1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
 108   if (tinst == NULL || !tinst->is_known_instance_field())
 109     return mchain;  // don't try to optimize non-instance types
 110   uint instance_id = tinst->instance_id();
 111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 112   Node *prev = NULL;
 113   Node *result = mchain;
 114   while (prev != result) {
 115     prev = result;
 116     if (result == start_mem)
 117       break;  // hit one of our sentinels
 118     // skip over a call which does not affect this memory slice
 119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 120       Node *proj_in = result->in(0);
 121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 122         break;  // hit one of our sentinels
 123       } else if (proj_in->is_Call()) {
 124         CallNode *call = proj_in->as_Call();
 125         if (!call->may_modify(t_adr, phase)) {
 126           result = call->in(TypeFunc::Memory);
 127         }
 128       } else if (proj_in->is_Initialize()) {
 129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 130         // Stop if this is the initialization for the object instance which
 131         // which contains this memory slice, otherwise skip over it.
 132         if (alloc != NULL && alloc->_idx != instance_id) {
 133           result = proj_in->in(TypeFunc::Memory);
 134         }
 135       } else if (proj_in->is_MemBar()) {
 136         result = proj_in->in(TypeFunc::Memory);
 137       } else {
 138         assert(false, "unexpected projection");
 139       }
 140     } else if (result->is_ClearArray()) {
 141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
 142         // Can not bypass initialization of the instance
 143         // we are looking for.
 144         break;
 145       }
 146       // Otherwise skip it (the call updated 'result' value).
 147     } else if (result->is_MergeMem()) {
 148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 149     }
 150   }
 151   return result;
 152 }
 153 
 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 157   PhaseIterGVN *igvn = phase->is_IterGVN();
 158   Node *result = mchain;
 159   result = optimize_simple_memory_chain(result, t_adr, phase);
 160   if (is_instance && igvn != NULL  && result->is_Phi()) {
 161     PhiNode *mphi = result->as_Phi();
 162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 163     const TypePtr *t = mphi->adr_type();
 164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 166         t->is_oopptr()->cast_to_exactness(true)
 167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 169       // clone the Phi with our address type
 170       result = mphi->split_out_instance(t_adr, igvn);
 171     } else {
 172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 173     }
 174   }
 175   return result;
 176 }
 177 
 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 179   uint alias_idx = phase->C->get_alias_index(tp);
 180   Node *mem = mmem;
 181 #ifdef ASSERT
 182   {
 183     // Check that current type is consistent with the alias index used during graph construction
 184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 185     bool consistent =  adr_check == NULL || adr_check->empty() ||
 186                        phase->C->must_alias(adr_check, alias_idx );
 187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 194       // don't assert if it is dead code.
 195       consistent = true;
 196     }
 197     if( !consistent ) {
 198       st->print("alias_idx==%d, adr_check==", alias_idx);
 199       if( adr_check == NULL ) {
 200         st->print("NULL");
 201       } else {
 202         adr_check->dump();
 203       }
 204       st->cr();
 205       print_alias_types();
 206       assert(consistent, "adr_check must match alias idx");
 207     }
 208   }
 209 #endif
 210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 211   // means an array I have not precisely typed yet.  Do not do any
 212   // alias stuff with it any time soon.
 213   const TypeOopPtr *toop = tp->isa_oopptr();
 214   if( tp->base() != Type::AnyPtr &&
 215       !(toop &&
 216         toop->klass() != NULL &&
 217         toop->klass()->is_java_lang_Object() &&
 218         toop->offset() == Type::OffsetBot) ) {
 219     // compress paths and change unreachable cycles to TOP
 220     // If not, we can update the input infinitely along a MergeMem cycle
 221     // Equivalent code in PhiNode::Ideal
 222     Node* m  = phase->transform(mmem);
 223     // If transformed to a MergeMem, get the desired slice
 224     // Otherwise the returned node represents memory for every slice
 225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 226     // Update input if it is progress over what we have now
 227   }
 228   return mem;
 229 }
 230 
 231 //--------------------------Ideal_common---------------------------------------
 232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 233 // Unhook non-raw memories from complete (macro-expanded) initializations.
 234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 235   // If our control input is a dead region, kill all below the region
 236   Node *ctl = in(MemNode::Control);
 237   if (ctl && remove_dead_region(phase, can_reshape))
 238     return this;
 239   ctl = in(MemNode::Control);
 240   // Don't bother trying to transform a dead node
 241   if (ctl && ctl->is_top())  return NodeSentinel;
 242 
 243   PhaseIterGVN *igvn = phase->is_IterGVN();
 244   // Wait if control on the worklist.
 245   if (ctl && can_reshape && igvn != NULL) {
 246     Node* bol = NULL;
 247     Node* cmp = NULL;
 248     if (ctl->in(0)->is_If()) {
 249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 250       bol = ctl->in(0)->in(1);
 251       if (bol->is_Bool())
 252         cmp = ctl->in(0)->in(1)->in(1);
 253     }
 254     if (igvn->_worklist.member(ctl) ||
 255         (bol != NULL && igvn->_worklist.member(bol)) ||
 256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 257       // This control path may be dead.
 258       // Delay this memory node transformation until the control is processed.
 259       phase->is_IterGVN()->_worklist.push(this);
 260       return NodeSentinel; // caller will return NULL
 261     }
 262   }
 263   // Ignore if memory is dead, or self-loop
 264   Node *mem = in(MemNode::Memory);
 265   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 266   assert(mem != this, "dead loop in MemNode::Ideal");
 267 
 268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 269     // This memory slice may be dead.
 270     // Delay this mem node transformation until the memory is processed.
 271     phase->is_IterGVN()->_worklist.push(this);
 272     return NodeSentinel; // caller will return NULL
 273   }
 274 
 275   Node *address = in(MemNode::Address);
 276   const Type *t_adr = phase->type(address);
 277   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 278 
 279   if (can_reshape && igvn != NULL &&
 280       (igvn->_worklist.member(address) ||
 281        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 282     // The address's base and type may change when the address is processed.
 283     // Delay this mem node transformation until the address is processed.
 284     phase->is_IterGVN()->_worklist.push(this);
 285     return NodeSentinel; // caller will return NULL
 286   }
 287 
 288   // Do NOT remove or optimize the next lines: ensure a new alias index
 289   // is allocated for an oop pointer type before Escape Analysis.
 290   // Note: C++ will not remove it since the call has side effect.
 291   if (t_adr->isa_oopptr()) {
 292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 293   }
 294 
 295 #ifdef ASSERT
 296   Node* base = NULL;
 297   if (address->is_AddP())
 298     base = address->in(AddPNode::Base);
 299   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 300       !t_adr->isa_rawptr()) {
 301     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 302     Compile* C = phase->C;
 303     tty->cr();
 304     tty->print_cr("===== NULL+offs not RAW address =====");
 305     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
 306     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
 307     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
 308     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
 309     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
 310     tty->cr();
 311     base->dump(1);
 312     tty->cr();
 313     this->dump(2);
 314     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
 315     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
 316     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
 317     tty->cr();
 318   }
 319   assert(base == NULL || t_adr->isa_rawptr() ||
 320         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 321 #endif
 322 
 323   // Avoid independent memory operations
 324   Node* old_mem = mem;
 325 
 326   // The code which unhooks non-raw memories from complete (macro-expanded)
 327   // initializations was removed. After macro-expansion all stores catched
 328   // by Initialize node became raw stores and there is no information
 329   // which memory slices they modify. So it is unsafe to move any memory
 330   // operation above these stores. Also in most cases hooked non-raw memories
 331   // were already unhooked by using information from detect_ptr_independence()
 332   // and find_previous_store().
 333 
 334   if (mem->is_MergeMem()) {
 335     MergeMemNode* mmem = mem->as_MergeMem();
 336     const TypePtr *tp = t_adr->is_ptr();
 337 
 338     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 339   }
 340 
 341   if (mem != old_mem) {
 342     set_req(MemNode::Memory, mem);
 343     if (can_reshape && old_mem->outcnt() == 0) {
 344         igvn->_worklist.push(old_mem);
 345     }
 346     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 347     return this;
 348   }
 349 
 350   // let the subclass continue analyzing...
 351   return NULL;
 352 }
 353 
 354 // Helper function for proving some simple control dominations.
 355 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 356 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 357 // is not a constant (dominated by the method's StartNode).
 358 // Used by MemNode::find_previous_store to prove that the
 359 // control input of a memory operation predates (dominates)
 360 // an allocation it wants to look past.
 361 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 362   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 363     return false; // Conservative answer for dead code
 364 
 365   // Check 'dom'. Skip Proj and CatchProj nodes.
 366   dom = dom->find_exact_control(dom);
 367   if (dom == NULL || dom->is_top())
 368     return false; // Conservative answer for dead code
 369 
 370   if (dom == sub) {
 371     // For the case when, for example, 'sub' is Initialize and the original
 372     // 'dom' is Proj node of the 'sub'.
 373     return false;
 374   }
 375 
 376   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 377     return true;
 378 
 379   // 'dom' dominates 'sub' if its control edge and control edges
 380   // of all its inputs dominate or equal to sub's control edge.
 381 
 382   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 383   // Or Region for the check in LoadNode::Ideal();
 384   // 'sub' should have sub->in(0) != NULL.
 385   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 386          sub->is_Region(), "expecting only these nodes");
 387 
 388   // Get control edge of 'sub'.
 389   Node* orig_sub = sub;
 390   sub = sub->find_exact_control(sub->in(0));
 391   if (sub == NULL || sub->is_top())
 392     return false; // Conservative answer for dead code
 393 
 394   assert(sub->is_CFG(), "expecting control");
 395 
 396   if (sub == dom)
 397     return true;
 398 
 399   if (sub->is_Start() || sub->is_Root())
 400     return false;
 401 
 402   {
 403     // Check all control edges of 'dom'.
 404 
 405     ResourceMark rm;
 406     Arena* arena = Thread::current()->resource_area();
 407     Node_List nlist(arena);
 408     Unique_Node_List dom_list(arena);
 409 
 410     dom_list.push(dom);
 411     bool only_dominating_controls = false;
 412 
 413     for (uint next = 0; next < dom_list.size(); next++) {
 414       Node* n = dom_list.at(next);
 415       if (n == orig_sub)
 416         return false; // One of dom's inputs dominated by sub.
 417       if (!n->is_CFG() && n->pinned()) {
 418         // Check only own control edge for pinned non-control nodes.
 419         n = n->find_exact_control(n->in(0));
 420         if (n == NULL || n->is_top())
 421           return false; // Conservative answer for dead code
 422         assert(n->is_CFG(), "expecting control");
 423         dom_list.push(n);
 424       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 425         only_dominating_controls = true;
 426       } else if (n->is_CFG()) {
 427         if (n->dominates(sub, nlist))
 428           only_dominating_controls = true;
 429         else
 430           return false;
 431       } else {
 432         // First, own control edge.
 433         Node* m = n->find_exact_control(n->in(0));
 434         if (m != NULL) {
 435           if (m->is_top())
 436             return false; // Conservative answer for dead code
 437           dom_list.push(m);
 438         }
 439         // Now, the rest of edges.
 440         uint cnt = n->req();
 441         for (uint i = 1; i < cnt; i++) {
 442           m = n->find_exact_control(n->in(i));
 443           if (m == NULL || m->is_top())
 444             continue;
 445           dom_list.push(m);
 446         }
 447       }
 448     }
 449     return only_dominating_controls;
 450   }
 451 }
 452 
 453 //---------------------detect_ptr_independence---------------------------------
 454 // Used by MemNode::find_previous_store to prove that two base
 455 // pointers are never equal.
 456 // The pointers are accompanied by their associated allocations,
 457 // if any, which have been previously discovered by the caller.
 458 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 459                                       Node* p2, AllocateNode* a2,
 460                                       PhaseTransform* phase) {
 461   // Attempt to prove that these two pointers cannot be aliased.
 462   // They may both manifestly be allocations, and they should differ.
 463   // Or, if they are not both allocations, they can be distinct constants.
 464   // Otherwise, one is an allocation and the other a pre-existing value.
 465   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 466     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 467   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 468     return (a1 != a2);
 469   } else if (a1 != NULL) {                  // one allocation a1
 470     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 471     return all_controls_dominate(p2, a1);
 472   } else { //(a2 != NULL)                   // one allocation a2
 473     return all_controls_dominate(p1, a2);
 474   }
 475   return false;
 476 }
 477 
 478 
 479 // The logic for reordering loads and stores uses four steps:
 480 // (a) Walk carefully past stores and initializations which we
 481 //     can prove are independent of this load.
 482 // (b) Observe that the next memory state makes an exact match
 483 //     with self (load or store), and locate the relevant store.
 484 // (c) Ensure that, if we were to wire self directly to the store,
 485 //     the optimizer would fold it up somehow.
 486 // (d) Do the rewiring, and return, depending on some other part of
 487 //     the optimizer to fold up the load.
 488 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 489 // specific to loads and stores, so they are handled by the callers.
 490 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 491 //
 492 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 493   Node*         ctrl   = in(MemNode::Control);
 494   Node*         adr    = in(MemNode::Address);
 495   intptr_t      offset = 0;
 496   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 497   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 498 
 499   if (offset == Type::OffsetBot)
 500     return NULL;            // cannot unalias unless there are precise offsets
 501 
 502   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 503 
 504   intptr_t size_in_bytes = memory_size();
 505 
 506   Node* mem = in(MemNode::Memory);   // start searching here...
 507 
 508   int cnt = 50;             // Cycle limiter
 509   for (;;) {                // While we can dance past unrelated stores...
 510     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 511 
 512     if (mem->is_Store()) {
 513       Node* st_adr = mem->in(MemNode::Address);
 514       intptr_t st_offset = 0;
 515       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 516       if (st_base == NULL)
 517         break;              // inscrutable pointer
 518       if (st_offset != offset && st_offset != Type::OffsetBot) {
 519         const int MAX_STORE = BytesPerLong;
 520         if (st_offset >= offset + size_in_bytes ||
 521             st_offset <= offset - MAX_STORE ||
 522             st_offset <= offset - mem->as_Store()->memory_size()) {
 523           // Success:  The offsets are provably independent.
 524           // (You may ask, why not just test st_offset != offset and be done?
 525           // The answer is that stores of different sizes can co-exist
 526           // in the same sequence of RawMem effects.  We sometimes initialize
 527           // a whole 'tile' of array elements with a single jint or jlong.)
 528           mem = mem->in(MemNode::Memory);
 529           continue;           // (a) advance through independent store memory
 530         }
 531       }
 532       if (st_base != base &&
 533           detect_ptr_independence(base, alloc,
 534                                   st_base,
 535                                   AllocateNode::Ideal_allocation(st_base, phase),
 536                                   phase)) {
 537         // Success:  The bases are provably independent.
 538         mem = mem->in(MemNode::Memory);
 539         continue;           // (a) advance through independent store memory
 540       }
 541 
 542       // (b) At this point, if the bases or offsets do not agree, we lose,
 543       // since we have not managed to prove 'this' and 'mem' independent.
 544       if (st_base == base && st_offset == offset) {
 545         return mem;         // let caller handle steps (c), (d)
 546       }
 547 
 548     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 549       InitializeNode* st_init = mem->in(0)->as_Initialize();
 550       AllocateNode*  st_alloc = st_init->allocation();
 551       if (st_alloc == NULL)
 552         break;              // something degenerated
 553       bool known_identical = false;
 554       bool known_independent = false;
 555       if (alloc == st_alloc)
 556         known_identical = true;
 557       else if (alloc != NULL)
 558         known_independent = true;
 559       else if (all_controls_dominate(this, st_alloc))
 560         known_independent = true;
 561 
 562       if (known_independent) {
 563         // The bases are provably independent: Either they are
 564         // manifestly distinct allocations, or else the control
 565         // of this load dominates the store's allocation.
 566         int alias_idx = phase->C->get_alias_index(adr_type());
 567         if (alias_idx == Compile::AliasIdxRaw) {
 568           mem = st_alloc->in(TypeFunc::Memory);
 569         } else {
 570           mem = st_init->memory(alias_idx);
 571         }
 572         continue;           // (a) advance through independent store memory
 573       }
 574 
 575       // (b) at this point, if we are not looking at a store initializing
 576       // the same allocation we are loading from, we lose.
 577       if (known_identical) {
 578         // From caller, can_see_stored_value will consult find_captured_store.
 579         return mem;         // let caller handle steps (c), (d)
 580       }
 581 
 582     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 583       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 584       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 585         CallNode *call = mem->in(0)->as_Call();
 586         if (!call->may_modify(addr_t, phase)) {
 587           mem = call->in(TypeFunc::Memory);
 588           continue;         // (a) advance through independent call memory
 589         }
 590       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 591         mem = mem->in(0)->in(TypeFunc::Memory);
 592         continue;           // (a) advance through independent MemBar memory
 593       } else if (mem->is_ClearArray()) {
 594         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 595           // (the call updated 'mem' value)
 596           continue;         // (a) advance through independent allocation memory
 597         } else {
 598           // Can not bypass initialization of the instance
 599           // we are looking for.
 600           return mem;
 601         }
 602       } else if (mem->is_MergeMem()) {
 603         int alias_idx = phase->C->get_alias_index(adr_type());
 604         mem = mem->as_MergeMem()->memory_at(alias_idx);
 605         continue;           // (a) advance through independent MergeMem memory
 606       }
 607     }
 608 
 609     // Unless there is an explicit 'continue', we must bail out here,
 610     // because 'mem' is an inscrutable memory state (e.g., a call).
 611     break;
 612   }
 613 
 614   return NULL;              // bail out
 615 }
 616 
 617 //----------------------calculate_adr_type-------------------------------------
 618 // Helper function.  Notices when the given type of address hits top or bottom.
 619 // Also, asserts a cross-check of the type against the expected address type.
 620 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 621   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 622   #ifdef PRODUCT
 623   cross_check = NULL;
 624   #else
 625   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 626   #endif
 627   const TypePtr* tp = t->isa_ptr();
 628   if (tp == NULL) {
 629     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 630     return TypePtr::BOTTOM;           // touches lots of memory
 631   } else {
 632     #ifdef ASSERT
 633     // %%%% [phh] We don't check the alias index if cross_check is
 634     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 635     if (cross_check != NULL &&
 636         cross_check != TypePtr::BOTTOM &&
 637         cross_check != TypeRawPtr::BOTTOM) {
 638       // Recheck the alias index, to see if it has changed (due to a bug).
 639       Compile* C = Compile::current();
 640       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 641              "must stay in the original alias category");
 642       // The type of the address must be contained in the adr_type,
 643       // disregarding "null"-ness.
 644       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 645       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 646       assert(cross_check->meet(tp_notnull) == cross_check,
 647              "real address must not escape from expected memory type");
 648     }
 649     #endif
 650     return tp;
 651   }
 652 }
 653 
 654 //------------------------adr_phi_is_loop_invariant----------------------------
 655 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 656 // loop is loop invariant. Make a quick traversal of Phi and associated
 657 // CastPP nodes, looking to see if they are a closed group within the loop.
 658 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 659   // The idea is that the phi-nest must boil down to only CastPP nodes
 660   // with the same data. This implies that any path into the loop already
 661   // includes such a CastPP, and so the original cast, whatever its input,
 662   // must be covered by an equivalent cast, with an earlier control input.
 663   ResourceMark rm;
 664 
 665   // The loop entry input of the phi should be the unique dominating
 666   // node for every Phi/CastPP in the loop.
 667   Unique_Node_List closure;
 668   closure.push(adr_phi->in(LoopNode::EntryControl));
 669 
 670   // Add the phi node and the cast to the worklist.
 671   Unique_Node_List worklist;
 672   worklist.push(adr_phi);
 673   if( cast != NULL ){
 674     if( !cast->is_ConstraintCast() ) return false;
 675     worklist.push(cast);
 676   }
 677 
 678   // Begin recursive walk of phi nodes.
 679   while( worklist.size() ){
 680     // Take a node off the worklist
 681     Node *n = worklist.pop();
 682     if( !closure.member(n) ){
 683       // Add it to the closure.
 684       closure.push(n);
 685       // Make a sanity check to ensure we don't waste too much time here.
 686       if( closure.size() > 20) return false;
 687       // This node is OK if:
 688       //  - it is a cast of an identical value
 689       //  - or it is a phi node (then we add its inputs to the worklist)
 690       // Otherwise, the node is not OK, and we presume the cast is not invariant
 691       if( n->is_ConstraintCast() ){
 692         worklist.push(n->in(1));
 693       } else if( n->is_Phi() ) {
 694         for( uint i = 1; i < n->req(); i++ ) {
 695           worklist.push(n->in(i));
 696         }
 697       } else {
 698         return false;
 699       }
 700     }
 701   }
 702 
 703   // Quit when the worklist is empty, and we've found no offending nodes.
 704   return true;
 705 }
 706 
 707 //------------------------------Ideal_DU_postCCP-------------------------------
 708 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 709 // going away in this pass and we need to make this memory op depend on the
 710 // gating null check.
 711 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 712   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 713 }
 714 
 715 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 716 // some sense; we get to keep around the knowledge that an oop is not-null
 717 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 718 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 719 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 720 // some of the more trivial cases in the optimizer.  Removing more useless
 721 // Phi's started allowing Loads to illegally float above null checks.  I gave
 722 // up on this approach.  CNC 10/20/2000
 723 // This static method may be called not from MemNode (EncodePNode calls it).
 724 // Only the control edge of the node 'n' might be updated.
 725 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 726   Node *skipped_cast = NULL;
 727   // Need a null check?  Regular static accesses do not because they are
 728   // from constant addresses.  Array ops are gated by the range check (which
 729   // always includes a NULL check).  Just check field ops.
 730   if( n->in(MemNode::Control) == NULL ) {
 731     // Scan upwards for the highest location we can place this memory op.
 732     while( true ) {
 733       switch( adr->Opcode() ) {
 734 
 735       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 736         adr = adr->in(AddPNode::Base);
 737         continue;
 738 
 739       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 740       case Op_DecodeNKlass:
 741         adr = adr->in(1);
 742         continue;
 743 
 744       case Op_EncodeP:
 745       case Op_EncodePKlass:
 746         // EncodeP node's control edge could be set by this method
 747         // when EncodeP node depends on CastPP node.
 748         //
 749         // Use its control edge for memory op because EncodeP may go away
 750         // later when it is folded with following or preceding DecodeN node.
 751         if (adr->in(0) == NULL) {
 752           // Keep looking for cast nodes.
 753           adr = adr->in(1);
 754           continue;
 755         }
 756         ccp->hash_delete(n);
 757         n->set_req(MemNode::Control, adr->in(0));
 758         ccp->hash_insert(n);
 759         return n;
 760 
 761       case Op_CastPP:
 762         // If the CastPP is useless, just peek on through it.
 763         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 764           // Remember the cast that we've peeked though. If we peek
 765           // through more than one, then we end up remembering the highest
 766           // one, that is, if in a loop, the one closest to the top.
 767           skipped_cast = adr;
 768           adr = adr->in(1);
 769           continue;
 770         }
 771         // CastPP is going away in this pass!  We need this memory op to be
 772         // control-dependent on the test that is guarding the CastPP.
 773         ccp->hash_delete(n);
 774         n->set_req(MemNode::Control, adr->in(0));
 775         ccp->hash_insert(n);
 776         return n;
 777 
 778       case Op_Phi:
 779         // Attempt to float above a Phi to some dominating point.
 780         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 781           // If we've already peeked through a Cast (which could have set the
 782           // control), we can't float above a Phi, because the skipped Cast
 783           // may not be loop invariant.
 784           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 785             adr = adr->in(1);
 786             continue;
 787           }
 788         }
 789 
 790         // Intentional fallthrough!
 791 
 792         // No obvious dominating point.  The mem op is pinned below the Phi
 793         // by the Phi itself.  If the Phi goes away (no true value is merged)
 794         // then the mem op can float, but not indefinitely.  It must be pinned
 795         // behind the controls leading to the Phi.
 796       case Op_CheckCastPP:
 797         // These usually stick around to change address type, however a
 798         // useless one can be elided and we still need to pick up a control edge
 799         if (adr->in(0) == NULL) {
 800           // This CheckCastPP node has NO control and is likely useless. But we
 801           // need check further up the ancestor chain for a control input to keep
 802           // the node in place. 4959717.
 803           skipped_cast = adr;
 804           adr = adr->in(1);
 805           continue;
 806         }
 807         ccp->hash_delete(n);
 808         n->set_req(MemNode::Control, adr->in(0));
 809         ccp->hash_insert(n);
 810         return n;
 811 
 812         // List of "safe" opcodes; those that implicitly block the memory
 813         // op below any null check.
 814       case Op_CastX2P:          // no null checks on native pointers
 815       case Op_Parm:             // 'this' pointer is not null
 816       case Op_LoadP:            // Loading from within a klass
 817       case Op_LoadN:            // Loading from within a klass
 818       case Op_LoadKlass:        // Loading from within a klass
 819       case Op_LoadNKlass:       // Loading from within a klass
 820       case Op_ConP:             // Loading from a klass
 821       case Op_ConN:             // Loading from a klass
 822       case Op_ConNKlass:        // Loading from a klass
 823       case Op_CreateEx:         // Sucking up the guts of an exception oop
 824       case Op_Con:              // Reading from TLS
 825       case Op_CMoveP:           // CMoveP is pinned
 826       case Op_CMoveN:           // CMoveN is pinned
 827         break;                  // No progress
 828 
 829       case Op_Proj:             // Direct call to an allocation routine
 830       case Op_SCMemProj:        // Memory state from store conditional ops
 831 #ifdef ASSERT
 832         {
 833           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 834           const Node* call = adr->in(0);
 835           if (call->is_CallJava()) {
 836             const CallJavaNode* call_java = call->as_CallJava();
 837             const TypeTuple *r = call_java->tf()->range();
 838             assert(r->cnt() > TypeFunc::Parms, "must return value");
 839             const Type* ret_type = r->field_at(TypeFunc::Parms);
 840             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 841             // We further presume that this is one of
 842             // new_instance_Java, new_array_Java, or
 843             // the like, but do not assert for this.
 844           } else if (call->is_Allocate()) {
 845             // similar case to new_instance_Java, etc.
 846           } else if (!call->is_CallLeaf()) {
 847             // Projections from fetch_oop (OSR) are allowed as well.
 848             ShouldNotReachHere();
 849           }
 850         }
 851 #endif
 852         break;
 853       default:
 854         ShouldNotReachHere();
 855       }
 856       break;
 857     }
 858   }
 859 
 860   return  NULL;               // No progress
 861 }
 862 
 863 
 864 //=============================================================================
 865 uint LoadNode::size_of() const { return sizeof(*this); }
 866 uint LoadNode::cmp( const Node &n ) const
 867 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 868 const Type *LoadNode::bottom_type() const { return _type; }
 869 uint LoadNode::ideal_reg() const {
 870   return _type->ideal_reg();
 871 }
 872 
 873 #ifndef PRODUCT
 874 void LoadNode::dump_spec(outputStream *st) const {
 875   MemNode::dump_spec(st);
 876   if( !Verbose && !WizardMode ) {
 877     // standard dump does this in Verbose and WizardMode
 878     st->print(" #"); _type->dump_on(st);
 879   }
 880 }
 881 #endif
 882 
 883 #ifdef ASSERT
 884 //----------------------------is_immutable_value-------------------------------
 885 // Helper function to allow a raw load without control edge for some cases
 886 bool LoadNode::is_immutable_value(Node* adr) {
 887   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 888           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 889           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 890            in_bytes(JavaThread::osthread_offset())));
 891 }
 892 #endif
 893 
 894 //----------------------------LoadNode::make-----------------------------------
 895 // Polymorphic factory method:
 896 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 897   Compile* C = gvn.C;
 898 
 899   // sanity check the alias category against the created node type
 900   assert(!(adr_type->isa_oopptr() &&
 901            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 902          "use LoadKlassNode instead");
 903   assert(!(adr_type->isa_aryptr() &&
 904            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 905          "use LoadRangeNode instead");
 906   // Check control edge of raw loads
 907   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 908           // oop will be recorded in oop map if load crosses safepoint
 909           rt->isa_oopptr() || is_immutable_value(adr),
 910           "raw memory operations should have control edge");
 911   switch (bt) {
 912   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 913   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 914   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 915   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 916   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 917   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 918   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
 919   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
 920   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 921   case T_OBJECT:
 922 #ifdef _LP64
 923     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 924       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 925       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 926     } else
 927 #endif
 928     {
 929       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 930       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 931     }
 932   }
 933   ShouldNotReachHere();
 934   return (LoadNode*)NULL;
 935 }
 936 
 937 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 938   bool require_atomic = true;
 939   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 940 }
 941 
 942 
 943 
 944 
 945 //------------------------------hash-------------------------------------------
 946 uint LoadNode::hash() const {
 947   // unroll addition of interesting fields
 948   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 949 }
 950 
 951 //---------------------------can_see_stored_value------------------------------
 952 // This routine exists to make sure this set of tests is done the same
 953 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 954 // will change the graph shape in a way which makes memory alive twice at the
 955 // same time (uses the Oracle model of aliasing), then some
 956 // LoadXNode::Identity will fold things back to the equivalence-class model
 957 // of aliasing.
 958 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 959   Node* ld_adr = in(MemNode::Address);
 960 
 961   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 962   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 963   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 964       atp->field() != NULL && !atp->field()->is_volatile()) {
 965     uint alias_idx = atp->index();
 966     bool final = atp->field()->is_final();
 967     Node* result = NULL;
 968     Node* current = st;
 969     // Skip through chains of MemBarNodes checking the MergeMems for
 970     // new states for the slice of this load.  Stop once any other
 971     // kind of node is encountered.  Loads from final memory can skip
 972     // through any kind of MemBar but normal loads shouldn't skip
 973     // through MemBarAcquire since the could allow them to move out of
 974     // a synchronized region.
 975     while (current->is_Proj()) {
 976       int opc = current->in(0)->Opcode();
 977       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
 978           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
 979           opc == Op_MemBarReleaseLock) {
 980         Node* mem = current->in(0)->in(TypeFunc::Memory);
 981         if (mem->is_MergeMem()) {
 982           MergeMemNode* merge = mem->as_MergeMem();
 983           Node* new_st = merge->memory_at(alias_idx);
 984           if (new_st == merge->base_memory()) {
 985             // Keep searching
 986             current = merge->base_memory();
 987             continue;
 988           }
 989           // Save the new memory state for the slice and fall through
 990           // to exit.
 991           result = new_st;
 992         }
 993       }
 994       break;
 995     }
 996     if (result != NULL) {
 997       st = result;
 998     }
 999   }
1000 
1001 
1002   // Loop around twice in the case Load -> Initialize -> Store.
1003   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1004   for (int trip = 0; trip <= 1; trip++) {
1005 
1006     if (st->is_Store()) {
1007       Node* st_adr = st->in(MemNode::Address);
1008       if (!phase->eqv(st_adr, ld_adr)) {
1009         // Try harder before giving up...  Match raw and non-raw pointers.
1010         intptr_t st_off = 0;
1011         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1012         if (alloc == NULL)       return NULL;
1013         intptr_t ld_off = 0;
1014         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
1015         if (alloc != allo2)      return NULL;
1016         if (ld_off != st_off)    return NULL;
1017         // At this point we have proven something like this setup:
1018         //  A = Allocate(...)
1019         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1020         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1021         // (Actually, we haven't yet proven the Q's are the same.)
1022         // In other words, we are loading from a casted version of
1023         // the same pointer-and-offset that we stored to.
1024         // Thus, we are able to replace L by V.
1025       }
1026       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1027       if (store_Opcode() != st->Opcode())
1028         return NULL;
1029       return st->in(MemNode::ValueIn);
1030     }
1031 
1032     intptr_t offset = 0;  // scratch
1033 
1034     // A load from a freshly-created object always returns zero.
1035     // (This can happen after LoadNode::Ideal resets the load's memory input
1036     // to find_captured_store, which returned InitializeNode::zero_memory.)
1037     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1038         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
1039         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
1040       // return a zero value for the load's basic type
1041       // (This is one of the few places where a generic PhaseTransform
1042       // can create new nodes.  Think of it as lazily manifesting
1043       // virtually pre-existing constants.)
1044       return phase->zerocon(memory_type());
1045     }
1046 
1047     // A load from an initialization barrier can match a captured store.
1048     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1049       InitializeNode* init = st->in(0)->as_Initialize();
1050       AllocateNode* alloc = init->allocation();
1051       if (alloc != NULL &&
1052           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
1053         // examine a captured store value
1054         st = init->find_captured_store(offset, memory_size(), phase);
1055         if (st != NULL)
1056           continue;             // take one more trip around
1057       }
1058     }
1059 
1060     break;
1061   }
1062 
1063   return NULL;
1064 }
1065 
1066 //----------------------is_instance_field_load_with_local_phi------------------
1067 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1068   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
1069       in(MemNode::Address)->is_AddP() ) {
1070     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
1071     // Only instances.
1072     if( t_oop != NULL && t_oop->is_known_instance_field() &&
1073         t_oop->offset() != Type::OffsetBot &&
1074         t_oop->offset() != Type::OffsetTop) {
1075       return true;
1076     }
1077   }
1078   return false;
1079 }
1080 
1081 //------------------------------Identity---------------------------------------
1082 // Loads are identity if previous store is to same address
1083 Node *LoadNode::Identity( PhaseTransform *phase ) {
1084   // If the previous store-maker is the right kind of Store, and the store is
1085   // to the same address, then we are equal to the value stored.
1086   Node* mem = in(MemNode::Memory);
1087   Node* value = can_see_stored_value(mem, phase);
1088   if( value ) {
1089     // byte, short & char stores truncate naturally.
1090     // A load has to load the truncated value which requires
1091     // some sort of masking operation and that requires an
1092     // Ideal call instead of an Identity call.
1093     if (memory_size() < BytesPerInt) {
1094       // If the input to the store does not fit with the load's result type,
1095       // it must be truncated via an Ideal call.
1096       if (!phase->type(value)->higher_equal(phase->type(this)))
1097         return this;
1098     }
1099     // (This works even when value is a Con, but LoadNode::Value
1100     // usually runs first, producing the singleton type of the Con.)
1101     return value;
1102   }
1103 
1104   // Search for an existing data phi which was generated before for the same
1105   // instance's field to avoid infinite generation of phis in a loop.
1106   Node *region = mem->in(0);
1107   if (is_instance_field_load_with_local_phi(region)) {
1108     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1109     int this_index  = phase->C->get_alias_index(addr_t);
1110     int this_offset = addr_t->offset();
1111     int this_id    = addr_t->is_oopptr()->instance_id();
1112     const Type* this_type = bottom_type();
1113     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1114       Node* phi = region->fast_out(i);
1115       if (phi->is_Phi() && phi != mem &&
1116           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1117         return phi;
1118       }
1119     }
1120   }
1121 
1122   return this;
1123 }
1124 
1125 
1126 // Returns true if the AliasType refers to the field that holds the
1127 // cached box array.  Currently only handles the IntegerCache case.
1128 static bool is_autobox_cache(Compile::AliasType* atp) {
1129   if (atp != NULL && atp->field() != NULL) {
1130     ciField* field = atp->field();
1131     ciSymbol* klass = field->holder()->name();
1132     if (field->name() == ciSymbol::cache_field_name() &&
1133         field->holder()->uses_default_loader() &&
1134         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1135       return true;
1136     }
1137   }
1138   return false;
1139 }
1140 
1141 // Fetch the base value in the autobox array
1142 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1143   if (atp != NULL && atp->field() != NULL) {
1144     ciField* field = atp->field();
1145     ciSymbol* klass = field->holder()->name();
1146     if (field->name() == ciSymbol::cache_field_name() &&
1147         field->holder()->uses_default_loader() &&
1148         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1149       assert(field->is_constant(), "what?");
1150       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1151       // Fetch the box object at the base of the array and get its value
1152       ciInstance* box = array->obj_at(0)->as_instance();
1153       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1154       if (ik->nof_nonstatic_fields() == 1) {
1155         // This should be true nonstatic_field_at requires calling
1156         // nof_nonstatic_fields so check it anyway
1157         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1158         cache_offset = c.as_int();
1159       }
1160       return true;
1161     }
1162   }
1163   return false;
1164 }
1165 
1166 // Returns true if the AliasType refers to the value field of an
1167 // autobox object.  Currently only handles Integer.
1168 static bool is_autobox_object(Compile::AliasType* atp) {
1169   if (atp != NULL && atp->field() != NULL) {
1170     ciField* field = atp->field();
1171     ciSymbol* klass = field->holder()->name();
1172     if (field->name() == ciSymbol::value_name() &&
1173         field->holder()->uses_default_loader() &&
1174         klass == ciSymbol::java_lang_Integer()) {
1175       return true;
1176     }
1177   }
1178   return false;
1179 }
1180 
1181 
1182 // We're loading from an object which has autobox behaviour.
1183 // If this object is result of a valueOf call we'll have a phi
1184 // merging a newly allocated object and a load from the cache.
1185 // We want to replace this load with the original incoming
1186 // argument to the valueOf call.
1187 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1188   Node* base = in(Address)->in(AddPNode::Base);
1189   if (base->is_Phi() && base->req() == 3) {
1190     AllocateNode* allocation = NULL;
1191     int allocation_index = -1;
1192     int load_index = -1;
1193     for (uint i = 1; i < base->req(); i++) {
1194       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1195       if (allocation != NULL) {
1196         allocation_index = i;
1197         load_index = 3 - allocation_index;
1198         break;
1199       }
1200     }
1201     bool has_load = ( allocation != NULL &&
1202                       (base->in(load_index)->is_Load() ||
1203                        base->in(load_index)->is_DecodeN() &&
1204                        base->in(load_index)->in(1)->is_Load()) );
1205     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1206       // Push the loads from the phi that comes from valueOf up
1207       // through it to allow elimination of the loads and the recovery
1208       // of the original value.
1209       Node* mem_phi = in(Memory);
1210       Node* offset = in(Address)->in(AddPNode::Offset);
1211       Node* region = base->in(0);
1212 
1213       Node* in1 = clone();
1214       Node* in1_addr = in1->in(Address)->clone();
1215       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1216       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1217       in1_addr->set_req(AddPNode::Offset, offset);
1218       in1->set_req(0, region->in(allocation_index));
1219       in1->set_req(Address, in1_addr);
1220       in1->set_req(Memory, mem_phi->in(allocation_index));
1221 
1222       Node* in2 = clone();
1223       Node* in2_addr = in2->in(Address)->clone();
1224       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1225       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1226       in2_addr->set_req(AddPNode::Offset, offset);
1227       in2->set_req(0, region->in(load_index));
1228       in2->set_req(Address, in2_addr);
1229       in2->set_req(Memory, mem_phi->in(load_index));
1230 
1231       in1_addr = phase->transform(in1_addr);
1232       in1 =      phase->transform(in1);
1233       in2_addr = phase->transform(in2_addr);
1234       in2 =      phase->transform(in2);
1235 
1236       PhiNode* result = PhiNode::make_blank(region, this);
1237       result->set_req(allocation_index, in1);
1238       result->set_req(load_index, in2);
1239       return result;
1240     }
1241   } else if (base->is_Load() ||
1242              base->is_DecodeN() && base->in(1)->is_Load()) {
1243     if (base->is_DecodeN()) {
1244       // Get LoadN node which loads cached Integer object
1245       base = base->in(1);
1246     }
1247     // Eliminate the load of Integer.value for integers from the cache
1248     // array by deriving the value from the index into the array.
1249     // Capture the offset of the load and then reverse the computation.
1250     Node* load_base = base->in(Address)->in(AddPNode::Base);
1251     if (load_base->is_DecodeN()) {
1252       // Get LoadN node which loads IntegerCache.cache field
1253       load_base = load_base->in(1);
1254     }
1255     if (load_base != NULL) {
1256       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1257       intptr_t cache_offset;
1258       int shift = -1;
1259       Node* cache = NULL;
1260       if (is_autobox_cache(atp)) {
1261         shift  = exact_log2(type2aelembytes(T_OBJECT));
1262         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1263       }
1264       if (cache != NULL && base->in(Address)->is_AddP()) {
1265         Node* elements[4];
1266         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1267         int cache_low;
1268         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1269           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1270           // Add up all the offsets making of the address of the load
1271           Node* result = elements[0];
1272           for (int i = 1; i < count; i++) {
1273             result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1274           }
1275           // Remove the constant offset from the address and then
1276           // remove the scaling of the offset to recover the original index.
1277           result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
1278           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1279             // Peel the shift off directly but wrap it in a dummy node
1280             // since Ideal can't return existing nodes
1281             result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1282           } else {
1283             result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1284           }
1285 #ifdef _LP64
1286           result = new (phase->C) ConvL2INode(phase->transform(result));
1287 #endif
1288           return result;
1289         }
1290       }
1291     }
1292   }
1293   return NULL;
1294 }
1295 
1296 //------------------------------split_through_phi------------------------------
1297 // Split instance field load through Phi.
1298 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1299   Node* mem     = in(MemNode::Memory);
1300   Node* address = in(MemNode::Address);
1301   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1302   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1303 
1304   assert(mem->is_Phi() && (t_oop != NULL) &&
1305          t_oop->is_known_instance_field(), "invalide conditions");
1306 
1307   Node *region = mem->in(0);
1308   if (region == NULL) {
1309     return NULL; // Wait stable graph
1310   }
1311   uint cnt = mem->req();
1312   for (uint i = 1; i < cnt; i++) {
1313     Node* rc = region->in(i);
1314     if (rc == NULL || phase->type(rc) == Type::TOP)
1315       return NULL; // Wait stable graph
1316     Node *in = mem->in(i);
1317     if (in == NULL) {
1318       return NULL; // Wait stable graph
1319     }
1320   }
1321   // Check for loop invariant.
1322   if (cnt == 3) {
1323     for (uint i = 1; i < cnt; i++) {
1324       Node *in = mem->in(i);
1325       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1326       if (m == mem) {
1327         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1328         return this;
1329       }
1330     }
1331   }
1332   // Split through Phi (see original code in loopopts.cpp).
1333   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1334 
1335   // Do nothing here if Identity will find a value
1336   // (to avoid infinite chain of value phis generation).
1337   if (!phase->eqv(this, this->Identity(phase)))
1338     return NULL;
1339 
1340   // Skip the split if the region dominates some control edge of the address.
1341   if (!MemNode::all_controls_dominate(address, region))
1342     return NULL;
1343 
1344   const Type* this_type = this->bottom_type();
1345   int this_index  = phase->C->get_alias_index(addr_t);
1346   int this_offset = addr_t->offset();
1347   int this_iid    = addr_t->is_oopptr()->instance_id();
1348   PhaseIterGVN *igvn = phase->is_IterGVN();
1349   Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1350   for (uint i = 1; i < region->req(); i++) {
1351     Node *x;
1352     Node* the_clone = NULL;
1353     if (region->in(i) == phase->C->top()) {
1354       x = phase->C->top();      // Dead path?  Use a dead data op
1355     } else {
1356       x = this->clone();        // Else clone up the data op
1357       the_clone = x;            // Remember for possible deletion.
1358       // Alter data node to use pre-phi inputs
1359       if (this->in(0) == region) {
1360         x->set_req(0, region->in(i));
1361       } else {
1362         x->set_req(0, NULL);
1363       }
1364       for (uint j = 1; j < this->req(); j++) {
1365         Node *in = this->in(j);
1366         if (in->is_Phi() && in->in(0) == region)
1367           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
1368       }
1369     }
1370     // Check for a 'win' on some paths
1371     const Type *t = x->Value(igvn);
1372 
1373     bool singleton = t->singleton();
1374 
1375     // See comments in PhaseIdealLoop::split_thru_phi().
1376     if (singleton && t == Type::TOP) {
1377       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1378     }
1379 
1380     if (singleton) {
1381       x = igvn->makecon(t);
1382     } else {
1383       // We now call Identity to try to simplify the cloned node.
1384       // Note that some Identity methods call phase->type(this).
1385       // Make sure that the type array is big enough for
1386       // our new node, even though we may throw the node away.
1387       // (This tweaking with igvn only works because x is a new node.)
1388       igvn->set_type(x, t);
1389       // If x is a TypeNode, capture any more-precise type permanently into Node
1390       // otherwise it will be not updated during igvn->transform since
1391       // igvn->type(x) is set to x->Value() already.
1392       x->raise_bottom_type(t);
1393       Node *y = x->Identity(igvn);
1394       if (y != x) {
1395         x = y;
1396       } else {
1397         y = igvn->hash_find(x);
1398         if (y) {
1399           x = y;
1400         } else {
1401           // Else x is a new node we are keeping
1402           // We do not need register_new_node_with_optimizer
1403           // because set_type has already been called.
1404           igvn->_worklist.push(x);
1405         }
1406       }
1407     }
1408     if (x != the_clone && the_clone != NULL)
1409       igvn->remove_dead_node(the_clone);
1410     phi->set_req(i, x);
1411   }
1412   // Record Phi
1413   igvn->register_new_node_with_optimizer(phi);
1414   return phi;
1415 }
1416 
1417 //------------------------------Ideal------------------------------------------
1418 // If the load is from Field memory and the pointer is non-null, we can
1419 // zero out the control input.
1420 // If the offset is constant and the base is an object allocation,
1421 // try to hook me up to the exact initializing store.
1422 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1423   Node* p = MemNode::Ideal_common(phase, can_reshape);
1424   if (p)  return (p == NodeSentinel) ? NULL : p;
1425 
1426   Node* ctrl    = in(MemNode::Control);
1427   Node* address = in(MemNode::Address);
1428 
1429   // Skip up past a SafePoint control.  Cannot do this for Stores because
1430   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1431   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1432       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1433     ctrl = ctrl->in(0);
1434     set_req(MemNode::Control,ctrl);
1435   }
1436 
1437   intptr_t ignore = 0;
1438   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1439   if (base != NULL
1440       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1441     // Check for useless control edge in some common special cases
1442     if (in(MemNode::Control) != NULL
1443         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1444         && all_controls_dominate(base, phase->C->start())) {
1445       // A method-invariant, non-null address (constant or 'this' argument).
1446       set_req(MemNode::Control, NULL);
1447     }
1448 
1449     if (EliminateAutoBox && can_reshape) {
1450       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1451       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1452       if (is_autobox_object(atp)) {
1453         Node* result = eliminate_autobox(phase);
1454         if (result != NULL) return result;
1455       }
1456     }
1457   }
1458 
1459   Node* mem = in(MemNode::Memory);
1460   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1461 
1462   if (addr_t != NULL) {
1463     // try to optimize our memory input
1464     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1465     if (opt_mem != mem) {
1466       set_req(MemNode::Memory, opt_mem);
1467       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1468       return this;
1469     }
1470     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1471     if (can_reshape && opt_mem->is_Phi() &&
1472         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1473       PhaseIterGVN *igvn = phase->is_IterGVN();
1474       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1475         // Delay this transformation until memory Phi is processed.
1476         phase->is_IterGVN()->_worklist.push(this);
1477         return NULL;
1478       }
1479       // Split instance field load through Phi.
1480       Node* result = split_through_phi(phase);
1481       if (result != NULL) return result;
1482     }
1483   }
1484 
1485   // Check for prior store with a different base or offset; make Load
1486   // independent.  Skip through any number of them.  Bail out if the stores
1487   // are in an endless dead cycle and report no progress.  This is a key
1488   // transform for Reflection.  However, if after skipping through the Stores
1489   // we can't then fold up against a prior store do NOT do the transform as
1490   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1491   // array memory alive twice: once for the hoisted Load and again after the
1492   // bypassed Store.  This situation only works if EVERYBODY who does
1493   // anti-dependence work knows how to bypass.  I.e. we need all
1494   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1495   // the alias index stuff.  So instead, peek through Stores and IFF we can
1496   // fold up, do so.
1497   Node* prev_mem = find_previous_store(phase);
1498   // Steps (a), (b):  Walk past independent stores to find an exact match.
1499   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1500     // (c) See if we can fold up on the spot, but don't fold up here.
1501     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1502     // just return a prior value, which is done by Identity calls.
1503     if (can_see_stored_value(prev_mem, phase)) {
1504       // Make ready for step (d):
1505       set_req(MemNode::Memory, prev_mem);
1506       return this;
1507     }
1508   }
1509 
1510   return NULL;                  // No further progress
1511 }
1512 
1513 // Helper to recognize certain Klass fields which are invariant across
1514 // some group of array types (e.g., int[] or all T[] where T < Object).
1515 const Type*
1516 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1517                                  ciKlass* klass) const {
1518   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1519     // The field is Klass::_modifier_flags.  Return its (constant) value.
1520     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1521     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1522     return TypeInt::make(klass->modifier_flags());
1523   }
1524   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1525     // The field is Klass::_access_flags.  Return its (constant) value.
1526     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1527     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1528     return TypeInt::make(klass->access_flags());
1529   }
1530   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1531     // The field is Klass::_layout_helper.  Return its constant value if known.
1532     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1533     return TypeInt::make(klass->layout_helper());
1534   }
1535 
1536   // No match.
1537   return NULL;
1538 }
1539 
1540 //------------------------------Value-----------------------------------------
1541 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1542   // Either input is TOP ==> the result is TOP
1543   Node* mem = in(MemNode::Memory);
1544   const Type *t1 = phase->type(mem);
1545   if (t1 == Type::TOP)  return Type::TOP;
1546   Node* adr = in(MemNode::Address);
1547   const TypePtr* tp = phase->type(adr)->isa_ptr();
1548   if (tp == NULL || tp->empty())  return Type::TOP;
1549   int off = tp->offset();
1550   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1551   Compile* C = phase->C;
1552 
1553   // Try to guess loaded type from pointer type
1554   if (tp->base() == Type::AryPtr) {
1555     const Type *t = tp->is_aryptr()->elem();
1556     // Don't do this for integer types. There is only potential profit if
1557     // the element type t is lower than _type; that is, for int types, if _type is
1558     // more restrictive than t.  This only happens here if one is short and the other
1559     // char (both 16 bits), and in those cases we've made an intentional decision
1560     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1561     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1562     //
1563     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1564     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1565     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1566     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1567     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1568     // In fact, that could have been the original type of p1, and p1 could have
1569     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1570     // expression (LShiftL quux 3) independently optimized to the constant 8.
1571     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1572         && (_type->isa_vect() == NULL)
1573         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1574       // t might actually be lower than _type, if _type is a unique
1575       // concrete subclass of abstract class t.
1576       // Make sure the reference is not into the header, by comparing
1577       // the offset against the offset of the start of the array's data.
1578       // Different array types begin at slightly different offsets (12 vs. 16).
1579       // We choose T_BYTE as an example base type that is least restrictive
1580       // as to alignment, which will therefore produce the smallest
1581       // possible base offset.
1582       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1583       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1584         const Type* jt = t->join(_type);
1585         // In any case, do not allow the join, per se, to empty out the type.
1586         if (jt->empty() && !t->empty()) {
1587           // This can happen if a interface-typed array narrows to a class type.
1588           jt = _type;
1589         }
1590 
1591         if (EliminateAutoBox && adr->is_AddP()) {
1592           // The pointers in the autobox arrays are always non-null
1593           Node* base = adr->in(AddPNode::Base);
1594           if (base != NULL &&
1595               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1596             Compile::AliasType* atp = C->alias_type(base->adr_type());
1597             if (is_autobox_cache(atp)) {
1598               return jt->join(TypePtr::NOTNULL)->is_ptr();
1599             }
1600           }
1601         }
1602         return jt;
1603       }
1604     }
1605   } else if (tp->base() == Type::InstPtr) {
1606     ciEnv* env = C->env();
1607     const TypeInstPtr* tinst = tp->is_instptr();
1608     ciKlass* klass = tinst->klass();
1609     assert( off != Type::OffsetBot ||
1610             // arrays can be cast to Objects
1611             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1612             // unsafe field access may not have a constant offset
1613             C->has_unsafe_access(),
1614             "Field accesses must be precise" );
1615     // For oop loads, we expect the _type to be precise
1616     if (klass == env->String_klass() &&
1617         adr->is_AddP() && off != Type::OffsetBot) {
1618       // For constant Strings treat the final fields as compile time constants.
1619       Node* base = adr->in(AddPNode::Base);
1620       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1621       if (t != NULL && t->singleton()) {
1622         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1623         if (field != NULL && field->is_final()) {
1624           ciObject* string = t->const_oop();
1625           ciConstant constant = string->as_instance()->field_value(field);
1626           if (constant.basic_type() == T_INT) {
1627             return TypeInt::make(constant.as_int());
1628           } else if (constant.basic_type() == T_ARRAY) {
1629             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1630               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1631             } else {
1632               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1633             }
1634           }
1635         }
1636       }
1637     }
1638     // Optimizations for constant objects
1639     ciObject* const_oop = tinst->const_oop();
1640     if (const_oop != NULL) {
1641       // For constant CallSites treat the target field as a compile time constant.
1642       if (const_oop->is_call_site()) {
1643         ciCallSite* call_site = const_oop->as_call_site();
1644         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1645         if (field != NULL && field->is_call_site_target()) {
1646           ciMethodHandle* target = call_site->get_target();
1647           if (target != NULL) {  // just in case
1648             ciConstant constant(T_OBJECT, target);
1649             const Type* t;
1650             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1651               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1652             } else {
1653               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1654             }
1655             // Add a dependence for invalidation of the optimization.
1656             if (!call_site->is_constant_call_site()) {
1657               C->dependencies()->assert_call_site_target_value(call_site, target);
1658             }
1659             return t;
1660           }
1661         }
1662       }
1663     }
1664   } else if (tp->base() == Type::KlassPtr) {
1665     assert( off != Type::OffsetBot ||
1666             // arrays can be cast to Objects
1667             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1668             // also allow array-loading from the primary supertype
1669             // array during subtype checks
1670             Opcode() == Op_LoadKlass,
1671             "Field accesses must be precise" );
1672     // For klass/static loads, we expect the _type to be precise
1673   }
1674 
1675   const TypeKlassPtr *tkls = tp->isa_klassptr();
1676   if (tkls != NULL && !StressReflectiveCode) {
1677     ciKlass* klass = tkls->klass();
1678     if (klass->is_loaded() && tkls->klass_is_exact()) {
1679       // We are loading a field from a Klass metaobject whose identity
1680       // is known at compile time (the type is "exact" or "precise").
1681       // Check for fields we know are maintained as constants by the VM.
1682       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1683         // The field is Klass::_super_check_offset.  Return its (constant) value.
1684         // (Folds up type checking code.)
1685         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1686         return TypeInt::make(klass->super_check_offset());
1687       }
1688       // Compute index into primary_supers array
1689       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1690       // Check for overflowing; use unsigned compare to handle the negative case.
1691       if( depth < ciKlass::primary_super_limit() ) {
1692         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1693         // (Folds up type checking code.)
1694         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1695         ciKlass *ss = klass->super_of_depth(depth);
1696         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1697       }
1698       const Type* aift = load_array_final_field(tkls, klass);
1699       if (aift != NULL)  return aift;
1700       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1701           && klass->is_array_klass()) {
1702         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1703         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1704         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1705         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1706       }
1707       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1708         // The field is Klass::_java_mirror.  Return its (constant) value.
1709         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1710         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1711         return TypeInstPtr::make(klass->java_mirror());
1712       }
1713     }
1714 
1715     // We can still check if we are loading from the primary_supers array at a
1716     // shallow enough depth.  Even though the klass is not exact, entries less
1717     // than or equal to its super depth are correct.
1718     if (klass->is_loaded() ) {
1719       ciType *inner = klass;
1720       while( inner->is_obj_array_klass() )
1721         inner = inner->as_obj_array_klass()->base_element_type();
1722       if( inner->is_instance_klass() &&
1723           !inner->as_instance_klass()->flags().is_interface() ) {
1724         // Compute index into primary_supers array
1725         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1726         // Check for overflowing; use unsigned compare to handle the negative case.
1727         if( depth < ciKlass::primary_super_limit() &&
1728             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1729           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1730           // (Folds up type checking code.)
1731           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1732           ciKlass *ss = klass->super_of_depth(depth);
1733           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1734         }
1735       }
1736     }
1737 
1738     // If the type is enough to determine that the thing is not an array,
1739     // we can give the layout_helper a positive interval type.
1740     // This will help short-circuit some reflective code.
1741     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1742         && !klass->is_array_klass() // not directly typed as an array
1743         && !klass->is_interface()  // specifically not Serializable & Cloneable
1744         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1745         ) {
1746       // Note:  When interfaces are reliable, we can narrow the interface
1747       // test to (klass != Serializable && klass != Cloneable).
1748       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1749       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1750       // The key property of this type is that it folds up tests
1751       // for array-ness, since it proves that the layout_helper is positive.
1752       // Thus, a generic value like the basic object layout helper works fine.
1753       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1754     }
1755   }
1756 
1757   // If we are loading from a freshly-allocated object, produce a zero,
1758   // if the load is provably beyond the header of the object.
1759   // (Also allow a variable load from a fresh array to produce zero.)
1760   const TypeOopPtr *tinst = tp->isa_oopptr();
1761   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1762   if (ReduceFieldZeroing || is_instance) {
1763     Node* value = can_see_stored_value(mem,phase);
1764     if (value != NULL && value->is_Con()) {
1765       assert(value->bottom_type()->higher_equal(_type),"sanity");
1766       return value->bottom_type();
1767     }
1768   }
1769 
1770   if (is_instance) {
1771     // If we have an instance type and our memory input is the
1772     // programs's initial memory state, there is no matching store,
1773     // so just return a zero of the appropriate type
1774     Node *mem = in(MemNode::Memory);
1775     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1776       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1777       return Type::get_zero_type(_type->basic_type());
1778     }
1779   }
1780   return _type;
1781 }
1782 
1783 //------------------------------match_edge-------------------------------------
1784 // Do we Match on this edge index or not?  Match only the address.
1785 uint LoadNode::match_edge(uint idx) const {
1786   return idx == MemNode::Address;
1787 }
1788 
1789 //--------------------------LoadBNode::Ideal--------------------------------------
1790 //
1791 //  If the previous store is to the same address as this load,
1792 //  and the value stored was larger than a byte, replace this load
1793 //  with the value stored truncated to a byte.  If no truncation is
1794 //  needed, the replacement is done in LoadNode::Identity().
1795 //
1796 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1797   Node* mem = in(MemNode::Memory);
1798   Node* value = can_see_stored_value(mem,phase);
1799   if( value && !phase->type(value)->higher_equal( _type ) ) {
1800     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1801     return new (phase->C) RShiftINode(result, phase->intcon(24));
1802   }
1803   // Identity call will handle the case where truncation is not needed.
1804   return LoadNode::Ideal(phase, can_reshape);
1805 }
1806 
1807 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1808   Node* mem = in(MemNode::Memory);
1809   Node* value = can_see_stored_value(mem,phase);
1810   if (value != NULL && value->is_Con() &&
1811       !value->bottom_type()->higher_equal(_type)) {
1812     // If the input to the store does not fit with the load's result type,
1813     // it must be truncated. We can't delay until Ideal call since
1814     // a singleton Value is needed for split_thru_phi optimization.
1815     int con = value->get_int();
1816     return TypeInt::make((con << 24) >> 24);
1817   }
1818   return LoadNode::Value(phase);
1819 }
1820 
1821 //--------------------------LoadUBNode::Ideal-------------------------------------
1822 //
1823 //  If the previous store is to the same address as this load,
1824 //  and the value stored was larger than a byte, replace this load
1825 //  with the value stored truncated to a byte.  If no truncation is
1826 //  needed, the replacement is done in LoadNode::Identity().
1827 //
1828 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1829   Node* mem = in(MemNode::Memory);
1830   Node* value = can_see_stored_value(mem, phase);
1831   if (value && !phase->type(value)->higher_equal(_type))
1832     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1833   // Identity call will handle the case where truncation is not needed.
1834   return LoadNode::Ideal(phase, can_reshape);
1835 }
1836 
1837 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1838   Node* mem = in(MemNode::Memory);
1839   Node* value = can_see_stored_value(mem,phase);
1840   if (value != NULL && value->is_Con() &&
1841       !value->bottom_type()->higher_equal(_type)) {
1842     // If the input to the store does not fit with the load's result type,
1843     // it must be truncated. We can't delay until Ideal call since
1844     // a singleton Value is needed for split_thru_phi optimization.
1845     int con = value->get_int();
1846     return TypeInt::make(con & 0xFF);
1847   }
1848   return LoadNode::Value(phase);
1849 }
1850 
1851 //--------------------------LoadUSNode::Ideal-------------------------------------
1852 //
1853 //  If the previous store is to the same address as this load,
1854 //  and the value stored was larger than a char, replace this load
1855 //  with the value stored truncated to a char.  If no truncation is
1856 //  needed, the replacement is done in LoadNode::Identity().
1857 //
1858 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1859   Node* mem = in(MemNode::Memory);
1860   Node* value = can_see_stored_value(mem,phase);
1861   if( value && !phase->type(value)->higher_equal( _type ) )
1862     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1863   // Identity call will handle the case where truncation is not needed.
1864   return LoadNode::Ideal(phase, can_reshape);
1865 }
1866 
1867 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1868   Node* mem = in(MemNode::Memory);
1869   Node* value = can_see_stored_value(mem,phase);
1870   if (value != NULL && value->is_Con() &&
1871       !value->bottom_type()->higher_equal(_type)) {
1872     // If the input to the store does not fit with the load's result type,
1873     // it must be truncated. We can't delay until Ideal call since
1874     // a singleton Value is needed for split_thru_phi optimization.
1875     int con = value->get_int();
1876     return TypeInt::make(con & 0xFFFF);
1877   }
1878   return LoadNode::Value(phase);
1879 }
1880 
1881 //--------------------------LoadSNode::Ideal--------------------------------------
1882 //
1883 //  If the previous store is to the same address as this load,
1884 //  and the value stored was larger than a short, replace this load
1885 //  with the value stored truncated to a short.  If no truncation is
1886 //  needed, the replacement is done in LoadNode::Identity().
1887 //
1888 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1889   Node* mem = in(MemNode::Memory);
1890   Node* value = can_see_stored_value(mem,phase);
1891   if( value && !phase->type(value)->higher_equal( _type ) ) {
1892     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1893     return new (phase->C) RShiftINode(result, phase->intcon(16));
1894   }
1895   // Identity call will handle the case where truncation is not needed.
1896   return LoadNode::Ideal(phase, can_reshape);
1897 }
1898 
1899 const Type* LoadSNode::Value(PhaseTransform *phase) const {
1900   Node* mem = in(MemNode::Memory);
1901   Node* value = can_see_stored_value(mem,phase);
1902   if (value != NULL && value->is_Con() &&
1903       !value->bottom_type()->higher_equal(_type)) {
1904     // If the input to the store does not fit with the load's result type,
1905     // it must be truncated. We can't delay until Ideal call since
1906     // a singleton Value is needed for split_thru_phi optimization.
1907     int con = value->get_int();
1908     return TypeInt::make((con << 16) >> 16);
1909   }
1910   return LoadNode::Value(phase);
1911 }
1912 
1913 //=============================================================================
1914 //----------------------------LoadKlassNode::make------------------------------
1915 // Polymorphic factory method:
1916 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1917   Compile* C = gvn.C;
1918   Node *ctl = NULL;
1919   // sanity check the alias category against the created node type
1920   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
1921   assert(adr_type != NULL, "expecting TypeKlassPtr");
1922 #ifdef _LP64
1923   if (adr_type->is_ptr_to_narrowklass()) {
1924     assert(UseCompressedKlassPointers, "no compressed klasses");
1925     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
1926     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
1927   }
1928 #endif
1929   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1930   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
1931 }
1932 
1933 //------------------------------Value------------------------------------------
1934 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1935   return klass_value_common(phase);
1936 }
1937 
1938 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1939   // Either input is TOP ==> the result is TOP
1940   const Type *t1 = phase->type( in(MemNode::Memory) );
1941   if (t1 == Type::TOP)  return Type::TOP;
1942   Node *adr = in(MemNode::Address);
1943   const Type *t2 = phase->type( adr );
1944   if (t2 == Type::TOP)  return Type::TOP;
1945   const TypePtr *tp = t2->is_ptr();
1946   if (TypePtr::above_centerline(tp->ptr()) ||
1947       tp->ptr() == TypePtr::Null)  return Type::TOP;
1948 
1949   // Return a more precise klass, if possible
1950   const TypeInstPtr *tinst = tp->isa_instptr();
1951   if (tinst != NULL) {
1952     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1953     int offset = tinst->offset();
1954     if (ik == phase->C->env()->Class_klass()
1955         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1956             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1957       // We are loading a special hidden field from a Class mirror object,
1958       // the field which points to the VM's Klass metaobject.
1959       ciType* t = tinst->java_mirror_type();
1960       // java_mirror_type returns non-null for compile-time Class constants.
1961       if (t != NULL) {
1962         // constant oop => constant klass
1963         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1964           return TypeKlassPtr::make(ciArrayKlass::make(t));
1965         }
1966         if (!t->is_klass()) {
1967           // a primitive Class (e.g., int.class) has NULL for a klass field
1968           return TypePtr::NULL_PTR;
1969         }
1970         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1971         return TypeKlassPtr::make(t->as_klass());
1972       }
1973       // non-constant mirror, so we can't tell what's going on
1974     }
1975     if( !ik->is_loaded() )
1976       return _type;             // Bail out if not loaded
1977     if (offset == oopDesc::klass_offset_in_bytes()) {
1978       if (tinst->klass_is_exact()) {
1979         return TypeKlassPtr::make(ik);
1980       }
1981       // See if we can become precise: no subklasses and no interface
1982       // (Note:  We need to support verified interfaces.)
1983       if (!ik->is_interface() && !ik->has_subklass()) {
1984         //assert(!UseExactTypes, "this code should be useless with exact types");
1985         // Add a dependence; if any subclass added we need to recompile
1986         if (!ik->is_final()) {
1987           // %%% should use stronger assert_unique_concrete_subtype instead
1988           phase->C->dependencies()->assert_leaf_type(ik);
1989         }
1990         // Return precise klass
1991         return TypeKlassPtr::make(ik);
1992       }
1993 
1994       // Return root of possible klass
1995       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1996     }
1997   }
1998 
1999   // Check for loading klass from an array
2000   const TypeAryPtr *tary = tp->isa_aryptr();
2001   if( tary != NULL ) {
2002     ciKlass *tary_klass = tary->klass();
2003     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2004         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2005       if (tary->klass_is_exact()) {
2006         return TypeKlassPtr::make(tary_klass);
2007       }
2008       ciArrayKlass *ak = tary->klass()->as_array_klass();
2009       // If the klass is an object array, we defer the question to the
2010       // array component klass.
2011       if( ak->is_obj_array_klass() ) {
2012         assert( ak->is_loaded(), "" );
2013         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2014         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2015           ciInstanceKlass* ik = base_k->as_instance_klass();
2016           // See if we can become precise: no subklasses and no interface
2017           if (!ik->is_interface() && !ik->has_subklass()) {
2018             //assert(!UseExactTypes, "this code should be useless with exact types");
2019             // Add a dependence; if any subclass added we need to recompile
2020             if (!ik->is_final()) {
2021               phase->C->dependencies()->assert_leaf_type(ik);
2022             }
2023             // Return precise array klass
2024             return TypeKlassPtr::make(ak);
2025           }
2026         }
2027         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2028       } else {                  // Found a type-array?
2029         //assert(!UseExactTypes, "this code should be useless with exact types");
2030         assert( ak->is_type_array_klass(), "" );
2031         return TypeKlassPtr::make(ak); // These are always precise
2032       }
2033     }
2034   }
2035 
2036   // Check for loading klass from an array klass
2037   const TypeKlassPtr *tkls = tp->isa_klassptr();
2038   if (tkls != NULL && !StressReflectiveCode) {
2039     ciKlass* klass = tkls->klass();
2040     if( !klass->is_loaded() )
2041       return _type;             // Bail out if not loaded
2042     if( klass->is_obj_array_klass() &&
2043         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2044       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2045       // // Always returning precise element type is incorrect,
2046       // // e.g., element type could be object and array may contain strings
2047       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2048 
2049       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2050       // according to the element type's subclassing.
2051       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2052     }
2053     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2054         tkls->offset() == in_bytes(Klass::super_offset())) {
2055       ciKlass* sup = klass->as_instance_klass()->super();
2056       // The field is Klass::_super.  Return its (constant) value.
2057       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2058       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2059     }
2060   }
2061 
2062   // Bailout case
2063   return LoadNode::Value(phase);
2064 }
2065 
2066 //------------------------------Identity---------------------------------------
2067 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2068 // Also feed through the klass in Allocate(...klass...)._klass.
2069 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2070   return klass_identity_common(phase);
2071 }
2072 
2073 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2074   Node* x = LoadNode::Identity(phase);
2075   if (x != this)  return x;
2076 
2077   // Take apart the address into an oop and and offset.
2078   // Return 'this' if we cannot.
2079   Node*    adr    = in(MemNode::Address);
2080   intptr_t offset = 0;
2081   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2082   if (base == NULL)     return this;
2083   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2084   if (toop == NULL)     return this;
2085 
2086   // We can fetch the klass directly through an AllocateNode.
2087   // This works even if the klass is not constant (clone or newArray).
2088   if (offset == oopDesc::klass_offset_in_bytes()) {
2089     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2090     if (allocated_klass != NULL) {
2091       return allocated_klass;
2092     }
2093   }
2094 
2095   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2096   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2097   // See inline_native_Class_query for occurrences of these patterns.
2098   // Java Example:  x.getClass().isAssignableFrom(y)
2099   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2100   //
2101   // This improves reflective code, often making the Class
2102   // mirror go completely dead.  (Current exception:  Class
2103   // mirrors may appear in debug info, but we could clean them out by
2104   // introducing a new debug info operator for Klass*.java_mirror).
2105   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2106       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2107           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2108     // We are loading a special hidden field from a Class mirror,
2109     // the field which points to its Klass or ArrayKlass metaobject.
2110     if (base->is_Load()) {
2111       Node* adr2 = base->in(MemNode::Address);
2112       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2113       if (tkls != NULL && !tkls->empty()
2114           && (tkls->klass()->is_instance_klass() ||
2115               tkls->klass()->is_array_klass())
2116           && adr2->is_AddP()
2117           ) {
2118         int mirror_field = in_bytes(Klass::java_mirror_offset());
2119         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2120           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2121         }
2122         if (tkls->offset() == mirror_field) {
2123           return adr2->in(AddPNode::Base);
2124         }
2125       }
2126     }
2127   }
2128 
2129   return this;
2130 }
2131 
2132 
2133 //------------------------------Value------------------------------------------
2134 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2135   const Type *t = klass_value_common(phase);
2136   if (t == Type::TOP)
2137     return t;
2138 
2139   return t->make_narrowklass();
2140 }
2141 
2142 //------------------------------Identity---------------------------------------
2143 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2144 // Also feed through the klass in Allocate(...klass...)._klass.
2145 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2146   Node *x = klass_identity_common(phase);
2147 
2148   const Type *t = phase->type( x );
2149   if( t == Type::TOP ) return x;
2150   if( t->isa_narrowklass()) return x;
2151   assert (!t->isa_narrowoop(), "no narrow oop here");
2152 
2153   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2154 }
2155 
2156 //------------------------------Value-----------------------------------------
2157 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2158   // Either input is TOP ==> the result is TOP
2159   const Type *t1 = phase->type( in(MemNode::Memory) );
2160   if( t1 == Type::TOP ) return Type::TOP;
2161   Node *adr = in(MemNode::Address);
2162   const Type *t2 = phase->type( adr );
2163   if( t2 == Type::TOP ) return Type::TOP;
2164   const TypePtr *tp = t2->is_ptr();
2165   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2166   const TypeAryPtr *tap = tp->isa_aryptr();
2167   if( !tap ) return _type;
2168   return tap->size();
2169 }
2170 
2171 //-------------------------------Ideal---------------------------------------
2172 // Feed through the length in AllocateArray(...length...)._length.
2173 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2174   Node* p = MemNode::Ideal_common(phase, can_reshape);
2175   if (p)  return (p == NodeSentinel) ? NULL : p;
2176 
2177   // Take apart the address into an oop and and offset.
2178   // Return 'this' if we cannot.
2179   Node*    adr    = in(MemNode::Address);
2180   intptr_t offset = 0;
2181   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2182   if (base == NULL)     return NULL;
2183   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2184   if (tary == NULL)     return NULL;
2185 
2186   // We can fetch the length directly through an AllocateArrayNode.
2187   // This works even if the length is not constant (clone or newArray).
2188   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2189     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2190     if (alloc != NULL) {
2191       Node* allocated_length = alloc->Ideal_length();
2192       Node* len = alloc->make_ideal_length(tary, phase);
2193       if (allocated_length != len) {
2194         // New CastII improves on this.
2195         return len;
2196       }
2197     }
2198   }
2199 
2200   return NULL;
2201 }
2202 
2203 //------------------------------Identity---------------------------------------
2204 // Feed through the length in AllocateArray(...length...)._length.
2205 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2206   Node* x = LoadINode::Identity(phase);
2207   if (x != this)  return x;
2208 
2209   // Take apart the address into an oop and and offset.
2210   // Return 'this' if we cannot.
2211   Node*    adr    = in(MemNode::Address);
2212   intptr_t offset = 0;
2213   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2214   if (base == NULL)     return this;
2215   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2216   if (tary == NULL)     return this;
2217 
2218   // We can fetch the length directly through an AllocateArrayNode.
2219   // This works even if the length is not constant (clone or newArray).
2220   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2221     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2222     if (alloc != NULL) {
2223       Node* allocated_length = alloc->Ideal_length();
2224       // Do not allow make_ideal_length to allocate a CastII node.
2225       Node* len = alloc->make_ideal_length(tary, phase, false);
2226       if (allocated_length == len) {
2227         // Return allocated_length only if it would not be improved by a CastII.
2228         return allocated_length;
2229       }
2230     }
2231   }
2232 
2233   return this;
2234 
2235 }
2236 
2237 //=============================================================================
2238 //---------------------------StoreNode::make-----------------------------------
2239 // Polymorphic factory method:
2240 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2241   Compile* C = gvn.C;
2242   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2243           ctl != NULL, "raw memory operations should have control edge");
2244 
2245   switch (bt) {
2246   case T_BOOLEAN:
2247   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
2248   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
2249   case T_CHAR:
2250   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
2251   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
2252   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
2253   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
2254   case T_METADATA:
2255   case T_ADDRESS:
2256   case T_OBJECT:
2257 #ifdef _LP64
2258     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2259       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2260       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
2261     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2262                (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
2263                 adr->bottom_type()->isa_rawptr())) {
2264       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2265       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
2266     }
2267 #endif
2268     {
2269       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
2270     }
2271   }
2272   ShouldNotReachHere();
2273   return (StoreNode*)NULL;
2274 }
2275 
2276 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2277   bool require_atomic = true;
2278   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2279 }
2280 
2281 
2282 //--------------------------bottom_type----------------------------------------
2283 const Type *StoreNode::bottom_type() const {
2284   return Type::MEMORY;
2285 }
2286 
2287 //------------------------------hash-------------------------------------------
2288 uint StoreNode::hash() const {
2289   // unroll addition of interesting fields
2290   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2291 
2292   // Since they are not commoned, do not hash them:
2293   return NO_HASH;
2294 }
2295 
2296 //------------------------------Ideal------------------------------------------
2297 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2298 // When a store immediately follows a relevant allocation/initialization,
2299 // try to capture it into the initialization, or hoist it above.
2300 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2301   Node* p = MemNode::Ideal_common(phase, can_reshape);
2302   if (p)  return (p == NodeSentinel) ? NULL : p;
2303 
2304   Node* mem     = in(MemNode::Memory);
2305   Node* address = in(MemNode::Address);
2306 
2307   // Back-to-back stores to same address?  Fold em up.  Generally
2308   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2309   // since they must follow each StoreP operation.  Redundant StoreCMs
2310   // are eliminated just before matching in final_graph_reshape.
2311   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2312       mem->Opcode() != Op_StoreCM) {
2313     // Looking at a dead closed cycle of memory?
2314     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2315 
2316     assert(Opcode() == mem->Opcode() ||
2317            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2318            "no mismatched stores, except on raw memory");
2319 
2320     if (mem->outcnt() == 1 &&           // check for intervening uses
2321         mem->as_Store()->memory_size() <= this->memory_size()) {
2322       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2323       // For example, 'mem' might be the final state at a conditional return.
2324       // Or, 'mem' might be used by some node which is live at the same time
2325       // 'this' is live, which might be unschedulable.  So, require exactly
2326       // ONE user, the 'this' store, until such time as we clone 'mem' for
2327       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2328       if (can_reshape) {  // (%%% is this an anachronism?)
2329         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2330                   phase->is_IterGVN());
2331       } else {
2332         // It's OK to do this in the parser, since DU info is always accurate,
2333         // and the parser always refers to nodes via SafePointNode maps.
2334         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2335       }
2336       return this;
2337     }
2338   }
2339 
2340   // Capture an unaliased, unconditional, simple store into an initializer.
2341   // Or, if it is independent of the allocation, hoist it above the allocation.
2342   if (ReduceFieldZeroing && /*can_reshape &&*/
2343       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2344     InitializeNode* init = mem->in(0)->as_Initialize();
2345     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2346     if (offset > 0) {
2347       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2348       // If the InitializeNode captured me, it made a raw copy of me,
2349       // and I need to disappear.
2350       if (moved != NULL) {
2351         // %%% hack to ensure that Ideal returns a new node:
2352         mem = MergeMemNode::make(phase->C, mem);
2353         return mem;             // fold me away
2354       }
2355     }
2356   }
2357 
2358   return NULL;                  // No further progress
2359 }
2360 
2361 //------------------------------Value-----------------------------------------
2362 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2363   // Either input is TOP ==> the result is TOP
2364   const Type *t1 = phase->type( in(MemNode::Memory) );
2365   if( t1 == Type::TOP ) return Type::TOP;
2366   const Type *t2 = phase->type( in(MemNode::Address) );
2367   if( t2 == Type::TOP ) return Type::TOP;
2368   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2369   if( t3 == Type::TOP ) return Type::TOP;
2370   return Type::MEMORY;
2371 }
2372 
2373 //------------------------------Identity---------------------------------------
2374 // Remove redundant stores:
2375 //   Store(m, p, Load(m, p)) changes to m.
2376 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2377 Node *StoreNode::Identity( PhaseTransform *phase ) {
2378   Node* mem = in(MemNode::Memory);
2379   Node* adr = in(MemNode::Address);
2380   Node* val = in(MemNode::ValueIn);
2381 
2382   // Load then Store?  Then the Store is useless
2383   if (val->is_Load() &&
2384       val->in(MemNode::Address)->eqv_uncast(adr) &&
2385       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2386       val->as_Load()->store_Opcode() == Opcode()) {
2387     return mem;
2388   }
2389 
2390   // Two stores in a row of the same value?
2391   if (mem->is_Store() &&
2392       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2393       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2394       mem->Opcode() == Opcode()) {
2395     return mem;
2396   }
2397 
2398   // Store of zero anywhere into a freshly-allocated object?
2399   // Then the store is useless.
2400   // (It must already have been captured by the InitializeNode.)
2401   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2402     // a newly allocated object is already all-zeroes everywhere
2403     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2404       return mem;
2405     }
2406 
2407     // the store may also apply to zero-bits in an earlier object
2408     Node* prev_mem = find_previous_store(phase);
2409     // Steps (a), (b):  Walk past independent stores to find an exact match.
2410     if (prev_mem != NULL) {
2411       Node* prev_val = can_see_stored_value(prev_mem, phase);
2412       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2413         // prev_val and val might differ by a cast; it would be good
2414         // to keep the more informative of the two.
2415         return mem;
2416       }
2417     }
2418   }
2419 
2420   return this;
2421 }
2422 
2423 //------------------------------match_edge-------------------------------------
2424 // Do we Match on this edge index or not?  Match only memory & value
2425 uint StoreNode::match_edge(uint idx) const {
2426   return idx == MemNode::Address || idx == MemNode::ValueIn;
2427 }
2428 
2429 //------------------------------cmp--------------------------------------------
2430 // Do not common stores up together.  They generally have to be split
2431 // back up anyways, so do not bother.
2432 uint StoreNode::cmp( const Node &n ) const {
2433   return (&n == this);          // Always fail except on self
2434 }
2435 
2436 //------------------------------Ideal_masked_input-----------------------------
2437 // Check for a useless mask before a partial-word store
2438 // (StoreB ... (AndI valIn conIa) )
2439 // If (conIa & mask == mask) this simplifies to
2440 // (StoreB ... (valIn) )
2441 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2442   Node *val = in(MemNode::ValueIn);
2443   if( val->Opcode() == Op_AndI ) {
2444     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2445     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2446       set_req(MemNode::ValueIn, val->in(1));
2447       return this;
2448     }
2449   }
2450   return NULL;
2451 }
2452 
2453 
2454 //------------------------------Ideal_sign_extended_input----------------------
2455 // Check for useless sign-extension before a partial-word store
2456 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2457 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2458 // (StoreB ... (valIn) )
2459 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2460   Node *val = in(MemNode::ValueIn);
2461   if( val->Opcode() == Op_RShiftI ) {
2462     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2463     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2464       Node *shl = val->in(1);
2465       if( shl->Opcode() == Op_LShiftI ) {
2466         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2467         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2468           set_req(MemNode::ValueIn, shl->in(1));
2469           return this;
2470         }
2471       }
2472     }
2473   }
2474   return NULL;
2475 }
2476 
2477 //------------------------------value_never_loaded-----------------------------------
2478 // Determine whether there are any possible loads of the value stored.
2479 // For simplicity, we actually check if there are any loads from the
2480 // address stored to, not just for loads of the value stored by this node.
2481 //
2482 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2483   Node *adr = in(Address);
2484   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2485   if (adr_oop == NULL)
2486     return false;
2487   if (!adr_oop->is_known_instance_field())
2488     return false; // if not a distinct instance, there may be aliases of the address
2489   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2490     Node *use = adr->fast_out(i);
2491     int opc = use->Opcode();
2492     if (use->is_Load() || use->is_LoadStore()) {
2493       return false;
2494     }
2495   }
2496   return true;
2497 }
2498 
2499 //=============================================================================
2500 //------------------------------Ideal------------------------------------------
2501 // If the store is from an AND mask that leaves the low bits untouched, then
2502 // we can skip the AND operation.  If the store is from a sign-extension
2503 // (a left shift, then right shift) we can skip both.
2504 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2505   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2506   if( progress != NULL ) return progress;
2507 
2508   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2509   if( progress != NULL ) return progress;
2510 
2511   // Finally check the default case
2512   return StoreNode::Ideal(phase, can_reshape);
2513 }
2514 
2515 //=============================================================================
2516 //------------------------------Ideal------------------------------------------
2517 // If the store is from an AND mask that leaves the low bits untouched, then
2518 // we can skip the AND operation
2519 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2520   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2521   if( progress != NULL ) return progress;
2522 
2523   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2524   if( progress != NULL ) return progress;
2525 
2526   // Finally check the default case
2527   return StoreNode::Ideal(phase, can_reshape);
2528 }
2529 
2530 //=============================================================================
2531 //------------------------------Identity---------------------------------------
2532 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2533   // No need to card mark when storing a null ptr
2534   Node* my_store = in(MemNode::OopStore);
2535   if (my_store->is_Store()) {
2536     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2537     if( t1 == TypePtr::NULL_PTR ) {
2538       return in(MemNode::Memory);
2539     }
2540   }
2541   return this;
2542 }
2543 
2544 //=============================================================================
2545 //------------------------------Ideal---------------------------------------
2546 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2547   Node* progress = StoreNode::Ideal(phase, can_reshape);
2548   if (progress != NULL) return progress;
2549 
2550   Node* my_store = in(MemNode::OopStore);
2551   if (my_store->is_MergeMem()) {
2552     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2553     set_req(MemNode::OopStore, mem);
2554     return this;
2555   }
2556 
2557   return NULL;
2558 }
2559 
2560 //------------------------------Value-----------------------------------------
2561 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2562   // Either input is TOP ==> the result is TOP
2563   const Type *t = phase->type( in(MemNode::Memory) );
2564   if( t == Type::TOP ) return Type::TOP;
2565   t = phase->type( in(MemNode::Address) );
2566   if( t == Type::TOP ) return Type::TOP;
2567   t = phase->type( in(MemNode::ValueIn) );
2568   if( t == Type::TOP ) return Type::TOP;
2569   // If extra input is TOP ==> the result is TOP
2570   t = phase->type( in(MemNode::OopStore) );
2571   if( t == Type::TOP ) return Type::TOP;
2572 
2573   return StoreNode::Value( phase );
2574 }
2575 
2576 
2577 //=============================================================================
2578 //----------------------------------SCMemProjNode------------------------------
2579 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2580 {
2581   return bottom_type();
2582 }
2583 
2584 //=============================================================================
2585 //----------------------------------LoadStoreNode------------------------------
2586 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2587   : Node(required),
2588     _type(rt),
2589     _adr_type(at)
2590 {
2591   init_req(MemNode::Control, c  );
2592   init_req(MemNode::Memory , mem);
2593   init_req(MemNode::Address, adr);
2594   init_req(MemNode::ValueIn, val);
2595   init_class_id(Class_LoadStore);
2596 }
2597 
2598 uint LoadStoreNode::ideal_reg() const {
2599   return _type->ideal_reg();
2600 }
2601 
2602 bool LoadStoreNode::result_not_used() const {
2603   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2604     Node *x = fast_out(i);
2605     if (x->Opcode() == Op_SCMemProj) continue;
2606     return false;
2607   }
2608   return true;
2609 }
2610 
2611 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2612 
2613 //=============================================================================
2614 //----------------------------------LoadStoreConditionalNode--------------------
2615 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2616   init_req(ExpectedIn, ex );
2617 }
2618 
2619 //=============================================================================
2620 //-------------------------------adr_type--------------------------------------
2621 // Do we Match on this edge index or not?  Do not match memory
2622 const TypePtr* ClearArrayNode::adr_type() const {
2623   Node *adr = in(3);
2624   return MemNode::calculate_adr_type(adr->bottom_type());
2625 }
2626 
2627 //------------------------------match_edge-------------------------------------
2628 // Do we Match on this edge index or not?  Do not match memory
2629 uint ClearArrayNode::match_edge(uint idx) const {
2630   return idx > 1;
2631 }
2632 
2633 //------------------------------Identity---------------------------------------
2634 // Clearing a zero length array does nothing
2635 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2636   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2637 }
2638 
2639 //------------------------------Idealize---------------------------------------
2640 // Clearing a short array is faster with stores
2641 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2642   const int unit = BytesPerLong;
2643   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2644   if (!t)  return NULL;
2645   if (!t->is_con())  return NULL;
2646   intptr_t raw_count = t->get_con();
2647   intptr_t size = raw_count;
2648   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2649   // Clearing nothing uses the Identity call.
2650   // Negative clears are possible on dead ClearArrays
2651   // (see jck test stmt114.stmt11402.val).
2652   if (size <= 0 || size % unit != 0)  return NULL;
2653   intptr_t count = size / unit;
2654   // Length too long; use fast hardware clear
2655   if (size > Matcher::init_array_short_size)  return NULL;
2656   Node *mem = in(1);
2657   if( phase->type(mem)==Type::TOP ) return NULL;
2658   Node *adr = in(3);
2659   const Type* at = phase->type(adr);
2660   if( at==Type::TOP ) return NULL;
2661   const TypePtr* atp = at->isa_ptr();
2662   // adjust atp to be the correct array element address type
2663   if (atp == NULL)  atp = TypePtr::BOTTOM;
2664   else              atp = atp->add_offset(Type::OffsetBot);
2665   // Get base for derived pointer purposes
2666   if( adr->Opcode() != Op_AddP ) Unimplemented();
2667   Node *base = adr->in(1);
2668 
2669   Node *zero = phase->makecon(TypeLong::ZERO);
2670   Node *off  = phase->MakeConX(BytesPerLong);
2671   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2672   count--;
2673   while( count-- ) {
2674     mem = phase->transform(mem);
2675     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2676     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2677   }
2678   return mem;
2679 }
2680 
2681 //----------------------------step_through----------------------------------
2682 // Return allocation input memory edge if it is different instance
2683 // or itself if it is the one we are looking for.
2684 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2685   Node* n = *np;
2686   assert(n->is_ClearArray(), "sanity");
2687   intptr_t offset;
2688   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2689   // This method is called only before Allocate nodes are expanded during
2690   // macro nodes expansion. Before that ClearArray nodes are only generated
2691   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2692   assert(alloc != NULL, "should have allocation");
2693   if (alloc->_idx == instance_id) {
2694     // Can not bypass initialization of the instance we are looking for.
2695     return false;
2696   }
2697   // Otherwise skip it.
2698   InitializeNode* init = alloc->initialization();
2699   if (init != NULL)
2700     *np = init->in(TypeFunc::Memory);
2701   else
2702     *np = alloc->in(TypeFunc::Memory);
2703   return true;
2704 }
2705 
2706 //----------------------------clear_memory-------------------------------------
2707 // Generate code to initialize object storage to zero.
2708 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2709                                    intptr_t start_offset,
2710                                    Node* end_offset,
2711                                    PhaseGVN* phase) {
2712   Compile* C = phase->C;
2713   intptr_t offset = start_offset;
2714 
2715   int unit = BytesPerLong;
2716   if ((offset % unit) != 0) {
2717     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2718     adr = phase->transform(adr);
2719     const TypePtr* atp = TypeRawPtr::BOTTOM;
2720     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2721     mem = phase->transform(mem);
2722     offset += BytesPerInt;
2723   }
2724   assert((offset % unit) == 0, "");
2725 
2726   // Initialize the remaining stuff, if any, with a ClearArray.
2727   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2728 }
2729 
2730 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2731                                    Node* start_offset,
2732                                    Node* end_offset,
2733                                    PhaseGVN* phase) {
2734   if (start_offset == end_offset) {
2735     // nothing to do
2736     return mem;
2737   }
2738 
2739   Compile* C = phase->C;
2740   int unit = BytesPerLong;
2741   Node* zbase = start_offset;
2742   Node* zend  = end_offset;
2743 
2744   // Scale to the unit required by the CPU:
2745   if (!Matcher::init_array_count_is_in_bytes) {
2746     Node* shift = phase->intcon(exact_log2(unit));
2747     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2748     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2749   }
2750 
2751   // Bulk clear double-words
2752   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2753   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2754   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2755   return phase->transform(mem);
2756 }
2757 
2758 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2759                                    intptr_t start_offset,
2760                                    intptr_t end_offset,
2761                                    PhaseGVN* phase) {
2762   if (start_offset == end_offset) {
2763     // nothing to do
2764     return mem;
2765   }
2766 
2767   Compile* C = phase->C;
2768   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2769   intptr_t done_offset = end_offset;
2770   if ((done_offset % BytesPerLong) != 0) {
2771     done_offset -= BytesPerInt;
2772   }
2773   if (done_offset > start_offset) {
2774     mem = clear_memory(ctl, mem, dest,
2775                        start_offset, phase->MakeConX(done_offset), phase);
2776   }
2777   if (done_offset < end_offset) { // emit the final 32-bit store
2778     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2779     adr = phase->transform(adr);
2780     const TypePtr* atp = TypeRawPtr::BOTTOM;
2781     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2782     mem = phase->transform(mem);
2783     done_offset += BytesPerInt;
2784   }
2785   assert(done_offset == end_offset, "");
2786   return mem;
2787 }
2788 
2789 //=============================================================================
2790 // Do not match memory edge.
2791 uint StrIntrinsicNode::match_edge(uint idx) const {
2792   return idx == 2 || idx == 3;
2793 }
2794 
2795 //------------------------------Ideal------------------------------------------
2796 // Return a node which is more "ideal" than the current node.  Strip out
2797 // control copies
2798 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2799   if (remove_dead_region(phase, can_reshape)) return this;
2800   // Don't bother trying to transform a dead node
2801   if (in(0) && in(0)->is_top())  return NULL;
2802 
2803   if (can_reshape) {
2804     Node* mem = phase->transform(in(MemNode::Memory));
2805     // If transformed to a MergeMem, get the desired slice
2806     uint alias_idx = phase->C->get_alias_index(adr_type());
2807     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2808     if (mem != in(MemNode::Memory)) {
2809       set_req(MemNode::Memory, mem);
2810       return this;
2811     }
2812   }
2813   return NULL;
2814 }
2815 
2816 //------------------------------Value------------------------------------------
2817 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2818   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2819   return bottom_type();
2820 }
2821 
2822 //=============================================================================
2823 //------------------------------match_edge-------------------------------------
2824 // Do not match memory edge
2825 uint EncodeISOArrayNode::match_edge(uint idx) const {
2826   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2827 }
2828 
2829 //------------------------------Ideal------------------------------------------
2830 // Return a node which is more "ideal" than the current node.  Strip out
2831 // control copies
2832 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2833   return remove_dead_region(phase, can_reshape) ? this : NULL;
2834 }
2835 
2836 //------------------------------Value------------------------------------------
2837 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2838   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2839   return bottom_type();
2840 }
2841 
2842 //=============================================================================
2843 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2844   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2845     _adr_type(C->get_adr_type(alias_idx))
2846 {
2847   init_class_id(Class_MemBar);
2848   Node* top = C->top();
2849   init_req(TypeFunc::I_O,top);
2850   init_req(TypeFunc::FramePtr,top);
2851   init_req(TypeFunc::ReturnAdr,top);
2852   if (precedent != NULL)
2853     init_req(TypeFunc::Parms, precedent);
2854 }
2855 
2856 //------------------------------cmp--------------------------------------------
2857 uint MemBarNode::hash() const { return NO_HASH; }
2858 uint MemBarNode::cmp( const Node &n ) const {
2859   return (&n == this);          // Always fail except on self
2860 }
2861 
2862 //------------------------------make-------------------------------------------
2863 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2864   switch (opcode) {
2865   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2866   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2867   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2868   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2869   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2870   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2871   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2872   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2873   default:                 ShouldNotReachHere(); return NULL;
2874   }
2875 }
2876 
2877 //------------------------------Ideal------------------------------------------
2878 // Return a node which is more "ideal" than the current node.  Strip out
2879 // control copies
2880 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2881   if (remove_dead_region(phase, can_reshape)) return this;
2882   // Don't bother trying to transform a dead node
2883   if (in(0) && in(0)->is_top())  return NULL;
2884 
2885   // Eliminate volatile MemBars for scalar replaced objects.
2886   if (can_reshape && req() == (Precedent+1) &&
2887       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
2888     // Volatile field loads and stores.
2889     Node* my_mem = in(MemBarNode::Precedent);
2890     if (my_mem != NULL && my_mem->is_Mem()) {
2891       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2892       // Check for scalar replaced object reference.
2893       if( t_oop != NULL && t_oop->is_known_instance_field() &&
2894           t_oop->offset() != Type::OffsetBot &&
2895           t_oop->offset() != Type::OffsetTop) {
2896         // Replace MemBar projections by its inputs.
2897         PhaseIterGVN* igvn = phase->is_IterGVN();
2898         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2899         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2900         // Must return either the original node (now dead) or a new node
2901         // (Do not return a top here, since that would break the uniqueness of top.)
2902         return new (phase->C) ConINode(TypeInt::ZERO);
2903       }
2904     }
2905   }
2906   return NULL;
2907 }
2908 
2909 //------------------------------Value------------------------------------------
2910 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2911   if( !in(0) ) return Type::TOP;
2912   if( phase->type(in(0)) == Type::TOP )
2913     return Type::TOP;
2914   return TypeTuple::MEMBAR;
2915 }
2916 
2917 //------------------------------match------------------------------------------
2918 // Construct projections for memory.
2919 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2920   switch (proj->_con) {
2921   case TypeFunc::Control:
2922   case TypeFunc::Memory:
2923     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2924   }
2925   ShouldNotReachHere();
2926   return NULL;
2927 }
2928 
2929 //===========================InitializeNode====================================
2930 // SUMMARY:
2931 // This node acts as a memory barrier on raw memory, after some raw stores.
2932 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2933 // The Initialize can 'capture' suitably constrained stores as raw inits.
2934 // It can coalesce related raw stores into larger units (called 'tiles').
2935 // It can avoid zeroing new storage for memory units which have raw inits.
2936 // At macro-expansion, it is marked 'complete', and does not optimize further.
2937 //
2938 // EXAMPLE:
2939 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2940 //   ctl = incoming control; mem* = incoming memory
2941 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2942 // First allocate uninitialized memory and fill in the header:
2943 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2944 //   ctl := alloc.Control; mem* := alloc.Memory*
2945 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2946 // Then initialize to zero the non-header parts of the raw memory block:
2947 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2948 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2949 // After the initialize node executes, the object is ready for service:
2950 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2951 // Suppose its body is immediately initialized as {1,2}:
2952 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2953 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2954 //   mem.SLICE(#short[*]) := store2
2955 //
2956 // DETAILS:
2957 // An InitializeNode collects and isolates object initialization after
2958 // an AllocateNode and before the next possible safepoint.  As a
2959 // memory barrier (MemBarNode), it keeps critical stores from drifting
2960 // down past any safepoint or any publication of the allocation.
2961 // Before this barrier, a newly-allocated object may have uninitialized bits.
2962 // After this barrier, it may be treated as a real oop, and GC is allowed.
2963 //
2964 // The semantics of the InitializeNode include an implicit zeroing of
2965 // the new object from object header to the end of the object.
2966 // (The object header and end are determined by the AllocateNode.)
2967 //
2968 // Certain stores may be added as direct inputs to the InitializeNode.
2969 // These stores must update raw memory, and they must be to addresses
2970 // derived from the raw address produced by AllocateNode, and with
2971 // a constant offset.  They must be ordered by increasing offset.
2972 // The first one is at in(RawStores), the last at in(req()-1).
2973 // Unlike most memory operations, they are not linked in a chain,
2974 // but are displayed in parallel as users of the rawmem output of
2975 // the allocation.
2976 //
2977 // (See comments in InitializeNode::capture_store, which continue
2978 // the example given above.)
2979 //
2980 // When the associated Allocate is macro-expanded, the InitializeNode
2981 // may be rewritten to optimize collected stores.  A ClearArrayNode
2982 // may also be created at that point to represent any required zeroing.
2983 // The InitializeNode is then marked 'complete', prohibiting further
2984 // capturing of nearby memory operations.
2985 //
2986 // During macro-expansion, all captured initializations which store
2987 // constant values of 32 bits or smaller are coalesced (if advantageous)
2988 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2989 // initialized in fewer memory operations.  Memory words which are
2990 // covered by neither tiles nor non-constant stores are pre-zeroed
2991 // by explicit stores of zero.  (The code shape happens to do all
2992 // zeroing first, then all other stores, with both sequences occurring
2993 // in order of ascending offsets.)
2994 //
2995 // Alternatively, code may be inserted between an AllocateNode and its
2996 // InitializeNode, to perform arbitrary initialization of the new object.
2997 // E.g., the object copying intrinsics insert complex data transfers here.
2998 // The initialization must then be marked as 'complete' disable the
2999 // built-in zeroing semantics and the collection of initializing stores.
3000 //
3001 // While an InitializeNode is incomplete, reads from the memory state
3002 // produced by it are optimizable if they match the control edge and
3003 // new oop address associated with the allocation/initialization.
3004 // They return a stored value (if the offset matches) or else zero.
3005 // A write to the memory state, if it matches control and address,
3006 // and if it is to a constant offset, may be 'captured' by the
3007 // InitializeNode.  It is cloned as a raw memory operation and rewired
3008 // inside the initialization, to the raw oop produced by the allocation.
3009 // Operations on addresses which are provably distinct (e.g., to
3010 // other AllocateNodes) are allowed to bypass the initialization.
3011 //
3012 // The effect of all this is to consolidate object initialization
3013 // (both arrays and non-arrays, both piecewise and bulk) into a
3014 // single location, where it can be optimized as a unit.
3015 //
3016 // Only stores with an offset less than TrackedInitializationLimit words
3017 // will be considered for capture by an InitializeNode.  This puts a
3018 // reasonable limit on the complexity of optimized initializations.
3019 
3020 //---------------------------InitializeNode------------------------------------
3021 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3022   : _is_complete(Incomplete), _does_not_escape(false),
3023     MemBarNode(C, adr_type, rawoop)
3024 {
3025   init_class_id(Class_Initialize);
3026 
3027   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3028   assert(in(RawAddress) == rawoop, "proper init");
3029   // Note:  allocation() can be NULL, for secondary initialization barriers
3030 }
3031 
3032 // Since this node is not matched, it will be processed by the
3033 // register allocator.  Declare that there are no constraints
3034 // on the allocation of the RawAddress edge.
3035 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3036   // This edge should be set to top, by the set_complete.  But be conservative.
3037   if (idx == InitializeNode::RawAddress)
3038     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3039   return RegMask::Empty;
3040 }
3041 
3042 Node* InitializeNode::memory(uint alias_idx) {
3043   Node* mem = in(Memory);
3044   if (mem->is_MergeMem()) {
3045     return mem->as_MergeMem()->memory_at(alias_idx);
3046   } else {
3047     // incoming raw memory is not split
3048     return mem;
3049   }
3050 }
3051 
3052 bool InitializeNode::is_non_zero() {
3053   if (is_complete())  return false;
3054   remove_extra_zeroes();
3055   return (req() > RawStores);
3056 }
3057 
3058 void InitializeNode::set_complete(PhaseGVN* phase) {
3059   assert(!is_complete(), "caller responsibility");
3060   _is_complete = Complete;
3061 
3062   // After this node is complete, it contains a bunch of
3063   // raw-memory initializations.  There is no need for
3064   // it to have anything to do with non-raw memory effects.
3065   // Therefore, tell all non-raw users to re-optimize themselves,
3066   // after skipping the memory effects of this initialization.
3067   PhaseIterGVN* igvn = phase->is_IterGVN();
3068   if (igvn)  igvn->add_users_to_worklist(this);
3069 }
3070 
3071 // convenience function
3072 // return false if the init contains any stores already
3073 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3074   InitializeNode* init = initialization();
3075   if (init == NULL || init->is_complete())  return false;
3076   init->remove_extra_zeroes();
3077   // for now, if this allocation has already collected any inits, bail:
3078   if (init->is_non_zero())  return false;
3079   init->set_complete(phase);
3080   return true;
3081 }
3082 
3083 void InitializeNode::remove_extra_zeroes() {
3084   if (req() == RawStores)  return;
3085   Node* zmem = zero_memory();
3086   uint fill = RawStores;
3087   for (uint i = fill; i < req(); i++) {
3088     Node* n = in(i);
3089     if (n->is_top() || n == zmem)  continue;  // skip
3090     if (fill < i)  set_req(fill, n);          // compact
3091     ++fill;
3092   }
3093   // delete any empty spaces created:
3094   while (fill < req()) {
3095     del_req(fill);
3096   }
3097 }
3098 
3099 // Helper for remembering which stores go with which offsets.
3100 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3101   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3102   intptr_t offset = -1;
3103   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3104                                                phase, offset);
3105   if (base == NULL)     return -1;  // something is dead,
3106   if (offset < 0)       return -1;  //        dead, dead
3107   return offset;
3108 }
3109 
3110 // Helper for proving that an initialization expression is
3111 // "simple enough" to be folded into an object initialization.
3112 // Attempts to prove that a store's initial value 'n' can be captured
3113 // within the initialization without creating a vicious cycle, such as:
3114 //     { Foo p = new Foo(); p.next = p; }
3115 // True for constants and parameters and small combinations thereof.
3116 bool InitializeNode::detect_init_independence(Node* n,
3117                                               bool st_is_pinned,
3118                                               int& count) {
3119   if (n == NULL)      return true;   // (can this really happen?)
3120   if (n->is_Proj())   n = n->in(0);
3121   if (n == this)      return false;  // found a cycle
3122   if (n->is_Con())    return true;
3123   if (n->is_Start())  return true;   // params, etc., are OK
3124   if (n->is_Root())   return true;   // even better
3125 
3126   Node* ctl = n->in(0);
3127   if (ctl != NULL && !ctl->is_top()) {
3128     if (ctl->is_Proj())  ctl = ctl->in(0);
3129     if (ctl == this)  return false;
3130 
3131     // If we already know that the enclosing memory op is pinned right after
3132     // the init, then any control flow that the store has picked up
3133     // must have preceded the init, or else be equal to the init.
3134     // Even after loop optimizations (which might change control edges)
3135     // a store is never pinned *before* the availability of its inputs.
3136     if (!MemNode::all_controls_dominate(n, this))
3137       return false;                  // failed to prove a good control
3138 
3139   }
3140 
3141   // Check data edges for possible dependencies on 'this'.
3142   if ((count += 1) > 20)  return false;  // complexity limit
3143   for (uint i = 1; i < n->req(); i++) {
3144     Node* m = n->in(i);
3145     if (m == NULL || m == n || m->is_top())  continue;
3146     uint first_i = n->find_edge(m);
3147     if (i != first_i)  continue;  // process duplicate edge just once
3148     if (!detect_init_independence(m, st_is_pinned, count)) {
3149       return false;
3150     }
3151   }
3152 
3153   return true;
3154 }
3155 
3156 // Here are all the checks a Store must pass before it can be moved into
3157 // an initialization.  Returns zero if a check fails.
3158 // On success, returns the (constant) offset to which the store applies,
3159 // within the initialized memory.
3160 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3161   const int FAIL = 0;
3162   if (st->req() != MemNode::ValueIn + 1)
3163     return FAIL;                // an inscrutable StoreNode (card mark?)
3164   Node* ctl = st->in(MemNode::Control);
3165   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3166     return FAIL;                // must be unconditional after the initialization
3167   Node* mem = st->in(MemNode::Memory);
3168   if (!(mem->is_Proj() && mem->in(0) == this))
3169     return FAIL;                // must not be preceded by other stores
3170   Node* adr = st->in(MemNode::Address);
3171   intptr_t offset;
3172   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3173   if (alloc == NULL)
3174     return FAIL;                // inscrutable address
3175   if (alloc != allocation())
3176     return FAIL;                // wrong allocation!  (store needs to float up)
3177   Node* val = st->in(MemNode::ValueIn);
3178   int complexity_count = 0;
3179   if (!detect_init_independence(val, true, complexity_count))
3180     return FAIL;                // stored value must be 'simple enough'
3181 
3182   // The Store can be captured only if nothing after the allocation
3183   // and before the Store is using the memory location that the store
3184   // overwrites.
3185   bool failed = false;
3186   // If is_complete_with_arraycopy() is true the shape of the graph is
3187   // well defined and is safe so no need for extra checks.
3188   if (!is_complete_with_arraycopy()) {
3189     // We are going to look at each use of the memory state following
3190     // the allocation to make sure nothing reads the memory that the
3191     // Store writes.
3192     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3193     int alias_idx = phase->C->get_alias_index(t_adr);
3194     ResourceMark rm;
3195     Unique_Node_List mems;
3196     mems.push(mem);
3197     Node* unique_merge = NULL;
3198     for (uint next = 0; next < mems.size(); ++next) {
3199       Node *m  = mems.at(next);
3200       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3201         Node *n = m->fast_out(j);
3202         if (n->outcnt() == 0) {
3203           continue;
3204         }
3205         if (n == st) {
3206           continue;
3207         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3208           // If the control of this use is different from the control
3209           // of the Store which is right after the InitializeNode then
3210           // this node cannot be between the InitializeNode and the
3211           // Store.
3212           continue;
3213         } else if (n->is_MergeMem()) {
3214           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3215             // We can hit a MergeMemNode (that will likely go away
3216             // later) that is a direct use of the memory state
3217             // following the InitializeNode on the same slice as the
3218             // store node that we'd like to capture. We need to check
3219             // the uses of the MergeMemNode.
3220             mems.push(n);
3221           }
3222         } else if (n->is_Mem()) {
3223           Node* other_adr = n->in(MemNode::Address);
3224           if (other_adr == adr) {
3225             failed = true;
3226             break;
3227           } else {
3228             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3229             if (other_t_adr != NULL) {
3230               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3231               if (other_alias_idx == alias_idx) {
3232                 // A load from the same memory slice as the store right
3233                 // after the InitializeNode. We check the control of the
3234                 // object/array that is loaded from. If it's the same as
3235                 // the store control then we cannot capture the store.
3236                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3237                 Node* base = other_adr;
3238                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3239                 base = base->in(AddPNode::Base);
3240                 if (base != NULL) {
3241                   base = base->uncast();
3242                   if (base->is_Proj() && base->in(0) == alloc) {
3243                     failed = true;
3244                     break;
3245                   }
3246                 }
3247               }
3248             }
3249           }
3250         } else {
3251           failed = true;
3252           break;
3253         }
3254       }
3255     }
3256   }
3257   if (failed) {
3258     if (!can_reshape) {
3259       // We decided we couldn't capture the store during parsing. We
3260       // should try again during the next IGVN once the graph is
3261       // cleaner.
3262       phase->C->record_for_igvn(st);
3263     }
3264     return FAIL;
3265   }
3266 
3267   return offset;                // success
3268 }
3269 
3270 // Find the captured store in(i) which corresponds to the range
3271 // [start..start+size) in the initialized object.
3272 // If there is one, return its index i.  If there isn't, return the
3273 // negative of the index where it should be inserted.
3274 // Return 0 if the queried range overlaps an initialization boundary
3275 // or if dead code is encountered.
3276 // If size_in_bytes is zero, do not bother with overlap checks.
3277 int InitializeNode::captured_store_insertion_point(intptr_t start,
3278                                                    int size_in_bytes,
3279                                                    PhaseTransform* phase) {
3280   const int FAIL = 0, MAX_STORE = BytesPerLong;
3281 
3282   if (is_complete())
3283     return FAIL;                // arraycopy got here first; punt
3284 
3285   assert(allocation() != NULL, "must be present");
3286 
3287   // no negatives, no header fields:
3288   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3289 
3290   // after a certain size, we bail out on tracking all the stores:
3291   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3292   if (start >= ti_limit)  return FAIL;
3293 
3294   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3295     if (i >= limit)  return -(int)i; // not found; here is where to put it
3296 
3297     Node*    st     = in(i);
3298     intptr_t st_off = get_store_offset(st, phase);
3299     if (st_off < 0) {
3300       if (st != zero_memory()) {
3301         return FAIL;            // bail out if there is dead garbage
3302       }
3303     } else if (st_off > start) {
3304       // ...we are done, since stores are ordered
3305       if (st_off < start + size_in_bytes) {
3306         return FAIL;            // the next store overlaps
3307       }
3308       return -(int)i;           // not found; here is where to put it
3309     } else if (st_off < start) {
3310       if (size_in_bytes != 0 &&
3311           start < st_off + MAX_STORE &&
3312           start < st_off + st->as_Store()->memory_size()) {
3313         return FAIL;            // the previous store overlaps
3314       }
3315     } else {
3316       if (size_in_bytes != 0 &&
3317           st->as_Store()->memory_size() != size_in_bytes) {
3318         return FAIL;            // mismatched store size
3319       }
3320       return i;
3321     }
3322 
3323     ++i;
3324   }
3325 }
3326 
3327 // Look for a captured store which initializes at the offset 'start'
3328 // with the given size.  If there is no such store, and no other
3329 // initialization interferes, then return zero_memory (the memory
3330 // projection of the AllocateNode).
3331 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3332                                           PhaseTransform* phase) {
3333   assert(stores_are_sane(phase), "");
3334   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3335   if (i == 0) {
3336     return NULL;                // something is dead
3337   } else if (i < 0) {
3338     return zero_memory();       // just primordial zero bits here
3339   } else {
3340     Node* st = in(i);           // here is the store at this position
3341     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3342     return st;
3343   }
3344 }
3345 
3346 // Create, as a raw pointer, an address within my new object at 'offset'.
3347 Node* InitializeNode::make_raw_address(intptr_t offset,
3348                                        PhaseTransform* phase) {
3349   Node* addr = in(RawAddress);
3350   if (offset != 0) {
3351     Compile* C = phase->C;
3352     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3353                                                  phase->MakeConX(offset)) );
3354   }
3355   return addr;
3356 }
3357 
3358 // Clone the given store, converting it into a raw store
3359 // initializing a field or element of my new object.
3360 // Caller is responsible for retiring the original store,
3361 // with subsume_node or the like.
3362 //
3363 // From the example above InitializeNode::InitializeNode,
3364 // here are the old stores to be captured:
3365 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3366 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3367 //
3368 // Here is the changed code; note the extra edges on init:
3369 //   alloc = (Allocate ...)
3370 //   rawoop = alloc.RawAddress
3371 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3372 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3373 //   init = (Initialize alloc.Control alloc.Memory rawoop
3374 //                      rawstore1 rawstore2)
3375 //
3376 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3377                                     PhaseTransform* phase, bool can_reshape) {
3378   assert(stores_are_sane(phase), "");
3379 
3380   if (start < 0)  return NULL;
3381   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3382 
3383   Compile* C = phase->C;
3384   int size_in_bytes = st->memory_size();
3385   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3386   if (i == 0)  return NULL;     // bail out
3387   Node* prev_mem = NULL;        // raw memory for the captured store
3388   if (i > 0) {
3389     prev_mem = in(i);           // there is a pre-existing store under this one
3390     set_req(i, C->top());       // temporarily disconnect it
3391     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3392   } else {
3393     i = -i;                     // no pre-existing store
3394     prev_mem = zero_memory();   // a slice of the newly allocated object
3395     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3396       set_req(--i, C->top());   // reuse this edge; it has been folded away
3397     else
3398       ins_req(i, C->top());     // build a new edge
3399   }
3400   Node* new_st = st->clone();
3401   new_st->set_req(MemNode::Control, in(Control));
3402   new_st->set_req(MemNode::Memory,  prev_mem);
3403   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3404   new_st = phase->transform(new_st);
3405 
3406   // At this point, new_st might have swallowed a pre-existing store
3407   // at the same offset, or perhaps new_st might have disappeared,
3408   // if it redundantly stored the same value (or zero to fresh memory).
3409 
3410   // In any case, wire it in:
3411   set_req(i, new_st);
3412 
3413   // The caller may now kill the old guy.
3414   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3415   assert(check_st == new_st || check_st == NULL, "must be findable");
3416   assert(!is_complete(), "");
3417   return new_st;
3418 }
3419 
3420 static bool store_constant(jlong* tiles, int num_tiles,
3421                            intptr_t st_off, int st_size,
3422                            jlong con) {
3423   if ((st_off & (st_size-1)) != 0)
3424     return false;               // strange store offset (assume size==2**N)
3425   address addr = (address)tiles + st_off;
3426   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3427   switch (st_size) {
3428   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3429   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3430   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3431   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3432   default: return false;        // strange store size (detect size!=2**N here)
3433   }
3434   return true;                  // return success to caller
3435 }
3436 
3437 // Coalesce subword constants into int constants and possibly
3438 // into long constants.  The goal, if the CPU permits,
3439 // is to initialize the object with a small number of 64-bit tiles.
3440 // Also, convert floating-point constants to bit patterns.
3441 // Non-constants are not relevant to this pass.
3442 //
3443 // In terms of the running example on InitializeNode::InitializeNode
3444 // and InitializeNode::capture_store, here is the transformation
3445 // of rawstore1 and rawstore2 into rawstore12:
3446 //   alloc = (Allocate ...)
3447 //   rawoop = alloc.RawAddress
3448 //   tile12 = 0x00010002
3449 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3450 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3451 //
3452 void
3453 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3454                                         Node* size_in_bytes,
3455                                         PhaseGVN* phase) {
3456   Compile* C = phase->C;
3457 
3458   assert(stores_are_sane(phase), "");
3459   // Note:  After this pass, they are not completely sane,
3460   // since there may be some overlaps.
3461 
3462   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3463 
3464   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3465   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3466   size_limit = MIN2(size_limit, ti_limit);
3467   size_limit = align_size_up(size_limit, BytesPerLong);
3468   int num_tiles = size_limit / BytesPerLong;
3469 
3470   // allocate space for the tile map:
3471   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3472   jlong  tiles_buf[small_len];
3473   Node*  nodes_buf[small_len];
3474   jlong  inits_buf[small_len];
3475   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3476                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3477   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3478                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3479   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3480                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3481   // tiles: exact bitwise model of all primitive constants
3482   // nodes: last constant-storing node subsumed into the tiles model
3483   // inits: which bytes (in each tile) are touched by any initializations
3484 
3485   //// Pass A: Fill in the tile model with any relevant stores.
3486 
3487   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3488   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3489   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3490   Node* zmem = zero_memory(); // initially zero memory state
3491   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3492     Node* st = in(i);
3493     intptr_t st_off = get_store_offset(st, phase);
3494 
3495     // Figure out the store's offset and constant value:
3496     if (st_off < header_size)             continue; //skip (ignore header)
3497     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3498     int st_size = st->as_Store()->memory_size();
3499     if (st_off + st_size > size_limit)    break;
3500 
3501     // Record which bytes are touched, whether by constant or not.
3502     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3503       continue;                 // skip (strange store size)
3504 
3505     const Type* val = phase->type(st->in(MemNode::ValueIn));
3506     if (!val->singleton())                continue; //skip (non-con store)
3507     BasicType type = val->basic_type();
3508 
3509     jlong con = 0;
3510     switch (type) {
3511     case T_INT:    con = val->is_int()->get_con();  break;
3512     case T_LONG:   con = val->is_long()->get_con(); break;
3513     case T_FLOAT:  con = jint_cast(val->getf());    break;
3514     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3515     default:                              continue; //skip (odd store type)
3516     }
3517 
3518     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3519         st->Opcode() == Op_StoreL) {
3520       continue;                 // This StoreL is already optimal.
3521     }
3522 
3523     // Store down the constant.
3524     store_constant(tiles, num_tiles, st_off, st_size, con);
3525 
3526     intptr_t j = st_off >> LogBytesPerLong;
3527 
3528     if (type == T_INT && st_size == BytesPerInt
3529         && (st_off & BytesPerInt) == BytesPerInt) {
3530       jlong lcon = tiles[j];
3531       if (!Matcher::isSimpleConstant64(lcon) &&
3532           st->Opcode() == Op_StoreI) {
3533         // This StoreI is already optimal by itself.
3534         jint* intcon = (jint*) &tiles[j];
3535         intcon[1] = 0;  // undo the store_constant()
3536 
3537         // If the previous store is also optimal by itself, back up and
3538         // undo the action of the previous loop iteration... if we can.
3539         // But if we can't, just let the previous half take care of itself.
3540         st = nodes[j];
3541         st_off -= BytesPerInt;
3542         con = intcon[0];
3543         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3544           assert(st_off >= header_size, "still ignoring header");
3545           assert(get_store_offset(st, phase) == st_off, "must be");
3546           assert(in(i-1) == zmem, "must be");
3547           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3548           assert(con == tcon->is_int()->get_con(), "must be");
3549           // Undo the effects of the previous loop trip, which swallowed st:
3550           intcon[0] = 0;        // undo store_constant()
3551           set_req(i-1, st);     // undo set_req(i, zmem)
3552           nodes[j] = NULL;      // undo nodes[j] = st
3553           --old_subword;        // undo ++old_subword
3554         }
3555         continue;               // This StoreI is already optimal.
3556       }
3557     }
3558 
3559     // This store is not needed.
3560     set_req(i, zmem);
3561     nodes[j] = st;              // record for the moment
3562     if (st_size < BytesPerLong) // something has changed
3563           ++old_subword;        // includes int/float, but who's counting...
3564     else  ++old_long;
3565   }
3566 
3567   if ((old_subword + old_long) == 0)
3568     return;                     // nothing more to do
3569 
3570   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3571   // Be sure to insert them before overlapping non-constant stores.
3572   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3573   for (int j = 0; j < num_tiles; j++) {
3574     jlong con  = tiles[j];
3575     jlong init = inits[j];
3576     if (con == 0)  continue;
3577     jint con0,  con1;           // split the constant, address-wise
3578     jint init0, init1;          // split the init map, address-wise
3579     { union { jlong con; jint intcon[2]; } u;
3580       u.con = con;
3581       con0  = u.intcon[0];
3582       con1  = u.intcon[1];
3583       u.con = init;
3584       init0 = u.intcon[0];
3585       init1 = u.intcon[1];
3586     }
3587 
3588     Node* old = nodes[j];
3589     assert(old != NULL, "need the prior store");
3590     intptr_t offset = (j * BytesPerLong);
3591 
3592     bool split = !Matcher::isSimpleConstant64(con);
3593 
3594     if (offset < header_size) {
3595       assert(offset + BytesPerInt >= header_size, "second int counts");
3596       assert(*(jint*)&tiles[j] == 0, "junk in header");
3597       split = true;             // only the second word counts
3598       // Example:  int a[] = { 42 ... }
3599     } else if (con0 == 0 && init0 == -1) {
3600       split = true;             // first word is covered by full inits
3601       // Example:  int a[] = { ... foo(), 42 ... }
3602     } else if (con1 == 0 && init1 == -1) {
3603       split = true;             // second word is covered by full inits
3604       // Example:  int a[] = { ... 42, foo() ... }
3605     }
3606 
3607     // Here's a case where init0 is neither 0 nor -1:
3608     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3609     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3610     // In this case the tile is not split; it is (jlong)42.
3611     // The big tile is stored down, and then the foo() value is inserted.
3612     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3613 
3614     Node* ctl = old->in(MemNode::Control);
3615     Node* adr = make_raw_address(offset, phase);
3616     const TypePtr* atp = TypeRawPtr::BOTTOM;
3617 
3618     // One or two coalesced stores to plop down.
3619     Node*    st[2];
3620     intptr_t off[2];
3621     int  nst = 0;
3622     if (!split) {
3623       ++new_long;
3624       off[nst] = offset;
3625       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3626                                   phase->longcon(con), T_LONG);
3627     } else {
3628       // Omit either if it is a zero.
3629       if (con0 != 0) {
3630         ++new_int;
3631         off[nst]  = offset;
3632         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3633                                     phase->intcon(con0), T_INT);
3634       }
3635       if (con1 != 0) {
3636         ++new_int;
3637         offset += BytesPerInt;
3638         adr = make_raw_address(offset, phase);
3639         off[nst]  = offset;
3640         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3641                                     phase->intcon(con1), T_INT);
3642       }
3643     }
3644 
3645     // Insert second store first, then the first before the second.
3646     // Insert each one just before any overlapping non-constant stores.
3647     while (nst > 0) {
3648       Node* st1 = st[--nst];
3649       C->copy_node_notes_to(st1, old);
3650       st1 = phase->transform(st1);
3651       offset = off[nst];
3652       assert(offset >= header_size, "do not smash header");
3653       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3654       guarantee(ins_idx != 0, "must re-insert constant store");
3655       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3656       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3657         set_req(--ins_idx, st1);
3658       else
3659         ins_req(ins_idx, st1);
3660     }
3661   }
3662 
3663   if (PrintCompilation && WizardMode)
3664     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3665                   old_subword, old_long, new_int, new_long);
3666   if (C->log() != NULL)
3667     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3668                    old_subword, old_long, new_int, new_long);
3669 
3670   // Clean up any remaining occurrences of zmem:
3671   remove_extra_zeroes();
3672 }
3673 
3674 // Explore forward from in(start) to find the first fully initialized
3675 // word, and return its offset.  Skip groups of subword stores which
3676 // together initialize full words.  If in(start) is itself part of a
3677 // fully initialized word, return the offset of in(start).  If there
3678 // are no following full-word stores, or if something is fishy, return
3679 // a negative value.
3680 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3681   int       int_map = 0;
3682   intptr_t  int_map_off = 0;
3683   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3684 
3685   for (uint i = start, limit = req(); i < limit; i++) {
3686     Node* st = in(i);
3687 
3688     intptr_t st_off = get_store_offset(st, phase);
3689     if (st_off < 0)  break;  // return conservative answer
3690 
3691     int st_size = st->as_Store()->memory_size();
3692     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3693       return st_off;            // we found a complete word init
3694     }
3695 
3696     // update the map:
3697 
3698     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3699     if (this_int_off != int_map_off) {
3700       // reset the map:
3701       int_map = 0;
3702       int_map_off = this_int_off;
3703     }
3704 
3705     int subword_off = st_off - this_int_off;
3706     int_map |= right_n_bits(st_size) << subword_off;
3707     if ((int_map & FULL_MAP) == FULL_MAP) {
3708       return this_int_off;      // we found a complete word init
3709     }
3710 
3711     // Did this store hit or cross the word boundary?
3712     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3713     if (next_int_off == this_int_off + BytesPerInt) {
3714       // We passed the current int, without fully initializing it.
3715       int_map_off = next_int_off;
3716       int_map >>= BytesPerInt;
3717     } else if (next_int_off > this_int_off + BytesPerInt) {
3718       // We passed the current and next int.
3719       return this_int_off + BytesPerInt;
3720     }
3721   }
3722 
3723   return -1;
3724 }
3725 
3726 
3727 // Called when the associated AllocateNode is expanded into CFG.
3728 // At this point, we may perform additional optimizations.
3729 // Linearize the stores by ascending offset, to make memory
3730 // activity as coherent as possible.
3731 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3732                                       intptr_t header_size,
3733                                       Node* size_in_bytes,
3734                                       PhaseGVN* phase) {
3735   assert(!is_complete(), "not already complete");
3736   assert(stores_are_sane(phase), "");
3737   assert(allocation() != NULL, "must be present");
3738 
3739   remove_extra_zeroes();
3740 
3741   if (ReduceFieldZeroing || ReduceBulkZeroing)
3742     // reduce instruction count for common initialization patterns
3743     coalesce_subword_stores(header_size, size_in_bytes, phase);
3744 
3745   Node* zmem = zero_memory();   // initially zero memory state
3746   Node* inits = zmem;           // accumulating a linearized chain of inits
3747   #ifdef ASSERT
3748   intptr_t first_offset = allocation()->minimum_header_size();
3749   intptr_t last_init_off = first_offset;  // previous init offset
3750   intptr_t last_init_end = first_offset;  // previous init offset+size
3751   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3752   #endif
3753   intptr_t zeroes_done = header_size;
3754 
3755   bool do_zeroing = true;       // we might give up if inits are very sparse
3756   int  big_init_gaps = 0;       // how many large gaps have we seen?
3757 
3758   if (ZeroTLAB)  do_zeroing = false;
3759   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3760 
3761   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3762     Node* st = in(i);
3763     intptr_t st_off = get_store_offset(st, phase);
3764     if (st_off < 0)
3765       break;                    // unknown junk in the inits
3766     if (st->in(MemNode::Memory) != zmem)
3767       break;                    // complicated store chains somehow in list
3768 
3769     int st_size = st->as_Store()->memory_size();
3770     intptr_t next_init_off = st_off + st_size;
3771 
3772     if (do_zeroing && zeroes_done < next_init_off) {
3773       // See if this store needs a zero before it or under it.
3774       intptr_t zeroes_needed = st_off;
3775 
3776       if (st_size < BytesPerInt) {
3777         // Look for subword stores which only partially initialize words.
3778         // If we find some, we must lay down some word-level zeroes first,
3779         // underneath the subword stores.
3780         //
3781         // Examples:
3782         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3783         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3784         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3785         //
3786         // Note:  coalesce_subword_stores may have already done this,
3787         // if it was prompted by constant non-zero subword initializers.
3788         // But this case can still arise with non-constant stores.
3789 
3790         intptr_t next_full_store = find_next_fullword_store(i, phase);
3791 
3792         // In the examples above:
3793         //   in(i)          p   q   r   s     x   y     z
3794         //   st_off        12  13  14  15    12  13    14
3795         //   st_size        1   1   1   1     1   1     1
3796         //   next_full_s.  12  16  16  16    16  16    16
3797         //   z's_done      12  16  16  16    12  16    12
3798         //   z's_needed    12  16  16  16    16  16    16
3799         //   zsize          0   0   0   0     4   0     4
3800         if (next_full_store < 0) {
3801           // Conservative tack:  Zero to end of current word.
3802           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3803         } else {
3804           // Zero to beginning of next fully initialized word.
3805           // Or, don't zero at all, if we are already in that word.
3806           assert(next_full_store >= zeroes_needed, "must go forward");
3807           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3808           zeroes_needed = next_full_store;
3809         }
3810       }
3811 
3812       if (zeroes_needed > zeroes_done) {
3813         intptr_t zsize = zeroes_needed - zeroes_done;
3814         // Do some incremental zeroing on rawmem, in parallel with inits.
3815         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3816         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3817                                               zeroes_done, zeroes_needed,
3818                                               phase);
3819         zeroes_done = zeroes_needed;
3820         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3821           do_zeroing = false;   // leave the hole, next time
3822       }
3823     }
3824 
3825     // Collect the store and move on:
3826     st->set_req(MemNode::Memory, inits);
3827     inits = st;                 // put it on the linearized chain
3828     set_req(i, zmem);           // unhook from previous position
3829 
3830     if (zeroes_done == st_off)
3831       zeroes_done = next_init_off;
3832 
3833     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3834 
3835     #ifdef ASSERT
3836     // Various order invariants.  Weaker than stores_are_sane because
3837     // a large constant tile can be filled in by smaller non-constant stores.
3838     assert(st_off >= last_init_off, "inits do not reverse");
3839     last_init_off = st_off;
3840     const Type* val = NULL;
3841     if (st_size >= BytesPerInt &&
3842         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3843         (int)val->basic_type() < (int)T_OBJECT) {
3844       assert(st_off >= last_tile_end, "tiles do not overlap");
3845       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3846       last_tile_end = MAX2(last_tile_end, next_init_off);
3847     } else {
3848       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3849       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3850       assert(st_off      >= last_init_end, "inits do not overlap");
3851       last_init_end = next_init_off;  // it's a non-tile
3852     }
3853     #endif //ASSERT
3854   }
3855 
3856   remove_extra_zeroes();        // clear out all the zmems left over
3857   add_req(inits);
3858 
3859   if (!ZeroTLAB) {
3860     // If anything remains to be zeroed, zero it all now.
3861     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3862     // if it is the last unused 4 bytes of an instance, forget about it
3863     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3864     if (zeroes_done + BytesPerLong >= size_limit) {
3865       assert(allocation() != NULL, "");
3866       if (allocation()->Opcode() == Op_Allocate) {
3867         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3868         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3869         if (zeroes_done == k->layout_helper())
3870           zeroes_done = size_limit;
3871       }
3872     }
3873     if (zeroes_done < size_limit) {
3874       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3875                                             zeroes_done, size_in_bytes, phase);
3876     }
3877   }
3878 
3879   set_complete(phase);
3880   return rawmem;
3881 }
3882 
3883 
3884 #ifdef ASSERT
3885 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3886   if (is_complete())
3887     return true;                // stores could be anything at this point
3888   assert(allocation() != NULL, "must be present");
3889   intptr_t last_off = allocation()->minimum_header_size();
3890   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3891     Node* st = in(i);
3892     intptr_t st_off = get_store_offset(st, phase);
3893     if (st_off < 0)  continue;  // ignore dead garbage
3894     if (last_off > st_off) {
3895       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3896       this->dump(2);
3897       assert(false, "ascending store offsets");
3898       return false;
3899     }
3900     last_off = st_off + st->as_Store()->memory_size();
3901   }
3902   return true;
3903 }
3904 #endif //ASSERT
3905 
3906 
3907 
3908 
3909 //============================MergeMemNode=====================================
3910 //
3911 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3912 // contributing store or call operations.  Each contributor provides the memory
3913 // state for a particular "alias type" (see Compile::alias_type).  For example,
3914 // if a MergeMem has an input X for alias category #6, then any memory reference
3915 // to alias category #6 may use X as its memory state input, as an exact equivalent
3916 // to using the MergeMem as a whole.
3917 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3918 //
3919 // (Here, the <N> notation gives the index of the relevant adr_type.)
3920 //
3921 // In one special case (and more cases in the future), alias categories overlap.
3922 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3923 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3924 // it is exactly equivalent to that state W:
3925 //   MergeMem(<Bot>: W) <==> W
3926 //
3927 // Usually, the merge has more than one input.  In that case, where inputs
3928 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3929 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3930 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3931 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3932 //
3933 // A merge can take a "wide" memory state as one of its narrow inputs.
3934 // This simply means that the merge observes out only the relevant parts of
3935 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3936 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3937 //
3938 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3939 // and that memory slices "leak through":
3940 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3941 //
3942 // But, in such a cascade, repeated memory slices can "block the leak":
3943 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3944 //
3945 // In the last example, Y is not part of the combined memory state of the
3946 // outermost MergeMem.  The system must, of course, prevent unschedulable
3947 // memory states from arising, so you can be sure that the state Y is somehow
3948 // a precursor to state Y'.
3949 //
3950 //
3951 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3952 // of each MergeMemNode array are exactly the numerical alias indexes, including
3953 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3954 // Compile::alias_type (and kin) produce and manage these indexes.
3955 //
3956 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3957 // (Note that this provides quick access to the top node inside MergeMem methods,
3958 // without the need to reach out via TLS to Compile::current.)
3959 //
3960 // As a consequence of what was just described, a MergeMem that represents a full
3961 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3962 // containing all alias categories.
3963 //
3964 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3965 //
3966 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3967 // a memory state for the alias type <N>, or else the top node, meaning that
3968 // there is no particular input for that alias type.  Note that the length of
3969 // a MergeMem is variable, and may be extended at any time to accommodate new
3970 // memory states at larger alias indexes.  When merges grow, they are of course
3971 // filled with "top" in the unused in() positions.
3972 //
3973 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3974 // (Top was chosen because it works smoothly with passes like GCM.)
3975 //
3976 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3977 // the type of random VM bits like TLS references.)  Since it is always the
3978 // first non-Bot memory slice, some low-level loops use it to initialize an
3979 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3980 //
3981 //
3982 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3983 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3984 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3985 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3986 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3987 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3988 //
3989 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3990 // really that different from the other memory inputs.  An abbreviation called
3991 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3992 //
3993 //
3994 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3995 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3996 // that "emerges though" the base memory will be marked as excluding the alias types
3997 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3998 //
3999 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4000 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4001 //
4002 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4003 // (It is currently unimplemented.)  As you can see, the resulting merge is
4004 // actually a disjoint union of memory states, rather than an overlay.
4005 //
4006 
4007 //------------------------------MergeMemNode-----------------------------------
4008 Node* MergeMemNode::make_empty_memory() {
4009   Node* empty_memory = (Node*) Compile::current()->top();
4010   assert(empty_memory->is_top(), "correct sentinel identity");
4011   return empty_memory;
4012 }
4013 
4014 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4015   init_class_id(Class_MergeMem);
4016   // all inputs are nullified in Node::Node(int)
4017   // set_input(0, NULL);  // no control input
4018 
4019   // Initialize the edges uniformly to top, for starters.
4020   Node* empty_mem = make_empty_memory();
4021   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4022     init_req(i,empty_mem);
4023   }
4024   assert(empty_memory() == empty_mem, "");
4025 
4026   if( new_base != NULL && new_base->is_MergeMem() ) {
4027     MergeMemNode* mdef = new_base->as_MergeMem();
4028     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4029     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4030       mms.set_memory(mms.memory2());
4031     }
4032     assert(base_memory() == mdef->base_memory(), "");
4033   } else {
4034     set_base_memory(new_base);
4035   }
4036 }
4037 
4038 // Make a new, untransformed MergeMem with the same base as 'mem'.
4039 // If mem is itself a MergeMem, populate the result with the same edges.
4040 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4041   return new(C) MergeMemNode(mem);
4042 }
4043 
4044 //------------------------------cmp--------------------------------------------
4045 uint MergeMemNode::hash() const { return NO_HASH; }
4046 uint MergeMemNode::cmp( const Node &n ) const {
4047   return (&n == this);          // Always fail except on self
4048 }
4049 
4050 //------------------------------Identity---------------------------------------
4051 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4052   // Identity if this merge point does not record any interesting memory
4053   // disambiguations.
4054   Node* base_mem = base_memory();
4055   Node* empty_mem = empty_memory();
4056   if (base_mem != empty_mem) {  // Memory path is not dead?
4057     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4058       Node* mem = in(i);
4059       if (mem != empty_mem && mem != base_mem) {
4060         return this;            // Many memory splits; no change
4061       }
4062     }
4063   }
4064   return base_mem;              // No memory splits; ID on the one true input
4065 }
4066 
4067 //------------------------------Ideal------------------------------------------
4068 // This method is invoked recursively on chains of MergeMem nodes
4069 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4070   // Remove chain'd MergeMems
4071   //
4072   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4073   // relative to the "in(Bot)".  Since we are patching both at the same time,
4074   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4075   // but rewrite each "in(i)" relative to the new "in(Bot)".
4076   Node *progress = NULL;
4077 
4078 
4079   Node* old_base = base_memory();
4080   Node* empty_mem = empty_memory();
4081   if (old_base == empty_mem)
4082     return NULL; // Dead memory path.
4083 
4084   MergeMemNode* old_mbase;
4085   if (old_base != NULL && old_base->is_MergeMem())
4086     old_mbase = old_base->as_MergeMem();
4087   else
4088     old_mbase = NULL;
4089   Node* new_base = old_base;
4090 
4091   // simplify stacked MergeMems in base memory
4092   if (old_mbase)  new_base = old_mbase->base_memory();
4093 
4094   // the base memory might contribute new slices beyond my req()
4095   if (old_mbase)  grow_to_match(old_mbase);
4096 
4097   // Look carefully at the base node if it is a phi.
4098   PhiNode* phi_base;
4099   if (new_base != NULL && new_base->is_Phi())
4100     phi_base = new_base->as_Phi();
4101   else
4102     phi_base = NULL;
4103 
4104   Node*    phi_reg = NULL;
4105   uint     phi_len = (uint)-1;
4106   if (phi_base != NULL && !phi_base->is_copy()) {
4107     // do not examine phi if degraded to a copy
4108     phi_reg = phi_base->region();
4109     phi_len = phi_base->req();
4110     // see if the phi is unfinished
4111     for (uint i = 1; i < phi_len; i++) {
4112       if (phi_base->in(i) == NULL) {
4113         // incomplete phi; do not look at it yet!
4114         phi_reg = NULL;
4115         phi_len = (uint)-1;
4116         break;
4117       }
4118     }
4119   }
4120 
4121   // Note:  We do not call verify_sparse on entry, because inputs
4122   // can normalize to the base_memory via subsume_node or similar
4123   // mechanisms.  This method repairs that damage.
4124 
4125   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4126 
4127   // Look at each slice.
4128   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4129     Node* old_in = in(i);
4130     // calculate the old memory value
4131     Node* old_mem = old_in;
4132     if (old_mem == empty_mem)  old_mem = old_base;
4133     assert(old_mem == memory_at(i), "");
4134 
4135     // maybe update (reslice) the old memory value
4136 
4137     // simplify stacked MergeMems
4138     Node* new_mem = old_mem;
4139     MergeMemNode* old_mmem;
4140     if (old_mem != NULL && old_mem->is_MergeMem())
4141       old_mmem = old_mem->as_MergeMem();
4142     else
4143       old_mmem = NULL;
4144     if (old_mmem == this) {
4145       // This can happen if loops break up and safepoints disappear.
4146       // A merge of BotPtr (default) with a RawPtr memory derived from a
4147       // safepoint can be rewritten to a merge of the same BotPtr with
4148       // the BotPtr phi coming into the loop.  If that phi disappears
4149       // also, we can end up with a self-loop of the mergemem.
4150       // In general, if loops degenerate and memory effects disappear,
4151       // a mergemem can be left looking at itself.  This simply means
4152       // that the mergemem's default should be used, since there is
4153       // no longer any apparent effect on this slice.
4154       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4155       //       from start.  Update the input to TOP.
4156       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4157     }
4158     else if (old_mmem != NULL) {
4159       new_mem = old_mmem->memory_at(i);
4160     }
4161     // else preceding memory was not a MergeMem
4162 
4163     // replace equivalent phis (unfortunately, they do not GVN together)
4164     if (new_mem != NULL && new_mem != new_base &&
4165         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4166       if (new_mem->is_Phi()) {
4167         PhiNode* phi_mem = new_mem->as_Phi();
4168         for (uint i = 1; i < phi_len; i++) {
4169           if (phi_base->in(i) != phi_mem->in(i)) {
4170             phi_mem = NULL;
4171             break;
4172           }
4173         }
4174         if (phi_mem != NULL) {
4175           // equivalent phi nodes; revert to the def
4176           new_mem = new_base;
4177         }
4178       }
4179     }
4180 
4181     // maybe store down a new value
4182     Node* new_in = new_mem;
4183     if (new_in == new_base)  new_in = empty_mem;
4184 
4185     if (new_in != old_in) {
4186       // Warning:  Do not combine this "if" with the previous "if"
4187       // A memory slice might have be be rewritten even if it is semantically
4188       // unchanged, if the base_memory value has changed.
4189       set_req(i, new_in);
4190       progress = this;          // Report progress
4191     }
4192   }
4193 
4194   if (new_base != old_base) {
4195     set_req(Compile::AliasIdxBot, new_base);
4196     // Don't use set_base_memory(new_base), because we need to update du.
4197     assert(base_memory() == new_base, "");
4198     progress = this;
4199   }
4200 
4201   if( base_memory() == this ) {
4202     // a self cycle indicates this memory path is dead
4203     set_req(Compile::AliasIdxBot, empty_mem);
4204   }
4205 
4206   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4207   // Recursion must occur after the self cycle check above
4208   if( base_memory()->is_MergeMem() ) {
4209     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4210     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4211     if( m != NULL && (m->is_top() ||
4212         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4213       // propagate rollup of dead cycle to self
4214       set_req(Compile::AliasIdxBot, empty_mem);
4215     }
4216   }
4217 
4218   if( base_memory() == empty_mem ) {
4219     progress = this;
4220     // Cut inputs during Parse phase only.
4221     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4222     if( !can_reshape ) {
4223       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4224         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4225       }
4226     }
4227   }
4228 
4229   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4230     // Check if PhiNode::Ideal's "Split phis through memory merges"
4231     // transform should be attempted. Look for this->phi->this cycle.
4232     uint merge_width = req();
4233     if (merge_width > Compile::AliasIdxRaw) {
4234       PhiNode* phi = base_memory()->as_Phi();
4235       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4236         if (phi->in(i) == this) {
4237           phase->is_IterGVN()->_worklist.push(phi);
4238           break;
4239         }
4240       }
4241     }
4242   }
4243 
4244   assert(progress || verify_sparse(), "please, no dups of base");
4245   return progress;
4246 }
4247 
4248 //-------------------------set_base_memory-------------------------------------
4249 void MergeMemNode::set_base_memory(Node *new_base) {
4250   Node* empty_mem = empty_memory();
4251   set_req(Compile::AliasIdxBot, new_base);
4252   assert(memory_at(req()) == new_base, "must set default memory");
4253   // Clear out other occurrences of new_base:
4254   if (new_base != empty_mem) {
4255     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4256       if (in(i) == new_base)  set_req(i, empty_mem);
4257     }
4258   }
4259 }
4260 
4261 //------------------------------out_RegMask------------------------------------
4262 const RegMask &MergeMemNode::out_RegMask() const {
4263   return RegMask::Empty;
4264 }
4265 
4266 //------------------------------dump_spec--------------------------------------
4267 #ifndef PRODUCT
4268 void MergeMemNode::dump_spec(outputStream *st) const {
4269   st->print(" {");
4270   Node* base_mem = base_memory();
4271   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4272     Node* mem = memory_at(i);
4273     if (mem == base_mem) { st->print(" -"); continue; }
4274     st->print( " N%d:", mem->_idx );
4275     Compile::current()->get_adr_type(i)->dump_on(st);
4276   }
4277   st->print(" }");
4278 }
4279 #endif // !PRODUCT
4280 
4281 
4282 #ifdef ASSERT
4283 static bool might_be_same(Node* a, Node* b) {
4284   if (a == b)  return true;
4285   if (!(a->is_Phi() || b->is_Phi()))  return false;
4286   // phis shift around during optimization
4287   return true;  // pretty stupid...
4288 }
4289 
4290 // verify a narrow slice (either incoming or outgoing)
4291 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4292   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4293   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4294   if (Node::in_dump())      return;  // muzzle asserts when printing
4295   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4296   assert(n != NULL, "");
4297   // Elide intervening MergeMem's
4298   while (n->is_MergeMem()) {
4299     n = n->as_MergeMem()->memory_at(alias_idx);
4300   }
4301   Compile* C = Compile::current();
4302   const TypePtr* n_adr_type = n->adr_type();
4303   if (n == m->empty_memory()) {
4304     // Implicit copy of base_memory()
4305   } else if (n_adr_type != TypePtr::BOTTOM) {
4306     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4307     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4308   } else {
4309     // A few places like make_runtime_call "know" that VM calls are narrow,
4310     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4311     bool expected_wide_mem = false;
4312     if (n == m->base_memory()) {
4313       expected_wide_mem = true;
4314     } else if (alias_idx == Compile::AliasIdxRaw ||
4315                n == m->memory_at(Compile::AliasIdxRaw)) {
4316       expected_wide_mem = true;
4317     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4318       // memory can "leak through" calls on channels that
4319       // are write-once.  Allow this also.
4320       expected_wide_mem = true;
4321     }
4322     assert(expected_wide_mem, "expected narrow slice replacement");
4323   }
4324 }
4325 #else // !ASSERT
4326 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
4327 #endif
4328 
4329 
4330 //-----------------------------memory_at---------------------------------------
4331 Node* MergeMemNode::memory_at(uint alias_idx) const {
4332   assert(alias_idx >= Compile::AliasIdxRaw ||
4333          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4334          "must avoid base_memory and AliasIdxTop");
4335 
4336   // Otherwise, it is a narrow slice.
4337   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4338   Compile *C = Compile::current();
4339   if (is_empty_memory(n)) {
4340     // the array is sparse; empty slots are the "top" node
4341     n = base_memory();
4342     assert(Node::in_dump()
4343            || n == NULL || n->bottom_type() == Type::TOP
4344            || n->adr_type() == NULL // address is TOP
4345            || n->adr_type() == TypePtr::BOTTOM
4346            || n->adr_type() == TypeRawPtr::BOTTOM
4347            || Compile::current()->AliasLevel() == 0,
4348            "must be a wide memory");
4349     // AliasLevel == 0 if we are organizing the memory states manually.
4350     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4351   } else {
4352     // make sure the stored slice is sane
4353     #ifdef ASSERT
4354     if (is_error_reported() || Node::in_dump()) {
4355     } else if (might_be_same(n, base_memory())) {
4356       // Give it a pass:  It is a mostly harmless repetition of the base.
4357       // This can arise normally from node subsumption during optimization.
4358     } else {
4359       verify_memory_slice(this, alias_idx, n);
4360     }
4361     #endif
4362   }
4363   return n;
4364 }
4365 
4366 //---------------------------set_memory_at-------------------------------------
4367 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4368   verify_memory_slice(this, alias_idx, n);
4369   Node* empty_mem = empty_memory();
4370   if (n == base_memory())  n = empty_mem;  // collapse default
4371   uint need_req = alias_idx+1;
4372   if (req() < need_req) {
4373     if (n == empty_mem)  return;  // already the default, so do not grow me
4374     // grow the sparse array
4375     do {
4376       add_req(empty_mem);
4377     } while (req() < need_req);
4378   }
4379   set_req( alias_idx, n );
4380 }
4381 
4382 
4383 
4384 //--------------------------iteration_setup------------------------------------
4385 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4386   if (other != NULL) {
4387     grow_to_match(other);
4388     // invariant:  the finite support of mm2 is within mm->req()
4389     #ifdef ASSERT
4390     for (uint i = req(); i < other->req(); i++) {
4391       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4392     }
4393     #endif
4394   }
4395   // Replace spurious copies of base_memory by top.
4396   Node* base_mem = base_memory();
4397   if (base_mem != NULL && !base_mem->is_top()) {
4398     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4399       if (in(i) == base_mem)
4400         set_req(i, empty_memory());
4401     }
4402   }
4403 }
4404 
4405 //---------------------------grow_to_match-------------------------------------
4406 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4407   Node* empty_mem = empty_memory();
4408   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4409   // look for the finite support of the other memory
4410   for (uint i = other->req(); --i >= req(); ) {
4411     if (other->in(i) != empty_mem) {
4412       uint new_len = i+1;
4413       while (req() < new_len)  add_req(empty_mem);
4414       break;
4415     }
4416   }
4417 }
4418 
4419 //---------------------------verify_sparse-------------------------------------
4420 #ifndef PRODUCT
4421 bool MergeMemNode::verify_sparse() const {
4422   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4423   Node* base_mem = base_memory();
4424   // The following can happen in degenerate cases, since empty==top.
4425   if (is_empty_memory(base_mem))  return true;
4426   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4427     assert(in(i) != NULL, "sane slice");
4428     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4429   }
4430   return true;
4431 }
4432 
4433 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4434   Node* n;
4435   n = mm->in(idx);
4436   if (mem == n)  return true;  // might be empty_memory()
4437   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4438   if (mem == n)  return true;
4439   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4440     if (mem == n)  return true;
4441     if (n == NULL)  break;
4442   }
4443   return false;
4444 }
4445 #endif // !PRODUCT