1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callGenerator.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/escape.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 //=============================================================================
  45 uint StartNode::size_of() const { return sizeof(*this); }
  46 uint StartNode::cmp( const Node &n ) const
  47 { return _domain == ((StartNode&)n)._domain; }
  48 const Type *StartNode::bottom_type() const { return _domain; }
  49 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  50 #ifndef PRODUCT
  51 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  52 #endif
  53 
  54 //------------------------------Ideal------------------------------------------
  55 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  56   return remove_dead_region(phase, can_reshape) ? this : NULL;
  57 }
  58 
  59 //------------------------------calling_convention-----------------------------
  60 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  61   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  62 }
  63 
  64 //------------------------------Registers--------------------------------------
  65 const RegMask &StartNode::in_RegMask(uint) const {
  66   return RegMask::Empty;
  67 }
  68 
  69 //------------------------------match------------------------------------------
  70 // Construct projections for incoming parameters, and their RegMask info
  71 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  72   switch (proj->_con) {
  73   case TypeFunc::Control:
  74   case TypeFunc::I_O:
  75   case TypeFunc::Memory:
  76     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  77   case TypeFunc::FramePtr:
  78     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  79   case TypeFunc::ReturnAdr:
  80     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  81   case TypeFunc::Parms:
  82   default: {
  83       uint parm_num = proj->_con - TypeFunc::Parms;
  84       const Type *t = _domain->field_at(proj->_con);
  85       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  86         return new (match->C) ConNode(Type::TOP);
  87       uint ideal_reg = t->ideal_reg();
  88       RegMask &rm = match->_calling_convention_mask[parm_num];
  89       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
  90     }
  91   }
  92   return NULL;
  93 }
  94 
  95 //------------------------------StartOSRNode----------------------------------
  96 // The method start node for an on stack replacement adapter
  97 
  98 //------------------------------osr_domain-----------------------------
  99 const TypeTuple *StartOSRNode::osr_domain() {
 100   const Type **fields = TypeTuple::fields(2);
 101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 102 
 103   return TypeTuple::make(TypeFunc::Parms+1, fields);
 104 }
 105 
 106 //=============================================================================
 107 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 108   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 109 };
 110 
 111 #ifndef PRODUCT
 112 void ParmNode::dump_spec(outputStream *st) const {
 113   if( _con < TypeFunc::Parms ) {
 114     st->print(names[_con]);
 115   } else {
 116     st->print("Parm%d: ",_con-TypeFunc::Parms);
 117     // Verbose and WizardMode dump bottom_type for all nodes
 118     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 119   }
 120 }
 121 #endif
 122 
 123 uint ParmNode::ideal_reg() const {
 124   switch( _con ) {
 125   case TypeFunc::Control  : // fall through
 126   case TypeFunc::I_O      : // fall through
 127   case TypeFunc::Memory   : return 0;
 128   case TypeFunc::FramePtr : // fall through
 129   case TypeFunc::ReturnAdr: return Op_RegP;
 130   default                 : assert( _con > TypeFunc::Parms, "" );
 131     // fall through
 132   case TypeFunc::Parms    : {
 133     // Type of argument being passed
 134     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 135     return t->ideal_reg();
 136   }
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 //=============================================================================
 143 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 144   init_req(TypeFunc::Control,cntrl);
 145   init_req(TypeFunc::I_O,i_o);
 146   init_req(TypeFunc::Memory,memory);
 147   init_req(TypeFunc::FramePtr,frameptr);
 148   init_req(TypeFunc::ReturnAdr,retadr);
 149 }
 150 
 151 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 152   return remove_dead_region(phase, can_reshape) ? this : NULL;
 153 }
 154 
 155 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 156   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 157     ? Type::TOP
 158     : Type::BOTTOM;
 159 }
 160 
 161 // Do we Match on this edge index or not?  No edges on return nodes
 162 uint ReturnNode::match_edge(uint idx) const {
 163   return 0;
 164 }
 165 
 166 
 167 #ifndef PRODUCT
 168 void ReturnNode::dump_req(outputStream *st) const {
 169   // Dump the required inputs, enclosed in '(' and ')'
 170   uint i;                       // Exit value of loop
 171   for (i = 0; i < req(); i++) {    // For all required inputs
 172     if (i == TypeFunc::Parms) st->print("returns");
 173     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 174     else st->print("_ ");
 175   }
 176 }
 177 #endif
 178 
 179 //=============================================================================
 180 RethrowNode::RethrowNode(
 181   Node* cntrl,
 182   Node* i_o,
 183   Node* memory,
 184   Node* frameptr,
 185   Node* ret_adr,
 186   Node* exception
 187 ) : Node(TypeFunc::Parms + 1) {
 188   init_req(TypeFunc::Control  , cntrl    );
 189   init_req(TypeFunc::I_O      , i_o      );
 190   init_req(TypeFunc::Memory   , memory   );
 191   init_req(TypeFunc::FramePtr , frameptr );
 192   init_req(TypeFunc::ReturnAdr, ret_adr);
 193   init_req(TypeFunc::Parms    , exception);
 194 }
 195 
 196 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 197   return remove_dead_region(phase, can_reshape) ? this : NULL;
 198 }
 199 
 200 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 201   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 202     ? Type::TOP
 203     : Type::BOTTOM;
 204 }
 205 
 206 uint RethrowNode::match_edge(uint idx) const {
 207   return 0;
 208 }
 209 
 210 #ifndef PRODUCT
 211 void RethrowNode::dump_req(outputStream *st) const {
 212   // Dump the required inputs, enclosed in '(' and ')'
 213   uint i;                       // Exit value of loop
 214   for (i = 0; i < req(); i++) {    // For all required inputs
 215     if (i == TypeFunc::Parms) st->print("exception");
 216     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 217     else st->print("_ ");
 218   }
 219 }
 220 #endif
 221 
 222 //=============================================================================
 223 // Do we Match on this edge index or not?  Match only target address & method
 224 uint TailCallNode::match_edge(uint idx) const {
 225   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 226 }
 227 
 228 //=============================================================================
 229 // Do we Match on this edge index or not?  Match only target address & oop
 230 uint TailJumpNode::match_edge(uint idx) const {
 231   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 232 }
 233 
 234 //=============================================================================
 235 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 236   _method(method) {
 237   assert(method != NULL, "must be valid call site");
 238   _reexecute = Reexecute_Undefined;
 239   debug_only(_bci = -99);  // random garbage value
 240   debug_only(_map = (SafePointNode*)-1);
 241   _caller = caller;
 242   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 243   _locoff = TypeFunc::Parms;
 244   _stkoff = _locoff + _method->max_locals();
 245   _monoff = _stkoff + _method->max_stack();
 246   _scloff = _monoff;
 247   _endoff = _monoff;
 248   _sp = 0;
 249 }
 250 JVMState::JVMState(int stack_size) :
 251   _method(NULL) {
 252   _bci = InvocationEntryBci;
 253   _reexecute = Reexecute_Undefined;
 254   debug_only(_map = (SafePointNode*)-1);
 255   _caller = NULL;
 256   _depth  = 1;
 257   _locoff = TypeFunc::Parms;
 258   _stkoff = _locoff;
 259   _monoff = _stkoff + stack_size;
 260   _scloff = _monoff;
 261   _endoff = _monoff;
 262   _sp = 0;
 263 }
 264 
 265 //--------------------------------of_depth-------------------------------------
 266 JVMState* JVMState::of_depth(int d) const {
 267   const JVMState* jvmp = this;
 268   assert(0 < d && (uint)d <= depth(), "oob");
 269   for (int skip = depth() - d; skip > 0; skip--) {
 270     jvmp = jvmp->caller();
 271   }
 272   assert(jvmp->depth() == (uint)d, "found the right one");
 273   return (JVMState*)jvmp;
 274 }
 275 
 276 //-----------------------------same_calls_as-----------------------------------
 277 bool JVMState::same_calls_as(const JVMState* that) const {
 278   if (this == that)                    return true;
 279   if (this->depth() != that->depth())  return false;
 280   const JVMState* p = this;
 281   const JVMState* q = that;
 282   for (;;) {
 283     if (p->_method != q->_method)    return false;
 284     if (p->_method == NULL)          return true;   // bci is irrelevant
 285     if (p->_bci    != q->_bci)       return false;
 286     if (p->_reexecute != q->_reexecute)  return false;
 287     p = p->caller();
 288     q = q->caller();
 289     if (p == q)                      return true;
 290     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 291   }
 292 }
 293 
 294 //------------------------------debug_start------------------------------------
 295 uint JVMState::debug_start()  const {
 296   debug_only(JVMState* jvmroot = of_depth(1));
 297   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 298   return of_depth(1)->locoff();
 299 }
 300 
 301 //-------------------------------debug_end-------------------------------------
 302 uint JVMState::debug_end() const {
 303   debug_only(JVMState* jvmroot = of_depth(1));
 304   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 305   return endoff();
 306 }
 307 
 308 //------------------------------debug_depth------------------------------------
 309 uint JVMState::debug_depth() const {
 310   uint total = 0;
 311   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 312     total += jvmp->debug_size();
 313   }
 314   return total;
 315 }
 316 
 317 #ifndef PRODUCT
 318 
 319 //------------------------------format_helper----------------------------------
 320 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 321 // any defined value or not.  If it does, print out the register or constant.
 322 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 323   if (n == NULL) { st->print(" NULL"); return; }
 324   if (n->is_SafePointScalarObject()) {
 325     // Scalar replacement.
 326     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 327     scobjs->append_if_missing(spobj);
 328     int sco_n = scobjs->find(spobj);
 329     assert(sco_n >= 0, "");
 330     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 331     return;
 332   }
 333   if (regalloc->node_regs_max_index() > 0 &&
 334       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 335     char buf[50];
 336     regalloc->dump_register(n,buf);
 337     st->print(" %s%d]=%s",msg,i,buf);
 338   } else {                      // No register, but might be constant
 339     const Type *t = n->bottom_type();
 340     switch (t->base()) {
 341     case Type::Int:
 342       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 343       break;
 344     case Type::AnyPtr:
 345       assert( t == TypePtr::NULL_PTR, "" );
 346       st->print(" %s%d]=#NULL",msg,i);
 347       break;
 348     case Type::AryPtr:
 349     case Type::InstPtr:
 350       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 351       break;
 352     case Type::KlassPtr:
 353       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_klassptr()->klass());
 354       break;
 355     case Type::MetadataPtr:
 356       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_metadataptr()->metadata());
 357       break;
 358     case Type::NarrowOop:
 359       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 360       break;
 361     case Type::RawPtr:
 362       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 363       break;
 364     case Type::DoubleCon:
 365       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 366       break;
 367     case Type::FloatCon:
 368       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 369       break;
 370     case Type::Long:
 371       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 372       break;
 373     case Type::Half:
 374     case Type::Top:
 375       st->print(" %s%d]=_",msg,i);
 376       break;
 377     default: ShouldNotReachHere();
 378     }
 379   }
 380 }
 381 
 382 //------------------------------format-----------------------------------------
 383 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 384   st->print("        #");
 385   if (_method) {
 386     _method->print_short_name(st);
 387     st->print(" @ bci:%d ",_bci);
 388   } else {
 389     st->print_cr(" runtime stub ");
 390     return;
 391   }
 392   if (n->is_MachSafePoint()) {
 393     GrowableArray<SafePointScalarObjectNode*> scobjs;
 394     MachSafePointNode *mcall = n->as_MachSafePoint();
 395     uint i;
 396     // Print locals
 397     for (i = 0; i < (uint)loc_size(); i++)
 398       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 399     // Print stack
 400     for (i = 0; i < (uint)stk_size(); i++) {
 401       if ((uint)(_stkoff + i) >= mcall->len())
 402         st->print(" oob ");
 403       else
 404        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 405     }
 406     for (i = 0; (int)i < nof_monitors(); i++) {
 407       Node *box = mcall->monitor_box(this, i);
 408       Node *obj = mcall->monitor_obj(this, i);
 409       if (regalloc->node_regs_max_index() > 0 &&
 410           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 411         box = BoxLockNode::box_node(box);
 412         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 413       } else {
 414         OptoReg::Name box_reg = BoxLockNode::reg(box);
 415         st->print(" MON-BOX%d=%s+%d",
 416                    i,
 417                    OptoReg::regname(OptoReg::c_frame_pointer),
 418                    regalloc->reg2offset(box_reg));
 419       }
 420       const char* obj_msg = "MON-OBJ[";
 421       if (EliminateLocks) {
 422         if (BoxLockNode::box_node(box)->is_eliminated())
 423           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 424       }
 425       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 426     }
 427 
 428     for (i = 0; i < (uint)scobjs.length(); i++) {
 429       // Scalar replaced objects.
 430       st->print_cr("");
 431       st->print("        # ScObj" INT32_FORMAT " ", i);
 432       SafePointScalarObjectNode* spobj = scobjs.at(i);
 433       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 434       assert(cik->is_instance_klass() ||
 435              cik->is_array_klass(), "Not supported allocation.");
 436       ciInstanceKlass *iklass = NULL;
 437       if (cik->is_instance_klass()) {
 438         cik->print_name_on(st);
 439         iklass = cik->as_instance_klass();
 440       } else if (cik->is_type_array_klass()) {
 441         cik->as_array_klass()->base_element_type()->print_name_on(st);
 442         st->print("[%d]", spobj->n_fields());
 443       } else if (cik->is_obj_array_klass()) {
 444         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 445         if (cie->is_instance_klass()) {
 446           cie->print_name_on(st);
 447         } else if (cie->is_type_array_klass()) {
 448           cie->as_array_klass()->base_element_type()->print_name_on(st);
 449         } else {
 450           ShouldNotReachHere();
 451         }
 452         st->print("[%d]", spobj->n_fields());
 453         int ndim = cik->as_array_klass()->dimension() - 1;
 454         while (ndim-- > 0) {
 455           st->print("[]");
 456         }
 457       }
 458       st->print("={");
 459       uint nf = spobj->n_fields();
 460       if (nf > 0) {
 461         uint first_ind = spobj->first_index();
 462         Node* fld_node = mcall->in(first_ind);
 463         ciField* cifield;
 464         if (iklass != NULL) {
 465           st->print(" [");
 466           cifield = iklass->nonstatic_field_at(0);
 467           cifield->print_name_on(st);
 468           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 469         } else {
 470           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 471         }
 472         for (uint j = 1; j < nf; j++) {
 473           fld_node = mcall->in(first_ind+j);
 474           if (iklass != NULL) {
 475             st->print(", [");
 476             cifield = iklass->nonstatic_field_at(j);
 477             cifield->print_name_on(st);
 478             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 479           } else {
 480             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 481           }
 482         }
 483       }
 484       st->print(" }");
 485     }
 486   }
 487   st->print_cr("");
 488   if (caller() != NULL) caller()->format(regalloc, n, st);
 489 }
 490 
 491 
 492 void JVMState::dump_spec(outputStream *st) const {
 493   if (_method != NULL) {
 494     bool printed = false;
 495     if (!Verbose) {
 496       // The JVMS dumps make really, really long lines.
 497       // Take out the most boring parts, which are the package prefixes.
 498       char buf[500];
 499       stringStream namest(buf, sizeof(buf));
 500       _method->print_short_name(&namest);
 501       if (namest.count() < sizeof(buf)) {
 502         const char* name = namest.base();
 503         if (name[0] == ' ')  ++name;
 504         const char* endcn = strchr(name, ':');  // end of class name
 505         if (endcn == NULL)  endcn = strchr(name, '(');
 506         if (endcn == NULL)  endcn = name + strlen(name);
 507         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 508           --endcn;
 509         st->print(" %s", endcn);
 510         printed = true;
 511       }
 512     }
 513     if (!printed)
 514       _method->print_short_name(st);
 515     st->print(" @ bci:%d",_bci);
 516     if(_reexecute == Reexecute_True)
 517       st->print(" reexecute");
 518   } else {
 519     st->print(" runtime stub");
 520   }
 521   if (caller() != NULL)  caller()->dump_spec(st);
 522 }
 523 
 524 
 525 void JVMState::dump_on(outputStream* st) const {
 526   bool print_map = _map && !((uintptr_t)_map & 1) &&
 527                   ((caller() == NULL) || (caller()->map() != _map));
 528   if (print_map) {
 529     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 530       Node* ex = _map->in(_map->req());  // _map->next_exception()
 531       // skip the first one; it's already being printed
 532       while (ex != NULL && ex->len() > ex->req()) {
 533         ex = ex->in(ex->req());  // ex->next_exception()
 534         ex->dump(1);
 535       }
 536     }
 537     _map->dump(Verbose ? 2 : 1);
 538   }
 539   if (caller() != NULL) {
 540     caller()->dump_on(st);
 541   }
 542   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 543              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 544   if (_method == NULL) {
 545     st->print_cr("(none)");
 546   } else {
 547     _method->print_name(st);
 548     st->cr();
 549     if (bci() >= 0 && bci() < _method->code_size()) {
 550       st->print("    bc: ");
 551       _method->print_codes_on(bci(), bci()+1, st);
 552     }
 553   }
 554 }
 555 
 556 // Extra way to dump a jvms from the debugger,
 557 // to avoid a bug with C++ member function calls.
 558 void dump_jvms(JVMState* jvms) {
 559   jvms->dump();
 560 }
 561 #endif
 562 
 563 //--------------------------clone_shallow--------------------------------------
 564 JVMState* JVMState::clone_shallow(Compile* C) const {
 565   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 566   n->set_bci(_bci);
 567   n->_reexecute = _reexecute;
 568   n->set_locoff(_locoff);
 569   n->set_stkoff(_stkoff);
 570   n->set_monoff(_monoff);
 571   n->set_scloff(_scloff);
 572   n->set_endoff(_endoff);
 573   n->set_sp(_sp);
 574   n->set_map(_map);
 575   return n;
 576 }
 577 
 578 //---------------------------clone_deep----------------------------------------
 579 JVMState* JVMState::clone_deep(Compile* C) const {
 580   JVMState* n = clone_shallow(C);
 581   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 582     p->_caller = p->_caller->clone_shallow(C);
 583   }
 584   assert(n->depth() == depth(), "sanity");
 585   assert(n->debug_depth() == debug_depth(), "sanity");
 586   return n;
 587 }
 588 
 589 //---------------------------clone_deep----------------------------------------
 590 void JVMState::set_map_deep(SafePointNode* map) {
 591   for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
 592     p->set_map(map);
 593   }
 594 }
 595 
 596 //=============================================================================
 597 uint CallNode::cmp( const Node &n ) const
 598 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 599 #ifndef PRODUCT
 600 void CallNode::dump_req(outputStream *st) const {
 601   // Dump the required inputs, enclosed in '(' and ')'
 602   uint i;                       // Exit value of loop
 603   for (i = 0; i < req(); i++) {    // For all required inputs
 604     if (i == TypeFunc::Parms) st->print("(");
 605     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 606     else st->print("_ ");
 607   }
 608   st->print(")");
 609 }
 610 
 611 void CallNode::dump_spec(outputStream *st) const {
 612   st->print(" ");
 613   tf()->dump_on(st);
 614   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 615   if (jvms() != NULL)  jvms()->dump_spec(st);
 616 }
 617 #endif
 618 
 619 const Type *CallNode::bottom_type() const { return tf()->range(); }
 620 const Type *CallNode::Value(PhaseTransform *phase) const {
 621   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 622   return tf()->range();
 623 }
 624 
 625 //------------------------------calling_convention-----------------------------
 626 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 627   // Use the standard compiler calling convention
 628   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 629 }
 630 
 631 
 632 //------------------------------match------------------------------------------
 633 // Construct projections for control, I/O, memory-fields, ..., and
 634 // return result(s) along with their RegMask info
 635 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 636   switch (proj->_con) {
 637   case TypeFunc::Control:
 638   case TypeFunc::I_O:
 639   case TypeFunc::Memory:
 640     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 641 
 642   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 643     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 644     // 2nd half of doubles and longs
 645     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 646 
 647   case TypeFunc::Parms: {       // Normal returns
 648     uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
 649     OptoRegPair regs = is_CallRuntime()
 650       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 651       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 652     RegMask rm = RegMask(regs.first());
 653     if( OptoReg::is_valid(regs.second()) )
 654       rm.Insert( regs.second() );
 655     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
 656   }
 657 
 658   case TypeFunc::ReturnAdr:
 659   case TypeFunc::FramePtr:
 660   default:
 661     ShouldNotReachHere();
 662   }
 663   return NULL;
 664 }
 665 
 666 // Do we Match on this edge index or not?  Match no edges
 667 uint CallNode::match_edge(uint idx) const {
 668   return 0;
 669 }
 670 
 671 //
 672 // Determine whether the call could modify the field of the specified
 673 // instance at the specified offset.
 674 //
 675 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
 676   assert((t_oop != NULL), "sanity");
 677   if (t_oop->is_known_instance()) {
 678     // The instance_id is set only for scalar-replaceable allocations which
 679     // are not passed as arguments according to Escape Analysis.
 680     return false;
 681   }
 682   if (t_oop->is_ptr_to_boxed_value()) {
 683     ciKlass* boxing_klass = t_oop->klass();
 684     if (is_CallStaticJava() && as_CallStaticJava()->is_autoboxing()) {
 685       // Skip unrelated boxing methods.
 686       Node* proj = proj_out(TypeFunc::Parms);
 687       if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
 688         return false;
 689       }
 690     }
 691     if (is_CallJava() && as_CallJava()->method() != NULL) {
 692       ciMethod* meth = as_CallJava()->method();
 693       if (meth->is_accessor()) {
 694         return false;
 695       }
 696       // May modify (by reflection) if an boxing object is passed
 697       // as argument or returned.
 698       if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
 699         Node* proj = proj_out(TypeFunc::Parms);
 700         const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
 701         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 702                                  (inst_t->klass() == boxing_klass))) {
 703           return true;
 704         }
 705       }
 706       const TypeTuple* d = tf()->domain();
 707       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 708         const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
 709         if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
 710                                  (inst_t->klass() == boxing_klass))) {
 711           return true;
 712         }
 713       }
 714       return false;
 715     }
 716   }
 717   return true;
 718 }
 719 
 720 // Does this call have a direct reference to n other than debug information?
 721 bool CallNode::has_non_debug_use(Node *n) {
 722   const TypeTuple * d = tf()->domain();
 723   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 724     Node *arg = in(i);
 725     if (arg == n) {
 726       return true;
 727     }
 728   }
 729   return false;
 730 }
 731 
 732 // Returns the unique CheckCastPP of a call
 733 // or 'this' if there are several CheckCastPP
 734 // or returns NULL if there is no one.
 735 Node *CallNode::result_cast() {
 736   Node *cast = NULL;
 737 
 738   Node *p = proj_out(TypeFunc::Parms);
 739   if (p == NULL)
 740     return NULL;
 741 
 742   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 743     Node *use = p->fast_out(i);
 744     if (use->is_CheckCastPP()) {
 745       if (cast != NULL) {
 746         return this;  // more than 1 CheckCastPP
 747       }
 748       cast = use;
 749     }
 750   }
 751   return cast;
 752 }
 753 
 754 
 755 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 756   projs->fallthrough_proj      = NULL;
 757   projs->fallthrough_catchproj = NULL;
 758   projs->fallthrough_ioproj    = NULL;
 759   projs->catchall_ioproj       = NULL;
 760   projs->catchall_catchproj    = NULL;
 761   projs->fallthrough_memproj   = NULL;
 762   projs->catchall_memproj      = NULL;
 763   projs->resproj               = NULL;
 764   projs->exobj                 = NULL;
 765 
 766   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 767     ProjNode *pn = fast_out(i)->as_Proj();
 768     if (pn->outcnt() == 0) continue;
 769     switch (pn->_con) {
 770     case TypeFunc::Control:
 771       {
 772         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 773         projs->fallthrough_proj = pn;
 774         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 775         const Node *cn = pn->fast_out(j);
 776         if (cn->is_Catch()) {
 777           ProjNode *cpn = NULL;
 778           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 779             cpn = cn->fast_out(k)->as_Proj();
 780             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 781             if (cpn->_con == CatchProjNode::fall_through_index)
 782               projs->fallthrough_catchproj = cpn;
 783             else {
 784               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 785               projs->catchall_catchproj = cpn;
 786             }
 787           }
 788         }
 789         break;
 790       }
 791     case TypeFunc::I_O:
 792       if (pn->_is_io_use)
 793         projs->catchall_ioproj = pn;
 794       else
 795         projs->fallthrough_ioproj = pn;
 796       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 797         Node* e = pn->out(j);
 798         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 799           assert(projs->exobj == NULL, "only one");
 800           projs->exobj = e;
 801         }
 802       }
 803       break;
 804     case TypeFunc::Memory:
 805       if (pn->_is_io_use)
 806         projs->catchall_memproj = pn;
 807       else
 808         projs->fallthrough_memproj = pn;
 809       break;
 810     case TypeFunc::Parms:
 811       projs->resproj = pn;
 812       break;
 813     default:
 814       assert(false, "unexpected projection from allocation node.");
 815     }
 816   }
 817 
 818   // The resproj may not exist because the result couuld be ignored
 819   // and the exception object may not exist if an exception handler
 820   // swallows the exception but all the other must exist and be found.
 821   assert(projs->fallthrough_proj      != NULL, "must be found");
 822   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 823   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 824   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 825   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 826   if (separate_io_proj) {
 827     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 828     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 829   }
 830 }
 831 
 832 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 833   CallGenerator* cg = generator();
 834   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 835     // Check whether this MH handle call becomes a candidate for inlining
 836     ciMethod* callee = cg->method();
 837     vmIntrinsics::ID iid = callee->intrinsic_id();
 838     if (iid == vmIntrinsics::_invokeBasic) {
 839       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 840         phase->C->prepend_late_inline(cg);
 841         set_generator(NULL);
 842       }
 843     } else {
 844       assert(callee->has_member_arg(), "wrong type of call?");
 845       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 846         phase->C->prepend_late_inline(cg);
 847         set_generator(NULL);
 848       }
 849     }
 850   }
 851   return SafePointNode::Ideal(phase, can_reshape);
 852 }
 853 
 854 
 855 //=============================================================================
 856 uint CallJavaNode::size_of() const { return sizeof(*this); }
 857 uint CallJavaNode::cmp( const Node &n ) const {
 858   CallJavaNode &call = (CallJavaNode&)n;
 859   return CallNode::cmp(call) && _method == call._method;
 860 }
 861 #ifndef PRODUCT
 862 void CallJavaNode::dump_spec(outputStream *st) const {
 863   if( _method ) _method->print_short_name(st);
 864   CallNode::dump_spec(st);
 865 }
 866 #endif
 867 
 868 //=============================================================================
 869 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 870 uint CallStaticJavaNode::cmp( const Node &n ) const {
 871   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 872   return CallJavaNode::cmp(call);
 873 }
 874 
 875 //----------------------------uncommon_trap_request----------------------------
 876 // If this is an uncommon trap, return the request code, else zero.
 877 int CallStaticJavaNode::uncommon_trap_request() const {
 878   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 879     return extract_uncommon_trap_request(this);
 880   }
 881   return 0;
 882 }
 883 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 884 #ifndef PRODUCT
 885   if (!(call->req() > TypeFunc::Parms &&
 886         call->in(TypeFunc::Parms) != NULL &&
 887         call->in(TypeFunc::Parms)->is_Con())) {
 888     assert(_in_dump_cnt != 0, "OK if dumping");
 889     tty->print("[bad uncommon trap]");
 890     return 0;
 891   }
 892 #endif
 893   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 894 }
 895 
 896 #ifndef PRODUCT
 897 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 898   st->print("# Static ");
 899   if (_name != NULL) {
 900     st->print("%s", _name);
 901     int trap_req = uncommon_trap_request();
 902     if (trap_req != 0) {
 903       char buf[100];
 904       st->print("(%s)",
 905                  Deoptimization::format_trap_request(buf, sizeof(buf),
 906                                                      trap_req));
 907     }
 908     st->print(" ");
 909   }
 910   CallJavaNode::dump_spec(st);
 911 }
 912 #endif
 913 
 914 //=============================================================================
 915 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 916 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 917   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 918   return CallJavaNode::cmp(call);
 919 }
 920 #ifndef PRODUCT
 921 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 922   st->print("# Dynamic ");
 923   CallJavaNode::dump_spec(st);
 924 }
 925 #endif
 926 
 927 //=============================================================================
 928 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 929 uint CallRuntimeNode::cmp( const Node &n ) const {
 930   CallRuntimeNode &call = (CallRuntimeNode&)n;
 931   return CallNode::cmp(call) && !strcmp(_name,call._name);
 932 }
 933 #ifndef PRODUCT
 934 void CallRuntimeNode::dump_spec(outputStream *st) const {
 935   st->print("# ");
 936   st->print(_name);
 937   CallNode::dump_spec(st);
 938 }
 939 #endif
 940 
 941 //------------------------------calling_convention-----------------------------
 942 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 943   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 944 }
 945 
 946 //=============================================================================
 947 //------------------------------calling_convention-----------------------------
 948 
 949 
 950 //=============================================================================
 951 #ifndef PRODUCT
 952 void CallLeafNode::dump_spec(outputStream *st) const {
 953   st->print("# ");
 954   st->print(_name);
 955   CallNode::dump_spec(st);
 956 }
 957 #endif
 958 
 959 //=============================================================================
 960 
 961 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 962   assert(verify_jvms(jvms), "jvms must match");
 963   int loc = jvms->locoff() + idx;
 964   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 965     // If current local idx is top then local idx - 1 could
 966     // be a long/double that needs to be killed since top could
 967     // represent the 2nd half ofthe long/double.
 968     uint ideal = in(loc -1)->ideal_reg();
 969     if (ideal == Op_RegD || ideal == Op_RegL) {
 970       // set other (low index) half to top
 971       set_req(loc - 1, in(loc));
 972     }
 973   }
 974   set_req(loc, c);
 975 }
 976 
 977 uint SafePointNode::size_of() const { return sizeof(*this); }
 978 uint SafePointNode::cmp( const Node &n ) const {
 979   return (&n == this);          // Always fail except on self
 980 }
 981 
 982 //-------------------------set_next_exception----------------------------------
 983 void SafePointNode::set_next_exception(SafePointNode* n) {
 984   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 985   if (len() == req()) {
 986     if (n != NULL)  add_prec(n);
 987   } else {
 988     set_prec(req(), n);
 989   }
 990 }
 991 
 992 
 993 //----------------------------next_exception-----------------------------------
 994 SafePointNode* SafePointNode::next_exception() const {
 995   if (len() == req()) {
 996     return NULL;
 997   } else {
 998     Node* n = in(req());
 999     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1000     return (SafePointNode*) n;
1001   }
1002 }
1003 
1004 
1005 //------------------------------Ideal------------------------------------------
1006 // Skip over any collapsed Regions
1007 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1008   return remove_dead_region(phase, can_reshape) ? this : NULL;
1009 }
1010 
1011 //------------------------------Identity---------------------------------------
1012 // Remove obviously duplicate safepoints
1013 Node *SafePointNode::Identity( PhaseTransform *phase ) {
1014 
1015   // If you have back to back safepoints, remove one
1016   if( in(TypeFunc::Control)->is_SafePoint() )
1017     return in(TypeFunc::Control);
1018 
1019   if( in(0)->is_Proj() ) {
1020     Node *n0 = in(0)->in(0);
1021     // Check if he is a call projection (except Leaf Call)
1022     if( n0->is_Catch() ) {
1023       n0 = n0->in(0)->in(0);
1024       assert( n0->is_Call(), "expect a call here" );
1025     }
1026     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1027       // Useless Safepoint, so remove it
1028       return in(TypeFunc::Control);
1029     }
1030   }
1031 
1032   return this;
1033 }
1034 
1035 //------------------------------Value------------------------------------------
1036 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
1037   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1038   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
1039   return Type::CONTROL;
1040 }
1041 
1042 #ifndef PRODUCT
1043 void SafePointNode::dump_spec(outputStream *st) const {
1044   st->print(" SafePoint ");
1045 }
1046 #endif
1047 
1048 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1049   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1050   // Values outside the domain represent debug info
1051   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1052 }
1053 const RegMask &SafePointNode::out_RegMask() const {
1054   return RegMask::Empty;
1055 }
1056 
1057 
1058 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1059   assert((int)grow_by > 0, "sanity");
1060   int monoff = jvms->monoff();
1061   int scloff = jvms->scloff();
1062   int endoff = jvms->endoff();
1063   assert(endoff == (int)req(), "no other states or debug info after me");
1064   assert(jvms->scl_size() == 0, "parsed code should not have scalar objects");
1065   Node* top = Compile::current()->top();
1066   for (uint i = 0; i < grow_by; i++) {
1067     ins_req(monoff, top);
1068   }
1069   jvms->set_monoff(monoff + grow_by);
1070   jvms->set_scloff(scloff + grow_by);
1071   jvms->set_endoff(endoff + grow_by);
1072 }
1073 
1074 void SafePointNode::push_monitor(const FastLockNode *lock) {
1075   // Add a LockNode, which points to both the original BoxLockNode (the
1076   // stack space for the monitor) and the Object being locked.
1077   const int MonitorEdges = 2;
1078   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1079   assert(req() == jvms()->endoff(), "correct sizing");
1080   assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
1081   int nextmon = jvms()->scloff();
1082   if (GenerateSynchronizationCode) {
1083     add_req(lock->box_node());
1084     add_req(lock->obj_node());
1085   } else {
1086     Node* top = Compile::current()->top();
1087     add_req(top);
1088     add_req(top);
1089   }
1090   jvms()->set_scloff(nextmon+MonitorEdges);
1091   jvms()->set_endoff(req());
1092 }
1093 
1094 void SafePointNode::pop_monitor() {
1095   // Delete last monitor from debug info
1096   assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
1097   debug_only(int num_before_pop = jvms()->nof_monitors());
1098   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1099   int scloff = jvms()->scloff();
1100   int endoff = jvms()->endoff();
1101   int new_scloff = scloff - MonitorEdges;
1102   int new_endoff = endoff - MonitorEdges;
1103   jvms()->set_scloff(new_scloff);
1104   jvms()->set_endoff(new_endoff);
1105   while (scloff > new_scloff)  del_req(--scloff);
1106   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1107 }
1108 
1109 Node *SafePointNode::peek_monitor_box() const {
1110   int mon = jvms()->nof_monitors() - 1;
1111   assert(mon >= 0, "most have a monitor");
1112   return monitor_box(jvms(), mon);
1113 }
1114 
1115 Node *SafePointNode::peek_monitor_obj() const {
1116   int mon = jvms()->nof_monitors() - 1;
1117   assert(mon >= 0, "most have a monitor");
1118   return monitor_obj(jvms(), mon);
1119 }
1120 
1121 // Do we Match on this edge index or not?  Match no edges
1122 uint SafePointNode::match_edge(uint idx) const {
1123   if( !needs_polling_address_input() )
1124     return 0;
1125 
1126   return (TypeFunc::Parms == idx);
1127 }
1128 
1129 //==============  SafePointScalarObjectNode  ==============
1130 
1131 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1132 #ifdef ASSERT
1133                                                      AllocateNode* alloc,
1134 #endif
1135                                                      uint first_index,
1136                                                      uint n_fields) :
1137   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1138 #ifdef ASSERT
1139   _alloc(alloc),
1140 #endif
1141   _first_index(first_index),
1142   _n_fields(n_fields)
1143 {
1144   init_class_id(Class_SafePointScalarObject);
1145 }
1146 
1147 // Do not allow value-numbering for SafePointScalarObject node.
1148 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1149 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1150   return (&n == this); // Always fail except on self
1151 }
1152 
1153 uint SafePointScalarObjectNode::ideal_reg() const {
1154   return 0; // No matching to machine instruction
1155 }
1156 
1157 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1158   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1159 }
1160 
1161 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1162   return RegMask::Empty;
1163 }
1164 
1165 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1166   return 0;
1167 }
1168 
1169 SafePointScalarObjectNode*
1170 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1171   void* cached = (*sosn_map)[(void*)this];
1172   if (cached != NULL) {
1173     return (SafePointScalarObjectNode*)cached;
1174   }
1175   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1176   res->_first_index += jvms_adj;
1177   sosn_map->Insert((void*)this, (void*)res);
1178   return res;
1179 }
1180 
1181 
1182 #ifndef PRODUCT
1183 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1184   st->print(" # fields@[%d..%d]", first_index(),
1185              first_index() + n_fields() - 1);
1186 }
1187 
1188 #endif
1189 
1190 //=============================================================================
1191 uint AllocateNode::size_of() const { return sizeof(*this); }
1192 
1193 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1194                            Node *ctrl, Node *mem, Node *abio,
1195                            Node *size, Node *klass_node, Node *initial_test)
1196   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1197 {
1198   init_class_id(Class_Allocate);
1199   init_flags(Flag_is_macro);
1200   _is_scalar_replaceable = false;
1201   _is_non_escaping = false;
1202   Node *topnode = C->top();
1203 
1204   init_req( TypeFunc::Control  , ctrl );
1205   init_req( TypeFunc::I_O      , abio );
1206   init_req( TypeFunc::Memory   , mem );
1207   init_req( TypeFunc::ReturnAdr, topnode );
1208   init_req( TypeFunc::FramePtr , topnode );
1209   init_req( AllocSize          , size);
1210   init_req( KlassNode          , klass_node);
1211   init_req( InitialTest        , initial_test);
1212   init_req( ALength            , topnode);
1213   C->add_macro_node(this);
1214 }
1215 
1216 //=============================================================================
1217 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1218   if (remove_dead_region(phase, can_reshape))  return this;
1219   // Don't bother trying to transform a dead node
1220   if (in(0) && in(0)->is_top())  return NULL;
1221 
1222   const Type* type = phase->type(Ideal_length());
1223   if (type->isa_int() && type->is_int()->_hi < 0) {
1224     if (can_reshape) {
1225       PhaseIterGVN *igvn = phase->is_IterGVN();
1226       // Unreachable fall through path (negative array length),
1227       // the allocation can only throw so disconnect it.
1228       Node* proj = proj_out(TypeFunc::Control);
1229       Node* catchproj = NULL;
1230       if (proj != NULL) {
1231         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1232           Node *cn = proj->fast_out(i);
1233           if (cn->is_Catch()) {
1234             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1235             break;
1236           }
1237         }
1238       }
1239       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1240           (catchproj->outcnt() > 1 ||
1241            catchproj->unique_out()->Opcode() != Op_Halt)) {
1242         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1243         Node* nproj = catchproj->clone();
1244         igvn->register_new_node_with_optimizer(nproj);
1245 
1246         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1247         frame = phase->transform(frame);
1248         // Halt & Catch Fire
1249         Node *halt = new (phase->C) HaltNode( nproj, frame );
1250         phase->C->root()->add_req(halt);
1251         phase->transform(halt);
1252 
1253         igvn->replace_node(catchproj, phase->C->top());
1254         return this;
1255       }
1256     } else {
1257       // Can't correct it during regular GVN so register for IGVN
1258       phase->C->record_for_igvn(this);
1259     }
1260   }
1261   return NULL;
1262 }
1263 
1264 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1265 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1266 // a CastII is appropriate, return NULL.
1267 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1268   Node *length = in(AllocateNode::ALength);
1269   assert(length != NULL, "length is not null");
1270 
1271   const TypeInt* length_type = phase->find_int_type(length);
1272   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1273 
1274   if (ary_type != NULL && length_type != NULL) {
1275     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1276     if (narrow_length_type != length_type) {
1277       // Assert one of:
1278       //   - the narrow_length is 0
1279       //   - the narrow_length is not wider than length
1280       assert(narrow_length_type == TypeInt::ZERO ||
1281              length_type->is_con() && narrow_length_type->is_con() &&
1282                 (narrow_length_type->_hi <= length_type->_lo) ||
1283              (narrow_length_type->_hi <= length_type->_hi &&
1284               narrow_length_type->_lo >= length_type->_lo),
1285              "narrow type must be narrower than length type");
1286 
1287       // Return NULL if new nodes are not allowed
1288       if (!allow_new_nodes) return NULL;
1289       // Create a cast which is control dependent on the initialization to
1290       // propagate the fact that the array length must be positive.
1291       length = new (phase->C) CastIINode(length, narrow_length_type);
1292       length->set_req(0, initialization()->proj_out(0));
1293     }
1294   }
1295 
1296   return length;
1297 }
1298 
1299 //=============================================================================
1300 uint LockNode::size_of() const { return sizeof(*this); }
1301 
1302 // Redundant lock elimination
1303 //
1304 // There are various patterns of locking where we release and
1305 // immediately reacquire a lock in a piece of code where no operations
1306 // occur in between that would be observable.  In those cases we can
1307 // skip releasing and reacquiring the lock without violating any
1308 // fairness requirements.  Doing this around a loop could cause a lock
1309 // to be held for a very long time so we concentrate on non-looping
1310 // control flow.  We also require that the operations are fully
1311 // redundant meaning that we don't introduce new lock operations on
1312 // some paths so to be able to eliminate it on others ala PRE.  This
1313 // would probably require some more extensive graph manipulation to
1314 // guarantee that the memory edges were all handled correctly.
1315 //
1316 // Assuming p is a simple predicate which can't trap in any way and s
1317 // is a synchronized method consider this code:
1318 //
1319 //   s();
1320 //   if (p)
1321 //     s();
1322 //   else
1323 //     s();
1324 //   s();
1325 //
1326 // 1. The unlocks of the first call to s can be eliminated if the
1327 // locks inside the then and else branches are eliminated.
1328 //
1329 // 2. The unlocks of the then and else branches can be eliminated if
1330 // the lock of the final call to s is eliminated.
1331 //
1332 // Either of these cases subsumes the simple case of sequential control flow
1333 //
1334 // Addtionally we can eliminate versions without the else case:
1335 //
1336 //   s();
1337 //   if (p)
1338 //     s();
1339 //   s();
1340 //
1341 // 3. In this case we eliminate the unlock of the first s, the lock
1342 // and unlock in the then case and the lock in the final s.
1343 //
1344 // Note also that in all these cases the then/else pieces don't have
1345 // to be trivial as long as they begin and end with synchronization
1346 // operations.
1347 //
1348 //   s();
1349 //   if (p)
1350 //     s();
1351 //     f();
1352 //     s();
1353 //   s();
1354 //
1355 // The code will work properly for this case, leaving in the unlock
1356 // before the call to f and the relock after it.
1357 //
1358 // A potentially interesting case which isn't handled here is when the
1359 // locking is partially redundant.
1360 //
1361 //   s();
1362 //   if (p)
1363 //     s();
1364 //
1365 // This could be eliminated putting unlocking on the else case and
1366 // eliminating the first unlock and the lock in the then side.
1367 // Alternatively the unlock could be moved out of the then side so it
1368 // was after the merge and the first unlock and second lock
1369 // eliminated.  This might require less manipulation of the memory
1370 // state to get correct.
1371 //
1372 // Additionally we might allow work between a unlock and lock before
1373 // giving up eliminating the locks.  The current code disallows any
1374 // conditional control flow between these operations.  A formulation
1375 // similar to partial redundancy elimination computing the
1376 // availability of unlocking and the anticipatability of locking at a
1377 // program point would allow detection of fully redundant locking with
1378 // some amount of work in between.  I'm not sure how often I really
1379 // think that would occur though.  Most of the cases I've seen
1380 // indicate it's likely non-trivial work would occur in between.
1381 // There may be other more complicated constructs where we could
1382 // eliminate locking but I haven't seen any others appear as hot or
1383 // interesting.
1384 //
1385 // Locking and unlocking have a canonical form in ideal that looks
1386 // roughly like this:
1387 //
1388 //              <obj>
1389 //                | \\------+
1390 //                |  \       \
1391 //                | BoxLock   \
1392 //                |  |   |     \
1393 //                |  |    \     \
1394 //                |  |   FastLock
1395 //                |  |   /
1396 //                |  |  /
1397 //                |  |  |
1398 //
1399 //               Lock
1400 //                |
1401 //            Proj #0
1402 //                |
1403 //            MembarAcquire
1404 //                |
1405 //            Proj #0
1406 //
1407 //            MembarRelease
1408 //                |
1409 //            Proj #0
1410 //                |
1411 //              Unlock
1412 //                |
1413 //            Proj #0
1414 //
1415 //
1416 // This code proceeds by processing Lock nodes during PhaseIterGVN
1417 // and searching back through its control for the proper code
1418 // patterns.  Once it finds a set of lock and unlock operations to
1419 // eliminate they are marked as eliminatable which causes the
1420 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1421 //
1422 //=============================================================================
1423 
1424 //
1425 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1426 //   - copy regions.  (These may not have been optimized away yet.)
1427 //   - eliminated locking nodes
1428 //
1429 static Node *next_control(Node *ctrl) {
1430   if (ctrl == NULL)
1431     return NULL;
1432   while (1) {
1433     if (ctrl->is_Region()) {
1434       RegionNode *r = ctrl->as_Region();
1435       Node *n = r->is_copy();
1436       if (n == NULL)
1437         break;  // hit a region, return it
1438       else
1439         ctrl = n;
1440     } else if (ctrl->is_Proj()) {
1441       Node *in0 = ctrl->in(0);
1442       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1443         ctrl = in0->in(0);
1444       } else {
1445         break;
1446       }
1447     } else {
1448       break; // found an interesting control
1449     }
1450   }
1451   return ctrl;
1452 }
1453 //
1454 // Given a control, see if it's the control projection of an Unlock which
1455 // operating on the same object as lock.
1456 //
1457 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1458                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1459   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1460   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1461     Node *n = ctrl_proj->in(0);
1462     if (n != NULL && n->is_Unlock()) {
1463       UnlockNode *unlock = n->as_Unlock();
1464       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1465           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1466           !unlock->is_eliminated()) {
1467         lock_ops.append(unlock);
1468         return true;
1469       }
1470     }
1471   }
1472   return false;
1473 }
1474 
1475 //
1476 // Find the lock matching an unlock.  Returns null if a safepoint
1477 // or complicated control is encountered first.
1478 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1479   LockNode *lock_result = NULL;
1480   // find the matching lock, or an intervening safepoint
1481   Node *ctrl = next_control(unlock->in(0));
1482   while (1) {
1483     assert(ctrl != NULL, "invalid control graph");
1484     assert(!ctrl->is_Start(), "missing lock for unlock");
1485     if (ctrl->is_top()) break;  // dead control path
1486     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1487     if (ctrl->is_SafePoint()) {
1488         break;  // found a safepoint (may be the lock we are searching for)
1489     } else if (ctrl->is_Region()) {
1490       // Check for a simple diamond pattern.  Punt on anything more complicated
1491       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1492         Node *in1 = next_control(ctrl->in(1));
1493         Node *in2 = next_control(ctrl->in(2));
1494         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1495              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1496           ctrl = next_control(in1->in(0)->in(0));
1497         } else {
1498           break;
1499         }
1500       } else {
1501         break;
1502       }
1503     } else {
1504       ctrl = next_control(ctrl->in(0));  // keep searching
1505     }
1506   }
1507   if (ctrl->is_Lock()) {
1508     LockNode *lock = ctrl->as_Lock();
1509     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1510         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1511       lock_result = lock;
1512     }
1513   }
1514   return lock_result;
1515 }
1516 
1517 // This code corresponds to case 3 above.
1518 
1519 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1520                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1521   Node* if_node = node->in(0);
1522   bool  if_true = node->is_IfTrue();
1523 
1524   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1525     Node *lock_ctrl = next_control(if_node->in(0));
1526     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1527       Node* lock1_node = NULL;
1528       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1529       if (if_true) {
1530         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1531           lock1_node = proj->unique_out();
1532         }
1533       } else {
1534         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1535           lock1_node = proj->unique_out();
1536         }
1537       }
1538       if (lock1_node != NULL && lock1_node->is_Lock()) {
1539         LockNode *lock1 = lock1_node->as_Lock();
1540         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1541             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1542             !lock1->is_eliminated()) {
1543           lock_ops.append(lock1);
1544           return true;
1545         }
1546       }
1547     }
1548   }
1549 
1550   lock_ops.trunc_to(0);
1551   return false;
1552 }
1553 
1554 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1555                                GrowableArray<AbstractLockNode*> &lock_ops) {
1556   // check each control merging at this point for a matching unlock.
1557   // in(0) should be self edge so skip it.
1558   for (int i = 1; i < (int)region->req(); i++) {
1559     Node *in_node = next_control(region->in(i));
1560     if (in_node != NULL) {
1561       if (find_matching_unlock(in_node, lock, lock_ops)) {
1562         // found a match so keep on checking.
1563         continue;
1564       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1565         continue;
1566       }
1567 
1568       // If we fall through to here then it was some kind of node we
1569       // don't understand or there wasn't a matching unlock, so give
1570       // up trying to merge locks.
1571       lock_ops.trunc_to(0);
1572       return false;
1573     }
1574   }
1575   return true;
1576 
1577 }
1578 
1579 #ifndef PRODUCT
1580 //
1581 // Create a counter which counts the number of times this lock is acquired
1582 //
1583 void AbstractLockNode::create_lock_counter(JVMState* state) {
1584   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1585 }
1586 
1587 void AbstractLockNode::set_eliminated_lock_counter() {
1588   if (_counter) {
1589     // Update the counter to indicate that this lock was eliminated.
1590     // The counter update code will stay around even though the
1591     // optimizer will eliminate the lock operation itself.
1592     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1593   }
1594 }
1595 #endif
1596 
1597 //=============================================================================
1598 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1599 
1600   // perform any generic optimizations first (returns 'this' or NULL)
1601   Node *result = SafePointNode::Ideal(phase, can_reshape);
1602   if (result != NULL)  return result;
1603   // Don't bother trying to transform a dead node
1604   if (in(0) && in(0)->is_top())  return NULL;
1605 
1606   // Now see if we can optimize away this lock.  We don't actually
1607   // remove the locking here, we simply set the _eliminate flag which
1608   // prevents macro expansion from expanding the lock.  Since we don't
1609   // modify the graph, the value returned from this function is the
1610   // one computed above.
1611   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1612     //
1613     // If we are locking an unescaped object, the lock/unlock is unnecessary
1614     //
1615     ConnectionGraph *cgr = phase->C->congraph();
1616     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1617       assert(!is_eliminated() || is_coarsened(), "sanity");
1618       // The lock could be marked eliminated by lock coarsening
1619       // code during first IGVN before EA. Replace coarsened flag
1620       // to eliminate all associated locks/unlocks.
1621       this->set_non_esc_obj();
1622       return result;
1623     }
1624 
1625     //
1626     // Try lock coarsening
1627     //
1628     PhaseIterGVN* iter = phase->is_IterGVN();
1629     if (iter != NULL && !is_eliminated()) {
1630 
1631       GrowableArray<AbstractLockNode*>   lock_ops;
1632 
1633       Node *ctrl = next_control(in(0));
1634 
1635       // now search back for a matching Unlock
1636       if (find_matching_unlock(ctrl, this, lock_ops)) {
1637         // found an unlock directly preceding this lock.  This is the
1638         // case of single unlock directly control dependent on a
1639         // single lock which is the trivial version of case 1 or 2.
1640       } else if (ctrl->is_Region() ) {
1641         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1642         // found lock preceded by multiple unlocks along all paths
1643         // joining at this point which is case 3 in description above.
1644         }
1645       } else {
1646         // see if this lock comes from either half of an if and the
1647         // predecessors merges unlocks and the other half of the if
1648         // performs a lock.
1649         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1650           // found unlock splitting to an if with locks on both branches.
1651         }
1652       }
1653 
1654       if (lock_ops.length() > 0) {
1655         // add ourselves to the list of locks to be eliminated.
1656         lock_ops.append(this);
1657 
1658   #ifndef PRODUCT
1659         if (PrintEliminateLocks) {
1660           int locks = 0;
1661           int unlocks = 0;
1662           for (int i = 0; i < lock_ops.length(); i++) {
1663             AbstractLockNode* lock = lock_ops.at(i);
1664             if (lock->Opcode() == Op_Lock)
1665               locks++;
1666             else
1667               unlocks++;
1668             if (Verbose) {
1669               lock->dump(1);
1670             }
1671           }
1672           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1673         }
1674   #endif
1675 
1676         // for each of the identified locks, mark them
1677         // as eliminatable
1678         for (int i = 0; i < lock_ops.length(); i++) {
1679           AbstractLockNode* lock = lock_ops.at(i);
1680 
1681           // Mark it eliminated by coarsening and update any counters
1682           lock->set_coarsened();
1683         }
1684       } else if (ctrl->is_Region() &&
1685                  iter->_worklist.member(ctrl)) {
1686         // We weren't able to find any opportunities but the region this
1687         // lock is control dependent on hasn't been processed yet so put
1688         // this lock back on the worklist so we can check again once any
1689         // region simplification has occurred.
1690         iter->_worklist.push(this);
1691       }
1692     }
1693   }
1694 
1695   return result;
1696 }
1697 
1698 //=============================================================================
1699 bool LockNode::is_nested_lock_region() {
1700   BoxLockNode* box = box_node()->as_BoxLock();
1701   int stk_slot = box->stack_slot();
1702   if (stk_slot <= 0)
1703     return false; // External lock or it is not Box (Phi node).
1704 
1705   // Ignore complex cases: merged locks or multiple locks.
1706   Node* obj = obj_node();
1707   LockNode* unique_lock = NULL;
1708   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1709       (unique_lock != this)) {
1710     return false;
1711   }
1712 
1713   // Look for external lock for the same object.
1714   SafePointNode* sfn = this->as_SafePoint();
1715   JVMState* youngest_jvms = sfn->jvms();
1716   int max_depth = youngest_jvms->depth();
1717   for (int depth = 1; depth <= max_depth; depth++) {
1718     JVMState* jvms = youngest_jvms->of_depth(depth);
1719     int num_mon  = jvms->nof_monitors();
1720     // Loop over monitors
1721     for (int idx = 0; idx < num_mon; idx++) {
1722       Node* obj_node = sfn->monitor_obj(jvms, idx);
1723       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1724       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1725         return true;
1726       }
1727     }
1728   }
1729   return false;
1730 }
1731 
1732 //=============================================================================
1733 uint UnlockNode::size_of() const { return sizeof(*this); }
1734 
1735 //=============================================================================
1736 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1737 
1738   // perform any generic optimizations first (returns 'this' or NULL)
1739   Node *result = SafePointNode::Ideal(phase, can_reshape);
1740   if (result != NULL)  return result;
1741   // Don't bother trying to transform a dead node
1742   if (in(0) && in(0)->is_top())  return NULL;
1743 
1744   // Now see if we can optimize away this unlock.  We don't actually
1745   // remove the unlocking here, we simply set the _eliminate flag which
1746   // prevents macro expansion from expanding the unlock.  Since we don't
1747   // modify the graph, the value returned from this function is the
1748   // one computed above.
1749   // Escape state is defined after Parse phase.
1750   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1751     //
1752     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1753     //
1754     ConnectionGraph *cgr = phase->C->congraph();
1755     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1756       assert(!is_eliminated() || is_coarsened(), "sanity");
1757       // The lock could be marked eliminated by lock coarsening
1758       // code during first IGVN before EA. Replace coarsened flag
1759       // to eliminate all associated locks/unlocks.
1760       this->set_non_esc_obj();
1761     }
1762   }
1763   return result;
1764 }