1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_TYPE_HPP
  26 #define SHARE_VM_OPTO_TYPE_HPP
  27 
  28 #include "libadt/port.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 // Optimization - Graph Style
  35 
  36 
  37 // This class defines a Type lattice.  The lattice is used in the constant
  38 // propagation algorithms, and for some type-checking of the iloc code.
  39 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  40 // float & double precision constants, sets of data-labels and code-labels.
  41 // The complete lattice is described below.  Subtypes have no relationship to
  42 // up or down in the lattice; that is entirely determined by the behavior of
  43 // the MEET/JOIN functions.
  44 
  45 class Dict;
  46 class Type;
  47 class   TypeD;
  48 class   TypeF;
  49 class   TypeInt;
  50 class   TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectS;
  58 class     TypeVectD;
  59 class     TypeVectX;
  60 class     TypeVectY;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class       TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94 
  95     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  96     RawPtr,                     // Raw (non-oop) pointers
  97     OopPtr,                     // Any and all Java heap entities
  98     InstPtr,                    // Instance pointers (non-array objects)
  99     AryPtr,                     // Array pointers
 100     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 101 
 102     MetadataPtr,                // Generic metadata
 103     KlassPtr,                   // Klass pointers
 104 
 105     Function,                   // Function signature
 106     Abio,                       // Abstract I/O
 107     Return_Address,             // Subroutine return address
 108     Memory,                     // Abstract store
 109     FloatTop,                   // No float value
 110     FloatCon,                   // Floating point constant
 111     FloatBot,                   // Any float value
 112     DoubleTop,                  // No double value
 113     DoubleCon,                  // Double precision constant
 114     DoubleBot,                  // Any double value
 115     Bottom,                     // Bottom of lattice
 116     lastype                     // Bogus ending type (not in lattice)
 117   };
 118 
 119   // Signal values for offsets from a base pointer
 120   enum OFFSET_SIGNALS {
 121     OffsetTop = -2000000000,    // undefined offset
 122     OffsetBot = -2000000001     // any possible offset
 123   };
 124 
 125   // Min and max WIDEN values.
 126   enum WIDEN {
 127     WidenMin = 0,
 128     WidenMax = 3
 129   };
 130 
 131 private:
 132   typedef struct {
 133     const TYPES                dual_type;
 134     const BasicType            basic_type;
 135     const char*                msg;
 136     const bool                 isa_oop;
 137     const int                  ideal_reg;
 138     const relocInfo::relocType reloc;
 139   } TypeInfo;
 140 
 141   // Dictionary of types shared among compilations.
 142   static Dict* _shared_type_dict;
 143   static TypeInfo _type_info[];
 144 
 145   static int uhash( const Type *const t );
 146   // Structural equality check.  Assumes that cmp() has already compared
 147   // the _base types and thus knows it can cast 't' appropriately.
 148   virtual bool eq( const Type *t ) const;
 149 
 150   // Top-level hash-table of types
 151   static Dict *type_dict() {
 152     return Compile::current()->type_dict();
 153   }
 154 
 155   // DUAL operation: reflect around lattice centerline.  Used instead of
 156   // join to ensure my lattice is symmetric up and down.  Dual is computed
 157   // lazily, on demand, and cached in _dual.
 158   const Type *_dual;            // Cached dual value
 159   // Table for efficient dualing of base types
 160   static const TYPES dual_type[lastype];
 161 
 162 protected:
 163   // Each class of type is also identified by its base.
 164   const TYPES _base;            // Enum of Types type
 165 
 166   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 167   // ~Type();                   // Use fast deallocation
 168   const Type *hashcons();       // Hash-cons the type
 169 
 170 public:
 171 
 172   inline void* operator new( size_t x ) {
 173     Compile* compile = Compile::current();
 174     compile->set_type_last_size(x);
 175     void *temp = compile->type_arena()->Amalloc_D(x);
 176     compile->set_type_hwm(temp);
 177     return temp;
 178   }
 179   inline void operator delete( void* ptr ) {
 180     Compile* compile = Compile::current();
 181     compile->type_arena()->Afree(ptr,compile->type_last_size());
 182   }
 183 
 184   // Initialize the type system for a particular compilation.
 185   static void Initialize(Compile* compile);
 186 
 187   // Initialize the types shared by all compilations.
 188   static void Initialize_shared(Compile* compile);
 189 
 190   TYPES base() const {
 191     assert(_base > Bad && _base < lastype, "sanity");
 192     return _base;
 193   }
 194 
 195   // Create a new hash-consd type
 196   static const Type *make(enum TYPES);
 197   // Test for equivalence of types
 198   static int cmp( const Type *const t1, const Type *const t2 );
 199   // Test for higher or equal in lattice
 200   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
 201 
 202   // MEET operation; lower in lattice.
 203   const Type *meet( const Type *t ) const;
 204   // WIDEN: 'widens' for Ints and other range types
 205   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 206   // NARROW: complement for widen, used by pessimistic phases
 207   virtual const Type *narrow( const Type *old ) const { return this; }
 208 
 209   // DUAL operation: reflect around lattice centerline.  Used instead of
 210   // join to ensure my lattice is symmetric up and down.
 211   const Type *dual() const { return _dual; }
 212 
 213   // Compute meet dependent on base type
 214   virtual const Type *xmeet( const Type *t ) const;
 215   virtual const Type *xdual() const;    // Compute dual right now.
 216 
 217   // JOIN operation; higher in lattice.  Done by finding the dual of the
 218   // meet of the dual of the 2 inputs.
 219   const Type *join( const Type *t ) const {
 220     return dual()->meet(t->dual())->dual(); }
 221 
 222   // Modified version of JOIN adapted to the needs Node::Value.
 223   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 224   // Currently, it also works around limitations involving interface types.
 225   virtual const Type *filter( const Type *kills ) const;
 226 
 227 #ifdef ASSERT
 228   // One type is interface, the other is oop
 229   virtual bool interface_vs_oop(const Type *t) const;
 230 #endif
 231 
 232   // Returns true if this pointer points at memory which contains a
 233   // compressed oop references.
 234   bool is_ptr_to_narrowoop() const;
 235   bool is_ptr_to_narrowklass() const;
 236 
 237   // Convenience access
 238   float getf() const;
 239   double getd() const;
 240 
 241   const TypeInt    *is_int() const;
 242   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 243   const TypeLong   *is_long() const;
 244   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 245   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 246   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 247   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 248   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 249   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 250   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 251   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 252   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 253   const TypeVect   *is_vect() const;             // Vector
 254   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 255   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 256   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 257   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 258   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 259   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 260   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 261   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 262   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 263   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 264   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 265   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 266   const TypeInstPtr  *is_instptr() const;        // Instance
 267   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 268   const TypeAryPtr   *is_aryptr() const;         // Array oop
 269 
 270   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 271   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 272   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 273   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 274 
 275   virtual bool      is_finite() const;           // Has a finite value
 276   virtual bool      is_nan()    const;           // Is not a number (NaN)
 277 
 278   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 279   const TypePtr* make_ptr() const;
 280 
 281   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 282   // Asserts if the underlying type is not an oopptr or narrowoop.
 283   const TypeOopPtr* make_oopptr() const;
 284 
 285   // Returns this compressed pointer or the equivalent compressed version
 286   // of this pointer type.
 287   const TypeNarrowOop* make_narrowoop() const;
 288 
 289   // Returns this compressed klass pointer or the equivalent
 290   // compressed version of this pointer type.
 291   const TypeNarrowKlass* make_narrowklass() const;
 292 
 293   // Special test for register pressure heuristic
 294   bool is_floatingpoint() const;        // True if Float or Double base type
 295 
 296   // Do you have memory, directly or through a tuple?
 297   bool has_memory( ) const;
 298 
 299   // TRUE if type is a singleton
 300   virtual bool singleton(void) const;
 301 
 302   // TRUE if type is above the lattice centerline, and is therefore vacuous
 303   virtual bool empty(void) const;
 304 
 305   // Return a hash for this type.  The hash function is public so ConNode
 306   // (constants) can hash on their constant, which is represented by a Type.
 307   virtual int hash() const;
 308 
 309   // Map ideal registers (machine types) to ideal types
 310   static const Type *mreg2type[];
 311 
 312   // Printing, statistics
 313 #ifndef PRODUCT
 314   void         dump_on(outputStream *st) const;
 315   void         dump() const {
 316     dump_on(tty);
 317   }
 318   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 319   static  void dump_stats();
 320 #endif
 321   void typerr(const Type *t) const; // Mixing types error
 322 
 323   // Create basic type
 324   static const Type* get_const_basic_type(BasicType type) {
 325     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 326     return _const_basic_type[type];
 327   }
 328 
 329   // Mapping to the array element's basic type.
 330   BasicType array_element_basic_type() const;
 331 
 332   // Create standard type for a ciType:
 333   static const Type* get_const_type(ciType* type);
 334 
 335   // Create standard zero value:
 336   static const Type* get_zero_type(BasicType type) {
 337     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 338     return _zero_type[type];
 339   }
 340 
 341   // Report if this is a zero value (not top).
 342   bool is_zero_type() const {
 343     BasicType type = basic_type();
 344     if (type == T_VOID || type >= T_CONFLICT)
 345       return false;
 346     else
 347       return (this == _zero_type[type]);
 348   }
 349 
 350   // Convenience common pre-built types.
 351   static const Type *ABIO;
 352   static const Type *BOTTOM;
 353   static const Type *CONTROL;
 354   static const Type *DOUBLE;
 355   static const Type *FLOAT;
 356   static const Type *HALF;
 357   static const Type *MEMORY;
 358   static const Type *MULTI;
 359   static const Type *RETURN_ADDRESS;
 360   static const Type *TOP;
 361 
 362   // Mapping from compiler type to VM BasicType
 363   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 364   int ideal_reg() const              { return _type_info[_base].ideal_reg; }
 365   const char* msg() const            { return _type_info[_base].msg; }
 366   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 367   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 368 
 369   // Mapping from CI type system to compiler type:
 370   static const Type* get_typeflow_type(ciType* type);
 371 
 372 private:
 373   // support arrays
 374   static const BasicType _basic_type[];
 375   static const Type*        _zero_type[T_CONFLICT+1];
 376   static const Type* _const_basic_type[T_CONFLICT+1];
 377 };
 378 
 379 //------------------------------TypeF------------------------------------------
 380 // Class of Float-Constant Types.
 381 class TypeF : public Type {
 382   TypeF( float f ) : Type(FloatCon), _f(f) {};
 383 public:
 384   virtual bool eq( const Type *t ) const;
 385   virtual int  hash() const;             // Type specific hashing
 386   virtual bool singleton(void) const;    // TRUE if type is a singleton
 387   virtual bool empty(void) const;        // TRUE if type is vacuous
 388 public:
 389   const float _f;               // Float constant
 390 
 391   static const TypeF *make(float f);
 392 
 393   virtual bool        is_finite() const;  // Has a finite value
 394   virtual bool        is_nan()    const;  // Is not a number (NaN)
 395 
 396   virtual const Type *xmeet( const Type *t ) const;
 397   virtual const Type *xdual() const;    // Compute dual right now.
 398   // Convenience common pre-built types.
 399   static const TypeF *ZERO; // positive zero only
 400   static const TypeF *ONE;
 401 #ifndef PRODUCT
 402   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 403 #endif
 404 };
 405 
 406 //------------------------------TypeD------------------------------------------
 407 // Class of Double-Constant Types.
 408 class TypeD : public Type {
 409   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 410 public:
 411   virtual bool eq( const Type *t ) const;
 412   virtual int  hash() const;             // Type specific hashing
 413   virtual bool singleton(void) const;    // TRUE if type is a singleton
 414   virtual bool empty(void) const;        // TRUE if type is vacuous
 415 public:
 416   const double _d;              // Double constant
 417 
 418   static const TypeD *make(double d);
 419 
 420   virtual bool        is_finite() const;  // Has a finite value
 421   virtual bool        is_nan()    const;  // Is not a number (NaN)
 422 
 423   virtual const Type *xmeet( const Type *t ) const;
 424   virtual const Type *xdual() const;    // Compute dual right now.
 425   // Convenience common pre-built types.
 426   static const TypeD *ZERO; // positive zero only
 427   static const TypeD *ONE;
 428 #ifndef PRODUCT
 429   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 430 #endif
 431 };
 432 
 433 //------------------------------TypeInt----------------------------------------
 434 // Class of integer ranges, the set of integers between a lower bound and an
 435 // upper bound, inclusive.
 436 class TypeInt : public Type {
 437   TypeInt( jint lo, jint hi, int w );
 438 public:
 439   virtual bool eq( const Type *t ) const;
 440   virtual int  hash() const;             // Type specific hashing
 441   virtual bool singleton(void) const;    // TRUE if type is a singleton
 442   virtual bool empty(void) const;        // TRUE if type is vacuous
 443 public:
 444   const jint _lo, _hi;          // Lower bound, upper bound
 445   const short _widen;           // Limit on times we widen this sucker
 446 
 447   static const TypeInt *make(jint lo);
 448   // must always specify w
 449   static const TypeInt *make(jint lo, jint hi, int w);
 450 
 451   // Check for single integer
 452   int is_con() const { return _lo==_hi; }
 453   bool is_con(int i) const { return is_con() && _lo == i; }
 454   jint get_con() const { assert( is_con(), "" );  return _lo; }
 455 
 456   virtual bool        is_finite() const;  // Has a finite value
 457 
 458   virtual const Type *xmeet( const Type *t ) const;
 459   virtual const Type *xdual() const;    // Compute dual right now.
 460   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 461   virtual const Type *narrow( const Type *t ) const;
 462   // Do not kill _widen bits.
 463   virtual const Type *filter( const Type *kills ) const;
 464   // Convenience common pre-built types.
 465   static const TypeInt *MINUS_1;
 466   static const TypeInt *ZERO;
 467   static const TypeInt *ONE;
 468   static const TypeInt *BOOL;
 469   static const TypeInt *CC;
 470   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 471   static const TypeInt *CC_GT;  // [1]   == ONE
 472   static const TypeInt *CC_EQ;  // [0]   == ZERO
 473   static const TypeInt *CC_LE;  // [-1,0]
 474   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 475   static const TypeInt *BYTE;
 476   static const TypeInt *UBYTE;
 477   static const TypeInt *CHAR;
 478   static const TypeInt *SHORT;
 479   static const TypeInt *POS;
 480   static const TypeInt *POS1;
 481   static const TypeInt *INT;
 482   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 483 #ifndef PRODUCT
 484   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 485 #endif
 486 };
 487 
 488 
 489 //------------------------------TypeLong---------------------------------------
 490 // Class of long integer ranges, the set of integers between a lower bound and
 491 // an upper bound, inclusive.
 492 class TypeLong : public Type {
 493   TypeLong( jlong lo, jlong hi, int w );
 494 public:
 495   virtual bool eq( const Type *t ) const;
 496   virtual int  hash() const;             // Type specific hashing
 497   virtual bool singleton(void) const;    // TRUE if type is a singleton
 498   virtual bool empty(void) const;        // TRUE if type is vacuous
 499 public:
 500   const jlong _lo, _hi;         // Lower bound, upper bound
 501   const short _widen;           // Limit on times we widen this sucker
 502 
 503   static const TypeLong *make(jlong lo);
 504   // must always specify w
 505   static const TypeLong *make(jlong lo, jlong hi, int w);
 506 
 507   // Check for single integer
 508   int is_con() const { return _lo==_hi; }
 509   bool is_con(int i) const { return is_con() && _lo == i; }
 510   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 511 
 512   virtual bool        is_finite() const;  // Has a finite value
 513 
 514   virtual const Type *xmeet( const Type *t ) const;
 515   virtual const Type *xdual() const;    // Compute dual right now.
 516   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 517   virtual const Type *narrow( const Type *t ) const;
 518   // Do not kill _widen bits.
 519   virtual const Type *filter( const Type *kills ) const;
 520   // Convenience common pre-built types.
 521   static const TypeLong *MINUS_1;
 522   static const TypeLong *ZERO;
 523   static const TypeLong *ONE;
 524   static const TypeLong *POS;
 525   static const TypeLong *LONG;
 526   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 527   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 528 #ifndef PRODUCT
 529   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 530 #endif
 531 };
 532 
 533 //------------------------------TypeTuple--------------------------------------
 534 // Class of Tuple Types, essentially type collections for function signatures
 535 // and class layouts.  It happens to also be a fast cache for the HotSpot
 536 // signature types.
 537 class TypeTuple : public Type {
 538   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 539 public:
 540   virtual bool eq( const Type *t ) const;
 541   virtual int  hash() const;             // Type specific hashing
 542   virtual bool singleton(void) const;    // TRUE if type is a singleton
 543   virtual bool empty(void) const;        // TRUE if type is vacuous
 544 
 545 public:
 546   const uint          _cnt;              // Count of fields
 547   const Type ** const _fields;           // Array of field types
 548 
 549   // Accessors:
 550   uint cnt() const { return _cnt; }
 551   const Type* field_at(uint i) const {
 552     assert(i < _cnt, "oob");
 553     return _fields[i];
 554   }
 555   void set_field_at(uint i, const Type* t) {
 556     assert(i < _cnt, "oob");
 557     _fields[i] = t;
 558   }
 559 
 560   static const TypeTuple *make( uint cnt, const Type **fields );
 561   static const TypeTuple *make_range(ciSignature *sig);
 562   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 563 
 564   // Subroutine call type with space allocated for argument types
 565   static const Type **fields( uint arg_cnt );
 566 
 567   virtual const Type *xmeet( const Type *t ) const;
 568   virtual const Type *xdual() const;    // Compute dual right now.
 569   // Convenience common pre-built types.
 570   static const TypeTuple *IFBOTH;
 571   static const TypeTuple *IFFALSE;
 572   static const TypeTuple *IFTRUE;
 573   static const TypeTuple *IFNEITHER;
 574   static const TypeTuple *LOOPBODY;
 575   static const TypeTuple *MEMBAR;
 576   static const TypeTuple *STORECONDITIONAL;
 577   static const TypeTuple *START_I2C;
 578   static const TypeTuple *INT_PAIR;
 579   static const TypeTuple *LONG_PAIR;
 580 #ifndef PRODUCT
 581   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 582 #endif
 583 };
 584 
 585 //------------------------------TypeAry----------------------------------------
 586 // Class of Array Types
 587 class TypeAry : public Type {
 588   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
 589     _elem(elem), _size(size) {}
 590 public:
 591   virtual bool eq( const Type *t ) const;
 592   virtual int  hash() const;             // Type specific hashing
 593   virtual bool singleton(void) const;    // TRUE if type is a singleton
 594   virtual bool empty(void) const;        // TRUE if type is vacuous
 595 
 596 private:
 597   const Type *_elem;            // Element type of array
 598   const TypeInt *_size;         // Elements in array
 599   friend class TypeAryPtr;
 600 
 601 public:
 602   static const TypeAry *make(  const Type *elem, const TypeInt *size);
 603 
 604   virtual const Type *xmeet( const Type *t ) const;
 605   virtual const Type *xdual() const;    // Compute dual right now.
 606   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 607 #ifdef ASSERT
 608   // One type is interface, the other is oop
 609   virtual bool interface_vs_oop(const Type *t) const;
 610 #endif
 611 #ifndef PRODUCT
 612   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 613 #endif
 614 };
 615 
 616 //------------------------------TypeVect---------------------------------------
 617 // Class of Vector Types
 618 class TypeVect : public Type {
 619   const Type*   _elem;  // Vector's element type
 620   const uint  _length;  // Elements in vector (power of 2)
 621 
 622 protected:
 623   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 624     _elem(elem), _length(length) {}
 625 
 626 public:
 627   const Type* element_type() const { return _elem; }
 628   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 629   uint length() const { return _length; }
 630   uint length_in_bytes() const {
 631    return _length * type2aelembytes(element_basic_type());
 632   }
 633 
 634   virtual bool eq(const Type *t) const;
 635   virtual int  hash() const;             // Type specific hashing
 636   virtual bool singleton(void) const;    // TRUE if type is a singleton
 637   virtual bool empty(void) const;        // TRUE if type is vacuous
 638 
 639   static const TypeVect *make(const BasicType elem_bt, uint length) {
 640     // Use bottom primitive type.
 641     return make(get_const_basic_type(elem_bt), length);
 642   }
 643   // Used directly by Replicate nodes to construct singleton vector.
 644   static const TypeVect *make(const Type* elem, uint length);
 645 
 646   virtual const Type *xmeet( const Type *t) const;
 647   virtual const Type *xdual() const;     // Compute dual right now.
 648 
 649   static const TypeVect *VECTS;
 650   static const TypeVect *VECTD;
 651   static const TypeVect *VECTX;
 652   static const TypeVect *VECTY;
 653 
 654 #ifndef PRODUCT
 655   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 656 #endif
 657 };
 658 
 659 class TypeVectS : public TypeVect {
 660   friend class TypeVect;
 661   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 662 };
 663 
 664 class TypeVectD : public TypeVect {
 665   friend class TypeVect;
 666   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 667 };
 668 
 669 class TypeVectX : public TypeVect {
 670   friend class TypeVect;
 671   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 672 };
 673 
 674 class TypeVectY : public TypeVect {
 675   friend class TypeVect;
 676   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 677 };
 678 
 679 //------------------------------TypePtr----------------------------------------
 680 // Class of machine Pointer Types: raw data, instances or arrays.
 681 // If the _base enum is AnyPtr, then this refers to all of the above.
 682 // Otherwise the _base will indicate which subset of pointers is affected,
 683 // and the class will be inherited from.
 684 class TypePtr : public Type {
 685   friend class TypeNarrowPtr;
 686 public:
 687   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 688 protected:
 689   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
 690   virtual bool eq( const Type *t ) const;
 691   virtual int  hash() const;             // Type specific hashing
 692   static const PTR ptr_meet[lastPTR][lastPTR];
 693   static const PTR ptr_dual[lastPTR];
 694   static const char * const ptr_msg[lastPTR];
 695 
 696 public:
 697   const int _offset;            // Offset into oop, with TOP & BOT
 698   const PTR _ptr;               // Pointer equivalence class
 699 
 700   const int offset() const { return _offset; }
 701   const PTR ptr()    const { return _ptr; }
 702 
 703   static const TypePtr *make( TYPES t, PTR ptr, int offset );
 704 
 705   // Return a 'ptr' version of this type
 706   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 707 
 708   virtual intptr_t get_con() const;
 709 
 710   int xadd_offset( intptr_t offset ) const;
 711   virtual const TypePtr *add_offset( intptr_t offset ) const;
 712 
 713   virtual bool singleton(void) const;    // TRUE if type is a singleton
 714   virtual bool empty(void) const;        // TRUE if type is vacuous
 715   virtual const Type *xmeet( const Type *t ) const;
 716   int meet_offset( int offset ) const;
 717   int dual_offset( ) const;
 718   virtual const Type *xdual() const;    // Compute dual right now.
 719 
 720   // meet, dual and join over pointer equivalence sets
 721   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 722   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 723 
 724   // This is textually confusing unless one recalls that
 725   // join(t) == dual()->meet(t->dual())->dual().
 726   PTR join_ptr( const PTR in_ptr ) const {
 727     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 728   }
 729 
 730   // Tests for relation to centerline of type lattice:
 731   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 732   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 733   // Convenience common pre-built types.
 734   static const TypePtr *NULL_PTR;
 735   static const TypePtr *NOTNULL;
 736   static const TypePtr *BOTTOM;
 737 #ifndef PRODUCT
 738   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 739 #endif
 740 };
 741 
 742 //------------------------------TypeRawPtr-------------------------------------
 743 // Class of raw pointers, pointers to things other than Oops.  Examples
 744 // include the stack pointer, top of heap, card-marking area, handles, etc.
 745 class TypeRawPtr : public TypePtr {
 746 protected:
 747   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 748 public:
 749   virtual bool eq( const Type *t ) const;
 750   virtual int  hash() const;     // Type specific hashing
 751 
 752   const address _bits;          // Constant value, if applicable
 753 
 754   static const TypeRawPtr *make( PTR ptr );
 755   static const TypeRawPtr *make( address bits );
 756 
 757   // Return a 'ptr' version of this type
 758   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 759 
 760   virtual intptr_t get_con() const;
 761 
 762   virtual const TypePtr *add_offset( intptr_t offset ) const;
 763 
 764   virtual const Type *xmeet( const Type *t ) const;
 765   virtual const Type *xdual() const;    // Compute dual right now.
 766   // Convenience common pre-built types.
 767   static const TypeRawPtr *BOTTOM;
 768   static const TypeRawPtr *NOTNULL;
 769 #ifndef PRODUCT
 770   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 771 #endif
 772 };
 773 
 774 //------------------------------TypeOopPtr-------------------------------------
 775 // Some kind of oop (Java pointer), either klass or instance or array.
 776 class TypeOopPtr : public TypePtr {
 777 protected:
 778   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 779 public:
 780   virtual bool eq( const Type *t ) const;
 781   virtual int  hash() const;             // Type specific hashing
 782   virtual bool singleton(void) const;    // TRUE if type is a singleton
 783   enum {
 784    InstanceTop = -1,   // undefined instance
 785    InstanceBot = 0     // any possible instance
 786   };
 787 protected:
 788 
 789   // Oop is NULL, unless this is a constant oop.
 790   ciObject*     _const_oop;   // Constant oop
 791   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 792   ciKlass*      _klass;       // Klass object
 793   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 794   bool          _klass_is_exact;
 795   bool          _is_ptr_to_narrowoop;
 796   bool          _is_ptr_to_narrowklass;
 797 
 798   // If not InstanceTop or InstanceBot, indicates that this is
 799   // a particular instance of this type which is distinct.
 800   // This is the the node index of the allocation node creating this instance.
 801   int           _instance_id;
 802 
 803   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
 804 
 805   int dual_instance_id() const;
 806   int meet_instance_id(int uid) const;
 807 
 808 public:
 809   // Creates a type given a klass. Correctly handles multi-dimensional arrays
 810   // Respects UseUniqueSubclasses.
 811   // If the klass is final, the resulting type will be exact.
 812   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
 813     return make_from_klass_common(klass, true, false);
 814   }
 815   // Same as before, but will produce an exact type, even if
 816   // the klass is not final, as long as it has exactly one implementation.
 817   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 818     return make_from_klass_common(klass, true, true);
 819   }
 820   // Same as before, but does not respects UseUniqueSubclasses.
 821   // Use this only for creating array element types.
 822   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
 823     return make_from_klass_common(klass, false, false);
 824   }
 825   // Creates a singleton type given an object.
 826   // If the object cannot be rendered as a constant,
 827   // may return a non-singleton type.
 828   // If require_constant, produce a NULL if a singleton is not possible.
 829   static const TypeOopPtr* make_from_constant(ciObject* o, bool require_constant = false);
 830 
 831   // Make a generic (unclassed) pointer to an oop.
 832   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id);
 833 
 834   ciObject* const_oop()    const { return _const_oop; }
 835   virtual ciKlass* klass() const { return _klass;     }
 836   bool klass_is_exact()    const { return _klass_is_exact; }
 837 
 838   // Returns true if this pointer points at memory which contains a
 839   // compressed oop references.
 840   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
 841   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
 842 
 843   bool is_known_instance()       const { return _instance_id > 0; }
 844   int  instance_id()             const { return _instance_id; }
 845   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
 846 
 847   virtual intptr_t get_con() const;
 848 
 849   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 850 
 851   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 852 
 853   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 854 
 855   // corresponding pointer to klass, for a given instance
 856   const TypeKlassPtr* as_klass_type() const;
 857 
 858   virtual const TypePtr *add_offset( intptr_t offset ) const;
 859 
 860   virtual const Type *xmeet( const Type *t ) const;
 861   virtual const Type *xdual() const;    // Compute dual right now.
 862 
 863   // Do not allow interface-vs.-noninterface joins to collapse to top.
 864   virtual const Type *filter( const Type *kills ) const;
 865 
 866   // Convenience common pre-built type.
 867   static const TypeOopPtr *BOTTOM;
 868 #ifndef PRODUCT
 869   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 870 #endif
 871 };
 872 
 873 //------------------------------TypeInstPtr------------------------------------
 874 // Class of Java object pointers, pointing either to non-array Java instances
 875 // or to a Klass* (including array klasses).
 876 class TypeInstPtr : public TypeOopPtr {
 877   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
 878   virtual bool eq( const Type *t ) const;
 879   virtual int  hash() const;             // Type specific hashing
 880 
 881   ciSymbol*  _name;        // class name
 882 
 883  public:
 884   ciSymbol* name()         const { return _name; }
 885 
 886   bool  is_loaded() const { return _klass->is_loaded(); }
 887 
 888   // Make a pointer to a constant oop.
 889   static const TypeInstPtr *make(ciObject* o) {
 890     return make(TypePtr::Constant, o->klass(), true, o, 0);
 891   }
 892   // Make a pointer to a constant oop with offset.
 893   static const TypeInstPtr *make(ciObject* o, int offset) {
 894     return make(TypePtr::Constant, o->klass(), true, o, offset);
 895   }
 896 
 897   // Make a pointer to some value of type klass.
 898   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
 899     return make(ptr, klass, false, NULL, 0);
 900   }
 901 
 902   // Make a pointer to some non-polymorphic value of exactly type klass.
 903   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
 904     return make(ptr, klass, true, NULL, 0);
 905   }
 906 
 907   // Make a pointer to some value of type klass with offset.
 908   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
 909     return make(ptr, klass, false, NULL, offset);
 910   }
 911 
 912   // Make a pointer to an oop.
 913   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
 914 
 915   // If this is a java.lang.Class constant, return the type for it or NULL.
 916   // Pass to Type::get_const_type to turn it to a type, which will usually
 917   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
 918   ciType* java_mirror_type() const;
 919 
 920   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 921 
 922   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 923 
 924   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 925 
 926   virtual const TypePtr *add_offset( intptr_t offset ) const;
 927 
 928   virtual const Type *xmeet( const Type *t ) const;
 929   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
 930   virtual const Type *xdual() const;    // Compute dual right now.
 931 
 932   // Convenience common pre-built types.
 933   static const TypeInstPtr *NOTNULL;
 934   static const TypeInstPtr *BOTTOM;
 935   static const TypeInstPtr *MIRROR;
 936   static const TypeInstPtr *MARK;
 937   static const TypeInstPtr *KLASS;
 938 #ifndef PRODUCT
 939   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
 940 #endif
 941 };
 942 
 943 //------------------------------TypeAryPtr-------------------------------------
 944 // Class of Java array pointers
 945 class TypeAryPtr : public TypeOopPtr {
 946   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {
 947 #ifdef ASSERT
 948     if (k != NULL) {
 949       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
 950       ciKlass* ck = compute_klass(true);
 951       if (k != ck) {
 952         this->dump(); tty->cr();
 953         tty->print(" k: ");
 954         k->print(); tty->cr();
 955         tty->print("ck: ");
 956         if (ck != NULL) ck->print();
 957         else tty->print("<NULL>");
 958         tty->cr();
 959         assert(false, "unexpected TypeAryPtr::_klass");
 960       }
 961     }
 962 #endif
 963   }
 964   virtual bool eq( const Type *t ) const;
 965   virtual int hash() const;     // Type specific hashing
 966   const TypeAry *_ary;          // Array we point into
 967 
 968   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
 969 
 970 public:
 971   // Accessors
 972   ciKlass* klass() const;
 973   const TypeAry* ary() const  { return _ary; }
 974   const Type*    elem() const { return _ary->_elem; }
 975   const TypeInt* size() const { return _ary->_size; }
 976 
 977   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 978   // Constant pointer to array
 979   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
 980 
 981   // Return a 'ptr' version of this type
 982   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 983 
 984   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
 985 
 986   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
 987 
 988   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
 989   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
 990 
 991   virtual bool empty(void) const;        // TRUE if type is vacuous
 992   virtual const TypePtr *add_offset( intptr_t offset ) const;
 993 
 994   virtual const Type *xmeet( const Type *t ) const;
 995   virtual const Type *xdual() const;    // Compute dual right now.
 996 
 997   // Convenience common pre-built types.
 998   static const TypeAryPtr *RANGE;
 999   static const TypeAryPtr *OOPS;
1000   static const TypeAryPtr *NARROWOOPS;
1001   static const TypeAryPtr *BYTES;
1002   static const TypeAryPtr *SHORTS;
1003   static const TypeAryPtr *CHARS;
1004   static const TypeAryPtr *INTS;
1005   static const TypeAryPtr *LONGS;
1006   static const TypeAryPtr *FLOATS;
1007   static const TypeAryPtr *DOUBLES;
1008   // selects one of the above:
1009   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1010     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1011     return _array_body_type[elem];
1012   }
1013   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1014   // sharpen the type of an int which is used as an array size
1015 #ifdef ASSERT
1016   // One type is interface, the other is oop
1017   virtual bool interface_vs_oop(const Type *t) const;
1018 #endif
1019 #ifndef PRODUCT
1020   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1021 #endif
1022 };
1023 
1024 //------------------------------TypeMetadataPtr-------------------------------------
1025 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1026 class TypeMetadataPtr : public TypePtr {
1027 protected:
1028   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1029 public:
1030   virtual bool eq( const Type *t ) const;
1031   virtual int  hash() const;             // Type specific hashing
1032   virtual bool singleton(void) const;    // TRUE if type is a singleton
1033 
1034 private:
1035   ciMetadata*   _metadata;
1036 
1037 public:
1038   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1039 
1040   static const TypeMetadataPtr* make(ciMethod* m);
1041   static const TypeMetadataPtr* make(ciMethodData* m);
1042 
1043   ciMetadata* metadata() const { return _metadata; }
1044 
1045   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1046 
1047   virtual const TypePtr *add_offset( intptr_t offset ) const;
1048 
1049   virtual const Type *xmeet( const Type *t ) const;
1050   virtual const Type *xdual() const;    // Compute dual right now.
1051 
1052   virtual intptr_t get_con() const;
1053 
1054   // Do not allow interface-vs.-noninterface joins to collapse to top.
1055   virtual const Type *filter( const Type *kills ) const;
1056 
1057   // Convenience common pre-built types.
1058   static const TypeMetadataPtr *BOTTOM;
1059 
1060 #ifndef PRODUCT
1061   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1062 #endif
1063 };
1064 
1065 //------------------------------TypeKlassPtr-----------------------------------
1066 // Class of Java Klass pointers
1067 class TypeKlassPtr : public TypePtr {
1068   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1069 
1070  public:
1071   virtual bool eq( const Type *t ) const;
1072   virtual int hash() const;             // Type specific hashing
1073   virtual bool singleton(void) const;    // TRUE if type is a singleton
1074  private:
1075 
1076   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1077 
1078   ciKlass* _klass;
1079 
1080   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1081   bool          _klass_is_exact;
1082 
1083 public:
1084   ciSymbol* name()  const { return klass()->name(); }
1085 
1086   ciKlass* klass() const { return  _klass; }
1087   bool klass_is_exact()    const { return _klass_is_exact; }
1088 
1089   bool  is_loaded() const { return klass()->is_loaded(); }
1090 
1091   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1092   // Respects UseUniqueSubclasses.
1093   // If the klass is final, the resulting type will be exact.
1094   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1095     return make_from_klass_common(klass, true, false);
1096   }
1097   // Same as before, but will produce an exact type, even if
1098   // the klass is not final, as long as it has exactly one implementation.
1099   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1100     return make_from_klass_common(klass, true, true);
1101   }
1102   // Same as before, but does not respects UseUniqueSubclasses.
1103   // Use this only for creating array element types.
1104   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1105     return make_from_klass_common(klass, false, false);
1106   }
1107 
1108   // Make a generic (unclassed) pointer to metadata.
1109   static const TypeKlassPtr* make(PTR ptr, int offset);
1110 
1111   // ptr to klass 'k'
1112   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1113   // ptr to klass 'k' with offset
1114   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1115   // ptr to klass 'k' or sub-klass
1116   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1117 
1118   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1119 
1120   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1121 
1122   // corresponding pointer to instance, for a given class
1123   const TypeOopPtr* as_instance_type() const;
1124 
1125   virtual const TypePtr *add_offset( intptr_t offset ) const;
1126   virtual const Type    *xmeet( const Type *t ) const;
1127   virtual const Type    *xdual() const;      // Compute dual right now.
1128 
1129   virtual intptr_t get_con() const;
1130 
1131   // Convenience common pre-built types.
1132   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1133   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1134 #ifndef PRODUCT
1135   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1136 #endif
1137 };
1138 
1139 class TypeNarrowPtr : public Type {
1140 protected:
1141   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1142 
1143   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): _ptrtype(ptrtype),
1144                                                   Type(t) {
1145     assert(ptrtype->offset() == 0 ||
1146            ptrtype->offset() == OffsetBot ||
1147            ptrtype->offset() == OffsetTop, "no real offsets");
1148   }
1149 
1150   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1151   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1152   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1153   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1154 public:
1155   virtual bool eq( const Type *t ) const;
1156   virtual int  hash() const;             // Type specific hashing
1157   virtual bool singleton(void) const;    // TRUE if type is a singleton
1158 
1159   virtual const Type *xmeet( const Type *t ) const;
1160   virtual const Type *xdual() const;    // Compute dual right now.
1161 
1162   virtual intptr_t get_con() const;
1163 
1164   // Do not allow interface-vs.-noninterface joins to collapse to top.
1165   virtual const Type *filter( const Type *kills ) const;
1166 
1167   virtual bool empty(void) const;        // TRUE if type is vacuous
1168 
1169   // returns the equivalent ptr type for this compressed pointer
1170   const TypePtr *get_ptrtype() const {
1171     return _ptrtype;
1172   }
1173 
1174 #ifndef PRODUCT
1175   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1176 #endif
1177 };
1178 
1179 //------------------------------TypeNarrowOop----------------------------------
1180 // A compressed reference to some kind of Oop.  This type wraps around
1181 // a preexisting TypeOopPtr and forwards most of it's operations to
1182 // the underlying type.  It's only real purpose is to track the
1183 // oopness of the compressed oop value when we expose the conversion
1184 // between the normal and the compressed form.
1185 class TypeNarrowOop : public TypeNarrowPtr {
1186 protected:
1187   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1188   }
1189 
1190   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1191     return t->isa_narrowoop();
1192   }
1193 
1194   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1195     return t->is_narrowoop();
1196   }
1197 
1198   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1199     return new TypeNarrowOop(t);
1200   }
1201 
1202   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1203     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1204   }
1205 
1206 public:
1207 
1208   static const TypeNarrowOop *make( const TypePtr* type);
1209 
1210   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1211     return make(TypeOopPtr::make_from_constant(con, require_constant));
1212   }
1213 
1214   static const TypeNarrowOop *BOTTOM;
1215   static const TypeNarrowOop *NULL_PTR;
1216 
1217 #ifndef PRODUCT
1218   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1219 #endif
1220 };
1221 
1222 //------------------------------TypeNarrowKlass----------------------------------
1223 // A compressed reference to klass pointer.  This type wraps around a
1224 // preexisting TypeKlassPtr and forwards most of it's operations to
1225 // the underlying type.
1226 class TypeNarrowKlass : public TypeNarrowPtr {
1227 protected:
1228   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1229   }
1230 
1231   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1232     return t->isa_narrowklass();
1233   }
1234 
1235   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1236     return t->is_narrowklass();
1237   }
1238 
1239   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1240     return new TypeNarrowKlass(t);
1241   }
1242 
1243   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1244     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1245   }
1246 
1247 public:
1248   static const TypeNarrowKlass *make( const TypePtr* type);
1249 
1250   // static const TypeNarrowKlass *BOTTOM;
1251   static const TypeNarrowKlass *NULL_PTR;
1252 
1253 #ifndef PRODUCT
1254   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1255 #endif
1256 };
1257 
1258 //------------------------------TypeFunc---------------------------------------
1259 // Class of Array Types
1260 class TypeFunc : public Type {
1261   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1262   virtual bool eq( const Type *t ) const;
1263   virtual int  hash() const;             // Type specific hashing
1264   virtual bool singleton(void) const;    // TRUE if type is a singleton
1265   virtual bool empty(void) const;        // TRUE if type is vacuous
1266 public:
1267   // Constants are shared among ADLC and VM
1268   enum { Control    = AdlcVMDeps::Control,
1269          I_O        = AdlcVMDeps::I_O,
1270          Memory     = AdlcVMDeps::Memory,
1271          FramePtr   = AdlcVMDeps::FramePtr,
1272          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1273          Parms      = AdlcVMDeps::Parms
1274   };
1275 
1276   const TypeTuple* const _domain;     // Domain of inputs
1277   const TypeTuple* const _range;      // Range of results
1278 
1279   // Accessors:
1280   const TypeTuple* domain() const { return _domain; }
1281   const TypeTuple* range()  const { return _range; }
1282 
1283   static const TypeFunc *make(ciMethod* method);
1284   static const TypeFunc *make(ciSignature signature, const Type* extra);
1285   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1286 
1287   virtual const Type *xmeet( const Type *t ) const;
1288   virtual const Type *xdual() const;    // Compute dual right now.
1289 
1290   BasicType return_type() const;
1291 
1292 #ifndef PRODUCT
1293   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1294 #endif
1295   // Convenience common pre-built types.
1296 };
1297 
1298 //------------------------------accessors--------------------------------------
1299 inline bool Type::is_ptr_to_narrowoop() const {
1300 #ifdef _LP64
1301   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1302 #else
1303   return false;
1304 #endif
1305 }
1306 
1307 inline bool Type::is_ptr_to_narrowklass() const {
1308 #ifdef _LP64
1309   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1310 #else
1311   return false;
1312 #endif
1313 }
1314 
1315 inline float Type::getf() const {
1316   assert( _base == FloatCon, "Not a FloatCon" );
1317   return ((TypeF*)this)->_f;
1318 }
1319 
1320 inline double Type::getd() const {
1321   assert( _base == DoubleCon, "Not a DoubleCon" );
1322   return ((TypeD*)this)->_d;
1323 }
1324 
1325 inline const TypeInt *Type::is_int() const {
1326   assert( _base == Int, "Not an Int" );
1327   return (TypeInt*)this;
1328 }
1329 
1330 inline const TypeInt *Type::isa_int() const {
1331   return ( _base == Int ? (TypeInt*)this : NULL);
1332 }
1333 
1334 inline const TypeLong *Type::is_long() const {
1335   assert( _base == Long, "Not a Long" );
1336   return (TypeLong*)this;
1337 }
1338 
1339 inline const TypeLong *Type::isa_long() const {
1340   return ( _base == Long ? (TypeLong*)this : NULL);
1341 }
1342 
1343 inline const TypeF *Type::isa_float() const {
1344   return ((_base == FloatTop ||
1345            _base == FloatCon ||
1346            _base == FloatBot) ? (TypeF*)this : NULL);
1347 }
1348 
1349 inline const TypeF *Type::is_float_constant() const {
1350   assert( _base == FloatCon, "Not a Float" );
1351   return (TypeF*)this;
1352 }
1353 
1354 inline const TypeF *Type::isa_float_constant() const {
1355   return ( _base == FloatCon ? (TypeF*)this : NULL);
1356 }
1357 
1358 inline const TypeD *Type::isa_double() const {
1359   return ((_base == DoubleTop ||
1360            _base == DoubleCon ||
1361            _base == DoubleBot) ? (TypeD*)this : NULL);
1362 }
1363 
1364 inline const TypeD *Type::is_double_constant() const {
1365   assert( _base == DoubleCon, "Not a Double" );
1366   return (TypeD*)this;
1367 }
1368 
1369 inline const TypeD *Type::isa_double_constant() const {
1370   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1371 }
1372 
1373 inline const TypeTuple *Type::is_tuple() const {
1374   assert( _base == Tuple, "Not a Tuple" );
1375   return (TypeTuple*)this;
1376 }
1377 
1378 inline const TypeAry *Type::is_ary() const {
1379   assert( _base == Array , "Not an Array" );
1380   return (TypeAry*)this;
1381 }
1382 
1383 inline const TypeVect *Type::is_vect() const {
1384   assert( _base >= VectorS && _base <= VectorY, "Not a Vector" );
1385   return (TypeVect*)this;
1386 }
1387 
1388 inline const TypeVect *Type::isa_vect() const {
1389   return (_base >= VectorS && _base <= VectorY) ? (TypeVect*)this : NULL;
1390 }
1391 
1392 inline const TypePtr *Type::is_ptr() const {
1393   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1394   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1395   return (TypePtr*)this;
1396 }
1397 
1398 inline const TypePtr *Type::isa_ptr() const {
1399   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1400   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1401 }
1402 
1403 inline const TypeOopPtr *Type::is_oopptr() const {
1404   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1405   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1406   return (TypeOopPtr*)this;
1407 }
1408 
1409 inline const TypeOopPtr *Type::isa_oopptr() const {
1410   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1411   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1412 }
1413 
1414 inline const TypeRawPtr *Type::isa_rawptr() const {
1415   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1416 }
1417 
1418 inline const TypeRawPtr *Type::is_rawptr() const {
1419   assert( _base == RawPtr, "Not a raw pointer" );
1420   return (TypeRawPtr*)this;
1421 }
1422 
1423 inline const TypeInstPtr *Type::isa_instptr() const {
1424   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1425 }
1426 
1427 inline const TypeInstPtr *Type::is_instptr() const {
1428   assert( _base == InstPtr, "Not an object pointer" );
1429   return (TypeInstPtr*)this;
1430 }
1431 
1432 inline const TypeAryPtr *Type::isa_aryptr() const {
1433   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1434 }
1435 
1436 inline const TypeAryPtr *Type::is_aryptr() const {
1437   assert( _base == AryPtr, "Not an array pointer" );
1438   return (TypeAryPtr*)this;
1439 }
1440 
1441 inline const TypeNarrowOop *Type::is_narrowoop() const {
1442   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1443   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1444   return (TypeNarrowOop*)this;
1445 }
1446 
1447 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1448   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1449   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1450 }
1451 
1452 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1453   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1454   return (TypeNarrowKlass*)this;
1455 }
1456 
1457 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1458   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1459 }
1460 
1461 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1462   // MetadataPtr is the first and CPCachePtr the last
1463   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1464   return (TypeMetadataPtr*)this;
1465 }
1466 
1467 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1468   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1469 }
1470 
1471 inline const TypeKlassPtr *Type::isa_klassptr() const {
1472   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1473 }
1474 
1475 inline const TypeKlassPtr *Type::is_klassptr() const {
1476   assert( _base == KlassPtr, "Not a klass pointer" );
1477   return (TypeKlassPtr*)this;
1478 }
1479 
1480 inline const TypePtr* Type::make_ptr() const {
1481   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1482     ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1483      (isa_ptr() ? is_ptr() : NULL));
1484 }
1485 
1486 inline const TypeOopPtr* Type::make_oopptr() const {
1487   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->is_oopptr() : is_oopptr();
1488 }
1489 
1490 inline const TypeNarrowOop* Type::make_narrowoop() const {
1491   return (_base == NarrowOop) ? is_narrowoop() :
1492                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1493 }
1494 
1495 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1496   return (_base == NarrowKlass) ? is_narrowklass() :
1497                                 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1498 }
1499 
1500 inline bool Type::is_floatingpoint() const {
1501   if( (_base == FloatCon)  || (_base == FloatBot) ||
1502       (_base == DoubleCon) || (_base == DoubleBot) )
1503     return true;
1504   return false;
1505 }
1506 
1507 
1508 // ===============================================================
1509 // Things that need to be 64-bits in the 64-bit build but
1510 // 32-bits in the 32-bit build.  Done this way to get full
1511 // optimization AND strong typing.
1512 #ifdef _LP64
1513 
1514 // For type queries and asserts
1515 #define is_intptr_t  is_long
1516 #define isa_intptr_t isa_long
1517 #define find_intptr_t_type find_long_type
1518 #define find_intptr_t_con  find_long_con
1519 #define TypeX        TypeLong
1520 #define Type_X       Type::Long
1521 #define TypeX_X      TypeLong::LONG
1522 #define TypeX_ZERO   TypeLong::ZERO
1523 // For 'ideal_reg' machine registers
1524 #define Op_RegX      Op_RegL
1525 // For phase->intcon variants
1526 #define MakeConX     longcon
1527 #define ConXNode     ConLNode
1528 // For array index arithmetic
1529 #define MulXNode     MulLNode
1530 #define AndXNode     AndLNode
1531 #define OrXNode      OrLNode
1532 #define CmpXNode     CmpLNode
1533 #define SubXNode     SubLNode
1534 #define LShiftXNode  LShiftLNode
1535 // For object size computation:
1536 #define AddXNode     AddLNode
1537 #define RShiftXNode  RShiftLNode
1538 // For card marks and hashcodes
1539 #define URShiftXNode URShiftLNode
1540 // UseOptoBiasInlining
1541 #define XorXNode     XorLNode
1542 #define StoreXConditionalNode StoreLConditionalNode
1543 // Opcodes
1544 #define Op_LShiftX   Op_LShiftL
1545 #define Op_AndX      Op_AndL
1546 #define Op_AddX      Op_AddL
1547 #define Op_SubX      Op_SubL
1548 #define Op_XorX      Op_XorL
1549 #define Op_URShiftX  Op_URShiftL
1550 // conversions
1551 #define ConvI2X(x)   ConvI2L(x)
1552 #define ConvL2X(x)   (x)
1553 #define ConvX2I(x)   ConvL2I(x)
1554 #define ConvX2L(x)   (x)
1555 
1556 #else
1557 
1558 // For type queries and asserts
1559 #define is_intptr_t  is_int
1560 #define isa_intptr_t isa_int
1561 #define find_intptr_t_type find_int_type
1562 #define find_intptr_t_con  find_int_con
1563 #define TypeX        TypeInt
1564 #define Type_X       Type::Int
1565 #define TypeX_X      TypeInt::INT
1566 #define TypeX_ZERO   TypeInt::ZERO
1567 // For 'ideal_reg' machine registers
1568 #define Op_RegX      Op_RegI
1569 // For phase->intcon variants
1570 #define MakeConX     intcon
1571 #define ConXNode     ConINode
1572 // For array index arithmetic
1573 #define MulXNode     MulINode
1574 #define AndXNode     AndINode
1575 #define OrXNode      OrINode
1576 #define CmpXNode     CmpINode
1577 #define SubXNode     SubINode
1578 #define LShiftXNode  LShiftINode
1579 // For object size computation:
1580 #define AddXNode     AddINode
1581 #define RShiftXNode  RShiftINode
1582 // For card marks and hashcodes
1583 #define URShiftXNode URShiftINode
1584 // UseOptoBiasInlining
1585 #define XorXNode     XorINode
1586 #define StoreXConditionalNode StoreIConditionalNode
1587 // Opcodes
1588 #define Op_LShiftX   Op_LShiftI
1589 #define Op_AndX      Op_AndI
1590 #define Op_AddX      Op_AddI
1591 #define Op_SubX      Op_SubI
1592 #define Op_XorX      Op_XorI
1593 #define Op_URShiftX  Op_URShiftI
1594 // conversions
1595 #define ConvI2X(x)   (x)
1596 #define ConvL2X(x)   ConvL2I(x)
1597 #define ConvX2I(x)   (x)
1598 #define ConvX2L(x)   ConvI2L(x)
1599 
1600 #endif
1601 
1602 #endif // SHARE_VM_OPTO_TYPE_HPP