1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/type.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 class Chaitin;
  40 class NamedCounter;
  41 class MultiNode;
  42 class  SafePointNode;
  43 class   CallNode;
  44 class     CallJavaNode;
  45 class       CallStaticJavaNode;
  46 class       CallDynamicJavaNode;
  47 class     CallRuntimeNode;
  48 class       CallLeafNode;
  49 class         CallLeafNoFPNode;
  50 class     AllocateNode;
  51 class       AllocateArrayNode;
  52 class     BoxLockNode;
  53 class     LockNode;
  54 class     UnlockNode;
  55 class JVMState;
  56 class OopMap;
  57 class State;
  58 class StartNode;
  59 class MachCallNode;
  60 class FastLockNode;
  61 
  62 //------------------------------StartNode--------------------------------------
  63 // The method start node
  64 class StartNode : public MultiNode {
  65   virtual uint cmp( const Node &n ) const;
  66   virtual uint size_of() const; // Size is bigger
  67 public:
  68   const TypeTuple *_domain;
  69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  70     init_class_id(Class_Start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Jave Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212 public:
 213   friend class Compile;
 214   friend class PreserveReexecuteState;
 215 
 216   // Because JVMState objects live over the entire lifetime of the
 217   // Compile object, they are allocated into the comp_arena, which
 218   // does not get resource marked or reset during the compile process
 219   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 220   void operator delete( void * ) { } // fast deallocation
 221 
 222   // Create a new JVMState, ready for abstract interpretation.
 223   JVMState(ciMethod* method, JVMState* caller);
 224   JVMState(int stack_size);  // root state; has a null method
 225 
 226   // Access functions for the JVM
 227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 229   uint              locoff() const { return _locoff; }
 230   uint              stkoff() const { return _stkoff; }
 231   uint              argoff() const { return _stkoff + _sp; }
 232   uint              monoff() const { return _monoff; }
 233   uint              scloff() const { return _scloff; }
 234   uint              endoff() const { return _endoff; }
 235   uint              oopoff() const { return debug_end(); }
 236 
 237   int            loc_size() const { return stkoff() - locoff(); }
 238   int            stk_size() const { return monoff() - stkoff(); }
 239   int            mon_size() const { return scloff() - monoff(); }
 240   int            scl_size() const { return endoff() - scloff(); }
 241 
 242   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 243   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 244   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 245   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 246 
 247   uint                      sp() const { return _sp; }
 248   int                      bci() const { return _bci; }
 249   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 250   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 251   bool              has_method() const { return _method != NULL; }
 252   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 253   JVMState*             caller() const { return _caller; }
 254   SafePointNode*           map() const { return _map; }
 255   uint                   depth() const { return _depth; }
 256   uint             debug_start() const; // returns locoff of root caller
 257   uint               debug_end() const; // returns endoff of self
 258   uint              debug_size() const {
 259     return loc_size() + sp() + mon_size() + scl_size();
 260   }
 261   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 262 
 263   // Returns the JVM state at the desired depth (1 == root).
 264   JVMState* of_depth(int d) const;
 265 
 266   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 267   bool same_calls_as(const JVMState* that) const;
 268 
 269   // Monitors (monitors are stored as (boxNode, objNode) pairs
 270   enum { logMonitorEdges = 1 };
 271   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 272   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 273   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 274   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 275   bool is_monitor_box(uint off)    const {
 276     assert(is_mon(off), "should be called only for monitor edge");
 277     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 278   }
 279   bool is_monitor_use(uint off)    const { return (is_mon(off)
 280                                                    && is_monitor_box(off))
 281                                              || (caller() && caller()->is_monitor_use(off)); }
 282 
 283   // Initialization functions for the JVM
 284   void              set_locoff(uint off) { _locoff = off; }
 285   void              set_stkoff(uint off) { _stkoff = off; }
 286   void              set_monoff(uint off) { _monoff = off; }
 287   void              set_scloff(uint off) { _scloff = off; }
 288   void              set_endoff(uint off) { _endoff = off; }
 289   void              set_offsets(uint off) {
 290     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 291   }
 292   void              set_map(SafePointNode *map) { _map = map; }
 293   void              set_sp(uint sp) { _sp = sp; }
 294                     // _reexecute is initialized to "undefined" for a new bci
 295   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 296   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 297 
 298   // Miscellaneous utility functions
 299   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 300   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 301   void      set_map_deep(SafePointNode *map);// reset map for caller chain
 302 
 303 #ifndef PRODUCT
 304   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 305   void      dump_spec(outputStream *st) const;
 306   void      dump_on(outputStream* st) const;
 307   void      dump() const {
 308     dump_on(tty);
 309   }
 310 #endif
 311 };
 312 
 313 //------------------------------SafePointNode----------------------------------
 314 // A SafePointNode is a subclass of a MultiNode for convenience (and
 315 // potential code sharing) only - conceptually it is independent of
 316 // the Node semantics.
 317 class SafePointNode : public MultiNode {
 318   virtual uint           cmp( const Node &n ) const;
 319   virtual uint           size_of() const;       // Size is bigger
 320 
 321 public:
 322   SafePointNode(uint edges, JVMState* jvms,
 323                 // A plain safepoint advertises no memory effects (NULL):
 324                 const TypePtr* adr_type = NULL)
 325     : MultiNode( edges ),
 326       _jvms(jvms),
 327       _oop_map(NULL),
 328       _adr_type(adr_type)
 329   {
 330     init_class_id(Class_SafePoint);
 331   }
 332 
 333   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 334   JVMState* const _jvms;      // Pointer to list of JVM State objects
 335   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 336 
 337   // Many calls take *all* of memory as input,
 338   // but some produce a limited subset of that memory as output.
 339   // The adr_type reports the call's behavior as a store, not a load.
 340 
 341   virtual JVMState* jvms() const { return _jvms; }
 342   void set_jvms(JVMState* s) {
 343     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 344   }
 345   OopMap *oop_map() const { return _oop_map; }
 346   void set_oop_map(OopMap *om) { _oop_map = om; }
 347 
 348  private:
 349   void verify_input(JVMState* jvms, uint idx) const {
 350     assert(verify_jvms(jvms), "jvms must match");
 351     Node* n = in(idx);
 352     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 353            in(idx + 1)->is_top(), "2nd half of long/double");
 354   }
 355 
 356  public:
 357   // Functionality from old debug nodes which has changed
 358   Node *local(JVMState* jvms, uint idx) const {
 359     verify_input(jvms, jvms->locoff() + idx);
 360     return in(jvms->locoff() + idx);
 361   }
 362   Node *stack(JVMState* jvms, uint idx) const {
 363     verify_input(jvms, jvms->stkoff() + idx);
 364     return in(jvms->stkoff() + idx);
 365   }
 366   Node *argument(JVMState* jvms, uint idx) const {
 367     verify_input(jvms, jvms->argoff() + idx);
 368     return in(jvms->argoff() + idx);
 369   }
 370   Node *monitor_box(JVMState* jvms, uint idx) const {
 371     assert(verify_jvms(jvms), "jvms must match");
 372     return in(jvms->monitor_box_offset(idx));
 373   }
 374   Node *monitor_obj(JVMState* jvms, uint idx) const {
 375     assert(verify_jvms(jvms), "jvms must match");
 376     return in(jvms->monitor_obj_offset(idx));
 377   }
 378 
 379   void  set_local(JVMState* jvms, uint idx, Node *c);
 380 
 381   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 382     assert(verify_jvms(jvms), "jvms must match");
 383     set_req(jvms->stkoff() + idx, c);
 384   }
 385   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 386     assert(verify_jvms(jvms), "jvms must match");
 387     set_req(jvms->argoff() + idx, c);
 388   }
 389   void ensure_stack(JVMState* jvms, uint stk_size) {
 390     assert(verify_jvms(jvms), "jvms must match");
 391     int grow_by = (int)stk_size - (int)jvms->stk_size();
 392     if (grow_by > 0)  grow_stack(jvms, grow_by);
 393   }
 394   void grow_stack(JVMState* jvms, uint grow_by);
 395   // Handle monitor stack
 396   void push_monitor( const FastLockNode *lock );
 397   void pop_monitor ();
 398   Node *peek_monitor_box() const;
 399   Node *peek_monitor_obj() const;
 400 
 401   // Access functions for the JVM
 402   Node *control  () const { return in(TypeFunc::Control  ); }
 403   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 404   Node *memory   () const { return in(TypeFunc::Memory   ); }
 405   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 406   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 407 
 408   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 409   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 410   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 411 
 412   MergeMemNode* merged_memory() const {
 413     return in(TypeFunc::Memory)->as_MergeMem();
 414   }
 415 
 416   // The parser marks useless maps as dead when it's done with them:
 417   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 418 
 419   // Exception states bubbling out of subgraphs such as inlined calls
 420   // are recorded here.  (There might be more than one, hence the "next".)
 421   // This feature is used only for safepoints which serve as "maps"
 422   // for JVM states during parsing, intrinsic expansion, etc.
 423   SafePointNode*         next_exception() const;
 424   void               set_next_exception(SafePointNode* n);
 425   bool                   has_exceptions() const { return next_exception() != NULL; }
 426 
 427   // Standard Node stuff
 428   virtual int            Opcode() const;
 429   virtual bool           pinned() const { return true; }
 430   virtual const Type    *Value( PhaseTransform *phase ) const;
 431   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 432   virtual const TypePtr *adr_type() const { return _adr_type; }
 433   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 434   virtual Node          *Identity( PhaseTransform *phase );
 435   virtual uint           ideal_reg() const { return 0; }
 436   virtual const RegMask &in_RegMask(uint) const;
 437   virtual const RegMask &out_RegMask() const;
 438   virtual uint           match_edge(uint idx) const;
 439 
 440   static  bool           needs_polling_address_input();
 441 
 442 #ifndef PRODUCT
 443   virtual void           dump_spec(outputStream *st) const;
 444 #endif
 445 };
 446 
 447 //------------------------------SafePointScalarObjectNode----------------------
 448 // A SafePointScalarObjectNode represents the state of a scalarized object
 449 // at a safepoint.
 450 
 451 class SafePointScalarObjectNode: public TypeNode {
 452   uint _first_index; // First input edge index of a SafePoint node where
 453                      // states of the scalarized object fields are collected.
 454   uint _n_fields;    // Number of non-static fields of the scalarized object.
 455   DEBUG_ONLY(AllocateNode* _alloc;)
 456 
 457   virtual uint hash() const ; // { return NO_HASH; }
 458   virtual uint cmp( const Node &n ) const;
 459 
 460 public:
 461   SafePointScalarObjectNode(const TypeOopPtr* tp,
 462 #ifdef ASSERT
 463                             AllocateNode* alloc,
 464 #endif
 465                             uint first_index, uint n_fields);
 466   virtual int Opcode() const;
 467   virtual uint           ideal_reg() const;
 468   virtual const RegMask &in_RegMask(uint) const;
 469   virtual const RegMask &out_RegMask() const;
 470   virtual uint           match_edge(uint idx) const;
 471 
 472   uint first_index() const { return _first_index; }
 473   uint n_fields()    const { return _n_fields; }
 474 
 475 #ifdef ASSERT
 476   AllocateNode* alloc() const { return _alloc; }
 477 #endif
 478 
 479   virtual uint size_of() const { return sizeof(*this); }
 480 
 481   // Assumes that "this" is an argument to a safepoint node "s", and that
 482   // "new_call" is being created to correspond to "s".  But the difference
 483   // between the start index of the jvmstates of "new_call" and "s" is
 484   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 485   // corresponds appropriately to "this" in "new_call".  Assumes that
 486   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 487   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 488   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 489 
 490 #ifndef PRODUCT
 491   virtual void              dump_spec(outputStream *st) const;
 492 #endif
 493 };
 494 
 495 
 496 // Simple container for the outgoing projections of a call.  Useful
 497 // for serious surgery on calls.
 498 class CallProjections : public StackObj {
 499 public:
 500   Node* fallthrough_proj;
 501   Node* fallthrough_catchproj;
 502   Node* fallthrough_memproj;
 503   Node* fallthrough_ioproj;
 504   Node* catchall_catchproj;
 505   Node* catchall_memproj;
 506   Node* catchall_ioproj;
 507   Node* resproj;
 508   Node* exobj;
 509 };
 510 
 511 class CallGenerator;
 512 
 513 //------------------------------CallNode---------------------------------------
 514 // Call nodes now subsume the function of debug nodes at callsites, so they
 515 // contain the functionality of a full scope chain of debug nodes.
 516 class CallNode : public SafePointNode {
 517   friend class VMStructs;
 518 public:
 519   const TypeFunc *_tf;        // Function type
 520   address      _entry_point;  // Address of method being called
 521   float        _cnt;          // Estimate of number of times called
 522   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 523 
 524   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 525     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 526       _tf(tf),
 527       _entry_point(addr),
 528       _cnt(COUNT_UNKNOWN),
 529       _generator(NULL)
 530   {
 531     init_class_id(Class_Call);
 532   }
 533 
 534   const TypeFunc* tf()         const { return _tf; }
 535   const address  entry_point() const { return _entry_point; }
 536   const float    cnt()         const { return _cnt; }
 537   CallGenerator* generator()   const { return _generator; }
 538 
 539   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 540   void set_entry_point(address p)       { _entry_point = p; }
 541   void set_cnt(float c)                 { _cnt = c; }
 542   void set_generator(CallGenerator* cg) { _generator = cg; }
 543 
 544   virtual const Type *bottom_type() const;
 545   virtual const Type *Value( PhaseTransform *phase ) const;
 546   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 547   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 548   virtual uint        cmp( const Node &n ) const;
 549   virtual uint        size_of() const = 0;
 550   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 551   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 552   virtual uint        ideal_reg() const { return NotAMachineReg; }
 553   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 554   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 555   virtual bool        guaranteed_safepoint()  { return true; }
 556   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 557   // the node the JVMState must be cloned.
 558   virtual void        clone_jvms(Compile* C) { }   // default is not to clone
 559 
 560   // Returns true if the call may modify n
 561   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
 562   // Does this node have a use of n other than in debug information?
 563   bool                has_non_debug_use(Node *n);
 564   // Returns the unique CheckCastPP of a call
 565   // or result projection is there are several CheckCastPP
 566   // or returns NULL if there is no one.
 567   Node *result_cast();
 568   // Does this node returns pointer?
 569   bool returns_pointer() const {
 570     const TypeTuple *r = tf()->range();
 571     return (r->cnt() > TypeFunc::Parms &&
 572             r->field_at(TypeFunc::Parms)->isa_ptr());
 573   }
 574 
 575   // Collect all the interesting edges from a call for use in
 576   // replacing the call by something else.  Used by macro expansion
 577   // and the late inlining support.
 578   void extract_projections(CallProjections* projs, bool separate_io_proj);
 579 
 580   virtual uint match_edge(uint idx) const;
 581 
 582 #ifndef PRODUCT
 583   virtual void        dump_req(outputStream *st = tty) const;
 584   virtual void        dump_spec(outputStream *st) const;
 585 #endif
 586 };
 587 
 588 
 589 //------------------------------CallJavaNode-----------------------------------
 590 // Make a static or dynamic subroutine call node using Java calling
 591 // convention.  (The "Java" calling convention is the compiler's calling
 592 // convention, as opposed to the interpreter's or that of native C.)
 593 class CallJavaNode : public CallNode {
 594   friend class VMStructs;
 595 protected:
 596   virtual uint cmp( const Node &n ) const;
 597   virtual uint size_of() const; // Size is bigger
 598 
 599   bool    _optimized_virtual;
 600   bool    _method_handle_invoke;
 601   ciMethod* _method;            // Method being direct called
 602 public:
 603   const int       _bci;         // Byte Code Index of call byte code
 604   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 605     : CallNode(tf, addr, TypePtr::BOTTOM),
 606       _method(method), _bci(bci),
 607       _optimized_virtual(false),
 608       _method_handle_invoke(false)
 609   {
 610     init_class_id(Class_CallJava);
 611   }
 612 
 613   virtual int   Opcode() const;
 614   ciMethod* method() const                { return _method; }
 615   void  set_method(ciMethod *m)           { _method = m; }
 616   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 617   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 618   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 619   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 620 
 621 #ifndef PRODUCT
 622   virtual void  dump_spec(outputStream *st) const;
 623 #endif
 624 };
 625 
 626 //------------------------------CallStaticJavaNode-----------------------------
 627 // Make a direct subroutine call using Java calling convention (for static
 628 // calls and optimized virtual calls, plus calls to wrappers for run-time
 629 // routines); generates static stub.
 630 class CallStaticJavaNode : public CallJavaNode {
 631   virtual uint cmp( const Node &n ) const;
 632   virtual uint size_of() const; // Size is bigger
 633 public:
 634   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
 635     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 636     init_class_id(Class_CallStaticJava);
 637     if (C->eliminate_autobox() && (method != NULL) && method->is_boxing_method()) {
 638       init_flags(Flag_is_macro);
 639       C->add_macro_node(this);
 640     }
 641     _is_scalar_replaceable = false;
 642     _is_non_escaping = false;
 643   }
 644   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 645                      const TypePtr* adr_type)
 646     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 647     init_class_id(Class_CallStaticJava);
 648     // This node calls a runtime stub, which often has narrow memory effects.
 649     _adr_type = adr_type;
 650     _is_scalar_replaceable = false;
 651     _is_non_escaping = false;
 652   }
 653   const char *_name;      // Runtime wrapper name
 654 
 655   // Result of Escape Analysis
 656   bool _is_scalar_replaceable;
 657   bool _is_non_escaping;
 658 
 659   // If this is an uncommon trap, return the request code, else zero.
 660   int uncommon_trap_request() const;
 661   static int extract_uncommon_trap_request(const Node* call);
 662 
 663   bool is_autoboxing() const {
 664     return is_macro() && (method() != NULL) && method()->is_boxing_method();
 665   }
 666   // Later inlining modifies the JVMState, so we need to clone it
 667   // when the call node is cloned (because it is macro node).
 668   virtual void  clone_jvms(Compile* C) {
 669     if ((jvms() != NULL) && is_autoboxing()) {
 670       set_jvms(jvms()->clone_deep(C));
 671       jvms()->set_map_deep(this);
 672     }
 673   }
 674 
 675   virtual int         Opcode() const;
 676 #ifndef PRODUCT
 677   virtual void        dump_spec(outputStream *st) const;
 678 #endif
 679 };
 680 
 681 //------------------------------CallDynamicJavaNode----------------------------
 682 // Make a dispatched call using Java calling convention.
 683 class CallDynamicJavaNode : public CallJavaNode {
 684   virtual uint cmp( const Node &n ) const;
 685   virtual uint size_of() const; // Size is bigger
 686 public:
 687   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 688     init_class_id(Class_CallDynamicJava);
 689   }
 690 
 691   int _vtable_index;
 692   virtual int   Opcode() const;
 693 #ifndef PRODUCT
 694   virtual void  dump_spec(outputStream *st) const;
 695 #endif
 696 };
 697 
 698 //------------------------------CallRuntimeNode--------------------------------
 699 // Make a direct subroutine call node into compiled C++ code.
 700 class CallRuntimeNode : public CallNode {
 701   virtual uint cmp( const Node &n ) const;
 702   virtual uint size_of() const; // Size is bigger
 703 public:
 704   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 705                   const TypePtr* adr_type)
 706     : CallNode(tf, addr, adr_type),
 707       _name(name)
 708   {
 709     init_class_id(Class_CallRuntime);
 710   }
 711 
 712   const char *_name;            // Printable name, if _method is NULL
 713   virtual int   Opcode() const;
 714   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 715 
 716 #ifndef PRODUCT
 717   virtual void  dump_spec(outputStream *st) const;
 718 #endif
 719 };
 720 
 721 //------------------------------CallLeafNode-----------------------------------
 722 // Make a direct subroutine call node into compiled C++ code, without
 723 // safepoints
 724 class CallLeafNode : public CallRuntimeNode {
 725 public:
 726   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 727                const TypePtr* adr_type)
 728     : CallRuntimeNode(tf, addr, name, adr_type)
 729   {
 730     init_class_id(Class_CallLeaf);
 731   }
 732   virtual int   Opcode() const;
 733   virtual bool        guaranteed_safepoint()  { return false; }
 734 #ifndef PRODUCT
 735   virtual void  dump_spec(outputStream *st) const;
 736 #endif
 737 };
 738 
 739 //------------------------------CallLeafNoFPNode-------------------------------
 740 // CallLeafNode, not using floating point or using it in the same manner as
 741 // the generated code
 742 class CallLeafNoFPNode : public CallLeafNode {
 743 public:
 744   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 745                    const TypePtr* adr_type)
 746     : CallLeafNode(tf, addr, name, adr_type)
 747   {
 748   }
 749   virtual int   Opcode() const;
 750 };
 751 
 752 
 753 //------------------------------Allocate---------------------------------------
 754 // High-level memory allocation
 755 //
 756 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 757 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 758 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 759 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 760 //  order to differentiate the uses of the projection on the normal control path from
 761 //  those on the exception return path.
 762 //
 763 class AllocateNode : public CallNode {
 764 public:
 765   enum {
 766     // Output:
 767     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 768     // Inputs:
 769     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 770     KlassNode,                        // type (maybe dynamic) of the obj.
 771     InitialTest,                      // slow-path test (may be constant)
 772     ALength,                          // array length (or TOP if none)
 773     ParmLimit
 774   };
 775 
 776   static const TypeFunc* alloc_type(const Type* t) {
 777     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 778     fields[AllocSize]   = TypeInt::POS;
 779     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 780     fields[InitialTest] = TypeInt::BOOL;
 781     fields[ALength]     = t;  // length (can be a bad length)
 782 
 783     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 784 
 785     // create result type (range)
 786     fields = TypeTuple::fields(1);
 787     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 788 
 789     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 790 
 791     return TypeFunc::make(domain, range);
 792   }
 793 
 794   // Result of Escape Analysis
 795   bool _is_scalar_replaceable;
 796   bool _is_non_escaping;
 797 
 798   virtual uint size_of() const; // Size is bigger
 799   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 800                Node *size, Node *klass_node, Node *initial_test);
 801   // Expansion modifies the JVMState, so we need to clone it
 802   virtual void  clone_jvms(Compile* C) {
 803     if (jvms() != NULL) {
 804       set_jvms(jvms()->clone_deep(C));
 805       jvms()->set_map_deep(this);
 806     }
 807   }
 808   virtual int Opcode() const;
 809   virtual uint ideal_reg() const { return Op_RegP; }
 810   virtual bool        guaranteed_safepoint()  { return false; }
 811 
 812   // allocations do not modify their arguments
 813   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
 814 
 815   // Pattern-match a possible usage of AllocateNode.
 816   // Return null if no allocation is recognized.
 817   // The operand is the pointer produced by the (possible) allocation.
 818   // It must be a projection of the Allocate or its subsequent CastPP.
 819   // (Note:  This function is defined in file graphKit.cpp, near
 820   // GraphKit::new_instance/new_array, whose output it recognizes.)
 821   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 822   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 823 
 824   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 825   // an offset, which is reported back to the caller.
 826   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 827   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 828                                         intptr_t& offset);
 829 
 830   // Dig the klass operand out of a (possible) allocation site.
 831   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 832     AllocateNode* allo = Ideal_allocation(ptr, phase);
 833     return (allo == NULL) ? NULL : allo->in(KlassNode);
 834   }
 835 
 836   // Conservatively small estimate of offset of first non-header byte.
 837   int minimum_header_size() {
 838     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 839                                 instanceOopDesc::base_offset_in_bytes();
 840   }
 841 
 842   // Return the corresponding initialization barrier (or null if none).
 843   // Walks out edges to find it...
 844   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 845   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 846   InitializeNode* initialization();
 847 
 848   // Convenience for initialization->maybe_set_complete(phase)
 849   bool maybe_set_complete(PhaseGVN* phase);
 850 };
 851 
 852 //------------------------------AllocateArray---------------------------------
 853 //
 854 // High-level array allocation
 855 //
 856 class AllocateArrayNode : public AllocateNode {
 857 public:
 858   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 859                     Node* size, Node* klass_node, Node* initial_test,
 860                     Node* count_val
 861                     )
 862     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 863                    initial_test)
 864   {
 865     init_class_id(Class_AllocateArray);
 866     set_req(AllocateNode::ALength,        count_val);
 867   }
 868   virtual int Opcode() const;
 869   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 870 
 871   // Dig the length operand out of a array allocation site.
 872   Node* Ideal_length() {
 873     return in(AllocateNode::ALength);
 874   }
 875 
 876   // Dig the length operand out of a array allocation site and narrow the
 877   // type with a CastII, if necesssary
 878   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 879 
 880   // Pattern-match a possible usage of AllocateArrayNode.
 881   // Return null if no allocation is recognized.
 882   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 883     AllocateNode* allo = Ideal_allocation(ptr, phase);
 884     return (allo == NULL || !allo->is_AllocateArray())
 885            ? NULL : allo->as_AllocateArray();
 886   }
 887 };
 888 
 889 //------------------------------AbstractLockNode-----------------------------------
 890 class AbstractLockNode: public CallNode {
 891 private:
 892   enum {
 893     Regular = 0,  // Normal lock
 894     NonEscObj,    // Lock is used for non escaping object
 895     Coarsened,    // Lock was coarsened
 896     Nested        // Nested lock
 897   } _kind;
 898 #ifndef PRODUCT
 899   NamedCounter* _counter;
 900 #endif
 901 
 902 protected:
 903   // helper functions for lock elimination
 904   //
 905 
 906   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 907                             GrowableArray<AbstractLockNode*> &lock_ops);
 908   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 909                                        GrowableArray<AbstractLockNode*> &lock_ops);
 910   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 911                                GrowableArray<AbstractLockNode*> &lock_ops);
 912   LockNode *find_matching_lock(UnlockNode* unlock);
 913 
 914   // Update the counter to indicate that this lock was eliminated.
 915   void set_eliminated_lock_counter() PRODUCT_RETURN;
 916 
 917 public:
 918   AbstractLockNode(const TypeFunc *tf)
 919     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 920       _kind(Regular)
 921   {
 922 #ifndef PRODUCT
 923     _counter = NULL;
 924 #endif
 925   }
 926   virtual int Opcode() const = 0;
 927   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 928   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 929   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 930   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 931 
 932   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 933 
 934   virtual uint size_of() const { return sizeof(*this); }
 935 
 936   bool is_eliminated()  const { return (_kind != Regular); }
 937   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 938   bool is_coarsened()   const { return (_kind == Coarsened); }
 939   bool is_nested()      const { return (_kind == Nested); }
 940 
 941   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 942   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
 943   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
 944 
 945   // locking does not modify its arguments
 946   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
 947 
 948 #ifndef PRODUCT
 949   void create_lock_counter(JVMState* s);
 950   NamedCounter* counter() const { return _counter; }
 951 #endif
 952 };
 953 
 954 //------------------------------Lock---------------------------------------
 955 // High-level lock operation
 956 //
 957 // This is a subclass of CallNode because it is a macro node which gets expanded
 958 // into a code sequence containing a call.  This node takes 3 "parameters":
 959 //    0  -  object to lock
 960 //    1 -   a BoxLockNode
 961 //    2 -   a FastLockNode
 962 //
 963 class LockNode : public AbstractLockNode {
 964 public:
 965 
 966   static const TypeFunc *lock_type() {
 967     // create input type (domain)
 968     const Type **fields = TypeTuple::fields(3);
 969     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 970     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 971     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 972     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 973 
 974     // create result type (range)
 975     fields = TypeTuple::fields(0);
 976 
 977     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 978 
 979     return TypeFunc::make(domain,range);
 980   }
 981 
 982   virtual int Opcode() const;
 983   virtual uint size_of() const; // Size is bigger
 984   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 985     init_class_id(Class_Lock);
 986     init_flags(Flag_is_macro);
 987     C->add_macro_node(this);
 988   }
 989   virtual bool        guaranteed_safepoint()  { return false; }
 990 
 991   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 992   // Expansion modifies the JVMState, so we need to clone it
 993   virtual void  clone_jvms(Compile* C) {
 994     if (jvms() != NULL) {
 995       set_jvms(jvms()->clone_deep(C));
 996       jvms()->set_map_deep(this);
 997     }
 998   }
 999 
1000   bool is_nested_lock_region(); // Is this Lock nested?
1001 };
1002 
1003 //------------------------------Unlock---------------------------------------
1004 // High-level unlock operation
1005 class UnlockNode : public AbstractLockNode {
1006 public:
1007   virtual int Opcode() const;
1008   virtual uint size_of() const; // Size is bigger
1009   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1010     init_class_id(Class_Unlock);
1011     init_flags(Flag_is_macro);
1012     C->add_macro_node(this);
1013   }
1014   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1015   // unlock is never a safepoint
1016   virtual bool        guaranteed_safepoint()  { return false; }
1017 };
1018 
1019 #endif // SHARE_VM_OPTO_CALLNODE_HPP