1 //
   2 // Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Special Registers
  78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
  79 
  80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  81 // allocator, and only shows up in the encodings.
  82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  84 // Ok so here's the trick FPR1 is really st(0) except in the midst
  85 // of emission of assembly for a machnode. During the emission the fpu stack
  86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  87 // the stack will not have this element so FPR1 == st(0) from the
  88 // oopMap viewpoint. This same weirdness with numbering causes
  89 // instruction encoding to have to play games with the register
  90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  91 // where it does flt->flt moves to see an example
  92 //
  93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
 100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
 101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
 102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 107 
 108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
 109 // Word a in each register holds a Float, words ab hold a Double.
 110 // We currently do not use the SIMD capabilities, so registers cd
 111 // are unused at the moment.
 112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
 113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
 114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
 115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
 116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
 117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
 118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
 119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
 120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
 121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
 122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
 123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
 124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
 125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
 126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
 127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
 128 
 129 // Specify priority of register selection within phases of register
 130 // allocation.  Highest priority is first.  A useful heuristic is to
 131 // give registers a low priority when they are required by machine
 132 // instructions, like EAX and EDX.  Registers which are used as
 133 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 134 // For the Intel integer registers, the equivalent Long pairs are
 135 // EDX:EAX, EBX:ECX, and EDI:EBP.
 136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 139                     FPR6L, FPR6H, FPR7L, FPR7H );
 140 
 141 alloc_class chunk1( XMM0a, XMM0b,
 142                     XMM1a, XMM1b,
 143                     XMM2a, XMM2b,
 144                     XMM3a, XMM3b,
 145                     XMM4a, XMM4b,
 146                     XMM5a, XMM5b,
 147                     XMM6a, XMM6b,
 148                     XMM7a, XMM7b, EFLAGS);
 149 
 150 
 151 //----------Architecture Description Register Classes--------------------------
 152 // Several register classes are automatically defined based upon information in
 153 // this architecture description.
 154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 158 //
 159 // Class for all registers
 160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 161 // Class for general registers
 162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 163 // Class for general registers which may be used for implicit null checks on win95
 164 // Also safe for use by tailjump. We don't want to allocate in rbp,
 165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 166 // Class of "X" registers
 167 reg_class x_reg(EBX, ECX, EDX, EAX);
 168 // Class of registers that can appear in an address with no offset.
 169 // EBP and ESP require an extra instruction byte for zero offset.
 170 // Used in fast-unlock
 171 reg_class p_reg(EDX, EDI, ESI, EBX);
 172 // Class for general registers not including ECX
 173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 174 // Class for general registers not including EAX
 175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 176 // Class for general registers not including EAX or EBX.
 177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 178 // Class of EAX (for multiply and divide operations)
 179 reg_class eax_reg(EAX);
 180 // Class of EBX (for atomic add)
 181 reg_class ebx_reg(EBX);
 182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 183 reg_class ecx_reg(ECX);
 184 // Class of EDX (for multiply and divide operations)
 185 reg_class edx_reg(EDX);
 186 // Class of EDI (for synchronization)
 187 reg_class edi_reg(EDI);
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 // Singleton class for interpreter's stack pointer
 191 reg_class ebp_reg(EBP);
 192 // Singleton class for stack pointer
 193 reg_class sp_reg(ESP);
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 // Singleton class for condition codes
 197 reg_class int_flags(EFLAGS);
 198 // Class of integer register pairs
 199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 200 // Class of integer register pairs that aligns with calling convention
 201 reg_class eadx_reg( EAX,EDX );
 202 reg_class ebcx_reg( ECX,EBX );
 203 // Not AX or DX, used in divides
 204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 205 
 206 // Floating point registers.  Notice FPR0 is not a choice.
 207 // FPR0 is not ever allocated; we use clever encodings to fake
 208 // a 2-address instructions out of Intels FP stack.
 209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 210 
 211 // make a register class for SSE registers
 212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
 213 
 214 // make a double register class for SSE2 registers
 215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
 216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
 217 
 218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 220                    FPR7L,FPR7H );
 221 
 222 reg_class flt_reg0( FPR1L );
 223 reg_class dbl_reg0( FPR1L,FPR1H );
 224 reg_class dbl_reg1( FPR2L,FPR2H );
 225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 227 
 228 // XMM6 and XMM7 could be used as temporary registers for long, float and
 229 // double values for SSE2.
 230 reg_class xdb_reg6( XMM6a,XMM6b );
 231 reg_class xdb_reg7( XMM7a,XMM7b );
 232 %}
 233 
 234 
 235 //----------SOURCE BLOCK-------------------------------------------------------
 236 // This is a block of C++ code which provides values, functions, and
 237 // definitions necessary in the rest of the architecture description
 238 source_hpp %{
 239 // Must be visible to the DFA in dfa_x86_32.cpp
 240 extern bool is_operand_hi32_zero(Node* n);
 241 %}
 242 
 243 source %{
 244 #define   RELOC_IMM32    Assembler::imm_operand
 245 #define   RELOC_DISP32   Assembler::disp32_operand
 246 
 247 #define __ _masm.
 248 
 249 // How to find the high register of a Long pair, given the low register
 250 #define   HIGH_FROM_LOW(x) ((x)+2)
 251 
 252 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 253 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 254 // fast versions of NegF/NegD and AbsF/AbsD.
 255 
 256 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 257 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 258   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 259   // of 128-bits operands for SSE instructions.
 260   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 261   // Store the value to a 128-bits operand.
 262   operand[0] = lo;
 263   operand[1] = hi;
 264   return operand;
 265 }
 266 
 267 // Buffer for 128-bits masks used by SSE instructions.
 268 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 269 
 270 // Static initialization during VM startup.
 271 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 272 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 273 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 274 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 275 
 276 // Offset hacking within calls.
 277 static int pre_call_FPU_size() {
 278   if (Compile::current()->in_24_bit_fp_mode())
 279     return 6; // fldcw
 280   return 0;
 281 }
 282 
 283 static int preserve_SP_size() {
 284   return LP64_ONLY(1 +) 2;  // [rex,] op, rm(reg/reg)
 285 }
 286 
 287 // !!!!! Special hack to get all type of calls to specify the byte offset
 288 //       from the start of the call to the point where the return address
 289 //       will point.
 290 int MachCallStaticJavaNode::ret_addr_offset() {
 291   int offset = 5 + pre_call_FPU_size();  // 5 bytes from start of call to where return address points
 292   if (_method_handle_invoke)
 293     offset += preserve_SP_size();
 294   return offset;
 295 }
 296 
 297 int MachCallDynamicJavaNode::ret_addr_offset() {
 298   return 10 + pre_call_FPU_size();  // 10 bytes from start of call to where return address points
 299 }
 300 
 301 static int sizeof_FFree_Float_Stack_All = -1;
 302 
 303 int MachCallRuntimeNode::ret_addr_offset() {
 304   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 305   return sizeof_FFree_Float_Stack_All + 5 + pre_call_FPU_size();
 306 }
 307 
 308 // Indicate if the safepoint node needs the polling page as an input.
 309 // Since x86 does have absolute addressing, it doesn't.
 310 bool SafePointNode::needs_polling_address_input() {
 311   return false;
 312 }
 313 
 314 //
 315 // Compute padding required for nodes which need alignment
 316 //
 317 
 318 // The address of the call instruction needs to be 4-byte aligned to
 319 // ensure that it does not span a cache line so that it can be patched.
 320 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 321   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 322   current_offset += 1;      // skip call opcode byte
 323   return round_to(current_offset, alignment_required()) - current_offset;
 324 }
 325 
 326 // The address of the call instruction needs to be 4-byte aligned to
 327 // ensure that it does not span a cache line so that it can be patched.
 328 int CallStaticJavaHandleNode::compute_padding(int current_offset) const {
 329   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 330   current_offset += preserve_SP_size();   // skip mov rbp, rsp
 331   current_offset += 1;      // skip call opcode byte
 332   return round_to(current_offset, alignment_required()) - current_offset;
 333 }
 334 
 335 // The address of the call instruction needs to be 4-byte aligned to
 336 // ensure that it does not span a cache line so that it can be patched.
 337 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 338   current_offset += pre_call_FPU_size();  // skip fldcw, if any
 339   current_offset += 5;      // skip MOV instruction
 340   current_offset += 1;      // skip call opcode byte
 341   return round_to(current_offset, alignment_required()) - current_offset;
 342 }
 343 
 344 #ifndef PRODUCT
 345 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
 346   st->print("INT3");
 347 }
 348 #endif
 349 
 350 // EMIT_RM()
 351 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 352   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 353   *(cbuf.code_end()) = c;
 354   cbuf.set_code_end(cbuf.code_end() + 1);
 355 }
 356 
 357 // EMIT_CC()
 358 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 359   unsigned char c = (unsigned char)( f1 | f2 );
 360   *(cbuf.code_end()) = c;
 361   cbuf.set_code_end(cbuf.code_end() + 1);
 362 }
 363 
 364 // EMIT_OPCODE()
 365 void emit_opcode(CodeBuffer &cbuf, int code) {
 366   *(cbuf.code_end()) = (unsigned char)code;
 367   cbuf.set_code_end(cbuf.code_end() + 1);
 368 }
 369 
 370 // EMIT_OPCODE() w/ relocation information
 371 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 372   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
 373   emit_opcode(cbuf, code);
 374 }
 375 
 376 // EMIT_D8()
 377 void emit_d8(CodeBuffer &cbuf, int d8) {
 378   *(cbuf.code_end()) = (unsigned char)d8;
 379   cbuf.set_code_end(cbuf.code_end() + 1);
 380 }
 381 
 382 // EMIT_D16()
 383 void emit_d16(CodeBuffer &cbuf, int d16) {
 384   *((short *)(cbuf.code_end())) = d16;
 385   cbuf.set_code_end(cbuf.code_end() + 2);
 386 }
 387 
 388 // EMIT_D32()
 389 void emit_d32(CodeBuffer &cbuf, int d32) {
 390   *((int *)(cbuf.code_end())) = d32;
 391   cbuf.set_code_end(cbuf.code_end() + 4);
 392 }
 393 
 394 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 395 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 396         int format) {
 397   cbuf.relocate(cbuf.inst_mark(), reloc, format);
 398 
 399   *((int *)(cbuf.code_end())) = d32;
 400   cbuf.set_code_end(cbuf.code_end() + 4);
 401 }
 402 
 403 // emit 32 bit value and construct relocation entry from RelocationHolder
 404 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 405         int format) {
 406 #ifdef ASSERT
 407   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 408     assert(oop(d32)->is_oop() && (ScavengeRootsInCode || !oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 409   }
 410 #endif
 411   cbuf.relocate(cbuf.inst_mark(), rspec, format);
 412 
 413   *((int *)(cbuf.code_end())) = d32;
 414   cbuf.set_code_end(cbuf.code_end() + 4);
 415 }
 416 
 417 // Access stack slot for load or store
 418 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 419   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 420   if( -128 <= disp && disp <= 127 ) {
 421     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 422     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 423     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 424   } else {
 425     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 426     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 427     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 428   }
 429 }
 430 
 431    // eRegI ereg, memory mem) %{    // emit_reg_mem
 432 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 433   // There is no index & no scale, use form without SIB byte
 434   if ((index == 0x4) &&
 435       (scale == 0) && (base != ESP_enc)) {
 436     // If no displacement, mode is 0x0; unless base is [EBP]
 437     if ( (displace == 0) && (base != EBP_enc) ) {
 438       emit_rm(cbuf, 0x0, reg_encoding, base);
 439     }
 440     else {                    // If 8-bit displacement, mode 0x1
 441       if ((displace >= -128) && (displace <= 127)
 442           && !(displace_is_oop) ) {
 443         emit_rm(cbuf, 0x1, reg_encoding, base);
 444         emit_d8(cbuf, displace);
 445       }
 446       else {                  // If 32-bit displacement
 447         if (base == -1) { // Special flag for absolute address
 448           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 449           // (manual lies; no SIB needed here)
 450           if ( displace_is_oop ) {
 451             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 452           } else {
 453             emit_d32      (cbuf, displace);
 454           }
 455         }
 456         else {                // Normal base + offset
 457           emit_rm(cbuf, 0x2, reg_encoding, base);
 458           if ( displace_is_oop ) {
 459             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 460           } else {
 461             emit_d32      (cbuf, displace);
 462           }
 463         }
 464       }
 465     }
 466   }
 467   else {                      // Else, encode with the SIB byte
 468     // If no displacement, mode is 0x0; unless base is [EBP]
 469     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 470       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 471       emit_rm(cbuf, scale, index, base);
 472     }
 473     else {                    // If 8-bit displacement, mode 0x1
 474       if ((displace >= -128) && (displace <= 127)
 475           && !(displace_is_oop) ) {
 476         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 477         emit_rm(cbuf, scale, index, base);
 478         emit_d8(cbuf, displace);
 479       }
 480       else {                  // If 32-bit displacement
 481         if (base == 0x04 ) {
 482           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 483           emit_rm(cbuf, scale, index, 0x04);
 484         } else {
 485           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 486           emit_rm(cbuf, scale, index, base);
 487         }
 488         if ( displace_is_oop ) {
 489           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 490         } else {
 491           emit_d32      (cbuf, displace);
 492         }
 493       }
 494     }
 495   }
 496 }
 497 
 498 
 499 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 500   if( dst_encoding == src_encoding ) {
 501     // reg-reg copy, use an empty encoding
 502   } else {
 503     emit_opcode( cbuf, 0x8B );
 504     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 505   }
 506 }
 507 
 508 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 509   if( dst_encoding == src_encoding ) {
 510     // reg-reg copy, use an empty encoding
 511   } else {
 512     MacroAssembler _masm(&cbuf);
 513 
 514     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
 515   }
 516 }
 517 
 518 
 519 //=============================================================================
 520 #ifndef PRODUCT
 521 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 522   Compile* C = ra_->C;
 523   if( C->in_24_bit_fp_mode() ) {
 524     st->print("FLDCW  24 bit fpu control word");
 525     st->print_cr(""); st->print("\t");
 526   }
 527 
 528   int framesize = C->frame_slots() << LogBytesPerInt;
 529   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 530   // Remove two words for return addr and rbp,
 531   framesize -= 2*wordSize;
 532 
 533   // Calls to C2R adapters often do not accept exceptional returns.
 534   // We require that their callers must bang for them.  But be careful, because
 535   // some VM calls (such as call site linkage) can use several kilobytes of
 536   // stack.  But the stack safety zone should account for that.
 537   // See bugs 4446381, 4468289, 4497237.
 538   if (C->need_stack_bang(framesize)) {
 539     st->print_cr("# stack bang"); st->print("\t");
 540   }
 541   st->print_cr("PUSHL  EBP"); st->print("\t");
 542 
 543   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 544     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
 545     st->print_cr(""); st->print("\t");
 546     framesize -= wordSize;
 547   }
 548 
 549   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 550     if (framesize) {
 551       st->print("SUB    ESP,%d\t# Create frame",framesize);
 552     }
 553   } else {
 554     st->print("SUB    ESP,%d\t# Create frame",framesize);
 555   }
 556 }
 557 #endif
 558 
 559 
 560 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 561   Compile* C = ra_->C;
 562 
 563   if (UseSSE >= 2 && VerifyFPU) {
 564     MacroAssembler masm(&cbuf);
 565     masm.verify_FPU(0, "FPU stack must be clean on entry");
 566   }
 567 
 568   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 569   // NativeJump::patch_verified_entry will be able to patch out the entry
 570   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
 571   // depth is ok at 5 bytes, the frame allocation can be either 3 or
 572   // 6 bytes. So if we don't do the fldcw or the push then we must
 573   // use the 6 byte frame allocation even if we have no frame. :-(
 574   // If method sets FPU control word do it now
 575   if( C->in_24_bit_fp_mode() ) {
 576     MacroAssembler masm(&cbuf);
 577     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 578   }
 579 
 580   int framesize = C->frame_slots() << LogBytesPerInt;
 581   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 582   // Remove two words for return addr and rbp,
 583   framesize -= 2*wordSize;
 584 
 585   // Calls to C2R adapters often do not accept exceptional returns.
 586   // We require that their callers must bang for them.  But be careful, because
 587   // some VM calls (such as call site linkage) can use several kilobytes of
 588   // stack.  But the stack safety zone should account for that.
 589   // See bugs 4446381, 4468289, 4497237.
 590   if (C->need_stack_bang(framesize)) {
 591     MacroAssembler masm(&cbuf);
 592     masm.generate_stack_overflow_check(framesize);
 593   }
 594 
 595   // We always push rbp, so that on return to interpreter rbp, will be
 596   // restored correctly and we can correct the stack.
 597   emit_opcode(cbuf, 0x50 | EBP_enc);
 598 
 599   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 600     emit_opcode(cbuf, 0x68); // push 0xbadb100d
 601     emit_d32(cbuf, 0xbadb100d);
 602     framesize -= wordSize;
 603   }
 604 
 605   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 606     if (framesize) {
 607       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
 608       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 609       emit_d8(cbuf, framesize);
 610     }
 611   } else {
 612     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
 613     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 614     emit_d32(cbuf, framesize);
 615   }
 616   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
 617 
 618 #ifdef ASSERT
 619   if (VerifyStackAtCalls) {
 620     Label L;
 621     MacroAssembler masm(&cbuf);
 622     masm.push(rax);
 623     masm.mov(rax, rsp);
 624     masm.andptr(rax, StackAlignmentInBytes-1);
 625     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
 626     masm.pop(rax);
 627     masm.jcc(Assembler::equal, L);
 628     masm.stop("Stack is not properly aligned!");
 629     masm.bind(L);
 630   }
 631 #endif
 632 
 633 }
 634 
 635 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 636   return MachNode::size(ra_); // too many variables; just compute it the hard way
 637 }
 638 
 639 int MachPrologNode::reloc() const {
 640   return 0; // a large enough number
 641 }
 642 
 643 //=============================================================================
 644 #ifndef PRODUCT
 645 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 646   Compile *C = ra_->C;
 647   int framesize = C->frame_slots() << LogBytesPerInt;
 648   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 649   // Remove two words for return addr and rbp,
 650   framesize -= 2*wordSize;
 651 
 652   if( C->in_24_bit_fp_mode() ) {
 653     st->print("FLDCW  standard control word");
 654     st->cr(); st->print("\t");
 655   }
 656   if( framesize ) {
 657     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 658     st->cr(); st->print("\t");
 659   }
 660   st->print_cr("POPL   EBP"); st->print("\t");
 661   if( do_polling() && C->is_method_compilation() ) {
 662     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 663     st->cr(); st->print("\t");
 664   }
 665 }
 666 #endif
 667 
 668 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 669   Compile *C = ra_->C;
 670 
 671   // If method set FPU control word, restore to standard control word
 672   if( C->in_24_bit_fp_mode() ) {
 673     MacroAssembler masm(&cbuf);
 674     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 675   }
 676 
 677   int framesize = C->frame_slots() << LogBytesPerInt;
 678   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 679   // Remove two words for return addr and rbp,
 680   framesize -= 2*wordSize;
 681 
 682   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 683 
 684   if( framesize >= 128 ) {
 685     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 686     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 687     emit_d32(cbuf, framesize);
 688   }
 689   else if( framesize ) {
 690     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 691     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 692     emit_d8(cbuf, framesize);
 693   }
 694 
 695   emit_opcode(cbuf, 0x58 | EBP_enc);
 696 
 697   if( do_polling() && C->is_method_compilation() ) {
 698     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
 699     emit_opcode(cbuf,0x85);
 700     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 701     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 702   }
 703 }
 704 
 705 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 706   Compile *C = ra_->C;
 707   // If method set FPU control word, restore to standard control word
 708   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 709   if( do_polling() && C->is_method_compilation() ) size += 6;
 710 
 711   int framesize = C->frame_slots() << LogBytesPerInt;
 712   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 713   // Remove two words for return addr and rbp,
 714   framesize -= 2*wordSize;
 715 
 716   size++; // popl rbp,
 717 
 718   if( framesize >= 128 ) {
 719     size += 6;
 720   } else {
 721     size += framesize ? 3 : 0;
 722   }
 723   return size;
 724 }
 725 
 726 int MachEpilogNode::reloc() const {
 727   return 0; // a large enough number
 728 }
 729 
 730 const Pipeline * MachEpilogNode::pipeline() const {
 731   return MachNode::pipeline_class();
 732 }
 733 
 734 int MachEpilogNode::safepoint_offset() const { return 0; }
 735 
 736 //=============================================================================
 737 
 738 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 739 static enum RC rc_class( OptoReg::Name reg ) {
 740 
 741   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 742   if (OptoReg::is_stack(reg)) return rc_stack;
 743 
 744   VMReg r = OptoReg::as_VMReg(reg);
 745   if (r->is_Register()) return rc_int;
 746   if (r->is_FloatRegister()) {
 747     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 748     return rc_float;
 749   }
 750   assert(r->is_XMMRegister(), "must be");
 751   return rc_xmm;
 752 }
 753 
 754 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 755                         int opcode, const char *op_str, int size, outputStream* st ) {
 756   if( cbuf ) {
 757     emit_opcode  (*cbuf, opcode );
 758     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 759 #ifndef PRODUCT
 760   } else if( !do_size ) {
 761     if( size != 0 ) st->print("\n\t");
 762     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 763       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 764       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 765     } else { // FLD, FST, PUSH, POP
 766       st->print("%s [ESP + #%d]",op_str,offset);
 767     }
 768 #endif
 769   }
 770   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 771   return size+3+offset_size;
 772 }
 773 
 774 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 775 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 776                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 777   if( cbuf ) {
 778     if( reg_lo+1 == reg_hi ) { // double move?
 779       if( is_load && !UseXmmLoadAndClearUpper )
 780         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
 781       else
 782         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
 783     } else {
 784       emit_opcode(*cbuf, 0xF3 );
 785     }
 786     emit_opcode(*cbuf, 0x0F );
 787     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
 788       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
 789     else
 790       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
 791     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
 792 #ifndef PRODUCT
 793   } else if( !do_size ) {
 794     if( size != 0 ) st->print("\n\t");
 795     if( reg_lo+1 == reg_hi ) { // double move?
 796       if( is_load ) st->print("%s %s,[ESP + #%d]",
 797                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 798                                Matcher::regName[reg_lo], offset);
 799       else          st->print("MOVSD  [ESP + #%d],%s",
 800                                offset, Matcher::regName[reg_lo]);
 801     } else {
 802       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
 803                                Matcher::regName[reg_lo], offset);
 804       else          st->print("MOVSS  [ESP + #%d],%s",
 805                                offset, Matcher::regName[reg_lo]);
 806     }
 807 #endif
 808   }
 809   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 810   return size+5+offset_size;
 811 }
 812 
 813 
 814 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 815                             int src_hi, int dst_hi, int size, outputStream* st ) {
 816   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
 817     if( cbuf ) {
 818       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
 819         emit_opcode(*cbuf, 0x66 );
 820       }
 821       emit_opcode(*cbuf, 0x0F );
 822       emit_opcode(*cbuf, 0x28 );
 823       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 824 #ifndef PRODUCT
 825     } else if( !do_size ) {
 826       if( size != 0 ) st->print("\n\t");
 827       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 829       } else {
 830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 831       }
 832 #endif
 833     }
 834     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
 835   } else {
 836     if( cbuf ) {
 837       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
 838       emit_opcode(*cbuf, 0x0F );
 839       emit_opcode(*cbuf, 0x10 );
 840       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 841 #ifndef PRODUCT
 842     } else if( !do_size ) {
 843       if( size != 0 ) st->print("\n\t");
 844       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 845         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 846       } else {
 847         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 848       }
 849 #endif
 850     }
 851     return size+4;
 852   }
 853 }
 854 
 855 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 856   if( cbuf ) {
 857     emit_opcode(*cbuf, 0x8B );
 858     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 859 #ifndef PRODUCT
 860   } else if( !do_size ) {
 861     if( size != 0 ) st->print("\n\t");
 862     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 863 #endif
 864   }
 865   return size+2;
 866 }
 867 
 868 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 869                                  int offset, int size, outputStream* st ) {
 870   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 871     if( cbuf ) {
 872       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 873       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 874 #ifndef PRODUCT
 875     } else if( !do_size ) {
 876       if( size != 0 ) st->print("\n\t");
 877       st->print("FLD    %s",Matcher::regName[src_lo]);
 878 #endif
 879     }
 880     size += 2;
 881   }
 882 
 883   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 884   const char *op_str;
 885   int op;
 886   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 887     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 888     op = 0xDD;
 889   } else {                   // 32-bit store
 890     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 891     op = 0xD9;
 892     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 893   }
 894 
 895   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 896 }
 897 
 898 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 899   // Get registers to move
 900   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 901   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 902   OptoReg::Name dst_second = ra_->get_reg_second(this );
 903   OptoReg::Name dst_first = ra_->get_reg_first(this );
 904 
 905   enum RC src_second_rc = rc_class(src_second);
 906   enum RC src_first_rc = rc_class(src_first);
 907   enum RC dst_second_rc = rc_class(dst_second);
 908   enum RC dst_first_rc = rc_class(dst_first);
 909 
 910   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 911 
 912   // Generate spill code!
 913   int size = 0;
 914 
 915   if( src_first == dst_first && src_second == dst_second )
 916     return size;            // Self copy, no move
 917 
 918   // --------------------------------------
 919   // Check for mem-mem move.  push/pop to move.
 920   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 921     if( src_second == dst_first ) { // overlapping stack copy ranges
 922       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
 923       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 924       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 925       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
 926     }
 927     // move low bits
 928     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
 929     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
 930     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
 931       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 932       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 933     }
 934     return size;
 935   }
 936 
 937   // --------------------------------------
 938   // Check for integer reg-reg copy
 939   if( src_first_rc == rc_int && dst_first_rc == rc_int )
 940     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
 941 
 942   // Check for integer store
 943   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
 944     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
 945 
 946   // Check for integer load
 947   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
 948     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
 949 
 950   // --------------------------------------
 951   // Check for float reg-reg copy
 952   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
 953     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
 954             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
 955     if( cbuf ) {
 956 
 957       // Note the mucking with the register encode to compensate for the 0/1
 958       // indexing issue mentioned in a comment in the reg_def sections
 959       // for FPR registers many lines above here.
 960 
 961       if( src_first != FPR1L_num ) {
 962         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
 963         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
 964         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
 965         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
 966      } else {
 967         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
 968         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
 969      }
 970 #ifndef PRODUCT
 971     } else if( !do_size ) {
 972       if( size != 0 ) st->print("\n\t");
 973       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
 974       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
 975 #endif
 976     }
 977     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
 978   }
 979 
 980   // Check for float store
 981   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
 982     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
 983   }
 984 
 985   // Check for float load
 986   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
 987     int offset = ra_->reg2offset(src_first);
 988     const char *op_str;
 989     int op;
 990     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
 991       op_str = "FLD_D";
 992       op = 0xDD;
 993     } else {                   // 32-bit load
 994       op_str = "FLD_S";
 995       op = 0xD9;
 996       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
 997     }
 998     if( cbuf ) {
 999       emit_opcode  (*cbuf, op );
1000       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
1001       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1002       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1003 #ifndef PRODUCT
1004     } else if( !do_size ) {
1005       if( size != 0 ) st->print("\n\t");
1006       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1007 #endif
1008     }
1009     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1010     return size + 3+offset_size+2;
1011   }
1012 
1013   // Check for xmm reg-reg copy
1014   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1015     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1016             (src_first+1 == src_second && dst_first+1 == dst_second),
1017             "no non-adjacent float-moves" );
1018     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1019   }
1020 
1021   // Check for xmm store
1022   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1023     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1024   }
1025 
1026   // Check for float xmm load
1027   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1028     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1029   }
1030 
1031   // Copy from float reg to xmm reg
1032   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1033     // copy to the top of stack from floating point reg
1034     // and use LEA to preserve flags
1035     if( cbuf ) {
1036       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1037       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1038       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1039       emit_d8(*cbuf,0xF8);
1040 #ifndef PRODUCT
1041     } else if( !do_size ) {
1042       if( size != 0 ) st->print("\n\t");
1043       st->print("LEA    ESP,[ESP-8]");
1044 #endif
1045     }
1046     size += 4;
1047 
1048     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1049 
1050     // Copy from the temp memory to the xmm reg.
1051     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1052 
1053     if( cbuf ) {
1054       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1055       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1056       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1057       emit_d8(*cbuf,0x08);
1058 #ifndef PRODUCT
1059     } else if( !do_size ) {
1060       if( size != 0 ) st->print("\n\t");
1061       st->print("LEA    ESP,[ESP+8]");
1062 #endif
1063     }
1064     size += 4;
1065     return size;
1066   }
1067 
1068   assert( size > 0, "missed a case" );
1069 
1070   // --------------------------------------------------------------------
1071   // Check for second bits still needing moving.
1072   if( src_second == dst_second )
1073     return size;               // Self copy; no move
1074   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1075 
1076   // Check for second word int-int move
1077   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1078     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1079 
1080   // Check for second word integer store
1081   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1082     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1083 
1084   // Check for second word integer load
1085   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1086     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1087 
1088 
1089   Unimplemented();
1090 }
1091 
1092 #ifndef PRODUCT
1093 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1094   implementation( NULL, ra_, false, st );
1095 }
1096 #endif
1097 
1098 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1099   implementation( &cbuf, ra_, false, NULL );
1100 }
1101 
1102 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1103   return implementation( NULL, ra_, true, NULL );
1104 }
1105 
1106 //=============================================================================
1107 #ifndef PRODUCT
1108 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1109   st->print("NOP \t# %d bytes pad for loops and calls", _count);
1110 }
1111 #endif
1112 
1113 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1114   MacroAssembler _masm(&cbuf);
1115   __ nop(_count);
1116 }
1117 
1118 uint MachNopNode::size(PhaseRegAlloc *) const {
1119   return _count;
1120 }
1121 
1122 
1123 //=============================================================================
1124 #ifndef PRODUCT
1125 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1126   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1127   int reg = ra_->get_reg_first(this);
1128   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1129 }
1130 #endif
1131 
1132 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1133   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1134   int reg = ra_->get_encode(this);
1135   if( offset >= 128 ) {
1136     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1137     emit_rm(cbuf, 0x2, reg, 0x04);
1138     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1139     emit_d32(cbuf, offset);
1140   }
1141   else {
1142     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1143     emit_rm(cbuf, 0x1, reg, 0x04);
1144     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1145     emit_d8(cbuf, offset);
1146   }
1147 }
1148 
1149 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1150   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1151   if( offset >= 128 ) {
1152     return 7;
1153   }
1154   else {
1155     return 4;
1156   }
1157 }
1158 
1159 //=============================================================================
1160 
1161 // emit call stub, compiled java to interpreter
1162 void emit_java_to_interp(CodeBuffer &cbuf ) {
1163   // Stub is fixed up when the corresponding call is converted from calling
1164   // compiled code to calling interpreted code.
1165   // mov rbx,0
1166   // jmp -1
1167 
1168   address mark = cbuf.inst_mark();  // get mark within main instrs section
1169 
1170   // Note that the code buffer's inst_mark is always relative to insts.
1171   // That's why we must use the macroassembler to generate a stub.
1172   MacroAssembler _masm(&cbuf);
1173 
1174   address base =
1175   __ start_a_stub(Compile::MAX_stubs_size);
1176   if (base == NULL)  return;  // CodeBuffer::expand failed
1177   // static stub relocation stores the instruction address of the call
1178   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1179   // static stub relocation also tags the methodOop in the code-stream.
1180   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1181   // This is recognized as unresolved by relocs/nativeInst/ic code
1182   __ jump(RuntimeAddress(__ pc()));
1183 
1184   __ end_a_stub();
1185   // Update current stubs pointer and restore code_end.
1186 }
1187 // size of call stub, compiled java to interpretor
1188 uint size_java_to_interp() {
1189   return 10;  // movl; jmp
1190 }
1191 // relocation entries for call stub, compiled java to interpretor
1192 uint reloc_java_to_interp() {
1193   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1194 }
1195 
1196 //=============================================================================
1197 #ifndef PRODUCT
1198 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1199   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1200   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1201   st->print_cr("\tNOP");
1202   st->print_cr("\tNOP");
1203   if( !OptoBreakpoint )
1204     st->print_cr("\tNOP");
1205 }
1206 #endif
1207 
1208 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1209   MacroAssembler masm(&cbuf);
1210 #ifdef ASSERT
1211   uint code_size = cbuf.code_size();
1212 #endif
1213   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1214   masm.jump_cc(Assembler::notEqual,
1215                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1216   /* WARNING these NOPs are critical so that verified entry point is properly
1217      aligned for patching by NativeJump::patch_verified_entry() */
1218   int nops_cnt = 2;
1219   if( !OptoBreakpoint ) // Leave space for int3
1220      nops_cnt += 1;
1221   masm.nop(nops_cnt);
1222 
1223   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1224 }
1225 
1226 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1227   return OptoBreakpoint ? 11 : 12;
1228 }
1229 
1230 
1231 //=============================================================================
1232 uint size_exception_handler() {
1233   // NativeCall instruction size is the same as NativeJump.
1234   // exception handler starts out as jump and can be patched to
1235   // a call be deoptimization.  (4932387)
1236   // Note that this value is also credited (in output.cpp) to
1237   // the size of the code section.
1238   return NativeJump::instruction_size;
1239 }
1240 
1241 // Emit exception handler code.  Stuff framesize into a register
1242 // and call a VM stub routine.
1243 int emit_exception_handler(CodeBuffer& cbuf) {
1244 
1245   // Note that the code buffer's inst_mark is always relative to insts.
1246   // That's why we must use the macroassembler to generate a handler.
1247   MacroAssembler _masm(&cbuf);
1248   address base =
1249   __ start_a_stub(size_exception_handler());
1250   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1251   int offset = __ offset();
1252   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1253   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1254   __ end_a_stub();
1255   return offset;
1256 }
1257 
1258 uint size_deopt_handler() {
1259   // NativeCall instruction size is the same as NativeJump.
1260   // exception handler starts out as jump and can be patched to
1261   // a call be deoptimization.  (4932387)
1262   // Note that this value is also credited (in output.cpp) to
1263   // the size of the code section.
1264   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1265 }
1266 
1267 // Emit deopt handler code.
1268 int emit_deopt_handler(CodeBuffer& cbuf) {
1269 
1270   // Note that the code buffer's inst_mark is always relative to insts.
1271   // That's why we must use the macroassembler to generate a handler.
1272   MacroAssembler _masm(&cbuf);
1273   address base =
1274   __ start_a_stub(size_exception_handler());
1275   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1276   int offset = __ offset();
1277   InternalAddress here(__ pc());
1278   __ pushptr(here.addr());
1279 
1280   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1281   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1282   __ end_a_stub();
1283   return offset;
1284 }
1285 
1286 
1287 static void emit_double_constant(CodeBuffer& cbuf, double x) {
1288   int mark = cbuf.insts()->mark_off();
1289   MacroAssembler _masm(&cbuf);
1290   address double_address = __ double_constant(x);
1291   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1292   emit_d32_reloc(cbuf,
1293                  (int)double_address,
1294                  internal_word_Relocation::spec(double_address),
1295                  RELOC_DISP32);
1296 }
1297 
1298 static void emit_float_constant(CodeBuffer& cbuf, float x) {
1299   int mark = cbuf.insts()->mark_off();
1300   MacroAssembler _masm(&cbuf);
1301   address float_address = __ float_constant(x);
1302   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1303   emit_d32_reloc(cbuf,
1304                  (int)float_address,
1305                  internal_word_Relocation::spec(float_address),
1306                  RELOC_DISP32);
1307 }
1308 
1309 
1310 const bool Matcher::match_rule_supported(int opcode) {
1311   if (!has_match_rule(opcode))
1312     return false;
1313 
1314   return true;  // Per default match rules are supported.
1315 }
1316 
1317 int Matcher::regnum_to_fpu_offset(int regnum) {
1318   return regnum - 32; // The FP registers are in the second chunk
1319 }
1320 
1321 bool is_positive_zero_float(jfloat f) {
1322   return jint_cast(f) == jint_cast(0.0F);
1323 }
1324 
1325 bool is_positive_one_float(jfloat f) {
1326   return jint_cast(f) == jint_cast(1.0F);
1327 }
1328 
1329 bool is_positive_zero_double(jdouble d) {
1330   return jlong_cast(d) == jlong_cast(0.0);
1331 }
1332 
1333 bool is_positive_one_double(jdouble d) {
1334   return jlong_cast(d) == jlong_cast(1.0);
1335 }
1336 
1337 // This is UltraSparc specific, true just means we have fast l2f conversion
1338 const bool Matcher::convL2FSupported(void) {
1339   return true;
1340 }
1341 
1342 // Vector width in bytes
1343 const uint Matcher::vector_width_in_bytes(void) {
1344   return UseSSE >= 2 ? 8 : 0;
1345 }
1346 
1347 // Vector ideal reg
1348 const uint Matcher::vector_ideal_reg(void) {
1349   return Op_RegD;
1350 }
1351 
1352 // Is this branch offset short enough that a short branch can be used?
1353 //
1354 // NOTE: If the platform does not provide any short branch variants, then
1355 //       this method should return false for offset 0.
1356 bool Matcher::is_short_branch_offset(int rule, int offset) {
1357   // the short version of jmpConUCF2 contains multiple branches,
1358   // making the reach slightly less
1359   if (rule == jmpConUCF2_rule)
1360     return (-126 <= offset && offset <= 125);
1361   return (-128 <= offset && offset <= 127);
1362 }
1363 
1364 const bool Matcher::isSimpleConstant64(jlong value) {
1365   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1366   return false;
1367 }
1368 
1369 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1370 const bool Matcher::init_array_count_is_in_bytes = false;
1371 
1372 // Threshold size for cleararray.
1373 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1374 
1375 // Should the Matcher clone shifts on addressing modes, expecting them to
1376 // be subsumed into complex addressing expressions or compute them into
1377 // registers?  True for Intel but false for most RISCs
1378 const bool Matcher::clone_shift_expressions = true;
1379 
1380 bool Matcher::narrow_oop_use_complex_address() {
1381   ShouldNotCallThis();
1382   return true;
1383 }
1384 
1385 
1386 // Is it better to copy float constants, or load them directly from memory?
1387 // Intel can load a float constant from a direct address, requiring no
1388 // extra registers.  Most RISCs will have to materialize an address into a
1389 // register first, so they would do better to copy the constant from stack.
1390 const bool Matcher::rematerialize_float_constants = true;
1391 
1392 // If CPU can load and store mis-aligned doubles directly then no fixup is
1393 // needed.  Else we split the double into 2 integer pieces and move it
1394 // piece-by-piece.  Only happens when passing doubles into C code as the
1395 // Java calling convention forces doubles to be aligned.
1396 const bool Matcher::misaligned_doubles_ok = true;
1397 
1398 
1399 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1400   // Get the memory operand from the node
1401   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1402   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1403   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1404   uint opcnt     = 1;                 // First operand
1405   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1406   while( idx >= skipped+num_edges ) {
1407     skipped += num_edges;
1408     opcnt++;                          // Bump operand count
1409     assert( opcnt < numopnds, "Accessing non-existent operand" );
1410     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1411   }
1412 
1413   MachOper *memory = node->_opnds[opcnt];
1414   MachOper *new_memory = NULL;
1415   switch (memory->opcode()) {
1416   case DIRECT:
1417   case INDOFFSET32X:
1418     // No transformation necessary.
1419     return;
1420   case INDIRECT:
1421     new_memory = new (C) indirect_win95_safeOper( );
1422     break;
1423   case INDOFFSET8:
1424     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1425     break;
1426   case INDOFFSET32:
1427     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1428     break;
1429   case INDINDEXOFFSET:
1430     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1431     break;
1432   case INDINDEXSCALE:
1433     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1434     break;
1435   case INDINDEXSCALEOFFSET:
1436     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1437     break;
1438   case LOAD_LONG_INDIRECT:
1439   case LOAD_LONG_INDOFFSET32:
1440     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1441     return;
1442   default:
1443     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1444     return;
1445   }
1446   node->_opnds[opcnt] = new_memory;
1447 }
1448 
1449 // Advertise here if the CPU requires explicit rounding operations
1450 // to implement the UseStrictFP mode.
1451 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1452 
1453 // Are floats conerted to double when stored to stack during deoptimization?
1454 // On x32 it is stored with convertion only when FPU is used for floats.
1455 bool Matcher::float_in_double() { return (UseSSE == 0); }
1456 
1457 // Do ints take an entire long register or just half?
1458 const bool Matcher::int_in_long = false;
1459 
1460 // Return whether or not this register is ever used as an argument.  This
1461 // function is used on startup to build the trampoline stubs in generateOptoStub.
1462 // Registers not mentioned will be killed by the VM call in the trampoline, and
1463 // arguments in those registers not be available to the callee.
1464 bool Matcher::can_be_java_arg( int reg ) {
1465   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1466   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1467   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1468   return false;
1469 }
1470 
1471 bool Matcher::is_spillable_arg( int reg ) {
1472   return can_be_java_arg(reg);
1473 }
1474 
1475 // Register for DIVI projection of divmodI
1476 RegMask Matcher::divI_proj_mask() {
1477   return EAX_REG_mask;
1478 }
1479 
1480 // Register for MODI projection of divmodI
1481 RegMask Matcher::modI_proj_mask() {
1482   return EDX_REG_mask;
1483 }
1484 
1485 // Register for DIVL projection of divmodL
1486 RegMask Matcher::divL_proj_mask() {
1487   ShouldNotReachHere();
1488   return RegMask();
1489 }
1490 
1491 // Register for MODL projection of divmodL
1492 RegMask Matcher::modL_proj_mask() {
1493   ShouldNotReachHere();
1494   return RegMask();
1495 }
1496 
1497 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1498   return EBP_REG_mask;
1499 }
1500 
1501 // Returns true if the high 32 bits of the value is known to be zero.
1502 bool is_operand_hi32_zero(Node* n) {
1503   int opc = n->Opcode();
1504   if (opc == Op_LoadUI2L) {
1505     return true;
1506   }
1507   if (opc == Op_AndL) {
1508     Node* o2 = n->in(2);
1509     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1510       return true;
1511     }
1512   }
1513   return false;
1514 }
1515 
1516 %}
1517 
1518 //----------ENCODING BLOCK-----------------------------------------------------
1519 // This block specifies the encoding classes used by the compiler to output
1520 // byte streams.  Encoding classes generate functions which are called by
1521 // Machine Instruction Nodes in order to generate the bit encoding of the
1522 // instruction.  Operands specify their base encoding interface with the
1523 // interface keyword.  There are currently supported four interfaces,
1524 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1525 // operand to generate a function which returns its register number when
1526 // queried.   CONST_INTER causes an operand to generate a function which
1527 // returns the value of the constant when queried.  MEMORY_INTER causes an
1528 // operand to generate four functions which return the Base Register, the
1529 // Index Register, the Scale Value, and the Offset Value of the operand when
1530 // queried.  COND_INTER causes an operand to generate six functions which
1531 // return the encoding code (ie - encoding bits for the instruction)
1532 // associated with each basic boolean condition for a conditional instruction.
1533 // Instructions specify two basic values for encoding.  They use the
1534 // ins_encode keyword to specify their encoding class (which must be one of
1535 // the class names specified in the encoding block), and they use the
1536 // opcode keyword to specify, in order, their primary, secondary, and
1537 // tertiary opcode.  Only the opcode sections which a particular instruction
1538 // needs for encoding need to be specified.
1539 encode %{
1540   // Build emit functions for each basic byte or larger field in the intel
1541   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1542   // code in the enc_class source block.  Emit functions will live in the
1543   // main source block for now.  In future, we can generalize this by
1544   // adding a syntax that specifies the sizes of fields in an order,
1545   // so that the adlc can build the emit functions automagically
1546 
1547   // Emit primary opcode
1548   enc_class OpcP %{
1549     emit_opcode(cbuf, $primary);
1550   %}
1551 
1552   // Emit secondary opcode
1553   enc_class OpcS %{
1554     emit_opcode(cbuf, $secondary);
1555   %}
1556 
1557   // Emit opcode directly
1558   enc_class Opcode(immI d8) %{
1559     emit_opcode(cbuf, $d8$$constant);
1560   %}
1561 
1562   enc_class SizePrefix %{
1563     emit_opcode(cbuf,0x66);
1564   %}
1565 
1566   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1567     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1568   %}
1569 
1570   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1571     emit_opcode(cbuf,$opcode$$constant);
1572     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1573   %}
1574 
1575   enc_class mov_r32_imm0( eRegI dst ) %{
1576     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1577     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1578   %}
1579 
1580   enc_class cdq_enc %{
1581     // Full implementation of Java idiv and irem; checks for
1582     // special case as described in JVM spec., p.243 & p.271.
1583     //
1584     //         normal case                           special case
1585     //
1586     // input : rax,: dividend                         min_int
1587     //         reg: divisor                          -1
1588     //
1589     // output: rax,: quotient  (= rax, idiv reg)       min_int
1590     //         rdx: remainder (= rax, irem reg)       0
1591     //
1592     //  Code sequnce:
1593     //
1594     //  81 F8 00 00 00 80    cmp         rax,80000000h
1595     //  0F 85 0B 00 00 00    jne         normal_case
1596     //  33 D2                xor         rdx,edx
1597     //  83 F9 FF             cmp         rcx,0FFh
1598     //  0F 84 03 00 00 00    je          done
1599     //                  normal_case:
1600     //  99                   cdq
1601     //  F7 F9                idiv        rax,ecx
1602     //                  done:
1603     //
1604     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1605     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1606     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1607     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1608     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1609     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1610     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1611     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1612     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1613     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1614     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1615     // normal_case:
1616     emit_opcode(cbuf,0x99);                                         // cdq
1617     // idiv (note: must be emitted by the user of this rule)
1618     // normal:
1619   %}
1620 
1621   // Dense encoding for older common ops
1622   enc_class Opc_plus(immI opcode, eRegI reg) %{
1623     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1624   %}
1625 
1626 
1627   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1628   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1629     // Check for 8-bit immediate, and set sign extend bit in opcode
1630     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1631       emit_opcode(cbuf, $primary | 0x02);
1632     }
1633     else {                          // If 32-bit immediate
1634       emit_opcode(cbuf, $primary);
1635     }
1636   %}
1637 
1638   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1639     // Emit primary opcode and set sign-extend bit
1640     // Check for 8-bit immediate, and set sign extend bit in opcode
1641     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1642       emit_opcode(cbuf, $primary | 0x02);    }
1643     else {                          // If 32-bit immediate
1644       emit_opcode(cbuf, $primary);
1645     }
1646     // Emit r/m byte with secondary opcode, after primary opcode.
1647     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1648   %}
1649 
1650   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1651     // Check for 8-bit immediate, and set sign extend bit in opcode
1652     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1653       $$$emit8$imm$$constant;
1654     }
1655     else {                          // If 32-bit immediate
1656       // Output immediate
1657       $$$emit32$imm$$constant;
1658     }
1659   %}
1660 
1661   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1662     // Emit primary opcode and set sign-extend bit
1663     // Check for 8-bit immediate, and set sign extend bit in opcode
1664     int con = (int)$imm$$constant; // Throw away top bits
1665     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1666     // Emit r/m byte with secondary opcode, after primary opcode.
1667     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1668     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1669     else                               emit_d32(cbuf,con);
1670   %}
1671 
1672   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1673     // Emit primary opcode and set sign-extend bit
1674     // Check for 8-bit immediate, and set sign extend bit in opcode
1675     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1676     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1677     // Emit r/m byte with tertiary opcode, after primary opcode.
1678     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1679     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1680     else                               emit_d32(cbuf,con);
1681   %}
1682 
1683   enc_class Lbl (label labl) %{ // JMP, CALL
1684     Label *l = $labl$$label;
1685     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1686   %}
1687 
1688   enc_class LblShort (label labl) %{ // JMP, CALL
1689     Label *l = $labl$$label;
1690     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1691     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1692     emit_d8(cbuf, disp);
1693   %}
1694 
1695   enc_class OpcSReg (eRegI dst) %{    // BSWAP
1696     emit_cc(cbuf, $secondary, $dst$$reg );
1697   %}
1698 
1699   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1700     int destlo = $dst$$reg;
1701     int desthi = HIGH_FROM_LOW(destlo);
1702     // bswap lo
1703     emit_opcode(cbuf, 0x0F);
1704     emit_cc(cbuf, 0xC8, destlo);
1705     // bswap hi
1706     emit_opcode(cbuf, 0x0F);
1707     emit_cc(cbuf, 0xC8, desthi);
1708     // xchg lo and hi
1709     emit_opcode(cbuf, 0x87);
1710     emit_rm(cbuf, 0x3, destlo, desthi);
1711   %}
1712 
1713   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1714     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1715   %}
1716 
1717   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1718     Label *l = $labl$$label;
1719     $$$emit8$primary;
1720     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1721     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1722   %}
1723 
1724   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1725     Label *l = $labl$$label;
1726     emit_cc(cbuf, $primary, $cop$$cmpcode);
1727     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1728     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1729     emit_d8(cbuf, disp);
1730   %}
1731 
1732   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1733     $$$emit8$primary;
1734     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1735   %}
1736 
1737   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1738     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1739     emit_d8(cbuf, op >> 8 );
1740     emit_d8(cbuf, op & 255);
1741   %}
1742 
1743   // emulate a CMOV with a conditional branch around a MOV
1744   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1745     // Invert sense of branch from sense of CMOV
1746     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1747     emit_d8( cbuf, $brOffs$$constant );
1748   %}
1749 
1750   enc_class enc_PartialSubtypeCheck( ) %{
1751     Register Redi = as_Register(EDI_enc); // result register
1752     Register Reax = as_Register(EAX_enc); // super class
1753     Register Recx = as_Register(ECX_enc); // killed
1754     Register Resi = as_Register(ESI_enc); // sub class
1755     Label miss;
1756 
1757     MacroAssembler _masm(&cbuf);
1758     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1759                                      NULL, &miss,
1760                                      /*set_cond_codes:*/ true);
1761     if ($primary) {
1762       __ xorptr(Redi, Redi);
1763     }
1764     __ bind(miss);
1765   %}
1766 
1767   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1768     MacroAssembler masm(&cbuf);
1769     int start = masm.offset();
1770     if (UseSSE >= 2) {
1771       if (VerifyFPU) {
1772         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1773       }
1774     } else {
1775       // External c_calling_convention expects the FPU stack to be 'clean'.
1776       // Compiled code leaves it dirty.  Do cleanup now.
1777       masm.empty_FPU_stack();
1778     }
1779     if (sizeof_FFree_Float_Stack_All == -1) {
1780       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1781     } else {
1782       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1783     }
1784   %}
1785 
1786   enc_class Verify_FPU_For_Leaf %{
1787     if( VerifyFPU ) {
1788       MacroAssembler masm(&cbuf);
1789       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1790     }
1791   %}
1792 
1793   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1794     // This is the instruction starting address for relocation info.
1795     cbuf.set_inst_mark();
1796     $$$emit8$primary;
1797     // CALL directly to the runtime
1798     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1799                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1800 
1801     if (UseSSE >= 2) {
1802       MacroAssembler _masm(&cbuf);
1803       BasicType rt = tf()->return_type();
1804 
1805       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1806         // A C runtime call where the return value is unused.  In SSE2+
1807         // mode the result needs to be removed from the FPU stack.  It's
1808         // likely that this function call could be removed by the
1809         // optimizer if the C function is a pure function.
1810         __ ffree(0);
1811       } else if (rt == T_FLOAT) {
1812         __ lea(rsp, Address(rsp, -4));
1813         __ fstp_s(Address(rsp, 0));
1814         __ movflt(xmm0, Address(rsp, 0));
1815         __ lea(rsp, Address(rsp,  4));
1816       } else if (rt == T_DOUBLE) {
1817         __ lea(rsp, Address(rsp, -8));
1818         __ fstp_d(Address(rsp, 0));
1819         __ movdbl(xmm0, Address(rsp, 0));
1820         __ lea(rsp, Address(rsp,  8));
1821       }
1822     }
1823   %}
1824 
1825 
1826   enc_class pre_call_FPU %{
1827     // If method sets FPU control word restore it here
1828     debug_only(int off0 = cbuf.code_size());
1829     if( Compile::current()->in_24_bit_fp_mode() ) {
1830       MacroAssembler masm(&cbuf);
1831       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1832     }
1833     debug_only(int off1 = cbuf.code_size());
1834     assert(off1 - off0 == pre_call_FPU_size(), "correct size prediction");
1835   %}
1836 
1837   enc_class post_call_FPU %{
1838     // If method sets FPU control word do it here also
1839     if( Compile::current()->in_24_bit_fp_mode() ) {
1840       MacroAssembler masm(&cbuf);
1841       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1842     }
1843   %}
1844 
1845   enc_class preserve_SP %{
1846     debug_only(int off0 = cbuf.code_size());
1847     MacroAssembler _masm(&cbuf);
1848     // RBP is preserved across all calls, even compiled calls.
1849     // Use it to preserve RSP in places where the callee might change the SP.
1850     __ movptr(rbp, rsp);
1851     debug_only(int off1 = cbuf.code_size());
1852     assert(off1 - off0 == preserve_SP_size(), "correct size prediction");
1853   %}
1854 
1855   enc_class restore_SP %{
1856     MacroAssembler _masm(&cbuf);
1857     __ movptr(rsp, rbp);
1858   %}
1859 
1860   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1861     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1862     // who we intended to call.
1863     cbuf.set_inst_mark();
1864     $$$emit8$primary;
1865     if ( !_method ) {
1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1867                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1868     } else if(_optimized_virtual) {
1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1870                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1871     } else {
1872       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1873                      static_call_Relocation::spec(), RELOC_IMM32 );
1874     }
1875     if( _method ) {  // Emit stub for static call
1876       emit_java_to_interp(cbuf);
1877     }
1878   %}
1879 
1880   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1881     // !!!!!
1882     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1883     // emit_call_dynamic_prologue( cbuf );
1884     cbuf.set_inst_mark();
1885     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1886     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1887     address  virtual_call_oop_addr = cbuf.inst_mark();
1888     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1889     // who we intended to call.
1890     cbuf.set_inst_mark();
1891     $$$emit8$primary;
1892     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1893                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1894   %}
1895 
1896   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1897     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1898     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1899 
1900     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1901     cbuf.set_inst_mark();
1902     $$$emit8$primary;
1903     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1904     emit_d8(cbuf, disp);             // Displacement
1905 
1906   %}
1907 
1908   enc_class Xor_Reg (eRegI dst) %{
1909     emit_opcode(cbuf, 0x33);
1910     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1911   %}
1912 
1913 //   Following encoding is no longer used, but may be restored if calling
1914 //   convention changes significantly.
1915 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1916 //
1917 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1918 //     // int ic_reg     = Matcher::inline_cache_reg();
1919 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1920 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1921 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1922 //
1923 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1924 //     // // so we load it immediately before the call
1925 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1926 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1927 //
1928 //     // xor rbp,ebp
1929 //     emit_opcode(cbuf, 0x33);
1930 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1931 //
1932 //     // CALL to interpreter.
1933 //     cbuf.set_inst_mark();
1934 //     $$$emit8$primary;
1935 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1936 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1937 //   %}
1938 
1939   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1940     $$$emit8$primary;
1941     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1942     $$$emit8$shift$$constant;
1943   %}
1944 
1945   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1946     // Load immediate does not have a zero or sign extended version
1947     // for 8-bit immediates
1948     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1949     $$$emit32$src$$constant;
1950   %}
1951 
1952   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1953     // Load immediate does not have a zero or sign extended version
1954     // for 8-bit immediates
1955     emit_opcode(cbuf, $primary + $dst$$reg);
1956     $$$emit32$src$$constant;
1957   %}
1958 
1959   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1960     // Load immediate does not have a zero or sign extended version
1961     // for 8-bit immediates
1962     int dst_enc = $dst$$reg;
1963     int src_con = $src$$constant & 0x0FFFFFFFFL;
1964     if (src_con == 0) {
1965       // xor dst, dst
1966       emit_opcode(cbuf, 0x33);
1967       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1968     } else {
1969       emit_opcode(cbuf, $primary + dst_enc);
1970       emit_d32(cbuf, src_con);
1971     }
1972   %}
1973 
1974   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1975     // Load immediate does not have a zero or sign extended version
1976     // for 8-bit immediates
1977     int dst_enc = $dst$$reg + 2;
1978     int src_con = ((julong)($src$$constant)) >> 32;
1979     if (src_con == 0) {
1980       // xor dst, dst
1981       emit_opcode(cbuf, 0x33);
1982       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1983     } else {
1984       emit_opcode(cbuf, $primary + dst_enc);
1985       emit_d32(cbuf, src_con);
1986     }
1987   %}
1988 
1989 
1990   enc_class LdImmD (immD src) %{    // Load Immediate
1991     if( is_positive_zero_double($src$$constant)) {
1992       // FLDZ
1993       emit_opcode(cbuf,0xD9);
1994       emit_opcode(cbuf,0xEE);
1995     } else if( is_positive_one_double($src$$constant)) {
1996       // FLD1
1997       emit_opcode(cbuf,0xD9);
1998       emit_opcode(cbuf,0xE8);
1999     } else {
2000       emit_opcode(cbuf,0xDD);
2001       emit_rm(cbuf, 0x0, 0x0, 0x5);
2002       emit_double_constant(cbuf, $src$$constant);
2003     }
2004   %}
2005 
2006 
2007   enc_class LdImmF (immF src) %{    // Load Immediate
2008     if( is_positive_zero_float($src$$constant)) {
2009       emit_opcode(cbuf,0xD9);
2010       emit_opcode(cbuf,0xEE);
2011     } else if( is_positive_one_float($src$$constant)) {
2012       emit_opcode(cbuf,0xD9);
2013       emit_opcode(cbuf,0xE8);
2014     } else {
2015       $$$emit8$primary;
2016       // Load immediate does not have a zero or sign extended version
2017       // for 8-bit immediates
2018       // First load to TOS, then move to dst
2019       emit_rm(cbuf, 0x0, 0x0, 0x5);
2020       emit_float_constant(cbuf, $src$$constant);
2021     }
2022   %}
2023 
2024   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
2025     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2026     emit_float_constant(cbuf, $con$$constant);
2027   %}
2028 
2029   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
2030     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2031     emit_double_constant(cbuf, $con$$constant);
2032   %}
2033 
2034   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
2035     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
2036     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2037     emit_opcode(cbuf, 0x0F);
2038     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2039     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
2040     emit_double_constant(cbuf, $con$$constant);
2041   %}
2042 
2043   enc_class Opc_MemImm_F(immF src) %{
2044     cbuf.set_inst_mark();
2045     $$$emit8$primary;
2046     emit_rm(cbuf, 0x0, $secondary, 0x5);
2047     emit_float_constant(cbuf, $src$$constant);
2048   %}
2049 
2050 
2051   enc_class MovI2X_reg(regX dst, eRegI src) %{
2052     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2053     emit_opcode(cbuf, 0x0F );
2054     emit_opcode(cbuf, 0x6E );
2055     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2056   %}
2057 
2058   enc_class MovX2I_reg(eRegI dst, regX src) %{
2059     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
2060     emit_opcode(cbuf, 0x0F );
2061     emit_opcode(cbuf, 0x7E );
2062     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2063   %}
2064 
2065   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
2066     { // MOVD $dst,$src.lo
2067       emit_opcode(cbuf,0x66);
2068       emit_opcode(cbuf,0x0F);
2069       emit_opcode(cbuf,0x6E);
2070       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2071     }
2072     { // MOVD $tmp,$src.hi
2073       emit_opcode(cbuf,0x66);
2074       emit_opcode(cbuf,0x0F);
2075       emit_opcode(cbuf,0x6E);
2076       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2077     }
2078     { // PUNPCKLDQ $dst,$tmp
2079       emit_opcode(cbuf,0x66);
2080       emit_opcode(cbuf,0x0F);
2081       emit_opcode(cbuf,0x62);
2082       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2083      }
2084   %}
2085 
2086   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2087     { // MOVD $dst.lo,$src
2088       emit_opcode(cbuf,0x66);
2089       emit_opcode(cbuf,0x0F);
2090       emit_opcode(cbuf,0x7E);
2091       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2092     }
2093     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2094       emit_opcode(cbuf,0xF2);
2095       emit_opcode(cbuf,0x0F);
2096       emit_opcode(cbuf,0x70);
2097       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2098       emit_d8(cbuf, 0x4E);
2099     }
2100     { // MOVD $dst.hi,$tmp
2101       emit_opcode(cbuf,0x66);
2102       emit_opcode(cbuf,0x0F);
2103       emit_opcode(cbuf,0x7E);
2104       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2105     }
2106   %}
2107 
2108 
2109   // Encode a reg-reg copy.  If it is useless, then empty encoding.
2110   enc_class enc_Copy( eRegI dst, eRegI src ) %{
2111     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2112   %}
2113 
2114   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2115     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2116   %}
2117 
2118   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2119   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2120     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2121   %}
2122 
2123   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2124     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2125   %}
2126 
2127   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2128     $$$emit8$primary;
2129     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2130   %}
2131 
2132   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2133     $$$emit8$secondary;
2134     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2135   %}
2136 
2137   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2138     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2139   %}
2140 
2141   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2142     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2143   %}
2144 
2145   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2146     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2147   %}
2148 
2149   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2150     // Output immediate
2151     $$$emit32$src$$constant;
2152   %}
2153 
2154   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2155     // Output Float immediate bits
2156     jfloat jf = $src$$constant;
2157     int    jf_as_bits = jint_cast( jf );
2158     emit_d32(cbuf, jf_as_bits);
2159   %}
2160 
2161   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2162     // Output Float immediate bits
2163     jfloat jf = $src$$constant;
2164     int    jf_as_bits = jint_cast( jf );
2165     emit_d32(cbuf, jf_as_bits);
2166   %}
2167 
2168   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2169     // Output immediate
2170     $$$emit16$src$$constant;
2171   %}
2172 
2173   enc_class Con_d32(immI src) %{
2174     emit_d32(cbuf,$src$$constant);
2175   %}
2176 
2177   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2178     // Output immediate memory reference
2179     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2180     emit_d32(cbuf, 0x00);
2181   %}
2182 
2183   enc_class lock_prefix( ) %{
2184     if( os::is_MP() )
2185       emit_opcode(cbuf,0xF0);         // [Lock]
2186   %}
2187 
2188   // Cmp-xchg long value.
2189   // Note: we need to swap rbx, and rcx before and after the
2190   //       cmpxchg8 instruction because the instruction uses
2191   //       rcx as the high order word of the new value to store but
2192   //       our register encoding uses rbx,.
2193   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2194 
2195     // XCHG  rbx,ecx
2196     emit_opcode(cbuf,0x87);
2197     emit_opcode(cbuf,0xD9);
2198     // [Lock]
2199     if( os::is_MP() )
2200       emit_opcode(cbuf,0xF0);
2201     // CMPXCHG8 [Eptr]
2202     emit_opcode(cbuf,0x0F);
2203     emit_opcode(cbuf,0xC7);
2204     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2205     // XCHG  rbx,ecx
2206     emit_opcode(cbuf,0x87);
2207     emit_opcode(cbuf,0xD9);
2208   %}
2209 
2210   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2211     // [Lock]
2212     if( os::is_MP() )
2213       emit_opcode(cbuf,0xF0);
2214 
2215     // CMPXCHG [Eptr]
2216     emit_opcode(cbuf,0x0F);
2217     emit_opcode(cbuf,0xB1);
2218     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2219   %}
2220 
2221   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2222     int res_encoding = $res$$reg;
2223 
2224     // MOV  res,0
2225     emit_opcode( cbuf, 0xB8 + res_encoding);
2226     emit_d32( cbuf, 0 );
2227     // JNE,s  fail
2228     emit_opcode(cbuf,0x75);
2229     emit_d8(cbuf, 5 );
2230     // MOV  res,1
2231     emit_opcode( cbuf, 0xB8 + res_encoding);
2232     emit_d32( cbuf, 1 );
2233     // fail:
2234   %}
2235 
2236   enc_class set_instruction_start( ) %{
2237     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2238   %}
2239 
2240   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2241     int reg_encoding = $ereg$$reg;
2242     int base  = $mem$$base;
2243     int index = $mem$$index;
2244     int scale = $mem$$scale;
2245     int displace = $mem$$disp;
2246     bool disp_is_oop = $mem->disp_is_oop();
2247     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2248   %}
2249 
2250   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2251     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2252     int base  = $mem$$base;
2253     int index = $mem$$index;
2254     int scale = $mem$$scale;
2255     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2256     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2257     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2258   %}
2259 
2260   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2261     int r1, r2;
2262     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2263     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2264     emit_opcode(cbuf,0x0F);
2265     emit_opcode(cbuf,$tertiary);
2266     emit_rm(cbuf, 0x3, r1, r2);
2267     emit_d8(cbuf,$cnt$$constant);
2268     emit_d8(cbuf,$primary);
2269     emit_rm(cbuf, 0x3, $secondary, r1);
2270     emit_d8(cbuf,$cnt$$constant);
2271   %}
2272 
2273   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2274     emit_opcode( cbuf, 0x8B ); // Move
2275     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2276     emit_d8(cbuf,$primary);
2277     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2278     emit_d8(cbuf,$cnt$$constant-32);
2279     emit_d8(cbuf,$primary);
2280     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2281     emit_d8(cbuf,31);
2282   %}
2283 
2284   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2285     int r1, r2;
2286     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2287     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2288 
2289     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2290     emit_rm(cbuf, 0x3, r1, r2);
2291     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2292       emit_opcode(cbuf,$primary);
2293       emit_rm(cbuf, 0x3, $secondary, r1);
2294       emit_d8(cbuf,$cnt$$constant-32);
2295     }
2296     emit_opcode(cbuf,0x33);  // XOR r2,r2
2297     emit_rm(cbuf, 0x3, r2, r2);
2298   %}
2299 
2300   // Clone of RegMem but accepts an extra parameter to access each
2301   // half of a double in memory; it never needs relocation info.
2302   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2303     emit_opcode(cbuf,$opcode$$constant);
2304     int reg_encoding = $rm_reg$$reg;
2305     int base     = $mem$$base;
2306     int index    = $mem$$index;
2307     int scale    = $mem$$scale;
2308     int displace = $mem$$disp + $disp_for_half$$constant;
2309     bool disp_is_oop = false;
2310     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2311   %}
2312 
2313   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2314   //
2315   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2316   // and it never needs relocation information.
2317   // Frequently used to move data between FPU's Stack Top and memory.
2318   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2319     int rm_byte_opcode = $rm_opcode$$constant;
2320     int base     = $mem$$base;
2321     int index    = $mem$$index;
2322     int scale    = $mem$$scale;
2323     int displace = $mem$$disp;
2324     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2325     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2326   %}
2327 
2328   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2329     int rm_byte_opcode = $rm_opcode$$constant;
2330     int base     = $mem$$base;
2331     int index    = $mem$$index;
2332     int scale    = $mem$$scale;
2333     int displace = $mem$$disp;
2334     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2335     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2336   %}
2337 
2338   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2339     int reg_encoding = $dst$$reg;
2340     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2341     int index        = 0x04;            // 0x04 indicates no index
2342     int scale        = 0x00;            // 0x00 indicates no scale
2343     int displace     = $src1$$constant; // 0x00 indicates no displacement
2344     bool disp_is_oop = false;
2345     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2346   %}
2347 
2348   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2349     // Compare dst,src
2350     emit_opcode(cbuf,0x3B);
2351     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2352     // jmp dst < src around move
2353     emit_opcode(cbuf,0x7C);
2354     emit_d8(cbuf,2);
2355     // move dst,src
2356     emit_opcode(cbuf,0x8B);
2357     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2358   %}
2359 
2360   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2361     // Compare dst,src
2362     emit_opcode(cbuf,0x3B);
2363     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2364     // jmp dst > src around move
2365     emit_opcode(cbuf,0x7F);
2366     emit_d8(cbuf,2);
2367     // move dst,src
2368     emit_opcode(cbuf,0x8B);
2369     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2370   %}
2371 
2372   enc_class enc_FP_store(memory mem, regD src) %{
2373     // If src is FPR1, we can just FST to store it.
2374     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2375     int reg_encoding = 0x2; // Just store
2376     int base  = $mem$$base;
2377     int index = $mem$$index;
2378     int scale = $mem$$scale;
2379     int displace = $mem$$disp;
2380     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2381     if( $src$$reg != FPR1L_enc ) {
2382       reg_encoding = 0x3;  // Store & pop
2383       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2384       emit_d8( cbuf, 0xC0-1+$src$$reg );
2385     }
2386     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2387     emit_opcode(cbuf,$primary);
2388     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2389   %}
2390 
2391   enc_class neg_reg(eRegI dst) %{
2392     // NEG $dst
2393     emit_opcode(cbuf,0xF7);
2394     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2395   %}
2396 
2397   enc_class setLT_reg(eCXRegI dst) %{
2398     // SETLT $dst
2399     emit_opcode(cbuf,0x0F);
2400     emit_opcode(cbuf,0x9C);
2401     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2402   %}
2403 
2404   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2405     int tmpReg = $tmp$$reg;
2406 
2407     // SUB $p,$q
2408     emit_opcode(cbuf,0x2B);
2409     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2410     // SBB $tmp,$tmp
2411     emit_opcode(cbuf,0x1B);
2412     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2413     // AND $tmp,$y
2414     emit_opcode(cbuf,0x23);
2415     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2416     // ADD $p,$tmp
2417     emit_opcode(cbuf,0x03);
2418     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2419   %}
2420 
2421   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2422     int tmpReg = $tmp$$reg;
2423 
2424     // SUB $p,$q
2425     emit_opcode(cbuf,0x2B);
2426     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2427     // SBB $tmp,$tmp
2428     emit_opcode(cbuf,0x1B);
2429     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2430     // AND $tmp,$y
2431     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2432     emit_opcode(cbuf,0x23);
2433     int reg_encoding = tmpReg;
2434     int base  = $mem$$base;
2435     int index = $mem$$index;
2436     int scale = $mem$$scale;
2437     int displace = $mem$$disp;
2438     bool disp_is_oop = $mem->disp_is_oop();
2439     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2440     // ADD $p,$tmp
2441     emit_opcode(cbuf,0x03);
2442     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2443   %}
2444 
2445   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2446     // TEST shift,32
2447     emit_opcode(cbuf,0xF7);
2448     emit_rm(cbuf, 0x3, 0, ECX_enc);
2449     emit_d32(cbuf,0x20);
2450     // JEQ,s small
2451     emit_opcode(cbuf, 0x74);
2452     emit_d8(cbuf, 0x04);
2453     // MOV    $dst.hi,$dst.lo
2454     emit_opcode( cbuf, 0x8B );
2455     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2456     // CLR    $dst.lo
2457     emit_opcode(cbuf, 0x33);
2458     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2459 // small:
2460     // SHLD   $dst.hi,$dst.lo,$shift
2461     emit_opcode(cbuf,0x0F);
2462     emit_opcode(cbuf,0xA5);
2463     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2464     // SHL    $dst.lo,$shift"
2465     emit_opcode(cbuf,0xD3);
2466     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2467   %}
2468 
2469   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2470     // TEST shift,32
2471     emit_opcode(cbuf,0xF7);
2472     emit_rm(cbuf, 0x3, 0, ECX_enc);
2473     emit_d32(cbuf,0x20);
2474     // JEQ,s small
2475     emit_opcode(cbuf, 0x74);
2476     emit_d8(cbuf, 0x04);
2477     // MOV    $dst.lo,$dst.hi
2478     emit_opcode( cbuf, 0x8B );
2479     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2480     // CLR    $dst.hi
2481     emit_opcode(cbuf, 0x33);
2482     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2483 // small:
2484     // SHRD   $dst.lo,$dst.hi,$shift
2485     emit_opcode(cbuf,0x0F);
2486     emit_opcode(cbuf,0xAD);
2487     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2488     // SHR    $dst.hi,$shift"
2489     emit_opcode(cbuf,0xD3);
2490     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2491   %}
2492 
2493   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2494     // TEST shift,32
2495     emit_opcode(cbuf,0xF7);
2496     emit_rm(cbuf, 0x3, 0, ECX_enc);
2497     emit_d32(cbuf,0x20);
2498     // JEQ,s small
2499     emit_opcode(cbuf, 0x74);
2500     emit_d8(cbuf, 0x05);
2501     // MOV    $dst.lo,$dst.hi
2502     emit_opcode( cbuf, 0x8B );
2503     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2504     // SAR    $dst.hi,31
2505     emit_opcode(cbuf, 0xC1);
2506     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2507     emit_d8(cbuf, 0x1F );
2508 // small:
2509     // SHRD   $dst.lo,$dst.hi,$shift
2510     emit_opcode(cbuf,0x0F);
2511     emit_opcode(cbuf,0xAD);
2512     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2513     // SAR    $dst.hi,$shift"
2514     emit_opcode(cbuf,0xD3);
2515     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2516   %}
2517 
2518 
2519   // ----------------- Encodings for floating point unit -----------------
2520   // May leave result in FPU-TOS or FPU reg depending on opcodes
2521   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2522     $$$emit8$primary;
2523     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2524   %}
2525 
2526   // Pop argument in FPR0 with FSTP ST(0)
2527   enc_class PopFPU() %{
2528     emit_opcode( cbuf, 0xDD );
2529     emit_d8( cbuf, 0xD8 );
2530   %}
2531 
2532   // !!!!! equivalent to Pop_Reg_F
2533   enc_class Pop_Reg_D( regD dst ) %{
2534     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2535     emit_d8( cbuf, 0xD8+$dst$$reg );
2536   %}
2537 
2538   enc_class Push_Reg_D( regD dst ) %{
2539     emit_opcode( cbuf, 0xD9 );
2540     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2541   %}
2542 
2543   enc_class strictfp_bias1( regD dst ) %{
2544     emit_opcode( cbuf, 0xDB );           // FLD m80real
2545     emit_opcode( cbuf, 0x2D );
2546     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2547     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2548     emit_opcode( cbuf, 0xC8+$dst$$reg );
2549   %}
2550 
2551   enc_class strictfp_bias2( regD dst ) %{
2552     emit_opcode( cbuf, 0xDB );           // FLD m80real
2553     emit_opcode( cbuf, 0x2D );
2554     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2555     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2556     emit_opcode( cbuf, 0xC8+$dst$$reg );
2557   %}
2558 
2559   // Special case for moving an integer register to a stack slot.
2560   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2561     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2562   %}
2563 
2564   // Special case for moving a register to a stack slot.
2565   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2566     // Opcode already emitted
2567     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2568     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2569     emit_d32(cbuf, $dst$$disp);   // Displacement
2570   %}
2571 
2572   // Push the integer in stackSlot 'src' onto FP-stack
2573   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2574     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2575   %}
2576 
2577   // Push the float in stackSlot 'src' onto FP-stack
2578   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2579     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2580   %}
2581 
2582   // Push the double in stackSlot 'src' onto FP-stack
2583   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2584     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2585   %}
2586 
2587   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2588   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2589     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2590   %}
2591 
2592   // Same as Pop_Mem_F except for opcode
2593   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2594   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2595     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2596   %}
2597 
2598   enc_class Pop_Reg_F( regF dst ) %{
2599     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2600     emit_d8( cbuf, 0xD8+$dst$$reg );
2601   %}
2602 
2603   enc_class Push_Reg_F( regF dst ) %{
2604     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2605     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2606   %}
2607 
2608   // Push FPU's float to a stack-slot, and pop FPU-stack
2609   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2610     int pop = 0x02;
2611     if ($src$$reg != FPR1L_enc) {
2612       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2613       emit_d8( cbuf, 0xC0-1+$src$$reg );
2614       pop = 0x03;
2615     }
2616     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2617   %}
2618 
2619   // Push FPU's double to a stack-slot, and pop FPU-stack
2620   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2621     int pop = 0x02;
2622     if ($src$$reg != FPR1L_enc) {
2623       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2624       emit_d8( cbuf, 0xC0-1+$src$$reg );
2625       pop = 0x03;
2626     }
2627     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2628   %}
2629 
2630   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2631   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2632     int pop = 0xD0 - 1; // -1 since we skip FLD
2633     if ($src$$reg != FPR1L_enc) {
2634       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2635       emit_d8( cbuf, 0xC0-1+$src$$reg );
2636       pop = 0xD8;
2637     }
2638     emit_opcode( cbuf, 0xDD );
2639     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2640   %}
2641 
2642 
2643   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2644     MacroAssembler masm(&cbuf);
2645     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2646     masm.fmul(   $src2$$reg+0);   // value at TOS
2647     masm.fadd(   $src$$reg+0);    // value at TOS
2648     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2649   %}
2650 
2651 
2652   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2653     // load dst in FPR0
2654     emit_opcode( cbuf, 0xD9 );
2655     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2656     if ($src$$reg != FPR1L_enc) {
2657       // fincstp
2658       emit_opcode (cbuf, 0xD9);
2659       emit_opcode (cbuf, 0xF7);
2660       // swap src with FPR1:
2661       // FXCH FPR1 with src
2662       emit_opcode(cbuf, 0xD9);
2663       emit_d8(cbuf, 0xC8-1+$src$$reg );
2664       // fdecstp
2665       emit_opcode (cbuf, 0xD9);
2666       emit_opcode (cbuf, 0xF6);
2667     }
2668   %}
2669 
2670   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2671     // Allocate a word
2672     emit_opcode(cbuf,0x83);            // SUB ESP,8
2673     emit_opcode(cbuf,0xEC);
2674     emit_d8(cbuf,0x08);
2675 
2676     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2677     emit_opcode  (cbuf, 0x0F );
2678     emit_opcode  (cbuf, 0x11 );
2679     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2680 
2681     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2682     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2683 
2684     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2685     emit_opcode  (cbuf, 0x0F );
2686     emit_opcode  (cbuf, 0x11 );
2687     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2688 
2689     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2690     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2691 
2692   %}
2693 
2694   enc_class Push_ModX_encoding( regX src0, regX src1) %{
2695     // Allocate a word
2696     emit_opcode(cbuf,0x83);            // SUB ESP,4
2697     emit_opcode(cbuf,0xEC);
2698     emit_d8(cbuf,0x04);
2699 
2700     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2701     emit_opcode  (cbuf, 0x0F );
2702     emit_opcode  (cbuf, 0x11 );
2703     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2704 
2705     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2706     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2707 
2708     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2709     emit_opcode  (cbuf, 0x0F );
2710     emit_opcode  (cbuf, 0x11 );
2711     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2712 
2713     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2714     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2715 
2716   %}
2717 
2718   enc_class Push_ResultXD(regXD dst) %{
2719     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2720 
2721     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2722     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2723     emit_opcode  (cbuf, 0x0F );
2724     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2725     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2726 
2727     emit_opcode(cbuf,0x83);    // ADD ESP,8
2728     emit_opcode(cbuf,0xC4);
2729     emit_d8(cbuf,0x08);
2730   %}
2731 
2732   enc_class Push_ResultX(regX dst, immI d8) %{
2733     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2734 
2735     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2736     emit_opcode  (cbuf, 0x0F );
2737     emit_opcode  (cbuf, 0x10 );
2738     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2739 
2740     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2741     emit_opcode(cbuf,0xC4);
2742     emit_d8(cbuf,$d8$$constant);
2743   %}
2744 
2745   enc_class Push_SrcXD(regXD src) %{
2746     // Allocate a word
2747     emit_opcode(cbuf,0x83);            // SUB ESP,8
2748     emit_opcode(cbuf,0xEC);
2749     emit_d8(cbuf,0x08);
2750 
2751     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2752     emit_opcode  (cbuf, 0x0F );
2753     emit_opcode  (cbuf, 0x11 );
2754     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2755 
2756     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2757     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2758   %}
2759 
2760   enc_class push_stack_temp_qword() %{
2761     emit_opcode(cbuf,0x83);     // SUB ESP,8
2762     emit_opcode(cbuf,0xEC);
2763     emit_d8    (cbuf,0x08);
2764   %}
2765 
2766   enc_class pop_stack_temp_qword() %{
2767     emit_opcode(cbuf,0x83);     // ADD ESP,8
2768     emit_opcode(cbuf,0xC4);
2769     emit_d8    (cbuf,0x08);
2770   %}
2771 
2772   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2773     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2774     emit_opcode  (cbuf, 0x0F );
2775     emit_opcode  (cbuf, 0x11 );
2776     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2777 
2778     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2779     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2780   %}
2781 
2782   // Compute X^Y using Intel's fast hardware instructions, if possible.
2783   // Otherwise return a NaN.
2784   enc_class pow_exp_core_encoding %{
2785     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2786     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2787     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2788     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2789     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2790     emit_opcode(cbuf,0x1C);
2791     emit_d8(cbuf,0x24);
2792     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2793     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2794     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2795     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2796     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2797     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2798     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2799     emit_d32(cbuf,0xFFFFF800);
2800     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2801     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2802     emit_d32(cbuf,1023);
2803     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2804     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2805     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2806     emit_rm(cbuf,0x3,0x4,EAX_enc);
2807     emit_d8(cbuf,20);
2808     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2809     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2810     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2811     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2812     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2813     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2814     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2815     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2816     emit_d32(cbuf,0);
2817     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2818     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2819   %}
2820 
2821 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2822 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2823 
2824   enc_class Push_Result_Mod_D( regD src) %{
2825     if ($src$$reg != FPR1L_enc) {
2826       // fincstp
2827       emit_opcode (cbuf, 0xD9);
2828       emit_opcode (cbuf, 0xF7);
2829       // FXCH FPR1 with src
2830       emit_opcode(cbuf, 0xD9);
2831       emit_d8(cbuf, 0xC8-1+$src$$reg );
2832       // fdecstp
2833       emit_opcode (cbuf, 0xD9);
2834       emit_opcode (cbuf, 0xF6);
2835     }
2836     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2837     // // FSTP   FPR$dst$$reg
2838     // emit_opcode( cbuf, 0xDD );
2839     // emit_d8( cbuf, 0xD8+$dst$$reg );
2840   %}
2841 
2842   enc_class fnstsw_sahf_skip_parity() %{
2843     // fnstsw ax
2844     emit_opcode( cbuf, 0xDF );
2845     emit_opcode( cbuf, 0xE0 );
2846     // sahf
2847     emit_opcode( cbuf, 0x9E );
2848     // jnp  ::skip
2849     emit_opcode( cbuf, 0x7B );
2850     emit_opcode( cbuf, 0x05 );
2851   %}
2852 
2853   enc_class emitModD() %{
2854     // fprem must be iterative
2855     // :: loop
2856     // fprem
2857     emit_opcode( cbuf, 0xD9 );
2858     emit_opcode( cbuf, 0xF8 );
2859     // wait
2860     emit_opcode( cbuf, 0x9b );
2861     // fnstsw ax
2862     emit_opcode( cbuf, 0xDF );
2863     emit_opcode( cbuf, 0xE0 );
2864     // sahf
2865     emit_opcode( cbuf, 0x9E );
2866     // jp  ::loop
2867     emit_opcode( cbuf, 0x0F );
2868     emit_opcode( cbuf, 0x8A );
2869     emit_opcode( cbuf, 0xF4 );
2870     emit_opcode( cbuf, 0xFF );
2871     emit_opcode( cbuf, 0xFF );
2872     emit_opcode( cbuf, 0xFF );
2873   %}
2874 
2875   enc_class fpu_flags() %{
2876     // fnstsw_ax
2877     emit_opcode( cbuf, 0xDF);
2878     emit_opcode( cbuf, 0xE0);
2879     // test ax,0x0400
2880     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2881     emit_opcode( cbuf, 0xA9 );
2882     emit_d16   ( cbuf, 0x0400 );
2883     // // // This sequence works, but stalls for 12-16 cycles on PPro
2884     // // test rax,0x0400
2885     // emit_opcode( cbuf, 0xA9 );
2886     // emit_d32   ( cbuf, 0x00000400 );
2887     //
2888     // jz exit (no unordered comparison)
2889     emit_opcode( cbuf, 0x74 );
2890     emit_d8    ( cbuf, 0x02 );
2891     // mov ah,1 - treat as LT case (set carry flag)
2892     emit_opcode( cbuf, 0xB4 );
2893     emit_d8    ( cbuf, 0x01 );
2894     // sahf
2895     emit_opcode( cbuf, 0x9E);
2896   %}
2897 
2898   enc_class cmpF_P6_fixup() %{
2899     // Fixup the integer flags in case comparison involved a NaN
2900     //
2901     // JNP exit (no unordered comparison, P-flag is set by NaN)
2902     emit_opcode( cbuf, 0x7B );
2903     emit_d8    ( cbuf, 0x03 );
2904     // MOV AH,1 - treat as LT case (set carry flag)
2905     emit_opcode( cbuf, 0xB4 );
2906     emit_d8    ( cbuf, 0x01 );
2907     // SAHF
2908     emit_opcode( cbuf, 0x9E);
2909     // NOP     // target for branch to avoid branch to branch
2910     emit_opcode( cbuf, 0x90);
2911   %}
2912 
2913 //     fnstsw_ax();
2914 //     sahf();
2915 //     movl(dst, nan_result);
2916 //     jcc(Assembler::parity, exit);
2917 //     movl(dst, less_result);
2918 //     jcc(Assembler::below, exit);
2919 //     movl(dst, equal_result);
2920 //     jcc(Assembler::equal, exit);
2921 //     movl(dst, greater_result);
2922 
2923 // less_result     =  1;
2924 // greater_result  = -1;
2925 // equal_result    = 0;
2926 // nan_result      = -1;
2927 
2928   enc_class CmpF_Result(eRegI dst) %{
2929     // fnstsw_ax();
2930     emit_opcode( cbuf, 0xDF);
2931     emit_opcode( cbuf, 0xE0);
2932     // sahf
2933     emit_opcode( cbuf, 0x9E);
2934     // movl(dst, nan_result);
2935     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2936     emit_d32( cbuf, -1 );
2937     // jcc(Assembler::parity, exit);
2938     emit_opcode( cbuf, 0x7A );
2939     emit_d8    ( cbuf, 0x13 );
2940     // movl(dst, less_result);
2941     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2942     emit_d32( cbuf, -1 );
2943     // jcc(Assembler::below, exit);
2944     emit_opcode( cbuf, 0x72 );
2945     emit_d8    ( cbuf, 0x0C );
2946     // movl(dst, equal_result);
2947     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2948     emit_d32( cbuf, 0 );
2949     // jcc(Assembler::equal, exit);
2950     emit_opcode( cbuf, 0x74 );
2951     emit_d8    ( cbuf, 0x05 );
2952     // movl(dst, greater_result);
2953     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2954     emit_d32( cbuf, 1 );
2955   %}
2956 
2957 
2958   // XMM version of CmpF_Result. Because the XMM compare
2959   // instructions set the EFLAGS directly. It becomes simpler than
2960   // the float version above.
2961   enc_class CmpX_Result(eRegI dst) %{
2962     MacroAssembler _masm(&cbuf);
2963     Label nan, inc, done;
2964 
2965     __ jccb(Assembler::parity, nan);
2966     __ jccb(Assembler::equal,  done);
2967     __ jccb(Assembler::above,  inc);
2968     __ bind(nan);
2969     __ decrement(as_Register($dst$$reg)); // NO L qqq
2970     __ jmpb(done);
2971     __ bind(inc);
2972     __ increment(as_Register($dst$$reg)); // NO L qqq
2973     __ bind(done);
2974   %}
2975 
2976   // Compare the longs and set flags
2977   // BROKEN!  Do Not use as-is
2978   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2979     // CMP    $src1.hi,$src2.hi
2980     emit_opcode( cbuf, 0x3B );
2981     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2982     // JNE,s  done
2983     emit_opcode(cbuf,0x75);
2984     emit_d8(cbuf, 2 );
2985     // CMP    $src1.lo,$src2.lo
2986     emit_opcode( cbuf, 0x3B );
2987     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2988 // done:
2989   %}
2990 
2991   enc_class convert_int_long( regL dst, eRegI src ) %{
2992     // mov $dst.lo,$src
2993     int dst_encoding = $dst$$reg;
2994     int src_encoding = $src$$reg;
2995     encode_Copy( cbuf, dst_encoding  , src_encoding );
2996     // mov $dst.hi,$src
2997     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2998     // sar $dst.hi,31
2999     emit_opcode( cbuf, 0xC1 );
3000     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
3001     emit_d8(cbuf, 0x1F );
3002   %}
3003 
3004   enc_class convert_long_double( eRegL src ) %{
3005     // push $src.hi
3006     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3007     // push $src.lo
3008     emit_opcode(cbuf, 0x50+$src$$reg  );
3009     // fild 64-bits at [SP]
3010     emit_opcode(cbuf,0xdf);
3011     emit_d8(cbuf, 0x6C);
3012     emit_d8(cbuf, 0x24);
3013     emit_d8(cbuf, 0x00);
3014     // pop stack
3015     emit_opcode(cbuf, 0x83); // add  SP, #8
3016     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3017     emit_d8(cbuf, 0x8);
3018   %}
3019 
3020   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
3021     // IMUL   EDX:EAX,$src1
3022     emit_opcode( cbuf, 0xF7 );
3023     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
3024     // SAR    EDX,$cnt-32
3025     int shift_count = ((int)$cnt$$constant) - 32;
3026     if (shift_count > 0) {
3027       emit_opcode(cbuf, 0xC1);
3028       emit_rm(cbuf, 0x3, 7, $dst$$reg );
3029       emit_d8(cbuf, shift_count);
3030     }
3031   %}
3032 
3033   // this version doesn't have add sp, 8
3034   enc_class convert_long_double2( eRegL src ) %{
3035     // push $src.hi
3036     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
3037     // push $src.lo
3038     emit_opcode(cbuf, 0x50+$src$$reg  );
3039     // fild 64-bits at [SP]
3040     emit_opcode(cbuf,0xdf);
3041     emit_d8(cbuf, 0x6C);
3042     emit_d8(cbuf, 0x24);
3043     emit_d8(cbuf, 0x00);
3044   %}
3045 
3046   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
3047     // Basic idea: long = (long)int * (long)int
3048     // IMUL EDX:EAX, src
3049     emit_opcode( cbuf, 0xF7 );
3050     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
3051   %}
3052 
3053   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
3054     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
3055     // MUL EDX:EAX, src
3056     emit_opcode( cbuf, 0xF7 );
3057     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
3058   %}
3059 
3060   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
3061     // Basic idea: lo(result) = lo(x_lo * y_lo)
3062     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
3063     // MOV    $tmp,$src.lo
3064     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
3065     // IMUL   $tmp,EDX
3066     emit_opcode( cbuf, 0x0F );
3067     emit_opcode( cbuf, 0xAF );
3068     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3069     // MOV    EDX,$src.hi
3070     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3071     // IMUL   EDX,EAX
3072     emit_opcode( cbuf, 0x0F );
3073     emit_opcode( cbuf, 0xAF );
3074     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3075     // ADD    $tmp,EDX
3076     emit_opcode( cbuf, 0x03 );
3077     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3078     // MUL   EDX:EAX,$src.lo
3079     emit_opcode( cbuf, 0xF7 );
3080     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3081     // ADD    EDX,ESI
3082     emit_opcode( cbuf, 0x03 );
3083     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3084   %}
3085 
3086   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3087     // Basic idea: lo(result) = lo(src * y_lo)
3088     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3089     // IMUL   $tmp,EDX,$src
3090     emit_opcode( cbuf, 0x6B );
3091     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3092     emit_d8( cbuf, (int)$src$$constant );
3093     // MOV    EDX,$src
3094     emit_opcode(cbuf, 0xB8 + EDX_enc);
3095     emit_d32( cbuf, (int)$src$$constant );
3096     // MUL   EDX:EAX,EDX
3097     emit_opcode( cbuf, 0xF7 );
3098     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3099     // ADD    EDX,ESI
3100     emit_opcode( cbuf, 0x03 );
3101     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3102   %}
3103 
3104   enc_class long_div( eRegL src1, eRegL src2 ) %{
3105     // PUSH src1.hi
3106     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3107     // PUSH src1.lo
3108     emit_opcode(cbuf,               0x50+$src1$$reg  );
3109     // PUSH src2.hi
3110     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3111     // PUSH src2.lo
3112     emit_opcode(cbuf,               0x50+$src2$$reg  );
3113     // CALL directly to the runtime
3114     cbuf.set_inst_mark();
3115     emit_opcode(cbuf,0xE8);       // Call into runtime
3116     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3117     // Restore stack
3118     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3119     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3120     emit_d8(cbuf, 4*4);
3121   %}
3122 
3123   enc_class long_mod( eRegL src1, eRegL src2 ) %{
3124     // PUSH src1.hi
3125     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3126     // PUSH src1.lo
3127     emit_opcode(cbuf,               0x50+$src1$$reg  );
3128     // PUSH src2.hi
3129     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3130     // PUSH src2.lo
3131     emit_opcode(cbuf,               0x50+$src2$$reg  );
3132     // CALL directly to the runtime
3133     cbuf.set_inst_mark();
3134     emit_opcode(cbuf,0xE8);       // Call into runtime
3135     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3136     // Restore stack
3137     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3138     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3139     emit_d8(cbuf, 4*4);
3140   %}
3141 
3142   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3143     // MOV   $tmp,$src.lo
3144     emit_opcode(cbuf, 0x8B);
3145     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3146     // OR    $tmp,$src.hi
3147     emit_opcode(cbuf, 0x0B);
3148     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3149   %}
3150 
3151   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3152     // CMP    $src1.lo,$src2.lo
3153     emit_opcode( cbuf, 0x3B );
3154     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3155     // JNE,s  skip
3156     emit_cc(cbuf, 0x70, 0x5);
3157     emit_d8(cbuf,2);
3158     // CMP    $src1.hi,$src2.hi
3159     emit_opcode( cbuf, 0x3B );
3160     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3161   %}
3162 
3163   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3164     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3165     emit_opcode( cbuf, 0x3B );
3166     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3167     // MOV    $tmp,$src1.hi
3168     emit_opcode( cbuf, 0x8B );
3169     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3170     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3171     emit_opcode( cbuf, 0x1B );
3172     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3173   %}
3174 
3175   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3176     // XOR    $tmp,$tmp
3177     emit_opcode(cbuf,0x33);  // XOR
3178     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3179     // CMP    $tmp,$src.lo
3180     emit_opcode( cbuf, 0x3B );
3181     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3182     // SBB    $tmp,$src.hi
3183     emit_opcode( cbuf, 0x1B );
3184     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3185   %}
3186 
3187  // Sniff, sniff... smells like Gnu Superoptimizer
3188   enc_class neg_long( eRegL dst ) %{
3189     emit_opcode(cbuf,0xF7);    // NEG hi
3190     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3191     emit_opcode(cbuf,0xF7);    // NEG lo
3192     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3193     emit_opcode(cbuf,0x83);    // SBB hi,0
3194     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3195     emit_d8    (cbuf,0 );
3196   %}
3197 
3198   enc_class movq_ld(regXD dst, memory mem) %{
3199     MacroAssembler _masm(&cbuf);
3200     __ movq($dst$$XMMRegister, $mem$$Address);
3201   %}
3202 
3203   enc_class movq_st(memory mem, regXD src) %{
3204     MacroAssembler _masm(&cbuf);
3205     __ movq($mem$$Address, $src$$XMMRegister);
3206   %}
3207 
3208   enc_class pshufd_8x8(regX dst, regX src) %{
3209     MacroAssembler _masm(&cbuf);
3210 
3211     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3212     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3213     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3214   %}
3215 
3216   enc_class pshufd_4x16(regX dst, regX src) %{
3217     MacroAssembler _masm(&cbuf);
3218 
3219     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3220   %}
3221 
3222   enc_class pshufd(regXD dst, regXD src, int mode) %{
3223     MacroAssembler _masm(&cbuf);
3224 
3225     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3226   %}
3227 
3228   enc_class pxor(regXD dst, regXD src) %{
3229     MacroAssembler _masm(&cbuf);
3230 
3231     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3232   %}
3233 
3234   enc_class mov_i2x(regXD dst, eRegI src) %{
3235     MacroAssembler _masm(&cbuf);
3236 
3237     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3238   %}
3239 
3240 
3241   // Because the transitions from emitted code to the runtime
3242   // monitorenter/exit helper stubs are so slow it's critical that
3243   // we inline both the stack-locking fast-path and the inflated fast path.
3244   //
3245   // See also: cmpFastLock and cmpFastUnlock.
3246   //
3247   // What follows is a specialized inline transliteration of the code
3248   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3249   // another option would be to emit TrySlowEnter and TrySlowExit methods
3250   // at startup-time.  These methods would accept arguments as
3251   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3252   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3253   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3254   // In practice, however, the # of lock sites is bounded and is usually small.
3255   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3256   // if the processor uses simple bimodal branch predictors keyed by EIP
3257   // Since the helper routines would be called from multiple synchronization
3258   // sites.
3259   //
3260   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3261   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3262   // to those specialized methods.  That'd give us a mostly platform-independent
3263   // implementation that the JITs could optimize and inline at their pleasure.
3264   // Done correctly, the only time we'd need to cross to native could would be
3265   // to park() or unpark() threads.  We'd also need a few more unsafe operators
3266   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3267   // (b) explicit barriers or fence operations.
3268   //
3269   // TODO:
3270   //
3271   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3272   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3273   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3274   //    the lock operators would typically be faster than reifying Self.
3275   //
3276   // *  Ideally I'd define the primitives as:
3277   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3278   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3279   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3280   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3281   //    Furthermore the register assignments are overconstrained, possibly resulting in
3282   //    sub-optimal code near the synchronization site.
3283   //
3284   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3285   //    Alternately, use a better sp-proximity test.
3286   //
3287   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3288   //    Either one is sufficient to uniquely identify a thread.
3289   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3290   //
3291   // *  Intrinsify notify() and notifyAll() for the common cases where the
3292   //    object is locked by the calling thread but the waitlist is empty.
3293   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3294   //
3295   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3296   //    But beware of excessive branch density on AMD Opterons.
3297   //
3298   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3299   //    or failure of the fast-path.  If the fast-path fails then we pass
3300   //    control to the slow-path, typically in C.  In Fast_Lock and
3301   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3302   //    will emit a conditional branch immediately after the node.
3303   //    So we have branches to branches and lots of ICC.ZF games.
3304   //    Instead, it might be better to have C2 pass a "FailureLabel"
3305   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3306   //    will drop through the node.  ICC.ZF is undefined at exit.
3307   //    In the case of failure, the node will branch directly to the
3308   //    FailureLabel
3309 
3310 
3311   // obj: object to lock
3312   // box: on-stack box address (displaced header location) - KILLED
3313   // rax,: tmp -- KILLED
3314   // scr: tmp -- KILLED
3315   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3316 
3317     Register objReg = as_Register($obj$$reg);
3318     Register boxReg = as_Register($box$$reg);
3319     Register tmpReg = as_Register($tmp$$reg);
3320     Register scrReg = as_Register($scr$$reg);
3321 
3322     // Ensure the register assignents are disjoint
3323     guarantee (objReg != boxReg, "") ;
3324     guarantee (objReg != tmpReg, "") ;
3325     guarantee (objReg != scrReg, "") ;
3326     guarantee (boxReg != tmpReg, "") ;
3327     guarantee (boxReg != scrReg, "") ;
3328     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3329 
3330     MacroAssembler masm(&cbuf);
3331 
3332     if (_counters != NULL) {
3333       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3334     }
3335     if (EmitSync & 1) {
3336         // set box->dhw = unused_mark (3)
3337         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3338         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3339         masm.cmpptr (rsp, (int32_t)0) ;                        
3340     } else 
3341     if (EmitSync & 2) { 
3342         Label DONE_LABEL ;           
3343         if (UseBiasedLocking) {
3344            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3345            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3346         }
3347 
3348         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3349         masm.orptr (tmpReg, 0x1);
3350         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3351         if (os::is_MP()) { masm.lock();  }
3352         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3353         masm.jcc(Assembler::equal, DONE_LABEL);
3354         // Recursive locking
3355         masm.subptr(tmpReg, rsp);
3356         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3357         masm.movptr(Address(boxReg, 0), tmpReg);
3358         masm.bind(DONE_LABEL) ; 
3359     } else {  
3360       // Possible cases that we'll encounter in fast_lock 
3361       // ------------------------------------------------
3362       // * Inflated
3363       //    -- unlocked
3364       //    -- Locked
3365       //       = by self
3366       //       = by other
3367       // * biased
3368       //    -- by Self
3369       //    -- by other
3370       // * neutral
3371       // * stack-locked
3372       //    -- by self
3373       //       = sp-proximity test hits
3374       //       = sp-proximity test generates false-negative
3375       //    -- by other
3376       //
3377 
3378       Label IsInflated, DONE_LABEL, PopDone ;
3379 
3380       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3381       // order to reduce the number of conditional branches in the most common cases.
3382       // Beware -- there's a subtle invariant that fetch of the markword
3383       // at [FETCH], below, will never observe a biased encoding (*101b).
3384       // If this invariant is not held we risk exclusion (safety) failure.
3385       if (UseBiasedLocking && !UseOptoBiasInlining) {
3386         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3387       }
3388 
3389       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3390       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3391       masm.jccb  (Assembler::notZero, IsInflated) ;
3392 
3393       // Attempt stack-locking ...
3394       masm.orptr (tmpReg, 0x1);
3395       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3396       if (os::is_MP()) { masm.lock();  }
3397       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3398       if (_counters != NULL) {
3399         masm.cond_inc32(Assembler::equal,
3400                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3401       }
3402       masm.jccb (Assembler::equal, DONE_LABEL);
3403 
3404       // Recursive locking
3405       masm.subptr(tmpReg, rsp);
3406       masm.andptr(tmpReg, 0xFFFFF003 );
3407       masm.movptr(Address(boxReg, 0), tmpReg);
3408       if (_counters != NULL) {
3409         masm.cond_inc32(Assembler::equal,
3410                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3411       }
3412       masm.jmp  (DONE_LABEL) ;
3413 
3414       masm.bind (IsInflated) ;
3415 
3416       // The object is inflated.
3417       //
3418       // TODO-FIXME: eliminate the ugly use of manifest constants:
3419       //   Use markOopDesc::monitor_value instead of "2".
3420       //   use markOop::unused_mark() instead of "3".
3421       // The tmpReg value is an objectMonitor reference ORed with
3422       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3423       // objectmonitor pointer by masking off the "2" bit or we can just
3424       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3425       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3426       //
3427       // I use the latter as it avoids AGI stalls.
3428       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3429       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3430       //
3431       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3432 
3433       // boxReg refers to the on-stack BasicLock in the current frame.
3434       // We'd like to write:
3435       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3436       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3437       // additional latency as we have another ST in the store buffer that must drain.
3438 
3439       if (EmitSync & 8192) { 
3440          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3441          masm.get_thread (scrReg) ; 
3442          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3443          masm.movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
3444          if (os::is_MP()) { masm.lock(); } 
3445          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3446       } else 
3447       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3448          masm.movptr(scrReg, boxReg) ; 
3449          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3450 
3451          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3452          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3453             // prefetchw [eax + Offset(_owner)-2]
3454             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3455          }
3456 
3457          if ((EmitSync & 64) == 0) {
3458            // Optimistic form: consider XORL tmpReg,tmpReg
3459            masm.movptr(tmpReg, NULL_WORD) ; 
3460          } else { 
3461            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3462            // Test-And-CAS instead of CAS
3463            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3464            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3465            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3466          }
3467 
3468          // Appears unlocked - try to swing _owner from null to non-null.
3469          // Ideally, I'd manifest "Self" with get_thread and then attempt
3470          // to CAS the register containing Self into m->Owner.
3471          // But we don't have enough registers, so instead we can either try to CAS
3472          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3473          // we later store "Self" into m->Owner.  Transiently storing a stack address
3474          // (rsp or the address of the box) into  m->owner is harmless.
3475          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3476          if (os::is_MP()) { masm.lock();  }
3477          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3478          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3479          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3480          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3481          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3482          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3483                        
3484          // If the CAS fails we can either retry or pass control to the slow-path.  
3485          // We use the latter tactic.  
3486          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3487          // If the CAS was successful ...
3488          //   Self has acquired the lock
3489          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3490          // Intentional fall-through into DONE_LABEL ...
3491       } else {
3492          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3493          masm.movptr(boxReg, tmpReg) ; 
3494 
3495          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3496          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3497             // prefetchw [eax + Offset(_owner)-2]
3498             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3499          }
3500 
3501          if ((EmitSync & 64) == 0) {
3502            // Optimistic form
3503            masm.xorptr  (tmpReg, tmpReg) ; 
3504          } else { 
3505            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3506            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3507            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3508            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3509          }
3510 
3511          // Appears unlocked - try to swing _owner from null to non-null.
3512          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3513          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3514          masm.get_thread (scrReg) ;
3515          if (os::is_MP()) { masm.lock(); }
3516          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3517 
3518          // If the CAS fails we can either retry or pass control to the slow-path.
3519          // We use the latter tactic.
3520          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3521          // If the CAS was successful ...
3522          //   Self has acquired the lock
3523          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3524          // Intentional fall-through into DONE_LABEL ...
3525       }
3526 
3527       // DONE_LABEL is a hot target - we'd really like to place it at the
3528       // start of cache line by padding with NOPs.
3529       // See the AMD and Intel software optimization manuals for the
3530       // most efficient "long" NOP encodings.
3531       // Unfortunately none of our alignment mechanisms suffice.
3532       masm.bind(DONE_LABEL);
3533 
3534       // Avoid branch-to-branch on AMD processors
3535       // This appears to be superstition.
3536       if (EmitSync & 32) masm.nop() ;
3537 
3538 
3539       // At DONE_LABEL the icc ZFlag is set as follows ...
3540       // Fast_Unlock uses the same protocol.
3541       // ZFlag == 1 -> Success
3542       // ZFlag == 0 -> Failure - force control through the slow-path
3543     }
3544   %}
3545 
3546   // obj: object to unlock
3547   // box: box address (displaced header location), killed.  Must be EAX.
3548   // rbx,: killed tmp; cannot be obj nor box.
3549   //
3550   // Some commentary on balanced locking:
3551   //
3552   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3553   // Methods that don't have provably balanced locking are forced to run in the
3554   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3555   // The interpreter provides two properties:
3556   // I1:  At return-time the interpreter automatically and quietly unlocks any
3557   //      objects acquired the current activation (frame).  Recall that the
3558   //      interpreter maintains an on-stack list of locks currently held by
3559   //      a frame.
3560   // I2:  If a method attempts to unlock an object that is not held by the
3561   //      the frame the interpreter throws IMSX.
3562   //
3563   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3564   // B() doesn't have provably balanced locking so it runs in the interpreter.
3565   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3566   // is still locked by A().
3567   //
3568   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3569   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3570   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3571   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3572 
3573   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3574 
3575     Register objReg = as_Register($obj$$reg);
3576     Register boxReg = as_Register($box$$reg);
3577     Register tmpReg = as_Register($tmp$$reg);
3578 
3579     guarantee (objReg != boxReg, "") ;
3580     guarantee (objReg != tmpReg, "") ;
3581     guarantee (boxReg != tmpReg, "") ;
3582     guarantee (boxReg == as_Register(EAX_enc), "") ;
3583     MacroAssembler masm(&cbuf);
3584 
3585     if (EmitSync & 4) {
3586       // Disable - inhibit all inlining.  Force control through the slow-path
3587       masm.cmpptr (rsp, 0) ; 
3588     } else 
3589     if (EmitSync & 8) {
3590       Label DONE_LABEL ;
3591       if (UseBiasedLocking) {
3592          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3593       }
3594       // classic stack-locking code ...
3595       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3596       masm.testptr(tmpReg, tmpReg) ;
3597       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3598       if (os::is_MP()) { masm.lock(); }
3599       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3600       masm.bind(DONE_LABEL);
3601     } else {
3602       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3603 
3604       // Critically, the biased locking test must have precedence over
3605       // and appear before the (box->dhw == 0) recursive stack-lock test.
3606       if (UseBiasedLocking && !UseOptoBiasInlining) {
3607          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3608       }
3609       
3610       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3611       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3612       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3613 
3614       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3615       masm.jccb  (Assembler::zero, Stacked) ;
3616 
3617       masm.bind  (Inflated) ;
3618       // It's inflated.
3619       // Despite our balanced locking property we still check that m->_owner == Self
3620       // as java routines or native JNI code called by this thread might
3621       // have released the lock.
3622       // Refer to the comments in synchronizer.cpp for how we might encode extra
3623       // state in _succ so we can avoid fetching EntryList|cxq.
3624       //
3625       // I'd like to add more cases in fast_lock() and fast_unlock() --
3626       // such as recursive enter and exit -- but we have to be wary of
3627       // I$ bloat, T$ effects and BP$ effects.
3628       //
3629       // If there's no contention try a 1-0 exit.  That is, exit without
3630       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3631       // we detect and recover from the race that the 1-0 exit admits.
3632       //
3633       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3634       // before it STs null into _owner, releasing the lock.  Updates
3635       // to data protected by the critical section must be visible before
3636       // we drop the lock (and thus before any other thread could acquire
3637       // the lock and observe the fields protected by the lock).
3638       // IA32's memory-model is SPO, so STs are ordered with respect to
3639       // each other and there's no need for an explicit barrier (fence).
3640       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3641 
3642       masm.get_thread (boxReg) ;
3643       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3644         // prefetchw [ebx + Offset(_owner)-2]
3645         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3646       }
3647 
3648       // Note that we could employ various encoding schemes to reduce
3649       // the number of loads below (currently 4) to just 2 or 3.
3650       // Refer to the comments in synchronizer.cpp.
3651       // In practice the chain of fetches doesn't seem to impact performance, however.
3652       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3653          // Attempt to reduce branch density - AMD's branch predictor.
3654          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3655          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3656          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3657          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3658          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3659          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3660          masm.jmpb  (DONE_LABEL) ; 
3661       } else { 
3662          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3663          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3664          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3665          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3666          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3667          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3668          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3669          masm.jmpb  (DONE_LABEL) ; 
3670       }
3671 
3672       // The Following code fragment (EmitSync & 65536) improves the performance of
3673       // contended applications and contended synchronization microbenchmarks.
3674       // Unfortunately the emission of the code - even though not executed - causes regressions
3675       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3676       // with an equal number of never-executed NOPs results in the same regression.
3677       // We leave it off by default.
3678 
3679       if ((EmitSync & 65536) != 0) {
3680          Label LSuccess, LGoSlowPath ;
3681 
3682          masm.bind  (CheckSucc) ;
3683 
3684          // Optional pre-test ... it's safe to elide this
3685          if ((EmitSync & 16) == 0) { 
3686             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3687             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3688          }
3689 
3690          // We have a classic Dekker-style idiom:
3691          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3692          // There are a number of ways to implement the barrier:
3693          // (1) lock:andl &m->_owner, 0
3694          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3695          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3696          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3697          // (2) If supported, an explicit MFENCE is appealing.
3698          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3699          //     particularly if the write-buffer is full as might be the case if
3700          //     if stores closely precede the fence or fence-equivalent instruction.
3701          //     In more modern implementations MFENCE appears faster, however.
3702          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3703          //     The $lines underlying the top-of-stack should be in M-state.
3704          //     The locked add instruction is serializing, of course.
3705          // (4) Use xchg, which is serializing
3706          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3707          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3708          //     The integer condition codes will tell us if succ was 0.
3709          //     Since _succ and _owner should reside in the same $line and
3710          //     we just stored into _owner, it's likely that the $line
3711          //     remains in M-state for the lock:orl.
3712          //
3713          // We currently use (3), although it's likely that switching to (2)
3714          // is correct for the future.
3715             
3716          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD) ; 
3717          if (os::is_MP()) { 
3718             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3719               masm.mfence();
3720             } else { 
3721               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3722             }
3723          }
3724          // Ratify _succ remains non-null
3725          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3726          masm.jccb  (Assembler::notZero, LSuccess) ; 
3727 
3728          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3729          if (os::is_MP()) { masm.lock(); }
3730          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3731          masm.jccb  (Assembler::notEqual, LSuccess) ;
3732          // Since we're low on registers we installed rsp as a placeholding in _owner.
3733          // Now install Self over rsp.  This is safe as we're transitioning from
3734          // non-null to non=null
3735          masm.get_thread (boxReg) ;
3736          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3737          // Intentional fall-through into LGoSlowPath ...
3738 
3739          masm.bind  (LGoSlowPath) ; 
3740          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3741          masm.jmpb  (DONE_LABEL) ; 
3742 
3743          masm.bind  (LSuccess) ; 
3744          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3745          masm.jmpb  (DONE_LABEL) ; 
3746       }
3747 
3748       masm.bind (Stacked) ;
3749       // It's not inflated and it's not recursively stack-locked and it's not biased.
3750       // It must be stack-locked.
3751       // Try to reset the header to displaced header.
3752       // The "box" value on the stack is stable, so we can reload
3753       // and be assured we observe the same value as above.
3754       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3755       if (os::is_MP()) {   masm.lock();    }
3756       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3757       // Intention fall-thru into DONE_LABEL
3758 
3759 
3760       // DONE_LABEL is a hot target - we'd really like to place it at the
3761       // start of cache line by padding with NOPs.
3762       // See the AMD and Intel software optimization manuals for the
3763       // most efficient "long" NOP encodings.
3764       // Unfortunately none of our alignment mechanisms suffice.
3765       if ((EmitSync & 65536) == 0) {
3766          masm.bind (CheckSucc) ;
3767       }
3768       masm.bind(DONE_LABEL);
3769 
3770       // Avoid branch to branch on AMD processors
3771       if (EmitSync & 32768) { masm.nop() ; }
3772     }
3773   %}
3774 
3775 
3776   enc_class enc_pop_rdx() %{
3777     emit_opcode(cbuf,0x5A);
3778   %}
3779 
3780   enc_class enc_rethrow() %{
3781     cbuf.set_inst_mark();
3782     emit_opcode(cbuf, 0xE9);        // jmp    entry
3783     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3784                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3785   %}
3786 
3787 
3788   // Convert a double to an int.  Java semantics require we do complex
3789   // manglelations in the corner cases.  So we set the rounding mode to
3790   // 'zero', store the darned double down as an int, and reset the
3791   // rounding mode to 'nearest'.  The hardware throws an exception which
3792   // patches up the correct value directly to the stack.
3793   enc_class D2I_encoding( regD src ) %{
3794     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3795     // exceptions here, so that a NAN or other corner-case value will
3796     // thrown an exception (but normal values get converted at full speed).
3797     // However, I2C adapters and other float-stack manglers leave pending
3798     // invalid-op exceptions hanging.  We would have to clear them before
3799     // enabling them and that is more expensive than just testing for the
3800     // invalid value Intel stores down in the corner cases.
3801     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3802     emit_opcode(cbuf,0x2D);
3803     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3804     // Allocate a word
3805     emit_opcode(cbuf,0x83);            // SUB ESP,4
3806     emit_opcode(cbuf,0xEC);
3807     emit_d8(cbuf,0x04);
3808     // Encoding assumes a double has been pushed into FPR0.
3809     // Store down the double as an int, popping the FPU stack
3810     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3811     emit_opcode(cbuf,0x1C);
3812     emit_d8(cbuf,0x24);
3813     // Restore the rounding mode; mask the exception
3814     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3815     emit_opcode(cbuf,0x2D);
3816     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3817         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3818         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3819 
3820     // Load the converted int; adjust CPU stack
3821     emit_opcode(cbuf,0x58);       // POP EAX
3822     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3823     emit_d32   (cbuf,0x80000000); //         0x80000000
3824     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3825     emit_d8    (cbuf,0x07);       // Size of slow_call
3826     // Push src onto stack slow-path
3827     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3828     emit_d8    (cbuf,0xC0-1+$src$$reg );
3829     // CALL directly to the runtime
3830     cbuf.set_inst_mark();
3831     emit_opcode(cbuf,0xE8);       // Call into runtime
3832     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3833     // Carry on here...
3834   %}
3835 
3836   enc_class D2L_encoding( regD src ) %{
3837     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3838     emit_opcode(cbuf,0x2D);
3839     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3840     // Allocate a word
3841     emit_opcode(cbuf,0x83);            // SUB ESP,8
3842     emit_opcode(cbuf,0xEC);
3843     emit_d8(cbuf,0x08);
3844     // Encoding assumes a double has been pushed into FPR0.
3845     // Store down the double as a long, popping the FPU stack
3846     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3847     emit_opcode(cbuf,0x3C);
3848     emit_d8(cbuf,0x24);
3849     // Restore the rounding mode; mask the exception
3850     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3851     emit_opcode(cbuf,0x2D);
3852     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3853         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3854         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3855 
3856     // Load the converted int; adjust CPU stack
3857     emit_opcode(cbuf,0x58);       // POP EAX
3858     emit_opcode(cbuf,0x5A);       // POP EDX
3859     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3860     emit_d8    (cbuf,0xFA);       // rdx
3861     emit_d32   (cbuf,0x80000000); //         0x80000000
3862     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3863     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3864     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3865     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3866     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3867     emit_d8    (cbuf,0x07);       // Size of slow_call
3868     // Push src onto stack slow-path
3869     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3870     emit_d8    (cbuf,0xC0-1+$src$$reg );
3871     // CALL directly to the runtime
3872     cbuf.set_inst_mark();
3873     emit_opcode(cbuf,0xE8);       // Call into runtime
3874     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3875     // Carry on here...
3876   %}
3877 
3878   enc_class X2L_encoding( regX src ) %{
3879     // Allocate a word
3880     emit_opcode(cbuf,0x83);      // SUB ESP,8
3881     emit_opcode(cbuf,0xEC);
3882     emit_d8(cbuf,0x08);
3883 
3884     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3885     emit_opcode  (cbuf, 0x0F );
3886     emit_opcode  (cbuf, 0x11 );
3887     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3888 
3889     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3890     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3891 
3892     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3893     emit_opcode(cbuf,0x2D);
3894     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3895 
3896     // Encoding assumes a double has been pushed into FPR0.
3897     // Store down the double as a long, popping the FPU stack
3898     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3899     emit_opcode(cbuf,0x3C);
3900     emit_d8(cbuf,0x24);
3901 
3902     // Restore the rounding mode; mask the exception
3903     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3904     emit_opcode(cbuf,0x2D);
3905     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3906       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3907       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3908 
3909     // Load the converted int; adjust CPU stack
3910     emit_opcode(cbuf,0x58);      // POP EAX
3911 
3912     emit_opcode(cbuf,0x5A);      // POP EDX
3913 
3914     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3915     emit_d8    (cbuf,0xFA);      // rdx
3916     emit_d32   (cbuf,0x80000000);//         0x80000000
3917 
3918     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3919     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3920 
3921     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3922     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3923 
3924     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3925     emit_d8    (cbuf,0x13);      // Size of slow_call
3926 
3927     // Allocate a word
3928     emit_opcode(cbuf,0x83);      // SUB ESP,4
3929     emit_opcode(cbuf,0xEC);
3930     emit_d8(cbuf,0x04);
3931 
3932     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3933     emit_opcode  (cbuf, 0x0F );
3934     emit_opcode  (cbuf, 0x11 );
3935     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3936 
3937     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3938     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3939 
3940     emit_opcode(cbuf,0x83);      // ADD ESP,4
3941     emit_opcode(cbuf,0xC4);
3942     emit_d8(cbuf,0x04);
3943 
3944     // CALL directly to the runtime
3945     cbuf.set_inst_mark();
3946     emit_opcode(cbuf,0xE8);       // Call into runtime
3947     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3948     // Carry on here...
3949   %}
3950 
3951   enc_class XD2L_encoding( regXD src ) %{
3952     // Allocate a word
3953     emit_opcode(cbuf,0x83);      // SUB ESP,8
3954     emit_opcode(cbuf,0xEC);
3955     emit_d8(cbuf,0x08);
3956 
3957     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
3958     emit_opcode  (cbuf, 0x0F );
3959     emit_opcode  (cbuf, 0x11 );
3960     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3961 
3962     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
3963     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3964 
3965     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3966     emit_opcode(cbuf,0x2D);
3967     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3968 
3969     // Encoding assumes a double has been pushed into FPR0.
3970     // Store down the double as a long, popping the FPU stack
3971     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
3972     emit_opcode(cbuf,0x3C);
3973     emit_d8(cbuf,0x24);
3974 
3975     // Restore the rounding mode; mask the exception
3976     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
3977     emit_opcode(cbuf,0x2D);
3978     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3979       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3980       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3981 
3982     // Load the converted int; adjust CPU stack
3983     emit_opcode(cbuf,0x58);      // POP EAX
3984 
3985     emit_opcode(cbuf,0x5A);      // POP EDX
3986 
3987     emit_opcode(cbuf,0x81);      // CMP EDX,imm
3988     emit_d8    (cbuf,0xFA);      // rdx
3989     emit_d32   (cbuf,0x80000000); //         0x80000000
3990 
3991     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3992     emit_d8    (cbuf,0x13+4);    // Size of slow_call
3993 
3994     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
3995     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
3996 
3997     emit_opcode(cbuf,0x75);      // JNE around_slow_call
3998     emit_d8    (cbuf,0x13);      // Size of slow_call
3999 
4000     // Push src onto stack slow-path
4001     // Allocate a word
4002     emit_opcode(cbuf,0x83);      // SUB ESP,8
4003     emit_opcode(cbuf,0xEC);
4004     emit_d8(cbuf,0x08);
4005 
4006     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4007     emit_opcode  (cbuf, 0x0F );
4008     emit_opcode  (cbuf, 0x11 );
4009     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4010 
4011     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4012     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4013 
4014     emit_opcode(cbuf,0x83);      // ADD ESP,8
4015     emit_opcode(cbuf,0xC4);
4016     emit_d8(cbuf,0x08);
4017 
4018     // CALL directly to the runtime
4019     cbuf.set_inst_mark();
4020     emit_opcode(cbuf,0xE8);      // Call into runtime
4021     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4022     // Carry on here...
4023   %}
4024 
4025   enc_class D2X_encoding( regX dst, regD src ) %{
4026     // Allocate a word
4027     emit_opcode(cbuf,0x83);            // SUB ESP,4
4028     emit_opcode(cbuf,0xEC);
4029     emit_d8(cbuf,0x04);
4030     int pop = 0x02;
4031     if ($src$$reg != FPR1L_enc) {
4032       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4033       emit_d8( cbuf, 0xC0-1+$src$$reg );
4034       pop = 0x03;
4035     }
4036     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4037 
4038     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4039     emit_opcode  (cbuf, 0x0F );
4040     emit_opcode  (cbuf, 0x10 );
4041     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4042 
4043     emit_opcode(cbuf,0x83);            // ADD ESP,4
4044     emit_opcode(cbuf,0xC4);
4045     emit_d8(cbuf,0x04);
4046     // Carry on here...
4047   %}
4048 
4049   enc_class FX2I_encoding( regX src, eRegI dst ) %{
4050     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4051 
4052     // Compare the result to see if we need to go to the slow path
4053     emit_opcode(cbuf,0x81);       // CMP dst,imm
4054     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4055     emit_d32   (cbuf,0x80000000); //         0x80000000
4056 
4057     emit_opcode(cbuf,0x75);       // JNE around_slow_call
4058     emit_d8    (cbuf,0x13);       // Size of slow_call
4059     // Store xmm to a temp memory
4060     // location and push it onto stack.
4061 
4062     emit_opcode(cbuf,0x83);  // SUB ESP,4
4063     emit_opcode(cbuf,0xEC);
4064     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4065 
4066     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4067     emit_opcode  (cbuf, 0x0F );
4068     emit_opcode  (cbuf, 0x11 );
4069     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4070 
4071     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4072     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4073 
4074     emit_opcode(cbuf,0x83);    // ADD ESP,4
4075     emit_opcode(cbuf,0xC4);
4076     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4077 
4078     // CALL directly to the runtime
4079     cbuf.set_inst_mark();
4080     emit_opcode(cbuf,0xE8);       // Call into runtime
4081     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4082 
4083     // Carry on here...
4084   %}
4085 
4086   enc_class X2D_encoding( regD dst, regX src ) %{
4087     // Allocate a word
4088     emit_opcode(cbuf,0x83);     // SUB ESP,4
4089     emit_opcode(cbuf,0xEC);
4090     emit_d8(cbuf,0x04);
4091 
4092     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4093     emit_opcode  (cbuf, 0x0F );
4094     emit_opcode  (cbuf, 0x11 );
4095     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4096 
4097     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4098     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4099 
4100     emit_opcode(cbuf,0x83);     // ADD ESP,4
4101     emit_opcode(cbuf,0xC4);
4102     emit_d8(cbuf,0x04);
4103 
4104     // Carry on here...
4105   %}
4106 
4107   enc_class AbsXF_encoding(regX dst) %{
4108     address signmask_address=(address)float_signmask_pool;
4109     // andpd:\tANDPS  $dst,[signconst]
4110     emit_opcode(cbuf, 0x0F);
4111     emit_opcode(cbuf, 0x54);
4112     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4113     emit_d32(cbuf, (int)signmask_address);
4114   %}
4115 
4116   enc_class AbsXD_encoding(regXD dst) %{
4117     address signmask_address=(address)double_signmask_pool;
4118     // andpd:\tANDPD  $dst,[signconst]
4119     emit_opcode(cbuf, 0x66);
4120     emit_opcode(cbuf, 0x0F);
4121     emit_opcode(cbuf, 0x54);
4122     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4123     emit_d32(cbuf, (int)signmask_address);
4124   %}
4125 
4126   enc_class NegXF_encoding(regX dst) %{
4127     address signmask_address=(address)float_signflip_pool;
4128     // andpd:\tXORPS  $dst,[signconst]
4129     emit_opcode(cbuf, 0x0F);
4130     emit_opcode(cbuf, 0x57);
4131     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4132     emit_d32(cbuf, (int)signmask_address);
4133   %}
4134 
4135   enc_class NegXD_encoding(regXD dst) %{
4136     address signmask_address=(address)double_signflip_pool;
4137     // andpd:\tXORPD  $dst,[signconst]
4138     emit_opcode(cbuf, 0x66);
4139     emit_opcode(cbuf, 0x0F);
4140     emit_opcode(cbuf, 0x57);
4141     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4142     emit_d32(cbuf, (int)signmask_address);
4143   %}
4144 
4145   enc_class FMul_ST_reg( eRegF src1 ) %{
4146     // Operand was loaded from memory into fp ST (stack top)
4147     // FMUL   ST,$src  /* D8 C8+i */
4148     emit_opcode(cbuf, 0xD8);
4149     emit_opcode(cbuf, 0xC8 + $src1$$reg);
4150   %}
4151 
4152   enc_class FAdd_ST_reg( eRegF src2 ) %{
4153     // FADDP  ST,src2  /* D8 C0+i */
4154     emit_opcode(cbuf, 0xD8);
4155     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4156     //could use FADDP  src2,fpST  /* DE C0+i */
4157   %}
4158 
4159   enc_class FAddP_reg_ST( eRegF src2 ) %{
4160     // FADDP  src2,ST  /* DE C0+i */
4161     emit_opcode(cbuf, 0xDE);
4162     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4163   %}
4164 
4165   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4166     // Operand has been loaded into fp ST (stack top)
4167       // FSUB   ST,$src1
4168       emit_opcode(cbuf, 0xD8);
4169       emit_opcode(cbuf, 0xE0 + $src1$$reg);
4170 
4171       // FDIV
4172       emit_opcode(cbuf, 0xD8);
4173       emit_opcode(cbuf, 0xF0 + $src2$$reg);
4174   %}
4175 
4176   enc_class MulFAddF (eRegF src1, eRegF src2) %{
4177     // Operand was loaded from memory into fp ST (stack top)
4178     // FADD   ST,$src  /* D8 C0+i */
4179     emit_opcode(cbuf, 0xD8);
4180     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4181 
4182     // FMUL  ST,src2  /* D8 C*+i */
4183     emit_opcode(cbuf, 0xD8);
4184     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4185   %}
4186 
4187 
4188   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4189     // Operand was loaded from memory into fp ST (stack top)
4190     // FADD   ST,$src  /* D8 C0+i */
4191     emit_opcode(cbuf, 0xD8);
4192     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4193 
4194     // FMULP  src2,ST  /* DE C8+i */
4195     emit_opcode(cbuf, 0xDE);
4196     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4197   %}
4198 
4199   // Atomically load the volatile long
4200   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4201     emit_opcode(cbuf,0xDF);
4202     int rm_byte_opcode = 0x05;
4203     int base     = $mem$$base;
4204     int index    = $mem$$index;
4205     int scale    = $mem$$scale;
4206     int displace = $mem$$disp;
4207     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4208     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4209     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4210   %}
4211 
4212   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4213     { // Atomic long load
4214       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4215       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4216       emit_opcode(cbuf,0x0F);
4217       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4218       int base     = $mem$$base;
4219       int index    = $mem$$index;
4220       int scale    = $mem$$scale;
4221       int displace = $mem$$disp;
4222       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4223       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4224     }
4225     { // MOVSD $dst,$tmp ! atomic long store
4226       emit_opcode(cbuf,0xF2);
4227       emit_opcode(cbuf,0x0F);
4228       emit_opcode(cbuf,0x11);
4229       int base     = $dst$$base;
4230       int index    = $dst$$index;
4231       int scale    = $dst$$scale;
4232       int displace = $dst$$disp;
4233       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4234       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4235     }
4236   %}
4237 
4238   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4239     { // Atomic long load
4240       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4241       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4242       emit_opcode(cbuf,0x0F);
4243       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4244       int base     = $mem$$base;
4245       int index    = $mem$$index;
4246       int scale    = $mem$$scale;
4247       int displace = $mem$$disp;
4248       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4249       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4250     }
4251     { // MOVD $dst.lo,$tmp
4252       emit_opcode(cbuf,0x66);
4253       emit_opcode(cbuf,0x0F);
4254       emit_opcode(cbuf,0x7E);
4255       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4256     }
4257     { // PSRLQ $tmp,32
4258       emit_opcode(cbuf,0x66);
4259       emit_opcode(cbuf,0x0F);
4260       emit_opcode(cbuf,0x73);
4261       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4262       emit_d8(cbuf, 0x20);
4263     }
4264     { // MOVD $dst.hi,$tmp
4265       emit_opcode(cbuf,0x66);
4266       emit_opcode(cbuf,0x0F);
4267       emit_opcode(cbuf,0x7E);
4268       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4269     }
4270   %}
4271 
4272   // Volatile Store Long.  Must be atomic, so move it into
4273   // the FP TOS and then do a 64-bit FIST.  Has to probe the
4274   // target address before the store (for null-ptr checks)
4275   // so the memory operand is used twice in the encoding.
4276   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4277     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4278     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4279     emit_opcode(cbuf,0xDF);
4280     int rm_byte_opcode = 0x07;
4281     int base     = $mem$$base;
4282     int index    = $mem$$index;
4283     int scale    = $mem$$scale;
4284     int displace = $mem$$disp;
4285     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4286     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4287   %}
4288 
4289   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4290     { // Atomic long load
4291       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4292       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4293       emit_opcode(cbuf,0x0F);
4294       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4295       int base     = $src$$base;
4296       int index    = $src$$index;
4297       int scale    = $src$$scale;
4298       int displace = $src$$disp;
4299       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4300       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4301     }
4302     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4303     { // MOVSD $mem,$tmp ! atomic long store
4304       emit_opcode(cbuf,0xF2);
4305       emit_opcode(cbuf,0x0F);
4306       emit_opcode(cbuf,0x11);
4307       int base     = $mem$$base;
4308       int index    = $mem$$index;
4309       int scale    = $mem$$scale;
4310       int displace = $mem$$disp;
4311       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4312       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4313     }
4314   %}
4315 
4316   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4317     { // MOVD $tmp,$src.lo
4318       emit_opcode(cbuf,0x66);
4319       emit_opcode(cbuf,0x0F);
4320       emit_opcode(cbuf,0x6E);
4321       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4322     }
4323     { // MOVD $tmp2,$src.hi
4324       emit_opcode(cbuf,0x66);
4325       emit_opcode(cbuf,0x0F);
4326       emit_opcode(cbuf,0x6E);
4327       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4328     }
4329     { // PUNPCKLDQ $tmp,$tmp2
4330       emit_opcode(cbuf,0x66);
4331       emit_opcode(cbuf,0x0F);
4332       emit_opcode(cbuf,0x62);
4333       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4334     }
4335     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4336     { // MOVSD $mem,$tmp ! atomic long store
4337       emit_opcode(cbuf,0xF2);
4338       emit_opcode(cbuf,0x0F);
4339       emit_opcode(cbuf,0x11);
4340       int base     = $mem$$base;
4341       int index    = $mem$$index;
4342       int scale    = $mem$$scale;
4343       int displace = $mem$$disp;
4344       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4345       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4346     }
4347   %}
4348 
4349   // Safepoint Poll.  This polls the safepoint page, and causes an
4350   // exception if it is not readable. Unfortunately, it kills the condition code
4351   // in the process
4352   // We current use TESTL [spp],EDI
4353   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4354 
4355   enc_class Safepoint_Poll() %{
4356     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4357     emit_opcode(cbuf,0x85);
4358     emit_rm (cbuf, 0x0, 0x7, 0x5);
4359     emit_d32(cbuf, (intptr_t)os::get_polling_page());
4360   %}
4361 %}
4362 
4363 
4364 //----------FRAME--------------------------------------------------------------
4365 // Definition of frame structure and management information.
4366 //
4367 //  S T A C K   L A Y O U T    Allocators stack-slot number
4368 //                             |   (to get allocators register number
4369 //  G  Owned by    |        |  v    add OptoReg::stack0())
4370 //  r   CALLER     |        |
4371 //  o     |        +--------+      pad to even-align allocators stack-slot
4372 //  w     V        |  pad0  |        numbers; owned by CALLER
4373 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4374 //  h     ^        |   in   |  5
4375 //        |        |  args  |  4   Holes in incoming args owned by SELF
4376 //  |     |        |        |  3
4377 //  |     |        +--------+
4378 //  V     |        | old out|      Empty on Intel, window on Sparc
4379 //        |    old |preserve|      Must be even aligned.
4380 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
4381 //        |        |   in   |  3   area for Intel ret address
4382 //     Owned by    |preserve|      Empty on Sparc.
4383 //       SELF      +--------+
4384 //        |        |  pad2  |  2   pad to align old SP
4385 //        |        +--------+  1
4386 //        |        | locks  |  0
4387 //        |        +--------+----> OptoReg::stack0(), even aligned
4388 //        |        |  pad1  | 11   pad to align new SP
4389 //        |        +--------+
4390 //        |        |        | 10
4391 //        |        | spills |  9   spills
4392 //        V        |        |  8   (pad0 slot for callee)
4393 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4394 //        ^        |  out   |  7
4395 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4396 //     Owned by    +--------+
4397 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4398 //        |    new |preserve|      Must be even-aligned.
4399 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
4400 //        |        |        |
4401 //
4402 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4403 //         known from SELF's arguments and the Java calling convention.
4404 //         Region 6-7 is determined per call site.
4405 // Note 2: If the calling convention leaves holes in the incoming argument
4406 //         area, those holes are owned by SELF.  Holes in the outgoing area
4407 //         are owned by the CALLEE.  Holes should not be nessecary in the
4408 //         incoming area, as the Java calling convention is completely under
4409 //         the control of the AD file.  Doubles can be sorted and packed to
4410 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
4411 //         varargs C calling conventions.
4412 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4413 //         even aligned with pad0 as needed.
4414 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4415 //         region 6-11 is even aligned; it may be padded out more so that
4416 //         the region from SP to FP meets the minimum stack alignment.
4417 
4418 frame %{
4419   // What direction does stack grow in (assumed to be same for C & Java)
4420   stack_direction(TOWARDS_LOW);
4421 
4422   // These three registers define part of the calling convention
4423   // between compiled code and the interpreter.
4424   inline_cache_reg(EAX);                // Inline Cache Register
4425   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4426 
4427   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4428   cisc_spilling_operand_name(indOffset32);
4429 
4430   // Number of stack slots consumed by locking an object
4431   sync_stack_slots(1);
4432 
4433   // Compiled code's Frame Pointer
4434   frame_pointer(ESP);
4435   // Interpreter stores its frame pointer in a register which is
4436   // stored to the stack by I2CAdaptors.
4437   // I2CAdaptors convert from interpreted java to compiled java.
4438   interpreter_frame_pointer(EBP);
4439 
4440   // Stack alignment requirement
4441   // Alignment size in bytes (128-bit -> 16 bytes)
4442   stack_alignment(StackAlignmentInBytes);
4443 
4444   // Number of stack slots between incoming argument block and the start of
4445   // a new frame.  The PROLOG must add this many slots to the stack.  The
4446   // EPILOG must remove this many slots.  Intel needs one slot for
4447   // return address and one for rbp, (must save rbp)
4448   in_preserve_stack_slots(2+VerifyStackAtCalls);
4449 
4450   // Number of outgoing stack slots killed above the out_preserve_stack_slots
4451   // for calls to C.  Supports the var-args backing area for register parms.
4452   varargs_C_out_slots_killed(0);
4453 
4454   // The after-PROLOG location of the return address.  Location of
4455   // return address specifies a type (REG or STACK) and a number
4456   // representing the register number (i.e. - use a register name) or
4457   // stack slot.
4458   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4459   // Otherwise, it is above the locks and verification slot and alignment word
4460   return_addr(STACK - 1 +
4461               round_to(1+VerifyStackAtCalls+
4462               Compile::current()->fixed_slots(),
4463               (StackAlignmentInBytes/wordSize)));
4464 
4465   // Body of function which returns an integer array locating
4466   // arguments either in registers or in stack slots.  Passed an array
4467   // of ideal registers called "sig" and a "length" count.  Stack-slot
4468   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4469   // arguments for a CALLEE.  Incoming stack arguments are
4470   // automatically biased by the preserve_stack_slots field above.
4471   calling_convention %{
4472     // No difference between ingoing/outgoing just pass false
4473     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4474   %}
4475 
4476 
4477   // Body of function which returns an integer array locating
4478   // arguments either in registers or in stack slots.  Passed an array
4479   // of ideal registers called "sig" and a "length" count.  Stack-slot
4480   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4481   // arguments for a CALLEE.  Incoming stack arguments are
4482   // automatically biased by the preserve_stack_slots field above.
4483   c_calling_convention %{
4484     // This is obviously always outgoing
4485     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4486   %}
4487 
4488   // Location of C & interpreter return values
4489   c_return_value %{
4490     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4491     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4492     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4493 
4494     // in SSE2+ mode we want to keep the FPU stack clean so pretend
4495     // that C functions return float and double results in XMM0.
4496     if( ideal_reg == Op_RegD && UseSSE>=2 )
4497       return OptoRegPair(XMM0b_num,XMM0a_num);
4498     if( ideal_reg == Op_RegF && UseSSE>=2 )
4499       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4500 
4501     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4502   %}
4503 
4504   // Location of return values
4505   return_value %{
4506     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4507     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4508     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4509     if( ideal_reg == Op_RegD && UseSSE>=2 )
4510       return OptoRegPair(XMM0b_num,XMM0a_num);
4511     if( ideal_reg == Op_RegF && UseSSE>=1 )
4512       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4513     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4514   %}
4515 
4516 %}
4517 
4518 //----------ATTRIBUTES---------------------------------------------------------
4519 //----------Operand Attributes-------------------------------------------------
4520 op_attrib op_cost(0);        // Required cost attribute
4521 
4522 //----------Instruction Attributes---------------------------------------------
4523 ins_attrib ins_cost(100);       // Required cost attribute
4524 ins_attrib ins_size(8);         // Required size attribute (in bits)
4525 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4526 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4527                                 // non-matching short branch variant of some
4528                                                             // long branch?
4529 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4530                                 // specifies the alignment that some part of the instruction (not
4531                                 // necessarily the start) requires.  If > 1, a compute_padding()
4532                                 // function must be provided for the instruction
4533 
4534 //----------OPERANDS-----------------------------------------------------------
4535 // Operand definitions must precede instruction definitions for correct parsing
4536 // in the ADLC because operands constitute user defined types which are used in
4537 // instruction definitions.
4538 
4539 //----------Simple Operands----------------------------------------------------
4540 // Immediate Operands
4541 // Integer Immediate
4542 operand immI() %{
4543   match(ConI);
4544 
4545   op_cost(10);
4546   format %{ %}
4547   interface(CONST_INTER);
4548 %}
4549 
4550 // Constant for test vs zero
4551 operand immI0() %{
4552   predicate(n->get_int() == 0);
4553   match(ConI);
4554 
4555   op_cost(0);
4556   format %{ %}
4557   interface(CONST_INTER);
4558 %}
4559 
4560 // Constant for increment
4561 operand immI1() %{
4562   predicate(n->get_int() == 1);
4563   match(ConI);
4564 
4565   op_cost(0);
4566   format %{ %}
4567   interface(CONST_INTER);
4568 %}
4569 
4570 // Constant for decrement
4571 operand immI_M1() %{
4572   predicate(n->get_int() == -1);
4573   match(ConI);
4574 
4575   op_cost(0);
4576   format %{ %}
4577   interface(CONST_INTER);
4578 %}
4579 
4580 // Valid scale values for addressing modes
4581 operand immI2() %{
4582   predicate(0 <= n->get_int() && (n->get_int() <= 3));
4583   match(ConI);
4584 
4585   format %{ %}
4586   interface(CONST_INTER);
4587 %}
4588 
4589 operand immI8() %{
4590   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4591   match(ConI);
4592 
4593   op_cost(5);
4594   format %{ %}
4595   interface(CONST_INTER);
4596 %}
4597 
4598 operand immI16() %{
4599   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4600   match(ConI);
4601 
4602   op_cost(10);
4603   format %{ %}
4604   interface(CONST_INTER);
4605 %}
4606 
4607 // Constant for long shifts
4608 operand immI_32() %{
4609   predicate( n->get_int() == 32 );
4610   match(ConI);
4611 
4612   op_cost(0);
4613   format %{ %}
4614   interface(CONST_INTER);
4615 %}
4616 
4617 operand immI_1_31() %{
4618   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4619   match(ConI);
4620 
4621   op_cost(0);
4622   format %{ %}
4623   interface(CONST_INTER);
4624 %}
4625 
4626 operand immI_32_63() %{
4627   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4628   match(ConI);
4629   op_cost(0);
4630 
4631   format %{ %}
4632   interface(CONST_INTER);
4633 %}
4634 
4635 operand immI_1() %{
4636   predicate( n->get_int() == 1 );
4637   match(ConI);
4638 
4639   op_cost(0);
4640   format %{ %}
4641   interface(CONST_INTER);
4642 %}
4643 
4644 operand immI_2() %{
4645   predicate( n->get_int() == 2 );
4646   match(ConI);
4647 
4648   op_cost(0);
4649   format %{ %}
4650   interface(CONST_INTER);
4651 %}
4652 
4653 operand immI_3() %{
4654   predicate( n->get_int() == 3 );
4655   match(ConI);
4656 
4657   op_cost(0);
4658   format %{ %}
4659   interface(CONST_INTER);
4660 %}
4661 
4662 // Pointer Immediate
4663 operand immP() %{
4664   match(ConP);
4665 
4666   op_cost(10);
4667   format %{ %}
4668   interface(CONST_INTER);
4669 %}
4670 
4671 // NULL Pointer Immediate
4672 operand immP0() %{
4673   predicate( n->get_ptr() == 0 );
4674   match(ConP);
4675   op_cost(0);
4676 
4677   format %{ %}
4678   interface(CONST_INTER);
4679 %}
4680 
4681 // Long Immediate
4682 operand immL() %{
4683   match(ConL);
4684 
4685   op_cost(20);
4686   format %{ %}
4687   interface(CONST_INTER);
4688 %}
4689 
4690 // Long Immediate zero
4691 operand immL0() %{
4692   predicate( n->get_long() == 0L );
4693   match(ConL);
4694   op_cost(0);
4695 
4696   format %{ %}
4697   interface(CONST_INTER);
4698 %}
4699 
4700 // Long Immediate zero
4701 operand immL_M1() %{
4702   predicate( n->get_long() == -1L );
4703   match(ConL);
4704   op_cost(0);
4705 
4706   format %{ %}
4707   interface(CONST_INTER);
4708 %}
4709 
4710 // Long immediate from 0 to 127.
4711 // Used for a shorter form of long mul by 10.
4712 operand immL_127() %{
4713   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4714   match(ConL);
4715   op_cost(0);
4716 
4717   format %{ %}
4718   interface(CONST_INTER);
4719 %}
4720 
4721 // Long Immediate: low 32-bit mask
4722 operand immL_32bits() %{
4723   predicate(n->get_long() == 0xFFFFFFFFL);
4724   match(ConL);
4725   op_cost(0);
4726 
4727   format %{ %}
4728   interface(CONST_INTER);
4729 %}
4730 
4731 // Long Immediate: low 32-bit mask
4732 operand immL32() %{
4733   predicate(n->get_long() == (int)(n->get_long()));
4734   match(ConL);
4735   op_cost(20);
4736 
4737   format %{ %}
4738   interface(CONST_INTER);
4739 %}
4740 
4741 //Double Immediate zero
4742 operand immD0() %{
4743   // Do additional (and counter-intuitive) test against NaN to work around VC++
4744   // bug that generates code such that NaNs compare equal to 0.0
4745   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4746   match(ConD);
4747 
4748   op_cost(5);
4749   format %{ %}
4750   interface(CONST_INTER);
4751 %}
4752 
4753 // Double Immediate
4754 operand immD1() %{
4755   predicate( UseSSE<=1 && n->getd() == 1.0 );
4756   match(ConD);
4757 
4758   op_cost(5);
4759   format %{ %}
4760   interface(CONST_INTER);
4761 %}
4762 
4763 // Double Immediate
4764 operand immD() %{
4765   predicate(UseSSE<=1);
4766   match(ConD);
4767 
4768   op_cost(5);
4769   format %{ %}
4770   interface(CONST_INTER);
4771 %}
4772 
4773 operand immXD() %{
4774   predicate(UseSSE>=2);
4775   match(ConD);
4776 
4777   op_cost(5);
4778   format %{ %}
4779   interface(CONST_INTER);
4780 %}
4781 
4782 // Double Immediate zero
4783 operand immXD0() %{
4784   // Do additional (and counter-intuitive) test against NaN to work around VC++
4785   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4786   // compare equal to -0.0.
4787   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4788   match(ConD);
4789 
4790   format %{ %}
4791   interface(CONST_INTER);
4792 %}
4793 
4794 // Float Immediate zero
4795 operand immF0() %{
4796   predicate( UseSSE == 0 && n->getf() == 0.0 );
4797   match(ConF);
4798 
4799   op_cost(5);
4800   format %{ %}
4801   interface(CONST_INTER);
4802 %}
4803 
4804 // Float Immediate
4805 operand immF() %{
4806   predicate( UseSSE == 0 );
4807   match(ConF);
4808 
4809   op_cost(5);
4810   format %{ %}
4811   interface(CONST_INTER);
4812 %}
4813 
4814 // Float Immediate
4815 operand immXF() %{
4816   predicate(UseSSE >= 1);
4817   match(ConF);
4818 
4819   op_cost(5);
4820   format %{ %}
4821   interface(CONST_INTER);
4822 %}
4823 
4824 // Float Immediate zero.  Zero and not -0.0
4825 operand immXF0() %{
4826   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4827   match(ConF);
4828 
4829   op_cost(5);
4830   format %{ %}
4831   interface(CONST_INTER);
4832 %}
4833 
4834 // Immediates for special shifts (sign extend)
4835 
4836 // Constants for increment
4837 operand immI_16() %{
4838   predicate( n->get_int() == 16 );
4839   match(ConI);
4840 
4841   format %{ %}
4842   interface(CONST_INTER);
4843 %}
4844 
4845 operand immI_24() %{
4846   predicate( n->get_int() == 24 );
4847   match(ConI);
4848 
4849   format %{ %}
4850   interface(CONST_INTER);
4851 %}
4852 
4853 // Constant for byte-wide masking
4854 operand immI_255() %{
4855   predicate( n->get_int() == 255 );
4856   match(ConI);
4857 
4858   format %{ %}
4859   interface(CONST_INTER);
4860 %}
4861 
4862 // Constant for short-wide masking
4863 operand immI_65535() %{
4864   predicate(n->get_int() == 65535);
4865   match(ConI);
4866 
4867   format %{ %}
4868   interface(CONST_INTER);
4869 %}
4870 
4871 // Register Operands
4872 // Integer Register
4873 operand eRegI() %{
4874   constraint(ALLOC_IN_RC(e_reg));
4875   match(RegI);
4876   match(xRegI);
4877   match(eAXRegI);
4878   match(eBXRegI);
4879   match(eCXRegI);
4880   match(eDXRegI);
4881   match(eDIRegI);
4882   match(eSIRegI);
4883 
4884   format %{ %}
4885   interface(REG_INTER);
4886 %}
4887 
4888 // Subset of Integer Register
4889 operand xRegI(eRegI reg) %{
4890   constraint(ALLOC_IN_RC(x_reg));
4891   match(reg);
4892   match(eAXRegI);
4893   match(eBXRegI);
4894   match(eCXRegI);
4895   match(eDXRegI);
4896 
4897   format %{ %}
4898   interface(REG_INTER);
4899 %}
4900 
4901 // Special Registers
4902 operand eAXRegI(xRegI reg) %{
4903   constraint(ALLOC_IN_RC(eax_reg));
4904   match(reg);
4905   match(eRegI);
4906 
4907   format %{ "EAX" %}
4908   interface(REG_INTER);
4909 %}
4910 
4911 // Special Registers
4912 operand eBXRegI(xRegI reg) %{
4913   constraint(ALLOC_IN_RC(ebx_reg));
4914   match(reg);
4915   match(eRegI);
4916 
4917   format %{ "EBX" %}
4918   interface(REG_INTER);
4919 %}
4920 
4921 operand eCXRegI(xRegI reg) %{
4922   constraint(ALLOC_IN_RC(ecx_reg));
4923   match(reg);
4924   match(eRegI);
4925 
4926   format %{ "ECX" %}
4927   interface(REG_INTER);
4928 %}
4929 
4930 operand eDXRegI(xRegI reg) %{
4931   constraint(ALLOC_IN_RC(edx_reg));
4932   match(reg);
4933   match(eRegI);
4934 
4935   format %{ "EDX" %}
4936   interface(REG_INTER);
4937 %}
4938 
4939 operand eDIRegI(xRegI reg) %{
4940   constraint(ALLOC_IN_RC(edi_reg));
4941   match(reg);
4942   match(eRegI);
4943 
4944   format %{ "EDI" %}
4945   interface(REG_INTER);
4946 %}
4947 
4948 operand naxRegI() %{
4949   constraint(ALLOC_IN_RC(nax_reg));
4950   match(RegI);
4951   match(eCXRegI);
4952   match(eDXRegI);
4953   match(eSIRegI);
4954   match(eDIRegI);
4955 
4956   format %{ %}
4957   interface(REG_INTER);
4958 %}
4959 
4960 operand nadxRegI() %{
4961   constraint(ALLOC_IN_RC(nadx_reg));
4962   match(RegI);
4963   match(eBXRegI);
4964   match(eCXRegI);
4965   match(eSIRegI);
4966   match(eDIRegI);
4967 
4968   format %{ %}
4969   interface(REG_INTER);
4970 %}
4971 
4972 operand ncxRegI() %{
4973   constraint(ALLOC_IN_RC(ncx_reg));
4974   match(RegI);
4975   match(eAXRegI);
4976   match(eDXRegI);
4977   match(eSIRegI);
4978   match(eDIRegI);
4979 
4980   format %{ %}
4981   interface(REG_INTER);
4982 %}
4983 
4984 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
4985 // //
4986 operand eSIRegI(xRegI reg) %{
4987    constraint(ALLOC_IN_RC(esi_reg));
4988    match(reg);
4989    match(eRegI);
4990 
4991    format %{ "ESI" %}
4992    interface(REG_INTER);
4993 %}
4994 
4995 // Pointer Register
4996 operand anyRegP() %{
4997   constraint(ALLOC_IN_RC(any_reg));
4998   match(RegP);
4999   match(eAXRegP);
5000   match(eBXRegP);
5001   match(eCXRegP);
5002   match(eDIRegP);
5003   match(eRegP);
5004 
5005   format %{ %}
5006   interface(REG_INTER);
5007 %}
5008 
5009 operand eRegP() %{
5010   constraint(ALLOC_IN_RC(e_reg));
5011   match(RegP);
5012   match(eAXRegP);
5013   match(eBXRegP);
5014   match(eCXRegP);
5015   match(eDIRegP);
5016 
5017   format %{ %}
5018   interface(REG_INTER);
5019 %}
5020 
5021 // On windows95, EBP is not safe to use for implicit null tests.
5022 operand eRegP_no_EBP() %{
5023   constraint(ALLOC_IN_RC(e_reg_no_rbp));
5024   match(RegP);
5025   match(eAXRegP);
5026   match(eBXRegP);
5027   match(eCXRegP);
5028   match(eDIRegP);
5029 
5030   op_cost(100);
5031   format %{ %}
5032   interface(REG_INTER);
5033 %}
5034 
5035 operand naxRegP() %{
5036   constraint(ALLOC_IN_RC(nax_reg));
5037   match(RegP);
5038   match(eBXRegP);
5039   match(eDXRegP);
5040   match(eCXRegP);
5041   match(eSIRegP);
5042   match(eDIRegP);
5043 
5044   format %{ %}
5045   interface(REG_INTER);
5046 %}
5047 
5048 operand nabxRegP() %{
5049   constraint(ALLOC_IN_RC(nabx_reg));
5050   match(RegP);
5051   match(eCXRegP);
5052   match(eDXRegP);
5053   match(eSIRegP);
5054   match(eDIRegP);
5055 
5056   format %{ %}
5057   interface(REG_INTER);
5058 %}
5059 
5060 operand pRegP() %{
5061   constraint(ALLOC_IN_RC(p_reg));
5062   match(RegP);
5063   match(eBXRegP);
5064   match(eDXRegP);
5065   match(eSIRegP);
5066   match(eDIRegP);
5067 
5068   format %{ %}
5069   interface(REG_INTER);
5070 %}
5071 
5072 // Special Registers
5073 // Return a pointer value
5074 operand eAXRegP(eRegP reg) %{
5075   constraint(ALLOC_IN_RC(eax_reg));
5076   match(reg);
5077   format %{ "EAX" %}
5078   interface(REG_INTER);
5079 %}
5080 
5081 // Used in AtomicAdd
5082 operand eBXRegP(eRegP reg) %{
5083   constraint(ALLOC_IN_RC(ebx_reg));
5084   match(reg);
5085   format %{ "EBX" %}
5086   interface(REG_INTER);
5087 %}
5088 
5089 // Tail-call (interprocedural jump) to interpreter
5090 operand eCXRegP(eRegP reg) %{
5091   constraint(ALLOC_IN_RC(ecx_reg));
5092   match(reg);
5093   format %{ "ECX" %}
5094   interface(REG_INTER);
5095 %}
5096 
5097 operand eSIRegP(eRegP reg) %{
5098   constraint(ALLOC_IN_RC(esi_reg));
5099   match(reg);
5100   format %{ "ESI" %}
5101   interface(REG_INTER);
5102 %}
5103 
5104 // Used in rep stosw
5105 operand eDIRegP(eRegP reg) %{
5106   constraint(ALLOC_IN_RC(edi_reg));
5107   match(reg);
5108   format %{ "EDI" %}
5109   interface(REG_INTER);
5110 %}
5111 
5112 operand eBPRegP() %{
5113   constraint(ALLOC_IN_RC(ebp_reg));
5114   match(RegP);
5115   format %{ "EBP" %}
5116   interface(REG_INTER);
5117 %}
5118 
5119 operand eRegL() %{
5120   constraint(ALLOC_IN_RC(long_reg));
5121   match(RegL);
5122   match(eADXRegL);
5123 
5124   format %{ %}
5125   interface(REG_INTER);
5126 %}
5127 
5128 operand eADXRegL( eRegL reg ) %{
5129   constraint(ALLOC_IN_RC(eadx_reg));
5130   match(reg);
5131 
5132   format %{ "EDX:EAX" %}
5133   interface(REG_INTER);
5134 %}
5135 
5136 operand eBCXRegL( eRegL reg ) %{
5137   constraint(ALLOC_IN_RC(ebcx_reg));
5138   match(reg);
5139 
5140   format %{ "EBX:ECX" %}
5141   interface(REG_INTER);
5142 %}
5143 
5144 // Special case for integer high multiply
5145 operand eADXRegL_low_only() %{
5146   constraint(ALLOC_IN_RC(eadx_reg));
5147   match(RegL);
5148 
5149   format %{ "EAX" %}
5150   interface(REG_INTER);
5151 %}
5152 
5153 // Flags register, used as output of compare instructions
5154 operand eFlagsReg() %{
5155   constraint(ALLOC_IN_RC(int_flags));
5156   match(RegFlags);
5157 
5158   format %{ "EFLAGS" %}
5159   interface(REG_INTER);
5160 %}
5161 
5162 // Flags register, used as output of FLOATING POINT compare instructions
5163 operand eFlagsRegU() %{
5164   constraint(ALLOC_IN_RC(int_flags));
5165   match(RegFlags);
5166 
5167   format %{ "EFLAGS_U" %}
5168   interface(REG_INTER);
5169 %}
5170 
5171 operand eFlagsRegUCF() %{
5172   constraint(ALLOC_IN_RC(int_flags));
5173   match(RegFlags);
5174   predicate(false);
5175 
5176   format %{ "EFLAGS_U_CF" %}
5177   interface(REG_INTER);
5178 %}
5179 
5180 // Condition Code Register used by long compare
5181 operand flagsReg_long_LTGE() %{
5182   constraint(ALLOC_IN_RC(int_flags));
5183   match(RegFlags);
5184   format %{ "FLAGS_LTGE" %}
5185   interface(REG_INTER);
5186 %}
5187 operand flagsReg_long_EQNE() %{
5188   constraint(ALLOC_IN_RC(int_flags));
5189   match(RegFlags);
5190   format %{ "FLAGS_EQNE" %}
5191   interface(REG_INTER);
5192 %}
5193 operand flagsReg_long_LEGT() %{
5194   constraint(ALLOC_IN_RC(int_flags));
5195   match(RegFlags);
5196   format %{ "FLAGS_LEGT" %}
5197   interface(REG_INTER);
5198 %}
5199 
5200 // Float register operands
5201 operand regD() %{
5202   predicate( UseSSE < 2 );
5203   constraint(ALLOC_IN_RC(dbl_reg));
5204   match(RegD);
5205   match(regDPR1);
5206   match(regDPR2);
5207   format %{ %}
5208   interface(REG_INTER);
5209 %}
5210 
5211 operand regDPR1(regD reg) %{
5212   predicate( UseSSE < 2 );
5213   constraint(ALLOC_IN_RC(dbl_reg0));
5214   match(reg);
5215   format %{ "FPR1" %}
5216   interface(REG_INTER);
5217 %}
5218 
5219 operand regDPR2(regD reg) %{
5220   predicate( UseSSE < 2 );
5221   constraint(ALLOC_IN_RC(dbl_reg1));
5222   match(reg);
5223   format %{ "FPR2" %}
5224   interface(REG_INTER);
5225 %}
5226 
5227 operand regnotDPR1(regD reg) %{
5228   predicate( UseSSE < 2 );
5229   constraint(ALLOC_IN_RC(dbl_notreg0));
5230   match(reg);
5231   format %{ %}
5232   interface(REG_INTER);
5233 %}
5234 
5235 // XMM Double register operands
5236 operand regXD() %{
5237   predicate( UseSSE>=2 );
5238   constraint(ALLOC_IN_RC(xdb_reg));
5239   match(RegD);
5240   match(regXD6);
5241   match(regXD7);
5242   format %{ %}
5243   interface(REG_INTER);
5244 %}
5245 
5246 // XMM6 double register operands
5247 operand regXD6(regXD reg) %{
5248   predicate( UseSSE>=2 );
5249   constraint(ALLOC_IN_RC(xdb_reg6));
5250   match(reg);
5251   format %{ "XMM6" %}
5252   interface(REG_INTER);
5253 %}
5254 
5255 // XMM7 double register operands
5256 operand regXD7(regXD reg) %{
5257   predicate( UseSSE>=2 );
5258   constraint(ALLOC_IN_RC(xdb_reg7));
5259   match(reg);
5260   format %{ "XMM7" %}
5261   interface(REG_INTER);
5262 %}
5263 
5264 // Float register operands
5265 operand regF() %{
5266   predicate( UseSSE < 2 );
5267   constraint(ALLOC_IN_RC(flt_reg));
5268   match(RegF);
5269   match(regFPR1);
5270   format %{ %}
5271   interface(REG_INTER);
5272 %}
5273 
5274 // Float register operands
5275 operand regFPR1(regF reg) %{
5276   predicate( UseSSE < 2 );
5277   constraint(ALLOC_IN_RC(flt_reg0));
5278   match(reg);
5279   format %{ "FPR1" %}
5280   interface(REG_INTER);
5281 %}
5282 
5283 // XMM register operands
5284 operand regX() %{
5285   predicate( UseSSE>=1 );
5286   constraint(ALLOC_IN_RC(xmm_reg));
5287   match(RegF);
5288   format %{ %}
5289   interface(REG_INTER);
5290 %}
5291 
5292 
5293 //----------Memory Operands----------------------------------------------------
5294 // Direct Memory Operand
5295 operand direct(immP addr) %{
5296   match(addr);
5297 
5298   format %{ "[$addr]" %}
5299   interface(MEMORY_INTER) %{
5300     base(0xFFFFFFFF);
5301     index(0x4);
5302     scale(0x0);
5303     disp($addr);
5304   %}
5305 %}
5306 
5307 // Indirect Memory Operand
5308 operand indirect(eRegP reg) %{
5309   constraint(ALLOC_IN_RC(e_reg));
5310   match(reg);
5311 
5312   format %{ "[$reg]" %}
5313   interface(MEMORY_INTER) %{
5314     base($reg);
5315     index(0x4);
5316     scale(0x0);
5317     disp(0x0);
5318   %}
5319 %}
5320 
5321 // Indirect Memory Plus Short Offset Operand
5322 operand indOffset8(eRegP reg, immI8 off) %{
5323   match(AddP reg off);
5324 
5325   format %{ "[$reg + $off]" %}
5326   interface(MEMORY_INTER) %{
5327     base($reg);
5328     index(0x4);
5329     scale(0x0);
5330     disp($off);
5331   %}
5332 %}
5333 
5334 // Indirect Memory Plus Long Offset Operand
5335 operand indOffset32(eRegP reg, immI off) %{
5336   match(AddP reg off);
5337 
5338   format %{ "[$reg + $off]" %}
5339   interface(MEMORY_INTER) %{
5340     base($reg);
5341     index(0x4);
5342     scale(0x0);
5343     disp($off);
5344   %}
5345 %}
5346 
5347 // Indirect Memory Plus Long Offset Operand
5348 operand indOffset32X(eRegI reg, immP off) %{
5349   match(AddP off reg);
5350 
5351   format %{ "[$reg + $off]" %}
5352   interface(MEMORY_INTER) %{
5353     base($reg);
5354     index(0x4);
5355     scale(0x0);
5356     disp($off);
5357   %}
5358 %}
5359 
5360 // Indirect Memory Plus Index Register Plus Offset Operand
5361 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5362   match(AddP (AddP reg ireg) off);
5363 
5364   op_cost(10);
5365   format %{"[$reg + $off + $ireg]" %}
5366   interface(MEMORY_INTER) %{
5367     base($reg);
5368     index($ireg);
5369     scale(0x0);
5370     disp($off);
5371   %}
5372 %}
5373 
5374 // Indirect Memory Plus Index Register Plus Offset Operand
5375 operand indIndex(eRegP reg, eRegI ireg) %{
5376   match(AddP reg ireg);
5377 
5378   op_cost(10);
5379   format %{"[$reg + $ireg]" %}
5380   interface(MEMORY_INTER) %{
5381     base($reg);
5382     index($ireg);
5383     scale(0x0);
5384     disp(0x0);
5385   %}
5386 %}
5387 
5388 // // -------------------------------------------------------------------------
5389 // // 486 architecture doesn't support "scale * index + offset" with out a base
5390 // // -------------------------------------------------------------------------
5391 // // Scaled Memory Operands
5392 // // Indirect Memory Times Scale Plus Offset Operand
5393 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5394 //   match(AddP off (LShiftI ireg scale));
5395 //
5396 //   op_cost(10);
5397 //   format %{"[$off + $ireg << $scale]" %}
5398 //   interface(MEMORY_INTER) %{
5399 //     base(0x4);
5400 //     index($ireg);
5401 //     scale($scale);
5402 //     disp($off);
5403 //   %}
5404 // %}
5405 
5406 // Indirect Memory Times Scale Plus Index Register
5407 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5408   match(AddP reg (LShiftI ireg scale));
5409 
5410   op_cost(10);
5411   format %{"[$reg + $ireg << $scale]" %}
5412   interface(MEMORY_INTER) %{
5413     base($reg);
5414     index($ireg);
5415     scale($scale);
5416     disp(0x0);
5417   %}
5418 %}
5419 
5420 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5421 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5422   match(AddP (AddP reg (LShiftI ireg scale)) off);
5423 
5424   op_cost(10);
5425   format %{"[$reg + $off + $ireg << $scale]" %}
5426   interface(MEMORY_INTER) %{
5427     base($reg);
5428     index($ireg);
5429     scale($scale);
5430     disp($off);
5431   %}
5432 %}
5433 
5434 //----------Load Long Memory Operands------------------------------------------
5435 // The load-long idiom will use it's address expression again after loading
5436 // the first word of the long.  If the load-long destination overlaps with
5437 // registers used in the addressing expression, the 2nd half will be loaded
5438 // from a clobbered address.  Fix this by requiring that load-long use
5439 // address registers that do not overlap with the load-long target.
5440 
5441 // load-long support
5442 operand load_long_RegP() %{
5443   constraint(ALLOC_IN_RC(esi_reg));
5444   match(RegP);
5445   match(eSIRegP);
5446   op_cost(100);
5447   format %{  %}
5448   interface(REG_INTER);
5449 %}
5450 
5451 // Indirect Memory Operand Long
5452 operand load_long_indirect(load_long_RegP reg) %{
5453   constraint(ALLOC_IN_RC(esi_reg));
5454   match(reg);
5455 
5456   format %{ "[$reg]" %}
5457   interface(MEMORY_INTER) %{
5458     base($reg);
5459     index(0x4);
5460     scale(0x0);
5461     disp(0x0);
5462   %}
5463 %}
5464 
5465 // Indirect Memory Plus Long Offset Operand
5466 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5467   match(AddP reg off);
5468 
5469   format %{ "[$reg + $off]" %}
5470   interface(MEMORY_INTER) %{
5471     base($reg);
5472     index(0x4);
5473     scale(0x0);
5474     disp($off);
5475   %}
5476 %}
5477 
5478 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5479 
5480 
5481 //----------Special Memory Operands--------------------------------------------
5482 // Stack Slot Operand - This operand is used for loading and storing temporary
5483 //                      values on the stack where a match requires a value to
5484 //                      flow through memory.
5485 operand stackSlotP(sRegP reg) %{
5486   constraint(ALLOC_IN_RC(stack_slots));
5487   // No match rule because this operand is only generated in matching
5488   format %{ "[$reg]" %}
5489   interface(MEMORY_INTER) %{
5490     base(0x4);   // ESP
5491     index(0x4);  // No Index
5492     scale(0x0);  // No Scale
5493     disp($reg);  // Stack Offset
5494   %}
5495 %}
5496 
5497 operand stackSlotI(sRegI reg) %{
5498   constraint(ALLOC_IN_RC(stack_slots));
5499   // No match rule because this operand is only generated in matching
5500   format %{ "[$reg]" %}
5501   interface(MEMORY_INTER) %{
5502     base(0x4);   // ESP
5503     index(0x4);  // No Index
5504     scale(0x0);  // No Scale
5505     disp($reg);  // Stack Offset
5506   %}
5507 %}
5508 
5509 operand stackSlotF(sRegF reg) %{
5510   constraint(ALLOC_IN_RC(stack_slots));
5511   // No match rule because this operand is only generated in matching
5512   format %{ "[$reg]" %}
5513   interface(MEMORY_INTER) %{
5514     base(0x4);   // ESP
5515     index(0x4);  // No Index
5516     scale(0x0);  // No Scale
5517     disp($reg);  // Stack Offset
5518   %}
5519 %}
5520 
5521 operand stackSlotD(sRegD reg) %{
5522   constraint(ALLOC_IN_RC(stack_slots));
5523   // No match rule because this operand is only generated in matching
5524   format %{ "[$reg]" %}
5525   interface(MEMORY_INTER) %{
5526     base(0x4);   // ESP
5527     index(0x4);  // No Index
5528     scale(0x0);  // No Scale
5529     disp($reg);  // Stack Offset
5530   %}
5531 %}
5532 
5533 operand stackSlotL(sRegL reg) %{
5534   constraint(ALLOC_IN_RC(stack_slots));
5535   // No match rule because this operand is only generated in matching
5536   format %{ "[$reg]" %}
5537   interface(MEMORY_INTER) %{
5538     base(0x4);   // ESP
5539     index(0x4);  // No Index
5540     scale(0x0);  // No Scale
5541     disp($reg);  // Stack Offset
5542   %}
5543 %}
5544 
5545 //----------Memory Operands - Win95 Implicit Null Variants----------------
5546 // Indirect Memory Operand
5547 operand indirect_win95_safe(eRegP_no_EBP reg)
5548 %{
5549   constraint(ALLOC_IN_RC(e_reg));
5550   match(reg);
5551 
5552   op_cost(100);
5553   format %{ "[$reg]" %}
5554   interface(MEMORY_INTER) %{
5555     base($reg);
5556     index(0x4);
5557     scale(0x0);
5558     disp(0x0);
5559   %}
5560 %}
5561 
5562 // Indirect Memory Plus Short Offset Operand
5563 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5564 %{
5565   match(AddP reg off);
5566 
5567   op_cost(100);
5568   format %{ "[$reg + $off]" %}
5569   interface(MEMORY_INTER) %{
5570     base($reg);
5571     index(0x4);
5572     scale(0x0);
5573     disp($off);
5574   %}
5575 %}
5576 
5577 // Indirect Memory Plus Long Offset Operand
5578 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5579 %{
5580   match(AddP reg off);
5581 
5582   op_cost(100);
5583   format %{ "[$reg + $off]" %}
5584   interface(MEMORY_INTER) %{
5585     base($reg);
5586     index(0x4);
5587     scale(0x0);
5588     disp($off);
5589   %}
5590 %}
5591 
5592 // Indirect Memory Plus Index Register Plus Offset Operand
5593 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5594 %{
5595   match(AddP (AddP reg ireg) off);
5596 
5597   op_cost(100);
5598   format %{"[$reg + $off + $ireg]" %}
5599   interface(MEMORY_INTER) %{
5600     base($reg);
5601     index($ireg);
5602     scale(0x0);
5603     disp($off);
5604   %}
5605 %}
5606 
5607 // Indirect Memory Times Scale Plus Index Register
5608 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5609 %{
5610   match(AddP reg (LShiftI ireg scale));
5611 
5612   op_cost(100);
5613   format %{"[$reg + $ireg << $scale]" %}
5614   interface(MEMORY_INTER) %{
5615     base($reg);
5616     index($ireg);
5617     scale($scale);
5618     disp(0x0);
5619   %}
5620 %}
5621 
5622 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5623 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5624 %{
5625   match(AddP (AddP reg (LShiftI ireg scale)) off);
5626 
5627   op_cost(100);
5628   format %{"[$reg + $off + $ireg << $scale]" %}
5629   interface(MEMORY_INTER) %{
5630     base($reg);
5631     index($ireg);
5632     scale($scale);
5633     disp($off);
5634   %}
5635 %}
5636 
5637 //----------Conditional Branch Operands----------------------------------------
5638 // Comparison Op  - This is the operation of the comparison, and is limited to
5639 //                  the following set of codes:
5640 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5641 //
5642 // Other attributes of the comparison, such as unsignedness, are specified
5643 // by the comparison instruction that sets a condition code flags register.
5644 // That result is represented by a flags operand whose subtype is appropriate
5645 // to the unsignedness (etc.) of the comparison.
5646 //
5647 // Later, the instruction which matches both the Comparison Op (a Bool) and
5648 // the flags (produced by the Cmp) specifies the coding of the comparison op
5649 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5650 
5651 // Comparision Code
5652 operand cmpOp() %{
5653   match(Bool);
5654 
5655   format %{ "" %}
5656   interface(COND_INTER) %{
5657     equal(0x4, "e");
5658     not_equal(0x5, "ne");
5659     less(0xC, "l");
5660     greater_equal(0xD, "ge");
5661     less_equal(0xE, "le");
5662     greater(0xF, "g");
5663   %}
5664 %}
5665 
5666 // Comparison Code, unsigned compare.  Used by FP also, with
5667 // C2 (unordered) turned into GT or LT already.  The other bits
5668 // C0 and C3 are turned into Carry & Zero flags.
5669 operand cmpOpU() %{
5670   match(Bool);
5671 
5672   format %{ "" %}
5673   interface(COND_INTER) %{
5674     equal(0x4, "e");
5675     not_equal(0x5, "ne");
5676     less(0x2, "b");
5677     greater_equal(0x3, "nb");
5678     less_equal(0x6, "be");
5679     greater(0x7, "nbe");
5680   %}
5681 %}
5682 
5683 // Floating comparisons that don't require any fixup for the unordered case
5684 operand cmpOpUCF() %{
5685   match(Bool);
5686   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5687             n->as_Bool()->_test._test == BoolTest::ge ||
5688             n->as_Bool()->_test._test == BoolTest::le ||
5689             n->as_Bool()->_test._test == BoolTest::gt);
5690   format %{ "" %}
5691   interface(COND_INTER) %{
5692     equal(0x4, "e");
5693     not_equal(0x5, "ne");
5694     less(0x2, "b");
5695     greater_equal(0x3, "nb");
5696     less_equal(0x6, "be");
5697     greater(0x7, "nbe");
5698   %}
5699 %}
5700 
5701 
5702 // Floating comparisons that can be fixed up with extra conditional jumps
5703 operand cmpOpUCF2() %{
5704   match(Bool);
5705   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5706             n->as_Bool()->_test._test == BoolTest::eq);
5707   format %{ "" %}
5708   interface(COND_INTER) %{
5709     equal(0x4, "e");
5710     not_equal(0x5, "ne");
5711     less(0x2, "b");
5712     greater_equal(0x3, "nb");
5713     less_equal(0x6, "be");
5714     greater(0x7, "nbe");
5715   %}
5716 %}
5717 
5718 // Comparison Code for FP conditional move
5719 operand cmpOp_fcmov() %{
5720   match(Bool);
5721 
5722   format %{ "" %}
5723   interface(COND_INTER) %{
5724     equal        (0x0C8);
5725     not_equal    (0x1C8);
5726     less         (0x0C0);
5727     greater_equal(0x1C0);
5728     less_equal   (0x0D0);
5729     greater      (0x1D0);
5730   %}
5731 %}
5732 
5733 // Comparision Code used in long compares
5734 operand cmpOp_commute() %{
5735   match(Bool);
5736 
5737   format %{ "" %}
5738   interface(COND_INTER) %{
5739     equal(0x4, "e");
5740     not_equal(0x5, "ne");
5741     less(0xF, "g");
5742     greater_equal(0xE, "le");
5743     less_equal(0xD, "ge");
5744     greater(0xC, "l");
5745   %}
5746 %}
5747 
5748 //----------OPERAND CLASSES----------------------------------------------------
5749 // Operand Classes are groups of operands that are used as to simplify
5750 // instruction definitions by not requiring the AD writer to specify separate
5751 // instructions for every form of operand when the instruction accepts
5752 // multiple operand types with the same basic encoding and format.  The classic
5753 // case of this is memory operands.
5754 
5755 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5756                indIndex, indIndexScale, indIndexScaleOffset);
5757 
5758 // Long memory operations are encoded in 2 instructions and a +4 offset.
5759 // This means some kind of offset is always required and you cannot use
5760 // an oop as the offset (done when working on static globals).
5761 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5762                     indIndex, indIndexScale, indIndexScaleOffset);
5763 
5764 
5765 //----------PIPELINE-----------------------------------------------------------
5766 // Rules which define the behavior of the target architectures pipeline.
5767 pipeline %{
5768 
5769 //----------ATTRIBUTES---------------------------------------------------------
5770 attributes %{
5771   variable_size_instructions;        // Fixed size instructions
5772   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5773   instruction_unit_size = 1;         // An instruction is 1 bytes long
5774   instruction_fetch_unit_size = 16;  // The processor fetches one line
5775   instruction_fetch_units = 1;       // of 16 bytes
5776 
5777   // List of nop instructions
5778   nops( MachNop );
5779 %}
5780 
5781 //----------RESOURCES----------------------------------------------------------
5782 // Resources are the functional units available to the machine
5783 
5784 // Generic P2/P3 pipeline
5785 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5786 // 3 instructions decoded per cycle.
5787 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5788 // 2 ALU op, only ALU0 handles mul/div instructions.
5789 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5790            MS0, MS1, MEM = MS0 | MS1,
5791            BR, FPU,
5792            ALU0, ALU1, ALU = ALU0 | ALU1 );
5793 
5794 //----------PIPELINE DESCRIPTION-----------------------------------------------
5795 // Pipeline Description specifies the stages in the machine's pipeline
5796 
5797 // Generic P2/P3 pipeline
5798 pipe_desc(S0, S1, S2, S3, S4, S5);
5799 
5800 //----------PIPELINE CLASSES---------------------------------------------------
5801 // Pipeline Classes describe the stages in which input and output are
5802 // referenced by the hardware pipeline.
5803 
5804 // Naming convention: ialu or fpu
5805 // Then: _reg
5806 // Then: _reg if there is a 2nd register
5807 // Then: _long if it's a pair of instructions implementing a long
5808 // Then: _fat if it requires the big decoder
5809 //   Or: _mem if it requires the big decoder and a memory unit.
5810 
5811 // Integer ALU reg operation
5812 pipe_class ialu_reg(eRegI dst) %{
5813     single_instruction;
5814     dst    : S4(write);
5815     dst    : S3(read);
5816     DECODE : S0;        // any decoder
5817     ALU    : S3;        // any alu
5818 %}
5819 
5820 // Long ALU reg operation
5821 pipe_class ialu_reg_long(eRegL dst) %{
5822     instruction_count(2);
5823     dst    : S4(write);
5824     dst    : S3(read);
5825     DECODE : S0(2);     // any 2 decoders
5826     ALU    : S3(2);     // both alus
5827 %}
5828 
5829 // Integer ALU reg operation using big decoder
5830 pipe_class ialu_reg_fat(eRegI dst) %{
5831     single_instruction;
5832     dst    : S4(write);
5833     dst    : S3(read);
5834     D0     : S0;        // big decoder only
5835     ALU    : S3;        // any alu
5836 %}
5837 
5838 // Long ALU reg operation using big decoder
5839 pipe_class ialu_reg_long_fat(eRegL dst) %{
5840     instruction_count(2);
5841     dst    : S4(write);
5842     dst    : S3(read);
5843     D0     : S0(2);     // big decoder only; twice
5844     ALU    : S3(2);     // any 2 alus
5845 %}
5846 
5847 // Integer ALU reg-reg operation
5848 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5849     single_instruction;
5850     dst    : S4(write);
5851     src    : S3(read);
5852     DECODE : S0;        // any decoder
5853     ALU    : S3;        // any alu
5854 %}
5855 
5856 // Long ALU reg-reg operation
5857 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5858     instruction_count(2);
5859     dst    : S4(write);
5860     src    : S3(read);
5861     DECODE : S0(2);     // any 2 decoders
5862     ALU    : S3(2);     // both alus
5863 %}
5864 
5865 // Integer ALU reg-reg operation
5866 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5867     single_instruction;
5868     dst    : S4(write);
5869     src    : S3(read);
5870     D0     : S0;        // big decoder only
5871     ALU    : S3;        // any alu
5872 %}
5873 
5874 // Long ALU reg-reg operation
5875 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5876     instruction_count(2);
5877     dst    : S4(write);
5878     src    : S3(read);
5879     D0     : S0(2);     // big decoder only; twice
5880     ALU    : S3(2);     // both alus
5881 %}
5882 
5883 // Integer ALU reg-mem operation
5884 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5885     single_instruction;
5886     dst    : S5(write);
5887     mem    : S3(read);
5888     D0     : S0;        // big decoder only
5889     ALU    : S4;        // any alu
5890     MEM    : S3;        // any mem
5891 %}
5892 
5893 // Long ALU reg-mem operation
5894 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
5895     instruction_count(2);
5896     dst    : S5(write);
5897     mem    : S3(read);
5898     D0     : S0(2);     // big decoder only; twice
5899     ALU    : S4(2);     // any 2 alus
5900     MEM    : S3(2);     // both mems
5901 %}
5902 
5903 // Integer mem operation (prefetch)
5904 pipe_class ialu_mem(memory mem)
5905 %{
5906     single_instruction;
5907     mem    : S3(read);
5908     D0     : S0;        // big decoder only
5909     MEM    : S3;        // any mem
5910 %}
5911 
5912 // Integer Store to Memory
5913 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
5914     single_instruction;
5915     mem    : S3(read);
5916     src    : S5(read);
5917     D0     : S0;        // big decoder only
5918     ALU    : S4;        // any alu
5919     MEM    : S3;
5920 %}
5921 
5922 // Long Store to Memory
5923 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
5924     instruction_count(2);
5925     mem    : S3(read);
5926     src    : S5(read);
5927     D0     : S0(2);     // big decoder only; twice
5928     ALU    : S4(2);     // any 2 alus
5929     MEM    : S3(2);     // Both mems
5930 %}
5931 
5932 // Integer Store to Memory
5933 pipe_class ialu_mem_imm(memory mem) %{
5934     single_instruction;
5935     mem    : S3(read);
5936     D0     : S0;        // big decoder only
5937     ALU    : S4;        // any alu
5938     MEM    : S3;
5939 %}
5940 
5941 // Integer ALU0 reg-reg operation
5942 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
5943     single_instruction;
5944     dst    : S4(write);
5945     src    : S3(read);
5946     D0     : S0;        // Big decoder only
5947     ALU0   : S3;        // only alu0
5948 %}
5949 
5950 // Integer ALU0 reg-mem operation
5951 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
5952     single_instruction;
5953     dst    : S5(write);
5954     mem    : S3(read);
5955     D0     : S0;        // big decoder only
5956     ALU0   : S4;        // ALU0 only
5957     MEM    : S3;        // any mem
5958 %}
5959 
5960 // Integer ALU reg-reg operation
5961 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
5962     single_instruction;
5963     cr     : S4(write);
5964     src1   : S3(read);
5965     src2   : S3(read);
5966     DECODE : S0;        // any decoder
5967     ALU    : S3;        // any alu
5968 %}
5969 
5970 // Integer ALU reg-imm operation
5971 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
5972     single_instruction;
5973     cr     : S4(write);
5974     src1   : S3(read);
5975     DECODE : S0;        // any decoder
5976     ALU    : S3;        // any alu
5977 %}
5978 
5979 // Integer ALU reg-mem operation
5980 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
5981     single_instruction;
5982     cr     : S4(write);
5983     src1   : S3(read);
5984     src2   : S3(read);
5985     D0     : S0;        // big decoder only
5986     ALU    : S4;        // any alu
5987     MEM    : S3;
5988 %}
5989 
5990 // Conditional move reg-reg
5991 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
5992     instruction_count(4);
5993     y      : S4(read);
5994     q      : S3(read);
5995     p      : S3(read);
5996     DECODE : S0(4);     // any decoder
5997 %}
5998 
5999 // Conditional move reg-reg
6000 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
6001     single_instruction;
6002     dst    : S4(write);
6003     src    : S3(read);
6004     cr     : S3(read);
6005     DECODE : S0;        // any decoder
6006 %}
6007 
6008 // Conditional move reg-mem
6009 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
6010     single_instruction;
6011     dst    : S4(write);
6012     src    : S3(read);
6013     cr     : S3(read);
6014     DECODE : S0;        // any decoder
6015     MEM    : S3;
6016 %}
6017 
6018 // Conditional move reg-reg long
6019 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6020     single_instruction;
6021     dst    : S4(write);
6022     src    : S3(read);
6023     cr     : S3(read);
6024     DECODE : S0(2);     // any 2 decoders
6025 %}
6026 
6027 // Conditional move double reg-reg
6028 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6029     single_instruction;
6030     dst    : S4(write);
6031     src    : S3(read);
6032     cr     : S3(read);
6033     DECODE : S0;        // any decoder
6034 %}
6035 
6036 // Float reg-reg operation
6037 pipe_class fpu_reg(regD dst) %{
6038     instruction_count(2);
6039     dst    : S3(read);
6040     DECODE : S0(2);     // any 2 decoders
6041     FPU    : S3;
6042 %}
6043 
6044 // Float reg-reg operation
6045 pipe_class fpu_reg_reg(regD dst, regD src) %{
6046     instruction_count(2);
6047     dst    : S4(write);
6048     src    : S3(read);
6049     DECODE : S0(2);     // any 2 decoders
6050     FPU    : S3;
6051 %}
6052 
6053 // Float reg-reg operation
6054 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6055     instruction_count(3);
6056     dst    : S4(write);
6057     src1   : S3(read);
6058     src2   : S3(read);
6059     DECODE : S0(3);     // any 3 decoders
6060     FPU    : S3(2);
6061 %}
6062 
6063 // Float reg-reg operation
6064 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6065     instruction_count(4);
6066     dst    : S4(write);
6067     src1   : S3(read);
6068     src2   : S3(read);
6069     src3   : S3(read);
6070     DECODE : S0(4);     // any 3 decoders
6071     FPU    : S3(2);
6072 %}
6073 
6074 // Float reg-reg operation
6075 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6076     instruction_count(4);
6077     dst    : S4(write);
6078     src1   : S3(read);
6079     src2   : S3(read);
6080     src3   : S3(read);
6081     DECODE : S1(3);     // any 3 decoders
6082     D0     : S0;        // Big decoder only
6083     FPU    : S3(2);
6084     MEM    : S3;
6085 %}
6086 
6087 // Float reg-mem operation
6088 pipe_class fpu_reg_mem(regD dst, memory mem) %{
6089     instruction_count(2);
6090     dst    : S5(write);
6091     mem    : S3(read);
6092     D0     : S0;        // big decoder only
6093     DECODE : S1;        // any decoder for FPU POP
6094     FPU    : S4;
6095     MEM    : S3;        // any mem
6096 %}
6097 
6098 // Float reg-mem operation
6099 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6100     instruction_count(3);
6101     dst    : S5(write);
6102     src1   : S3(read);
6103     mem    : S3(read);
6104     D0     : S0;        // big decoder only
6105     DECODE : S1(2);     // any decoder for FPU POP
6106     FPU    : S4;
6107     MEM    : S3;        // any mem
6108 %}
6109 
6110 // Float mem-reg operation
6111 pipe_class fpu_mem_reg(memory mem, regD src) %{
6112     instruction_count(2);
6113     src    : S5(read);
6114     mem    : S3(read);
6115     DECODE : S0;        // any decoder for FPU PUSH
6116     D0     : S1;        // big decoder only
6117     FPU    : S4;
6118     MEM    : S3;        // any mem
6119 %}
6120 
6121 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6122     instruction_count(3);
6123     src1   : S3(read);
6124     src2   : S3(read);
6125     mem    : S3(read);
6126     DECODE : S0(2);     // any decoder for FPU PUSH
6127     D0     : S1;        // big decoder only
6128     FPU    : S4;
6129     MEM    : S3;        // any mem
6130 %}
6131 
6132 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6133     instruction_count(3);
6134     src1   : S3(read);
6135     src2   : S3(read);
6136     mem    : S4(read);
6137     DECODE : S0;        // any decoder for FPU PUSH
6138     D0     : S0(2);     // big decoder only
6139     FPU    : S4;
6140     MEM    : S3(2);     // any mem
6141 %}
6142 
6143 pipe_class fpu_mem_mem(memory dst, memory src1) %{
6144     instruction_count(2);
6145     src1   : S3(read);
6146     dst    : S4(read);
6147     D0     : S0(2);     // big decoder only
6148     MEM    : S3(2);     // any mem
6149 %}
6150 
6151 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6152     instruction_count(3);
6153     src1   : S3(read);
6154     src2   : S3(read);
6155     dst    : S4(read);
6156     D0     : S0(3);     // big decoder only
6157     FPU    : S4;
6158     MEM    : S3(3);     // any mem
6159 %}
6160 
6161 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6162     instruction_count(3);
6163     src1   : S4(read);
6164     mem    : S4(read);
6165     DECODE : S0;        // any decoder for FPU PUSH
6166     D0     : S0(2);     // big decoder only
6167     FPU    : S4;
6168     MEM    : S3(2);     // any mem
6169 %}
6170 
6171 // Float load constant
6172 pipe_class fpu_reg_con(regD dst) %{
6173     instruction_count(2);
6174     dst    : S5(write);
6175     D0     : S0;        // big decoder only for the load
6176     DECODE : S1;        // any decoder for FPU POP
6177     FPU    : S4;
6178     MEM    : S3;        // any mem
6179 %}
6180 
6181 // Float load constant
6182 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6183     instruction_count(3);
6184     dst    : S5(write);
6185     src    : S3(read);
6186     D0     : S0;        // big decoder only for the load
6187     DECODE : S1(2);     // any decoder for FPU POP
6188     FPU    : S4;
6189     MEM    : S3;        // any mem
6190 %}
6191 
6192 // UnConditional branch
6193 pipe_class pipe_jmp( label labl ) %{
6194     single_instruction;
6195     BR   : S3;
6196 %}
6197 
6198 // Conditional branch
6199 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6200     single_instruction;
6201     cr    : S1(read);
6202     BR    : S3;
6203 %}
6204 
6205 // Allocation idiom
6206 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6207     instruction_count(1); force_serialization;
6208     fixed_latency(6);
6209     heap_ptr : S3(read);
6210     DECODE   : S0(3);
6211     D0       : S2;
6212     MEM      : S3;
6213     ALU      : S3(2);
6214     dst      : S5(write);
6215     BR       : S5;
6216 %}
6217 
6218 // Generic big/slow expanded idiom
6219 pipe_class pipe_slow(  ) %{
6220     instruction_count(10); multiple_bundles; force_serialization;
6221     fixed_latency(100);
6222     D0  : S0(2);
6223     MEM : S3(2);
6224 %}
6225 
6226 // The real do-nothing guy
6227 pipe_class empty( ) %{
6228     instruction_count(0);
6229 %}
6230 
6231 // Define the class for the Nop node
6232 define %{
6233    MachNop = empty;
6234 %}
6235 
6236 %}
6237 
6238 //----------INSTRUCTIONS-------------------------------------------------------
6239 //
6240 // match      -- States which machine-independent subtree may be replaced
6241 //               by this instruction.
6242 // ins_cost   -- The estimated cost of this instruction is used by instruction
6243 //               selection to identify a minimum cost tree of machine
6244 //               instructions that matches a tree of machine-independent
6245 //               instructions.
6246 // format     -- A string providing the disassembly for this instruction.
6247 //               The value of an instruction's operand may be inserted
6248 //               by referring to it with a '$' prefix.
6249 // opcode     -- Three instruction opcodes may be provided.  These are referred
6250 //               to within an encode class as $primary, $secondary, and $tertiary
6251 //               respectively.  The primary opcode is commonly used to
6252 //               indicate the type of machine instruction, while secondary
6253 //               and tertiary are often used for prefix options or addressing
6254 //               modes.
6255 // ins_encode -- A list of encode classes with parameters. The encode class
6256 //               name must have been defined in an 'enc_class' specification
6257 //               in the encode section of the architecture description.
6258 
6259 //----------BSWAP-Instruction--------------------------------------------------
6260 instruct bytes_reverse_int(eRegI dst) %{
6261   match(Set dst (ReverseBytesI dst));
6262 
6263   format %{ "BSWAP  $dst" %}
6264   opcode(0x0F, 0xC8);
6265   ins_encode( OpcP, OpcSReg(dst) );
6266   ins_pipe( ialu_reg );
6267 %}
6268 
6269 instruct bytes_reverse_long(eRegL dst) %{
6270   match(Set dst (ReverseBytesL dst));
6271 
6272   format %{ "BSWAP  $dst.lo\n\t"
6273             "BSWAP  $dst.hi\n\t"
6274             "XCHG   $dst.lo $dst.hi" %}
6275 
6276   ins_cost(125);
6277   ins_encode( bswap_long_bytes(dst) );
6278   ins_pipe( ialu_reg_reg);
6279 %}
6280 
6281 instruct bytes_reverse_unsigned_short(eRegI dst) %{
6282   match(Set dst (ReverseBytesUS dst));
6283 
6284   format %{ "BSWAP  $dst\n\t" 
6285             "SHR    $dst,16\n\t" %}
6286   ins_encode %{
6287     __ bswapl($dst$$Register);
6288     __ shrl($dst$$Register, 16); 
6289   %}
6290   ins_pipe( ialu_reg );
6291 %}
6292 
6293 instruct bytes_reverse_short(eRegI dst) %{
6294   match(Set dst (ReverseBytesS dst));
6295 
6296   format %{ "BSWAP  $dst\n\t" 
6297             "SAR    $dst,16\n\t" %}
6298   ins_encode %{
6299     __ bswapl($dst$$Register);
6300     __ sarl($dst$$Register, 16); 
6301   %}
6302   ins_pipe( ialu_reg );
6303 %}
6304 
6305 
6306 //---------- Zeros Count Instructions ------------------------------------------
6307 
6308 instruct countLeadingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6309   predicate(UseCountLeadingZerosInstruction);
6310   match(Set dst (CountLeadingZerosI src));
6311   effect(KILL cr);
6312 
6313   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
6314   ins_encode %{
6315     __ lzcntl($dst$$Register, $src$$Register);
6316   %}
6317   ins_pipe(ialu_reg);
6318 %}
6319 
6320 instruct countLeadingZerosI_bsr(eRegI dst, eRegI src, eFlagsReg cr) %{
6321   predicate(!UseCountLeadingZerosInstruction);
6322   match(Set dst (CountLeadingZerosI src));
6323   effect(KILL cr);
6324 
6325   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
6326             "JNZ    skip\n\t"
6327             "MOV    $dst, -1\n"
6328       "skip:\n\t"
6329             "NEG    $dst\n\t"
6330             "ADD    $dst, 31" %}
6331   ins_encode %{
6332     Register Rdst = $dst$$Register;
6333     Register Rsrc = $src$$Register;
6334     Label skip;
6335     __ bsrl(Rdst, Rsrc);
6336     __ jccb(Assembler::notZero, skip);
6337     __ movl(Rdst, -1);
6338     __ bind(skip);
6339     __ negl(Rdst);
6340     __ addl(Rdst, BitsPerInt - 1);
6341   %}
6342   ins_pipe(ialu_reg);
6343 %}
6344 
6345 instruct countLeadingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6346   predicate(UseCountLeadingZerosInstruction);
6347   match(Set dst (CountLeadingZerosL src));
6348   effect(TEMP dst, KILL cr);
6349 
6350   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
6351             "JNC    done\n\t"
6352             "LZCNT  $dst, $src.lo\n\t"
6353             "ADD    $dst, 32\n"
6354       "done:" %}
6355   ins_encode %{
6356     Register Rdst = $dst$$Register;
6357     Register Rsrc = $src$$Register;
6358     Label done;
6359     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
6360     __ jccb(Assembler::carryClear, done);
6361     __ lzcntl(Rdst, Rsrc);
6362     __ addl(Rdst, BitsPerInt);
6363     __ bind(done);
6364   %}
6365   ins_pipe(ialu_reg);
6366 %}
6367 
6368 instruct countLeadingZerosL_bsr(eRegI dst, eRegL src, eFlagsReg cr) %{
6369   predicate(!UseCountLeadingZerosInstruction);
6370   match(Set dst (CountLeadingZerosL src));
6371   effect(TEMP dst, KILL cr);
6372 
6373   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
6374             "JZ     msw_is_zero\n\t"
6375             "ADD    $dst, 32\n\t"
6376             "JMP    not_zero\n"
6377       "msw_is_zero:\n\t"
6378             "BSR    $dst, $src.lo\n\t"
6379             "JNZ    not_zero\n\t"
6380             "MOV    $dst, -1\n"
6381       "not_zero:\n\t"
6382             "NEG    $dst\n\t"
6383             "ADD    $dst, 63\n" %}
6384  ins_encode %{
6385     Register Rdst = $dst$$Register;
6386     Register Rsrc = $src$$Register;
6387     Label msw_is_zero;
6388     Label not_zero;
6389     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
6390     __ jccb(Assembler::zero, msw_is_zero);
6391     __ addl(Rdst, BitsPerInt);
6392     __ jmpb(not_zero);
6393     __ bind(msw_is_zero);
6394     __ bsrl(Rdst, Rsrc);
6395     __ jccb(Assembler::notZero, not_zero);
6396     __ movl(Rdst, -1);
6397     __ bind(not_zero);
6398     __ negl(Rdst);
6399     __ addl(Rdst, BitsPerLong - 1);
6400   %}
6401   ins_pipe(ialu_reg);
6402 %}
6403 
6404 instruct countTrailingZerosI(eRegI dst, eRegI src, eFlagsReg cr) %{
6405   match(Set dst (CountTrailingZerosI src));
6406   effect(KILL cr);
6407 
6408   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
6409             "JNZ    done\n\t"
6410             "MOV    $dst, 32\n"
6411       "done:" %}
6412   ins_encode %{
6413     Register Rdst = $dst$$Register;
6414     Label done;
6415     __ bsfl(Rdst, $src$$Register);
6416     __ jccb(Assembler::notZero, done);
6417     __ movl(Rdst, BitsPerInt);
6418     __ bind(done);
6419   %}
6420   ins_pipe(ialu_reg);
6421 %}
6422 
6423 instruct countTrailingZerosL(eRegI dst, eRegL src, eFlagsReg cr) %{
6424   match(Set dst (CountTrailingZerosL src));
6425   effect(TEMP dst, KILL cr);
6426 
6427   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
6428             "JNZ    done\n\t"
6429             "BSF    $dst, $src.hi\n\t"
6430             "JNZ    msw_not_zero\n\t"
6431             "MOV    $dst, 32\n"
6432       "msw_not_zero:\n\t"
6433             "ADD    $dst, 32\n"
6434       "done:" %}
6435   ins_encode %{
6436     Register Rdst = $dst$$Register;
6437     Register Rsrc = $src$$Register;
6438     Label msw_not_zero;
6439     Label done;
6440     __ bsfl(Rdst, Rsrc);
6441     __ jccb(Assembler::notZero, done);
6442     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
6443     __ jccb(Assembler::notZero, msw_not_zero);
6444     __ movl(Rdst, BitsPerInt);
6445     __ bind(msw_not_zero);
6446     __ addl(Rdst, BitsPerInt);
6447     __ bind(done);
6448   %}
6449   ins_pipe(ialu_reg);
6450 %}
6451 
6452 
6453 //---------- Population Count Instructions -------------------------------------
6454 
6455 instruct popCountI(eRegI dst, eRegI src) %{
6456   predicate(UsePopCountInstruction);
6457   match(Set dst (PopCountI src));
6458 
6459   format %{ "POPCNT $dst, $src" %}
6460   ins_encode %{
6461     __ popcntl($dst$$Register, $src$$Register);
6462   %}
6463   ins_pipe(ialu_reg);
6464 %}
6465 
6466 instruct popCountI_mem(eRegI dst, memory mem) %{
6467   predicate(UsePopCountInstruction);
6468   match(Set dst (PopCountI (LoadI mem)));
6469 
6470   format %{ "POPCNT $dst, $mem" %}
6471   ins_encode %{
6472     __ popcntl($dst$$Register, $mem$$Address);
6473   %}
6474   ins_pipe(ialu_reg);
6475 %}
6476 
6477 // Note: Long.bitCount(long) returns an int.
6478 instruct popCountL(eRegI dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
6479   predicate(UsePopCountInstruction);
6480   match(Set dst (PopCountL src));
6481   effect(KILL cr, TEMP tmp, TEMP dst);
6482 
6483   format %{ "POPCNT $dst, $src.lo\n\t"
6484             "POPCNT $tmp, $src.hi\n\t"
6485             "ADD    $dst, $tmp" %}
6486   ins_encode %{
6487     __ popcntl($dst$$Register, $src$$Register);
6488     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
6489     __ addl($dst$$Register, $tmp$$Register);
6490   %}
6491   ins_pipe(ialu_reg);
6492 %}
6493 
6494 // Note: Long.bitCount(long) returns an int.
6495 instruct popCountL_mem(eRegI dst, memory mem, eRegI tmp, eFlagsReg cr) %{
6496   predicate(UsePopCountInstruction);
6497   match(Set dst (PopCountL (LoadL mem)));
6498   effect(KILL cr, TEMP tmp, TEMP dst);
6499 
6500   format %{ "POPCNT $dst, $mem\n\t"
6501             "POPCNT $tmp, $mem+4\n\t"
6502             "ADD    $dst, $tmp" %}
6503   ins_encode %{
6504     //__ popcntl($dst$$Register, $mem$$Address$$first);
6505     //__ popcntl($tmp$$Register, $mem$$Address$$second);
6506     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false));
6507     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false));
6508     __ addl($dst$$Register, $tmp$$Register);
6509   %}
6510   ins_pipe(ialu_reg);
6511 %}
6512 
6513 
6514 //----------Load/Store/Move Instructions---------------------------------------
6515 //----------Load Instructions--------------------------------------------------
6516 // Load Byte (8bit signed)
6517 instruct loadB(xRegI dst, memory mem) %{
6518   match(Set dst (LoadB mem));
6519 
6520   ins_cost(125);
6521   format %{ "MOVSX8 $dst,$mem\t# byte" %}
6522 
6523   ins_encode %{
6524     __ movsbl($dst$$Register, $mem$$Address);
6525   %}
6526 
6527   ins_pipe(ialu_reg_mem);
6528 %}
6529 
6530 // Load Byte (8bit signed) into Long Register
6531 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6532   match(Set dst (ConvI2L (LoadB mem)));
6533   effect(KILL cr);
6534 
6535   ins_cost(375);
6536   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
6537             "MOV    $dst.hi,$dst.lo\n\t"
6538             "SAR    $dst.hi,7" %}
6539 
6540   ins_encode %{
6541     __ movsbl($dst$$Register, $mem$$Address);
6542     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6543     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
6544   %}
6545 
6546   ins_pipe(ialu_reg_mem);
6547 %}
6548 
6549 // Load Unsigned Byte (8bit UNsigned)
6550 instruct loadUB(xRegI dst, memory mem) %{
6551   match(Set dst (LoadUB mem));
6552 
6553   ins_cost(125);
6554   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
6555 
6556   ins_encode %{
6557     __ movzbl($dst$$Register, $mem$$Address);
6558   %}
6559 
6560   ins_pipe(ialu_reg_mem);
6561 %}
6562 
6563 // Load Unsigned Byte (8 bit UNsigned) into Long Register
6564 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
6565   match(Set dst (ConvI2L (LoadUB mem)));
6566   effect(KILL cr);
6567 
6568   ins_cost(250);
6569   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
6570             "XOR    $dst.hi,$dst.hi" %}
6571 
6572   ins_encode %{
6573     Register Rdst = $dst$$Register;
6574     __ movzbl(Rdst, $mem$$Address);
6575     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6576   %}
6577 
6578   ins_pipe(ialu_reg_mem);
6579 %}
6580 
6581 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
6582 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
6583   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
6584   effect(KILL cr);
6585 
6586   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
6587             "XOR    $dst.hi,$dst.hi\n\t"
6588             "AND    $dst.lo,$mask" %}
6589   ins_encode %{
6590     Register Rdst = $dst$$Register;
6591     __ movzbl(Rdst, $mem$$Address);
6592     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6593     __ andl(Rdst, $mask$$constant);
6594   %}
6595   ins_pipe(ialu_reg_mem);
6596 %}
6597 
6598 // Load Short (16bit signed)
6599 instruct loadS(eRegI dst, memory mem) %{
6600   match(Set dst (LoadS mem));
6601 
6602   ins_cost(125);
6603   format %{ "MOVSX  $dst,$mem\t# short" %}
6604 
6605   ins_encode %{
6606     __ movswl($dst$$Register, $mem$$Address);
6607   %}
6608 
6609   ins_pipe(ialu_reg_mem);
6610 %}
6611 
6612 // Load Short (16 bit signed) to Byte (8 bit signed)
6613 instruct loadS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6614   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
6615 
6616   ins_cost(125);
6617   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
6618   ins_encode %{
6619     __ movsbl($dst$$Register, $mem$$Address);
6620   %}
6621   ins_pipe(ialu_reg_mem);
6622 %}
6623 
6624 // Load Short (16bit signed) into Long Register
6625 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6626   match(Set dst (ConvI2L (LoadS mem)));
6627   effect(KILL cr);
6628 
6629   ins_cost(375);
6630   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
6631             "MOV    $dst.hi,$dst.lo\n\t"
6632             "SAR    $dst.hi,15" %}
6633 
6634   ins_encode %{
6635     __ movswl($dst$$Register, $mem$$Address);
6636     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6637     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
6638   %}
6639 
6640   ins_pipe(ialu_reg_mem);
6641 %}
6642 
6643 // Load Unsigned Short/Char (16bit unsigned)
6644 instruct loadUS(eRegI dst, memory mem) %{
6645   match(Set dst (LoadUS mem));
6646 
6647   ins_cost(125);
6648   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
6649 
6650   ins_encode %{
6651     __ movzwl($dst$$Register, $mem$$Address);
6652   %}
6653 
6654   ins_pipe(ialu_reg_mem);
6655 %}
6656 
6657 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
6658 instruct loadUS2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6659   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
6660 
6661   ins_cost(125);
6662   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
6663   ins_encode %{
6664     __ movsbl($dst$$Register, $mem$$Address);
6665   %}
6666   ins_pipe(ialu_reg_mem);
6667 %}
6668 
6669 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
6670 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
6671   match(Set dst (ConvI2L (LoadUS mem)));
6672   effect(KILL cr);
6673 
6674   ins_cost(250);
6675   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
6676             "XOR    $dst.hi,$dst.hi" %}
6677 
6678   ins_encode %{
6679     __ movzwl($dst$$Register, $mem$$Address);
6680     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6681   %}
6682 
6683   ins_pipe(ialu_reg_mem);
6684 %}
6685 
6686 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
6687 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6688   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6689   effect(KILL cr);
6690 
6691   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
6692             "XOR    $dst.hi,$dst.hi" %}
6693   ins_encode %{
6694     Register Rdst = $dst$$Register;
6695     __ movzbl(Rdst, $mem$$Address);
6696     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6697   %}
6698   ins_pipe(ialu_reg_mem);
6699 %}
6700 
6701 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
6702 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
6703   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
6704   effect(KILL cr);
6705 
6706   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
6707             "XOR    $dst.hi,$dst.hi\n\t"
6708             "AND    $dst.lo,$mask" %}
6709   ins_encode %{
6710     Register Rdst = $dst$$Register;
6711     __ movzwl(Rdst, $mem$$Address);
6712     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6713     __ andl(Rdst, $mask$$constant);
6714   %}
6715   ins_pipe(ialu_reg_mem);
6716 %}
6717 
6718 // Load Integer
6719 instruct loadI(eRegI dst, memory mem) %{
6720   match(Set dst (LoadI mem));
6721 
6722   ins_cost(125);
6723   format %{ "MOV    $dst,$mem\t# int" %}
6724 
6725   ins_encode %{
6726     __ movl($dst$$Register, $mem$$Address);
6727   %}
6728 
6729   ins_pipe(ialu_reg_mem);
6730 %}
6731 
6732 // Load Integer (32 bit signed) to Byte (8 bit signed)
6733 instruct loadI2B(eRegI dst, memory mem, immI_24 twentyfour) %{
6734   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
6735 
6736   ins_cost(125);
6737   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
6738   ins_encode %{
6739     __ movsbl($dst$$Register, $mem$$Address);
6740   %}
6741   ins_pipe(ialu_reg_mem);
6742 %}
6743 
6744 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
6745 instruct loadI2UB(eRegI dst, memory mem, immI_255 mask) %{
6746   match(Set dst (AndI (LoadI mem) mask));
6747 
6748   ins_cost(125);
6749   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
6750   ins_encode %{
6751     __ movzbl($dst$$Register, $mem$$Address);
6752   %}
6753   ins_pipe(ialu_reg_mem);
6754 %}
6755 
6756 // Load Integer (32 bit signed) to Short (16 bit signed)
6757 instruct loadI2S(eRegI dst, memory mem, immI_16 sixteen) %{
6758   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
6759 
6760   ins_cost(125);
6761   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
6762   ins_encode %{
6763     __ movswl($dst$$Register, $mem$$Address);
6764   %}
6765   ins_pipe(ialu_reg_mem);
6766 %}
6767 
6768 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
6769 instruct loadI2US(eRegI dst, memory mem, immI_65535 mask) %{
6770   match(Set dst (AndI (LoadI mem) mask));
6771 
6772   ins_cost(125);
6773   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
6774   ins_encode %{
6775     __ movzwl($dst$$Register, $mem$$Address);
6776   %}
6777   ins_pipe(ialu_reg_mem);
6778 %}
6779 
6780 // Load Integer into Long Register
6781 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6782   match(Set dst (ConvI2L (LoadI mem)));
6783   effect(KILL cr);
6784 
6785   ins_cost(375);
6786   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
6787             "MOV    $dst.hi,$dst.lo\n\t"
6788             "SAR    $dst.hi,31" %}
6789 
6790   ins_encode %{
6791     __ movl($dst$$Register, $mem$$Address);
6792     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
6793     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
6794   %}
6795 
6796   ins_pipe(ialu_reg_mem);
6797 %}
6798 
6799 // Load Integer with mask 0xFF into Long Register
6800 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
6801   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6802   effect(KILL cr);
6803 
6804   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
6805             "XOR    $dst.hi,$dst.hi" %}
6806   ins_encode %{
6807     Register Rdst = $dst$$Register;
6808     __ movzbl(Rdst, $mem$$Address);
6809     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6810   %}
6811   ins_pipe(ialu_reg_mem);
6812 %}
6813 
6814 // Load Integer with mask 0xFFFF into Long Register
6815 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
6816   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6817   effect(KILL cr);
6818 
6819   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
6820             "XOR    $dst.hi,$dst.hi" %}
6821   ins_encode %{
6822     Register Rdst = $dst$$Register;
6823     __ movzwl(Rdst, $mem$$Address);
6824     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6825   %}
6826   ins_pipe(ialu_reg_mem);
6827 %}
6828 
6829 // Load Integer with 32-bit mask into Long Register
6830 instruct loadI2L_immI(eRegL dst, memory mem, immI mask, eFlagsReg cr) %{
6831   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
6832   effect(KILL cr);
6833 
6834   format %{ "MOV    $dst.lo,$mem\t# int & 32-bit mask -> long\n\t"
6835             "XOR    $dst.hi,$dst.hi\n\t"
6836             "AND    $dst.lo,$mask" %}
6837   ins_encode %{
6838     Register Rdst = $dst$$Register;
6839     __ movl(Rdst, $mem$$Address);
6840     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
6841     __ andl(Rdst, $mask$$constant);
6842   %}
6843   ins_pipe(ialu_reg_mem);
6844 %}
6845 
6846 // Load Unsigned Integer into Long Register
6847 instruct loadUI2L(eRegL dst, memory mem, eFlagsReg cr) %{
6848   match(Set dst (LoadUI2L mem));
6849   effect(KILL cr);
6850 
6851   ins_cost(250);
6852   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
6853             "XOR    $dst.hi,$dst.hi" %}
6854 
6855   ins_encode %{
6856     __ movl($dst$$Register, $mem$$Address);
6857     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
6858   %}
6859 
6860   ins_pipe(ialu_reg_mem);
6861 %}
6862 
6863 // Load Long.  Cannot clobber address while loading, so restrict address
6864 // register to ESI
6865 instruct loadL(eRegL dst, load_long_memory mem) %{
6866   predicate(!((LoadLNode*)n)->require_atomic_access());
6867   match(Set dst (LoadL mem));
6868 
6869   ins_cost(250);
6870   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
6871             "MOV    $dst.hi,$mem+4" %}
6872 
6873   ins_encode %{
6874     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, false);
6875     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, false);
6876     __ movl($dst$$Register, Amemlo);
6877     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
6878   %}
6879 
6880   ins_pipe(ialu_reg_long_mem);
6881 %}
6882 
6883 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6884 // then store it down to the stack and reload on the int
6885 // side.
6886 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6887   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6888   match(Set dst (LoadL mem));
6889 
6890   ins_cost(200);
6891   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6892             "FISTp  $dst" %}
6893   ins_encode(enc_loadL_volatile(mem,dst));
6894   ins_pipe( fpu_reg_mem );
6895 %}
6896 
6897 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6898   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6899   match(Set dst (LoadL mem));
6900   effect(TEMP tmp);
6901   ins_cost(180);
6902   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6903             "MOVSD  $dst,$tmp" %}
6904   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6905   ins_pipe( pipe_slow );
6906 %}
6907 
6908 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6909   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6910   match(Set dst (LoadL mem));
6911   effect(TEMP tmp);
6912   ins_cost(160);
6913   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6914             "MOVD   $dst.lo,$tmp\n\t"
6915             "PSRLQ  $tmp,32\n\t"
6916             "MOVD   $dst.hi,$tmp" %}
6917   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6918   ins_pipe( pipe_slow );
6919 %}
6920 
6921 // Load Range
6922 instruct loadRange(eRegI dst, memory mem) %{
6923   match(Set dst (LoadRange mem));
6924 
6925   ins_cost(125);
6926   format %{ "MOV    $dst,$mem" %}
6927   opcode(0x8B);
6928   ins_encode( OpcP, RegMem(dst,mem));
6929   ins_pipe( ialu_reg_mem );
6930 %}
6931 
6932 
6933 // Load Pointer
6934 instruct loadP(eRegP dst, memory mem) %{
6935   match(Set dst (LoadP mem));
6936 
6937   ins_cost(125);
6938   format %{ "MOV    $dst,$mem" %}
6939   opcode(0x8B);
6940   ins_encode( OpcP, RegMem(dst,mem));
6941   ins_pipe( ialu_reg_mem );
6942 %}
6943 
6944 // Load Klass Pointer
6945 instruct loadKlass(eRegP dst, memory mem) %{
6946   match(Set dst (LoadKlass mem));
6947 
6948   ins_cost(125);
6949   format %{ "MOV    $dst,$mem" %}
6950   opcode(0x8B);
6951   ins_encode( OpcP, RegMem(dst,mem));
6952   ins_pipe( ialu_reg_mem );
6953 %}
6954 
6955 // Load Double
6956 instruct loadD(regD dst, memory mem) %{
6957   predicate(UseSSE<=1);
6958   match(Set dst (LoadD mem));
6959 
6960   ins_cost(150);
6961   format %{ "FLD_D  ST,$mem\n\t"
6962             "FSTP   $dst" %}
6963   opcode(0xDD);               /* DD /0 */
6964   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6965               Pop_Reg_D(dst) );
6966   ins_pipe( fpu_reg_mem );
6967 %}
6968 
6969 // Load Double to XMM
6970 instruct loadXD(regXD dst, memory mem) %{
6971   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6972   match(Set dst (LoadD mem));
6973   ins_cost(145);
6974   format %{ "MOVSD  $dst,$mem" %}
6975   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6976   ins_pipe( pipe_slow );
6977 %}
6978 
6979 instruct loadXD_partial(regXD dst, memory mem) %{
6980   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6981   match(Set dst (LoadD mem));
6982   ins_cost(145);
6983   format %{ "MOVLPD $dst,$mem" %}
6984   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6985   ins_pipe( pipe_slow );
6986 %}
6987 
6988 // Load to XMM register (single-precision floating point)
6989 // MOVSS instruction
6990 instruct loadX(regX dst, memory mem) %{
6991   predicate(UseSSE>=1);
6992   match(Set dst (LoadF mem));
6993   ins_cost(145);
6994   format %{ "MOVSS  $dst,$mem" %}
6995   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6996   ins_pipe( pipe_slow );
6997 %}
6998 
6999 // Load Float
7000 instruct loadF(regF dst, memory mem) %{
7001   predicate(UseSSE==0);
7002   match(Set dst (LoadF mem));
7003 
7004   ins_cost(150);
7005   format %{ "FLD_S  ST,$mem\n\t"
7006             "FSTP   $dst" %}
7007   opcode(0xD9);               /* D9 /0 */
7008   ins_encode( OpcP, RMopc_Mem(0x00,mem),
7009               Pop_Reg_F(dst) );
7010   ins_pipe( fpu_reg_mem );
7011 %}
7012 
7013 // Load Aligned Packed Byte to XMM register
7014 instruct loadA8B(regXD dst, memory mem) %{
7015   predicate(UseSSE>=1);
7016   match(Set dst (Load8B mem));
7017   ins_cost(125);
7018   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
7019   ins_encode( movq_ld(dst, mem));
7020   ins_pipe( pipe_slow );
7021 %}
7022 
7023 // Load Aligned Packed Short to XMM register
7024 instruct loadA4S(regXD dst, memory mem) %{
7025   predicate(UseSSE>=1);
7026   match(Set dst (Load4S mem));
7027   ins_cost(125);
7028   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
7029   ins_encode( movq_ld(dst, mem));
7030   ins_pipe( pipe_slow );
7031 %}
7032 
7033 // Load Aligned Packed Char to XMM register
7034 instruct loadA4C(regXD dst, memory mem) %{
7035   predicate(UseSSE>=1);
7036   match(Set dst (Load4C mem));
7037   ins_cost(125);
7038   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
7039   ins_encode( movq_ld(dst, mem));
7040   ins_pipe( pipe_slow );
7041 %}
7042 
7043 // Load Aligned Packed Integer to XMM register
7044 instruct load2IU(regXD dst, memory mem) %{
7045   predicate(UseSSE>=1);
7046   match(Set dst (Load2I mem));
7047   ins_cost(125);
7048   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
7049   ins_encode( movq_ld(dst, mem));
7050   ins_pipe( pipe_slow );
7051 %}
7052 
7053 // Load Aligned Packed Single to XMM
7054 instruct loadA2F(regXD dst, memory mem) %{
7055   predicate(UseSSE>=1);
7056   match(Set dst (Load2F mem));
7057   ins_cost(145);
7058   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
7059   ins_encode( movq_ld(dst, mem));
7060   ins_pipe( pipe_slow );
7061 %}
7062 
7063 // Load Effective Address
7064 instruct leaP8(eRegP dst, indOffset8 mem) %{
7065   match(Set dst mem);
7066 
7067   ins_cost(110);
7068   format %{ "LEA    $dst,$mem" %}
7069   opcode(0x8D);
7070   ins_encode( OpcP, RegMem(dst,mem));
7071   ins_pipe( ialu_reg_reg_fat );
7072 %}
7073 
7074 instruct leaP32(eRegP dst, indOffset32 mem) %{
7075   match(Set dst mem);
7076 
7077   ins_cost(110);
7078   format %{ "LEA    $dst,$mem" %}
7079   opcode(0x8D);
7080   ins_encode( OpcP, RegMem(dst,mem));
7081   ins_pipe( ialu_reg_reg_fat );
7082 %}
7083 
7084 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
7085   match(Set dst mem);
7086 
7087   ins_cost(110);
7088   format %{ "LEA    $dst,$mem" %}
7089   opcode(0x8D);
7090   ins_encode( OpcP, RegMem(dst,mem));
7091   ins_pipe( ialu_reg_reg_fat );
7092 %}
7093 
7094 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
7095   match(Set dst mem);
7096 
7097   ins_cost(110);
7098   format %{ "LEA    $dst,$mem" %}
7099   opcode(0x8D);
7100   ins_encode( OpcP, RegMem(dst,mem));
7101   ins_pipe( ialu_reg_reg_fat );
7102 %}
7103 
7104 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
7105   match(Set dst mem);
7106 
7107   ins_cost(110);
7108   format %{ "LEA    $dst,$mem" %}
7109   opcode(0x8D);
7110   ins_encode( OpcP, RegMem(dst,mem));
7111   ins_pipe( ialu_reg_reg_fat );
7112 %}
7113 
7114 // Load Constant
7115 instruct loadConI(eRegI dst, immI src) %{
7116   match(Set dst src);
7117 
7118   format %{ "MOV    $dst,$src" %}
7119   ins_encode( LdImmI(dst, src) );
7120   ins_pipe( ialu_reg_fat );
7121 %}
7122 
7123 // Load Constant zero
7124 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
7125   match(Set dst src);
7126   effect(KILL cr);
7127 
7128   ins_cost(50);
7129   format %{ "XOR    $dst,$dst" %}
7130   opcode(0x33);  /* + rd */
7131   ins_encode( OpcP, RegReg( dst, dst ) );
7132   ins_pipe( ialu_reg );
7133 %}
7134 
7135 instruct loadConP(eRegP dst, immP src) %{
7136   match(Set dst src);
7137 
7138   format %{ "MOV    $dst,$src" %}
7139   opcode(0xB8);  /* + rd */
7140   ins_encode( LdImmP(dst, src) );
7141   ins_pipe( ialu_reg_fat );
7142 %}
7143 
7144 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
7145   match(Set dst src);
7146   effect(KILL cr);
7147   ins_cost(200);
7148   format %{ "MOV    $dst.lo,$src.lo\n\t"
7149             "MOV    $dst.hi,$src.hi" %}
7150   opcode(0xB8);
7151   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
7152   ins_pipe( ialu_reg_long_fat );
7153 %}
7154 
7155 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
7156   match(Set dst src);
7157   effect(KILL cr);
7158   ins_cost(150);
7159   format %{ "XOR    $dst.lo,$dst.lo\n\t"
7160             "XOR    $dst.hi,$dst.hi" %}
7161   opcode(0x33,0x33);
7162   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
7163   ins_pipe( ialu_reg_long );
7164 %}
7165 
7166 // The instruction usage is guarded by predicate in operand immF().
7167 instruct loadConF(regF dst, immF src) %{
7168   match(Set dst src);
7169   ins_cost(125);
7170 
7171   format %{ "FLD_S  ST,$src\n\t"
7172             "FSTP   $dst" %}
7173   opcode(0xD9, 0x00);       /* D9 /0 */
7174   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
7175   ins_pipe( fpu_reg_con );
7176 %}
7177 
7178 // The instruction usage is guarded by predicate in operand immXF().
7179 instruct loadConX(regX dst, immXF con) %{
7180   match(Set dst con);
7181   ins_cost(125);
7182   format %{ "MOVSS  $dst,[$con]" %}
7183   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
7184   ins_pipe( pipe_slow );
7185 %}
7186 
7187 // The instruction usage is guarded by predicate in operand immXF0().
7188 instruct loadConX0(regX dst, immXF0 src) %{
7189   match(Set dst src);
7190   ins_cost(100);
7191   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
7192   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7193   ins_pipe( pipe_slow );
7194 %}
7195 
7196 // The instruction usage is guarded by predicate in operand immD().
7197 instruct loadConD(regD dst, immD src) %{
7198   match(Set dst src);
7199   ins_cost(125);
7200 
7201   format %{ "FLD_D  ST,$src\n\t"
7202             "FSTP   $dst" %}
7203   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
7204   ins_pipe( fpu_reg_con );
7205 %}
7206 
7207 // The instruction usage is guarded by predicate in operand immXD().
7208 instruct loadConXD(regXD dst, immXD con) %{
7209   match(Set dst con);
7210   ins_cost(125);
7211   format %{ "MOVSD  $dst,[$con]" %}
7212   ins_encode(load_conXD(dst, con));
7213   ins_pipe( pipe_slow );
7214 %}
7215 
7216 // The instruction usage is guarded by predicate in operand immXD0().
7217 instruct loadConXD0(regXD dst, immXD0 src) %{
7218   match(Set dst src);
7219   ins_cost(100);
7220   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
7221   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
7222   ins_pipe( pipe_slow );
7223 %}
7224 
7225 // Load Stack Slot
7226 instruct loadSSI(eRegI dst, stackSlotI src) %{
7227   match(Set dst src);
7228   ins_cost(125);
7229 
7230   format %{ "MOV    $dst,$src" %}
7231   opcode(0x8B);
7232   ins_encode( OpcP, RegMem(dst,src));
7233   ins_pipe( ialu_reg_mem );
7234 %}
7235 
7236 instruct loadSSL(eRegL dst, stackSlotL src) %{
7237   match(Set dst src);
7238 
7239   ins_cost(200);
7240   format %{ "MOV    $dst,$src.lo\n\t"
7241             "MOV    $dst+4,$src.hi" %}
7242   opcode(0x8B, 0x8B);
7243   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
7244   ins_pipe( ialu_mem_long_reg );
7245 %}
7246 
7247 // Load Stack Slot
7248 instruct loadSSP(eRegP dst, stackSlotP src) %{
7249   match(Set dst src);
7250   ins_cost(125);
7251 
7252   format %{ "MOV    $dst,$src" %}
7253   opcode(0x8B);
7254   ins_encode( OpcP, RegMem(dst,src));
7255   ins_pipe( ialu_reg_mem );
7256 %}
7257 
7258 // Load Stack Slot
7259 instruct loadSSF(regF dst, stackSlotF src) %{
7260   match(Set dst src);
7261   ins_cost(125);
7262 
7263   format %{ "FLD_S  $src\n\t"
7264             "FSTP   $dst" %}
7265   opcode(0xD9);               /* D9 /0, FLD m32real */
7266   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7267               Pop_Reg_F(dst) );
7268   ins_pipe( fpu_reg_mem );
7269 %}
7270 
7271 // Load Stack Slot
7272 instruct loadSSD(regD dst, stackSlotD src) %{
7273   match(Set dst src);
7274   ins_cost(125);
7275 
7276   format %{ "FLD_D  $src\n\t"
7277             "FSTP   $dst" %}
7278   opcode(0xDD);               /* DD /0, FLD m64real */
7279   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
7280               Pop_Reg_D(dst) );
7281   ins_pipe( fpu_reg_mem );
7282 %}
7283 
7284 // Prefetch instructions.
7285 // Must be safe to execute with invalid address (cannot fault).
7286 
7287 instruct prefetchr0( memory mem ) %{
7288   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7289   match(PrefetchRead mem);
7290   ins_cost(0);
7291   size(0);
7292   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
7293   ins_encode();
7294   ins_pipe(empty);
7295 %}
7296 
7297 instruct prefetchr( memory mem ) %{
7298   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
7299   match(PrefetchRead mem);
7300   ins_cost(100);
7301 
7302   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
7303   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
7304   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7305   ins_pipe(ialu_mem);
7306 %}
7307 
7308 instruct prefetchrNTA( memory mem ) %{
7309   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
7310   match(PrefetchRead mem);
7311   ins_cost(100);
7312 
7313   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
7314   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7315   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7316   ins_pipe(ialu_mem);
7317 %}
7318 
7319 instruct prefetchrT0( memory mem ) %{
7320   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
7321   match(PrefetchRead mem);
7322   ins_cost(100);
7323 
7324   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
7325   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7326   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7327   ins_pipe(ialu_mem);
7328 %}
7329 
7330 instruct prefetchrT2( memory mem ) %{
7331   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
7332   match(PrefetchRead mem);
7333   ins_cost(100);
7334 
7335   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
7336   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7337   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7338   ins_pipe(ialu_mem);
7339 %}
7340 
7341 instruct prefetchw0( memory mem ) %{
7342   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
7343   match(PrefetchWrite mem);
7344   ins_cost(0);
7345   size(0);
7346   format %{ "Prefetch (non-SSE is empty encoding)" %}
7347   ins_encode();
7348   ins_pipe(empty);
7349 %}
7350 
7351 instruct prefetchw( memory mem ) %{
7352   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
7353   match( PrefetchWrite mem );
7354   ins_cost(100);
7355 
7356   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
7357   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
7358   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7359   ins_pipe(ialu_mem);
7360 %}
7361 
7362 instruct prefetchwNTA( memory mem ) %{
7363   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
7364   match(PrefetchWrite mem);
7365   ins_cost(100);
7366 
7367   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
7368   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
7369   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
7370   ins_pipe(ialu_mem);
7371 %}
7372 
7373 instruct prefetchwT0( memory mem ) %{
7374   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
7375   match(PrefetchWrite mem);
7376   ins_cost(100);
7377 
7378   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
7379   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
7380   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
7381   ins_pipe(ialu_mem);
7382 %}
7383 
7384 instruct prefetchwT2( memory mem ) %{
7385   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
7386   match(PrefetchWrite mem);
7387   ins_cost(100);
7388 
7389   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
7390   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
7391   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
7392   ins_pipe(ialu_mem);
7393 %}
7394 
7395 //----------Store Instructions-------------------------------------------------
7396 
7397 // Store Byte
7398 instruct storeB(memory mem, xRegI src) %{
7399   match(Set mem (StoreB mem src));
7400 
7401   ins_cost(125);
7402   format %{ "MOV8   $mem,$src" %}
7403   opcode(0x88);
7404   ins_encode( OpcP, RegMem( src, mem ) );
7405   ins_pipe( ialu_mem_reg );
7406 %}
7407 
7408 // Store Char/Short
7409 instruct storeC(memory mem, eRegI src) %{
7410   match(Set mem (StoreC mem src));
7411 
7412   ins_cost(125);
7413   format %{ "MOV16  $mem,$src" %}
7414   opcode(0x89, 0x66);
7415   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
7416   ins_pipe( ialu_mem_reg );
7417 %}
7418 
7419 // Store Integer
7420 instruct storeI(memory mem, eRegI src) %{
7421   match(Set mem (StoreI mem src));
7422 
7423   ins_cost(125);
7424   format %{ "MOV    $mem,$src" %}
7425   opcode(0x89);
7426   ins_encode( OpcP, RegMem( src, mem ) );
7427   ins_pipe( ialu_mem_reg );
7428 %}
7429 
7430 // Store Long
7431 instruct storeL(long_memory mem, eRegL src) %{
7432   predicate(!((StoreLNode*)n)->require_atomic_access());
7433   match(Set mem (StoreL mem src));
7434 
7435   ins_cost(200);
7436   format %{ "MOV    $mem,$src.lo\n\t"
7437             "MOV    $mem+4,$src.hi" %}
7438   opcode(0x89, 0x89);
7439   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7440   ins_pipe( ialu_mem_long_reg );
7441 %}
7442 
7443 // Store Long to Integer
7444 instruct storeL2I(memory mem, eRegL src) %{
7445   match(Set mem (StoreI mem (ConvL2I src)));
7446 
7447   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
7448   ins_encode %{
7449     __ movl($mem$$Address, $src$$Register);
7450   %}
7451   ins_pipe(ialu_mem_reg);
7452 %}
7453 
7454 // Volatile Store Long.  Must be atomic, so move it into
7455 // the FP TOS and then do a 64-bit FIST.  Has to probe the
7456 // target address before the store (for null-ptr checks)
7457 // so the memory operand is used twice in the encoding.
7458 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7459   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7460   match(Set mem (StoreL mem src));
7461   effect( KILL cr );
7462   ins_cost(400);
7463   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7464             "FILD   $src\n\t"
7465             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7466   opcode(0x3B);
7467   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7468   ins_pipe( fpu_reg_mem );
7469 %}
7470 
7471 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7472   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7473   match(Set mem (StoreL mem src));
7474   effect( TEMP tmp, KILL cr );
7475   ins_cost(380);
7476   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7477             "MOVSD  $tmp,$src\n\t"
7478             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7479   opcode(0x3B);
7480   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7481   ins_pipe( pipe_slow );
7482 %}
7483 
7484 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7485   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7486   match(Set mem (StoreL mem src));
7487   effect( TEMP tmp2 , TEMP tmp, KILL cr );
7488   ins_cost(360);
7489   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7490             "MOVD   $tmp,$src.lo\n\t"
7491             "MOVD   $tmp2,$src.hi\n\t"
7492             "PUNPCKLDQ $tmp,$tmp2\n\t"
7493             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7494   opcode(0x3B);
7495   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7496   ins_pipe( pipe_slow );
7497 %}
7498 
7499 // Store Pointer; for storing unknown oops and raw pointers
7500 instruct storeP(memory mem, anyRegP src) %{
7501   match(Set mem (StoreP mem src));
7502 
7503   ins_cost(125);
7504   format %{ "MOV    $mem,$src" %}
7505   opcode(0x89);
7506   ins_encode( OpcP, RegMem( src, mem ) );
7507   ins_pipe( ialu_mem_reg );
7508 %}
7509 
7510 // Store Integer Immediate
7511 instruct storeImmI(memory mem, immI src) %{
7512   match(Set mem (StoreI mem src));
7513 
7514   ins_cost(150);
7515   format %{ "MOV    $mem,$src" %}
7516   opcode(0xC7);               /* C7 /0 */
7517   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7518   ins_pipe( ialu_mem_imm );
7519 %}
7520 
7521 // Store Short/Char Immediate
7522 instruct storeImmI16(memory mem, immI16 src) %{
7523   predicate(UseStoreImmI16);
7524   match(Set mem (StoreC mem src));
7525 
7526   ins_cost(150);
7527   format %{ "MOV16  $mem,$src" %}
7528   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7529   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7530   ins_pipe( ialu_mem_imm );
7531 %}
7532 
7533 // Store Pointer Immediate; null pointers or constant oops that do not
7534 // need card-mark barriers.
7535 instruct storeImmP(memory mem, immP src) %{
7536   match(Set mem (StoreP mem src));
7537 
7538   ins_cost(150);
7539   format %{ "MOV    $mem,$src" %}
7540   opcode(0xC7);               /* C7 /0 */
7541   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7542   ins_pipe( ialu_mem_imm );
7543 %}
7544 
7545 // Store Byte Immediate
7546 instruct storeImmB(memory mem, immI8 src) %{
7547   match(Set mem (StoreB mem src));
7548 
7549   ins_cost(150);
7550   format %{ "MOV8   $mem,$src" %}
7551   opcode(0xC6);               /* C6 /0 */
7552   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7553   ins_pipe( ialu_mem_imm );
7554 %}
7555 
7556 // Store Aligned Packed Byte XMM register to memory
7557 instruct storeA8B(memory mem, regXD src) %{
7558   predicate(UseSSE>=1);
7559   match(Set mem (Store8B mem src));
7560   ins_cost(145);
7561   format %{ "MOVQ  $mem,$src\t! packed8B" %}
7562   ins_encode( movq_st(mem, src));
7563   ins_pipe( pipe_slow );
7564 %}
7565 
7566 // Store Aligned Packed Char/Short XMM register to memory
7567 instruct storeA4C(memory mem, regXD src) %{
7568   predicate(UseSSE>=1);
7569   match(Set mem (Store4C mem src));
7570   ins_cost(145);
7571   format %{ "MOVQ  $mem,$src\t! packed4C" %}
7572   ins_encode( movq_st(mem, src));
7573   ins_pipe( pipe_slow );
7574 %}
7575 
7576 // Store Aligned Packed Integer XMM register to memory
7577 instruct storeA2I(memory mem, regXD src) %{
7578   predicate(UseSSE>=1);
7579   match(Set mem (Store2I mem src));
7580   ins_cost(145);
7581   format %{ "MOVQ  $mem,$src\t! packed2I" %}
7582   ins_encode( movq_st(mem, src));
7583   ins_pipe( pipe_slow );
7584 %}
7585 
7586 // Store CMS card-mark Immediate
7587 instruct storeImmCM(memory mem, immI8 src) %{
7588   match(Set mem (StoreCM mem src));
7589 
7590   ins_cost(150);
7591   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7592   opcode(0xC6);               /* C6 /0 */
7593   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7594   ins_pipe( ialu_mem_imm );
7595 %}
7596 
7597 // Store Double
7598 instruct storeD( memory mem, regDPR1 src) %{
7599   predicate(UseSSE<=1);
7600   match(Set mem (StoreD mem src));
7601 
7602   ins_cost(100);
7603   format %{ "FST_D  $mem,$src" %}
7604   opcode(0xDD);       /* DD /2 */
7605   ins_encode( enc_FP_store(mem,src) );
7606   ins_pipe( fpu_mem_reg );
7607 %}
7608 
7609 // Store double does rounding on x86
7610 instruct storeD_rounded( memory mem, regDPR1 src) %{
7611   predicate(UseSSE<=1);
7612   match(Set mem (StoreD mem (RoundDouble src)));
7613 
7614   ins_cost(100);
7615   format %{ "FST_D  $mem,$src\t# round" %}
7616   opcode(0xDD);       /* DD /2 */
7617   ins_encode( enc_FP_store(mem,src) );
7618   ins_pipe( fpu_mem_reg );
7619 %}
7620 
7621 // Store XMM register to memory (double-precision floating points)
7622 // MOVSD instruction
7623 instruct storeXD(memory mem, regXD src) %{
7624   predicate(UseSSE>=2);
7625   match(Set mem (StoreD mem src));
7626   ins_cost(95);
7627   format %{ "MOVSD  $mem,$src" %}
7628   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7629   ins_pipe( pipe_slow );
7630 %}
7631 
7632 // Store XMM register to memory (single-precision floating point)
7633 // MOVSS instruction
7634 instruct storeX(memory mem, regX src) %{
7635   predicate(UseSSE>=1);
7636   match(Set mem (StoreF mem src));
7637   ins_cost(95);
7638   format %{ "MOVSS  $mem,$src" %}
7639   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7640   ins_pipe( pipe_slow );
7641 %}
7642 
7643 // Store Aligned Packed Single Float XMM register to memory
7644 instruct storeA2F(memory mem, regXD src) %{
7645   predicate(UseSSE>=1);
7646   match(Set mem (Store2F mem src));
7647   ins_cost(145);
7648   format %{ "MOVQ  $mem,$src\t! packed2F" %}
7649   ins_encode( movq_st(mem, src));
7650   ins_pipe( pipe_slow );
7651 %}
7652 
7653 // Store Float
7654 instruct storeF( memory mem, regFPR1 src) %{
7655   predicate(UseSSE==0);
7656   match(Set mem (StoreF mem src));
7657 
7658   ins_cost(100);
7659   format %{ "FST_S  $mem,$src" %}
7660   opcode(0xD9);       /* D9 /2 */
7661   ins_encode( enc_FP_store(mem,src) );
7662   ins_pipe( fpu_mem_reg );
7663 %}
7664 
7665 // Store Float does rounding on x86
7666 instruct storeF_rounded( memory mem, regFPR1 src) %{
7667   predicate(UseSSE==0);
7668   match(Set mem (StoreF mem (RoundFloat src)));
7669 
7670   ins_cost(100);
7671   format %{ "FST_S  $mem,$src\t# round" %}
7672   opcode(0xD9);       /* D9 /2 */
7673   ins_encode( enc_FP_store(mem,src) );
7674   ins_pipe( fpu_mem_reg );
7675 %}
7676 
7677 // Store Float does rounding on x86
7678 instruct storeF_Drounded( memory mem, regDPR1 src) %{
7679   predicate(UseSSE<=1);
7680   match(Set mem (StoreF mem (ConvD2F src)));
7681 
7682   ins_cost(100);
7683   format %{ "FST_S  $mem,$src\t# D-round" %}
7684   opcode(0xD9);       /* D9 /2 */
7685   ins_encode( enc_FP_store(mem,src) );
7686   ins_pipe( fpu_mem_reg );
7687 %}
7688 
7689 // Store immediate Float value (it is faster than store from FPU register)
7690 // The instruction usage is guarded by predicate in operand immF().
7691 instruct storeF_imm( memory mem, immF src) %{
7692   match(Set mem (StoreF mem src));
7693 
7694   ins_cost(50);
7695   format %{ "MOV    $mem,$src\t# store float" %}
7696   opcode(0xC7);               /* C7 /0 */
7697   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7698   ins_pipe( ialu_mem_imm );
7699 %}
7700 
7701 // Store immediate Float value (it is faster than store from XMM register)
7702 // The instruction usage is guarded by predicate in operand immXF().
7703 instruct storeX_imm( memory mem, immXF src) %{
7704   match(Set mem (StoreF mem src));
7705 
7706   ins_cost(50);
7707   format %{ "MOV    $mem,$src\t# store float" %}
7708   opcode(0xC7);               /* C7 /0 */
7709   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7710   ins_pipe( ialu_mem_imm );
7711 %}
7712 
7713 // Store Integer to stack slot
7714 instruct storeSSI(stackSlotI dst, eRegI src) %{
7715   match(Set dst src);
7716 
7717   ins_cost(100);
7718   format %{ "MOV    $dst,$src" %}
7719   opcode(0x89);
7720   ins_encode( OpcPRegSS( dst, src ) );
7721   ins_pipe( ialu_mem_reg );
7722 %}
7723 
7724 // Store Integer to stack slot
7725 instruct storeSSP(stackSlotP dst, eRegP src) %{
7726   match(Set dst src);
7727 
7728   ins_cost(100);
7729   format %{ "MOV    $dst,$src" %}
7730   opcode(0x89);
7731   ins_encode( OpcPRegSS( dst, src ) );
7732   ins_pipe( ialu_mem_reg );
7733 %}
7734 
7735 // Store Long to stack slot
7736 instruct storeSSL(stackSlotL dst, eRegL src) %{
7737   match(Set dst src);
7738 
7739   ins_cost(200);
7740   format %{ "MOV    $dst,$src.lo\n\t"
7741             "MOV    $dst+4,$src.hi" %}
7742   opcode(0x89, 0x89);
7743   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7744   ins_pipe( ialu_mem_long_reg );
7745 %}
7746 
7747 //----------MemBar Instructions-----------------------------------------------
7748 // Memory barrier flavors
7749 
7750 instruct membar_acquire() %{
7751   match(MemBarAcquire);
7752   ins_cost(400);
7753 
7754   size(0);
7755   format %{ "MEMBAR-acquire ! (empty encoding)" %}
7756   ins_encode();
7757   ins_pipe(empty);
7758 %}
7759 
7760 instruct membar_acquire_lock() %{
7761   match(MemBarAcquire);
7762   predicate(Matcher::prior_fast_lock(n));
7763   ins_cost(0);
7764 
7765   size(0);
7766   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7767   ins_encode( );
7768   ins_pipe(empty);
7769 %}
7770 
7771 instruct membar_release() %{
7772   match(MemBarRelease);
7773   ins_cost(400);
7774 
7775   size(0);
7776   format %{ "MEMBAR-release ! (empty encoding)" %}
7777   ins_encode( );
7778   ins_pipe(empty);
7779 %}
7780 
7781 instruct membar_release_lock() %{
7782   match(MemBarRelease);
7783   predicate(Matcher::post_fast_unlock(n));
7784   ins_cost(0);
7785 
7786   size(0);
7787   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7788   ins_encode( );
7789   ins_pipe(empty);
7790 %}
7791 
7792 instruct membar_volatile(eFlagsReg cr) %{
7793   match(MemBarVolatile);
7794   effect(KILL cr);
7795   ins_cost(400);
7796 
7797   format %{ 
7798     $$template
7799     if (os::is_MP()) {
7800       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
7801     } else {
7802       $$emit$$"MEMBAR-volatile ! (empty encoding)"
7803     }
7804   %}
7805   ins_encode %{
7806     __ membar(Assembler::StoreLoad);
7807   %}
7808   ins_pipe(pipe_slow);
7809 %}
7810 
7811 instruct unnecessary_membar_volatile() %{
7812   match(MemBarVolatile);
7813   predicate(Matcher::post_store_load_barrier(n));
7814   ins_cost(0);
7815 
7816   size(0);
7817   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7818   ins_encode( );
7819   ins_pipe(empty);
7820 %}
7821 
7822 //----------Move Instructions--------------------------------------------------
7823 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7824   match(Set dst (CastX2P src));
7825   format %{ "# X2P  $dst, $src" %}
7826   ins_encode( /*empty encoding*/ );
7827   ins_cost(0);
7828   ins_pipe(empty);
7829 %}
7830 
7831 instruct castP2X(eRegI dst, eRegP src ) %{
7832   match(Set dst (CastP2X src));
7833   ins_cost(50);
7834   format %{ "MOV    $dst, $src\t# CastP2X" %}
7835   ins_encode( enc_Copy( dst, src) );
7836   ins_pipe( ialu_reg_reg );
7837 %}
7838 
7839 //----------Conditional Move---------------------------------------------------
7840 // Conditional move
7841 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7842   predicate(VM_Version::supports_cmov() );
7843   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7844   ins_cost(200);
7845   format %{ "CMOV$cop $dst,$src" %}
7846   opcode(0x0F,0x40);
7847   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7848   ins_pipe( pipe_cmov_reg );
7849 %}
7850 
7851 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7852   predicate(VM_Version::supports_cmov() );
7853   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7854   ins_cost(200);
7855   format %{ "CMOV$cop $dst,$src" %}
7856   opcode(0x0F,0x40);
7857   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7858   ins_pipe( pipe_cmov_reg );
7859 %}
7860 
7861 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7862   predicate(VM_Version::supports_cmov() );
7863   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7864   ins_cost(200);
7865   expand %{
7866     cmovI_regU(cop, cr, dst, src);
7867   %}
7868 %}
7869 
7870 // Conditional move
7871 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7872   predicate(VM_Version::supports_cmov() );
7873   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7874   ins_cost(250);
7875   format %{ "CMOV$cop $dst,$src" %}
7876   opcode(0x0F,0x40);
7877   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7878   ins_pipe( pipe_cmov_mem );
7879 %}
7880 
7881 // Conditional move
7882 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7883   predicate(VM_Version::supports_cmov() );
7884   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7885   ins_cost(250);
7886   format %{ "CMOV$cop $dst,$src" %}
7887   opcode(0x0F,0x40);
7888   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7889   ins_pipe( pipe_cmov_mem );
7890 %}
7891 
7892 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7893   predicate(VM_Version::supports_cmov() );
7894   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7895   ins_cost(250);
7896   expand %{
7897     cmovI_memU(cop, cr, dst, src);
7898   %}
7899 %}
7900 
7901 // Conditional move
7902 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7903   predicate(VM_Version::supports_cmov() );
7904   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7905   ins_cost(200);
7906   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7907   opcode(0x0F,0x40);
7908   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7909   ins_pipe( pipe_cmov_reg );
7910 %}
7911 
7912 // Conditional move (non-P6 version)
7913 // Note:  a CMoveP is generated for  stubs and native wrappers
7914 //        regardless of whether we are on a P6, so we
7915 //        emulate a cmov here
7916 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7917   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7918   ins_cost(300);
7919   format %{ "Jn$cop   skip\n\t"
7920           "MOV    $dst,$src\t# pointer\n"
7921       "skip:" %}
7922   opcode(0x8b);
7923   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7924   ins_pipe( pipe_cmov_reg );
7925 %}
7926 
7927 // Conditional move
7928 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7929   predicate(VM_Version::supports_cmov() );
7930   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7931   ins_cost(200);
7932   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7933   opcode(0x0F,0x40);
7934   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7935   ins_pipe( pipe_cmov_reg );
7936 %}
7937 
7938 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7939   predicate(VM_Version::supports_cmov() );
7940   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7941   ins_cost(200);
7942   expand %{
7943     cmovP_regU(cop, cr, dst, src);
7944   %}
7945 %}
7946 
7947 // DISABLED: Requires the ADLC to emit a bottom_type call that
7948 // correctly meets the two pointer arguments; one is an incoming
7949 // register but the other is a memory operand.  ALSO appears to
7950 // be buggy with implicit null checks.
7951 //
7952 //// Conditional move
7953 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7954 //  predicate(VM_Version::supports_cmov() );
7955 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7956 //  ins_cost(250);
7957 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7958 //  opcode(0x0F,0x40);
7959 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7960 //  ins_pipe( pipe_cmov_mem );
7961 //%}
7962 //
7963 //// Conditional move
7964 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7965 //  predicate(VM_Version::supports_cmov() );
7966 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7967 //  ins_cost(250);
7968 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7969 //  opcode(0x0F,0x40);
7970 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7971 //  ins_pipe( pipe_cmov_mem );
7972 //%}
7973 
7974 // Conditional move
7975 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7976   predicate(UseSSE<=1);
7977   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7978   ins_cost(200);
7979   format %{ "FCMOV$cop $dst,$src\t# double" %}
7980   opcode(0xDA);
7981   ins_encode( enc_cmov_d(cop,src) );
7982   ins_pipe( pipe_cmovD_reg );
7983 %}
7984 
7985 // Conditional move
7986 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7987   predicate(UseSSE==0);
7988   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7989   ins_cost(200);
7990   format %{ "FCMOV$cop $dst,$src\t# float" %}
7991   opcode(0xDA);
7992   ins_encode( enc_cmov_d(cop,src) );
7993   ins_pipe( pipe_cmovD_reg );
7994 %}
7995 
7996 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7997 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7998   predicate(UseSSE<=1);
7999   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8000   ins_cost(200);
8001   format %{ "Jn$cop   skip\n\t"
8002             "MOV    $dst,$src\t# double\n"
8003       "skip:" %}
8004   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8005   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
8006   ins_pipe( pipe_cmovD_reg );
8007 %}
8008 
8009 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
8010 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
8011   predicate(UseSSE==0);
8012   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8013   ins_cost(200);
8014   format %{ "Jn$cop    skip\n\t"
8015             "MOV    $dst,$src\t# float\n"
8016       "skip:" %}
8017   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
8018   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
8019   ins_pipe( pipe_cmovD_reg );
8020 %}
8021 
8022 // No CMOVE with SSE/SSE2
8023 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
8024   predicate (UseSSE>=1);
8025   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8026   ins_cost(200);
8027   format %{ "Jn$cop   skip\n\t"
8028             "MOVSS  $dst,$src\t# float\n"
8029       "skip:" %}
8030   ins_encode %{
8031     Label skip;
8032     // Invert sense of branch from sense of CMOV
8033     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8034     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8035     __ bind(skip);
8036   %}
8037   ins_pipe( pipe_slow );
8038 %}
8039 
8040 // No CMOVE with SSE/SSE2
8041 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
8042   predicate (UseSSE>=2);
8043   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8044   ins_cost(200);
8045   format %{ "Jn$cop   skip\n\t"
8046             "MOVSD  $dst,$src\t# float\n"
8047       "skip:" %}
8048   ins_encode %{
8049     Label skip;
8050     // Invert sense of branch from sense of CMOV
8051     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8052     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8053     __ bind(skip);
8054   %}
8055   ins_pipe( pipe_slow );
8056 %}
8057 
8058 // unsigned version
8059 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
8060   predicate (UseSSE>=1);
8061   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8062   ins_cost(200);
8063   format %{ "Jn$cop   skip\n\t"
8064             "MOVSS  $dst,$src\t# float\n"
8065       "skip:" %}
8066   ins_encode %{
8067     Label skip;
8068     // Invert sense of branch from sense of CMOV
8069     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8070     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
8071     __ bind(skip);
8072   %}
8073   ins_pipe( pipe_slow );
8074 %}
8075 
8076 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
8077   predicate (UseSSE>=1);
8078   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
8079   ins_cost(200);
8080   expand %{
8081     fcmovX_regU(cop, cr, dst, src);
8082   %}
8083 %}
8084 
8085 // unsigned version
8086 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
8087   predicate (UseSSE>=2);
8088   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8089   ins_cost(200);
8090   format %{ "Jn$cop   skip\n\t"
8091             "MOVSD  $dst,$src\t# float\n"
8092       "skip:" %}
8093   ins_encode %{
8094     Label skip;
8095     // Invert sense of branch from sense of CMOV
8096     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
8097     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
8098     __ bind(skip);
8099   %}
8100   ins_pipe( pipe_slow );
8101 %}
8102 
8103 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
8104   predicate (UseSSE>=2);
8105   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
8106   ins_cost(200);
8107   expand %{
8108     fcmovXD_regU(cop, cr, dst, src);
8109   %}
8110 %}
8111 
8112 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
8113   predicate(VM_Version::supports_cmov() );
8114   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8115   ins_cost(200);
8116   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8117             "CMOV$cop $dst.hi,$src.hi" %}
8118   opcode(0x0F,0x40);
8119   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8120   ins_pipe( pipe_cmov_reg_long );
8121 %}
8122 
8123 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
8124   predicate(VM_Version::supports_cmov() );
8125   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8126   ins_cost(200);
8127   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
8128             "CMOV$cop $dst.hi,$src.hi" %}
8129   opcode(0x0F,0x40);
8130   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
8131   ins_pipe( pipe_cmov_reg_long );
8132 %}
8133 
8134 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
8135   predicate(VM_Version::supports_cmov() );
8136   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
8137   ins_cost(200);
8138   expand %{
8139     cmovL_regU(cop, cr, dst, src);
8140   %}
8141 %}
8142 
8143 //----------Arithmetic Instructions--------------------------------------------
8144 //----------Addition Instructions----------------------------------------------
8145 // Integer Addition Instructions
8146 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8147   match(Set dst (AddI dst src));
8148   effect(KILL cr);
8149 
8150   size(2);
8151   format %{ "ADD    $dst,$src" %}
8152   opcode(0x03);
8153   ins_encode( OpcP, RegReg( dst, src) );
8154   ins_pipe( ialu_reg_reg );
8155 %}
8156 
8157 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8158   match(Set dst (AddI dst src));
8159   effect(KILL cr);
8160 
8161   format %{ "ADD    $dst,$src" %}
8162   opcode(0x81, 0x00); /* /0 id */
8163   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8164   ins_pipe( ialu_reg );
8165 %}
8166 
8167 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
8168   predicate(UseIncDec);
8169   match(Set dst (AddI dst src));
8170   effect(KILL cr);
8171 
8172   size(1);
8173   format %{ "INC    $dst" %}
8174   opcode(0x40); /*  */
8175   ins_encode( Opc_plus( primary, dst ) );
8176   ins_pipe( ialu_reg );
8177 %}
8178 
8179 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
8180   match(Set dst (AddI src0 src1));
8181   ins_cost(110);
8182 
8183   format %{ "LEA    $dst,[$src0 + $src1]" %}
8184   opcode(0x8D); /* 0x8D /r */
8185   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8186   ins_pipe( ialu_reg_reg );
8187 %}
8188 
8189 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
8190   match(Set dst (AddP src0 src1));
8191   ins_cost(110);
8192 
8193   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
8194   opcode(0x8D); /* 0x8D /r */
8195   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
8196   ins_pipe( ialu_reg_reg );
8197 %}
8198 
8199 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
8200   predicate(UseIncDec);
8201   match(Set dst (AddI dst src));
8202   effect(KILL cr);
8203 
8204   size(1);
8205   format %{ "DEC    $dst" %}
8206   opcode(0x48); /*  */
8207   ins_encode( Opc_plus( primary, dst ) );
8208   ins_pipe( ialu_reg );
8209 %}
8210 
8211 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
8212   match(Set dst (AddP dst src));
8213   effect(KILL cr);
8214 
8215   size(2);
8216   format %{ "ADD    $dst,$src" %}
8217   opcode(0x03);
8218   ins_encode( OpcP, RegReg( dst, src) );
8219   ins_pipe( ialu_reg_reg );
8220 %}
8221 
8222 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
8223   match(Set dst (AddP dst src));
8224   effect(KILL cr);
8225 
8226   format %{ "ADD    $dst,$src" %}
8227   opcode(0x81,0x00); /* Opcode 81 /0 id */
8228   // ins_encode( RegImm( dst, src) );
8229   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8230   ins_pipe( ialu_reg );
8231 %}
8232 
8233 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8234   match(Set dst (AddI dst (LoadI src)));
8235   effect(KILL cr);
8236 
8237   ins_cost(125);
8238   format %{ "ADD    $dst,$src" %}
8239   opcode(0x03);
8240   ins_encode( OpcP, RegMem( dst, src) );
8241   ins_pipe( ialu_reg_mem );
8242 %}
8243 
8244 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8245   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8246   effect(KILL cr);
8247 
8248   ins_cost(150);
8249   format %{ "ADD    $dst,$src" %}
8250   opcode(0x01);  /* Opcode 01 /r */
8251   ins_encode( OpcP, RegMem( src, dst ) );
8252   ins_pipe( ialu_mem_reg );
8253 %}
8254 
8255 // Add Memory with Immediate
8256 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8257   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8258   effect(KILL cr);
8259 
8260   ins_cost(125);
8261   format %{ "ADD    $dst,$src" %}
8262   opcode(0x81);               /* Opcode 81 /0 id */
8263   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
8264   ins_pipe( ialu_mem_imm );
8265 %}
8266 
8267 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
8268   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8269   effect(KILL cr);
8270 
8271   ins_cost(125);
8272   format %{ "INC    $dst" %}
8273   opcode(0xFF);               /* Opcode FF /0 */
8274   ins_encode( OpcP, RMopc_Mem(0x00,dst));
8275   ins_pipe( ialu_mem_imm );
8276 %}
8277 
8278 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
8279   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
8280   effect(KILL cr);
8281 
8282   ins_cost(125);
8283   format %{ "DEC    $dst" %}
8284   opcode(0xFF);               /* Opcode FF /1 */
8285   ins_encode( OpcP, RMopc_Mem(0x01,dst));
8286   ins_pipe( ialu_mem_imm );
8287 %}
8288 
8289 
8290 instruct checkCastPP( eRegP dst ) %{
8291   match(Set dst (CheckCastPP dst));
8292 
8293   size(0);
8294   format %{ "#checkcastPP of $dst" %}
8295   ins_encode( /*empty encoding*/ );
8296   ins_pipe( empty );
8297 %}
8298 
8299 instruct castPP( eRegP dst ) %{
8300   match(Set dst (CastPP dst));
8301   format %{ "#castPP of $dst" %}
8302   ins_encode( /*empty encoding*/ );
8303   ins_pipe( empty );
8304 %}
8305 
8306 instruct castII( eRegI dst ) %{
8307   match(Set dst (CastII dst));
8308   format %{ "#castII of $dst" %}
8309   ins_encode( /*empty encoding*/ );
8310   ins_cost(0);
8311   ins_pipe( empty );
8312 %}
8313 
8314 
8315 // Load-locked - same as a regular pointer load when used with compare-swap
8316 instruct loadPLocked(eRegP dst, memory mem) %{
8317   match(Set dst (LoadPLocked mem));
8318 
8319   ins_cost(125);
8320   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
8321   opcode(0x8B);
8322   ins_encode( OpcP, RegMem(dst,mem));
8323   ins_pipe( ialu_reg_mem );
8324 %}
8325 
8326 // LoadLong-locked - same as a volatile long load when used with compare-swap
8327 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
8328   predicate(UseSSE<=1);
8329   match(Set dst (LoadLLocked mem));
8330 
8331   ins_cost(200);
8332   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
8333             "FISTp  $dst" %}
8334   ins_encode(enc_loadL_volatile(mem,dst));
8335   ins_pipe( fpu_reg_mem );
8336 %}
8337 
8338 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
8339   predicate(UseSSE>=2);
8340   match(Set dst (LoadLLocked mem));
8341   effect(TEMP tmp);
8342   ins_cost(180);
8343   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8344             "MOVSD  $dst,$tmp" %}
8345   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
8346   ins_pipe( pipe_slow );
8347 %}
8348 
8349 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
8350   predicate(UseSSE>=2);
8351   match(Set dst (LoadLLocked mem));
8352   effect(TEMP tmp);
8353   ins_cost(160);
8354   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
8355             "MOVD   $dst.lo,$tmp\n\t"
8356             "PSRLQ  $tmp,32\n\t"
8357             "MOVD   $dst.hi,$tmp" %}
8358   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
8359   ins_pipe( pipe_slow );
8360 %}
8361 
8362 // Conditional-store of the updated heap-top.
8363 // Used during allocation of the shared heap.
8364 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
8365 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
8366   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
8367   // EAX is killed if there is contention, but then it's also unused.
8368   // In the common case of no contention, EAX holds the new oop address.
8369   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
8370   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
8371   ins_pipe( pipe_cmpxchg );
8372 %}
8373 
8374 // Conditional-store of an int value.
8375 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
8376 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
8377   match(Set cr (StoreIConditional mem (Binary oldval newval)));
8378   effect(KILL oldval);
8379   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
8380   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
8381   ins_pipe( pipe_cmpxchg );
8382 %}
8383 
8384 // Conditional-store of a long value.
8385 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
8386 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8387   match(Set cr (StoreLConditional mem (Binary oldval newval)));
8388   effect(KILL oldval);
8389   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
8390             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
8391             "XCHG   EBX,ECX"
8392   %}
8393   ins_encode %{
8394     // Note: we need to swap rbx, and rcx before and after the
8395     //       cmpxchg8 instruction because the instruction uses
8396     //       rcx as the high order word of the new value to store but
8397     //       our register encoding uses rbx.
8398     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8399     if( os::is_MP() )
8400       __ lock();
8401     __ cmpxchg8($mem$$Address);
8402     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
8403   %}
8404   ins_pipe( pipe_cmpxchg );
8405 %}
8406 
8407 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
8408 
8409 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
8410   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
8411   effect(KILL cr, KILL oldval);
8412   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8413             "MOV    $res,0\n\t"
8414             "JNE,s  fail\n\t"
8415             "MOV    $res,1\n"
8416           "fail:" %}
8417   ins_encode( enc_cmpxchg8(mem_ptr),
8418               enc_flags_ne_to_boolean(res) );
8419   ins_pipe( pipe_cmpxchg );
8420 %}
8421 
8422 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
8423   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
8424   effect(KILL cr, KILL oldval);
8425   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8426             "MOV    $res,0\n\t"
8427             "JNE,s  fail\n\t"
8428             "MOV    $res,1\n"
8429           "fail:" %}
8430   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8431   ins_pipe( pipe_cmpxchg );
8432 %}
8433 
8434 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
8435   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
8436   effect(KILL cr, KILL oldval);
8437   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
8438             "MOV    $res,0\n\t"
8439             "JNE,s  fail\n\t"
8440             "MOV    $res,1\n"
8441           "fail:" %}
8442   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8443   ins_pipe( pipe_cmpxchg );
8444 %}
8445 
8446 //----------Subtraction Instructions-------------------------------------------
8447 // Integer Subtraction Instructions
8448 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8449   match(Set dst (SubI dst src));
8450   effect(KILL cr);
8451 
8452   size(2);
8453   format %{ "SUB    $dst,$src" %}
8454   opcode(0x2B);
8455   ins_encode( OpcP, RegReg( dst, src) );
8456   ins_pipe( ialu_reg_reg );
8457 %}
8458 
8459 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8460   match(Set dst (SubI dst src));
8461   effect(KILL cr);
8462 
8463   format %{ "SUB    $dst,$src" %}
8464   opcode(0x81,0x05);  /* Opcode 81 /5 */
8465   // ins_encode( RegImm( dst, src) );
8466   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8467   ins_pipe( ialu_reg );
8468 %}
8469 
8470 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8471   match(Set dst (SubI dst (LoadI src)));
8472   effect(KILL cr);
8473 
8474   ins_cost(125);
8475   format %{ "SUB    $dst,$src" %}
8476   opcode(0x2B);
8477   ins_encode( OpcP, RegMem( dst, src) );
8478   ins_pipe( ialu_reg_mem );
8479 %}
8480 
8481 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8482   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8483   effect(KILL cr);
8484 
8485   ins_cost(150);
8486   format %{ "SUB    $dst,$src" %}
8487   opcode(0x29);  /* Opcode 29 /r */
8488   ins_encode( OpcP, RegMem( src, dst ) );
8489   ins_pipe( ialu_mem_reg );
8490 %}
8491 
8492 // Subtract from a pointer
8493 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8494   match(Set dst (AddP dst (SubI zero src)));
8495   effect(KILL cr);
8496 
8497   size(2);
8498   format %{ "SUB    $dst,$src" %}
8499   opcode(0x2B);
8500   ins_encode( OpcP, RegReg( dst, src) );
8501   ins_pipe( ialu_reg_reg );
8502 %}
8503 
8504 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8505   match(Set dst (SubI zero dst));
8506   effect(KILL cr);
8507 
8508   size(2);
8509   format %{ "NEG    $dst" %}
8510   opcode(0xF7,0x03);  // Opcode F7 /3
8511   ins_encode( OpcP, RegOpc( dst ) );
8512   ins_pipe( ialu_reg );
8513 %}
8514 
8515 
8516 //----------Multiplication/Division Instructions-------------------------------
8517 // Integer Multiplication Instructions
8518 // Multiply Register
8519 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8520   match(Set dst (MulI dst src));
8521   effect(KILL cr);
8522 
8523   size(3);
8524   ins_cost(300);
8525   format %{ "IMUL   $dst,$src" %}
8526   opcode(0xAF, 0x0F);
8527   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8528   ins_pipe( ialu_reg_reg_alu0 );
8529 %}
8530 
8531 // Multiply 32-bit Immediate
8532 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8533   match(Set dst (MulI src imm));
8534   effect(KILL cr);
8535 
8536   ins_cost(300);
8537   format %{ "IMUL   $dst,$src,$imm" %}
8538   opcode(0x69);  /* 69 /r id */
8539   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8540   ins_pipe( ialu_reg_reg_alu0 );
8541 %}
8542 
8543 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8544   match(Set dst src);
8545   effect(KILL cr);
8546 
8547   // Note that this is artificially increased to make it more expensive than loadConL
8548   ins_cost(250);
8549   format %{ "MOV    EAX,$src\t// low word only" %}
8550   opcode(0xB8);
8551   ins_encode( LdImmL_Lo(dst, src) );
8552   ins_pipe( ialu_reg_fat );
8553 %}
8554 
8555 // Multiply by 32-bit Immediate, taking the shifted high order results
8556 //  (special case for shift by 32)
8557 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8558   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8559   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8560              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8561              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8562   effect(USE src1, KILL cr);
8563 
8564   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8565   ins_cost(0*100 + 1*400 - 150);
8566   format %{ "IMUL   EDX:EAX,$src1" %}
8567   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8568   ins_pipe( pipe_slow );
8569 %}
8570 
8571 // Multiply by 32-bit Immediate, taking the shifted high order results
8572 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8573   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8574   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8575              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8576              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8577   effect(USE src1, KILL cr);
8578 
8579   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8580   ins_cost(1*100 + 1*400 - 150);
8581   format %{ "IMUL   EDX:EAX,$src1\n\t"
8582             "SAR    EDX,$cnt-32" %}
8583   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8584   ins_pipe( pipe_slow );
8585 %}
8586 
8587 // Multiply Memory 32-bit Immediate
8588 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8589   match(Set dst (MulI (LoadI src) imm));
8590   effect(KILL cr);
8591 
8592   ins_cost(300);
8593   format %{ "IMUL   $dst,$src,$imm" %}
8594   opcode(0x69);  /* 69 /r id */
8595   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8596   ins_pipe( ialu_reg_mem_alu0 );
8597 %}
8598 
8599 // Multiply Memory
8600 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8601   match(Set dst (MulI dst (LoadI src)));
8602   effect(KILL cr);
8603 
8604   ins_cost(350);
8605   format %{ "IMUL   $dst,$src" %}
8606   opcode(0xAF, 0x0F);
8607   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8608   ins_pipe( ialu_reg_mem_alu0 );
8609 %}
8610 
8611 // Multiply Register Int to Long
8612 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8613   // Basic Idea: long = (long)int * (long)int
8614   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8615   effect(DEF dst, USE src, USE src1, KILL flags);
8616 
8617   ins_cost(300);
8618   format %{ "IMUL   $dst,$src1" %}
8619 
8620   ins_encode( long_int_multiply( dst, src1 ) );
8621   ins_pipe( ialu_reg_reg_alu0 );
8622 %}
8623 
8624 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8625   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8626   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8627   effect(KILL flags);
8628 
8629   ins_cost(300);
8630   format %{ "MUL    $dst,$src1" %}
8631 
8632   ins_encode( long_uint_multiply(dst, src1) );
8633   ins_pipe( ialu_reg_reg_alu0 );
8634 %}
8635 
8636 // Multiply Register Long
8637 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8638   match(Set dst (MulL dst src));
8639   effect(KILL cr, TEMP tmp);
8640   ins_cost(4*100+3*400);
8641 // Basic idea: lo(result) = lo(x_lo * y_lo)
8642 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8643   format %{ "MOV    $tmp,$src.lo\n\t"
8644             "IMUL   $tmp,EDX\n\t"
8645             "MOV    EDX,$src.hi\n\t"
8646             "IMUL   EDX,EAX\n\t"
8647             "ADD    $tmp,EDX\n\t"
8648             "MUL    EDX:EAX,$src.lo\n\t"
8649             "ADD    EDX,$tmp" %}
8650   ins_encode( long_multiply( dst, src, tmp ) );
8651   ins_pipe( pipe_slow );
8652 %}
8653 
8654 // Multiply Register Long where the left operand's high 32 bits are zero
8655 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8656   predicate(is_operand_hi32_zero(n->in(1)));
8657   match(Set dst (MulL dst src));
8658   effect(KILL cr, TEMP tmp);
8659   ins_cost(2*100+2*400);
8660 // Basic idea: lo(result) = lo(x_lo * y_lo)
8661 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
8662   format %{ "MOV    $tmp,$src.hi\n\t"
8663             "IMUL   $tmp,EAX\n\t"
8664             "MUL    EDX:EAX,$src.lo\n\t"
8665             "ADD    EDX,$tmp" %}
8666   ins_encode %{
8667     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
8668     __ imull($tmp$$Register, rax);
8669     __ mull($src$$Register);
8670     __ addl(rdx, $tmp$$Register);
8671   %}
8672   ins_pipe( pipe_slow );
8673 %}
8674 
8675 // Multiply Register Long where the right operand's high 32 bits are zero
8676 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8677   predicate(is_operand_hi32_zero(n->in(2)));
8678   match(Set dst (MulL dst src));
8679   effect(KILL cr, TEMP tmp);
8680   ins_cost(2*100+2*400);
8681 // Basic idea: lo(result) = lo(x_lo * y_lo)
8682 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
8683   format %{ "MOV    $tmp,$src.lo\n\t"
8684             "IMUL   $tmp,EDX\n\t"
8685             "MUL    EDX:EAX,$src.lo\n\t"
8686             "ADD    EDX,$tmp" %}
8687   ins_encode %{
8688     __ movl($tmp$$Register, $src$$Register);
8689     __ imull($tmp$$Register, rdx);
8690     __ mull($src$$Register);
8691     __ addl(rdx, $tmp$$Register);
8692   %}
8693   ins_pipe( pipe_slow );
8694 %}
8695 
8696 // Multiply Register Long where the left and the right operands' high 32 bits are zero
8697 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
8698   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
8699   match(Set dst (MulL dst src));
8700   effect(KILL cr);
8701   ins_cost(1*400);
8702 // Basic idea: lo(result) = lo(x_lo * y_lo)
8703 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
8704   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
8705   ins_encode %{
8706     __ mull($src$$Register);
8707   %}
8708   ins_pipe( pipe_slow );
8709 %}
8710 
8711 // Multiply Register Long by small constant
8712 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8713   match(Set dst (MulL dst src));
8714   effect(KILL cr, TEMP tmp);
8715   ins_cost(2*100+2*400);
8716   size(12);
8717 // Basic idea: lo(result) = lo(src * EAX)
8718 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8719   format %{ "IMUL   $tmp,EDX,$src\n\t"
8720             "MOV    EDX,$src\n\t"
8721             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8722             "ADD    EDX,$tmp" %}
8723   ins_encode( long_multiply_con( dst, src, tmp ) );
8724   ins_pipe( pipe_slow );
8725 %}
8726 
8727 // Integer DIV with Register
8728 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8729   match(Set rax (DivI rax div));
8730   effect(KILL rdx, KILL cr);
8731   size(26);
8732   ins_cost(30*100+10*100);
8733   format %{ "CMP    EAX,0x80000000\n\t"
8734             "JNE,s  normal\n\t"
8735             "XOR    EDX,EDX\n\t"
8736             "CMP    ECX,-1\n\t"
8737             "JE,s   done\n"
8738     "normal: CDQ\n\t"
8739             "IDIV   $div\n\t"
8740     "done:"        %}
8741   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8742   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8743   ins_pipe( ialu_reg_reg_alu0 );
8744 %}
8745 
8746 // Divide Register Long
8747 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8748   match(Set dst (DivL src1 src2));
8749   effect( KILL cr, KILL cx, KILL bx );
8750   ins_cost(10000);
8751   format %{ "PUSH   $src1.hi\n\t"
8752             "PUSH   $src1.lo\n\t"
8753             "PUSH   $src2.hi\n\t"
8754             "PUSH   $src2.lo\n\t"
8755             "CALL   SharedRuntime::ldiv\n\t"
8756             "ADD    ESP,16" %}
8757   ins_encode( long_div(src1,src2) );
8758   ins_pipe( pipe_slow );
8759 %}
8760 
8761 // Integer DIVMOD with Register, both quotient and mod results
8762 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8763   match(DivModI rax div);
8764   effect(KILL cr);
8765   size(26);
8766   ins_cost(30*100+10*100);
8767   format %{ "CMP    EAX,0x80000000\n\t"
8768             "JNE,s  normal\n\t"
8769             "XOR    EDX,EDX\n\t"
8770             "CMP    ECX,-1\n\t"
8771             "JE,s   done\n"
8772     "normal: CDQ\n\t"
8773             "IDIV   $div\n\t"
8774     "done:"        %}
8775   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8776   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8777   ins_pipe( pipe_slow );
8778 %}
8779 
8780 // Integer MOD with Register
8781 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8782   match(Set rdx (ModI rax div));
8783   effect(KILL rax, KILL cr);
8784 
8785   size(26);
8786   ins_cost(300);
8787   format %{ "CDQ\n\t"
8788             "IDIV   $div" %}
8789   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8790   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8791   ins_pipe( ialu_reg_reg_alu0 );
8792 %}
8793 
8794 // Remainder Register Long
8795 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8796   match(Set dst (ModL src1 src2));
8797   effect( KILL cr, KILL cx, KILL bx );
8798   ins_cost(10000);
8799   format %{ "PUSH   $src1.hi\n\t"
8800             "PUSH   $src1.lo\n\t"
8801             "PUSH   $src2.hi\n\t"
8802             "PUSH   $src2.lo\n\t"
8803             "CALL   SharedRuntime::lrem\n\t"
8804             "ADD    ESP,16" %}
8805   ins_encode( long_mod(src1,src2) );
8806   ins_pipe( pipe_slow );
8807 %}
8808 
8809 // Integer Shift Instructions
8810 // Shift Left by one
8811 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8812   match(Set dst (LShiftI dst shift));
8813   effect(KILL cr);
8814 
8815   size(2);
8816   format %{ "SHL    $dst,$shift" %}
8817   opcode(0xD1, 0x4);  /* D1 /4 */
8818   ins_encode( OpcP, RegOpc( dst ) );
8819   ins_pipe( ialu_reg );
8820 %}
8821 
8822 // Shift Left by 8-bit immediate
8823 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8824   match(Set dst (LShiftI dst shift));
8825   effect(KILL cr);
8826 
8827   size(3);
8828   format %{ "SHL    $dst,$shift" %}
8829   opcode(0xC1, 0x4);  /* C1 /4 ib */
8830   ins_encode( RegOpcImm( dst, shift) );
8831   ins_pipe( ialu_reg );
8832 %}
8833 
8834 // Shift Left by variable
8835 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8836   match(Set dst (LShiftI dst shift));
8837   effect(KILL cr);
8838 
8839   size(2);
8840   format %{ "SHL    $dst,$shift" %}
8841   opcode(0xD3, 0x4);  /* D3 /4 */
8842   ins_encode( OpcP, RegOpc( dst ) );
8843   ins_pipe( ialu_reg_reg );
8844 %}
8845 
8846 // Arithmetic shift right by one
8847 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8848   match(Set dst (RShiftI dst shift));
8849   effect(KILL cr);
8850 
8851   size(2);
8852   format %{ "SAR    $dst,$shift" %}
8853   opcode(0xD1, 0x7);  /* D1 /7 */
8854   ins_encode( OpcP, RegOpc( dst ) );
8855   ins_pipe( ialu_reg );
8856 %}
8857 
8858 // Arithmetic shift right by one
8859 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8860   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8861   effect(KILL cr);
8862   format %{ "SAR    $dst,$shift" %}
8863   opcode(0xD1, 0x7);  /* D1 /7 */
8864   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8865   ins_pipe( ialu_mem_imm );
8866 %}
8867 
8868 // Arithmetic Shift Right by 8-bit immediate
8869 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8870   match(Set dst (RShiftI dst shift));
8871   effect(KILL cr);
8872 
8873   size(3);
8874   format %{ "SAR    $dst,$shift" %}
8875   opcode(0xC1, 0x7);  /* C1 /7 ib */
8876   ins_encode( RegOpcImm( dst, shift ) );
8877   ins_pipe( ialu_mem_imm );
8878 %}
8879 
8880 // Arithmetic Shift Right by 8-bit immediate
8881 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8882   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8883   effect(KILL cr);
8884 
8885   format %{ "SAR    $dst,$shift" %}
8886   opcode(0xC1, 0x7);  /* C1 /7 ib */
8887   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8888   ins_pipe( ialu_mem_imm );
8889 %}
8890 
8891 // Arithmetic Shift Right by variable
8892 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8893   match(Set dst (RShiftI dst shift));
8894   effect(KILL cr);
8895 
8896   size(2);
8897   format %{ "SAR    $dst,$shift" %}
8898   opcode(0xD3, 0x7);  /* D3 /7 */
8899   ins_encode( OpcP, RegOpc( dst ) );
8900   ins_pipe( ialu_reg_reg );
8901 %}
8902 
8903 // Logical shift right by one
8904 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8905   match(Set dst (URShiftI dst shift));
8906   effect(KILL cr);
8907 
8908   size(2);
8909   format %{ "SHR    $dst,$shift" %}
8910   opcode(0xD1, 0x5);  /* D1 /5 */
8911   ins_encode( OpcP, RegOpc( dst ) );
8912   ins_pipe( ialu_reg );
8913 %}
8914 
8915 // Logical Shift Right by 8-bit immediate
8916 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8917   match(Set dst (URShiftI dst shift));
8918   effect(KILL cr);
8919 
8920   size(3);
8921   format %{ "SHR    $dst,$shift" %}
8922   opcode(0xC1, 0x5);  /* C1 /5 ib */
8923   ins_encode( RegOpcImm( dst, shift) );
8924   ins_pipe( ialu_reg );
8925 %}
8926 
8927 
8928 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8929 // This idiom is used by the compiler for the i2b bytecode.
8930 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour) %{
8931   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8932 
8933   size(3);
8934   format %{ "MOVSX  $dst,$src :8" %}
8935   ins_encode %{
8936     __ movsbl($dst$$Register, $src$$Register);
8937   %}
8938   ins_pipe(ialu_reg_reg);
8939 %}
8940 
8941 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8942 // This idiom is used by the compiler the i2s bytecode.
8943 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen) %{
8944   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8945 
8946   size(3);
8947   format %{ "MOVSX  $dst,$src :16" %}
8948   ins_encode %{
8949     __ movswl($dst$$Register, $src$$Register);
8950   %}
8951   ins_pipe(ialu_reg_reg);
8952 %}
8953 
8954 
8955 // Logical Shift Right by variable
8956 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8957   match(Set dst (URShiftI dst shift));
8958   effect(KILL cr);
8959 
8960   size(2);
8961   format %{ "SHR    $dst,$shift" %}
8962   opcode(0xD3, 0x5);  /* D3 /5 */
8963   ins_encode( OpcP, RegOpc( dst ) );
8964   ins_pipe( ialu_reg_reg );
8965 %}
8966 
8967 
8968 //----------Logical Instructions-----------------------------------------------
8969 //----------Integer Logical Instructions---------------------------------------
8970 // And Instructions
8971 // And Register with Register
8972 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8973   match(Set dst (AndI dst src));
8974   effect(KILL cr);
8975 
8976   size(2);
8977   format %{ "AND    $dst,$src" %}
8978   opcode(0x23);
8979   ins_encode( OpcP, RegReg( dst, src) );
8980   ins_pipe( ialu_reg_reg );
8981 %}
8982 
8983 // And Register with Immediate
8984 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8985   match(Set dst (AndI dst src));
8986   effect(KILL cr);
8987 
8988   format %{ "AND    $dst,$src" %}
8989   opcode(0x81,0x04);  /* Opcode 81 /4 */
8990   // ins_encode( RegImm( dst, src) );
8991   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8992   ins_pipe( ialu_reg );
8993 %}
8994 
8995 // And Register with Memory
8996 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8997   match(Set dst (AndI dst (LoadI src)));
8998   effect(KILL cr);
8999 
9000   ins_cost(125);
9001   format %{ "AND    $dst,$src" %}
9002   opcode(0x23);
9003   ins_encode( OpcP, RegMem( dst, src) );
9004   ins_pipe( ialu_reg_mem );
9005 %}
9006 
9007 // And Memory with Register
9008 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9009   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9010   effect(KILL cr);
9011 
9012   ins_cost(150);
9013   format %{ "AND    $dst,$src" %}
9014   opcode(0x21);  /* Opcode 21 /r */
9015   ins_encode( OpcP, RegMem( src, dst ) );
9016   ins_pipe( ialu_mem_reg );
9017 %}
9018 
9019 // And Memory with Immediate
9020 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9021   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
9022   effect(KILL cr);
9023 
9024   ins_cost(125);
9025   format %{ "AND    $dst,$src" %}
9026   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
9027   // ins_encode( MemImm( dst, src) );
9028   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9029   ins_pipe( ialu_mem_imm );
9030 %}
9031 
9032 // Or Instructions
9033 // Or Register with Register
9034 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9035   match(Set dst (OrI dst src));
9036   effect(KILL cr);
9037 
9038   size(2);
9039   format %{ "OR     $dst,$src" %}
9040   opcode(0x0B);
9041   ins_encode( OpcP, RegReg( dst, src) );
9042   ins_pipe( ialu_reg_reg );
9043 %}
9044 
9045 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
9046   match(Set dst (OrI dst (CastP2X src)));
9047   effect(KILL cr);
9048 
9049   size(2);
9050   format %{ "OR     $dst,$src" %}
9051   opcode(0x0B);
9052   ins_encode( OpcP, RegReg( dst, src) );
9053   ins_pipe( ialu_reg_reg );
9054 %}
9055 
9056 
9057 // Or Register with Immediate
9058 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9059   match(Set dst (OrI dst src));
9060   effect(KILL cr);
9061 
9062   format %{ "OR     $dst,$src" %}
9063   opcode(0x81,0x01);  /* Opcode 81 /1 id */
9064   // ins_encode( RegImm( dst, src) );
9065   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9066   ins_pipe( ialu_reg );
9067 %}
9068 
9069 // Or Register with Memory
9070 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9071   match(Set dst (OrI dst (LoadI src)));
9072   effect(KILL cr);
9073 
9074   ins_cost(125);
9075   format %{ "OR     $dst,$src" %}
9076   opcode(0x0B);
9077   ins_encode( OpcP, RegMem( dst, src) );
9078   ins_pipe( ialu_reg_mem );
9079 %}
9080 
9081 // Or Memory with Register
9082 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9083   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9084   effect(KILL cr);
9085 
9086   ins_cost(150);
9087   format %{ "OR     $dst,$src" %}
9088   opcode(0x09);  /* Opcode 09 /r */
9089   ins_encode( OpcP, RegMem( src, dst ) );
9090   ins_pipe( ialu_mem_reg );
9091 %}
9092 
9093 // Or Memory with Immediate
9094 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9095   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
9096   effect(KILL cr);
9097 
9098   ins_cost(125);
9099   format %{ "OR     $dst,$src" %}
9100   opcode(0x81,0x1);  /* Opcode 81 /1 id */
9101   // ins_encode( MemImm( dst, src) );
9102   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9103   ins_pipe( ialu_mem_imm );
9104 %}
9105 
9106 // ROL/ROR
9107 // ROL expand
9108 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9109   effect(USE_DEF dst, USE shift, KILL cr);
9110 
9111   format %{ "ROL    $dst, $shift" %}
9112   opcode(0xD1, 0x0); /* Opcode D1 /0 */
9113   ins_encode( OpcP, RegOpc( dst ));
9114   ins_pipe( ialu_reg );
9115 %}
9116 
9117 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9118   effect(USE_DEF dst, USE shift, KILL cr);
9119 
9120   format %{ "ROL    $dst, $shift" %}
9121   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
9122   ins_encode( RegOpcImm(dst, shift) );
9123   ins_pipe(ialu_reg);
9124 %}
9125 
9126 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
9127   effect(USE_DEF dst, USE shift, KILL cr);
9128 
9129   format %{ "ROL    $dst, $shift" %}
9130   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
9131   ins_encode(OpcP, RegOpc(dst));
9132   ins_pipe( ialu_reg_reg );
9133 %}
9134 // end of ROL expand
9135 
9136 // ROL 32bit by one once
9137 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
9138   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9139 
9140   expand %{
9141     rolI_eReg_imm1(dst, lshift, cr);
9142   %}
9143 %}
9144 
9145 // ROL 32bit var by imm8 once
9146 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
9147   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9148   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
9149 
9150   expand %{
9151     rolI_eReg_imm8(dst, lshift, cr);
9152   %}
9153 %}
9154 
9155 // ROL 32bit var by var once
9156 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9157   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
9158 
9159   expand %{
9160     rolI_eReg_CL(dst, shift, cr);
9161   %}
9162 %}
9163 
9164 // ROL 32bit var by var once
9165 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9166   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
9167 
9168   expand %{
9169     rolI_eReg_CL(dst, shift, cr);
9170   %}
9171 %}
9172 
9173 // ROR expand
9174 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
9175   effect(USE_DEF dst, USE shift, KILL cr);
9176 
9177   format %{ "ROR    $dst, $shift" %}
9178   opcode(0xD1,0x1);  /* Opcode D1 /1 */
9179   ins_encode( OpcP, RegOpc( dst ) );
9180   ins_pipe( ialu_reg );
9181 %}
9182 
9183 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
9184   effect (USE_DEF dst, USE shift, KILL cr);
9185 
9186   format %{ "ROR    $dst, $shift" %}
9187   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
9188   ins_encode( RegOpcImm(dst, shift) );
9189   ins_pipe( ialu_reg );
9190 %}
9191 
9192 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
9193   effect(USE_DEF dst, USE shift, KILL cr);
9194 
9195   format %{ "ROR    $dst, $shift" %}
9196   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
9197   ins_encode(OpcP, RegOpc(dst));
9198   ins_pipe( ialu_reg_reg );
9199 %}
9200 // end of ROR expand
9201 
9202 // ROR right once
9203 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
9204   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9205 
9206   expand %{
9207     rorI_eReg_imm1(dst, rshift, cr);
9208   %}
9209 %}
9210 
9211 // ROR 32bit by immI8 once
9212 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
9213   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
9214   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
9215 
9216   expand %{
9217     rorI_eReg_imm8(dst, rshift, cr);
9218   %}
9219 %}
9220 
9221 // ROR 32bit var by var once
9222 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
9223   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
9224 
9225   expand %{
9226     rorI_eReg_CL(dst, shift, cr);
9227   %}
9228 %}
9229 
9230 // ROR 32bit var by var once
9231 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
9232   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
9233 
9234   expand %{
9235     rorI_eReg_CL(dst, shift, cr);
9236   %}
9237 %}
9238 
9239 // Xor Instructions
9240 // Xor Register with Register
9241 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
9242   match(Set dst (XorI dst src));
9243   effect(KILL cr);
9244 
9245   size(2);
9246   format %{ "XOR    $dst,$src" %}
9247   opcode(0x33);
9248   ins_encode( OpcP, RegReg( dst, src) );
9249   ins_pipe( ialu_reg_reg );
9250 %}
9251 
9252 // Xor Register with Immediate -1
9253 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
9254   match(Set dst (XorI dst imm));  
9255 
9256   size(2);
9257   format %{ "NOT    $dst" %}  
9258   ins_encode %{
9259      __ notl($dst$$Register);
9260   %}
9261   ins_pipe( ialu_reg );
9262 %}
9263 
9264 // Xor Register with Immediate
9265 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
9266   match(Set dst (XorI dst src));
9267   effect(KILL cr);
9268 
9269   format %{ "XOR    $dst,$src" %}
9270   opcode(0x81,0x06);  /* Opcode 81 /6 id */
9271   // ins_encode( RegImm( dst, src) );
9272   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
9273   ins_pipe( ialu_reg );
9274 %}
9275 
9276 // Xor Register with Memory
9277 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
9278   match(Set dst (XorI dst (LoadI src)));
9279   effect(KILL cr);
9280 
9281   ins_cost(125);
9282   format %{ "XOR    $dst,$src" %}
9283   opcode(0x33);
9284   ins_encode( OpcP, RegMem(dst, src) );
9285   ins_pipe( ialu_reg_mem );
9286 %}
9287 
9288 // Xor Memory with Register
9289 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
9290   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9291   effect(KILL cr);
9292 
9293   ins_cost(150);
9294   format %{ "XOR    $dst,$src" %}
9295   opcode(0x31);  /* Opcode 31 /r */
9296   ins_encode( OpcP, RegMem( src, dst ) );
9297   ins_pipe( ialu_mem_reg );
9298 %}
9299 
9300 // Xor Memory with Immediate
9301 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
9302   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
9303   effect(KILL cr);
9304 
9305   ins_cost(125);
9306   format %{ "XOR    $dst,$src" %}
9307   opcode(0x81,0x6);  /* Opcode 81 /6 id */
9308   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
9309   ins_pipe( ialu_mem_imm );
9310 %}
9311 
9312 //----------Convert Int to Boolean---------------------------------------------
9313 
9314 instruct movI_nocopy(eRegI dst, eRegI src) %{
9315   effect( DEF dst, USE src );
9316   format %{ "MOV    $dst,$src" %}
9317   ins_encode( enc_Copy( dst, src) );
9318   ins_pipe( ialu_reg_reg );
9319 %}
9320 
9321 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
9322   effect( USE_DEF dst, USE src, KILL cr );
9323 
9324   size(4);
9325   format %{ "NEG    $dst\n\t"
9326             "ADC    $dst,$src" %}
9327   ins_encode( neg_reg(dst),
9328               OpcRegReg(0x13,dst,src) );
9329   ins_pipe( ialu_reg_reg_long );
9330 %}
9331 
9332 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
9333   match(Set dst (Conv2B src));
9334 
9335   expand %{
9336     movI_nocopy(dst,src);
9337     ci2b(dst,src,cr);
9338   %}
9339 %}
9340 
9341 instruct movP_nocopy(eRegI dst, eRegP src) %{
9342   effect( DEF dst, USE src );
9343   format %{ "MOV    $dst,$src" %}
9344   ins_encode( enc_Copy( dst, src) );
9345   ins_pipe( ialu_reg_reg );
9346 %}
9347 
9348 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
9349   effect( USE_DEF dst, USE src, KILL cr );
9350   format %{ "NEG    $dst\n\t"
9351             "ADC    $dst,$src" %}
9352   ins_encode( neg_reg(dst),
9353               OpcRegReg(0x13,dst,src) );
9354   ins_pipe( ialu_reg_reg_long );
9355 %}
9356 
9357 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
9358   match(Set dst (Conv2B src));
9359 
9360   expand %{
9361     movP_nocopy(dst,src);
9362     cp2b(dst,src,cr);
9363   %}
9364 %}
9365 
9366 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
9367   match(Set dst (CmpLTMask p q));
9368   effect( KILL cr );
9369   ins_cost(400);
9370 
9371   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
9372   format %{ "XOR    $dst,$dst\n\t"
9373             "CMP    $p,$q\n\t"
9374             "SETlt  $dst\n\t"
9375             "NEG    $dst" %}
9376   ins_encode( OpcRegReg(0x33,dst,dst),
9377               OpcRegReg(0x3B,p,q),
9378               setLT_reg(dst), neg_reg(dst) );
9379   ins_pipe( pipe_slow );
9380 %}
9381 
9382 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
9383   match(Set dst (CmpLTMask dst zero));
9384   effect( DEF dst, KILL cr );
9385   ins_cost(100);
9386 
9387   format %{ "SAR    $dst,31" %}
9388   opcode(0xC1, 0x7);  /* C1 /7 ib */
9389   ins_encode( RegOpcImm( dst, 0x1F ) );
9390   ins_pipe( ialu_reg );
9391 %}
9392 
9393 
9394 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
9395   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9396   effect( KILL tmp, KILL cr );
9397   ins_cost(400);
9398   // annoyingly, $tmp has no edges so you cant ask for it in
9399   // any format or encoding
9400   format %{ "SUB    $p,$q\n\t"
9401             "SBB    ECX,ECX\n\t"
9402             "AND    ECX,$y\n\t"
9403             "ADD    $p,ECX" %}
9404   ins_encode( enc_cmpLTP(p,q,y,tmp) );
9405   ins_pipe( pipe_cmplt );
9406 %}
9407 
9408 /* If I enable this, I encourage spilling in the inner loop of compress.
9409 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
9410   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
9411   effect( USE_KILL tmp, KILL cr );
9412   ins_cost(400);
9413 
9414   format %{ "SUB    $p,$q\n\t"
9415             "SBB    ECX,ECX\n\t"
9416             "AND    ECX,$y\n\t"
9417             "ADD    $p,ECX" %}
9418   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
9419 %}
9420 */
9421 
9422 //----------Long Instructions------------------------------------------------
9423 // Add Long Register with Register
9424 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9425   match(Set dst (AddL dst src));
9426   effect(KILL cr);
9427   ins_cost(200);
9428   format %{ "ADD    $dst.lo,$src.lo\n\t"
9429             "ADC    $dst.hi,$src.hi" %}
9430   opcode(0x03, 0x13);
9431   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9432   ins_pipe( ialu_reg_reg_long );
9433 %}
9434 
9435 // Add Long Register with Immediate
9436 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9437   match(Set dst (AddL dst src));
9438   effect(KILL cr);
9439   format %{ "ADD    $dst.lo,$src.lo\n\t"
9440             "ADC    $dst.hi,$src.hi" %}
9441   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
9442   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9443   ins_pipe( ialu_reg_long );
9444 %}
9445 
9446 // Add Long Register with Memory
9447 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9448   match(Set dst (AddL dst (LoadL mem)));
9449   effect(KILL cr);
9450   ins_cost(125);
9451   format %{ "ADD    $dst.lo,$mem\n\t"
9452             "ADC    $dst.hi,$mem+4" %}
9453   opcode(0x03, 0x13);
9454   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9455   ins_pipe( ialu_reg_long_mem );
9456 %}
9457 
9458 // Subtract Long Register with Register.
9459 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9460   match(Set dst (SubL dst src));
9461   effect(KILL cr);
9462   ins_cost(200);
9463   format %{ "SUB    $dst.lo,$src.lo\n\t"
9464             "SBB    $dst.hi,$src.hi" %}
9465   opcode(0x2B, 0x1B);
9466   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
9467   ins_pipe( ialu_reg_reg_long );
9468 %}
9469 
9470 // Subtract Long Register with Immediate
9471 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9472   match(Set dst (SubL dst src));
9473   effect(KILL cr);
9474   format %{ "SUB    $dst.lo,$src.lo\n\t"
9475             "SBB    $dst.hi,$src.hi" %}
9476   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
9477   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9478   ins_pipe( ialu_reg_long );
9479 %}
9480 
9481 // Subtract Long Register with Memory
9482 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9483   match(Set dst (SubL dst (LoadL mem)));
9484   effect(KILL cr);
9485   ins_cost(125);
9486   format %{ "SUB    $dst.lo,$mem\n\t"
9487             "SBB    $dst.hi,$mem+4" %}
9488   opcode(0x2B, 0x1B);
9489   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9490   ins_pipe( ialu_reg_long_mem );
9491 %}
9492 
9493 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
9494   match(Set dst (SubL zero dst));
9495   effect(KILL cr);
9496   ins_cost(300);
9497   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9498   ins_encode( neg_long(dst) );
9499   ins_pipe( ialu_reg_reg_long );
9500 %}
9501 
9502 // And Long Register with Register
9503 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9504   match(Set dst (AndL dst src));
9505   effect(KILL cr);
9506   format %{ "AND    $dst.lo,$src.lo\n\t"
9507             "AND    $dst.hi,$src.hi" %}
9508   opcode(0x23,0x23);
9509   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9510   ins_pipe( ialu_reg_reg_long );
9511 %}
9512 
9513 // And Long Register with Immediate
9514 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9515   match(Set dst (AndL dst src));
9516   effect(KILL cr);
9517   format %{ "AND    $dst.lo,$src.lo\n\t"
9518             "AND    $dst.hi,$src.hi" %}
9519   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9520   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9521   ins_pipe( ialu_reg_long );
9522 %}
9523 
9524 // And Long Register with Memory
9525 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9526   match(Set dst (AndL dst (LoadL mem)));
9527   effect(KILL cr);
9528   ins_cost(125);
9529   format %{ "AND    $dst.lo,$mem\n\t"
9530             "AND    $dst.hi,$mem+4" %}
9531   opcode(0x23, 0x23);
9532   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9533   ins_pipe( ialu_reg_long_mem );
9534 %}
9535 
9536 // Or Long Register with Register
9537 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9538   match(Set dst (OrL dst src));
9539   effect(KILL cr);
9540   format %{ "OR     $dst.lo,$src.lo\n\t"
9541             "OR     $dst.hi,$src.hi" %}
9542   opcode(0x0B,0x0B);
9543   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9544   ins_pipe( ialu_reg_reg_long );
9545 %}
9546 
9547 // Or Long Register with Immediate
9548 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9549   match(Set dst (OrL dst src));
9550   effect(KILL cr);
9551   format %{ "OR     $dst.lo,$src.lo\n\t"
9552             "OR     $dst.hi,$src.hi" %}
9553   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9554   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9555   ins_pipe( ialu_reg_long );
9556 %}
9557 
9558 // Or Long Register with Memory
9559 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9560   match(Set dst (OrL dst (LoadL mem)));
9561   effect(KILL cr);
9562   ins_cost(125);
9563   format %{ "OR     $dst.lo,$mem\n\t"
9564             "OR     $dst.hi,$mem+4" %}
9565   opcode(0x0B,0x0B);
9566   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9567   ins_pipe( ialu_reg_long_mem );
9568 %}
9569 
9570 // Xor Long Register with Register
9571 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9572   match(Set dst (XorL dst src));
9573   effect(KILL cr);
9574   format %{ "XOR    $dst.lo,$src.lo\n\t"
9575             "XOR    $dst.hi,$src.hi" %}
9576   opcode(0x33,0x33);
9577   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9578   ins_pipe( ialu_reg_reg_long );
9579 %}
9580 
9581 // Xor Long Register with Immediate -1
9582 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9583   match(Set dst (XorL dst imm));  
9584   format %{ "NOT    $dst.lo\n\t"
9585             "NOT    $dst.hi" %}
9586   ins_encode %{
9587      __ notl($dst$$Register);
9588      __ notl(HIGH_FROM_LOW($dst$$Register));
9589   %}
9590   ins_pipe( ialu_reg_long );
9591 %}
9592 
9593 // Xor Long Register with Immediate
9594 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9595   match(Set dst (XorL dst src));
9596   effect(KILL cr);
9597   format %{ "XOR    $dst.lo,$src.lo\n\t"
9598             "XOR    $dst.hi,$src.hi" %}
9599   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9600   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9601   ins_pipe( ialu_reg_long );
9602 %}
9603 
9604 // Xor Long Register with Memory
9605 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9606   match(Set dst (XorL dst (LoadL mem)));
9607   effect(KILL cr);
9608   ins_cost(125);
9609   format %{ "XOR    $dst.lo,$mem\n\t"
9610             "XOR    $dst.hi,$mem+4" %}
9611   opcode(0x33,0x33);
9612   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9613   ins_pipe( ialu_reg_long_mem );
9614 %}
9615 
9616 // Shift Left Long by 1
9617 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9618   predicate(UseNewLongLShift);
9619   match(Set dst (LShiftL dst cnt));
9620   effect(KILL cr);
9621   ins_cost(100);
9622   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9623             "ADC    $dst.hi,$dst.hi" %}
9624   ins_encode %{
9625     __ addl($dst$$Register,$dst$$Register);
9626     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9627   %}
9628   ins_pipe( ialu_reg_long );
9629 %}
9630 
9631 // Shift Left Long by 2
9632 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9633   predicate(UseNewLongLShift);
9634   match(Set dst (LShiftL dst cnt));
9635   effect(KILL cr);
9636   ins_cost(100);
9637   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9638             "ADC    $dst.hi,$dst.hi\n\t" 
9639             "ADD    $dst.lo,$dst.lo\n\t"
9640             "ADC    $dst.hi,$dst.hi" %}
9641   ins_encode %{
9642     __ addl($dst$$Register,$dst$$Register);
9643     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9644     __ addl($dst$$Register,$dst$$Register);
9645     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9646   %}
9647   ins_pipe( ialu_reg_long );
9648 %}
9649 
9650 // Shift Left Long by 3
9651 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9652   predicate(UseNewLongLShift);
9653   match(Set dst (LShiftL dst cnt));
9654   effect(KILL cr);
9655   ins_cost(100);
9656   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9657             "ADC    $dst.hi,$dst.hi\n\t" 
9658             "ADD    $dst.lo,$dst.lo\n\t"
9659             "ADC    $dst.hi,$dst.hi\n\t" 
9660             "ADD    $dst.lo,$dst.lo\n\t"
9661             "ADC    $dst.hi,$dst.hi" %}
9662   ins_encode %{
9663     __ addl($dst$$Register,$dst$$Register);
9664     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9665     __ addl($dst$$Register,$dst$$Register);
9666     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9667     __ addl($dst$$Register,$dst$$Register);
9668     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9669   %}
9670   ins_pipe( ialu_reg_long );
9671 %}
9672 
9673 // Shift Left Long by 1-31
9674 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9675   match(Set dst (LShiftL dst cnt));
9676   effect(KILL cr);
9677   ins_cost(200);
9678   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9679             "SHL    $dst.lo,$cnt" %}
9680   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9681   ins_encode( move_long_small_shift(dst,cnt) );
9682   ins_pipe( ialu_reg_long );
9683 %}
9684 
9685 // Shift Left Long by 32-63
9686 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9687   match(Set dst (LShiftL dst cnt));
9688   effect(KILL cr);
9689   ins_cost(300);
9690   format %{ "MOV    $dst.hi,$dst.lo\n"
9691           "\tSHL    $dst.hi,$cnt-32\n"
9692           "\tXOR    $dst.lo,$dst.lo" %}
9693   opcode(0xC1, 0x4);  /* C1 /4 ib */
9694   ins_encode( move_long_big_shift_clr(dst,cnt) );
9695   ins_pipe( ialu_reg_long );
9696 %}
9697 
9698 // Shift Left Long by variable
9699 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9700   match(Set dst (LShiftL dst shift));
9701   effect(KILL cr);
9702   ins_cost(500+200);
9703   size(17);
9704   format %{ "TEST   $shift,32\n\t"
9705             "JEQ,s  small\n\t"
9706             "MOV    $dst.hi,$dst.lo\n\t"
9707             "XOR    $dst.lo,$dst.lo\n"
9708     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9709             "SHL    $dst.lo,$shift" %}
9710   ins_encode( shift_left_long( dst, shift ) );
9711   ins_pipe( pipe_slow );
9712 %}
9713 
9714 // Shift Right Long by 1-31
9715 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9716   match(Set dst (URShiftL dst cnt));
9717   effect(KILL cr);
9718   ins_cost(200);
9719   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9720             "SHR    $dst.hi,$cnt" %}
9721   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9722   ins_encode( move_long_small_shift(dst,cnt) );
9723   ins_pipe( ialu_reg_long );
9724 %}
9725 
9726 // Shift Right Long by 32-63
9727 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9728   match(Set dst (URShiftL dst cnt));
9729   effect(KILL cr);
9730   ins_cost(300);
9731   format %{ "MOV    $dst.lo,$dst.hi\n"
9732           "\tSHR    $dst.lo,$cnt-32\n"
9733           "\tXOR    $dst.hi,$dst.hi" %}
9734   opcode(0xC1, 0x5);  /* C1 /5 ib */
9735   ins_encode( move_long_big_shift_clr(dst,cnt) );
9736   ins_pipe( ialu_reg_long );
9737 %}
9738 
9739 // Shift Right Long by variable
9740 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9741   match(Set dst (URShiftL dst shift));
9742   effect(KILL cr);
9743   ins_cost(600);
9744   size(17);
9745   format %{ "TEST   $shift,32\n\t"
9746             "JEQ,s  small\n\t"
9747             "MOV    $dst.lo,$dst.hi\n\t"
9748             "XOR    $dst.hi,$dst.hi\n"
9749     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9750             "SHR    $dst.hi,$shift" %}
9751   ins_encode( shift_right_long( dst, shift ) );
9752   ins_pipe( pipe_slow );
9753 %}
9754 
9755 // Shift Right Long by 1-31
9756 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9757   match(Set dst (RShiftL dst cnt));
9758   effect(KILL cr);
9759   ins_cost(200);
9760   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9761             "SAR    $dst.hi,$cnt" %}
9762   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9763   ins_encode( move_long_small_shift(dst,cnt) );
9764   ins_pipe( ialu_reg_long );
9765 %}
9766 
9767 // Shift Right Long by 32-63
9768 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9769   match(Set dst (RShiftL dst cnt));
9770   effect(KILL cr);
9771   ins_cost(300);
9772   format %{ "MOV    $dst.lo,$dst.hi\n"
9773           "\tSAR    $dst.lo,$cnt-32\n"
9774           "\tSAR    $dst.hi,31" %}
9775   opcode(0xC1, 0x7);  /* C1 /7 ib */
9776   ins_encode( move_long_big_shift_sign(dst,cnt) );
9777   ins_pipe( ialu_reg_long );
9778 %}
9779 
9780 // Shift Right arithmetic Long by variable
9781 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9782   match(Set dst (RShiftL dst shift));
9783   effect(KILL cr);
9784   ins_cost(600);
9785   size(18);
9786   format %{ "TEST   $shift,32\n\t"
9787             "JEQ,s  small\n\t"
9788             "MOV    $dst.lo,$dst.hi\n\t"
9789             "SAR    $dst.hi,31\n"
9790     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9791             "SAR    $dst.hi,$shift" %}
9792   ins_encode( shift_right_arith_long( dst, shift ) );
9793   ins_pipe( pipe_slow );
9794 %}
9795 
9796 
9797 //----------Double Instructions------------------------------------------------
9798 // Double Math
9799 
9800 // Compare & branch
9801 
9802 // P6 version of float compare, sets condition codes in EFLAGS
9803 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9804   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9805   match(Set cr (CmpD src1 src2));
9806   effect(KILL rax);
9807   ins_cost(150);
9808   format %{ "FLD    $src1\n\t"
9809             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9810             "JNP    exit\n\t"
9811             "MOV    ah,1       // saw a NaN, set CF\n\t"
9812             "SAHF\n"
9813      "exit:\tNOP               // avoid branch to branch" %}
9814   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9815   ins_encode( Push_Reg_D(src1),
9816               OpcP, RegOpc(src2),
9817               cmpF_P6_fixup );
9818   ins_pipe( pipe_slow );
9819 %}
9820 
9821 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9822   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9823   match(Set cr (CmpD src1 src2));
9824   ins_cost(150);
9825   format %{ "FLD    $src1\n\t"
9826             "FUCOMIP ST,$src2  // P6 instruction" %}
9827   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9828   ins_encode( Push_Reg_D(src1),
9829               OpcP, RegOpc(src2));
9830   ins_pipe( pipe_slow );
9831 %}
9832 
9833 // Compare & branch
9834 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9835   predicate(UseSSE<=1);
9836   match(Set cr (CmpD src1 src2));
9837   effect(KILL rax);
9838   ins_cost(200);
9839   format %{ "FLD    $src1\n\t"
9840             "FCOMp  $src2\n\t"
9841             "FNSTSW AX\n\t"
9842             "TEST   AX,0x400\n\t"
9843             "JZ,s   flags\n\t"
9844             "MOV    AH,1\t# unordered treat as LT\n"
9845     "flags:\tSAHF" %}
9846   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9847   ins_encode( Push_Reg_D(src1),
9848               OpcP, RegOpc(src2),
9849               fpu_flags);
9850   ins_pipe( pipe_slow );
9851 %}
9852 
9853 // Compare vs zero into -1,0,1
9854 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9855   predicate(UseSSE<=1);
9856   match(Set dst (CmpD3 src1 zero));
9857   effect(KILL cr, KILL rax);
9858   ins_cost(280);
9859   format %{ "FTSTD  $dst,$src1" %}
9860   opcode(0xE4, 0xD9);
9861   ins_encode( Push_Reg_D(src1),
9862               OpcS, OpcP, PopFPU,
9863               CmpF_Result(dst));
9864   ins_pipe( pipe_slow );
9865 %}
9866 
9867 // Compare into -1,0,1
9868 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9869   predicate(UseSSE<=1);
9870   match(Set dst (CmpD3 src1 src2));
9871   effect(KILL cr, KILL rax);
9872   ins_cost(300);
9873   format %{ "FCMPD  $dst,$src1,$src2" %}
9874   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9875   ins_encode( Push_Reg_D(src1),
9876               OpcP, RegOpc(src2),
9877               CmpF_Result(dst));
9878   ins_pipe( pipe_slow );
9879 %}
9880 
9881 // float compare and set condition codes in EFLAGS by XMM regs
9882 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9883   predicate(UseSSE>=2);
9884   match(Set cr (CmpD dst src));
9885   effect(KILL rax);
9886   ins_cost(125);
9887   format %{ "COMISD $dst,$src\n"
9888           "\tJNP    exit\n"
9889           "\tMOV    ah,1       // saw a NaN, set CF\n"
9890           "\tSAHF\n"
9891      "exit:\tNOP               // avoid branch to branch" %}
9892   opcode(0x66, 0x0F, 0x2F);
9893   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9894   ins_pipe( pipe_slow );
9895 %}
9896 
9897 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
9898   predicate(UseSSE>=2);
9899   match(Set cr (CmpD dst src));
9900   ins_cost(100);
9901   format %{ "COMISD $dst,$src" %}
9902   opcode(0x66, 0x0F, 0x2F);
9903   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
9904   ins_pipe( pipe_slow );
9905 %}
9906 
9907 // float compare and set condition codes in EFLAGS by XMM regs
9908 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9909   predicate(UseSSE>=2);
9910   match(Set cr (CmpD dst (LoadD src)));
9911   effect(KILL rax);
9912   ins_cost(145);
9913   format %{ "COMISD $dst,$src\n"
9914           "\tJNP    exit\n"
9915           "\tMOV    ah,1       // saw a NaN, set CF\n"
9916           "\tSAHF\n"
9917      "exit:\tNOP               // avoid branch to branch" %}
9918   opcode(0x66, 0x0F, 0x2F);
9919   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9920   ins_pipe( pipe_slow );
9921 %}
9922 
9923 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
9924   predicate(UseSSE>=2);
9925   match(Set cr (CmpD dst (LoadD src)));
9926   ins_cost(100);
9927   format %{ "COMISD $dst,$src" %}
9928   opcode(0x66, 0x0F, 0x2F);
9929   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
9930   ins_pipe( pipe_slow );
9931 %}
9932 
9933 // Compare into -1,0,1 in XMM
9934 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9935   predicate(UseSSE>=2);
9936   match(Set dst (CmpD3 src1 src2));
9937   effect(KILL cr);
9938   ins_cost(255);
9939   format %{ "XOR    $dst,$dst\n"
9940           "\tCOMISD $src1,$src2\n"
9941           "\tJP,s   nan\n"
9942           "\tJEQ,s  exit\n"
9943           "\tJA,s   inc\n"
9944       "nan:\tDEC    $dst\n"
9945           "\tJMP,s  exit\n"
9946       "inc:\tINC    $dst\n"
9947       "exit:"
9948                 %}
9949   opcode(0x66, 0x0F, 0x2F);
9950   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9951              CmpX_Result(dst));
9952   ins_pipe( pipe_slow );
9953 %}
9954 
9955 // Compare into -1,0,1 in XMM and memory
9956 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9957   predicate(UseSSE>=2);
9958   match(Set dst (CmpD3 src1 (LoadD mem)));
9959   effect(KILL cr);
9960   ins_cost(275);
9961   format %{ "COMISD $src1,$mem\n"
9962           "\tMOV    $dst,0\t\t# do not blow flags\n"
9963           "\tJP,s   nan\n"
9964           "\tJEQ,s  exit\n"
9965           "\tJA,s   inc\n"
9966       "nan:\tDEC    $dst\n"
9967           "\tJMP,s  exit\n"
9968       "inc:\tINC    $dst\n"
9969       "exit:"
9970                 %}
9971   opcode(0x66, 0x0F, 0x2F);
9972   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9973              LdImmI(dst,0x0), CmpX_Result(dst));
9974   ins_pipe( pipe_slow );
9975 %}
9976 
9977 
9978 instruct subD_reg(regD dst, regD src) %{
9979   predicate (UseSSE <=1);
9980   match(Set dst (SubD dst src));
9981 
9982   format %{ "FLD    $src\n\t"
9983             "DSUBp  $dst,ST" %}
9984   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9985   ins_cost(150);
9986   ins_encode( Push_Reg_D(src),
9987               OpcP, RegOpc(dst) );
9988   ins_pipe( fpu_reg_reg );
9989 %}
9990 
9991 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9992   predicate (UseSSE <=1);
9993   match(Set dst (RoundDouble (SubD src1 src2)));
9994   ins_cost(250);
9995 
9996   format %{ "FLD    $src2\n\t"
9997             "DSUB   ST,$src1\n\t"
9998             "FSTP_D $dst\t# D-round" %}
9999   opcode(0xD8, 0x5);
10000   ins_encode( Push_Reg_D(src2),
10001               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10002   ins_pipe( fpu_mem_reg_reg );
10003 %}
10004 
10005 
10006 instruct subD_reg_mem(regD dst, memory src) %{
10007   predicate (UseSSE <=1);
10008   match(Set dst (SubD dst (LoadD src)));
10009   ins_cost(150);
10010 
10011   format %{ "FLD    $src\n\t"
10012             "DSUBp  $dst,ST" %}
10013   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10014   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10015               OpcP, RegOpc(dst) );
10016   ins_pipe( fpu_reg_mem );
10017 %}
10018 
10019 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
10020   predicate (UseSSE<=1);
10021   match(Set dst (AbsD src));
10022   ins_cost(100);
10023   format %{ "FABS" %}
10024   opcode(0xE1, 0xD9);
10025   ins_encode( OpcS, OpcP );
10026   ins_pipe( fpu_reg_reg );
10027 %}
10028 
10029 instruct absXD_reg( regXD dst ) %{
10030   predicate(UseSSE>=2);
10031   match(Set dst (AbsD dst));
10032   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
10033   ins_encode( AbsXD_encoding(dst));
10034   ins_pipe( pipe_slow );
10035 %}
10036 
10037 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
10038   predicate(UseSSE<=1);
10039   match(Set dst (NegD src));
10040   ins_cost(100);
10041   format %{ "FCHS" %}
10042   opcode(0xE0, 0xD9);
10043   ins_encode( OpcS, OpcP );
10044   ins_pipe( fpu_reg_reg );
10045 %}
10046 
10047 instruct negXD_reg( regXD dst ) %{
10048   predicate(UseSSE>=2);
10049   match(Set dst (NegD dst));
10050   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
10051   ins_encode %{
10052      __ xorpd($dst$$XMMRegister,
10053               ExternalAddress((address)double_signflip_pool));
10054   %}
10055   ins_pipe( pipe_slow );
10056 %}
10057 
10058 instruct addD_reg(regD dst, regD src) %{
10059   predicate(UseSSE<=1);
10060   match(Set dst (AddD dst src));
10061   format %{ "FLD    $src\n\t"
10062             "DADD   $dst,ST" %}
10063   size(4);
10064   ins_cost(150);
10065   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10066   ins_encode( Push_Reg_D(src),
10067               OpcP, RegOpc(dst) );
10068   ins_pipe( fpu_reg_reg );
10069 %}
10070 
10071 
10072 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10073   predicate(UseSSE<=1);
10074   match(Set dst (RoundDouble (AddD src1 src2)));
10075   ins_cost(250);
10076 
10077   format %{ "FLD    $src2\n\t"
10078             "DADD   ST,$src1\n\t"
10079             "FSTP_D $dst\t# D-round" %}
10080   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
10081   ins_encode( Push_Reg_D(src2),
10082               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
10083   ins_pipe( fpu_mem_reg_reg );
10084 %}
10085 
10086 
10087 instruct addD_reg_mem(regD dst, memory src) %{
10088   predicate(UseSSE<=1);
10089   match(Set dst (AddD dst (LoadD src)));
10090   ins_cost(150);
10091 
10092   format %{ "FLD    $src\n\t"
10093             "DADDp  $dst,ST" %}
10094   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
10095   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10096               OpcP, RegOpc(dst) );
10097   ins_pipe( fpu_reg_mem );
10098 %}
10099 
10100 // add-to-memory
10101 instruct addD_mem_reg(memory dst, regD src) %{
10102   predicate(UseSSE<=1);
10103   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
10104   ins_cost(150);
10105 
10106   format %{ "FLD_D  $dst\n\t"
10107             "DADD   ST,$src\n\t"
10108             "FST_D  $dst" %}
10109   opcode(0xDD, 0x0);
10110   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
10111               Opcode(0xD8), RegOpc(src),
10112               set_instruction_start,
10113               Opcode(0xDD), RMopc_Mem(0x03,dst) );
10114   ins_pipe( fpu_reg_mem );
10115 %}
10116 
10117 instruct addD_reg_imm1(regD dst, immD1 src) %{
10118   predicate(UseSSE<=1);
10119   match(Set dst (AddD dst src));
10120   ins_cost(125);
10121   format %{ "FLD1\n\t"
10122             "DADDp  $dst,ST" %}
10123   opcode(0xDE, 0x00);
10124   ins_encode( LdImmD(src),
10125               OpcP, RegOpc(dst) );
10126   ins_pipe( fpu_reg );
10127 %}
10128 
10129 instruct addD_reg_imm(regD dst, immD src) %{
10130   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10131   match(Set dst (AddD dst src));
10132   ins_cost(200);
10133   format %{ "FLD_D  [$src]\n\t"
10134             "DADDp  $dst,ST" %}
10135   opcode(0xDE, 0x00);       /* DE /0 */
10136   ins_encode( LdImmD(src),
10137               OpcP, RegOpc(dst));
10138   ins_pipe( fpu_reg_mem );
10139 %}
10140 
10141 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
10142   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
10143   match(Set dst (RoundDouble (AddD src con)));
10144   ins_cost(200);
10145   format %{ "FLD_D  [$con]\n\t"
10146             "DADD   ST,$src\n\t"
10147             "FSTP_D $dst\t# D-round" %}
10148   opcode(0xD8, 0x00);       /* D8 /0 */
10149   ins_encode( LdImmD(con),
10150               OpcP, RegOpc(src), Pop_Mem_D(dst));
10151   ins_pipe( fpu_mem_reg_con );
10152 %}
10153 
10154 // Add two double precision floating point values in xmm
10155 instruct addXD_reg(regXD dst, regXD src) %{
10156   predicate(UseSSE>=2);
10157   match(Set dst (AddD dst src));
10158   format %{ "ADDSD  $dst,$src" %}
10159   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10160   ins_pipe( pipe_slow );
10161 %}
10162 
10163 instruct addXD_imm(regXD dst, immXD con) %{
10164   predicate(UseSSE>=2);
10165   match(Set dst (AddD dst con));
10166   format %{ "ADDSD  $dst,[$con]" %}
10167   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
10168   ins_pipe( pipe_slow );
10169 %}
10170 
10171 instruct addXD_mem(regXD dst, memory mem) %{
10172   predicate(UseSSE>=2);
10173   match(Set dst (AddD dst (LoadD mem)));
10174   format %{ "ADDSD  $dst,$mem" %}
10175   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
10176   ins_pipe( pipe_slow );
10177 %}
10178 
10179 // Sub two double precision floating point values in xmm
10180 instruct subXD_reg(regXD dst, regXD src) %{
10181   predicate(UseSSE>=2);
10182   match(Set dst (SubD dst src));
10183   format %{ "SUBSD  $dst,$src" %}
10184   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10185   ins_pipe( pipe_slow );
10186 %}
10187 
10188 instruct subXD_imm(regXD dst, immXD con) %{
10189   predicate(UseSSE>=2);
10190   match(Set dst (SubD dst con));
10191   format %{ "SUBSD  $dst,[$con]" %}
10192   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
10193   ins_pipe( pipe_slow );
10194 %}
10195 
10196 instruct subXD_mem(regXD dst, memory mem) %{
10197   predicate(UseSSE>=2);
10198   match(Set dst (SubD dst (LoadD mem)));
10199   format %{ "SUBSD  $dst,$mem" %}
10200   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10201   ins_pipe( pipe_slow );
10202 %}
10203 
10204 // Mul two double precision floating point values in xmm
10205 instruct mulXD_reg(regXD dst, regXD src) %{
10206   predicate(UseSSE>=2);
10207   match(Set dst (MulD dst src));
10208   format %{ "MULSD  $dst,$src" %}
10209   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10210   ins_pipe( pipe_slow );
10211 %}
10212 
10213 instruct mulXD_imm(regXD dst, immXD con) %{
10214   predicate(UseSSE>=2);
10215   match(Set dst (MulD dst con));
10216   format %{ "MULSD  $dst,[$con]" %}
10217   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
10218   ins_pipe( pipe_slow );
10219 %}
10220 
10221 instruct mulXD_mem(regXD dst, memory mem) %{
10222   predicate(UseSSE>=2);
10223   match(Set dst (MulD dst (LoadD mem)));
10224   format %{ "MULSD  $dst,$mem" %}
10225   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10226   ins_pipe( pipe_slow );
10227 %}
10228 
10229 // Div two double precision floating point values in xmm
10230 instruct divXD_reg(regXD dst, regXD src) %{
10231   predicate(UseSSE>=2);
10232   match(Set dst (DivD dst src));
10233   format %{ "DIVSD  $dst,$src" %}
10234   opcode(0xF2, 0x0F, 0x5E);
10235   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10236   ins_pipe( pipe_slow );
10237 %}
10238 
10239 instruct divXD_imm(regXD dst, immXD con) %{
10240   predicate(UseSSE>=2);
10241   match(Set dst (DivD dst con));
10242   format %{ "DIVSD  $dst,[$con]" %}
10243   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
10244   ins_pipe( pipe_slow );
10245 %}
10246 
10247 instruct divXD_mem(regXD dst, memory mem) %{
10248   predicate(UseSSE>=2);
10249   match(Set dst (DivD dst (LoadD mem)));
10250   format %{ "DIVSD  $dst,$mem" %}
10251   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10252   ins_pipe( pipe_slow );
10253 %}
10254 
10255 
10256 instruct mulD_reg(regD dst, regD src) %{
10257   predicate(UseSSE<=1);
10258   match(Set dst (MulD dst src));
10259   format %{ "FLD    $src\n\t"
10260             "DMULp  $dst,ST" %}
10261   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10262   ins_cost(150);
10263   ins_encode( Push_Reg_D(src),
10264               OpcP, RegOpc(dst) );
10265   ins_pipe( fpu_reg_reg );
10266 %}
10267 
10268 // Strict FP instruction biases argument before multiply then
10269 // biases result to avoid double rounding of subnormals.
10270 //
10271 // scale arg1 by multiplying arg1 by 2^(-15360)
10272 // load arg2
10273 // multiply scaled arg1 by arg2
10274 // rescale product by 2^(15360)
10275 //
10276 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
10277   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10278   match(Set dst (MulD dst src));
10279   ins_cost(1);   // Select this instruction for all strict FP double multiplies
10280 
10281   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10282             "DMULp  $dst,ST\n\t"
10283             "FLD    $src\n\t"
10284             "DMULp  $dst,ST\n\t"
10285             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10286             "DMULp  $dst,ST\n\t" %}
10287   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
10288   ins_encode( strictfp_bias1(dst),
10289               Push_Reg_D(src),
10290               OpcP, RegOpc(dst),
10291               strictfp_bias2(dst) );
10292   ins_pipe( fpu_reg_reg );
10293 %}
10294 
10295 instruct mulD_reg_imm(regD dst, immD src) %{
10296   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
10297   match(Set dst (MulD dst src));
10298   ins_cost(200);
10299   format %{ "FLD_D  [$src]\n\t"
10300             "DMULp  $dst,ST" %}
10301   opcode(0xDE, 0x1); /* DE /1 */
10302   ins_encode( LdImmD(src),
10303               OpcP, RegOpc(dst) );
10304   ins_pipe( fpu_reg_mem );
10305 %}
10306 
10307 
10308 instruct mulD_reg_mem(regD dst, memory src) %{
10309   predicate( UseSSE<=1 );
10310   match(Set dst (MulD dst (LoadD src)));
10311   ins_cost(200);
10312   format %{ "FLD_D  $src\n\t"
10313             "DMULp  $dst,ST" %}
10314   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
10315   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10316               OpcP, RegOpc(dst) );
10317   ins_pipe( fpu_reg_mem );
10318 %}
10319 
10320 //
10321 // Cisc-alternate to reg-reg multiply
10322 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
10323   predicate( UseSSE<=1 );
10324   match(Set dst (MulD src (LoadD mem)));
10325   ins_cost(250);
10326   format %{ "FLD_D  $mem\n\t"
10327             "DMUL   ST,$src\n\t"
10328             "FSTP_D $dst" %}
10329   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
10330   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
10331               OpcReg_F(src),
10332               Pop_Reg_D(dst) );
10333   ins_pipe( fpu_reg_reg_mem );
10334 %}
10335 
10336 
10337 // MACRO3 -- addD a mulD
10338 // This instruction is a '2-address' instruction in that the result goes
10339 // back to src2.  This eliminates a move from the macro; possibly the
10340 // register allocator will have to add it back (and maybe not).
10341 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
10342   predicate( UseSSE<=1 );
10343   match(Set src2 (AddD (MulD src0 src1) src2));
10344   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10345             "DMUL   ST,$src1\n\t"
10346             "DADDp  $src2,ST" %}
10347   ins_cost(250);
10348   opcode(0xDD); /* LoadD DD /0 */
10349   ins_encode( Push_Reg_F(src0),
10350               FMul_ST_reg(src1),
10351               FAddP_reg_ST(src2) );
10352   ins_pipe( fpu_reg_reg_reg );
10353 %}
10354 
10355 
10356 // MACRO3 -- subD a mulD
10357 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
10358   predicate( UseSSE<=1 );
10359   match(Set src2 (SubD (MulD src0 src1) src2));
10360   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
10361             "DMUL   ST,$src1\n\t"
10362             "DSUBRp $src2,ST" %}
10363   ins_cost(250);
10364   ins_encode( Push_Reg_F(src0),
10365               FMul_ST_reg(src1),
10366               Opcode(0xDE), Opc_plus(0xE0,src2));
10367   ins_pipe( fpu_reg_reg_reg );
10368 %}
10369 
10370 
10371 instruct divD_reg(regD dst, regD src) %{
10372   predicate( UseSSE<=1 );
10373   match(Set dst (DivD dst src));
10374 
10375   format %{ "FLD    $src\n\t"
10376             "FDIVp  $dst,ST" %}
10377   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10378   ins_cost(150);
10379   ins_encode( Push_Reg_D(src),
10380               OpcP, RegOpc(dst) );
10381   ins_pipe( fpu_reg_reg );
10382 %}
10383 
10384 // Strict FP instruction biases argument before division then
10385 // biases result, to avoid double rounding of subnormals.
10386 //
10387 // scale dividend by multiplying dividend by 2^(-15360)
10388 // load divisor
10389 // divide scaled dividend by divisor
10390 // rescale quotient by 2^(15360)
10391 //
10392 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
10393   predicate (UseSSE<=1);
10394   match(Set dst (DivD dst src));
10395   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
10396   ins_cost(01);
10397 
10398   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
10399             "DMULp  $dst,ST\n\t"
10400             "FLD    $src\n\t"
10401             "FDIVp  $dst,ST\n\t"
10402             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
10403             "DMULp  $dst,ST\n\t" %}
10404   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10405   ins_encode( strictfp_bias1(dst),
10406               Push_Reg_D(src),
10407               OpcP, RegOpc(dst),
10408               strictfp_bias2(dst) );
10409   ins_pipe( fpu_reg_reg );
10410 %}
10411 
10412 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
10413   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
10414   match(Set dst (RoundDouble (DivD src1 src2)));
10415 
10416   format %{ "FLD    $src1\n\t"
10417             "FDIV   ST,$src2\n\t"
10418             "FSTP_D $dst\t# D-round" %}
10419   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
10420   ins_encode( Push_Reg_D(src1),
10421               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
10422   ins_pipe( fpu_mem_reg_reg );
10423 %}
10424 
10425 
10426 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
10427   predicate(UseSSE<=1);
10428   match(Set dst (ModD dst src));
10429   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
10430 
10431   format %{ "DMOD   $dst,$src" %}
10432   ins_cost(250);
10433   ins_encode(Push_Reg_Mod_D(dst, src),
10434               emitModD(),
10435               Push_Result_Mod_D(src),
10436               Pop_Reg_D(dst));
10437   ins_pipe( pipe_slow );
10438 %}
10439 
10440 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
10441   predicate(UseSSE>=2);
10442   match(Set dst (ModD src0 src1));
10443   effect(KILL rax, KILL cr);
10444 
10445   format %{ "SUB    ESP,8\t # DMOD\n"
10446           "\tMOVSD  [ESP+0],$src1\n"
10447           "\tFLD_D  [ESP+0]\n"
10448           "\tMOVSD  [ESP+0],$src0\n"
10449           "\tFLD_D  [ESP+0]\n"
10450      "loop:\tFPREM\n"
10451           "\tFWAIT\n"
10452           "\tFNSTSW AX\n"
10453           "\tSAHF\n"
10454           "\tJP     loop\n"
10455           "\tFSTP_D [ESP+0]\n"
10456           "\tMOVSD  $dst,[ESP+0]\n"
10457           "\tADD    ESP,8\n"
10458           "\tFSTP   ST0\t # Restore FPU Stack"
10459     %}
10460   ins_cost(250);
10461   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
10462   ins_pipe( pipe_slow );
10463 %}
10464 
10465 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
10466   predicate (UseSSE<=1);
10467   match(Set dst (SinD src));
10468   ins_cost(1800);
10469   format %{ "DSIN   $dst" %}
10470   opcode(0xD9, 0xFE);
10471   ins_encode( OpcP, OpcS );
10472   ins_pipe( pipe_slow );
10473 %}
10474 
10475 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
10476   predicate (UseSSE>=2);
10477   match(Set dst (SinD dst));
10478   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10479   ins_cost(1800);
10480   format %{ "DSIN   $dst" %}
10481   opcode(0xD9, 0xFE);
10482   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10483   ins_pipe( pipe_slow );
10484 %}
10485 
10486 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
10487   predicate (UseSSE<=1);
10488   match(Set dst (CosD src));
10489   ins_cost(1800);
10490   format %{ "DCOS   $dst" %}
10491   opcode(0xD9, 0xFF);
10492   ins_encode( OpcP, OpcS );
10493   ins_pipe( pipe_slow );
10494 %}
10495 
10496 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
10497   predicate (UseSSE>=2);
10498   match(Set dst (CosD dst));
10499   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10500   ins_cost(1800);
10501   format %{ "DCOS   $dst" %}
10502   opcode(0xD9, 0xFF);
10503   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10504   ins_pipe( pipe_slow );
10505 %}
10506 
10507 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10508   predicate (UseSSE<=1);
10509   match(Set dst(TanD src));
10510   format %{ "DTAN   $dst" %}
10511   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10512               Opcode(0xDD), Opcode(0xD8));   // fstp st
10513   ins_pipe( pipe_slow );
10514 %}
10515 
10516 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10517   predicate (UseSSE>=2);
10518   match(Set dst(TanD dst));
10519   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10520   format %{ "DTAN   $dst" %}
10521   ins_encode( Push_SrcXD(dst),
10522               Opcode(0xD9), Opcode(0xF2),    // fptan
10523               Opcode(0xDD), Opcode(0xD8),   // fstp st
10524               Push_ResultXD(dst) );
10525   ins_pipe( pipe_slow );
10526 %}
10527 
10528 instruct atanD_reg(regD dst, regD src) %{
10529   predicate (UseSSE<=1);
10530   match(Set dst(AtanD dst src));
10531   format %{ "DATA   $dst,$src" %}
10532   opcode(0xD9, 0xF3);
10533   ins_encode( Push_Reg_D(src),
10534               OpcP, OpcS, RegOpc(dst) );
10535   ins_pipe( pipe_slow );
10536 %}
10537 
10538 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10539   predicate (UseSSE>=2);
10540   match(Set dst(AtanD dst src));
10541   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10542   format %{ "DATA   $dst,$src" %}
10543   opcode(0xD9, 0xF3);
10544   ins_encode( Push_SrcXD(src),
10545               OpcP, OpcS, Push_ResultXD(dst) );
10546   ins_pipe( pipe_slow );
10547 %}
10548 
10549 instruct sqrtD_reg(regD dst, regD src) %{
10550   predicate (UseSSE<=1);
10551   match(Set dst (SqrtD src));
10552   format %{ "DSQRT  $dst,$src" %}
10553   opcode(0xFA, 0xD9);
10554   ins_encode( Push_Reg_D(src),
10555               OpcS, OpcP, Pop_Reg_D(dst) );
10556   ins_pipe( pipe_slow );
10557 %}
10558 
10559 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10560   predicate (UseSSE<=1);
10561   match(Set Y (PowD X Y));  // Raise X to the Yth power
10562   effect(KILL rax, KILL rbx, KILL rcx);
10563   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10564             "FLD_D  $X\n\t"
10565             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10566 
10567             "FDUP   \t\t\t# Q Q\n\t"
10568             "FRNDINT\t\t\t# int(Q) Q\n\t"
10569             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10570             "FISTP  dword [ESP]\n\t"
10571             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10572             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10573             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10574             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10575             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10576             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10577             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10578             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10579             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10580             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10581             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10582             "MOV    [ESP+0],0\n\t"
10583             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10584 
10585             "ADD    ESP,8"
10586              %}
10587   ins_encode( push_stack_temp_qword,
10588               Push_Reg_D(X),
10589               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10590               pow_exp_core_encoding,
10591               pop_stack_temp_qword);
10592   ins_pipe( pipe_slow );
10593 %}
10594 
10595 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10596   predicate (UseSSE>=2);
10597   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10598   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10599   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10600             "MOVSD  [ESP],$src1\n\t"
10601             "FLD    FPR1,$src1\n\t"
10602             "MOVSD  [ESP],$src0\n\t"
10603             "FLD    FPR1,$src0\n\t"
10604             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10605 
10606             "FDUP   \t\t\t# Q Q\n\t"
10607             "FRNDINT\t\t\t# int(Q) Q\n\t"
10608             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10609             "FISTP  dword [ESP]\n\t"
10610             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10611             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10612             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10613             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10614             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10615             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10616             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10617             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10618             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10619             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10620             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10621             "MOV    [ESP+0],0\n\t"
10622             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10623 
10624             "FST_D  [ESP]\n\t"
10625             "MOVSD  $dst,[ESP]\n\t"
10626             "ADD    ESP,8"
10627              %}
10628   ins_encode( push_stack_temp_qword,
10629               push_xmm_to_fpr1(src1),
10630               push_xmm_to_fpr1(src0),
10631               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10632               pow_exp_core_encoding,
10633               Push_ResultXD(dst) );
10634   ins_pipe( pipe_slow );
10635 %}
10636 
10637 
10638 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10639   predicate (UseSSE<=1);
10640   match(Set dpr1 (ExpD dpr1));
10641   effect(KILL rax, KILL rbx, KILL rcx);
10642   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10643             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10644             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10645 
10646             "FDUP   \t\t\t# Q Q\n\t"
10647             "FRNDINT\t\t\t# int(Q) Q\n\t"
10648             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10649             "FISTP  dword [ESP]\n\t"
10650             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10651             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10652             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10653             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10654             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10655             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10656             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10657             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10658             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10659             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10660             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10661             "MOV    [ESP+0],0\n\t"
10662             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10663 
10664             "ADD    ESP,8"
10665              %}
10666   ins_encode( push_stack_temp_qword,
10667               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10668               Opcode(0xDE), Opcode(0xC9),   // fmulp
10669               pow_exp_core_encoding,
10670               pop_stack_temp_qword);
10671   ins_pipe( pipe_slow );
10672 %}
10673 
10674 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10675   predicate (UseSSE>=2);
10676   match(Set dst (ExpD src));
10677   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10678   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10679             "MOVSD  [ESP],$src\n\t"
10680             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10681             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10682 
10683             "FDUP   \t\t\t# Q Q\n\t"
10684             "FRNDINT\t\t\t# int(Q) Q\n\t"
10685             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10686             "FISTP  dword [ESP]\n\t"
10687             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10688             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10689             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10690             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10691             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10692             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10693             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10694             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10695             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10696             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10697             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10698             "MOV    [ESP+0],0\n\t"
10699             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10700 
10701             "FST_D  [ESP]\n\t"
10702             "MOVSD  $dst,[ESP]\n\t"
10703             "ADD    ESP,8"
10704              %}
10705   ins_encode( Push_SrcXD(src),
10706               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10707               Opcode(0xDE), Opcode(0xC9),   // fmulp
10708               pow_exp_core_encoding,
10709               Push_ResultXD(dst) );
10710   ins_pipe( pipe_slow );
10711 %}
10712 
10713 
10714 
10715 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10716   predicate (UseSSE<=1);
10717   // The source Double operand on FPU stack
10718   match(Set dst (Log10D src));
10719   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10720   // fxch         ; swap ST(0) with ST(1)
10721   // fyl2x        ; compute log_10(2) * log_2(x)
10722   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10723             "FXCH   \n\t"
10724             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10725          %}
10726   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10727               Opcode(0xD9), Opcode(0xC9),   // fxch
10728               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10729 
10730   ins_pipe( pipe_slow );
10731 %}
10732 
10733 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10734   predicate (UseSSE>=2);
10735   effect(KILL cr);
10736   match(Set dst (Log10D src));
10737   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10738   // fyl2x        ; compute log_10(2) * log_2(x)
10739   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10740             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10741          %}
10742   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10743               Push_SrcXD(src),
10744               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10745               Push_ResultXD(dst));
10746 
10747   ins_pipe( pipe_slow );
10748 %}
10749 
10750 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10751   predicate (UseSSE<=1);
10752   // The source Double operand on FPU stack
10753   match(Set dst (LogD src));
10754   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10755   // fxch         ; swap ST(0) with ST(1)
10756   // fyl2x        ; compute log_e(2) * log_2(x)
10757   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10758             "FXCH   \n\t"
10759             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10760          %}
10761   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10762               Opcode(0xD9), Opcode(0xC9),   // fxch
10763               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10764 
10765   ins_pipe( pipe_slow );
10766 %}
10767 
10768 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10769   predicate (UseSSE>=2);
10770   effect(KILL cr);
10771   // The source and result Double operands in XMM registers
10772   match(Set dst (LogD src));
10773   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10774   // fyl2x        ; compute log_e(2) * log_2(x)
10775   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10776             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10777          %}
10778   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10779               Push_SrcXD(src),
10780               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10781               Push_ResultXD(dst));
10782   ins_pipe( pipe_slow );
10783 %}
10784 
10785 //-------------Float Instructions-------------------------------
10786 // Float Math
10787 
10788 // Code for float compare:
10789 //     fcompp();
10790 //     fwait(); fnstsw_ax();
10791 //     sahf();
10792 //     movl(dst, unordered_result);
10793 //     jcc(Assembler::parity, exit);
10794 //     movl(dst, less_result);
10795 //     jcc(Assembler::below, exit);
10796 //     movl(dst, equal_result);
10797 //     jcc(Assembler::equal, exit);
10798 //     movl(dst, greater_result);
10799 //   exit:
10800 
10801 // P6 version of float compare, sets condition codes in EFLAGS
10802 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10803   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10804   match(Set cr (CmpF src1 src2));
10805   effect(KILL rax);
10806   ins_cost(150);
10807   format %{ "FLD    $src1\n\t"
10808             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10809             "JNP    exit\n\t"
10810             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10811             "SAHF\n"
10812      "exit:\tNOP               // avoid branch to branch" %}
10813   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10814   ins_encode( Push_Reg_D(src1),
10815               OpcP, RegOpc(src2),
10816               cmpF_P6_fixup );
10817   ins_pipe( pipe_slow );
10818 %}
10819 
10820 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10821   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10822   match(Set cr (CmpF src1 src2));
10823   ins_cost(100);
10824   format %{ "FLD    $src1\n\t"
10825             "FUCOMIP ST,$src2  // P6 instruction" %}
10826   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10827   ins_encode( Push_Reg_D(src1),
10828               OpcP, RegOpc(src2));
10829   ins_pipe( pipe_slow );
10830 %}
10831 
10832 
10833 // Compare & branch
10834 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10835   predicate(UseSSE == 0);
10836   match(Set cr (CmpF src1 src2));
10837   effect(KILL rax);
10838   ins_cost(200);
10839   format %{ "FLD    $src1\n\t"
10840             "FCOMp  $src2\n\t"
10841             "FNSTSW AX\n\t"
10842             "TEST   AX,0x400\n\t"
10843             "JZ,s   flags\n\t"
10844             "MOV    AH,1\t# unordered treat as LT\n"
10845     "flags:\tSAHF" %}
10846   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10847   ins_encode( Push_Reg_D(src1),
10848               OpcP, RegOpc(src2),
10849               fpu_flags);
10850   ins_pipe( pipe_slow );
10851 %}
10852 
10853 // Compare vs zero into -1,0,1
10854 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10855   predicate(UseSSE == 0);
10856   match(Set dst (CmpF3 src1 zero));
10857   effect(KILL cr, KILL rax);
10858   ins_cost(280);
10859   format %{ "FTSTF  $dst,$src1" %}
10860   opcode(0xE4, 0xD9);
10861   ins_encode( Push_Reg_D(src1),
10862               OpcS, OpcP, PopFPU,
10863               CmpF_Result(dst));
10864   ins_pipe( pipe_slow );
10865 %}
10866 
10867 // Compare into -1,0,1
10868 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10869   predicate(UseSSE == 0);
10870   match(Set dst (CmpF3 src1 src2));
10871   effect(KILL cr, KILL rax);
10872   ins_cost(300);
10873   format %{ "FCMPF  $dst,$src1,$src2" %}
10874   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10875   ins_encode( Push_Reg_D(src1),
10876               OpcP, RegOpc(src2),
10877               CmpF_Result(dst));
10878   ins_pipe( pipe_slow );
10879 %}
10880 
10881 // float compare and set condition codes in EFLAGS by XMM regs
10882 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10883   predicate(UseSSE>=1);
10884   match(Set cr (CmpF dst src));
10885   effect(KILL rax);
10886   ins_cost(145);
10887   format %{ "COMISS $dst,$src\n"
10888           "\tJNP    exit\n"
10889           "\tMOV    ah,1       // saw a NaN, set CF\n"
10890           "\tSAHF\n"
10891      "exit:\tNOP               // avoid branch to branch" %}
10892   opcode(0x0F, 0x2F);
10893   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10894   ins_pipe( pipe_slow );
10895 %}
10896 
10897 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
10898   predicate(UseSSE>=1);
10899   match(Set cr (CmpF dst src));
10900   ins_cost(100);
10901   format %{ "COMISS $dst,$src" %}
10902   opcode(0x0F, 0x2F);
10903   ins_encode(OpcP, OpcS, RegReg(dst, src));
10904   ins_pipe( pipe_slow );
10905 %}
10906 
10907 // float compare and set condition codes in EFLAGS by XMM regs
10908 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10909   predicate(UseSSE>=1);
10910   match(Set cr (CmpF dst (LoadF src)));
10911   effect(KILL rax);
10912   ins_cost(165);
10913   format %{ "COMISS $dst,$src\n"
10914           "\tJNP    exit\n"
10915           "\tMOV    ah,1       // saw a NaN, set CF\n"
10916           "\tSAHF\n"
10917      "exit:\tNOP               // avoid branch to branch" %}
10918   opcode(0x0F, 0x2F);
10919   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10920   ins_pipe( pipe_slow );
10921 %}
10922 
10923 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
10924   predicate(UseSSE>=1);
10925   match(Set cr (CmpF dst (LoadF src)));
10926   ins_cost(100);
10927   format %{ "COMISS $dst,$src" %}
10928   opcode(0x0F, 0x2F);
10929   ins_encode(OpcP, OpcS, RegMem(dst, src));
10930   ins_pipe( pipe_slow );
10931 %}
10932 
10933 // Compare into -1,0,1 in XMM
10934 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10935   predicate(UseSSE>=1);
10936   match(Set dst (CmpF3 src1 src2));
10937   effect(KILL cr);
10938   ins_cost(255);
10939   format %{ "XOR    $dst,$dst\n"
10940           "\tCOMISS $src1,$src2\n"
10941           "\tJP,s   nan\n"
10942           "\tJEQ,s  exit\n"
10943           "\tJA,s   inc\n"
10944       "nan:\tDEC    $dst\n"
10945           "\tJMP,s  exit\n"
10946       "inc:\tINC    $dst\n"
10947       "exit:"
10948                 %}
10949   opcode(0x0F, 0x2F);
10950   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10951   ins_pipe( pipe_slow );
10952 %}
10953 
10954 // Compare into -1,0,1 in XMM and memory
10955 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10956   predicate(UseSSE>=1);
10957   match(Set dst (CmpF3 src1 (LoadF mem)));
10958   effect(KILL cr);
10959   ins_cost(275);
10960   format %{ "COMISS $src1,$mem\n"
10961           "\tMOV    $dst,0\t\t# do not blow flags\n"
10962           "\tJP,s   nan\n"
10963           "\tJEQ,s  exit\n"
10964           "\tJA,s   inc\n"
10965       "nan:\tDEC    $dst\n"
10966           "\tJMP,s  exit\n"
10967       "inc:\tINC    $dst\n"
10968       "exit:"
10969                 %}
10970   opcode(0x0F, 0x2F);
10971   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10972   ins_pipe( pipe_slow );
10973 %}
10974 
10975 // Spill to obtain 24-bit precision
10976 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10977   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10978   match(Set dst (SubF src1 src2));
10979 
10980   format %{ "FSUB   $dst,$src1 - $src2" %}
10981   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10982   ins_encode( Push_Reg_F(src1),
10983               OpcReg_F(src2),
10984               Pop_Mem_F(dst) );
10985   ins_pipe( fpu_mem_reg_reg );
10986 %}
10987 //
10988 // This instruction does not round to 24-bits
10989 instruct subF_reg(regF dst, regF src) %{
10990   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10991   match(Set dst (SubF dst src));
10992 
10993   format %{ "FSUB   $dst,$src" %}
10994   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10995   ins_encode( Push_Reg_F(src),
10996               OpcP, RegOpc(dst) );
10997   ins_pipe( fpu_reg_reg );
10998 %}
10999 
11000 // Spill to obtain 24-bit precision
11001 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
11002   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11003   match(Set dst (AddF src1 src2));
11004 
11005   format %{ "FADD   $dst,$src1,$src2" %}
11006   opcode(0xD8, 0x0); /* D8 C0+i */
11007   ins_encode( Push_Reg_F(src2),
11008               OpcReg_F(src1),
11009               Pop_Mem_F(dst) );
11010   ins_pipe( fpu_mem_reg_reg );
11011 %}
11012 //
11013 // This instruction does not round to 24-bits
11014 instruct addF_reg(regF dst, regF src) %{
11015   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11016   match(Set dst (AddF dst src));
11017 
11018   format %{ "FLD    $src\n\t"
11019             "FADDp  $dst,ST" %}
11020   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
11021   ins_encode( Push_Reg_F(src),
11022               OpcP, RegOpc(dst) );
11023   ins_pipe( fpu_reg_reg );
11024 %}
11025 
11026 // Add two single precision floating point values in xmm
11027 instruct addX_reg(regX dst, regX src) %{
11028   predicate(UseSSE>=1);
11029   match(Set dst (AddF dst src));
11030   format %{ "ADDSS  $dst,$src" %}
11031   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
11032   ins_pipe( pipe_slow );
11033 %}
11034 
11035 instruct addX_imm(regX dst, immXF con) %{
11036   predicate(UseSSE>=1);
11037   match(Set dst (AddF dst con));
11038   format %{ "ADDSS  $dst,[$con]" %}
11039   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
11040   ins_pipe( pipe_slow );
11041 %}
11042 
11043 instruct addX_mem(regX dst, memory mem) %{
11044   predicate(UseSSE>=1);
11045   match(Set dst (AddF dst (LoadF mem)));
11046   format %{ "ADDSS  $dst,$mem" %}
11047   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
11048   ins_pipe( pipe_slow );
11049 %}
11050 
11051 // Subtract two single precision floating point values in xmm
11052 instruct subX_reg(regX dst, regX src) %{
11053   predicate(UseSSE>=1);
11054   match(Set dst (SubF dst src));
11055   format %{ "SUBSS  $dst,$src" %}
11056   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
11057   ins_pipe( pipe_slow );
11058 %}
11059 
11060 instruct subX_imm(regX dst, immXF con) %{
11061   predicate(UseSSE>=1);
11062   match(Set dst (SubF dst con));
11063   format %{ "SUBSS  $dst,[$con]" %}
11064   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
11065   ins_pipe( pipe_slow );
11066 %}
11067 
11068 instruct subX_mem(regX dst, memory mem) %{
11069   predicate(UseSSE>=1);
11070   match(Set dst (SubF dst (LoadF mem)));
11071   format %{ "SUBSS  $dst,$mem" %}
11072   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
11073   ins_pipe( pipe_slow );
11074 %}
11075 
11076 // Multiply two single precision floating point values in xmm
11077 instruct mulX_reg(regX dst, regX src) %{
11078   predicate(UseSSE>=1);
11079   match(Set dst (MulF dst src));
11080   format %{ "MULSS  $dst,$src" %}
11081   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
11082   ins_pipe( pipe_slow );
11083 %}
11084 
11085 instruct mulX_imm(regX dst, immXF con) %{
11086   predicate(UseSSE>=1);
11087   match(Set dst (MulF dst con));
11088   format %{ "MULSS  $dst,[$con]" %}
11089   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
11090   ins_pipe( pipe_slow );
11091 %}
11092 
11093 instruct mulX_mem(regX dst, memory mem) %{
11094   predicate(UseSSE>=1);
11095   match(Set dst (MulF dst (LoadF mem)));
11096   format %{ "MULSS  $dst,$mem" %}
11097   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
11098   ins_pipe( pipe_slow );
11099 %}
11100 
11101 // Divide two single precision floating point values in xmm
11102 instruct divX_reg(regX dst, regX src) %{
11103   predicate(UseSSE>=1);
11104   match(Set dst (DivF dst src));
11105   format %{ "DIVSS  $dst,$src" %}
11106   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
11107   ins_pipe( pipe_slow );
11108 %}
11109 
11110 instruct divX_imm(regX dst, immXF con) %{
11111   predicate(UseSSE>=1);
11112   match(Set dst (DivF dst con));
11113   format %{ "DIVSS  $dst,[$con]" %}
11114   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
11115   ins_pipe( pipe_slow );
11116 %}
11117 
11118 instruct divX_mem(regX dst, memory mem) %{
11119   predicate(UseSSE>=1);
11120   match(Set dst (DivF dst (LoadF mem)));
11121   format %{ "DIVSS  $dst,$mem" %}
11122   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
11123   ins_pipe( pipe_slow );
11124 %}
11125 
11126 // Get the square root of a single precision floating point values in xmm
11127 instruct sqrtX_reg(regX dst, regX src) %{
11128   predicate(UseSSE>=1);
11129   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
11130   format %{ "SQRTSS $dst,$src" %}
11131   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11132   ins_pipe( pipe_slow );
11133 %}
11134 
11135 instruct sqrtX_mem(regX dst, memory mem) %{
11136   predicate(UseSSE>=1);
11137   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
11138   format %{ "SQRTSS $dst,$mem" %}
11139   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11140   ins_pipe( pipe_slow );
11141 %}
11142 
11143 // Get the square root of a double precision floating point values in xmm
11144 instruct sqrtXD_reg(regXD dst, regXD src) %{
11145   predicate(UseSSE>=2);
11146   match(Set dst (SqrtD src));
11147   format %{ "SQRTSD $dst,$src" %}
11148   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
11149   ins_pipe( pipe_slow );
11150 %}
11151 
11152 instruct sqrtXD_mem(regXD dst, memory mem) %{
11153   predicate(UseSSE>=2);
11154   match(Set dst (SqrtD (LoadD mem)));
11155   format %{ "SQRTSD $dst,$mem" %}
11156   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
11157   ins_pipe( pipe_slow );
11158 %}
11159 
11160 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
11161   predicate(UseSSE==0);
11162   match(Set dst (AbsF src));
11163   ins_cost(100);
11164   format %{ "FABS" %}
11165   opcode(0xE1, 0xD9);
11166   ins_encode( OpcS, OpcP );
11167   ins_pipe( fpu_reg_reg );
11168 %}
11169 
11170 instruct absX_reg(regX dst ) %{
11171   predicate(UseSSE>=1);
11172   match(Set dst (AbsF dst));
11173   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
11174   ins_encode( AbsXF_encoding(dst));
11175   ins_pipe( pipe_slow );
11176 %}
11177 
11178 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
11179   predicate(UseSSE==0);
11180   match(Set dst (NegF src));
11181   ins_cost(100);
11182   format %{ "FCHS" %}
11183   opcode(0xE0, 0xD9);
11184   ins_encode( OpcS, OpcP );
11185   ins_pipe( fpu_reg_reg );
11186 %}
11187 
11188 instruct negX_reg( regX dst ) %{
11189   predicate(UseSSE>=1);
11190   match(Set dst (NegF dst));
11191   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
11192   ins_encode( NegXF_encoding(dst));
11193   ins_pipe( pipe_slow );
11194 %}
11195 
11196 // Cisc-alternate to addF_reg
11197 // Spill to obtain 24-bit precision
11198 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11199   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11200   match(Set dst (AddF src1 (LoadF src2)));
11201 
11202   format %{ "FLD    $src2\n\t"
11203             "FADD   ST,$src1\n\t"
11204             "FSTP_S $dst" %}
11205   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11206   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11207               OpcReg_F(src1),
11208               Pop_Mem_F(dst) );
11209   ins_pipe( fpu_mem_reg_mem );
11210 %}
11211 //
11212 // Cisc-alternate to addF_reg
11213 // This instruction does not round to 24-bits
11214 instruct addF_reg_mem(regF dst, memory src) %{
11215   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11216   match(Set dst (AddF dst (LoadF src)));
11217 
11218   format %{ "FADD   $dst,$src" %}
11219   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
11220   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
11221               OpcP, RegOpc(dst) );
11222   ins_pipe( fpu_reg_mem );
11223 %}
11224 
11225 // // Following two instructions for _222_mpegaudio
11226 // Spill to obtain 24-bit precision
11227 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
11228   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11229   match(Set dst (AddF src1 src2));
11230 
11231   format %{ "FADD   $dst,$src1,$src2" %}
11232   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11233   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
11234               OpcReg_F(src2),
11235               Pop_Mem_F(dst) );
11236   ins_pipe( fpu_mem_reg_mem );
11237 %}
11238 
11239 // Cisc-spill variant
11240 // Spill to obtain 24-bit precision
11241 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
11242   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11243   match(Set dst (AddF src1 (LoadF src2)));
11244 
11245   format %{ "FADD   $dst,$src1,$src2 cisc" %}
11246   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
11247   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11248               set_instruction_start,
11249               OpcP, RMopc_Mem(secondary,src1),
11250               Pop_Mem_F(dst) );
11251   ins_pipe( fpu_mem_mem_mem );
11252 %}
11253 
11254 // Spill to obtain 24-bit precision
11255 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11256   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11257   match(Set dst (AddF src1 src2));
11258 
11259   format %{ "FADD   $dst,$src1,$src2" %}
11260   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
11261   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11262               set_instruction_start,
11263               OpcP, RMopc_Mem(secondary,src1),
11264               Pop_Mem_F(dst) );
11265   ins_pipe( fpu_mem_mem_mem );
11266 %}
11267 
11268 
11269 // Spill to obtain 24-bit precision
11270 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11271   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11272   match(Set dst (AddF src1 src2));
11273   format %{ "FLD    $src1\n\t"
11274             "FADD   $src2\n\t"
11275             "FSTP_S $dst"  %}
11276   opcode(0xD8, 0x00);       /* D8 /0 */
11277   ins_encode( Push_Reg_F(src1),
11278               Opc_MemImm_F(src2),
11279               Pop_Mem_F(dst));
11280   ins_pipe( fpu_mem_reg_con );
11281 %}
11282 //
11283 // This instruction does not round to 24-bits
11284 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
11285   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11286   match(Set dst (AddF src1 src2));
11287   format %{ "FLD    $src1\n\t"
11288             "FADD   $src2\n\t"
11289             "FSTP_S $dst"  %}
11290   opcode(0xD8, 0x00);       /* D8 /0 */
11291   ins_encode( Push_Reg_F(src1),
11292               Opc_MemImm_F(src2),
11293               Pop_Reg_F(dst));
11294   ins_pipe( fpu_reg_reg_con );
11295 %}
11296 
11297 // Spill to obtain 24-bit precision
11298 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
11299   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11300   match(Set dst (MulF src1 src2));
11301 
11302   format %{ "FLD    $src1\n\t"
11303             "FMUL   $src2\n\t"
11304             "FSTP_S $dst"  %}
11305   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
11306   ins_encode( Push_Reg_F(src1),
11307               OpcReg_F(src2),
11308               Pop_Mem_F(dst) );
11309   ins_pipe( fpu_mem_reg_reg );
11310 %}
11311 //
11312 // This instruction does not round to 24-bits
11313 instruct mulF_reg(regF dst, regF src1, regF src2) %{
11314   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11315   match(Set dst (MulF src1 src2));
11316 
11317   format %{ "FLD    $src1\n\t"
11318             "FMUL   $src2\n\t"
11319             "FSTP_S $dst"  %}
11320   opcode(0xD8, 0x1); /* D8 C8+i */
11321   ins_encode( Push_Reg_F(src2),
11322               OpcReg_F(src1),
11323               Pop_Reg_F(dst) );
11324   ins_pipe( fpu_reg_reg_reg );
11325 %}
11326 
11327 
11328 // Spill to obtain 24-bit precision
11329 // Cisc-alternate to reg-reg multiply
11330 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
11331   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11332   match(Set dst (MulF src1 (LoadF src2)));
11333 
11334   format %{ "FLD_S  $src2\n\t"
11335             "FMUL   $src1\n\t"
11336             "FSTP_S $dst"  %}
11337   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
11338   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11339               OpcReg_F(src1),
11340               Pop_Mem_F(dst) );
11341   ins_pipe( fpu_mem_reg_mem );
11342 %}
11343 //
11344 // This instruction does not round to 24-bits
11345 // Cisc-alternate to reg-reg multiply
11346 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
11347   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11348   match(Set dst (MulF src1 (LoadF src2)));
11349 
11350   format %{ "FMUL   $dst,$src1,$src2" %}
11351   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
11352   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11353               OpcReg_F(src1),
11354               Pop_Reg_F(dst) );
11355   ins_pipe( fpu_reg_reg_mem );
11356 %}
11357 
11358 // Spill to obtain 24-bit precision
11359 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
11360   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11361   match(Set dst (MulF src1 src2));
11362 
11363   format %{ "FMUL   $dst,$src1,$src2" %}
11364   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
11365   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
11366               set_instruction_start,
11367               OpcP, RMopc_Mem(secondary,src1),
11368               Pop_Mem_F(dst) );
11369   ins_pipe( fpu_mem_mem_mem );
11370 %}
11371 
11372 // Spill to obtain 24-bit precision
11373 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
11374   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11375   match(Set dst (MulF src1 src2));
11376 
11377   format %{ "FMULc $dst,$src1,$src2" %}
11378   opcode(0xD8, 0x1);  /* D8 /1*/
11379   ins_encode( Push_Reg_F(src1),
11380               Opc_MemImm_F(src2),
11381               Pop_Mem_F(dst));
11382   ins_pipe( fpu_mem_reg_con );
11383 %}
11384 //
11385 // This instruction does not round to 24-bits
11386 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
11387   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11388   match(Set dst (MulF src1 src2));
11389 
11390   format %{ "FMULc $dst. $src1, $src2" %}
11391   opcode(0xD8, 0x1);  /* D8 /1*/
11392   ins_encode( Push_Reg_F(src1),
11393               Opc_MemImm_F(src2),
11394               Pop_Reg_F(dst));
11395   ins_pipe( fpu_reg_reg_con );
11396 %}
11397 
11398 
11399 //
11400 // MACRO1 -- subsume unshared load into mulF
11401 // This instruction does not round to 24-bits
11402 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
11403   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11404   match(Set dst (MulF (LoadF mem1) src));
11405 
11406   format %{ "FLD    $mem1    ===MACRO1===\n\t"
11407             "FMUL   ST,$src\n\t"
11408             "FSTP   $dst" %}
11409   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
11410   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
11411               OpcReg_F(src),
11412               Pop_Reg_F(dst) );
11413   ins_pipe( fpu_reg_reg_mem );
11414 %}
11415 //
11416 // MACRO2 -- addF a mulF which subsumed an unshared load
11417 // This instruction does not round to 24-bits
11418 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
11419   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11420   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
11421   ins_cost(95);
11422 
11423   format %{ "FLD    $mem1     ===MACRO2===\n\t"
11424             "FMUL   ST,$src1  subsume mulF left load\n\t"
11425             "FADD   ST,$src2\n\t"
11426             "FSTP   $dst" %}
11427   opcode(0xD9); /* LoadF D9 /0 */
11428   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
11429               FMul_ST_reg(src1),
11430               FAdd_ST_reg(src2),
11431               Pop_Reg_F(dst) );
11432   ins_pipe( fpu_reg_mem_reg_reg );
11433 %}
11434 
11435 // MACRO3 -- addF a mulF
11436 // This instruction does not round to 24-bits.  It is a '2-address'
11437 // instruction in that the result goes back to src2.  This eliminates
11438 // a move from the macro; possibly the register allocator will have
11439 // to add it back (and maybe not).
11440 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
11441   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11442   match(Set src2 (AddF (MulF src0 src1) src2));
11443 
11444   format %{ "FLD    $src0     ===MACRO3===\n\t"
11445             "FMUL   ST,$src1\n\t"
11446             "FADDP  $src2,ST" %}
11447   opcode(0xD9); /* LoadF D9 /0 */
11448   ins_encode( Push_Reg_F(src0),
11449               FMul_ST_reg(src1),
11450               FAddP_reg_ST(src2) );
11451   ins_pipe( fpu_reg_reg_reg );
11452 %}
11453 
11454 // MACRO4 -- divF subF
11455 // This instruction does not round to 24-bits
11456 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
11457   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11458   match(Set dst (DivF (SubF src2 src1) src3));
11459 
11460   format %{ "FLD    $src2   ===MACRO4===\n\t"
11461             "FSUB   ST,$src1\n\t"
11462             "FDIV   ST,$src3\n\t"
11463             "FSTP  $dst" %}
11464   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11465   ins_encode( Push_Reg_F(src2),
11466               subF_divF_encode(src1,src3),
11467               Pop_Reg_F(dst) );
11468   ins_pipe( fpu_reg_reg_reg_reg );
11469 %}
11470 
11471 // Spill to obtain 24-bit precision
11472 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
11473   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
11474   match(Set dst (DivF src1 src2));
11475 
11476   format %{ "FDIV   $dst,$src1,$src2" %}
11477   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
11478   ins_encode( Push_Reg_F(src1),
11479               OpcReg_F(src2),
11480               Pop_Mem_F(dst) );
11481   ins_pipe( fpu_mem_reg_reg );
11482 %}
11483 //
11484 // This instruction does not round to 24-bits
11485 instruct divF_reg(regF dst, regF src) %{
11486   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
11487   match(Set dst (DivF dst src));
11488 
11489   format %{ "FDIV   $dst,$src" %}
11490   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
11491   ins_encode( Push_Reg_F(src),
11492               OpcP, RegOpc(dst) );
11493   ins_pipe( fpu_reg_reg );
11494 %}
11495 
11496 
11497 // Spill to obtain 24-bit precision
11498 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11499   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11500   match(Set dst (ModF src1 src2));
11501   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11502 
11503   format %{ "FMOD   $dst,$src1,$src2" %}
11504   ins_encode( Push_Reg_Mod_D(src1, src2),
11505               emitModD(),
11506               Push_Result_Mod_D(src2),
11507               Pop_Mem_F(dst));
11508   ins_pipe( pipe_slow );
11509 %}
11510 //
11511 // This instruction does not round to 24-bits
11512 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11513   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11514   match(Set dst (ModF dst src));
11515   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11516 
11517   format %{ "FMOD   $dst,$src" %}
11518   ins_encode(Push_Reg_Mod_D(dst, src),
11519               emitModD(),
11520               Push_Result_Mod_D(src),
11521               Pop_Reg_F(dst));
11522   ins_pipe( pipe_slow );
11523 %}
11524 
11525 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11526   predicate(UseSSE>=1);
11527   match(Set dst (ModF src0 src1));
11528   effect(KILL rax, KILL cr);
11529   format %{ "SUB    ESP,4\t # FMOD\n"
11530           "\tMOVSS  [ESP+0],$src1\n"
11531           "\tFLD_S  [ESP+0]\n"
11532           "\tMOVSS  [ESP+0],$src0\n"
11533           "\tFLD_S  [ESP+0]\n"
11534      "loop:\tFPREM\n"
11535           "\tFWAIT\n"
11536           "\tFNSTSW AX\n"
11537           "\tSAHF\n"
11538           "\tJP     loop\n"
11539           "\tFSTP_S [ESP+0]\n"
11540           "\tMOVSS  $dst,[ESP+0]\n"
11541           "\tADD    ESP,4\n"
11542           "\tFSTP   ST0\t # Restore FPU Stack"
11543     %}
11544   ins_cost(250);
11545   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11546   ins_pipe( pipe_slow );
11547 %}
11548 
11549 
11550 //----------Arithmetic Conversion Instructions---------------------------------
11551 // The conversions operations are all Alpha sorted.  Please keep it that way!
11552 
11553 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11554   predicate(UseSSE==0);
11555   match(Set dst (RoundFloat src));
11556   ins_cost(125);
11557   format %{ "FST_S  $dst,$src\t# F-round" %}
11558   ins_encode( Pop_Mem_Reg_F(dst, src) );
11559   ins_pipe( fpu_mem_reg );
11560 %}
11561 
11562 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11563   predicate(UseSSE<=1);
11564   match(Set dst (RoundDouble src));
11565   ins_cost(125);
11566   format %{ "FST_D  $dst,$src\t# D-round" %}
11567   ins_encode( Pop_Mem_Reg_D(dst, src) );
11568   ins_pipe( fpu_mem_reg );
11569 %}
11570 
11571 // Force rounding to 24-bit precision and 6-bit exponent
11572 instruct convD2F_reg(stackSlotF dst, regD src) %{
11573   predicate(UseSSE==0);
11574   match(Set dst (ConvD2F src));
11575   format %{ "FST_S  $dst,$src\t# F-round" %}
11576   expand %{
11577     roundFloat_mem_reg(dst,src);
11578   %}
11579 %}
11580 
11581 // Force rounding to 24-bit precision and 6-bit exponent
11582 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11583   predicate(UseSSE==1);
11584   match(Set dst (ConvD2F src));
11585   effect( KILL cr );
11586   format %{ "SUB    ESP,4\n\t"
11587             "FST_S  [ESP],$src\t# F-round\n\t"
11588             "MOVSS  $dst,[ESP]\n\t"
11589             "ADD ESP,4" %}
11590   ins_encode( D2X_encoding(dst, src) );
11591   ins_pipe( pipe_slow );
11592 %}
11593 
11594 // Force rounding double precision to single precision
11595 instruct convXD2X_reg(regX dst, regXD src) %{
11596   predicate(UseSSE>=2);
11597   match(Set dst (ConvD2F src));
11598   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11599   opcode(0xF2, 0x0F, 0x5A);
11600   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11601   ins_pipe( pipe_slow );
11602 %}
11603 
11604 instruct convF2D_reg_reg(regD dst, regF src) %{
11605   predicate(UseSSE==0);
11606   match(Set dst (ConvF2D src));
11607   format %{ "FST_S  $dst,$src\t# D-round" %}
11608   ins_encode( Pop_Reg_Reg_D(dst, src));
11609   ins_pipe( fpu_reg_reg );
11610 %}
11611 
11612 instruct convF2D_reg(stackSlotD dst, regF src) %{
11613   predicate(UseSSE==1);
11614   match(Set dst (ConvF2D src));
11615   format %{ "FST_D  $dst,$src\t# D-round" %}
11616   expand %{
11617     roundDouble_mem_reg(dst,src);
11618   %}
11619 %}
11620 
11621 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11622   predicate(UseSSE==1);
11623   match(Set dst (ConvF2D src));
11624   effect( KILL cr );
11625   format %{ "SUB    ESP,4\n\t"
11626             "MOVSS  [ESP] $src\n\t"
11627             "FLD_S  [ESP]\n\t"
11628             "ADD    ESP,4\n\t"
11629             "FSTP   $dst\t# D-round" %}
11630   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11631   ins_pipe( pipe_slow );
11632 %}
11633 
11634 instruct convX2XD_reg(regXD dst, regX src) %{
11635   predicate(UseSSE>=2);
11636   match(Set dst (ConvF2D src));
11637   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11638   opcode(0xF3, 0x0F, 0x5A);
11639   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11640   ins_pipe( pipe_slow );
11641 %}
11642 
11643 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11644 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11645   predicate(UseSSE<=1);
11646   match(Set dst (ConvD2I src));
11647   effect( KILL tmp, KILL cr );
11648   format %{ "FLD    $src\t# Convert double to int \n\t"
11649             "FLDCW  trunc mode\n\t"
11650             "SUB    ESP,4\n\t"
11651             "FISTp  [ESP + #0]\n\t"
11652             "FLDCW  std/24-bit mode\n\t"
11653             "POP    EAX\n\t"
11654             "CMP    EAX,0x80000000\n\t"
11655             "JNE,s  fast\n\t"
11656             "FLD_D  $src\n\t"
11657             "CALL   d2i_wrapper\n"
11658       "fast:" %}
11659   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11660   ins_pipe( pipe_slow );
11661 %}
11662 
11663 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11664 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11665   predicate(UseSSE>=2);
11666   match(Set dst (ConvD2I src));
11667   effect( KILL tmp, KILL cr );
11668   format %{ "CVTTSD2SI $dst, $src\n\t"
11669             "CMP    $dst,0x80000000\n\t"
11670             "JNE,s  fast\n\t"
11671             "SUB    ESP, 8\n\t"
11672             "MOVSD  [ESP], $src\n\t"
11673             "FLD_D  [ESP]\n\t"
11674             "ADD    ESP, 8\n\t"
11675             "CALL   d2i_wrapper\n"
11676       "fast:" %}
11677   opcode(0x1); // double-precision conversion
11678   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11679   ins_pipe( pipe_slow );
11680 %}
11681 
11682 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11683   predicate(UseSSE<=1);
11684   match(Set dst (ConvD2L src));
11685   effect( KILL cr );
11686   format %{ "FLD    $src\t# Convert double to long\n\t"
11687             "FLDCW  trunc mode\n\t"
11688             "SUB    ESP,8\n\t"
11689             "FISTp  [ESP + #0]\n\t"
11690             "FLDCW  std/24-bit mode\n\t"
11691             "POP    EAX\n\t"
11692             "POP    EDX\n\t"
11693             "CMP    EDX,0x80000000\n\t"
11694             "JNE,s  fast\n\t"
11695             "TEST   EAX,EAX\n\t"
11696             "JNE,s  fast\n\t"
11697             "FLD    $src\n\t"
11698             "CALL   d2l_wrapper\n"
11699       "fast:" %}
11700   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11701   ins_pipe( pipe_slow );
11702 %}
11703 
11704 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11705 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11706   predicate (UseSSE>=2);
11707   match(Set dst (ConvD2L src));
11708   effect( KILL cr );
11709   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11710             "MOVSD  [ESP],$src\n\t"
11711             "FLD_D  [ESP]\n\t"
11712             "FLDCW  trunc mode\n\t"
11713             "FISTp  [ESP + #0]\n\t"
11714             "FLDCW  std/24-bit mode\n\t"
11715             "POP    EAX\n\t"
11716             "POP    EDX\n\t"
11717             "CMP    EDX,0x80000000\n\t"
11718             "JNE,s  fast\n\t"
11719             "TEST   EAX,EAX\n\t"
11720             "JNE,s  fast\n\t"
11721             "SUB    ESP,8\n\t"
11722             "MOVSD  [ESP],$src\n\t"
11723             "FLD_D  [ESP]\n\t"
11724             "CALL   d2l_wrapper\n"
11725       "fast:" %}
11726   ins_encode( XD2L_encoding(src) );
11727   ins_pipe( pipe_slow );
11728 %}
11729 
11730 // Convert a double to an int.  Java semantics require we do complex
11731 // manglations in the corner cases.  So we set the rounding mode to
11732 // 'zero', store the darned double down as an int, and reset the
11733 // rounding mode to 'nearest'.  The hardware stores a flag value down
11734 // if we would overflow or converted a NAN; we check for this and
11735 // and go the slow path if needed.
11736 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11737   predicate(UseSSE==0);
11738   match(Set dst (ConvF2I src));
11739   effect( KILL tmp, KILL cr );
11740   format %{ "FLD    $src\t# Convert float to int \n\t"
11741             "FLDCW  trunc mode\n\t"
11742             "SUB    ESP,4\n\t"
11743             "FISTp  [ESP + #0]\n\t"
11744             "FLDCW  std/24-bit mode\n\t"
11745             "POP    EAX\n\t"
11746             "CMP    EAX,0x80000000\n\t"
11747             "JNE,s  fast\n\t"
11748             "FLD    $src\n\t"
11749             "CALL   d2i_wrapper\n"
11750       "fast:" %}
11751   // D2I_encoding works for F2I
11752   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11753   ins_pipe( pipe_slow );
11754 %}
11755 
11756 // Convert a float in xmm to an int reg.
11757 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11758   predicate(UseSSE>=1);
11759   match(Set dst (ConvF2I src));
11760   effect( KILL tmp, KILL cr );
11761   format %{ "CVTTSS2SI $dst, $src\n\t"
11762             "CMP    $dst,0x80000000\n\t"
11763             "JNE,s  fast\n\t"
11764             "SUB    ESP, 4\n\t"
11765             "MOVSS  [ESP], $src\n\t"
11766             "FLD    [ESP]\n\t"
11767             "ADD    ESP, 4\n\t"
11768             "CALL   d2i_wrapper\n"
11769       "fast:" %}
11770   opcode(0x0); // single-precision conversion
11771   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11772   ins_pipe( pipe_slow );
11773 %}
11774 
11775 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11776   predicate(UseSSE==0);
11777   match(Set dst (ConvF2L src));
11778   effect( KILL cr );
11779   format %{ "FLD    $src\t# Convert float to long\n\t"
11780             "FLDCW  trunc mode\n\t"
11781             "SUB    ESP,8\n\t"
11782             "FISTp  [ESP + #0]\n\t"
11783             "FLDCW  std/24-bit mode\n\t"
11784             "POP    EAX\n\t"
11785             "POP    EDX\n\t"
11786             "CMP    EDX,0x80000000\n\t"
11787             "JNE,s  fast\n\t"
11788             "TEST   EAX,EAX\n\t"
11789             "JNE,s  fast\n\t"
11790             "FLD    $src\n\t"
11791             "CALL   d2l_wrapper\n"
11792       "fast:" %}
11793   // D2L_encoding works for F2L
11794   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11795   ins_pipe( pipe_slow );
11796 %}
11797 
11798 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11799 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11800   predicate (UseSSE>=1);
11801   match(Set dst (ConvF2L src));
11802   effect( KILL cr );
11803   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11804             "MOVSS  [ESP],$src\n\t"
11805             "FLD_S  [ESP]\n\t"
11806             "FLDCW  trunc mode\n\t"
11807             "FISTp  [ESP + #0]\n\t"
11808             "FLDCW  std/24-bit mode\n\t"
11809             "POP    EAX\n\t"
11810             "POP    EDX\n\t"
11811             "CMP    EDX,0x80000000\n\t"
11812             "JNE,s  fast\n\t"
11813             "TEST   EAX,EAX\n\t"
11814             "JNE,s  fast\n\t"
11815             "SUB    ESP,4\t# Convert float to long\n\t"
11816             "MOVSS  [ESP],$src\n\t"
11817             "FLD_S  [ESP]\n\t"
11818             "ADD    ESP,4\n\t"
11819             "CALL   d2l_wrapper\n"
11820       "fast:" %}
11821   ins_encode( X2L_encoding(src) );
11822   ins_pipe( pipe_slow );
11823 %}
11824 
11825 instruct convI2D_reg(regD dst, stackSlotI src) %{
11826   predicate( UseSSE<=1 );
11827   match(Set dst (ConvI2D src));
11828   format %{ "FILD   $src\n\t"
11829             "FSTP   $dst" %}
11830   opcode(0xDB, 0x0);  /* DB /0 */
11831   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11832   ins_pipe( fpu_reg_mem );
11833 %}
11834 
11835 instruct convI2XD_reg(regXD dst, eRegI src) %{
11836   predicate( UseSSE>=2 && !UseXmmI2D );
11837   match(Set dst (ConvI2D src));
11838   format %{ "CVTSI2SD $dst,$src" %}
11839   opcode(0xF2, 0x0F, 0x2A);
11840   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11841   ins_pipe( pipe_slow );
11842 %}
11843 
11844 instruct convI2XD_mem(regXD dst, memory mem) %{
11845   predicate( UseSSE>=2 );
11846   match(Set dst (ConvI2D (LoadI mem)));
11847   format %{ "CVTSI2SD $dst,$mem" %}
11848   opcode(0xF2, 0x0F, 0x2A);
11849   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11850   ins_pipe( pipe_slow );
11851 %}
11852 
11853 instruct convXI2XD_reg(regXD dst, eRegI src)
11854 %{
11855   predicate( UseSSE>=2 && UseXmmI2D );
11856   match(Set dst (ConvI2D src));
11857 
11858   format %{ "MOVD  $dst,$src\n\t"
11859             "CVTDQ2PD $dst,$dst\t# i2d" %}
11860   ins_encode %{
11861     __ movdl($dst$$XMMRegister, $src$$Register);
11862     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11863   %}
11864   ins_pipe(pipe_slow); // XXX
11865 %}
11866 
11867 instruct convI2D_mem(regD dst, memory mem) %{
11868   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11869   match(Set dst (ConvI2D (LoadI mem)));
11870   format %{ "FILD   $mem\n\t"
11871             "FSTP   $dst" %}
11872   opcode(0xDB);      /* DB /0 */
11873   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11874               Pop_Reg_D(dst));
11875   ins_pipe( fpu_reg_mem );
11876 %}
11877 
11878 // Convert a byte to a float; no rounding step needed.
11879 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11880   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11881   match(Set dst (ConvI2F src));
11882   format %{ "FILD   $src\n\t"
11883             "FSTP   $dst" %}
11884 
11885   opcode(0xDB, 0x0);  /* DB /0 */
11886   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11887   ins_pipe( fpu_reg_mem );
11888 %}
11889 
11890 // In 24-bit mode, force exponent rounding by storing back out
11891 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11892   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11893   match(Set dst (ConvI2F src));
11894   ins_cost(200);
11895   format %{ "FILD   $src\n\t"
11896             "FSTP_S $dst" %}
11897   opcode(0xDB, 0x0);  /* DB /0 */
11898   ins_encode( Push_Mem_I(src),
11899               Pop_Mem_F(dst));
11900   ins_pipe( fpu_mem_mem );
11901 %}
11902 
11903 // In 24-bit mode, force exponent rounding by storing back out
11904 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11905   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11906   match(Set dst (ConvI2F (LoadI mem)));
11907   ins_cost(200);
11908   format %{ "FILD   $mem\n\t"
11909             "FSTP_S $dst" %}
11910   opcode(0xDB);  /* DB /0 */
11911   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11912               Pop_Mem_F(dst));
11913   ins_pipe( fpu_mem_mem );
11914 %}
11915 
11916 // This instruction does not round to 24-bits
11917 instruct convI2F_reg(regF dst, stackSlotI src) %{
11918   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11919   match(Set dst (ConvI2F src));
11920   format %{ "FILD   $src\n\t"
11921             "FSTP   $dst" %}
11922   opcode(0xDB, 0x0);  /* DB /0 */
11923   ins_encode( Push_Mem_I(src),
11924               Pop_Reg_F(dst));
11925   ins_pipe( fpu_reg_mem );
11926 %}
11927 
11928 // This instruction does not round to 24-bits
11929 instruct convI2F_mem(regF dst, memory mem) %{
11930   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11931   match(Set dst (ConvI2F (LoadI mem)));
11932   format %{ "FILD   $mem\n\t"
11933             "FSTP   $dst" %}
11934   opcode(0xDB);      /* DB /0 */
11935   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11936               Pop_Reg_F(dst));
11937   ins_pipe( fpu_reg_mem );
11938 %}
11939 
11940 // Convert an int to a float in xmm; no rounding step needed.
11941 instruct convI2X_reg(regX dst, eRegI src) %{
11942   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11943   match(Set dst (ConvI2F src));
11944   format %{ "CVTSI2SS $dst, $src" %}
11945 
11946   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11947   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11948   ins_pipe( pipe_slow );
11949 %}
11950 
11951  instruct convXI2X_reg(regX dst, eRegI src)
11952 %{
11953   predicate( UseSSE>=2 && UseXmmI2F );
11954   match(Set dst (ConvI2F src));
11955 
11956   format %{ "MOVD  $dst,$src\n\t"
11957             "CVTDQ2PS $dst,$dst\t# i2f" %}
11958   ins_encode %{
11959     __ movdl($dst$$XMMRegister, $src$$Register);
11960     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11961   %}
11962   ins_pipe(pipe_slow); // XXX
11963 %}
11964 
11965 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11966   match(Set dst (ConvI2L src));
11967   effect(KILL cr);
11968   ins_cost(375);
11969   format %{ "MOV    $dst.lo,$src\n\t"
11970             "MOV    $dst.hi,$src\n\t"
11971             "SAR    $dst.hi,31" %}
11972   ins_encode(convert_int_long(dst,src));
11973   ins_pipe( ialu_reg_reg_long );
11974 %}
11975 
11976 // Zero-extend convert int to long
11977 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11978   match(Set dst (AndL (ConvI2L src) mask) );
11979   effect( KILL flags );
11980   ins_cost(250);
11981   format %{ "MOV    $dst.lo,$src\n\t"
11982             "XOR    $dst.hi,$dst.hi" %}
11983   opcode(0x33); // XOR
11984   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11985   ins_pipe( ialu_reg_reg_long );
11986 %}
11987 
11988 // Zero-extend long
11989 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11990   match(Set dst (AndL src mask) );
11991   effect( KILL flags );
11992   ins_cost(250);
11993   format %{ "MOV    $dst.lo,$src.lo\n\t"
11994             "XOR    $dst.hi,$dst.hi\n\t" %}
11995   opcode(0x33); // XOR
11996   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11997   ins_pipe( ialu_reg_reg_long );
11998 %}
11999 
12000 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
12001   predicate (UseSSE<=1);
12002   match(Set dst (ConvL2D src));
12003   effect( KILL cr );
12004   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12005             "PUSH   $src.lo\n\t"
12006             "FILD   ST,[ESP + #0]\n\t"
12007             "ADD    ESP,8\n\t"
12008             "FSTP_D $dst\t# D-round" %}
12009   opcode(0xDF, 0x5);  /* DF /5 */
12010   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
12011   ins_pipe( pipe_slow );
12012 %}
12013 
12014 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
12015   predicate (UseSSE>=2);
12016   match(Set dst (ConvL2D src));
12017   effect( KILL cr );
12018   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
12019             "PUSH   $src.lo\n\t"
12020             "FILD_D [ESP]\n\t"
12021             "FSTP_D [ESP]\n\t"
12022             "MOVSD  $dst,[ESP]\n\t"
12023             "ADD    ESP,8" %}
12024   opcode(0xDF, 0x5);  /* DF /5 */
12025   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
12026   ins_pipe( pipe_slow );
12027 %}
12028 
12029 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
12030   predicate (UseSSE>=1);
12031   match(Set dst (ConvL2F src));
12032   effect( KILL cr );
12033   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12034             "PUSH   $src.lo\n\t"
12035             "FILD_D [ESP]\n\t"
12036             "FSTP_S [ESP]\n\t"
12037             "MOVSS  $dst,[ESP]\n\t"
12038             "ADD    ESP,8" %}
12039   opcode(0xDF, 0x5);  /* DF /5 */
12040   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
12041   ins_pipe( pipe_slow );
12042 %}
12043 
12044 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
12045   match(Set dst (ConvL2F src));
12046   effect( KILL cr );
12047   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
12048             "PUSH   $src.lo\n\t"
12049             "FILD   ST,[ESP + #0]\n\t"
12050             "ADD    ESP,8\n\t"
12051             "FSTP_S $dst\t# F-round" %}
12052   opcode(0xDF, 0x5);  /* DF /5 */
12053   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
12054   ins_pipe( pipe_slow );
12055 %}
12056 
12057 instruct convL2I_reg( eRegI dst, eRegL src ) %{
12058   match(Set dst (ConvL2I src));
12059   effect( DEF dst, USE src );
12060   format %{ "MOV    $dst,$src.lo" %}
12061   ins_encode(enc_CopyL_Lo(dst,src));
12062   ins_pipe( ialu_reg_reg );
12063 %}
12064 
12065 
12066 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
12067   match(Set dst (MoveF2I src));
12068   effect( DEF dst, USE src );
12069   ins_cost(100);
12070   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
12071   opcode(0x8B);
12072   ins_encode( OpcP, RegMem(dst,src));
12073   ins_pipe( ialu_reg_mem );
12074 %}
12075 
12076 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
12077   predicate(UseSSE==0);
12078   match(Set dst (MoveF2I src));
12079   effect( DEF dst, USE src );
12080 
12081   ins_cost(125);
12082   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
12083   ins_encode( Pop_Mem_Reg_F(dst, src) );
12084   ins_pipe( fpu_mem_reg );
12085 %}
12086 
12087 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
12088   predicate(UseSSE>=1);
12089   match(Set dst (MoveF2I src));
12090   effect( DEF dst, USE src );
12091 
12092   ins_cost(95);
12093   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
12094   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
12095   ins_pipe( pipe_slow );
12096 %}
12097 
12098 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
12099   predicate(UseSSE>=2);
12100   match(Set dst (MoveF2I src));
12101   effect( DEF dst, USE src );
12102   ins_cost(85);
12103   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
12104   ins_encode( MovX2I_reg(dst, src));
12105   ins_pipe( pipe_slow );
12106 %}
12107 
12108 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
12109   match(Set dst (MoveI2F src));
12110   effect( DEF dst, USE src );
12111 
12112   ins_cost(100);
12113   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
12114   opcode(0x89);
12115   ins_encode( OpcPRegSS( dst, src ) );
12116   ins_pipe( ialu_mem_reg );
12117 %}
12118 
12119 
12120 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
12121   predicate(UseSSE==0);
12122   match(Set dst (MoveI2F src));
12123   effect(DEF dst, USE src);
12124 
12125   ins_cost(125);
12126   format %{ "FLD_S  $src\n\t"
12127             "FSTP   $dst\t# MoveI2F_stack_reg" %}
12128   opcode(0xD9);               /* D9 /0, FLD m32real */
12129   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12130               Pop_Reg_F(dst) );
12131   ins_pipe( fpu_reg_mem );
12132 %}
12133 
12134 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
12135   predicate(UseSSE>=1);
12136   match(Set dst (MoveI2F src));
12137   effect( DEF dst, USE src );
12138 
12139   ins_cost(95);
12140   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
12141   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12142   ins_pipe( pipe_slow );
12143 %}
12144 
12145 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
12146   predicate(UseSSE>=2);
12147   match(Set dst (MoveI2F src));
12148   effect( DEF dst, USE src );
12149 
12150   ins_cost(85);
12151   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
12152   ins_encode( MovI2X_reg(dst, src) );
12153   ins_pipe( pipe_slow );
12154 %}
12155 
12156 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
12157   match(Set dst (MoveD2L src));
12158   effect(DEF dst, USE src);
12159 
12160   ins_cost(250);
12161   format %{ "MOV    $dst.lo,$src\n\t"
12162             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
12163   opcode(0x8B, 0x8B);
12164   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
12165   ins_pipe( ialu_mem_long_reg );
12166 %}
12167 
12168 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
12169   predicate(UseSSE<=1);
12170   match(Set dst (MoveD2L src));
12171   effect(DEF dst, USE src);
12172 
12173   ins_cost(125);
12174   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
12175   ins_encode( Pop_Mem_Reg_D(dst, src) );
12176   ins_pipe( fpu_mem_reg );
12177 %}
12178 
12179 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
12180   predicate(UseSSE>=2);
12181   match(Set dst (MoveD2L src));
12182   effect(DEF dst, USE src);
12183   ins_cost(95);
12184 
12185   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
12186   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
12187   ins_pipe( pipe_slow );
12188 %}
12189 
12190 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
12191   predicate(UseSSE>=2);
12192   match(Set dst (MoveD2L src));
12193   effect(DEF dst, USE src, TEMP tmp);
12194   ins_cost(85);
12195   format %{ "MOVD   $dst.lo,$src\n\t"
12196             "PSHUFLW $tmp,$src,0x4E\n\t"
12197             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
12198   ins_encode( MovXD2L_reg(dst, src, tmp) );
12199   ins_pipe( pipe_slow );
12200 %}
12201 
12202 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
12203   match(Set dst (MoveL2D src));
12204   effect(DEF dst, USE src);
12205 
12206   ins_cost(200);
12207   format %{ "MOV    $dst,$src.lo\n\t"
12208             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
12209   opcode(0x89, 0x89);
12210   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
12211   ins_pipe( ialu_mem_long_reg );
12212 %}
12213 
12214 
12215 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
12216   predicate(UseSSE<=1);
12217   match(Set dst (MoveL2D src));
12218   effect(DEF dst, USE src);
12219   ins_cost(125);
12220 
12221   format %{ "FLD_D  $src\n\t"
12222             "FSTP   $dst\t# MoveL2D_stack_reg" %}
12223   opcode(0xDD);               /* DD /0, FLD m64real */
12224   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
12225               Pop_Reg_D(dst) );
12226   ins_pipe( fpu_reg_mem );
12227 %}
12228 
12229 
12230 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
12231   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
12232   match(Set dst (MoveL2D src));
12233   effect(DEF dst, USE src);
12234 
12235   ins_cost(95);
12236   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
12237   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
12238   ins_pipe( pipe_slow );
12239 %}
12240 
12241 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
12242   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
12243   match(Set dst (MoveL2D src));
12244   effect(DEF dst, USE src);
12245 
12246   ins_cost(95);
12247   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
12248   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
12249   ins_pipe( pipe_slow );
12250 %}
12251 
12252 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
12253   predicate(UseSSE>=2);
12254   match(Set dst (MoveL2D src));
12255   effect(TEMP dst, USE src, TEMP tmp);
12256   ins_cost(85);
12257   format %{ "MOVD   $dst,$src.lo\n\t"
12258             "MOVD   $tmp,$src.hi\n\t"
12259             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
12260   ins_encode( MovL2XD_reg(dst, src, tmp) );
12261   ins_pipe( pipe_slow );
12262 %}
12263 
12264 // Replicate scalar to packed byte (1 byte) values in xmm
12265 instruct Repl8B_reg(regXD dst, regXD src) %{
12266   predicate(UseSSE>=2);
12267   match(Set dst (Replicate8B src));
12268   format %{ "MOVDQA  $dst,$src\n\t"
12269             "PUNPCKLBW $dst,$dst\n\t"
12270             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12271   ins_encode( pshufd_8x8(dst, src));
12272   ins_pipe( pipe_slow );
12273 %}
12274 
12275 // Replicate scalar to packed byte (1 byte) values in xmm
12276 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
12277   predicate(UseSSE>=2);
12278   match(Set dst (Replicate8B src));
12279   format %{ "MOVD    $dst,$src\n\t"
12280             "PUNPCKLBW $dst,$dst\n\t"
12281             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
12282   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
12283   ins_pipe( pipe_slow );
12284 %}
12285 
12286 // Replicate scalar zero to packed byte (1 byte) values in xmm
12287 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
12288   predicate(UseSSE>=2);
12289   match(Set dst (Replicate8B zero));
12290   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
12291   ins_encode( pxor(dst, dst));
12292   ins_pipe( fpu_reg_reg );
12293 %}
12294 
12295 // Replicate scalar to packed shore (2 byte) values in xmm
12296 instruct Repl4S_reg(regXD dst, regXD src) %{
12297   predicate(UseSSE>=2);
12298   match(Set dst (Replicate4S src));
12299   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
12300   ins_encode( pshufd_4x16(dst, src));
12301   ins_pipe( fpu_reg_reg );
12302 %}
12303 
12304 // Replicate scalar to packed shore (2 byte) values in xmm
12305 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
12306   predicate(UseSSE>=2);
12307   match(Set dst (Replicate4S src));
12308   format %{ "MOVD    $dst,$src\n\t"
12309             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
12310   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12311   ins_pipe( fpu_reg_reg );
12312 %}
12313 
12314 // Replicate scalar zero to packed short (2 byte) values in xmm
12315 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
12316   predicate(UseSSE>=2);
12317   match(Set dst (Replicate4S zero));
12318   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
12319   ins_encode( pxor(dst, dst));
12320   ins_pipe( fpu_reg_reg );
12321 %}
12322 
12323 // Replicate scalar to packed char (2 byte) values in xmm
12324 instruct Repl4C_reg(regXD dst, regXD src) %{
12325   predicate(UseSSE>=2);
12326   match(Set dst (Replicate4C src));
12327   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
12328   ins_encode( pshufd_4x16(dst, src));
12329   ins_pipe( fpu_reg_reg );
12330 %}
12331 
12332 // Replicate scalar to packed char (2 byte) values in xmm
12333 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
12334   predicate(UseSSE>=2);
12335   match(Set dst (Replicate4C src));
12336   format %{ "MOVD    $dst,$src\n\t"
12337             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
12338   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
12339   ins_pipe( fpu_reg_reg );
12340 %}
12341 
12342 // Replicate scalar zero to packed char (2 byte) values in xmm
12343 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
12344   predicate(UseSSE>=2);
12345   match(Set dst (Replicate4C zero));
12346   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
12347   ins_encode( pxor(dst, dst));
12348   ins_pipe( fpu_reg_reg );
12349 %}
12350 
12351 // Replicate scalar to packed integer (4 byte) values in xmm
12352 instruct Repl2I_reg(regXD dst, regXD src) %{
12353   predicate(UseSSE>=2);
12354   match(Set dst (Replicate2I src));
12355   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
12356   ins_encode( pshufd(dst, src, 0x00));
12357   ins_pipe( fpu_reg_reg );
12358 %}
12359 
12360 // Replicate scalar to packed integer (4 byte) values in xmm
12361 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
12362   predicate(UseSSE>=2);
12363   match(Set dst (Replicate2I src));
12364   format %{ "MOVD   $dst,$src\n\t"
12365             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
12366   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
12367   ins_pipe( fpu_reg_reg );
12368 %}
12369 
12370 // Replicate scalar zero to packed integer (2 byte) values in xmm
12371 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
12372   predicate(UseSSE>=2);
12373   match(Set dst (Replicate2I zero));
12374   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
12375   ins_encode( pxor(dst, dst));
12376   ins_pipe( fpu_reg_reg );
12377 %}
12378 
12379 // Replicate scalar to packed single precision floating point values in xmm
12380 instruct Repl2F_reg(regXD dst, regXD src) %{
12381   predicate(UseSSE>=2);
12382   match(Set dst (Replicate2F src));
12383   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12384   ins_encode( pshufd(dst, src, 0xe0));
12385   ins_pipe( fpu_reg_reg );
12386 %}
12387 
12388 // Replicate scalar to packed single precision floating point values in xmm
12389 instruct Repl2F_regX(regXD dst, regX src) %{
12390   predicate(UseSSE>=2);
12391   match(Set dst (Replicate2F src));
12392   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
12393   ins_encode( pshufd(dst, src, 0xe0));
12394   ins_pipe( fpu_reg_reg );
12395 %}
12396 
12397 // Replicate scalar to packed single precision floating point values in xmm
12398 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
12399   predicate(UseSSE>=2);
12400   match(Set dst (Replicate2F zero));
12401   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
12402   ins_encode( pxor(dst, dst));
12403   ins_pipe( fpu_reg_reg );
12404 %}
12405 
12406 // =======================================================================
12407 // fast clearing of an array
12408 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
12409   match(Set dummy (ClearArray cnt base));
12410   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
12411   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
12412             "XOR    EAX,EAX\n\t"
12413             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
12414   opcode(0,0x4);
12415   ins_encode( Opcode(0xD1), RegOpc(ECX),
12416               OpcRegReg(0x33,EAX,EAX),
12417               Opcode(0xF3), Opcode(0xAB) );
12418   ins_pipe( pipe_slow );
12419 %}
12420 
12421 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eBXRegI cnt2,
12422                         eAXRegI result, regXD tmp1, regXD tmp2, eFlagsReg cr) %{
12423   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
12424   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
12425 
12426   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1, $tmp2" %}
12427   ins_encode %{
12428     __ string_compare($str1$$Register, $str2$$Register,
12429                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12430                       $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12431   %}
12432   ins_pipe( pipe_slow );
12433 %}
12434 
12435 // fast string equals
12436 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
12437                        regXD tmp1, regXD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
12438   match(Set result (StrEquals (Binary str1 str2) cnt));
12439   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
12440 
12441   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
12442   ins_encode %{
12443     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
12444                           $cnt$$Register, $result$$Register, $tmp3$$Register,
12445                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12446   %}
12447   ins_pipe( pipe_slow );
12448 %}
12449 
12450 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
12451                         eBXRegI result, regXD tmp1, eCXRegI tmp2, eFlagsReg cr) %{
12452   predicate(UseSSE42Intrinsics);
12453   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
12454   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp2, KILL cr);
12455 
12456   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp2, $tmp1" %}
12457   ins_encode %{
12458     __ string_indexof($str1$$Register, $str2$$Register,
12459                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
12460                       $tmp1$$XMMRegister, $tmp2$$Register);
12461   %}
12462   ins_pipe( pipe_slow );
12463 %}
12464 
12465 // fast array equals
12466 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
12467                       regXD tmp1, regXD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
12468 %{
12469   match(Set result (AryEq ary1 ary2));
12470   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
12471   //ins_cost(300);
12472 
12473   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
12474   ins_encode %{
12475     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
12476                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
12477                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
12478   %}
12479   ins_pipe( pipe_slow );
12480 %}
12481 
12482 //----------Control Flow Instructions------------------------------------------
12483 // Signed compare Instructions
12484 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
12485   match(Set cr (CmpI op1 op2));
12486   effect( DEF cr, USE op1, USE op2 );
12487   format %{ "CMP    $op1,$op2" %}
12488   opcode(0x3B);  /* Opcode 3B /r */
12489   ins_encode( OpcP, RegReg( op1, op2) );
12490   ins_pipe( ialu_cr_reg_reg );
12491 %}
12492 
12493 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
12494   match(Set cr (CmpI op1 op2));
12495   effect( DEF cr, USE op1 );
12496   format %{ "CMP    $op1,$op2" %}
12497   opcode(0x81,0x07);  /* Opcode 81 /7 */
12498   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
12499   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12500   ins_pipe( ialu_cr_reg_imm );
12501 %}
12502 
12503 // Cisc-spilled version of cmpI_eReg
12504 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
12505   match(Set cr (CmpI op1 (LoadI op2)));
12506 
12507   format %{ "CMP    $op1,$op2" %}
12508   ins_cost(500);
12509   opcode(0x3B);  /* Opcode 3B /r */
12510   ins_encode( OpcP, RegMem( op1, op2) );
12511   ins_pipe( ialu_cr_reg_mem );
12512 %}
12513 
12514 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
12515   match(Set cr (CmpI src zero));
12516   effect( DEF cr, USE src );
12517 
12518   format %{ "TEST   $src,$src" %}
12519   opcode(0x85);
12520   ins_encode( OpcP, RegReg( src, src ) );
12521   ins_pipe( ialu_cr_reg_imm );
12522 %}
12523 
12524 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
12525   match(Set cr (CmpI (AndI src con) zero));
12526 
12527   format %{ "TEST   $src,$con" %}
12528   opcode(0xF7,0x00);
12529   ins_encode( OpcP, RegOpc(src), Con32(con) );
12530   ins_pipe( ialu_cr_reg_imm );
12531 %}
12532 
12533 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
12534   match(Set cr (CmpI (AndI src mem) zero));
12535 
12536   format %{ "TEST   $src,$mem" %}
12537   opcode(0x85);
12538   ins_encode( OpcP, RegMem( src, mem ) );
12539   ins_pipe( ialu_cr_reg_mem );
12540 %}
12541 
12542 // Unsigned compare Instructions; really, same as signed except they
12543 // produce an eFlagsRegU instead of eFlagsReg.
12544 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12545   match(Set cr (CmpU op1 op2));
12546 
12547   format %{ "CMPu   $op1,$op2" %}
12548   opcode(0x3B);  /* Opcode 3B /r */
12549   ins_encode( OpcP, RegReg( op1, op2) );
12550   ins_pipe( ialu_cr_reg_reg );
12551 %}
12552 
12553 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12554   match(Set cr (CmpU op1 op2));
12555 
12556   format %{ "CMPu   $op1,$op2" %}
12557   opcode(0x81,0x07);  /* Opcode 81 /7 */
12558   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12559   ins_pipe( ialu_cr_reg_imm );
12560 %}
12561 
12562 // // Cisc-spilled version of cmpU_eReg
12563 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12564   match(Set cr (CmpU op1 (LoadI op2)));
12565 
12566   format %{ "CMPu   $op1,$op2" %}
12567   ins_cost(500);
12568   opcode(0x3B);  /* Opcode 3B /r */
12569   ins_encode( OpcP, RegMem( op1, op2) );
12570   ins_pipe( ialu_cr_reg_mem );
12571 %}
12572 
12573 // // Cisc-spilled version of cmpU_eReg
12574 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12575 //  match(Set cr (CmpU (LoadI op1) op2));
12576 //
12577 //  format %{ "CMPu   $op1,$op2" %}
12578 //  ins_cost(500);
12579 //  opcode(0x39);  /* Opcode 39 /r */
12580 //  ins_encode( OpcP, RegMem( op1, op2) );
12581 //%}
12582 
12583 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12584   match(Set cr (CmpU src zero));
12585 
12586   format %{ "TESTu  $src,$src" %}
12587   opcode(0x85);
12588   ins_encode( OpcP, RegReg( src, src ) );
12589   ins_pipe( ialu_cr_reg_imm );
12590 %}
12591 
12592 // Unsigned pointer compare Instructions
12593 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12594   match(Set cr (CmpP op1 op2));
12595 
12596   format %{ "CMPu   $op1,$op2" %}
12597   opcode(0x3B);  /* Opcode 3B /r */
12598   ins_encode( OpcP, RegReg( op1, op2) );
12599   ins_pipe( ialu_cr_reg_reg );
12600 %}
12601 
12602 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12603   match(Set cr (CmpP op1 op2));
12604 
12605   format %{ "CMPu   $op1,$op2" %}
12606   opcode(0x81,0x07);  /* Opcode 81 /7 */
12607   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12608   ins_pipe( ialu_cr_reg_imm );
12609 %}
12610 
12611 // // Cisc-spilled version of cmpP_eReg
12612 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12613   match(Set cr (CmpP op1 (LoadP op2)));
12614 
12615   format %{ "CMPu   $op1,$op2" %}
12616   ins_cost(500);
12617   opcode(0x3B);  /* Opcode 3B /r */
12618   ins_encode( OpcP, RegMem( op1, op2) );
12619   ins_pipe( ialu_cr_reg_mem );
12620 %}
12621 
12622 // // Cisc-spilled version of cmpP_eReg
12623 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12624 //  match(Set cr (CmpP (LoadP op1) op2));
12625 //
12626 //  format %{ "CMPu   $op1,$op2" %}
12627 //  ins_cost(500);
12628 //  opcode(0x39);  /* Opcode 39 /r */
12629 //  ins_encode( OpcP, RegMem( op1, op2) );
12630 //%}
12631 
12632 // Compare raw pointer (used in out-of-heap check).
12633 // Only works because non-oop pointers must be raw pointers
12634 // and raw pointers have no anti-dependencies.
12635 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12636   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12637   match(Set cr (CmpP op1 (LoadP op2)));
12638 
12639   format %{ "CMPu   $op1,$op2" %}
12640   opcode(0x3B);  /* Opcode 3B /r */
12641   ins_encode( OpcP, RegMem( op1, op2) );
12642   ins_pipe( ialu_cr_reg_mem );
12643 %}
12644 
12645 //
12646 // This will generate a signed flags result. This should be ok
12647 // since any compare to a zero should be eq/neq.
12648 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12649   match(Set cr (CmpP src zero));
12650 
12651   format %{ "TEST   $src,$src" %}
12652   opcode(0x85);
12653   ins_encode( OpcP, RegReg( src, src ) );
12654   ins_pipe( ialu_cr_reg_imm );
12655 %}
12656 
12657 // Cisc-spilled version of testP_reg
12658 // This will generate a signed flags result. This should be ok
12659 // since any compare to a zero should be eq/neq.
12660 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12661   match(Set cr (CmpP (LoadP op) zero));
12662 
12663   format %{ "TEST   $op,0xFFFFFFFF" %}
12664   ins_cost(500);
12665   opcode(0xF7);               /* Opcode F7 /0 */
12666   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12667   ins_pipe( ialu_cr_reg_imm );
12668 %}
12669 
12670 // Yanked all unsigned pointer compare operations.
12671 // Pointer compares are done with CmpP which is already unsigned.
12672 
12673 //----------Max and Min--------------------------------------------------------
12674 // Min Instructions
12675 ////
12676 //   *** Min and Max using the conditional move are slower than the
12677 //   *** branch version on a Pentium III.
12678 // // Conditional move for min
12679 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12680 //  effect( USE_DEF op2, USE op1, USE cr );
12681 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12682 //  opcode(0x4C,0x0F);
12683 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12684 //  ins_pipe( pipe_cmov_reg );
12685 //%}
12686 //
12687 //// Min Register with Register (P6 version)
12688 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12689 //  predicate(VM_Version::supports_cmov() );
12690 //  match(Set op2 (MinI op1 op2));
12691 //  ins_cost(200);
12692 //  expand %{
12693 //    eFlagsReg cr;
12694 //    compI_eReg(cr,op1,op2);
12695 //    cmovI_reg_lt(op2,op1,cr);
12696 //  %}
12697 //%}
12698 
12699 // Min Register with Register (generic version)
12700 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12701   match(Set dst (MinI dst src));
12702   effect(KILL flags);
12703   ins_cost(300);
12704 
12705   format %{ "MIN    $dst,$src" %}
12706   opcode(0xCC);
12707   ins_encode( min_enc(dst,src) );
12708   ins_pipe( pipe_slow );
12709 %}
12710 
12711 // Max Register with Register
12712 //   *** Min and Max using the conditional move are slower than the
12713 //   *** branch version on a Pentium III.
12714 // // Conditional move for max
12715 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12716 //  effect( USE_DEF op2, USE op1, USE cr );
12717 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12718 //  opcode(0x4F,0x0F);
12719 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12720 //  ins_pipe( pipe_cmov_reg );
12721 //%}
12722 //
12723 // // Max Register with Register (P6 version)
12724 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12725 //  predicate(VM_Version::supports_cmov() );
12726 //  match(Set op2 (MaxI op1 op2));
12727 //  ins_cost(200);
12728 //  expand %{
12729 //    eFlagsReg cr;
12730 //    compI_eReg(cr,op1,op2);
12731 //    cmovI_reg_gt(op2,op1,cr);
12732 //  %}
12733 //%}
12734 
12735 // Max Register with Register (generic version)
12736 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12737   match(Set dst (MaxI dst src));
12738   effect(KILL flags);
12739   ins_cost(300);
12740 
12741   format %{ "MAX    $dst,$src" %}
12742   opcode(0xCC);
12743   ins_encode( max_enc(dst,src) );
12744   ins_pipe( pipe_slow );
12745 %}
12746 
12747 // ============================================================================
12748 // Branch Instructions
12749 // Jump Table
12750 instruct jumpXtnd(eRegI switch_val) %{
12751   match(Jump switch_val);
12752   ins_cost(350);
12753 
12754   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
12755 
12756   ins_encode %{
12757     address table_base  = __ address_table_constant(_index2label);
12758 
12759     // Jump to Address(table_base + switch_reg)
12760     InternalAddress table(table_base);
12761     Address index(noreg, $switch_val$$Register, Address::times_1);
12762     __ jump(ArrayAddress(table, index));
12763   %}
12764   ins_pc_relative(1);
12765   ins_pipe(pipe_jmp);
12766 %}
12767 
12768 // Jump Direct - Label defines a relative address from JMP+1
12769 instruct jmpDir(label labl) %{
12770   match(Goto);
12771   effect(USE labl);
12772 
12773   ins_cost(300);
12774   format %{ "JMP    $labl" %}
12775   size(5);
12776   opcode(0xE9);
12777   ins_encode( OpcP, Lbl( labl ) );
12778   ins_pipe( pipe_jmp );
12779   ins_pc_relative(1);
12780 %}
12781 
12782 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12783 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12784   match(If cop cr);
12785   effect(USE labl);
12786 
12787   ins_cost(300);
12788   format %{ "J$cop    $labl" %}
12789   size(6);
12790   opcode(0x0F, 0x80);
12791   ins_encode( Jcc( cop, labl) );
12792   ins_pipe( pipe_jcc );
12793   ins_pc_relative(1);
12794 %}
12795 
12796 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12797 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12798   match(CountedLoopEnd cop cr);
12799   effect(USE labl);
12800 
12801   ins_cost(300);
12802   format %{ "J$cop    $labl\t# Loop end" %}
12803   size(6);
12804   opcode(0x0F, 0x80);
12805   ins_encode( Jcc( cop, labl) );
12806   ins_pipe( pipe_jcc );
12807   ins_pc_relative(1);
12808 %}
12809 
12810 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12811 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12812   match(CountedLoopEnd cop cmp);
12813   effect(USE labl);
12814 
12815   ins_cost(300);
12816   format %{ "J$cop,u  $labl\t# Loop end" %}
12817   size(6);
12818   opcode(0x0F, 0x80);
12819   ins_encode( Jcc( cop, labl) );
12820   ins_pipe( pipe_jcc );
12821   ins_pc_relative(1);
12822 %}
12823 
12824 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12825   match(CountedLoopEnd cop cmp);
12826   effect(USE labl);
12827 
12828   ins_cost(200);
12829   format %{ "J$cop,u  $labl\t# Loop end" %}
12830   size(6);
12831   opcode(0x0F, 0x80);
12832   ins_encode( Jcc( cop, labl) );
12833   ins_pipe( pipe_jcc );
12834   ins_pc_relative(1);
12835 %}
12836 
12837 // Jump Direct Conditional - using unsigned comparison
12838 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12839   match(If cop cmp);
12840   effect(USE labl);
12841 
12842   ins_cost(300);
12843   format %{ "J$cop,u  $labl" %}
12844   size(6);
12845   opcode(0x0F, 0x80);
12846   ins_encode(Jcc(cop, labl));
12847   ins_pipe(pipe_jcc);
12848   ins_pc_relative(1);
12849 %}
12850 
12851 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12852   match(If cop cmp);
12853   effect(USE labl);
12854 
12855   ins_cost(200);
12856   format %{ "J$cop,u  $labl" %}
12857   size(6);
12858   opcode(0x0F, 0x80);
12859   ins_encode(Jcc(cop, labl));
12860   ins_pipe(pipe_jcc);
12861   ins_pc_relative(1);
12862 %}
12863 
12864 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12865   match(If cop cmp);
12866   effect(USE labl);
12867 
12868   ins_cost(200);
12869   format %{ $$template
12870     if ($cop$$cmpcode == Assembler::notEqual) {
12871       $$emit$$"JP,u   $labl\n\t"
12872       $$emit$$"J$cop,u   $labl"
12873     } else {
12874       $$emit$$"JP,u   done\n\t"
12875       $$emit$$"J$cop,u   $labl\n\t"
12876       $$emit$$"done:"
12877     }
12878   %}
12879   size(12);
12880   opcode(0x0F, 0x80);
12881   ins_encode %{
12882     Label* l = $labl$$label;
12883     $$$emit8$primary;
12884     emit_cc(cbuf, $secondary, Assembler::parity);
12885     int parity_disp = -1;
12886     bool ok = false;
12887     if ($cop$$cmpcode == Assembler::notEqual) {
12888        // the two jumps 6 bytes apart so the jump distances are too
12889        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12890     } else if ($cop$$cmpcode == Assembler::equal) {
12891        parity_disp = 6;
12892        ok = true;
12893     } else {
12894        ShouldNotReachHere();
12895     }
12896     emit_d32(cbuf, parity_disp);
12897     $$$emit8$primary;
12898     emit_cc(cbuf, $secondary, $cop$$cmpcode);
12899     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12900     emit_d32(cbuf, disp);
12901   %}
12902   ins_pipe(pipe_jcc);
12903   ins_pc_relative(1);
12904 %}
12905 
12906 // ============================================================================
12907 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12908 // array for an instance of the superklass.  Set a hidden internal cache on a
12909 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12910 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12911 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12912   match(Set result (PartialSubtypeCheck sub super));
12913   effect( KILL rcx, KILL cr );
12914 
12915   ins_cost(1100);  // slightly larger than the next version
12916   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12917             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12918             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12919             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12920             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12921             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12922             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12923      "miss:\t" %}
12924 
12925   opcode(0x1); // Force a XOR of EDI
12926   ins_encode( enc_PartialSubtypeCheck() );
12927   ins_pipe( pipe_slow );
12928 %}
12929 
12930 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12931   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12932   effect( KILL rcx, KILL result );
12933 
12934   ins_cost(1000);
12935   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12936             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12937             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12938             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12939             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12940             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12941      "miss:\t" %}
12942 
12943   opcode(0x0);  // No need to XOR EDI
12944   ins_encode( enc_PartialSubtypeCheck() );
12945   ins_pipe( pipe_slow );
12946 %}
12947 
12948 // ============================================================================
12949 // Branch Instructions -- short offset versions
12950 //
12951 // These instructions are used to replace jumps of a long offset (the default
12952 // match) with jumps of a shorter offset.  These instructions are all tagged
12953 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12954 // match rules in general matching.  Instead, the ADLC generates a conversion
12955 // method in the MachNode which can be used to do in-place replacement of the
12956 // long variant with the shorter variant.  The compiler will determine if a
12957 // branch can be taken by the is_short_branch_offset() predicate in the machine
12958 // specific code section of the file.
12959 
12960 // Jump Direct - Label defines a relative address from JMP+1
12961 instruct jmpDir_short(label labl) %{
12962   match(Goto);
12963   effect(USE labl);
12964 
12965   ins_cost(300);
12966   format %{ "JMP,s  $labl" %}
12967   size(2);
12968   opcode(0xEB);
12969   ins_encode( OpcP, LblShort( labl ) );
12970   ins_pipe( pipe_jmp );
12971   ins_pc_relative(1);
12972   ins_short_branch(1);
12973 %}
12974 
12975 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12976 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12977   match(If cop cr);
12978   effect(USE labl);
12979 
12980   ins_cost(300);
12981   format %{ "J$cop,s  $labl" %}
12982   size(2);
12983   opcode(0x70);
12984   ins_encode( JccShort( cop, labl) );
12985   ins_pipe( pipe_jcc );
12986   ins_pc_relative(1);
12987   ins_short_branch(1);
12988 %}
12989 
12990 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12991 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12992   match(CountedLoopEnd cop cr);
12993   effect(USE labl);
12994 
12995   ins_cost(300);
12996   format %{ "J$cop,s  $labl\t# Loop end" %}
12997   size(2);
12998   opcode(0x70);
12999   ins_encode( JccShort( cop, labl) );
13000   ins_pipe( pipe_jcc );
13001   ins_pc_relative(1);
13002   ins_short_branch(1);
13003 %}
13004 
13005 // Jump Direct Conditional - Label defines a relative address from Jcc+1
13006 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13007   match(CountedLoopEnd cop cmp);
13008   effect(USE labl);
13009 
13010   ins_cost(300);
13011   format %{ "J$cop,us $labl\t# Loop end" %}
13012   size(2);
13013   opcode(0x70);
13014   ins_encode( JccShort( cop, labl) );
13015   ins_pipe( pipe_jcc );
13016   ins_pc_relative(1);
13017   ins_short_branch(1);
13018 %}
13019 
13020 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13021   match(CountedLoopEnd cop cmp);
13022   effect(USE labl);
13023 
13024   ins_cost(300);
13025   format %{ "J$cop,us $labl\t# Loop end" %}
13026   size(2);
13027   opcode(0x70);
13028   ins_encode( JccShort( cop, labl) );
13029   ins_pipe( pipe_jcc );
13030   ins_pc_relative(1);
13031   ins_short_branch(1);
13032 %}
13033 
13034 // Jump Direct Conditional - using unsigned comparison
13035 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
13036   match(If cop cmp);
13037   effect(USE labl);
13038 
13039   ins_cost(300);
13040   format %{ "J$cop,us $labl" %}
13041   size(2);
13042   opcode(0x70);
13043   ins_encode( JccShort( cop, labl) );
13044   ins_pipe( pipe_jcc );
13045   ins_pc_relative(1);
13046   ins_short_branch(1);
13047 %}
13048 
13049 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
13050   match(If cop cmp);
13051   effect(USE labl);
13052 
13053   ins_cost(300);
13054   format %{ "J$cop,us $labl" %}
13055   size(2);
13056   opcode(0x70);
13057   ins_encode( JccShort( cop, labl) );
13058   ins_pipe( pipe_jcc );
13059   ins_pc_relative(1);
13060   ins_short_branch(1);
13061 %}
13062 
13063 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
13064   match(If cop cmp);
13065   effect(USE labl);
13066 
13067   ins_cost(300);
13068   format %{ $$template
13069     if ($cop$$cmpcode == Assembler::notEqual) {
13070       $$emit$$"JP,u,s   $labl\n\t"
13071       $$emit$$"J$cop,u,s   $labl"
13072     } else {
13073       $$emit$$"JP,u,s   done\n\t"
13074       $$emit$$"J$cop,u,s  $labl\n\t"
13075       $$emit$$"done:"
13076     }
13077   %}
13078   size(4);
13079   opcode(0x70);
13080   ins_encode %{
13081     Label* l = $labl$$label;
13082     emit_cc(cbuf, $primary, Assembler::parity);
13083     int parity_disp = -1;
13084     if ($cop$$cmpcode == Assembler::notEqual) {
13085       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
13086     } else if ($cop$$cmpcode == Assembler::equal) {
13087       parity_disp = 2;
13088     } else {
13089       ShouldNotReachHere();
13090     }
13091     emit_d8(cbuf, parity_disp);
13092     emit_cc(cbuf, $primary, $cop$$cmpcode);
13093     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
13094     emit_d8(cbuf, disp);
13095     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
13096     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
13097   %}
13098   ins_pipe(pipe_jcc);
13099   ins_pc_relative(1);
13100   ins_short_branch(1);
13101 %}
13102 
13103 // ============================================================================
13104 // Long Compare
13105 //
13106 // Currently we hold longs in 2 registers.  Comparing such values efficiently
13107 // is tricky.  The flavor of compare used depends on whether we are testing
13108 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
13109 // The GE test is the negated LT test.  The LE test can be had by commuting
13110 // the operands (yielding a GE test) and then negating; negate again for the
13111 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
13112 // NE test is negated from that.
13113 
13114 // Due to a shortcoming in the ADLC, it mixes up expressions like:
13115 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
13116 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
13117 // are collapsed internally in the ADLC's dfa-gen code.  The match for
13118 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
13119 // foo match ends up with the wrong leaf.  One fix is to not match both
13120 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
13121 // both forms beat the trinary form of long-compare and both are very useful
13122 // on Intel which has so few registers.
13123 
13124 // Manifest a CmpL result in an integer register.  Very painful.
13125 // This is the test to avoid.
13126 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
13127   match(Set dst (CmpL3 src1 src2));
13128   effect( KILL flags );
13129   ins_cost(1000);
13130   format %{ "XOR    $dst,$dst\n\t"
13131             "CMP    $src1.hi,$src2.hi\n\t"
13132             "JLT,s  m_one\n\t"
13133             "JGT,s  p_one\n\t"
13134             "CMP    $src1.lo,$src2.lo\n\t"
13135             "JB,s   m_one\n\t"
13136             "JEQ,s  done\n"
13137     "p_one:\tINC    $dst\n\t"
13138             "JMP,s  done\n"
13139     "m_one:\tDEC    $dst\n"
13140      "done:" %}
13141   ins_encode %{
13142     Label p_one, m_one, done;
13143     __ xorptr($dst$$Register, $dst$$Register);
13144     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
13145     __ jccb(Assembler::less,    m_one);
13146     __ jccb(Assembler::greater, p_one);
13147     __ cmpl($src1$$Register, $src2$$Register);
13148     __ jccb(Assembler::below,   m_one);
13149     __ jccb(Assembler::equal,   done);
13150     __ bind(p_one);
13151     __ incrementl($dst$$Register);
13152     __ jmpb(done);
13153     __ bind(m_one);
13154     __ decrementl($dst$$Register);
13155     __ bind(done);
13156   %}
13157   ins_pipe( pipe_slow );
13158 %}
13159 
13160 //======
13161 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13162 // compares.  Can be used for LE or GT compares by reversing arguments.
13163 // NOT GOOD FOR EQ/NE tests.
13164 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
13165   match( Set flags (CmpL src zero ));
13166   ins_cost(100);
13167   format %{ "TEST   $src.hi,$src.hi" %}
13168   opcode(0x85);
13169   ins_encode( OpcP, RegReg_Hi2( src, src ) );
13170   ins_pipe( ialu_cr_reg_reg );
13171 %}
13172 
13173 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
13174 // compares.  Can be used for LE or GT compares by reversing arguments.
13175 // NOT GOOD FOR EQ/NE tests.
13176 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13177   match( Set flags (CmpL src1 src2 ));
13178   effect( TEMP tmp );
13179   ins_cost(300);
13180   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13181             "MOV    $tmp,$src1.hi\n\t"
13182             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
13183   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
13184   ins_pipe( ialu_cr_reg_reg );
13185 %}
13186 
13187 // Long compares reg < zero/req OR reg >= zero/req.
13188 // Just a wrapper for a normal branch, plus the predicate test.
13189 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
13190   match(If cmp flags);
13191   effect(USE labl);
13192   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13193   expand %{
13194     jmpCon(cmp,flags,labl);    // JLT or JGE...
13195   %}
13196 %}
13197 
13198 // Compare 2 longs and CMOVE longs.
13199 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
13200   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13201   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13202   ins_cost(400);
13203   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13204             "CMOV$cmp $dst.hi,$src.hi" %}
13205   opcode(0x0F,0x40);
13206   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13207   ins_pipe( pipe_cmov_reg_long );
13208 %}
13209 
13210 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
13211   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13212   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13213   ins_cost(500);
13214   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13215             "CMOV$cmp $dst.hi,$src.hi" %}
13216   opcode(0x0F,0x40);
13217   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13218   ins_pipe( pipe_cmov_reg_long );
13219 %}
13220 
13221 // Compare 2 longs and CMOVE ints.
13222 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
13223   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13224   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13225   ins_cost(200);
13226   format %{ "CMOV$cmp $dst,$src" %}
13227   opcode(0x0F,0x40);
13228   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13229   ins_pipe( pipe_cmov_reg );
13230 %}
13231 
13232 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
13233   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13234   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13235   ins_cost(250);
13236   format %{ "CMOV$cmp $dst,$src" %}
13237   opcode(0x0F,0x40);
13238   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13239   ins_pipe( pipe_cmov_mem );
13240 %}
13241 
13242 // Compare 2 longs and CMOVE ints.
13243 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
13244   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
13245   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13246   ins_cost(200);
13247   format %{ "CMOV$cmp $dst,$src" %}
13248   opcode(0x0F,0x40);
13249   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13250   ins_pipe( pipe_cmov_reg );
13251 %}
13252 
13253 // Compare 2 longs and CMOVE doubles
13254 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
13255   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13256   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13257   ins_cost(200);
13258   expand %{
13259     fcmovD_regS(cmp,flags,dst,src);
13260   %}
13261 %}
13262 
13263 // Compare 2 longs and CMOVE doubles
13264 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
13265   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13266   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13267   ins_cost(200);
13268   expand %{
13269     fcmovXD_regS(cmp,flags,dst,src);
13270   %}
13271 %}
13272 
13273 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
13274   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13275   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13276   ins_cost(200);
13277   expand %{
13278     fcmovF_regS(cmp,flags,dst,src);
13279   %}
13280 %}
13281 
13282 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
13283   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
13284   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13285   ins_cost(200);
13286   expand %{
13287     fcmovX_regS(cmp,flags,dst,src);
13288   %}
13289 %}
13290 
13291 //======
13292 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13293 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
13294   match( Set flags (CmpL src zero ));
13295   effect(TEMP tmp);
13296   ins_cost(200);
13297   format %{ "MOV    $tmp,$src.lo\n\t"
13298             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
13299   ins_encode( long_cmp_flags0( src, tmp ) );
13300   ins_pipe( ialu_reg_reg_long );
13301 %}
13302 
13303 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
13304 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
13305   match( Set flags (CmpL src1 src2 ));
13306   ins_cost(200+300);
13307   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
13308             "JNE,s  skip\n\t"
13309             "CMP    $src1.hi,$src2.hi\n\t"
13310      "skip:\t" %}
13311   ins_encode( long_cmp_flags1( src1, src2 ) );
13312   ins_pipe( ialu_cr_reg_reg );
13313 %}
13314 
13315 // Long compare reg == zero/reg OR reg != zero/reg
13316 // Just a wrapper for a normal branch, plus the predicate test.
13317 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
13318   match(If cmp flags);
13319   effect(USE labl);
13320   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13321   expand %{
13322     jmpCon(cmp,flags,labl);    // JEQ or JNE...
13323   %}
13324 %}
13325 
13326 // Compare 2 longs and CMOVE longs.
13327 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
13328   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13329   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13330   ins_cost(400);
13331   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13332             "CMOV$cmp $dst.hi,$src.hi" %}
13333   opcode(0x0F,0x40);
13334   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13335   ins_pipe( pipe_cmov_reg_long );
13336 %}
13337 
13338 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
13339   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13340   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13341   ins_cost(500);
13342   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13343             "CMOV$cmp $dst.hi,$src.hi" %}
13344   opcode(0x0F,0x40);
13345   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13346   ins_pipe( pipe_cmov_reg_long );
13347 %}
13348 
13349 // Compare 2 longs and CMOVE ints.
13350 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
13351   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13352   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13353   ins_cost(200);
13354   format %{ "CMOV$cmp $dst,$src" %}
13355   opcode(0x0F,0x40);
13356   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13357   ins_pipe( pipe_cmov_reg );
13358 %}
13359 
13360 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
13361   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13362   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13363   ins_cost(250);
13364   format %{ "CMOV$cmp $dst,$src" %}
13365   opcode(0x0F,0x40);
13366   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13367   ins_pipe( pipe_cmov_mem );
13368 %}
13369 
13370 // Compare 2 longs and CMOVE ints.
13371 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
13372   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
13373   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13374   ins_cost(200);
13375   format %{ "CMOV$cmp $dst,$src" %}
13376   opcode(0x0F,0x40);
13377   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13378   ins_pipe( pipe_cmov_reg );
13379 %}
13380 
13381 // Compare 2 longs and CMOVE doubles
13382 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
13383   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13384   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13385   ins_cost(200);
13386   expand %{
13387     fcmovD_regS(cmp,flags,dst,src);
13388   %}
13389 %}
13390 
13391 // Compare 2 longs and CMOVE doubles
13392 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
13393   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13394   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13395   ins_cost(200);
13396   expand %{
13397     fcmovXD_regS(cmp,flags,dst,src);
13398   %}
13399 %}
13400 
13401 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
13402   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13403   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13404   ins_cost(200);
13405   expand %{
13406     fcmovF_regS(cmp,flags,dst,src);
13407   %}
13408 %}
13409 
13410 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
13411   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
13412   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13413   ins_cost(200);
13414   expand %{
13415     fcmovX_regS(cmp,flags,dst,src);
13416   %}
13417 %}
13418 
13419 //======
13420 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13421 // Same as cmpL_reg_flags_LEGT except must negate src
13422 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
13423   match( Set flags (CmpL src zero ));
13424   effect( TEMP tmp );
13425   ins_cost(300);
13426   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
13427             "CMP    $tmp,$src.lo\n\t"
13428             "SBB    $tmp,$src.hi\n\t" %}
13429   ins_encode( long_cmp_flags3(src, tmp) );
13430   ins_pipe( ialu_reg_reg_long );
13431 %}
13432 
13433 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
13434 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
13435 // requires a commuted test to get the same result.
13436 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
13437   match( Set flags (CmpL src1 src2 ));
13438   effect( TEMP tmp );
13439   ins_cost(300);
13440   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
13441             "MOV    $tmp,$src2.hi\n\t"
13442             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
13443   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
13444   ins_pipe( ialu_cr_reg_reg );
13445 %}
13446 
13447 // Long compares reg < zero/req OR reg >= zero/req.
13448 // Just a wrapper for a normal branch, plus the predicate test
13449 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
13450   match(If cmp flags);
13451   effect(USE labl);
13452   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
13453   ins_cost(300);
13454   expand %{
13455     jmpCon(cmp,flags,labl);    // JGT or JLE...
13456   %}
13457 %}
13458 
13459 // Compare 2 longs and CMOVE longs.
13460 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
13461   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
13462   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13463   ins_cost(400);
13464   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13465             "CMOV$cmp $dst.hi,$src.hi" %}
13466   opcode(0x0F,0x40);
13467   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
13468   ins_pipe( pipe_cmov_reg_long );
13469 %}
13470 
13471 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
13472   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
13473   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13474   ins_cost(500);
13475   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
13476             "CMOV$cmp $dst.hi,$src.hi+4" %}
13477   opcode(0x0F,0x40);
13478   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
13479   ins_pipe( pipe_cmov_reg_long );
13480 %}
13481 
13482 // Compare 2 longs and CMOVE ints.
13483 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
13484   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13485   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
13486   ins_cost(200);
13487   format %{ "CMOV$cmp $dst,$src" %}
13488   opcode(0x0F,0x40);
13489   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13490   ins_pipe( pipe_cmov_reg );
13491 %}
13492 
13493 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
13494   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13495   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
13496   ins_cost(250);
13497   format %{ "CMOV$cmp $dst,$src" %}
13498   opcode(0x0F,0x40);
13499   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
13500   ins_pipe( pipe_cmov_mem );
13501 %}
13502 
13503 // Compare 2 longs and CMOVE ptrs.
13504 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
13505   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
13506   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
13507   ins_cost(200);
13508   format %{ "CMOV$cmp $dst,$src" %}
13509   opcode(0x0F,0x40);
13510   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
13511   ins_pipe( pipe_cmov_reg );
13512 %}
13513 
13514 // Compare 2 longs and CMOVE doubles
13515 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
13516   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13517   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13518   ins_cost(200);
13519   expand %{
13520     fcmovD_regS(cmp,flags,dst,src);
13521   %}
13522 %}
13523 
13524 // Compare 2 longs and CMOVE doubles
13525 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
13526   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13527   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
13528   ins_cost(200);
13529   expand %{
13530     fcmovXD_regS(cmp,flags,dst,src);
13531   %}
13532 %}
13533 
13534 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13535   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13536   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13537   ins_cost(200);
13538   expand %{
13539     fcmovF_regS(cmp,flags,dst,src);
13540   %}
13541 %}
13542 
13543 
13544 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13545   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13546   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13547   ins_cost(200);
13548   expand %{
13549     fcmovX_regS(cmp,flags,dst,src);
13550   %}
13551 %}
13552 
13553 
13554 // ============================================================================
13555 // Procedure Call/Return Instructions
13556 // Call Java Static Instruction
13557 // Note: If this code changes, the corresponding ret_addr_offset() and
13558 //       compute_padding() functions will have to be adjusted.
13559 instruct CallStaticJavaDirect(method meth) %{
13560   match(CallStaticJava);
13561   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
13562   effect(USE meth);
13563 
13564   ins_cost(300);
13565   format %{ "CALL,static " %}
13566   opcode(0xE8); /* E8 cd */
13567   ins_encode( pre_call_FPU,
13568               Java_Static_Call( meth ),
13569               call_epilog,
13570               post_call_FPU );
13571   ins_pipe( pipe_slow );
13572   ins_pc_relative(1);
13573   ins_alignment(4);
13574 %}
13575 
13576 // Call Java Static Instruction (method handle version)
13577 // Note: If this code changes, the corresponding ret_addr_offset() and
13578 //       compute_padding() functions will have to be adjusted.
13579 instruct CallStaticJavaHandle(method meth, eBPRegP ebp) %{
13580   match(CallStaticJava);
13581   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
13582   effect(USE meth);
13583   // EBP is saved by all callees (for interpreter stack correction).
13584   // We use it here for a similar purpose, in {preserve,restore}_SP.
13585 
13586   ins_cost(300);
13587   format %{ "CALL,static/MethodHandle " %}
13588   opcode(0xE8); /* E8 cd */
13589   ins_encode( pre_call_FPU,
13590               preserve_SP,
13591               Java_Static_Call( meth ),
13592               restore_SP,
13593               call_epilog,
13594               post_call_FPU );
13595   ins_pipe( pipe_slow );
13596   ins_pc_relative(1);
13597   ins_alignment(4);
13598 %}
13599 
13600 // Call Java Dynamic Instruction
13601 // Note: If this code changes, the corresponding ret_addr_offset() and
13602 //       compute_padding() functions will have to be adjusted.
13603 instruct CallDynamicJavaDirect(method meth) %{
13604   match(CallDynamicJava);
13605   effect(USE meth);
13606 
13607   ins_cost(300);
13608   format %{ "MOV    EAX,(oop)-1\n\t"
13609             "CALL,dynamic" %}
13610   opcode(0xE8); /* E8 cd */
13611   ins_encode( pre_call_FPU,
13612               Java_Dynamic_Call( meth ),
13613               call_epilog,
13614               post_call_FPU );
13615   ins_pipe( pipe_slow );
13616   ins_pc_relative(1);
13617   ins_alignment(4);
13618 %}
13619 
13620 // Call Runtime Instruction
13621 instruct CallRuntimeDirect(method meth) %{
13622   match(CallRuntime );
13623   effect(USE meth);
13624 
13625   ins_cost(300);
13626   format %{ "CALL,runtime " %}
13627   opcode(0xE8); /* E8 cd */
13628   // Use FFREEs to clear entries in float stack
13629   ins_encode( pre_call_FPU,
13630               FFree_Float_Stack_All,
13631               Java_To_Runtime( meth ),
13632               post_call_FPU );
13633   ins_pipe( pipe_slow );
13634   ins_pc_relative(1);
13635 %}
13636 
13637 // Call runtime without safepoint
13638 instruct CallLeafDirect(method meth) %{
13639   match(CallLeaf);
13640   effect(USE meth);
13641 
13642   ins_cost(300);
13643   format %{ "CALL_LEAF,runtime " %}
13644   opcode(0xE8); /* E8 cd */
13645   ins_encode( pre_call_FPU,
13646               FFree_Float_Stack_All,
13647               Java_To_Runtime( meth ),
13648               Verify_FPU_For_Leaf, post_call_FPU );
13649   ins_pipe( pipe_slow );
13650   ins_pc_relative(1);
13651 %}
13652 
13653 instruct CallLeafNoFPDirect(method meth) %{
13654   match(CallLeafNoFP);
13655   effect(USE meth);
13656 
13657   ins_cost(300);
13658   format %{ "CALL_LEAF_NOFP,runtime " %}
13659   opcode(0xE8); /* E8 cd */
13660   ins_encode(Java_To_Runtime(meth));
13661   ins_pipe( pipe_slow );
13662   ins_pc_relative(1);
13663 %}
13664 
13665 
13666 // Return Instruction
13667 // Remove the return address & jump to it.
13668 instruct Ret() %{
13669   match(Return);
13670   format %{ "RET" %}
13671   opcode(0xC3);
13672   ins_encode(OpcP);
13673   ins_pipe( pipe_jmp );
13674 %}
13675 
13676 // Tail Call; Jump from runtime stub to Java code.
13677 // Also known as an 'interprocedural jump'.
13678 // Target of jump will eventually return to caller.
13679 // TailJump below removes the return address.
13680 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13681   match(TailCall jump_target method_oop );
13682   ins_cost(300);
13683   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13684   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13685   ins_encode( OpcP, RegOpc(jump_target) );
13686   ins_pipe( pipe_jmp );
13687 %}
13688 
13689 
13690 // Tail Jump; remove the return address; jump to target.
13691 // TailCall above leaves the return address around.
13692 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13693   match( TailJump jump_target ex_oop );
13694   ins_cost(300);
13695   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13696             "JMP    $jump_target " %}
13697   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13698   ins_encode( enc_pop_rdx,
13699               OpcP, RegOpc(jump_target) );
13700   ins_pipe( pipe_jmp );
13701 %}
13702 
13703 // Create exception oop: created by stack-crawling runtime code.
13704 // Created exception is now available to this handler, and is setup
13705 // just prior to jumping to this handler.  No code emitted.
13706 instruct CreateException( eAXRegP ex_oop )
13707 %{
13708   match(Set ex_oop (CreateEx));
13709 
13710   size(0);
13711   // use the following format syntax
13712   format %{ "# exception oop is in EAX; no code emitted" %}
13713   ins_encode();
13714   ins_pipe( empty );
13715 %}
13716 
13717 
13718 // Rethrow exception:
13719 // The exception oop will come in the first argument position.
13720 // Then JUMP (not call) to the rethrow stub code.
13721 instruct RethrowException()
13722 %{
13723   match(Rethrow);
13724 
13725   // use the following format syntax
13726   format %{ "JMP    rethrow_stub" %}
13727   ins_encode(enc_rethrow);
13728   ins_pipe( pipe_jmp );
13729 %}
13730 
13731 // inlined locking and unlocking
13732 
13733 
13734 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13735   match( Set cr (FastLock object box) );
13736   effect( TEMP tmp, TEMP scr );
13737   ins_cost(300);
13738   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13739   ins_encode( Fast_Lock(object,box,tmp,scr) );
13740   ins_pipe( pipe_slow );
13741   ins_pc_relative(1);
13742 %}
13743 
13744 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13745   match( Set cr (FastUnlock object box) );
13746   effect( TEMP tmp );
13747   ins_cost(300);
13748   format %{ "FASTUNLOCK $object, $box, $tmp" %}
13749   ins_encode( Fast_Unlock(object,box,tmp) );
13750   ins_pipe( pipe_slow );
13751   ins_pc_relative(1);
13752 %}
13753 
13754 
13755 
13756 // ============================================================================
13757 // Safepoint Instruction
13758 instruct safePoint_poll(eFlagsReg cr) %{
13759   match(SafePoint);
13760   effect(KILL cr);
13761 
13762   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13763   // On SPARC that might be acceptable as we can generate the address with
13764   // just a sethi, saving an or.  By polling at offset 0 we can end up
13765   // putting additional pressure on the index-0 in the D$.  Because of
13766   // alignment (just like the situation at hand) the lower indices tend
13767   // to see more traffic.  It'd be better to change the polling address
13768   // to offset 0 of the last $line in the polling page.
13769 
13770   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13771   ins_cost(125);
13772   size(6) ;
13773   ins_encode( Safepoint_Poll() );
13774   ins_pipe( ialu_reg_mem );
13775 %}
13776 
13777 //----------PEEPHOLE RULES-----------------------------------------------------
13778 // These must follow all instruction definitions as they use the names
13779 // defined in the instructions definitions.
13780 //
13781 // peepmatch ( root_instr_name [preceding_instruction]* );
13782 //
13783 // peepconstraint %{
13784 // (instruction_number.operand_name relational_op instruction_number.operand_name
13785 //  [, ...] );
13786 // // instruction numbers are zero-based using left to right order in peepmatch
13787 //
13788 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13789 // // provide an instruction_number.operand_name for each operand that appears
13790 // // in the replacement instruction's match rule
13791 //
13792 // ---------VM FLAGS---------------------------------------------------------
13793 //
13794 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13795 //
13796 // Each peephole rule is given an identifying number starting with zero and
13797 // increasing by one in the order seen by the parser.  An individual peephole
13798 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13799 // on the command-line.
13800 //
13801 // ---------CURRENT LIMITATIONS----------------------------------------------
13802 //
13803 // Only match adjacent instructions in same basic block
13804 // Only equality constraints
13805 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13806 // Only one replacement instruction
13807 //
13808 // ---------EXAMPLE----------------------------------------------------------
13809 //
13810 // // pertinent parts of existing instructions in architecture description
13811 // instruct movI(eRegI dst, eRegI src) %{
13812 //   match(Set dst (CopyI src));
13813 // %}
13814 //
13815 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
13816 //   match(Set dst (AddI dst src));
13817 //   effect(KILL cr);
13818 // %}
13819 //
13820 // // Change (inc mov) to lea
13821 // peephole %{
13822 //   // increment preceeded by register-register move
13823 //   peepmatch ( incI_eReg movI );
13824 //   // require that the destination register of the increment
13825 //   // match the destination register of the move
13826 //   peepconstraint ( 0.dst == 1.dst );
13827 //   // construct a replacement instruction that sets
13828 //   // the destination to ( move's source register + one )
13829 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13830 // %}
13831 //
13832 // Implementation no longer uses movX instructions since
13833 // machine-independent system no longer uses CopyX nodes.
13834 //
13835 // peephole %{
13836 //   peepmatch ( incI_eReg movI );
13837 //   peepconstraint ( 0.dst == 1.dst );
13838 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13839 // %}
13840 //
13841 // peephole %{
13842 //   peepmatch ( decI_eReg movI );
13843 //   peepconstraint ( 0.dst == 1.dst );
13844 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13845 // %}
13846 //
13847 // peephole %{
13848 //   peepmatch ( addI_eReg_imm movI );
13849 //   peepconstraint ( 0.dst == 1.dst );
13850 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13851 // %}
13852 //
13853 // peephole %{
13854 //   peepmatch ( addP_eReg_imm movP );
13855 //   peepconstraint ( 0.dst == 1.dst );
13856 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13857 // %}
13858 
13859 // // Change load of spilled value to only a spill
13860 // instruct storeI(memory mem, eRegI src) %{
13861 //   match(Set mem (StoreI mem src));
13862 // %}
13863 //
13864 // instruct loadI(eRegI dst, memory mem) %{
13865 //   match(Set dst (LoadI mem));
13866 // %}
13867 //
13868 peephole %{
13869   peepmatch ( loadI storeI );
13870   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13871   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13872 %}
13873 
13874 //----------SMARTSPILL RULES---------------------------------------------------
13875 // These must follow all instruction definitions as they use the names
13876 // defined in the instructions definitions.