 barrier raw StoreP");
 535 #endif
 536       }
 537       break;
 538     }
 539     case Op_AryEq:
 540     case Op_StrComp:
 541     case Op_StrEquals:
 542     case Op_StrIndexOf:
 543     case Op_EncodeISOArray: {
 544       add_local_var(n, PointsToNode::ArgEscape);
 545       delayed_worklist->push(n); // Process it later.
 546       break;
 547     }
 548     case Op_ThreadLocal: {
 549       add_java_object(n, PointsToNode::ArgEscape);
 550       break;
 551     }
 552     default:
 553       ; // Do nothing for nodes not related to EA.
 554   }
 555   return;
 556 }
 557 
 558 #ifdef ASSERT
 559 #define ELSE_FAIL(name)                               \
 560       /* Should not be called for not pointer type. */  \
 561       n->dump(1);                                       \
 562       assert(false, name);                              \
 563       break;
 564 #else
 565 #define ELSE_FAIL(name) \
 566       break;
 567 #endif
 568 
 569 // Add final simple edges to graph.
 570 void ConnectionGraph::add_final_edges(Node *n) {
 571   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 572 #ifdef ASSERT
 573   if (_verify && n_ptn->is_JavaObject())
 574     return; // This method does not change graph for JavaObject.
 575 #endif
 576 
 577   if (n->is_Call()) {
 578     process_call_arguments(n->as_Call());
 579     return;
 580   }
 581   assert(n->is_Store() || n->is_LoadStore() ||
 582          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 583          "node should be registered already");
 584   int opcode = n->Opcode();
 585   switch (opcode) {
 586     case Op_AddP: {
 587       Node* base = get_addp_base(n);
 588       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 589       assert(ptn_base != NULL, "field's base should be registered");
 590       add_base(n_ptn->as_Field(), ptn_base);
 591       break;
 592     }
 593     case Op_CastPP:
 594     case Op_CheckCastPP:
 595     case Op_EncodeP:
 596     case Op_DecodeN:
 597     case Op_EncodePKlass:
 598     case Op_DecodeNKlass: {
 599       add_local_var_and_edge(n, PointsToNode::NoEscape,
 600                              n->in(1), NULL);
 601       break;
 602     }
 603     case Op_CMoveP: {
 604       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 605         Node* in = n->in(i);
 606         if (in == NULL)
 607           continue;  // ignore NULL
 608         Node* uncast_in = in->uncast();
 609         if (uncast_in->is_top() || uncast_in == n)
 610           continue;  // ignore top or inputs which go back this node
 611         PointsToNode* ptn = ptnode_adr(in->_idx);
 612         assert(ptn != NULL, "node should be registered");
 613         add_edge(n_ptn, ptn);
 614       }
 615       break;
 616     }
 617     case Op_LoadP:
 618     case Op_LoadN:
 619     case Op_LoadPLocked: {
 620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 621       // ThreadLocal has RawPtr type.
 622       const Type* t = _igvn->type(n);
 623       if (t->make_ptr() != NULL) {
 624         Node* adr = n->in(MemNode::Address);
 625         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 626         break;
 627       }
 628       ELSE_FAIL("Op_LoadP");
 629     }
 630     case Op_Phi: {
 631       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 632       // ThreadLocal has RawPtr type.
 633       const Type* t = n->as_Phi()->type();
 634       if (t->make_ptr() != NULL) {
 635         for (uint i = 1; i < n->req(); i++) {
 636           Node* in = n->in(i);
 637           if (in == NULL)
 638             continue;  // ignore NULL
 639           Node* uncast_in = in->uncast();
 640           if (uncast_in->is_top() || uncast_in == n)
 641             continue;  // ignore top or inputs which go back this node
 642           PointsToNode* ptn = ptnode_adr(in->_idx);
 643           assert(ptn != NULL, "node should be registered");
 644           add_edge(n_ptn, ptn);
 645         }
 646         break;
 647       }
 648       ELSE_FAIL("Op_Phi");
 649     }
 650     case Op_Proj: {
 651       // we are only interested in the oop result projection from a call
 652       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 653           n->in(0)->as_Call()->returns_pointer()) {
 654         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 655         break;
 656       }
 657       ELSE_FAIL("Op_Proj");
 658     }
 659     case Op_Rethrow: // Exception object escapes
 660     case Op_Return: {
 661       if (n->req() > TypeFunc::Parms &&
 662           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 663         // Treat Return value as LocalVar with GlobalEscape escape state.
 664         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 665                                n->in(TypeFunc::Parms), NULL);
 666         break;
 667       }
 668       ELSE_FAIL("Op_Return");
 669     }
 670     case Op_StoreP:
 671     case Op_StoreN:
 672     case Op_StoreNKlass:
 673     case Op_StorePConditional:
 674     case Op_CompareAndSwapP:
 675     case Op_CompareAndSwapN:
 676     case Op_GetAndSetP:
 677     case Op_GetAndSetN: {
 678       Node* adr = n->in(MemNode::Address);
 679       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 680         const Type* t = _igvn->type(n);
 681         if (t->make_ptr() != NULL) {
 682           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 683         }
 684       }
 685       const Type *adr_type = _igvn->type(adr);
 686       adr_type = adr_type->make_ptr();
 687       if (adr_type->isa_oopptr() ||
 688           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 689                         (adr_type == TypeRawPtr::NOTNULL &&
 690                          adr->in(AddPNode::Address)->is_Proj() &&
 691                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 692         // Point Address to Value
 693         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 694         assert(adr_ptn != NULL &&
 695                adr_ptn->as_Field()->is_oop(), "node should be registered");
 696         Node *val = n->in(MemNode::ValueIn);
 697         PointsToNode* ptn = ptnode_adr(val->_idx);
 698         assert(ptn != NULL, "node should be registered");
 699         add_edge(adr_ptn, ptn);
 700         break;
 701       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 702         // Stored value escapes in unsafe access.
 703         Node *val = n->in(MemNode::ValueIn);
 704         PointsToNode* ptn = ptnode_adr(val->_idx);
 705         assert(ptn != NULL, "node should be registered");
 706         ptn->set_escape_state(PointsToNode::GlobalEscape);
 707         // Add edge to object for unsafe access with offset.
 708         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 709         assert(adr_ptn != NULL, "node should be registered");
 710         if (adr_ptn->is_Field()) {
 711           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 712           add_edge(adr_ptn, ptn);
 713         }
 714         break;
 715       }
 716       ELSE_FAIL("Op_StoreP");
 717     }
 718     case Op_AryEq:
 719     case Op_StrComp:
 720     case Op_StrEquals:
 721     case Op_StrIndexOf:
 722     case Op_EncodeISOArray: {
 723       // char[] arrays passed to string intrinsic do not escape but
 724       // they are not scalar replaceable. Adjust escape state for them.
 725       // Start from in(2) edge since in(1) is memory edge.
 726       for (uint i = 2; i < n->req(); i++) {
 727         Node* adr = n->in(i);
 728         const Type* at = _igvn->type(adr);
 729         if (!adr->is_top() && at->isa_ptr()) {
 730           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 731                  at->isa_ptr() != NULL, "expecting a pointer");
 732           if (adr->is_AddP()) {
 733             adr = get_addp_base(adr);
 734           }
 735           PointsToNode* ptn = ptnode_adr(adr->_idx);
 736           assert(ptn != NULL, "node should be registered");
 737           add_edge(n_ptn, ptn);
 738         }
 739       }
 740       break;
 741     }
 742     default: {
 743       // This method should be called only for EA specific nodes which may
 744       // miss some edges when they were created.
 745 #ifdef ASSERT
 746       n->dump(1);
 747 #endif
 748       guarantee(false, "unknown node");
 749     }
 750   }
 751   return;
 752 }
 753 
 754 void ConnectionGraph::add_call_node(CallNode* call) {
 755   assert(call->returns_pointer(), "only for call which returns pointer");
 756   uint call_idx = call->_idx;
 757   if (call->is_Allocate()) {
 758     Node* k = call->in(AllocateNode::KlassNode);
 759     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 760     assert(kt != NULL, "TypeKlassPtr  required.");
 761     ciKlass* cik = kt->klass();
 762     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 763     bool scalar_replaceable = true;
 764     if (call->is_AllocateArray()) {
 765       if (!cik->is_array_klass()) { // StressReflectiveCode
 766         es = PointsToNode::GlobalEscape;
 767       } else {
 768         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 769         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 770           // Not scalar replaceable if the length is not constant or too big.
 771           scalar_replaceable = false;
 772         }
 773       }
 774     } else {  // Allocate instance
 775       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 776          !cik->is_instance_klass() || // StressReflectiveCode
 777           cik->as_instance_klass()->has_finalizer()) {
 778         es = PointsToNode::GlobalEscape;
 779       }
 780     }
 781     add_java_object(call, es);
 782     PointsToNode* ptn = ptnode_adr(call_idx);
 783     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 784       ptn->set_scalar_replaceable(false);
 785     }
 786   } else if (call->is_CallStaticJava()) {
 787     // Call nodes could be different types:
 788     //
 789     // 1. CallDynamicJavaNode (what happened during call is unknown):
 790     //
 791     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 792     //
 793     //    - all oop arguments are escaping globally;
 794     //
 795     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 796     //
 797     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 798     //
 799     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 800     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 801     //      during call is returned;
 802     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 803     //      which are returned and does not escape during call;
 804     //
 805     //    - oop arguments escaping status is defined by bytecode analysis;
 806     //
 807     // For a static call, we know exactly what method is being called.
 808     // Use bytecode estimator to record whether the call's return value escapes.
 809     ciMethod* meth = call->as_CallJava()->method();
 810     if (meth == NULL) {
 811       const char* name = call->as_CallStaticJava()->_name;
 812       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 813       // Returns a newly allocated unescaped object.
 814       add_java_object(call, PointsToNode::NoEscape);
 815       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 816     } else if (meth->is_boxing_method()) {
 817       // Returns boxing object
 818       add_java_object(call, PointsToNode::NoEscape);
 819     } else {
 820       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 821       call_analyzer->copy_dependencies(_compile->dependencies());
 822       if (call_analyzer->is_return_allocated()) {
 823         // Returns a newly allocated unescaped object, simply
 824         // update dependency information.
 825         // Mark it as NoEscape so that objects referenced by
 826         // it's fields will be marked as NoEscape at least.
 827         add_java_object(call, PointsToNode::NoEscape);
 828         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 829       } else {
 830         // Determine whether any arguments are returned.
 831         const TypeTuple* d = call->tf()->domain();
 832         bool ret_arg = false;
 833         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 834           if (d->field_at(i)->isa_ptr() != NULL &&
 835               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 836             ret_arg = true;
 837             break;
 838           }
 839         }
 840         if (ret_arg) {
 841           add_local_var(call, PointsToNode::ArgEscape);
 842         } else {
 843           // Returns unknown object.
 844           map_ideal_node(call, phantom_obj);
 845         }
 846       }
 847     }
 848   } else {
 849     // An other type of call, assume the worst case:
 850     // returned value is unknown and globally escapes.
 851     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 852     map_ideal_node(call, phantom_obj);
 853   }
 854 }
 855 
 856 void ConnectionGraph::process_call_arguments(CallNode *call) {
 857     bool is_arraycopy = false;
 858     switch (call->Opcode()) {
 859 #ifdef ASSERT
 860     case Op_Allocate:
 861     case Op_AllocateArray:
 862     case Op_Lock:
 863     case Op_Unlock:
 864       assert(false, "should be done already");
 865       break;
 866 #endif
 867     case Op_CallLeafNoFP:
 868       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 869                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 870       // fall through
 871     case Op_CallLeaf: {
 872       // Stub calls, objects do not escape but they are not scale replaceable.
 873       // Adjust escape state for outgoing arguments.
 874       const TypeTuple * d = call->tf()->domain();
 875       bool src_has_oops = false;
 876       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 877         const Type* at = d->field_at(i);
 878         Node *arg = call->in(i);
 879         const Type *aat = _igvn->type(arg);
 880         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 881           continue;
 882         if (arg->is_AddP()) {
 883           //
 884           // The inline_native_clone() case when the arraycopy stub is called
 885           // after the allocation before Initialize and CheckCastPP nodes.
 886           // Or normal arraycopy for object arrays case.
 887           //
 888           // Set AddP's base (Allocate) as not scalar replaceable since
 889           // pointer to the base (with offset) is passed as argument.
 890           //
 891           arg = get_addp_base(arg);
 892         }
 893         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 894         assert(arg_ptn != NULL, "should be registered");
 895         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 896         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 897           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 898                  aat->isa_ptr() != NULL, "expecting an Ptr");
 899           bool arg_has_oops = aat->isa_oopptr() &&
 900                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 901                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 902           if (i == TypeFunc::Parms) {
 903             src_has_oops = arg_has_oops;
 904           }
 905           //
 906           // src or dst could be j.l.Object when other is basic type array:
 907           //
 908           //   arraycopy(char[],0,Object*,0,size);
 909           //   arraycopy(Object*,0,char[],0,size);
 910           //
 911           // Don't add edges in such cases.
 912           //
 913           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 914                                        arg_has_oops && (i > TypeFunc::Parms);
 915 #ifdef ASSERT
 916           if (!(is_arraycopy ||
 917                 (call->as_CallLeaf()->_name != NULL &&
 918                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 919                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 920                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 921                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 922                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 923                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
 924                   ))) {
 925             call->dump();
 926             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 927           }
 928 #endif
 929           // Always process arraycopy's destination object since
 930           // we need to add all possible edges to references in
 931           // source object.
 932           if (arg_esc >= PointsToNode::ArgEscape &&
 933               !arg_is_arraycopy_dest) {
 934             continue;
 935           }
 936           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 937           if (arg_is_arraycopy_dest) {
 938             Node* src = call->in(TypeFunc::Parms);
 939             if (src->is_AddP()) {
 940               src = get_addp_base(src);
 941             }
 942             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 943             assert(src_ptn != NULL, "should be registered");
 944             if (arg_ptn != src_ptn) {
 945               // Special arraycopy edge:
 946               // A destination object's field can't have the source object
 947               // as base since objects escape states are not related.
 948               // Only escape state of destination object's fields affects
 949               // escape state of fields in source object.
 950               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 951             }
 952           }
 953         }
 954       }
 955       break;
 956     }
 957     case Op_CallStaticJava: {
 958       // For a static call, we know exactly what method is being called.
 959       // Use bytecode estimator to record the call's escape affects
 960 #ifdef ASSERT
 961       const char* name = call->as_CallStaticJava()->_name;
 962       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 963 #endif
 964       ciMethod* meth = call->as_CallJava()->method();
 965       if ((meth != NULL) && meth->is_boxing_method()) {
 966         break; // Boxing methods do not modify any oops.
 967       }
 968       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 969       // fall-through if not a Java method or no analyzer information
 970       if (call_analyzer != NULL) {
 971         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 972         const TypeTuple* d = call->tf()->domain();
 973         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 974           const Type* at = d->field_at(i);
 975           int k = i - TypeFunc::Parms;
 976           Node* arg = call->in(i);
 977           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 978           if (at->isa_ptr() != NULL &&
 979               call_analyzer->is_arg_returned(k)) {
 980             // The call returns arguments.
 981             if (call_ptn != NULL) { // Is call's result used?
 982               assert(call_ptn->is_LocalVar(), "node should be registered");
 983               assert(arg_ptn != NULL, "node should be registered");
 984               add_edge(call_ptn, arg_ptn);
 985             }
 986           }
 987           if (at->isa_oopptr() != NULL &&
 988               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
 989             if (!call_analyzer->is_arg_stack(k)) {
 990               // The argument global escapes
 991               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 992             } else {
 993               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 994               if (!call_analyzer->is_arg_local(k)) {
 995                 // The argument itself doesn't escape, but any fields might
 996                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 997               }
 998             }
 999           }
1000         }
1001         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1002           // The call returns arguments.
1003           assert(call_ptn->edge_count() > 0, "sanity");
1004           if (!call_analyzer->is_return_local()) {
1005             // Returns also unknown object.
1006             add_edge(call_ptn, phantom_obj);
1007           }
1008         }
1009         break;
1010       }
1011     }
1012     default: {
1013       // Fall-through here if not a Java method or no analyzer information
1014       // or some other type of call, assume the worst case: all arguments
1015       // globally escape.
1016       const TypeTuple* d = call->tf()->domain();
1017       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1018         const Type* at = d->field_at(i);
1019         if (at->isa_oopptr() != NULL) {
1020           Node* arg = call->in(i);
1021           if (arg->is_AddP()) {
1022             arg = get_addp_base(arg);
1023           }
1024           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1025           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1026         }
1027       }
1028     }
1029   }
1030 }
1031 
1032 
1033 // Finish Graph construction.
1034 bool ConnectionGraph::complete_connection_graph(
1035                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1036                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1037                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1038                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1039   // Normally only 1-3 passes needed to build Connection Graph depending
1040   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1041   // Set limit to 20 to catch situation when something did go wrong and
1042   // bailout Escape Analysis.
1043   // Also limit build time to 30 sec (60 in debug VM).
1044 #define CG_BUILD_ITER_LIMIT 20
1045 #ifdef ASSERT
1046 #define CG_BUILD_TIME_LIMIT 60.0
1047 #else
1048 #define CG_BUILD_TIME_LIMIT 30.0
1049 #endif
1050 
1051   // Propagate GlobalEscape and ArgEscape escape states and check that
1052   // we still have non-escaping objects. The method pushs on _worklist
1053   // Field nodes which reference phantom_object.
1054   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1055     return false; // Nothing to do.
1056   }
1057   // Now propagate references to all JavaObject nodes.
1058   int java_objects_length = java_objects_worklist.length();
1059   elapsedTimer time;
1060   int new_edges = 1;
1061   int iterations = 0;
1062   do {
1063     while ((new_edges > 0) &&
1064           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1065           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1066       time.start();
1067       new_edges = 0;
1068       // Propagate references to phantom_object for nodes pushed on _worklist
1069       // by find_non_escaped_objects() and find_field_value().
1070       new_edges += add_java_object_edges(phantom_obj, false);
1071       for (int next = 0; next < java_objects_length; ++next) {
1072         JavaObjectNode* ptn = java_objects_worklist.at(next);
1073         new_edges += add_java_object_edges(ptn, true);
1074       }
1075       if (new_edges > 0) {
1076         // Update escape states on each iteration if graph was updated.
1077         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1078           return false; // Nothing to do.
1079         }
1080       }
1081       time.stop();
1082     }
1083     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1084         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1085       time.start();
1086       // Find fields which have unknown value.
1087       int fields_length = oop_fields_worklist.length();
1088       for (int next = 0; next < fields_length; next++) {
1089         FieldNode* field = oop_fields_worklist.at(next);
1090         if (field->edge_count() == 0) {
1091           new_edges += find_field_value(field);
1092           // This code may added new edges to phantom_object.
1093           // Need an other cycle to propagate references to phantom_object.
1094         }
1095       }
1096       time.stop();
1097     } else {
1098       new_edges = 0; // Bailout
1099     }
1100   } while (new_edges > 0);
1101 
1102   // Bailout if passed limits.
1103   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1104       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1105     Compile* C = _compile;
1106     if (C->log() != NULL) {
1107       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1108       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1109       C->log()->end_elem(" limit'");
1110     }
1111     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1112            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1113     // Possible infinite build_connection_graph loop,
1114     // bailout (no changes to ideal graph were made).
1115     return false;
1116   }
1117 #ifdef ASSERT
1118   if (Verbose && PrintEscapeAnalysis) {
1119     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1120                   iterations, nodes_size(), ptnodes_worklist.length());
1121   }
1122 #endif
1123 
1124 #undef CG_BUILD_ITER_LIMIT
1125 #undef CG_BUILD_TIME_LIMIT
1126 
1127   // Find fields initialized by NULL for non-escaping Allocations.
1128   int non_escaped_length = non_escaped_worklist.length();
1129   for (int next = 0; next < non_escaped_length; next++) {
1130     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1131     PointsToNode::EscapeState es = ptn->escape_state();
1132     assert(es <= PointsToNode::ArgEscape, "sanity");
1133     if (es == PointsToNode::NoEscape) {
1134       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1135         // Adding references to NULL object does not change escape states
1136         // since it does not escape. Also no fields are added to NULL object.
1137         add_java_object_edges(null_obj, false);
1138       }
1139     }
1140     Node* n = ptn->ideal_node();
1141     if (n->is_Allocate()) {
1142       // The object allocated by this Allocate node will never be
1143       // seen by an other thread. Mark it so that when it is
1144       // expanded no MemBarStoreStore is added.
1145       InitializeNode* ini = n->as_Allocate()->initialization();
1146       if (ini != NULL)
1147         ini->set_does_not_escape();
1148     }
1149   }
1150   return true; // Finished graph construction.
1151 }
1152 
1153 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1154 // and check that we still have non-escaping java objects.
1155 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1156                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1157   GrowableArray<PointsToNode*> escape_worklist;
1158   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1159   int ptnodes_length = ptnodes_worklist.length();
1160   for (int next = 0; next < ptnodes_length; ++next) {
1161     PointsToNode* ptn = ptnodes_worklist.at(next);
1162     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1163         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1164       escape_worklist.push(ptn);
1165     }
1166   }
1167   // Set escape states to referenced nodes (edges list).
1168   while (escape_worklist.length() > 0) {
1169     PointsToNode* ptn = escape_worklist.pop();
1170     PointsToNode::EscapeState es  = ptn->escape_state();
1171     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1172     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1173         es >= PointsToNode::ArgEscape) {
1174       // GlobalEscape or ArgEscape state of field means it has unknown value.
1175       if (add_edge(ptn, phantom_obj)) {
1176         // New edge was added
1177         add_field_uses_to_worklist(ptn->as_Field());
1178       }
1179     }
1180     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1181       PointsToNode* e = i.get();
1182       if (e->is_Arraycopy()) {
1183         assert(ptn->arraycopy_dst(), "sanity");
1184         // Propagate only fields escape state through arraycopy edge.
1185         if (e->fields_escape_state() < field_es) {
1186           set_fields_escape_state(e, field_es);
1187           escape_worklist.push(e);
1188         }
1189       } else if (es >= field_es) {
1190         // fields_escape_state is also set to 'es' if it is less than 'es'.
1191         if (e->escape_state() < es) {
1192           set_escape_state(e, es);
1193           escape_worklist.push(e);
1194         }
1195       } else {
1196         // Propagate field escape state.
1197         bool es_changed = false;
1198         if (e->fields_escape_state() < field_es) {
1199           set_fields_escape_state(e, field_es);
1200           es_changed = true;
1201         }
1202         if ((e->escape_state() < field_es) &&
1203             e->is_Field() && ptn->is_JavaObject() &&
1204             e->as_Field()->is_oop()) {
1205           // Change escape state of referenced fileds.
1206           set_escape_state(e, field_es);
1207           es_changed = true;;
1208         } else if (e->escape_state() < es) {
1209           set_escape_state(e, es);
1210           es_changed = true;;
1211         }
1212         if (es_changed) {
1213           escape_worklist.push(e);
1214         }
1215       }
1216     }
1217   }
1218   // Remove escaped objects from non_escaped list.
1219   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1220     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1221     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1222       non_escaped_worklist.delete_at(next);
1223     }
1224     if (ptn->escape_state() == PointsToNode::NoEscape) {
1225       // Find fields in non-escaped allocations which have unknown value.
1226       find_init_values(ptn, phantom_obj, NULL);
1227     }
1228   }
1229   return (non_escaped_worklist.length() > 0);
1230 }
1231 
1232 // Add all references to JavaObject node by walking over all uses.
1233 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1234   int new_edges = 0;
1235   if (populate_worklist) {
1236     // Populate _worklist by uses of jobj's uses.
1237     for (UseIterator i(jobj); i.has_next(); i.next()) {
1238       PointsToNode* use = i.get();
1239       if (use->is_Arraycopy())
1240         continue;
1241       add_uses_to_worklist(use);
1242       if (use->is_Field() && use->as_Field()->is_oop()) {
1243         // Put on worklist all field's uses (loads) and
1244         // related field nodes (same base and offset).
1245         add_field_uses_to_worklist(use->as_Field());
1246       }
1247     }
1248   }
1249   while(_worklist.length() > 0) {
1250     PointsToNode* use = _worklist.pop();
1251     if (PointsToNode::is_base_use(use)) {
1252       // Add reference from jobj to field and from field to jobj (field's base).
1253       use = PointsToNode::get_use_node(use)->as_Field();
1254       if (add_base(use->as_Field(), jobj)) {
1255         new_edges++;
1256       }
1257       continue;
1258     }
1259     assert(!use->is_JavaObject(), "sanity");
1260     if (use->is_Arraycopy()) {
1261       if (jobj == null_obj) // NULL object does not have field edges
1262         continue;
1263       // Added edge from Arraycopy node to arraycopy's source java object
1264       if (add_edge(use, jobj)) {
1265         jobj->set_arraycopy_src();
1266         new_edges++;
1267       }
1268       // and stop here.
1269       continue;
1270     }
1271     if (!add_edge(use, jobj))
1272       continue; // No new edge added, there was such edge already.
1273     new_edges++;
1274     if (use->is_LocalVar()) {
1275       add_uses_to_worklist(use);
1276       if (use->arraycopy_dst()) {
1277         for (EdgeIterator i(use); i.has_next(); i.next()) {
1278           PointsToNode* e = i.get();
1279           if (e->is_Arraycopy()) {
1280             if (jobj == null_obj) // NULL object does not have field edges
1281               continue;
1282             // Add edge from arraycopy's destination java object to Arraycopy node.
1283             if (add_edge(jobj, e)) {
1284               new_edges++;
1285               jobj->set_arraycopy_dst();
1286             }
1287           }
1288         }
1289       }
1290     } else {
1291       // Added new edge to stored in field values.
1292       // Put on worklist all field's uses (loads) and
1293       // related field nodes (same base and offset).
1294       add_field_uses_to_worklist(use->as_Field());
1295     }
1296   }
1297   return new_edges;
1298 }
1299 
1300 // Put on worklist all related field nodes.
1301 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1302   assert(field->is_oop(), "sanity");
1303   int offset = field->offset();
1304   add_uses_to_worklist(field);
1305   // Loop over all bases of this field and push on worklist Field nodes
1306   // with the same offset and base (since they may reference the same field).
1307   for (BaseIterator i(field); i.has_next(); i.next()) {
1308     PointsToNode* base = i.get();
1309     add_fields_to_worklist(field, base);
1310     // Check if the base was source object of arraycopy and go over arraycopy's
1311     // destination objects since values stored to a field of source object are
1312     // accessable by uses (loads) of fields of destination objects.
1313     if (base->arraycopy_src()) {
1314       for (UseIterator j(base); j.has_next(); j.next()) {
1315         PointsToNode* arycp = j.get();
1316         if (arycp->is_Arraycopy()) {
1317           for (UseIterator k(arycp); k.has_next(); k.next()) {
1318             PointsToNode* abase = k.get();
1319             if (abase->arraycopy_dst() && abase != base) {
1320               // Look for the same arracopy reference.
1321               add_fields_to_worklist(field, abase);
1322             }
1323           }
1324         }
1325       }
1326     }
1327   }
1328 }
1329 
1330 // Put on worklist all related field nodes.
1331 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1332   int offset = field->offset();
1333   if (base->is_LocalVar()) {
1334     for (UseIterator j(base); j.has_next(); j.next()) {
1335       PointsToNode* f = j.get();
1336       if (PointsToNode::is_base_use(f)) { // Field
1337         f = PointsToNode::get_use_node(f);
1338         if (f == field || !f->as_Field()->is_oop())
1339           continue;
1340         int offs = f->as_Field()->offset();
1341         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1342           add_to_worklist(f);
1343         }
1344       }
1345     }
1346   } else {
1347     assert(base->is_JavaObject(), "sanity");
1348     if (// Skip phantom_object since it is only used to indicate that
1349         // this field's content globally escapes.
1350         (base != phantom_obj) &&
1351         // NULL object node does not have fields.
1352         (base != null_obj)) {
1353       for (EdgeIterator i(base); i.has_next(); i.next()) {
1354         PointsToNode* f = i.get();
1355         // Skip arraycopy edge since store to destination object field
1356         // does not update value in source object field.
1357         if (f->is_Arraycopy()) {
1358           assert(base->arraycopy_dst(), "sanity");
1359           continue;
1360         }
1361         if (f == field || !f->as_Field()->is_oop())
1362           continue;
1363         int offs = f->as_Field()->offset();
1364         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1365           add_to_worklist(f);
1366         }
1367       }
1368     }
1369   }
1370 }
1371 
1372 // Find fields which have unknown value.
1373 int ConnectionGraph::find_field_value(FieldNode* field) {
1374   // Escaped fields should have init value already.
1375   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1376   int new_edges = 0;
1377   for (BaseIterator i(field); i.has_next(); i.next()) {
1378     PointsToNode* base = i.get();
1379     if (base->is_JavaObject()) {
1380       // Skip Allocate's fields which will be processed later.
1381       if (base->ideal_node()->is_Allocate())
1382         return 0;
1383       assert(base == null_obj, "only NULL ptr base expected here");
1384     }
1385   }
1386   if (add_edge(field, phantom_obj)) {
1387     // New edge was added
1388     new_edges++;
1389     add_field_uses_to_worklist(field);
1390   }
1391   return new_edges;
1392 }
1393 
1394 // Find fields initializing values for allocations.
1395 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1396   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1397   int new_edges = 0;
1398   Node* alloc = pta->ideal_node();
1399   if (init_val == phantom_obj) {
1400     // Do nothing for Allocate nodes since its fields values are "known".
1401     if (alloc->is_Allocate())
1402       return 0;
1403     assert(alloc->as_CallStaticJava(), "sanity");
1404 #ifdef ASSERT
1405     if (alloc->as_CallStaticJava()->method() == NULL) {
1406       const char* name = alloc->as_CallStaticJava()->_name;
1407       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1408     }
1409 #endif
1410     // Non-escaped allocation returned from Java or runtime call have
1411     // unknown values in fields.
1412     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1413       PointsToNode* field = i.get();
1414       if (field->is_Field() && field->as_Field()->is_oop()) {
1415         if (add_edge(field, phantom_obj)) {
1416           // New edge was added
1417           new_edges++;
1418           add_field_uses_to_worklist(field->as_Field());
1419         }
1420       }
1421     }
1422     return new_edges;
1423   }
1424   assert(init_val == null_obj, "sanity");
1425   // Do nothing for Call nodes since its fields values are unknown.
1426   if (!alloc->is_Allocate())
1427     return 0;
1428 
1429   InitializeNode* ini = alloc->as_Allocate()->initialization();
1430   Compile* C = _compile;
1431   bool visited_bottom_offset = false;
1432   GrowableArray<int> offsets_worklist;
1433 
1434   // Check if an oop field's initializing value is recorded and add
1435   // a corresponding NULL if field's value if it is not recorded.
1436   // Connection Graph does not record a default initialization by NULL
1437   // captured by Initialize node.
1438   //
1439   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1440     PointsToNode* field = i.get(); // Field (AddP)
1441     if (!field->is_Field() || !field->as_Field()->is_oop())
1442       continue; // Not oop field
1443     int offset = field->as_Field()->offset();
1444     if (offset == Type::OffsetBot) {
1445       if (!visited_bottom_offset) {
1446         // OffsetBot is used to reference array's element,
1447         // always add reference to NULL to all Field nodes since we don't
1448         // known which element is referenced.
1449         if (add_edge(field, null_obj)) {
1450           // New edge was added
1451           new_edges++;
1452           add_field_uses_to_worklist(field->as_Field());
1453           visited_bottom_offset = true;
1454         }
1455       }
1456     } else {
1457       // Check only oop fields.
1458       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1459       if (adr_type->isa_rawptr()) {
1460 #ifdef ASSERT
1461         // Raw pointers are used for initializing stores so skip it
1462         // since it should be recorded already
1463         Node* base = get_addp_base(field->ideal_node());
1464         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1465                (base->in(0) == alloc),"unexpected pointer type");
1466 #endif
1467         continue;
1468       }
1469       if (!offsets_worklist.contains(offset)) {
1470         offsets_worklist.append(offset);
1471         Node* value = NULL;
1472         if (ini != NULL) {
1473           // StoreP::memory_type() == T_ADDRESS
1474           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1475           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1476           // Make sure initializing store has the same type as this AddP.
1477           // This AddP may reference non existing field because it is on a
1478           // dead branch of bimorphic call which is not eliminated yet.
1479           if (store != NULL && store->is_Store() &&
1480               store->as_Store()->memory_type() == ft) {
1481             value = store->in(MemNode::ValueIn);
1482 #ifdef ASSERT
1483             if (VerifyConnectionGraph) {
1484               // Verify that AddP already points to all objects the value points to.
1485               PointsToNode* val = ptnode_adr(value->_idx);
1486               assert((val != NULL), "should be processed already");
1487               PointsToNode* missed_obj = NULL;
1488               if (val->is_JavaObject()) {
1489                 if (!field->points_to(val->as_JavaObject())) {
1490                   missed_obj = val;
1491                 }
1492               } else {
1493                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1494                   tty->print_cr("----------init store has invalid value -----");
1495                   store->dump();
1496                   val->dump();
1497                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1498                 }
1499                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1500                   PointsToNode* obj = j.get();
1501                   if (obj->is_JavaObject()) {
1502                     if (!field->points_to(obj->as_JavaObject())) {
1503                       missed_obj = obj;
1504                       break;
1505                     }
1506                   }
1507                 }
1508               }
1509               if (missed_obj != NULL) {
1510                 tty->print_cr("----------field---------------------------------");
1511                 field->dump();
1512                 tty->print_cr("----------missed referernce to object-----------");
1513                 missed_obj->dump();
1514                 tty->print_cr("----------object referernced by init store -----");
1515                 store->dump();
1516                 val->dump();
1517                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1518               }
1519             }
1520 #endif
1521           } else {
1522             // There could be initializing stores which follow allocation.
1523             // For example, a volatile field store is not collected
1524             // by Initialize node.
1525             //
1526             // Need to check for dependent loads to separate such stores from
1527             // stores which follow loads. For now, add initial value NULL so
1528             // that compare pointers optimization works correctly.
1529           }
1530         }
1531         if (value == NULL) {
1532           // A field's initializing value was not recorded. Add NULL.
1533           if (add_edge(field, null_obj)) {
1534             // New edge was added
1535             new_edges++;
1536             add_field_uses_to_worklist(field->as_Field());
1537           }
1538         }
1539       }
1540     }
1541   }
1542   return new_edges;
1543 }
1544 
1545 // Adjust scalar_replaceable state after Connection Graph is built.
1546 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1547   // Search for non-escaping objects which are not scalar replaceable
1548   // and mark them to propagate the state to referenced objects.
1549 
1550   // 1. An object is not scalar replaceable if the field into which it is
1551   // stored has unknown offset (stored into unknown element of an array).
1552   //
1553   for (UseIterator i(jobj); i.has_next(); i.next()) {
1554     PointsToNode* use = i.get();
1555     assert(!use->is_Arraycopy(), "sanity");
1556     if (use->is_Field()) {
1557       FieldNode* field = use->as_Field();
1558       assert(field->is_oop() && field->scalar_replaceable() &&
1559              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1560       if (field->offset() == Type::OffsetBot) {
1561         jobj->set_scalar_replaceable(false);
1562         return;
1563       }
1564     }
1565     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1566     // 2. An object is not scalar replaceable if it is merged with other objects.
1567     for (EdgeIterator j(use); j.has_next(); j.next()) {
1568       PointsToNode* ptn = j.get();
1569       if (ptn->is_JavaObject() && ptn != jobj) {
1570         // Mark all objects.
1571         jobj->set_scalar_replaceable(false);
1572          ptn->set_scalar_replaceable(false);
1573       }
1574     }
1575     if (!jobj->scalar_replaceable()) {
1576       return;
1577     }
1578   }
1579 
1580   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1581     // Non-escaping object node should point only to field nodes.
1582     FieldNode* field = j.get()->as_Field();
1583     int offset = field->as_Field()->offset();
1584 
1585     // 3. An object is not scalar replaceable if it has a field with unknown
1586     // offset (array's element is accessed in loop).
1587     if (offset == Type::OffsetBot) {
1588       jobj->set_scalar_replaceable(false);
1589       return;
1590     }
1591     // 4. Currently an object is not scalar replaceable if a LoadStore node
1592     // access its field since the field value is unknown after it.
1593     //
1594     Node* n = field->ideal_node();
1595     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1596       if (n->fast_out(i)->is_LoadStore()) {
1597         jobj->set_scalar_replaceable(false);
1598         return;
1599       }
1600     }
1601 
1602     // 5. Or the address may point to more then one object. This may produce
1603     // the false positive result (set not scalar replaceable)
1604     // since the flow-insensitive escape analysis can't separate
1605     // the case when stores overwrite the field's value from the case
1606     // when stores happened on different control branches.
1607     //
1608     // Note: it will disable scalar replacement in some cases:
1609     //
1610     //    Point p[] = new Point[1];
1611     //    p[0] = new Point(); // Will be not scalar replaced
1612     //
1613     // but it will save us from incorrect optimizations in next cases:
1614     //
1615     //    Point p[] = new Point[1];
1616     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1617     //
1618     if (field->base_count() > 1) {
1619       for (BaseIterator i(field); i.has_next(); i.next()) {
1620         PointsToNode* base = i.get();
1621         // Don't take into account LocalVar nodes which
1622         // may point to only one object which should be also
1623         // this field's base by now.
1624         if (base->is_JavaObject() && base != jobj) {
1625           // Mark all bases.
1626           jobj->set_scalar_replaceable(false);
1627           base->set_scalar_replaceable(false);
1628         }
1629       }
1630     }
1631   }
1632 }
1633 
1634 #ifdef ASSERT
1635 void ConnectionGraph::verify_connection_graph(
1636                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1637                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1638                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1639                          GrowableArray<Node*>& addp_worklist) {
1640   // Verify that graph is complete - no new edges could be added.
1641   int java_objects_length = java_objects_worklist.length();
1642   int non_escaped_length  = non_escaped_worklist.length();
1643   int new_edges = 0;
1644   for (int next = 0; next < java_objects_length; ++next) {
1645     JavaObjectNode* ptn = java_objects_worklist.at(next);
1646     new_edges += add_java_object_edges(ptn, true);
1647   }
1648   assert(new_edges == 0, "graph was not complete");
1649   // Verify that escape state is final.
1650   int length = non_escaped_worklist.length();
1651   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1652   assert((non_escaped_length == non_escaped_worklist.length()) &&
1653          (non_escaped_length == length) &&
1654          (_worklist.length() == 0), "escape state was not final");
1655 
1656   // Verify fields information.
1657   int addp_length = addp_worklist.length();
1658   for (int next = 0; next < addp_length; ++next ) {
1659     Node* n = addp_worklist.at(next);
1660     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1661     if (field->is_oop()) {
1662       // Verify that field has all bases
1663       Node* base = get_addp_base(n);
1664       PointsToNode* ptn = ptnode_adr(base->_idx);
1665       if (ptn->is_JavaObject()) {
1666         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1667       } else {
1668         assert(ptn->is_LocalVar(), "sanity");
1669         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1670           PointsToNode* e = i.get();
1671           if (e->is_JavaObject()) {
1672             assert(field->has_base(e->as_JavaObject()), "sanity");
1673           }
1674         }
1675       }
1676       // Verify that all fields have initializing values.
1677       if (field->edge_count() == 0) {
1678         tty->print_cr("----------field does not have references----------");
1679         field->dump();
1680         for (BaseIterator i(field); i.has_next(); i.next()) {
1681           PointsToNode* base = i.get();
1682           tty->print_cr("----------field has next base---------------------");
1683           base->dump();
1684           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1685             tty->print_cr("----------base has fields-------------------------");
1686             for (EdgeIterator j(base); j.has_next(); j.next()) {
1687               j.get()->dump();
1688             }
1689             tty->print_cr("----------base has references---------------------");
1690             for (UseIterator j(base); j.has_next(); j.next()) {
1691               j.get()->dump();
1692             }
1693           }
1694         }
1695         for (UseIterator i(field); i.has_next(); i.next()) {
1696           i.get()->dump();
1697         }
1698         assert(field->edge_count() > 0, "sanity");
1699       }
1700     }
1701   }
1702 }
1703 #endif
1704 
1705 // Optimize ideal graph.
1706 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1707                                            GrowableArray<Node*>& storestore_worklist) {
1708   Compile* C = _compile;
1709   PhaseIterGVN* igvn = _igvn;
1710   if (EliminateLocks) {
1711     // Mark locks before changing ideal graph.
1712     int cnt = C->macro_count();
1713     for( int i=0; i < cnt; i++ ) {
1714       Node *n = C->macro_node(i);
1715       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1716         AbstractLockNode* alock = n->as_AbstractLock();
1717         if (!alock->is_non_esc_obj()) {
1718           if (not_global_escape(alock->obj_node())) {
1719             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1720             // The lock could be marked eliminated by lock coarsening
1721             // code during first IGVN before EA. Replace coarsened flag
1722             // to eliminate all associated locks/unlocks.
1723             alock->set_non_esc_obj();
1724           }
1725         }
1726       }
1727     }
1728   }
1729 
1730   if (OptimizePtrCompare) {
1731     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1732     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1733     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1734     // Optimize objects compare.
1735     while (ptr_cmp_worklist.length() != 0) {
1736       Node *n = ptr_cmp_worklist.pop();
1737       Node *res = optimize_ptr_compare(n);
1738       if (res != NULL) {
1739 #ifndef PRODUCT
1740         if (PrintOptimizePtrCompare) {
1741           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1742           if (Verbose) {
1743             n->dump(1);
1744           }
1745         }
1746 #endif
1747         igvn->replace_node(n, res);
1748       }
1749     }
1750     // cleanup
1751     if (_pcmp_neq->outcnt() == 0)
1752       igvn->hash_delete(_pcmp_neq);
1753     if (_pcmp_eq->outcnt()  == 0)
1754       igvn->hash_delete(_pcmp_eq);
1755   }
1756 
1757   // For MemBarStoreStore nodes added in library_call.cpp, check
1758   // escape status of associated AllocateNode and optimize out
1759   // MemBarStoreStore node if the allocated object never escapes.
1760   while (storestore_worklist.length() != 0) {
1761     Node *n = storestore_worklist.pop();
1762     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1763     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1764     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1765     if (not_global_escape(alloc)) {
1766       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1767       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1768       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1769       igvn->register_new_node_with_optimizer(mb);
1770       igvn->replace_node(storestore, mb);
1771     }
1772   }
1773 }
1774 
1775 // Optimize objects compare.
1776 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1777   assert(OptimizePtrCompare, "sanity");
1778   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1779   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1780   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1781   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1782   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1783   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1784 
1785   // Check simple cases first.
1786   if (jobj1 != NULL) {
1787     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1788       if (jobj1 == jobj2) {
1789         // Comparing the same not escaping object.
1790         return _pcmp_eq;
1791       }
1792       Node* obj = jobj1->ideal_node();
1793       // Comparing not escaping allocation.
1794       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1795           !ptn2->points_to(jobj1)) {
1796         return _pcmp_neq; // This includes nullness check.
1797       }
1798     }
1799   }
1800   if (jobj2 != NULL) {
1801     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1802       Node* obj = jobj2->ideal_node();
1803       // Comparing not escaping allocation.
1804       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1805           !ptn1->points_to(jobj2)) {
1806         return _pcmp_neq; // This includes nullness check.
1807       }
1808     }
1809   }
1810   if (jobj1 != NULL && jobj1 != phantom_obj &&
1811       jobj2 != NULL && jobj2 != phantom_obj &&
1812       jobj1->ideal_node()->is_Con() &&
1813       jobj2->ideal_node()->is_Con()) {
1814     // Klass or String constants compare. Need to be careful with
1815     // compressed pointers - compare types of ConN and ConP instead of nodes.
1816     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
1817     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
1818     assert(t1 != NULL && t2 != NULL, "sanity");
1819     if (t1->make_ptr() == t2->make_ptr()) {
1820       return _pcmp_eq;
1821     } else {
1822       return _pcmp_neq;
1823     }
1824   }
1825   if (ptn1->meet(ptn2)) {
1826     return NULL; // Sets are not disjoint
1827   }
1828 
1829   // Sets are disjoint.
1830   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1831   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1832   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1833   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1834   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1835       set2_has_unknown_ptr && set1_has_null_ptr) {
1836     // Check nullness of unknown object.
1837     return NULL;
1838   }
1839 
1840   // Disjointness by itself is not sufficient since
1841   // alias analysis is not complete for escaped objects.
1842   // Disjoint sets are definitely unrelated only when
1843   // at least one set has only not escaping allocations.
1844   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1845     if (ptn1->non_escaping_allocation()) {
1846       return _pcmp_neq;
1847     }
1848   }
1849   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1850     if (ptn2->non_escaping_allocation()) {
1851       return _pcmp_neq;
1852     }
1853   }
1854   return NULL;
1855 }
1856 
1857 // Connection Graph constuction functions.
1858 
1859 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1860   PointsToNode* ptadr = _nodes.at(n->_idx);
1861   if (ptadr != NULL) {
1862     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1863     return;
1864   }
1865   Compile* C = _compile;
1866   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1867   _nodes.at_put(n->_idx, ptadr);
1868 }
1869 
1870 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1871   PointsToNode* ptadr = _nodes.at(n->_idx);
1872   if (ptadr != NULL) {
1873     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1874     return;
1875   }
1876   Compile* C = _compile;
1877   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1878   _nodes.at_put(n->_idx, ptadr);
1879 }
1880 
1881 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1882   PointsToNode* ptadr = _nodes.at(n->_idx);
1883   if (ptadr != NULL) {
1884     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1885     return;
1886   }
1887   bool unsafe = false;
1888   bool is_oop = is_oop_field(n, offset, &unsafe);
1889   if (unsafe) {
1890     es = PointsToNode::GlobalEscape;
1891   }
1892   Compile* C = _compile;
1893   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1894   _nodes.at_put(n->_idx, field);
1895 }
1896 
1897 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1898                                     PointsToNode* src, PointsToNode* dst) {
1899   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1900   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1901   PointsToNode* ptadr = _nodes.at(n->_idx);
1902   if (ptadr != NULL) {
1903     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1904     return;
1905   }
1906   Compile* C = _compile;
1907   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1908   _nodes.at_put(n->_idx, ptadr);
1909   // Add edge from arraycopy node to source object.
1910   (void)add_edge(ptadr, src);
1911   src->set_arraycopy_src();
1912   // Add edge from destination object to arraycopy node.
1913   (void)add_edge(dst, ptadr);
1914   dst->set_arraycopy_dst();
1915 }
1916 
1917 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1918   const Type* adr_type = n->as_AddP()->bottom_type();
1919   BasicType bt = T_INT;
1920   if (offset == Type::OffsetBot) {
1921     // Check only oop fields.
1922     if (!adr_type->isa_aryptr() ||
1923         (adr_type->isa_aryptr()->klass() == NULL) ||
1924          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1925       // OffsetBot is used to reference array's element. Ignore first AddP.
1926       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1927         bt = T_OBJECT;
1928       }
1929     }
1930   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1931     if (adr_type->isa_instptr()) {
1932       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1933       if (field != NULL) {
1934         bt = field->layout_type();
1935       } else {
1936         // Check for unsafe oop field access
1937         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1938           int opcode = n->fast_out(i)->Opcode();
1939           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1940               opcode == Op_StoreN || opcode == Op_LoadN) {
1941             bt = T_OBJECT;
1942             (*unsafe) = true;
1943             break;
1944           }
1945         }
1946       }
1947     } else if (adr_type->isa_aryptr()) {
1948       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1949         // Ignore array length load.
1950       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1951         // Ignore first AddP.
1952       } else {
1953         const Type* elemtype = adr_type->isa_aryptr()->elem();
1954         bt = elemtype->array_element_basic_type();
1955       }
1956     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1957       // Allocation initialization, ThreadLocal field access, unsafe access
1958       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1959         int opcode = n->fast_out(i)->Opcode();
1960         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1961             opcode == Op_StoreN || opcode == Op_LoadN) {
1962           bt = T_OBJECT;
1963           break;
1964         }
1965       }
1966     }
1967   }
1968   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1969 }
1970 
1971 // Returns unique pointed java object or NULL.
1972 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1973   assert(!_collecting, "should not call when contructed graph");
1974   // If the node was created after the escape computation we can't answer.
1975   uint idx = n->_idx;
1976   if (idx >= nodes_size()) {
1977     return NULL;
1978   }
1979   PointsToNode* ptn = ptnode_adr(idx);
1980   if (ptn->is_JavaObject()) {
1981     return ptn->as_JavaObject();
1982   }
1983   assert(ptn->is_LocalVar(), "sanity");
1984   // Check all java objects it points to.
1985   JavaObjectNode* jobj = NULL;
1986   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1987     PointsToNode* e = i.get();
1988     if (e->is_JavaObject()) {
1989       if (jobj == NULL) {
1990         jobj = e->as_JavaObject();
1991       } else if (jobj != e) {
1992         return NULL;
1993       }
1994     }
1995   }
1996   return jobj;
1997 }
1998 
1999 // Return true if this node points only to non-escaping allocations.
2000 bool PointsToNode::non_escaping_allocation() {
2001   if (is_JavaObject()) {
2002     Node* n = ideal_node();
2003     if (n->is_Allocate() || n->is_CallStaticJava()) {
2004       return (escape_state() == PointsToNode::NoEscape);
2005     } else {
2006       return false;
2007     }
2008   }
2009   assert(is_LocalVar(), "sanity");
2010   // Check all java objects it points to.
2011   for (EdgeIterator i(this); i.has_next(); i.next()) {
2012     PointsToNode* e = i.get();
2013     if (e->is_JavaObject()) {
2014       Node* n = e->ideal_node();
2015       if ((e->escape_state() != PointsToNode::NoEscape) ||
2016           !(n->is_Allocate() || n->is_CallStaticJava())) {
2017         return false;
2018       }
2019     }
2020   }
2021   return true;
2022 }
2023 
2024 // Return true if we know the node does not escape globally.
2025 bool ConnectionGraph::not_global_escape(Node *n) {
2026   assert(!_collecting, "should not call during graph construction");
2027   // If the node was created after the escape computation we can't answer.
2028   uint idx = n->_idx;
2029   if (idx >= nodes_size()) {
2030     return false;
2031   }
2032   PointsToNode* ptn = ptnode_adr(idx);
2033   PointsToNode::EscapeState es = ptn->escape_state();
2034   // If we have already computed a value, return it.
2035   if (es >= PointsToNode::GlobalEscape)
2036     return false;
2037   if (ptn->is_JavaObject()) {
2038     return true; // (es < PointsToNode::GlobalEscape);
2039   }
2040   assert(ptn->is_LocalVar(), "sanity");
2041   // Check all java objects it points to.
2042   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2043     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2044       return false;
2045   }
2046   return true;
2047 }
2048 
2049 
2050 // Helper functions
2051 
2052 // Return true if this node points to specified node or nodes it points to.
2053 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2054   if (is_JavaObject()) {
2055     return (this == ptn);
2056   }
2057   assert(is_LocalVar() || is_Field(), "sanity");
2058   for (EdgeIterator i(this); i.has_next(); i.next()) {
2059     if (i.get() == ptn)
2060       return true;
2061   }
2062   return false;
2063 }
2064 
2065 // Return true if one node points to an other.
2066 bool PointsToNode::meet(PointsToNode* ptn) {
2067   if (this == ptn) {
2068     return true;
2069   } else if (ptn->is_JavaObject()) {
2070     return this->points_to(ptn->as_JavaObject());
2071   } else if (this->is_JavaObject()) {
2072     return ptn->points_to(this->as_JavaObject());
2073   }
2074   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2075   int ptn_count =  ptn->edge_count();
2076   for (EdgeIterator i(this); i.has_next(); i.next()) {
2077     PointsToNode* this_e = i.get();
2078     for (int j = 0; j < ptn_count; j++) {
2079       if (this_e == ptn->edge(j))
2080         return true;
2081     }
2082   }
2083   return false;
2084 }
2085 
2086 #ifdef ASSERT
2087 // Return true if bases point to this java object.
2088 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2089   for (BaseIterator i(this); i.has_next(); i.next()) {
2090     if (i.get() == jobj)
2091       return true;
2092   }
2093   return false;
2094 }
2095 #endif
2096 
2097 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2098   const Type *adr_type = phase->type(adr);
2099   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2100       adr->in(AddPNode::Address)->is_Proj() &&
2101       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2102     // We are computing a raw address for a store captured by an Initialize
2103     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2104     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2105     assert(offs != Type::OffsetBot ||
2106            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2107            "offset must be a constant or it is initialization of array");
2108     return offs;
2109   }
2110   const TypePtr *t_ptr = adr_type->isa_ptr();
2111   assert(t_ptr != NULL, "must be a pointer type");
2112   return t_ptr->offset();
2113 }
2114 
2115 Node* ConnectionGraph::get_addp_base(Node *addp) {
2116   assert(addp->is_AddP(), "must be AddP");
2117   //
2118   // AddP cases for Base and Address inputs:
2119   // case #1. Direct object's field reference:
2120   //     Allocate
2121   //       |
2122   //     Proj #5 ( oop result )
2123   //       |
2124   //     CheckCastPP (cast to instance type)
2125   //      | |
2126   //     AddP  ( base == address )
2127   //
2128   // case #2. Indirect object's field reference:
2129   //      Phi
2130   //       |
2131   //     CastPP (cast to instance type)
2132   //      | |
2133   //     AddP  ( base == address )
2134   //
2135   // case #3. Raw object's field reference for Initialize node:
2136   //      Allocate
2137   //        |
2138   //      Proj #5 ( oop result )
2139   //  top   |
2140   //     \  |
2141   //     AddP  ( base == top )
2142   //
2143   // case #4. Array's element reference:
2144   //   {CheckCastPP | CastPP}
2145   //     |  | |
2146   //     |  AddP ( array's element offset )
2147   //     |  |
2148   //     AddP ( array's offset )
2149   //
2150   // case #5. Raw object's field reference for arraycopy stub call:
2151   //          The inline_native_clone() case when the arraycopy stub is called
2152   //          after the allocation before Initialize and CheckCastPP nodes.
2153   //      Allocate
2154   //        |
2155   //      Proj #5 ( oop result )
2156   //       | |
2157   //       AddP  ( base == address )
2158   //
2159   // case #6. Constant Pool, ThreadLocal, CastX2P or
2160   //          Raw object's field reference:
2161   //      {ConP, ThreadLocal, CastX2P, raw Load}
2162   //  top   |
2163   //     \  |
2164   //     AddP  ( base == top )
2165   //
2166   // case #7. Klass's field reference.
2167   //      LoadKlass
2168   //       | |
2169   //       AddP  ( base == address )
2170   //
2171   // case #8. narrow Klass's field reference.
2172   //      LoadNKlass
2173   //       |
2174   //      DecodeN
2175   //       | |
2176   //       AddP  ( base == address )
2177   //
2178   Node *base = addp->in(AddPNode::Base);
2179   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2180     base = addp->in(AddPNode::Address);
2181     while (base->is_AddP()) {
2182       // Case #6 (unsafe access) may have several chained AddP nodes.
2183       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2184       base = base->in(AddPNode::Address);
2185     }
2186     Node* uncast_base = base->uncast();
2187     int opcode = uncast_base->Opcode();
2188     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2189            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2190            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
2191            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2192   }
2193   return base;
2194 }
2195 
2196 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2197   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2198   Node* addp2 = addp->raw_out(0);
2199   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2200       addp2->in(AddPNode::Base) == n &&
2201       addp2->in(AddPNode::Address) == addp) {
2202     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2203     //
2204     // Find array's offset to push it on worklist first and
2205     // as result process an array's element offset first (pushed second)
2206     // to avoid CastPP for the array's offset.
2207     // Otherwise the inserted CastPP (LocalVar) will point to what
2208     // the AddP (Field) points to. Which would be wrong since
2209     // the algorithm expects the CastPP has the same point as
2210     // as AddP's base CheckCastPP (LocalVar).
2211     //
2212     //    ArrayAllocation
2213     //     |
2214     //    CheckCastPP
2215     //     |
2216     //    memProj (from ArrayAllocation CheckCastPP)
2217     //     |  ||
2218     //     |  ||   Int (element index)
2219     //     |  ||    |   ConI (log(element size))
2220     //     |  ||    |   /
2221     //     |  ||   LShift
2222     //     |  ||  /
2223     //     |  AddP (array's element offset)
2224     //     |  |
2225     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2226     //     | / /
2227     //     AddP (array's offset)
2228     //      |
2229     //     Load/Store (memory operation on array's element)
2230     //
2231     return addp2;
2232   }
2233   return NULL;
2234 }
2235 
2236 //
2237 // Adjust the type and inputs of an AddP which computes the
2238 // address of a field of an instance
2239 //
2240 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2241   PhaseGVN* igvn = _igvn;
2242   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2243   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2244   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2245   if (t == NULL) {
2246     // We are computing a raw address for a store captured by an Initialize
2247     // compute an appropriate address type (cases #3 and #5).
2248     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2249     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2250     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2251     assert(offs != Type::OffsetBot, "offset must be a constant");
2252     t = base_t->add_offset(offs)->is_oopptr();
2253   }
2254   int inst_id =  base_t->instance_id();
2255   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2256                              "old type must be non-instance or match new type");
2257 
2258   // The type 't' could be subclass of 'base_t'.
2259   // As result t->offset() could be large then base_t's size and it will
2260   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2261   // constructor verifies correctness of the offset.
2262   //
2263   // It could happened on subclass's branch (from the type profiling
2264   // inlining) which was not eliminated during parsing since the exactness
2265   // of the allocation type was not propagated to the subclass type check.
2266   //
2267   // Or the type 't' could be not related to 'base_t' at all.
2268   // It could happened when CHA type is different from MDO type on a dead path
2269   // (for example, from instanceof check) which is not collapsed during parsing.
2270   //
2271   // Do nothing for such AddP node and don't process its users since
2272   // this code branch will go away.
2273   //
2274   if (!t->is_known_instance() &&
2275       !base_t->klass()->is_subtype_of(t->klass())) {
2276      return false; // bail out
2277   }
2278   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2279   // Do NOT remove the next line: ensure a new alias index is allocated
2280   // for the instance type. Note: C++ will not remove it since the call
2281   // has side effect.
2282   int alias_idx = _compile->get_alias_index(tinst);
2283   igvn->set_type(addp, tinst);
2284   // record the allocation in the node map
2285   set_map(addp, get_map(base->_idx));
2286   // Set addp's Base and Address to 'base'.
2287   Node *abase = addp->in(AddPNode::Base);
2288   Node *adr   = addp->in(AddPNode::Address);
2289   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2290       adr->in(0)->_idx == (uint)inst_id) {
2291     // Skip AddP cases #3 and #5.
2292   } else {
2293     assert(!abase->is_top(), "sanity"); // AddP case #3
2294     if (abase != base) {
2295       igvn->hash_delete(addp);
2296       addp->set_req(AddPNode::Base, base);
2297       if (abase == adr) {
2298         addp->set_req(AddPNode::Address, base);
2299       } else {
2300         // AddP case #4 (adr is array's element offset AddP node)
2301 #ifdef ASSERT
2302         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2303         assert(adr->is_AddP() && atype != NULL &&
2304                atype->instance_id() == inst_id, "array's element offset should be processed first");
2305 #endif
2306       }
2307       igvn->hash_insert(addp);
2308     }
2309   }
2310   // Put on IGVN worklist since at least addp's type was changed above.
2311   record_for_optimizer(addp);
2312   return true;
2313 }
2314 
2315 //
2316 // Create a new version of orig_phi if necessary. Returns either the newly
2317 // created phi or an existing phi.  Sets create_new to indicate whether a new
2318 // phi was created.  Cache the last newly created phi in the node map.
2319 //
2320 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2321   Compile *C = _compile;
2322   PhaseGVN* igvn = _igvn;
2323   new_created = false;
2324   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2325   // nothing to do if orig_phi is bottom memory or matches alias_idx
2326   if (phi_alias_idx == alias_idx) {
2327     return orig_phi;
2328   }
2329   // Have we recently created a Phi for this alias index?
2330   PhiNode *result = get_map_phi(orig_phi->_idx);
2331   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2332     return result;
2333   }
2334   // Previous check may fail when the same wide memory Phi was split into Phis
2335   // for different memory slices. Search all Phis for this region.
2336   if (result != NULL) {
2337     Node* region = orig_phi->in(0);
2338     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2339       Node* phi = region->fast_out(i);
2340       if (phi->is_Phi() &&
2341           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2342         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2343         return phi->as_Phi();
2344       }
2345     }
2346   }
2347   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
2348     if (C->do_escape_analysis() == true && !C->failing()) {
2349       // Retry compilation without escape analysis.
2350       // If this is the first failure, the sentinel string will "stick"
2351       // to the Compile object, and the C2Compiler will see it and retry.
2352       C->record_failure(C2Compiler::retry_no_escape_analysis());
2353     }
2354     return NULL;
2355   }
2356   orig_phi_worklist.append_if_missing(orig_phi);
2357   const TypePtr *atype = C->get_adr_type(alias_idx);
2358   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2359   C->copy_node_notes_to(result, orig_phi);
2360   igvn->set_type(result, result->bottom_type());
2361   record_for_optimizer(result);
2362   set_map(orig_phi, result);
2363   new_created = true;
2364   return result;
2365 }
2366 
2367 //
2368 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2369 // specified alias index.
2370 //
2371 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2372   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2373   Compile *C = _compile;
2374   PhaseGVN* igvn = _igvn;
2375   bool new_phi_created;
2376   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2377   if (!new_phi_created) {
2378     return result;
2379   }
2380   GrowableArray<PhiNode *>  phi_list;
2381   GrowableArray<uint>  cur_input;
2382   PhiNode *phi = orig_phi;
2383   uint idx = 1;
2384   bool finished = false;
2385   while(!finished) {
2386     while (idx < phi->req()) {
2387       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2388       if (mem != NULL && mem->is_Phi()) {
2389         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2390         if (new_phi_created) {
2391           // found an phi for which we created a new split, push current one on worklist and begin
2392           // processing new one
2393           phi_list.push(phi);
2394           cur_input.push(idx);
2395           phi = mem->as_Phi();
2396           result = newphi;
2397           idx = 1;
2398           continue;
2399         } else {
2400           mem = newphi;
2401         }
2402       }
2403       if (C->failing()) {
2404         return NULL;
2405       }
2406       result->set_req(idx++, mem);
2407     }
2408 #ifdef ASSERT
2409     // verify that the new Phi has an input for each input of the original
2410     assert( phi->req() == result->req(), "must have same number of inputs.");
2411     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2412 #endif
2413     // Check if all new phi's inputs have specified alias index.
2414     // Otherwise use old phi.
2415     for (uint i = 1; i < phi->req(); i++) {
2416       Node* in = result->in(i);
2417       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2418     }
2419     // we have finished processing a Phi, see if there are any more to do
2420     finished = (phi_list.length() == 0 );
2421     if (!finished) {
2422       phi = phi_list.pop();
2423       idx = cur_input.pop();
2424       PhiNode *prev_result = get_map_phi(phi->_idx);
2425       prev_result->set_req(idx++, result);
2426       result = prev_result;
2427     }
2428   }
2429   return result;
2430 }
2431 
2432 //
2433 // The next methods are derived from methods in MemNode.
2434 //
2435 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2436   Node *mem = mmem;
2437   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2438   // means an array I have not precisely typed yet.  Do not do any
2439   // alias stuff with it any time soon.
2440   if (toop->base() != Type::AnyPtr &&
2441       !(toop->klass() != NULL &&
2442         toop->klass()->is_java_lang_Object() &&
2443         toop->offset() == Type::OffsetBot)) {
2444     mem = mmem->memory_at(alias_idx);
2445     // Update input if it is progress over what we have now
2446   }
2447   return mem;
2448 }
2449 
2450 //
2451 // Move memory users to their memory slices.
2452 //
2453 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2454   Compile* C = _compile;
2455   PhaseGVN* igvn = _igvn;
2456   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2457   assert(tp != NULL, "ptr type");
2458   int alias_idx = C->get_alias_index(tp);
2459   int general_idx = C->get_general_index(alias_idx);
2460 
2461   // Move users first
2462   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2463     Node* use = n->fast_out(i);
2464     if (use->is_MergeMem()) {
2465       MergeMemNode* mmem = use->as_MergeMem();
2466       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2467       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2468         continue; // Nothing to do
2469       }
2470       // Replace previous general reference to mem node.
2471       uint orig_uniq = C->unique();
2472       Node* m = find_inst_mem(n, general_idx, orig_phis);
2473       assert(orig_uniq == C->unique(), "no new nodes");
2474       mmem->set_memory_at(general_idx, m);
2475       --imax;
2476       --i;
2477     } else if (use->is_MemBar()) {
2478       assert(!use->is_Initialize(), "initializing stores should not be moved");
2479       if (use->req() > MemBarNode::Precedent &&
2480           use->in(MemBarNode::Precedent) == n) {
2481         // Don't move related membars.
2482         record_for_optimizer(use);
2483         continue;
2484       }
2485       tp = use->as_MemBar()->adr_type()->isa_ptr();
2486       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2487           alias_idx == general_idx) {
2488         continue; // Nothing to do
2489       }
2490       // Move to general memory slice.
2491       uint orig_uniq = C->unique();
2492       Node* m = find_inst_mem(n, general_idx, orig_phis);
2493       assert(orig_uniq == C->unique(), "no new nodes");
2494       igvn->hash_delete(use);
2495       imax -= use->replace_edge(n, m);
2496       igvn->hash_insert(use);
2497       record_for_optimizer(use);
2498       --i;
2499 #ifdef ASSERT
2500     } else if (use->is_Mem()) {
2501       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2502         // Don't move related cardmark.
2503         continue;
2504       }
2505       // Memory nodes should have new memory input.
2506       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2507       assert(tp != NULL, "ptr type");
2508       int idx = C->get_alias_index(tp);
2509       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2510              "Following memory nodes should have new memory input or be on the same memory slice");
2511     } else if (use->is_Phi()) {
2512       // Phi nodes should be split and moved already.
2513       tp = use->as_Phi()->adr_type()->isa_ptr();
2514       assert(tp != NULL, "ptr type");
2515       int idx = C->get_alias_index(tp);
2516       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2517     } else {
2518       use->dump();
2519       assert(false, "should not be here");
2520 #endif
2521     }
2522   }
2523 }
2524 
2525 //
2526 // Search memory chain of "mem" to find a MemNode whose address
2527 // is the specified alias index.
2528 //
2529 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2530   if (orig_mem == NULL)
2531     return orig_mem;
2532   Compile* C = _compile;
2533   PhaseGVN* igvn = _igvn;
2534   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2535   bool is_instance = (toop != NULL) && toop->is_known_instance();
2536   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2537   Node *prev = NULL;
2538   Node *result = orig_mem;
2539   while (prev != result) {
2540     prev = result;
2541     if (result == start_mem)
2542       break;  // hit one of our sentinels
2543     if (result->is_Mem()) {
2544       const Type *at = igvn->type(result->in(MemNode::Address));
2545       if (at == Type::TOP)
2546         break; // Dead
2547       assert (at->isa_ptr() != NULL, "pointer type required.");
2548       int idx = C->get_alias_index(at->is_ptr());
2549       if (idx == alias_idx)
2550         break; // Found
2551       if (!is_instance && (at->isa_oopptr() == NULL ||
2552                            !at->is_oopptr()->is_known_instance())) {
2553         break; // Do not skip store to general memory slice.
2554       }
2555       result = result->in(MemNode::Memory);
2556     }
2557     if (!is_instance)
2558       continue;  // don't search further for non-instance types
2559     // skip over a call which does not affect this memory slice
2560     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2561       Node *proj_in = result->in(0);
2562       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2563         break;  // hit one of our sentinels
2564       } else if (proj_in->is_Call()) {
2565         CallNode *call = proj_in->as_Call();
2566         if (!call->may_modify(toop, igvn)) {
2567           result = call->in(TypeFunc::Memory);
2568         }
2569       } else if (proj_in->is_Initialize()) {
2570         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2571         // Stop if this is the initialization for the object instance which
2572         // which contains this memory slice, otherwise skip over it.
2573         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2574           result = proj_in->in(TypeFunc::Memory);
2575         }
2576       } else if (proj_in->is_MemBar()) {
2577         result = proj_in->in(TypeFunc::Memory);
2578       }
2579     } else if (result->is_MergeMem()) {
2580       MergeMemNode *mmem = result->as_MergeMem();
2581       result = step_through_mergemem(mmem, alias_idx, toop);
2582       if (result == mmem->base_memory()) {
2583         // Didn't find instance memory, search through general slice recursively.
2584         result = mmem->memory_at(C->get_general_index(alias_idx));
2585         result = find_inst_mem(result, alias_idx, orig_phis);
2586         if (C->failing()) {
2587           return NULL;
2588         }
2589         mmem->set_memory_at(alias_idx, result);
2590       }
2591     } else if (result->is_Phi() &&
2592                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2593       Node *un = result->as_Phi()->unique_input(igvn);
2594       if (un != NULL) {
2595         orig_phis.append_if_missing(result->as_Phi());
2596         result = un;
2597       } else {
2598         break;
2599       }
2600     } else if (result->is_ClearArray()) {
2601       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2602         // Can not bypass initialization of the instance
2603         // we are looking for.
2604         break;
2605       }
2606       // Otherwise skip it (the call updated 'result' value).
2607     } else if (result->Opcode() == Op_SCMemProj) {
2608       Node* mem = result->in(0);
2609       Node* adr = NULL;
2610       if (mem->is_LoadStore()) {
2611         adr = mem->in(MemNode::Address);
2612       } else {
2613         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2614         adr = mem->in(3); // Memory edge corresponds to destination array
2615       }
2616       const Type *at = igvn->type(adr);
2617       if (at != Type::TOP) {
2618         assert (at->isa_ptr() != NULL, "pointer type required.");
2619         int idx = C->get_alias_index(at->is_ptr());
2620         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2621         break;
2622       }
2623       result = mem->in(MemNode::Memory);
2624     }
2625   }
2626   if (result->is_Phi()) {
2627     PhiNode *mphi = result->as_Phi();
2628     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2629     const TypePtr *t = mphi->adr_type();
2630     if (!is_instance) {
2631       // Push all non-instance Phis on the orig_phis worklist to update inputs
2632       // during Phase 4 if needed.
2633       orig_phis.append_if_missing(mphi);
2634     } else if (C->get_alias_index(t) != alias_idx) {
2635       // Create a new Phi with the specified alias index type.
2636       result = split_memory_phi(mphi, alias_idx, orig_phis);
2637     }
2638   }
2639   // the result is either MemNode, PhiNode, InitializeNode.
2640   return result;
2641 }
2642 
2643 //
2644 //  Convert the types of unescaped object to instance types where possible,
2645 //  propagate the new type information through the graph, and update memory
2646 //  edges and MergeMem inputs to reflect the new type.
2647 //
2648 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2649 //  The processing is done in 4 phases:
2650 //
2651 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2652 //            types for the CheckCastPP for allocations where possible.
2653 //            Propagate the the new types through users as follows:
2654 //               casts and Phi:  push users on alloc_worklist
2655 //               AddP:  cast Base and Address inputs to the instance type
2656 //                      push any AddP users on alloc_worklist and push any memnode
2657 //                      users onto memnode_worklist.
2658 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2659 //            search the Memory chain for a store with the appropriate type
2660 //            address type.  If a Phi is found, create a new version with
2661 //            the appropriate memory slices from each of the Phi inputs.
2662 //            For stores, process the users as follows:
2663 //               MemNode:  push on memnode_worklist
2664 //               MergeMem: push on mergemem_worklist
2665 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2666 //            moving the first node encountered of each  instance type to the
2667 //            the input corresponding to its alias index.
2668 //            appropriate memory slice.
2669 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2670 //
2671 // In the following example, the CheckCastPP nodes are the cast of allocation
2672 // results and the allocation of node 29 is unescaped and eligible to be an
2673 // instance type.
2674 //
2675 // We start with:
2676 //
2677 //     7 Parm #memory
2678 //    10  ConI  "12"
2679 //    19  CheckCastPP   "Foo"
2680 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2681 //    29  CheckCastPP   "Foo"
2682 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2683 //
2684 //    40  StoreP  25   7  20   ... alias_index=4
2685 //    50  StoreP  35  40  30   ... alias_index=4
2686 //    60  StoreP  45  50  20   ... alias_index=4
2687 //    70  LoadP    _  60  30   ... alias_index=4
2688 //    80  Phi     75  50  60   Memory alias_index=4
2689 //    90  LoadP    _  80  30   ... alias_index=4
2690 //   100  LoadP    _  80  20   ... alias_index=4
2691 //
2692 //
2693 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2694 // and creating a new alias index for node 30.  This gives:
2695 //
2696 //     7 Parm #memory
2697 //    10  ConI  "12"
2698 //    19  CheckCastPP   "Foo"
2699 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2700 //    29  CheckCastPP   "Foo"  iid=24
2701 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2702 //
2703 //    40  StoreP  25   7  20   ... alias_index=4
2704 //    50  StoreP  35  40  30   ... alias_index=6
2705 //    60  StoreP  45  50  20   ... alias_index=4
2706 //    70  LoadP    _  60  30   ... alias_index=6
2707 //    80  Phi     75  50  60   Memory alias_index=4
2708 //    90  LoadP    _  80  30   ... alias_index=6
2709 //   100  LoadP    _  80  20   ... alias_index=4
2710 //
2711 // In phase 2, new memory inputs are computed for the loads and stores,
2712 // And a new version of the phi is created.  In phase 4, the inputs to
2713 // node 80 are updated and then the memory nodes are updated with the
2714 // values computed in phase 2.  This results in:
2715 //
2716 //     7 Parm #memory
2717 //    10  ConI  "12"
2718 //    19  CheckCastPP   "Foo"
2719 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2720 //    29  CheckCastPP   "Foo"  iid=24
2721 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2722 //
2723 //    40  StoreP  25  7   20   ... alias_index=4
2724 //    50  StoreP  35  7   30   ... alias_index=6
2725 //    60  StoreP  45  40  20   ... alias_index=4
2726 //    70  LoadP    _  50  30   ... alias_index=6
2727 //    80  Phi     75  40  60   Memory alias_index=4
2728 //   120  Phi     75  50  50   Memory alias_index=6
2729 //    90  LoadP    _ 120  30   ... alias_index=6
2730 //   100  LoadP    _  80  20   ... alias_index=4
2731 //
2732 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2733   GrowableArray<Node *>  memnode_worklist;
2734   GrowableArray<PhiNode *>  orig_phis;
2735   PhaseIterGVN  *igvn = _igvn;
2736   uint new_index_start = (uint) _compile->num_alias_types();
2737   Arena* arena = Thread::current()->resource_area();
2738   VectorSet visited(arena);
2739   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2740   uint unique_old = _compile->unique();
2741 
2742   //  Phase 1:  Process possible allocations from alloc_worklist.
2743   //  Create instance types for the CheckCastPP for allocations where possible.
2744   //
2745   // (Note: don't forget to change the order of the second AddP node on
2746   //  the alloc_worklist if the order of the worklist processing is changed,
2747   //  see the comment in find_second_addp().)
2748   //
2749   while (alloc_worklist.length() != 0) {
2750     Node *n = alloc_worklist.pop();
2751     uint ni = n->_idx;
2752     if (n->is_Call()) {
2753       CallNode *alloc = n->as_Call();
2754       // copy escape information to call node
2755       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2756       PointsToNode::EscapeState es = ptn->escape_state();
2757       // We have an allocation or call which returns a Java object,
2758       // see if it is unescaped.
2759       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2760         continue;
2761       // Find CheckCastPP for the allocate or for the return value of a call
2762       n = alloc->result_cast();
2763       if (n == NULL) {            // No uses except Initialize node
2764         if (alloc->is_Allocate()) {
2765           // Set the scalar_replaceable flag for allocation
2766           // so it could be eliminated if it has no uses.
2767           alloc->as_Allocate()->_is_scalar_replaceable = true;
2768         }
2769         if (alloc->is_CallStaticJava()) {
2770           // Set the scalar_replaceable flag for boxing method
2771           // so it could be eliminated if it has no uses.
2772           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2773         }
2774         continue;
2775       }
2776       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2777         assert(!alloc->is_Allocate(), "allocation should have unique type");
2778         continue;
2779       }
2780 
2781       // The inline code for Object.clone() casts the allocation result to
2782       // java.lang.Object and then to the actual type of the allocated
2783       // object. Detect this case and use the second cast.
2784       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2785       // the allocation result is cast to java.lang.Object and then
2786       // to the actual Array type.
2787       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2788           && (alloc->is_AllocateArray() ||
2789               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2790         Node *cast2 = NULL;
2791         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2792           Node *use = n->fast_out(i);
2793           if (use->is_CheckCastPP()) {
2794             cast2 = use;
2795             break;
2796           }
2797         }
2798         if (cast2 != NULL) {
2799           n = cast2;
2800         } else {
2801           // Non-scalar replaceable if the allocation type is unknown statically
2802           // (reflection allocation), the object can't be restored during
2803           // deoptimization without precise type.
2804           continue;
2805         }
2806       }
2807       if (alloc->is_Allocate()) {
2808         // Set the scalar_replaceable flag for allocation
2809         // so it could be eliminated.
2810         alloc->as_Allocate()->_is_scalar_replaceable = true;
2811       }
2812       if (alloc->is_CallStaticJava()) {
2813         // Set the scalar_replaceable flag for boxing method
2814         // so it could be eliminated.
2815         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2816       }
2817       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2818       // in order for an object to be scalar-replaceable, it must be:
2819       //   - a direct allocation (not a call returning an object)
2820       //   - non-escaping
2821       //   - eligible to be a unique type
2822       //   - not determined to be ineligible by escape analysis
2823       set_map(alloc, n);
2824       set_map(n, alloc);
2825       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2826       if (t == NULL)
2827         continue;  // not a TypeOopPtr
2828       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2829       igvn->hash_delete(n);
2830       igvn->set_type(n,  tinst);
2831       n->raise_bottom_type(tinst);
2832       igvn->hash_insert(n);
2833       record_for_optimizer(n);
2834       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2835 
2836         // First, put on the worklist all Field edges from Connection Graph
2837         // which is more accurate then putting immediate users from Ideal Graph.
2838         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2839           PointsToNode* tgt = e.get();
2840           Node* use = tgt->ideal_node();
2841           assert(tgt->is_Field() && use->is_AddP(),
2842                  "only AddP nodes are Field edges in CG");
2843           if (use->outcnt() > 0) { // Don't process dead nodes
2844             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2845             if (addp2 != NULL) {
2846               assert(alloc->is_AllocateArray(),"array allocation was expected");
2847               alloc_worklist.append_if_missing(addp2);
2848             }
2849             alloc_worklist.append_if_missing(use);
2850           }
2851         }
2852 
2853         // An allocation may have an Initialize which has raw stores. Scan
2854         // the users of the raw allocation result and push AddP users
2855         // on alloc_worklist.
2856         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2857         assert (raw_result != NULL, "must have an allocation result");
2858         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2859           Node *use = raw_result->fast_out(i);
2860           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2861             Node* addp2 = find_second_addp(use, raw_result);
2862             if (addp2 != NULL) {
2863               assert(alloc->is_AllocateArray(),"array allocation was expected");
2864               alloc_worklist.append_if_missing(addp2);
2865             }
2866             alloc_worklist.append_if_missing(use);
2867           } else if (use->is_MemBar()) {
2868             memnode_worklist.append_if_missing(use);
2869           }
2870         }
2871       }
2872     } else if (n->is_AddP()) {
2873       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2874       if (jobj == NULL || jobj == phantom_obj) {
2875 #ifdef ASSERT
2876         ptnode_adr(get_addp_base(n)->_idx)->dump();
2877         ptnode_adr(n->_idx)->dump();
2878         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2879 #endif
2880         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2881         return;
2882       }
2883       Node *base = get_map(jobj->idx());  // CheckCastPP node
2884       if (!split_AddP(n, base)) continue; // wrong type from dead path
2885     } else if (n->is_Phi() ||
2886                n->is_CheckCastPP() ||
2887                n->is_EncodeP() ||
2888                n->is_DecodeN() ||
2889                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2890       if (visited.test_set(n->_idx)) {
2891         assert(n->is_Phi(), "loops only through Phi's");
2892         continue;  // already processed
2893       }
2894       JavaObjectNode* jobj = unique_java_object(n);
2895       if (jobj == NULL || jobj == phantom_obj) {
2896 #ifdef ASSERT
2897         ptnode_adr(n->_idx)->dump();
2898         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2899 #endif
2900         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2901         return;
2902       } else {
2903         Node *val = get_map(jobj->idx());   // CheckCastPP node
2904         TypeNode *tn = n->as_Type();
2905         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2906         assert(tinst != NULL && tinst->is_known_instance() &&
2907                tinst->instance_id() == jobj->idx() , "instance type expected.");
2908 
2909         const Type *tn_type = igvn->type(tn);
2910         const TypeOopPtr *tn_t;
2911         if (tn_type->isa_narrowoop()) {
2912           tn_t = tn_type->make_ptr()->isa_oopptr();
2913         } else {
2914           tn_t = tn_type->isa_oopptr();
2915         }
2916         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2917           if (tn_type->isa_narrowoop()) {
2918             tn_type = tinst->make_narrowoop();
2919           } else {
2920             tn_type = tinst;
2921           }
2922           igvn->hash_delete(tn);
2923           igvn->set_type(tn, tn_type);
2924           tn->set_type(tn_type);
2925           igvn->hash_insert(tn);
2926           record_for_optimizer(n);
2927         } else {
2928           assert(tn_type == TypePtr::NULL_PTR ||
2929                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2930                  "unexpected type");
2931           continue; // Skip dead path with different type
2932         }
2933       }
2934     } else {
2935       debug_only(n->dump();)
2936       assert(false, "EA: unexpected node");
2937       continue;
2938     }
2939     // push allocation's users on appropriate worklist
2940     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2941       Node *use = n->fast_out(i);
2942       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2943         // Load/store to instance's field
2944         memnode_worklist.append_if_missing(use);
2945       } else if (use->is_MemBar()) {
2946         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
2947           memnode_worklist.append_if_missing(use);
2948         }
2949       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2950         Node* addp2 = find_second_addp(use, n);
2951         if (addp2 != NULL) {
2952           alloc_worklist.append_if_missing(addp2);
2953         }
2954         alloc_worklist.append_if_missing(use);
2955       } else if (use->is_Phi() ||
2956                  use->is_CheckCastPP() ||
2957                  use->is_EncodeNarrowPtr() ||
2958                  use->is_DecodeNarrowPtr() ||
2959                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2960         alloc_worklist.append_if_missing(use);
2961 #ifdef ASSERT
2962       } else if (use->is_Mem()) {
2963         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2964       } else if (use->is_MergeMem()) {
2965         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2966       } else if (use->is_SafePoint()) {
2967         // Look for MergeMem nodes for calls which reference unique allocation
2968         // (through CheckCastPP nodes) even for debug info.
2969         Node* m = use->in(TypeFunc::Memory);
2970         if (m->is_MergeMem()) {
2971           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2972         }
2973       } else if (use->Opcode() == Op_EncodeISOArray) {
2974         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
2975           // EncodeISOArray overwrites destination array
2976           memnode_worklist.append_if_missing(use);
2977         }
2978       } else {
2979         uint op = use->Opcode();
2980         if (!(op == Op_CmpP || op == Op_Conv2B ||
2981               op == Op_CastP2X || op == Op_StoreCM ||
2982               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2983               op == Op_StrEquals || op == Op_StrIndexOf)) {
2984           n->dump();
2985           use->dump();
2986           assert(false, "EA: missing allocation reference path");
2987         }
2988 #endif
2989       }
2990     }
2991 
2992   }
2993   // New alias types were created in split_AddP().
2994   uint new_index_end = (uint) _compile->num_alias_types();
2995   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2996 
2997   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2998   //            compute new values for Memory inputs  (the Memory inputs are not
2999   //            actually updated until phase 4.)
3000   if (memnode_worklist.length() == 0)
3001     return;  // nothing to do
3002   while (memnode_worklist.length() != 0) {
3003     Node *n = memnode_worklist.pop();
3004     if (visited.test_set(n->_idx))
3005       continue;
3006     if (n->is_Phi() || n->is_ClearArray()) {
3007       // we don't need to do anything, but the users must be pushed
3008     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3009       // we don't need to do anything, but the users must be pushed
3010       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3011       if (n == NULL)
3012         continue;
3013     } else if (n->Opcode() == Op_EncodeISOArray) {
3014       // get the memory projection
3015       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3016         Node *use = n->fast_out(i);
3017         if (use->Opcode() == Op_SCMemProj) {
3018           n = use;
3019           break;
3020         }
3021       }
3022       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3023     } else {
3024       assert(n->is_Mem(), "memory node required.");
3025       Node *addr = n->in(MemNode::Address);
3026       const Type *addr_t = igvn->type(addr);
3027       if (addr_t == Type::TOP)
3028         continue;
3029       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3030       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3031       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3032       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3033       if (_compile->failing()) {
3034         return;
3035       }
3036       if (mem != n->in(MemNode::Memory)) {
3037         // We delay the memory edge update since we need old one in
3038         // MergeMem code below when instances memory slices are separated.
3039         set_map(n, mem);
3040       }
3041       if (n->is_Load()) {
3042         continue;  // don't push users
3043       } else if (n->is_LoadStore()) {
3044         // get the memory projection
3045         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3046           Node *use = n->fast_out(i);
3047           if (use->Opcode() == Op_SCMemProj) {
3048             n = use;
3049             break;
3050           }
3051         }
3052         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3053       }
3054     }
3055     // push user on appropriate worklist
3056     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3057       Node *use = n->fast_out(i);
3058       if (use->is_Phi() || use->is_ClearArray()) {
3059         memnode_worklist.append_if_missing(use);
3060       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3061         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3062           continue;
3063         memnode_worklist.append_if_missing(use);
3064       } else if (use->is_MemBar()) {
3065         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3066           memnode_worklist.append_if_missing(use);
3067         }
3068 #ifdef ASSERT
3069       } else if(use->is_Mem()) {
3070         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3071       } else if (use->is_MergeMem()) {
3072         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3073       } else if (use->Opcode() == Op_EncodeISOArray) {
3074         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3075           // EncodeISOArray overwrites destination array
3076           memnode_worklist.append_if_missing(use);
3077         }
3078       } else {
3079         uint op = use->Opcode();
3080         if (!(op == Op_StoreCM ||
3081               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3082                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3083               op == Op_AryEq || op == Op_StrComp ||
3084               op == Op_StrEquals || op == Op_StrIndexOf)) {
3085           n->dump();
3086           use->dump();
3087           assert(false, "EA: missing memory path");
3088         }
3089 #endif
3090       }
3091     }
3092   }
3093 
3094   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3095   //            Walk each memory slice moving the first node encountered of each
3096   //            instance type to the the input corresponding to its alias index.
3097   uint length = _mergemem_worklist.length();
3098   for( uint next = 0; next < length; ++next ) {
3099     MergeMemNode* nmm = _mergemem_worklist.at(next);
3100     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3101     // Note: we don't want to use MergeMemStream here because we only want to
3102     // scan inputs which exist at the start, not ones we add during processing.
3103     // Note 2: MergeMem may already contains instance memory slices added
3104     // during find_inst_mem() call when memory nodes were processed above.
3105     igvn->hash_delete(nmm);
3106     uint nslices = nmm->req();
3107     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3108       Node* mem = nmm->in(i);
3109       Node* cur = NULL;
3110       if (mem == NULL || mem->is_top())
3111         continue;
3112       // First, update mergemem by moving memory nodes to corresponding slices
3113       // if their type became more precise since this mergemem was created.
3114       while (mem->is_Mem()) {
3115         const Type *at = igvn->type(mem->in(MemNode::Address));
3116         if (at != Type::TOP) {
3117           assert (at->isa_ptr() != NULL, "pointer type required.");
3118           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3119           if (idx == i) {
3120             if (cur == NULL)
3121               cur = mem;
3122           } else {
3123             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3124               nmm->set_memory_at(idx, mem);
3125             }
3126           }
3127         }
3128         mem = mem->in(MemNode::Memory);
3129       }
3130       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3131       // Find any instance of the current type if we haven't encountered
3132       // already a memory slice of the instance along the memory chain.
3133       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3134         if((uint)_compile->get_general_index(ni) == i) {
3135           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3136           if (nmm->is_empty_memory(m)) {
3137             Node* result = find_inst_mem(mem, ni, orig_phis);
3138             if (_compile->failing()) {
3139               return;
3140             }
3141             nmm->set_memory_at(ni, result);
3142           }
3143         }
3144       }
3145     }
3146     // Find the rest of instances values
3147     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3148       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3149       Node* result = step_through_mergemem(nmm, ni, tinst);
3150       if (result == nmm->base_memory()) {
3151         // Didn't find instance memory, search through general slice recursively.
3152         result = nmm->memory_at(_compile->get_general_index(ni));
3153         result = find_inst_mem(result, ni, orig_phis);
3154         if (_compile->failing()) {
3155           return;
3156         }
3157         nmm->set_memory_at(ni, result);
3158       }
3159     }
3160     igvn->hash_insert(nmm);
3161     record_for_optimizer(nmm);
3162   }
3163 
3164   //  Phase 4:  Update the inputs of non-instance memory Phis and
3165   //            the Memory input of memnodes
3166   // First update the inputs of any non-instance Phi's from
3167   // which we split out an instance Phi.  Note we don't have
3168   // to recursively process Phi's encounted on the input memory
3169   // chains as is done in split_memory_phi() since they  will
3170   // also be processed here.
3171   for (int j = 0; j < orig_phis.length(); j++) {
3172     PhiNode *phi = orig_phis.at(j);
3173     int alias_idx = _compile->get_alias_index(phi->adr_type());
3174     igvn->hash_delete(phi);
3175     for (uint i = 1; i < phi->req(); i++) {
3176       Node *mem = phi->in(i);
3177       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3178       if (_compile->failing()) {
3179         return;
3180       }
3181       if (mem != new_mem) {
3182         phi->set_req(i, new_mem);
3183       }
3184     }
3185     igvn->hash_insert(phi);
3186     record_for_optimizer(phi);
3187   }
3188 
3189   // Update the memory inputs of MemNodes with the value we computed
3190   // in Phase 2 and move stores memory users to corresponding memory slices.
3191   // Disable memory split verification code until the fix for 6984348.
3192   // Currently it produces false negative results since it does not cover all cases.
3193 #if 0 // ifdef ASSERT
3194   visited.Reset();
3195   Node_Stack old_mems(arena, _compile->unique() >> 2);
3196 #endif
3197   for (uint i = 0; i < ideal_nodes.size(); i++) {
3198     Node*    n = ideal_nodes.at(i);
3199     Node* nmem = get_map(n->_idx);
3200     assert(nmem != NULL, "sanity");
3201     if (n->is_Mem()) {
3202 #if 0 // ifdef ASSERT
3203       Node* old_mem = n->in(MemNode::Memory);
3204       if (!visited.test_set(old_mem->_idx)) {
3205         old_mems.push(old_mem, old_mem->outcnt());
3206       }
3207 #endif
3208       assert(n->in(MemNode::Memory) != nmem, "sanity");
3209       if (!n->is_Load()) {
3210         // Move memory users of a store first.
3211         move_inst_mem(n, orig_phis);
3212       }
3213       // Now update memory input
3214       igvn->hash_delete(n);
3215       n->set_req(MemNode::Memory, nmem);
3216       igvn->hash_insert(n);
3217       record_for_optimizer(n);
3218     } else {
3219       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3220              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3221     }
3222   }
3223 #if 0 // ifdef ASSERT
3224   // Verify that memory was split correctly
3225   while (old_mems.is_nonempty()) {
3226     Node* old_mem = old_mems.node();
3227     uint  old_cnt = old_mems.index();
3228     old_mems.pop();
3229     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3230   }
3231 #endif
3232 }
3233 
3234 #ifndef PRODUCT
3235 static const char *node_type_names[] = {
3236   "UnknownType",
3237   "JavaObject",
3238   "LocalVar",
3239   "Field",
3240   "Arraycopy"
3241 };
3242 
3243 static const char *esc_names[] = {
3244   "UnknownEscape",
3245   "NoEscape",
3246   "ArgEscape",
3247   "GlobalEscape"
3248 };
3249 
3250 void PointsToNode::dump(bool print_state) const {
3251   NodeType nt = node_type();
3252   tty->print("%s ", node_type_names[(int) nt]);
3253   if (print_state) {
3254     EscapeState es = escape_state();
3255     EscapeState fields_es = fields_escape_state();
3256     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3257     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3258       tty->print("NSR ");
3259   }
3260   if (is_Field()) {
3261     FieldNode* f = (FieldNode*)this;
3262     if (f->is_oop())
3263       tty->print("oop ");
3264     if (f->offset() > 0)
3265       tty->print("+%d ", f->offset());
3266     tty->print("(");
3267     for (BaseIterator i(f); i.has_next(); i.next()) {
3268       PointsToNode* b = i.get();
3269       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3270     }
3271     tty->print(" )");
3272   }
3273   tty->print("[");
3274   for (EdgeIterator i(this); i.has_next(); i.next()) {
3275     PointsToNode* e = i.get();
3276     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3277   }
3278   tty->print(" [");
3279   for (UseIterator i(this); i.has_next(); i.next()) {
3280     PointsToNode* u = i.get();
3281     bool is_base = false;
3282     if (PointsToNode::is_base_use(u)) {
3283       is_base = true;
3284       u = PointsToNode::get_use_node(u)->as_Field();
3285     }
3286     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3287   }
3288   tty->print(" ]]  ");
3289   if (_node == NULL)
3290     tty->print_cr("<null>");
3291   else
3292     _node->dump();
3293 }
3294 
3295 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3296   bool first = true;
3297   int ptnodes_length = ptnodes_worklist.length();
3298   for (int i = 0; i < ptnodes_length; i++) {
3299     PointsToNode *ptn = ptnodes_worklist.at(i);
3300     if (ptn == NULL || !ptn->is_JavaObject())
3301       continue;
3302     PointsToNode::EscapeState es = ptn->escape_state();
3303     if ((es != PointsToNode::NoEscape) && !Verbose) {
3304       continue;
3305     }
3306     Node* n = ptn->ideal_node();
3307     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3308                              n->as_CallStaticJava()->is_boxing_method())) {
3309       if (first) {
3310         tty->cr();
3311         tty->print("======== Connection graph for ");
3312         _compile->method()->print_short_name();
3313         tty->cr();
3314         first = false;
3315       }
3316       ptn->dump();
3317       // Print all locals and fields which reference this allocation
3318       for (UseIterator j(ptn); j.has_next(); j.next()) {
3319         PointsToNode* use = j.get();
3320         if (use->is_LocalVar()) {
3321           use->dump(Verbose);
3322         } else if (Verbose) {
3323           use->dump();
3324         }
3325       }
3326       tty->cr();
3327     }
3328   }
3329 }
3330 #endif