1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     LockNode;
  53 class     UnlockNode;
  54 class JVMState;
  55 class OopMap;
  56 class State;
  57 class StartNode;
  58 class MachCallNode;
  59 class FastLockNode;
  60 
  61 //------------------------------StartNode--------------------------------------
  62 // The method start node
  63 class StartNode : public MultiNode {
  64   virtual uint cmp( const Node &n ) const;
  65   virtual uint size_of() const; // Size is bigger
  66 public:
  67   const TypeTuple *_domain;
  68   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  69     init_class_id(Class_Start);
  70     init_req(0,this);
  71     init_req(1,root);
  72   }
  73   virtual int Opcode() const;
  74   virtual bool pinned() const { return true; };
  75   virtual const Type *bottom_type() const;
  76   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  77   virtual const Type *Value( PhaseTransform *phase ) const;
  78   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  79   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  80   virtual const RegMask &in_RegMask(uint) const;
  81   virtual Node *match( const ProjNode *proj, const Matcher *m );
  82   virtual uint ideal_reg() const { return 0; }
  83 #ifndef PRODUCT
  84   virtual void  dump_spec(outputStream *st) const;
  85 #endif
  86 };
  87 
  88 //------------------------------StartOSRNode-----------------------------------
  89 // The method start node for on stack replacement code
  90 class StartOSRNode : public StartNode {
  91 public:
  92   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  93   virtual int   Opcode() const;
  94   static  const TypeTuple *osr_domain();
  95 };
  96 
  97 
  98 //------------------------------ParmNode---------------------------------------
  99 // Incoming parameters
 100 class ParmNode : public ProjNode {
 101   static const char * const names[TypeFunc::Parms+1];
 102 public:
 103   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 104     init_class_id(Class_Parm);
 105   }
 106   virtual int Opcode() const;
 107   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 108   virtual uint ideal_reg() const;
 109 #ifndef PRODUCT
 110   virtual void dump_spec(outputStream *st) const;
 111 #endif
 112 };
 113 
 114 
 115 //------------------------------ReturnNode-------------------------------------
 116 // Return from subroutine node
 117 class ReturnNode : public Node {
 118 public:
 119   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 120   virtual int Opcode() const;
 121   virtual bool  is_CFG() const { return true; }
 122   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 123   virtual bool depends_only_on_test() const { return false; }
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type *Value( PhaseTransform *phase ) const;
 126   virtual uint ideal_reg() const { return NotAMachineReg; }
 127   virtual uint match_edge(uint idx) const;
 128 #ifndef PRODUCT
 129   virtual void dump_req(outputStream *st = tty) const;
 130 #endif
 131 };
 132 
 133 
 134 //------------------------------RethrowNode------------------------------------
 135 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 136 // ends the current basic block like a ReturnNode.  Restores registers and
 137 // unwinds stack.  Rethrow happens in the caller's method.
 138 class RethrowNode : public Node {
 139  public:
 140   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 141   virtual int Opcode() const;
 142   virtual bool  is_CFG() const { return true; }
 143   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 144   virtual bool depends_only_on_test() const { return false; }
 145   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 146   virtual const Type *Value( PhaseTransform *phase ) const;
 147   virtual uint match_edge(uint idx) const;
 148   virtual uint ideal_reg() const { return NotAMachineReg; }
 149 #ifndef PRODUCT
 150   virtual void dump_req(outputStream *st = tty) const;
 151 #endif
 152 };
 153 
 154 
 155 //------------------------------TailCallNode-----------------------------------
 156 // Pop stack frame and jump indirect
 157 class TailCallNode : public ReturnNode {
 158 public:
 159   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 160     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 161     init_req(TypeFunc::Parms, target);
 162     init_req(TypeFunc::Parms+1, moop);
 163   }
 164 
 165   virtual int Opcode() const;
 166   virtual uint match_edge(uint idx) const;
 167 };
 168 
 169 //------------------------------TailJumpNode-----------------------------------
 170 // Pop stack frame and jump indirect
 171 class TailJumpNode : public ReturnNode {
 172 public:
 173   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 174     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 175     init_req(TypeFunc::Parms, target);
 176     init_req(TypeFunc::Parms+1, ex_oop);
 177   }
 178 
 179   virtual int Opcode() const;
 180   virtual uint match_edge(uint idx) const;
 181 };
 182 
 183 //-------------------------------JVMState-------------------------------------
 184 // A linked list of JVMState nodes captures the whole interpreter state,
 185 // plus GC roots, for all active calls at some call site in this compilation
 186 // unit.  (If there is no inlining, then the list has exactly one link.)
 187 // This provides a way to map the optimized program back into the interpreter,
 188 // or to let the GC mark the stack.
 189 class JVMState : public ResourceObj {
 190   friend class VMStructs;
 191 public:
 192   typedef enum {
 193     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 194     Reexecute_False     =  0, // false       -- do not reexecute
 195     Reexecute_True      =  1  // true        -- reexecute the bytecode
 196   } ReexecuteState; //Reexecute State
 197 
 198 private:
 199   JVMState*         _caller;    // List pointer for forming scope chains
 200   uint              _depth;     // One more than caller depth, or one.
 201   uint              _locoff;    // Offset to locals in input edge mapping
 202   uint              _stkoff;    // Offset to stack in input edge mapping
 203   uint              _monoff;    // Offset to monitors in input edge mapping
 204   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 205   uint              _endoff;    // Offset to end of input edge mapping
 206   uint              _sp;        // Jave Expression Stack Pointer for this state
 207   int               _bci;       // Byte Code Index of this JVM point
 208   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 209   ciMethod*         _method;    // Method Pointer
 210   SafePointNode*    _map;       // Map node associated with this scope
 211 public:
 212   friend class Compile;
 213   friend class PreserveReexecuteState;
 214 
 215   // Because JVMState objects live over the entire lifetime of the
 216   // Compile object, they are allocated into the comp_arena, which
 217   // does not get resource marked or reset during the compile process
 218   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 219   void operator delete( void * ) { } // fast deallocation
 220 
 221   // Create a new JVMState, ready for abstract interpretation.
 222   JVMState(ciMethod* method, JVMState* caller);
 223   JVMState(int stack_size);  // root state; has a null method
 224 
 225   // Access functions for the JVM
 226   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 227   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 228   uint              locoff() const { return _locoff; }
 229   uint              stkoff() const { return _stkoff; }
 230   uint              argoff() const { return _stkoff + _sp; }
 231   uint              monoff() const { return _monoff; }
 232   uint              scloff() const { return _scloff; }
 233   uint              endoff() const { return _endoff; }
 234   uint              oopoff() const { return debug_end(); }
 235 
 236   int            loc_size() const { return stkoff() - locoff(); }
 237   int            stk_size() const { return monoff() - stkoff(); }
 238   int            arg_size() const { return monoff() - argoff(); }
 239   int            mon_size() const { return scloff() - monoff(); }
 240   int            scl_size() const { return endoff() - scloff(); }
 241 
 242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 246 
 247   uint                      sp() const { return _sp; }
 248   int                      bci() const { return _bci; }
 249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 251   bool              has_method() const { return _method != NULL; }
 252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 253   JVMState*             caller() const { return _caller; }
 254   SafePointNode*           map() const { return _map; }
 255   uint                   depth() const { return _depth; }
 256   uint             debug_start() const; // returns locoff of root caller
 257   uint               debug_end() const; // returns endoff of self
 258   uint              debug_size() const {
 259     return loc_size() + sp() + mon_size() + scl_size();
 260   }
 261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 262 
 263   // Returns the JVM state at the desired depth (1 == root).
 264   JVMState* of_depth(int d) const;
 265 
 266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 267   bool same_calls_as(const JVMState* that) const;
 268 
 269   // Monitors (monitors are stored as (boxNode, objNode) pairs
 270   enum { logMonitorEdges = 1 };
 271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 275   bool is_monitor_box(uint off)    const {
 276     assert(is_mon(off), "should be called only for monitor edge");
 277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 278   }
 279   bool is_monitor_use(uint off)    const { return (is_mon(off)
 280                                                    && is_monitor_box(off))
 281                                              || (caller() && caller()->is_monitor_use(off)); }
 282 
 283   // Initialization functions for the JVM
 284   void              set_locoff(uint off) { _locoff = off; }
 285   void              set_stkoff(uint off) { _stkoff = off; }
 286   void              set_monoff(uint off) { _monoff = off; }
 287   void              set_scloff(uint off) { _scloff = off; }
 288   void              set_endoff(uint off) { _endoff = off; }
 289   void              set_offsets(uint off) {
 290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 291   }
 292   void              set_map(SafePointNode *map) { _map = map; }
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301 
 302 #ifndef PRODUCT
 303   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 304   void      dump_spec(outputStream *st) const;
 305   void      dump_on(outputStream* st) const;
 306   void      dump() const {
 307     dump_on(tty);
 308   }
 309 #endif
 310 };
 311 
 312 //------------------------------SafePointNode----------------------------------
 313 // A SafePointNode is a subclass of a MultiNode for convenience (and
 314 // potential code sharing) only - conceptually it is independent of
 315 // the Node semantics.
 316 class SafePointNode : public MultiNode {
 317   virtual uint           cmp( const Node &n ) const;
 318   virtual uint           size_of() const;       // Size is bigger
 319 
 320 public:
 321   SafePointNode(uint edges, JVMState* jvms,
 322                 // A plain safepoint advertises no memory effects (NULL):
 323                 const TypePtr* adr_type = NULL)
 324     : MultiNode( edges ),
 325       _jvms(jvms),
 326       _oop_map(NULL),
 327       _adr_type(adr_type)
 328   {
 329     init_class_id(Class_SafePoint);
 330   }
 331 
 332   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 333   JVMState* const _jvms;      // Pointer to list of JVM State objects
 334   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 335 
 336   // Many calls take *all* of memory as input,
 337   // but some produce a limited subset of that memory as output.
 338   // The adr_type reports the call's behavior as a store, not a load.
 339 
 340   virtual JVMState* jvms() const { return _jvms; }
 341   void set_jvms(JVMState* s) {
 342     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 343   }
 344   OopMap *oop_map() const { return _oop_map; }
 345   void set_oop_map(OopMap *om) { _oop_map = om; }
 346 
 347  private:
 348   void verify_input(JVMState* jvms, uint idx) const {
 349     assert(verify_jvms(jvms), "jvms must match");
 350     Node* n = in(idx);
 351     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 352            in(idx + 1)->is_top(), "2nd half of long/double");
 353   }
 354 
 355  public:
 356   // Functionality from old debug nodes which has changed
 357   Node *local(JVMState* jvms, uint idx) const {
 358     verify_input(jvms, jvms->locoff() + idx);
 359     return in(jvms->locoff() + idx);
 360   }
 361   Node *stack(JVMState* jvms, uint idx) const {
 362     verify_input(jvms, jvms->stkoff() + idx);
 363     return in(jvms->stkoff() + idx);
 364   }
 365   Node *argument(JVMState* jvms, uint idx) const {
 366     verify_input(jvms, jvms->argoff() + idx);
 367     return in(jvms->argoff() + idx);
 368   }
 369   Node *monitor_box(JVMState* jvms, uint idx) const {
 370     assert(verify_jvms(jvms), "jvms must match");
 371     return in(jvms->monitor_box_offset(idx));
 372   }
 373   Node *monitor_obj(JVMState* jvms, uint idx) const {
 374     assert(verify_jvms(jvms), "jvms must match");
 375     return in(jvms->monitor_obj_offset(idx));
 376   }
 377 
 378   void  set_local(JVMState* jvms, uint idx, Node *c);
 379 
 380   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 381     assert(verify_jvms(jvms), "jvms must match");
 382     set_req(jvms->stkoff() + idx, c);
 383   }
 384   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 385     assert(verify_jvms(jvms), "jvms must match");
 386     set_req(jvms->argoff() + idx, c);
 387   }
 388   void ensure_stack(JVMState* jvms, uint stk_size) {
 389     assert(verify_jvms(jvms), "jvms must match");
 390     int grow_by = (int)stk_size - (int)jvms->stk_size();
 391     if (grow_by > 0)  grow_stack(jvms, grow_by);
 392   }
 393   void grow_stack(JVMState* jvms, uint grow_by);
 394   // Handle monitor stack
 395   void push_monitor( const FastLockNode *lock );
 396   void pop_monitor ();
 397   Node *peek_monitor_box() const;
 398   Node *peek_monitor_obj() const;
 399 
 400   // Access functions for the JVM
 401   Node *control  () const { return in(TypeFunc::Control  ); }
 402   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 403   Node *memory   () const { return in(TypeFunc::Memory   ); }
 404   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 405   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 406 
 407   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 408   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 409   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 410 
 411   MergeMemNode* merged_memory() const {
 412     return in(TypeFunc::Memory)->as_MergeMem();
 413   }
 414 
 415   // The parser marks useless maps as dead when it's done with them:
 416   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 417 
 418   // Exception states bubbling out of subgraphs such as inlined calls
 419   // are recorded here.  (There might be more than one, hence the "next".)
 420   // This feature is used only for safepoints which serve as "maps"
 421   // for JVM states during parsing, intrinsic expansion, etc.
 422   SafePointNode*         next_exception() const;
 423   void               set_next_exception(SafePointNode* n);
 424   bool                   has_exceptions() const { return next_exception() != NULL; }
 425 
 426   // Standard Node stuff
 427   virtual int            Opcode() const;
 428   virtual bool           pinned() const { return true; }
 429   virtual const Type    *Value( PhaseTransform *phase ) const;
 430   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 431   virtual const TypePtr *adr_type() const { return _adr_type; }
 432   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 433   virtual Node          *Identity( PhaseTransform *phase );
 434   virtual uint           ideal_reg() const { return 0; }
 435   virtual const RegMask &in_RegMask(uint) const;
 436   virtual const RegMask &out_RegMask() const;
 437   virtual uint           match_edge(uint idx) const;
 438 
 439   static  bool           needs_polling_address_input();
 440 
 441 #ifndef PRODUCT
 442   virtual void              dump_spec(outputStream *st) const;
 443 #endif
 444 };
 445 
 446 //------------------------------SafePointScalarObjectNode----------------------
 447 // A SafePointScalarObjectNode represents the state of a scalarized object
 448 // at a safepoint.
 449 
 450 class SafePointScalarObjectNode: public TypeNode {
 451   uint _first_index; // First input edge index of a SafePoint node where
 452                      // states of the scalarized object fields are collected.
 453   uint _n_fields;    // Number of non-static fields of the scalarized object.
 454   DEBUG_ONLY(AllocateNode* _alloc;)
 455 
 456   virtual uint hash() const ; // { return NO_HASH; }
 457   virtual uint cmp( const Node &n ) const;
 458 
 459 public:
 460   SafePointScalarObjectNode(const TypeOopPtr* tp,
 461 #ifdef ASSERT
 462                             AllocateNode* alloc,
 463 #endif
 464                             uint first_index, uint n_fields);
 465   virtual int Opcode() const;
 466   virtual uint           ideal_reg() const;
 467   virtual const RegMask &in_RegMask(uint) const;
 468   virtual const RegMask &out_RegMask() const;
 469   virtual uint           match_edge(uint idx) const;
 470 
 471   uint first_index() const { return _first_index; }
 472   uint n_fields()    const { return _n_fields; }
 473 
 474 #ifdef ASSERT
 475   AllocateNode* alloc() const { return _alloc; }
 476 #endif
 477 
 478   virtual uint size_of() const { return sizeof(*this); }
 479 
 480   // Assumes that "this" is an argument to a safepoint node "s", and that
 481   // "new_call" is being created to correspond to "s".  But the difference
 482   // between the start index of the jvmstates of "new_call" and "s" is
 483   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 484   // corresponds appropriately to "this" in "new_call".  Assumes that
 485   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 486   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 487   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 488 
 489 #ifndef PRODUCT
 490   virtual void              dump_spec(outputStream *st) const;
 491 #endif
 492 };
 493 
 494 
 495 // Simple container for the outgoing projections of a call.  Useful
 496 // for serious surgery on calls.
 497 class CallProjections : public StackObj {
 498 public:
 499   Node* fallthrough_proj;
 500   Node* fallthrough_catchproj;
 501   Node* fallthrough_memproj;
 502   Node* fallthrough_ioproj;
 503   Node* catchall_catchproj;
 504   Node* catchall_memproj;
 505   Node* catchall_ioproj;
 506   Node* resproj;
 507   Node* exobj;
 508 };
 509 
 510 class CallGenerator;
 511 
 512 //------------------------------CallNode---------------------------------------
 513 // Call nodes now subsume the function of debug nodes at callsites, so they
 514 // contain the functionality of a full scope chain of debug nodes.
 515 class CallNode : public SafePointNode {
 516   friend class VMStructs;
 517 public:
 518   const TypeFunc *_tf;        // Function type
 519   address      _entry_point;  // Address of method being called
 520   float        _cnt;          // Estimate of number of times called
 521   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 522 
 523   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 524     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 525       _tf(tf),
 526       _entry_point(addr),
 527       _cnt(COUNT_UNKNOWN),
 528       _generator(NULL)
 529   {
 530     init_class_id(Class_Call);
 531   }
 532 
 533   const TypeFunc* tf()         const { return _tf; }
 534   const address  entry_point() const { return _entry_point; }
 535   const float    cnt()         const { return _cnt; }
 536   CallGenerator* generator()   const { return _generator; }
 537 
 538   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 539   void set_entry_point(address p)       { _entry_point = p; }
 540   void set_cnt(float c)                 { _cnt = c; }
 541   void set_generator(CallGenerator* cg) { _generator = cg; }
 542 
 543   virtual const Type *bottom_type() const;
 544   virtual const Type *Value( PhaseTransform *phase ) const;
 545   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 546   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 547   virtual uint        cmp( const Node &n ) const;
 548   virtual uint        size_of() const = 0;
 549   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 550   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 551   virtual uint        ideal_reg() const { return NotAMachineReg; }
 552   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 553   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 554   virtual bool        guaranteed_safepoint()  { return true; }
 555   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 556   // the node the JVMState must be cloned.
 557   virtual void        clone_jvms() { }   // default is not to clone
 558 
 559   // Returns true if the call may modify n
 560   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 561   // Does this node have a use of n other than in debug information?
 562   bool                has_non_debug_use(Node *n);
 563   // Returns the unique CheckCastPP of a call
 564   // or result projection is there are several CheckCastPP
 565   // or returns NULL if there is no one.
 566   Node *result_cast();
 567   // Does this node returns pointer?
 568   bool returns_pointer() const {
 569     const TypeTuple *r = tf()->range();
 570     return (r->cnt() > TypeFunc::Parms &&
 571             r->field_at(TypeFunc::Parms)->isa_ptr());
 572   }
 573 
 574   // Collect all the interesting edges from a call for use in
 575   // replacing the call by something else.  Used by macro expansion
 576   // and the late inlining support.
 577   void extract_projections(CallProjections* projs, bool separate_io_proj);
 578 
 579   virtual uint match_edge(uint idx) const;
 580 
 581 #ifndef PRODUCT
 582   virtual void        dump_req(outputStream *st = tty) const;
 583   virtual void        dump_spec(outputStream *st) const;
 584 #endif
 585 };
 586 
 587 
 588 //------------------------------CallJavaNode-----------------------------------
 589 // Make a static or dynamic subroutine call node using Java calling
 590 // convention.  (The "Java" calling convention is the compiler's calling
 591 // convention, as opposed to the interpreter's or that of native C.)
 592 class CallJavaNode : public CallNode {
 593   friend class VMStructs;
 594 protected:
 595   virtual uint cmp( const Node &n ) const;
 596   virtual uint size_of() const; // Size is bigger
 597 
 598   bool    _optimized_virtual;
 599   bool    _method_handle_invoke;
 600   ciMethod* _method;            // Method being direct called
 601 public:
 602   const int       _bci;         // Byte Code Index of call byte code
 603   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 604     : CallNode(tf, addr, TypePtr::BOTTOM),
 605       _method(method), _bci(bci),
 606       _optimized_virtual(false),
 607       _method_handle_invoke(false)
 608   {
 609     init_class_id(Class_CallJava);
 610   }
 611 
 612   virtual int   Opcode() const;
 613   ciMethod* method() const                { return _method; }
 614   void  set_method(ciMethod *m)           { _method = m; }
 615   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 616   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 617   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 618   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 619 
 620 #ifndef PRODUCT
 621   virtual void  dump_spec(outputStream *st) const;
 622 #endif
 623 };
 624 
 625 //------------------------------CallStaticJavaNode-----------------------------
 626 // Make a direct subroutine call using Java calling convention (for static
 627 // calls and optimized virtual calls, plus calls to wrappers for run-time
 628 // routines); generates static stub.
 629 class CallStaticJavaNode : public CallJavaNode {
 630   virtual uint cmp( const Node &n ) const;
 631   virtual uint size_of() const; // Size is bigger
 632 public:
 633   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 634     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 635     init_class_id(Class_CallStaticJava);
 636   }
 637   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 638                      const TypePtr* adr_type)
 639     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 640     init_class_id(Class_CallStaticJava);
 641     // This node calls a runtime stub, which often has narrow memory effects.
 642     _adr_type = adr_type;
 643   }
 644   const char *_name;            // Runtime wrapper name
 645 
 646   // If this is an uncommon trap, return the request code, else zero.
 647   int uncommon_trap_request() const;
 648   static int extract_uncommon_trap_request(const Node* call);
 649 
 650   virtual int         Opcode() const;
 651 #ifndef PRODUCT
 652   virtual void        dump_spec(outputStream *st) const;
 653 #endif
 654 };
 655 
 656 //------------------------------CallDynamicJavaNode----------------------------
 657 // Make a dispatched call using Java calling convention.
 658 class CallDynamicJavaNode : public CallJavaNode {
 659   virtual uint cmp( const Node &n ) const;
 660   virtual uint size_of() const; // Size is bigger
 661 public:
 662   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 663     init_class_id(Class_CallDynamicJava);
 664   }
 665 
 666   int _vtable_index;
 667   virtual int   Opcode() const;
 668 #ifndef PRODUCT
 669   virtual void  dump_spec(outputStream *st) const;
 670 #endif
 671 };
 672 
 673 //------------------------------CallRuntimeNode--------------------------------
 674 // Make a direct subroutine call node into compiled C++ code.
 675 class CallRuntimeNode : public CallNode {
 676   virtual uint cmp( const Node &n ) const;
 677   virtual uint size_of() const; // Size is bigger
 678 public:
 679   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 680                   const TypePtr* adr_type)
 681     : CallNode(tf, addr, adr_type),
 682       _name(name)
 683   {
 684     init_class_id(Class_CallRuntime);
 685   }
 686 
 687   const char *_name;            // Printable name, if _method is NULL
 688   virtual int   Opcode() const;
 689   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 690 
 691 #ifndef PRODUCT
 692   virtual void  dump_spec(outputStream *st) const;
 693 #endif
 694 };
 695 
 696 //------------------------------CallLeafNode-----------------------------------
 697 // Make a direct subroutine call node into compiled C++ code, without
 698 // safepoints
 699 class CallLeafNode : public CallRuntimeNode {
 700 public:
 701   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 702                const TypePtr* adr_type)
 703     : CallRuntimeNode(tf, addr, name, adr_type)
 704   {
 705     init_class_id(Class_CallLeaf);
 706   }
 707   virtual int   Opcode() const;
 708   virtual bool        guaranteed_safepoint()  { return false; }
 709 #ifndef PRODUCT
 710   virtual void  dump_spec(outputStream *st) const;
 711 #endif
 712 };
 713 
 714 //------------------------------CallLeafNoFPNode-------------------------------
 715 // CallLeafNode, not using floating point or using it in the same manner as
 716 // the generated code
 717 class CallLeafNoFPNode : public CallLeafNode {
 718 public:
 719   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 720                    const TypePtr* adr_type)
 721     : CallLeafNode(tf, addr, name, adr_type)
 722   {
 723   }
 724   virtual int   Opcode() const;
 725 };
 726 
 727 
 728 //------------------------------Allocate---------------------------------------
 729 // High-level memory allocation
 730 //
 731 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 732 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 733 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 734 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 735 //  order to differentiate the uses of the projection on the normal control path from
 736 //  those on the exception return path.
 737 //
 738 class AllocateNode : public CallNode {
 739 public:
 740   enum {
 741     // Output:
 742     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 743     // Inputs:
 744     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 745     KlassNode,                        // type (maybe dynamic) of the obj.
 746     InitialTest,                      // slow-path test (may be constant)
 747     ALength,                          // array length (or TOP if none)
 748     ParmLimit
 749   };
 750 
 751   static const TypeFunc* alloc_type() {
 752     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 753     fields[AllocSize]   = TypeInt::POS;
 754     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 755     fields[InitialTest] = TypeInt::BOOL;
 756     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 757 
 758     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 759 
 760     // create result type (range)
 761     fields = TypeTuple::fields(1);
 762     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 763 
 764     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 765 
 766     return TypeFunc::make(domain, range);
 767   }
 768 
 769   bool _is_scalar_replaceable;  // Result of Escape Analysis
 770 
 771   virtual uint size_of() const; // Size is bigger
 772   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 773                Node *size, Node *klass_node, Node *initial_test);
 774   // Expansion modifies the JVMState, so we need to clone it
 775   virtual void  clone_jvms() {
 776     set_jvms(jvms()->clone_deep(Compile::current()));
 777   }
 778   virtual int Opcode() const;
 779   virtual uint ideal_reg() const { return Op_RegP; }
 780   virtual bool        guaranteed_safepoint()  { return false; }
 781 
 782   // allocations do not modify their arguments
 783   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 784 
 785   // Pattern-match a possible usage of AllocateNode.
 786   // Return null if no allocation is recognized.
 787   // The operand is the pointer produced by the (possible) allocation.
 788   // It must be a projection of the Allocate or its subsequent CastPP.
 789   // (Note:  This function is defined in file graphKit.cpp, near
 790   // GraphKit::new_instance/new_array, whose output it recognizes.)
 791   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 792   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 793 
 794   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 795   // an offset, which is reported back to the caller.
 796   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 797   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 798                                         intptr_t& offset);
 799 
 800   // Dig the klass operand out of a (possible) allocation site.
 801   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 802     AllocateNode* allo = Ideal_allocation(ptr, phase);
 803     return (allo == NULL) ? NULL : allo->in(KlassNode);
 804   }
 805 
 806   // Conservatively small estimate of offset of first non-header byte.
 807   int minimum_header_size() {
 808     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 809                                 instanceOopDesc::base_offset_in_bytes();
 810   }
 811 
 812   // Return the corresponding initialization barrier (or null if none).
 813   // Walks out edges to find it...
 814   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 815   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 816   InitializeNode* initialization();
 817 
 818   // Return the corresponding storestore barrier (or null if none).
 819   // Walks out edges to find it...
 820   MemBarStoreStoreNode* storestore();
 821 
 822   // Convenience for initialization->maybe_set_complete(phase)
 823   bool maybe_set_complete(PhaseGVN* phase);
 824 };
 825 
 826 //------------------------------AllocateArray---------------------------------
 827 //
 828 // High-level array allocation
 829 //
 830 class AllocateArrayNode : public AllocateNode {
 831 public:
 832   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 833                     Node* size, Node* klass_node, Node* initial_test,
 834                     Node* count_val
 835                     )
 836     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 837                    initial_test)
 838   {
 839     init_class_id(Class_AllocateArray);
 840     set_req(AllocateNode::ALength,        count_val);
 841   }
 842   virtual int Opcode() const;
 843   virtual uint size_of() const; // Size is bigger
 844   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 845 
 846   // Dig the length operand out of a array allocation site.
 847   Node* Ideal_length() {
 848     return in(AllocateNode::ALength);
 849   }
 850 
 851   // Dig the length operand out of a array allocation site and narrow the
 852   // type with a CastII, if necesssary
 853   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 854 
 855   // Pattern-match a possible usage of AllocateArrayNode.
 856   // Return null if no allocation is recognized.
 857   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 858     AllocateNode* allo = Ideal_allocation(ptr, phase);
 859     return (allo == NULL || !allo->is_AllocateArray())
 860            ? NULL : allo->as_AllocateArray();
 861   }
 862 };
 863 
 864 //------------------------------AbstractLockNode-----------------------------------
 865 class AbstractLockNode: public CallNode {
 866 private:
 867   enum {
 868     Regular = 0,  // Normal lock
 869     NonEscObj,    // Lock is used for non escaping object
 870     Coarsened,    // Lock was coarsened
 871     Nested        // Nested lock
 872   } _kind;
 873 #ifndef PRODUCT
 874   NamedCounter* _counter;
 875 #endif
 876 
 877 protected:
 878   // helper functions for lock elimination
 879   //
 880 
 881   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 882                             GrowableArray<AbstractLockNode*> &lock_ops);
 883   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 884                                        GrowableArray<AbstractLockNode*> &lock_ops);
 885   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 886                                GrowableArray<AbstractLockNode*> &lock_ops);
 887   LockNode *find_matching_lock(UnlockNode* unlock);
 888 
 889   // Update the counter to indicate that this lock was eliminated.
 890   void set_eliminated_lock_counter() PRODUCT_RETURN;
 891 
 892 public:
 893   AbstractLockNode(const TypeFunc *tf)
 894     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 895       _kind(Regular)
 896   {
 897 #ifndef PRODUCT
 898     _counter = NULL;
 899 #endif
 900   }
 901   virtual int Opcode() const = 0;
 902   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 903   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 904   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 905   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 906 
 907   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 908 
 909   virtual uint size_of() const { return sizeof(*this); }
 910 
 911   bool is_eliminated()  const { return (_kind != Regular); }
 912   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 913   bool is_coarsened()   const { return (_kind == Coarsened); }
 914   bool is_nested()      const { return (_kind == Nested); }
 915 
 916   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 917   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
 918   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
 919 
 920   // locking does not modify its arguments
 921   virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 922 
 923 #ifndef PRODUCT
 924   void create_lock_counter(JVMState* s);
 925   NamedCounter* counter() const { return _counter; }
 926 #endif
 927 };
 928 
 929 //------------------------------Lock---------------------------------------
 930 // High-level lock operation
 931 //
 932 // This is a subclass of CallNode because it is a macro node which gets expanded
 933 // into a code sequence containing a call.  This node takes 3 "parameters":
 934 //    0  -  object to lock
 935 //    1 -   a BoxLockNode
 936 //    2 -   a FastLockNode
 937 //
 938 class LockNode : public AbstractLockNode {
 939 public:
 940 
 941   static const TypeFunc *lock_type() {
 942     // create input type (domain)
 943     const Type **fields = TypeTuple::fields(3);
 944     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 945     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 946     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 947     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 948 
 949     // create result type (range)
 950     fields = TypeTuple::fields(0);
 951 
 952     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 953 
 954     return TypeFunc::make(domain,range);
 955   }
 956 
 957   virtual int Opcode() const;
 958   virtual uint size_of() const; // Size is bigger
 959   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 960     init_class_id(Class_Lock);
 961     init_flags(Flag_is_macro);
 962     C->add_macro_node(this);
 963   }
 964   virtual bool        guaranteed_safepoint()  { return false; }
 965 
 966   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 967   // Expansion modifies the JVMState, so we need to clone it
 968   virtual void  clone_jvms() {
 969     set_jvms(jvms()->clone_deep(Compile::current()));
 970   }
 971 
 972   bool is_nested_lock_region(); // Is this Lock nested?
 973 };
 974 
 975 //------------------------------Unlock---------------------------------------
 976 // High-level unlock operation
 977 class UnlockNode : public AbstractLockNode {
 978 public:
 979   virtual int Opcode() const;
 980   virtual uint size_of() const; // Size is bigger
 981   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 982     init_class_id(Class_Unlock);
 983     init_flags(Flag_is_macro);
 984     C->add_macro_node(this);
 985   }
 986   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 987   // unlock is never a safepoint
 988   virtual bool        guaranteed_safepoint()  { return false; }
 989 };
 990 
 991 #endif // SHARE_VM_OPTO_CALLNODE_HPP