1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_compile.cpp.incl"
  27 
  28 /// Support for intrinsics.
  29 
  30 // Return the index at which m must be inserted (or already exists).
  31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  33 #ifdef ASSERT
  34   for (int i = 1; i < _intrinsics->length(); i++) {
  35     CallGenerator* cg1 = _intrinsics->at(i-1);
  36     CallGenerator* cg2 = _intrinsics->at(i);
  37     assert(cg1->method() != cg2->method()
  38            ? cg1->method()     < cg2->method()
  39            : cg1->is_virtual() < cg2->is_virtual(),
  40            "compiler intrinsics list must stay sorted");
  41   }
  42 #endif
  43   // Binary search sorted list, in decreasing intervals [lo, hi].
  44   int lo = 0, hi = _intrinsics->length()-1;
  45   while (lo <= hi) {
  46     int mid = (uint)(hi + lo) / 2;
  47     ciMethod* mid_m = _intrinsics->at(mid)->method();
  48     if (m < mid_m) {
  49       hi = mid-1;
  50     } else if (m > mid_m) {
  51       lo = mid+1;
  52     } else {
  53       // look at minor sort key
  54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
  55       if (is_virtual < mid_virt) {
  56         hi = mid-1;
  57       } else if (is_virtual > mid_virt) {
  58         lo = mid+1;
  59       } else {
  60         return mid;  // exact match
  61       }
  62     }
  63   }
  64   return lo;  // inexact match
  65 }
  66 
  67 void Compile::register_intrinsic(CallGenerator* cg) {
  68   if (_intrinsics == NULL) {
  69     _intrinsics = new GrowableArray<CallGenerator*>(60);
  70   }
  71   // This code is stolen from ciObjectFactory::insert.
  72   // Really, GrowableArray should have methods for
  73   // insert_at, remove_at, and binary_search.
  74   int len = _intrinsics->length();
  75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
  76   if (index == len) {
  77     _intrinsics->append(cg);
  78   } else {
  79 #ifdef ASSERT
  80     CallGenerator* oldcg = _intrinsics->at(index);
  81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
  82 #endif
  83     _intrinsics->append(_intrinsics->at(len-1));
  84     int pos;
  85     for (pos = len-2; pos >= index; pos--) {
  86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
  87     }
  88     _intrinsics->at_put(index, cg);
  89   }
  90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
  91 }
  92 
  93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
  94   assert(m->is_loaded(), "don't try this on unloaded methods");
  95   if (_intrinsics != NULL) {
  96     int index = intrinsic_insertion_index(m, is_virtual);
  97     if (index < _intrinsics->length()
  98         && _intrinsics->at(index)->method() == m
  99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 100       return _intrinsics->at(index);
 101     }
 102   }
 103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 104   if (m->intrinsic_id() != vmIntrinsics::_none &&
 105       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 106     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 107     if (cg != NULL) {
 108       // Save it for next time:
 109       register_intrinsic(cg);
 110       return cg;
 111     } else {
 112       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 113     }
 114   }
 115   return NULL;
 116 }
 117 
 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 119 // in library_call.cpp.
 120 
 121 
 122 #ifndef PRODUCT
 123 // statistics gathering...
 124 
 125 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 127 
 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 129   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 130   int oflags = _intrinsic_hist_flags[id];
 131   assert(flags != 0, "what happened?");
 132   if (is_virtual) {
 133     flags |= _intrinsic_virtual;
 134   }
 135   bool changed = (flags != oflags);
 136   if ((flags & _intrinsic_worked) != 0) {
 137     juint count = (_intrinsic_hist_count[id] += 1);
 138     if (count == 1) {
 139       changed = true;           // first time
 140     }
 141     // increment the overall count also:
 142     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 143   }
 144   if (changed) {
 145     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 146       // Something changed about the intrinsic's virtuality.
 147       if ((flags & _intrinsic_virtual) != 0) {
 148         // This is the first use of this intrinsic as a virtual call.
 149         if (oflags != 0) {
 150           // We already saw it as a non-virtual, so note both cases.
 151           flags |= _intrinsic_both;
 152         }
 153       } else if ((oflags & _intrinsic_both) == 0) {
 154         // This is the first use of this intrinsic as a non-virtual
 155         flags |= _intrinsic_both;
 156       }
 157     }
 158     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 159   }
 160   // update the overall flags also:
 161   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 162   return changed;
 163 }
 164 
 165 static char* format_flags(int flags, char* buf) {
 166   buf[0] = 0;
 167   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 168   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 169   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 170   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 171   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 172   if (buf[0] == 0)  strcat(buf, ",");
 173   assert(buf[0] == ',', "must be");
 174   return &buf[1];
 175 }
 176 
 177 void Compile::print_intrinsic_statistics() {
 178   char flagsbuf[100];
 179   ttyLocker ttyl;
 180   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 181   tty->print_cr("Compiler intrinsic usage:");
 182   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 183   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 184   #define PRINT_STAT_LINE(name, c, f) \
 185     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 186   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 187     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 188     int   flags = _intrinsic_hist_flags[id];
 189     juint count = _intrinsic_hist_count[id];
 190     if ((flags | count) != 0) {
 191       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 192     }
 193   }
 194   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 195   if (xtty != NULL)  xtty->tail("statistics");
 196 }
 197 
 198 void Compile::print_statistics() {
 199   { ttyLocker ttyl;
 200     if (xtty != NULL)  xtty->head("statistics type='opto'");
 201     Parse::print_statistics();
 202     PhaseCCP::print_statistics();
 203     PhaseRegAlloc::print_statistics();
 204     Scheduling::print_statistics();
 205     PhasePeephole::print_statistics();
 206     PhaseIdealLoop::print_statistics();
 207     if (xtty != NULL)  xtty->tail("statistics");
 208   }
 209   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 210     // put this under its own <statistics> element.
 211     print_intrinsic_statistics();
 212   }
 213 }
 214 #endif //PRODUCT
 215 
 216 // Support for bundling info
 217 Bundle* Compile::node_bundling(const Node *n) {
 218   assert(valid_bundle_info(n), "oob");
 219   return &_node_bundling_base[n->_idx];
 220 }
 221 
 222 bool Compile::valid_bundle_info(const Node *n) {
 223   return (_node_bundling_limit > n->_idx);
 224 }
 225 
 226 
 227 void Compile::gvn_replace_by(Node* n, Node* nn) {
 228   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 229     Node* use = n->last_out(i);
 230     bool is_in_table = initial_gvn()->hash_delete(use);
 231     uint uses_found = 0;
 232     for (uint j = 0; j < use->len(); j++) {
 233       if (use->in(j) == n) {
 234         if (j < use->req())
 235           use->set_req(j, nn);
 236         else
 237           use->set_prec(j, nn);
 238         uses_found++;
 239       }
 240     }
 241     if (is_in_table) {
 242       // reinsert into table
 243       initial_gvn()->hash_find_insert(use);
 244     }
 245     record_for_igvn(use);
 246     i -= uses_found;    // we deleted 1 or more copies of this edge
 247   }
 248 }
 249 
 250 
 251 
 252 
 253 // Identify all nodes that are reachable from below, useful.
 254 // Use breadth-first pass that records state in a Unique_Node_List,
 255 // recursive traversal is slower.
 256 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 257   int estimated_worklist_size = unique();
 258   useful.map( estimated_worklist_size, NULL );  // preallocate space
 259 
 260   // Initialize worklist
 261   if (root() != NULL)     { useful.push(root()); }
 262   // If 'top' is cached, declare it useful to preserve cached node
 263   if( cached_top_node() ) { useful.push(cached_top_node()); }
 264 
 265   // Push all useful nodes onto the list, breadthfirst
 266   for( uint next = 0; next < useful.size(); ++next ) {
 267     assert( next < unique(), "Unique useful nodes < total nodes");
 268     Node *n  = useful.at(next);
 269     uint max = n->len();
 270     for( uint i = 0; i < max; ++i ) {
 271       Node *m = n->in(i);
 272       if( m == NULL ) continue;
 273       useful.push(m);
 274     }
 275   }
 276 }
 277 
 278 // Disconnect all useless nodes by disconnecting those at the boundary.
 279 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 280   uint next = 0;
 281   while( next < useful.size() ) {
 282     Node *n = useful.at(next++);
 283     // Use raw traversal of out edges since this code removes out edges
 284     int max = n->outcnt();
 285     for (int j = 0; j < max; ++j ) {
 286       Node* child = n->raw_out(j);
 287       if( ! useful.member(child) ) {
 288         assert( !child->is_top() || child != top(),
 289                 "If top is cached in Compile object it is in useful list");
 290         // Only need to remove this out-edge to the useless node
 291         n->raw_del_out(j);
 292         --j;
 293         --max;
 294       }
 295     }
 296     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 297       record_for_igvn( n->unique_out() );
 298     }
 299   }
 300   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 301 }
 302 
 303 //------------------------------frame_size_in_words-----------------------------
 304 // frame_slots in units of words
 305 int Compile::frame_size_in_words() const {
 306   // shift is 0 in LP32 and 1 in LP64
 307   const int shift = (LogBytesPerWord - LogBytesPerInt);
 308   int words = _frame_slots >> shift;
 309   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 310   return words;
 311 }
 312 
 313 // ============================================================================
 314 //------------------------------CompileWrapper---------------------------------
 315 class CompileWrapper : public StackObj {
 316   Compile *const _compile;
 317  public:
 318   CompileWrapper(Compile* compile);
 319 
 320   ~CompileWrapper();
 321 };
 322 
 323 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 324   // the Compile* pointer is stored in the current ciEnv:
 325   ciEnv* env = compile->env();
 326   assert(env == ciEnv::current(), "must already be a ciEnv active");
 327   assert(env->compiler_data() == NULL, "compile already active?");
 328   env->set_compiler_data(compile);
 329   assert(compile == Compile::current(), "sanity");
 330 
 331   compile->set_type_dict(NULL);
 332   compile->set_type_hwm(NULL);
 333   compile->set_type_last_size(0);
 334   compile->set_last_tf(NULL, NULL);
 335   compile->set_indexSet_arena(NULL);
 336   compile->set_indexSet_free_block_list(NULL);
 337   compile->init_type_arena();
 338   Type::Initialize(compile);
 339   _compile->set_scratch_buffer_blob(NULL);
 340   _compile->begin_method();
 341 }
 342 CompileWrapper::~CompileWrapper() {
 343   _compile->end_method();
 344   if (_compile->scratch_buffer_blob() != NULL)
 345     BufferBlob::free(_compile->scratch_buffer_blob());
 346   _compile->env()->set_compiler_data(NULL);
 347 }
 348 
 349 
 350 //----------------------------print_compile_messages---------------------------
 351 void Compile::print_compile_messages() {
 352 #ifndef PRODUCT
 353   // Check if recompiling
 354   if (_subsume_loads == false && PrintOpto) {
 355     // Recompiling without allowing machine instructions to subsume loads
 356     tty->print_cr("*********************************************************");
 357     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 358     tty->print_cr("*********************************************************");
 359   }
 360   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 361     // Recompiling without escape analysis
 362     tty->print_cr("*********************************************************");
 363     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 364     tty->print_cr("*********************************************************");
 365   }
 366   if (env()->break_at_compile()) {
 367     // Open the debugger when compiling this method.
 368     tty->print("### Breaking when compiling: ");
 369     method()->print_short_name();
 370     tty->cr();
 371     BREAKPOINT;
 372   }
 373 
 374   if( PrintOpto ) {
 375     if (is_osr_compilation()) {
 376       tty->print("[OSR]%3d", _compile_id);
 377     } else {
 378       tty->print("%3d", _compile_id);
 379     }
 380   }
 381 #endif
 382 }
 383 
 384 
 385 void Compile::init_scratch_buffer_blob() {
 386   if( scratch_buffer_blob() != NULL )  return;
 387 
 388   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 389   // Cache this BufferBlob for this compile.
 390   ResourceMark rm;
 391   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 392   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 393   // Record the buffer blob for next time.
 394   set_scratch_buffer_blob(blob);
 395   // Have we run out of code space?
 396   if (scratch_buffer_blob() == NULL) {
 397     // Let CompilerBroker disable further compilations.
 398     record_failure("Not enough space for scratch buffer in CodeCache");
 399     return;
 400   }
 401 
 402   // Initialize the relocation buffers
 403   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
 404   set_scratch_locs_memory(locs_buf);
 405 }
 406 
 407 
 408 //-----------------------scratch_emit_size-------------------------------------
 409 // Helper function that computes size by emitting code
 410 uint Compile::scratch_emit_size(const Node* n) {
 411   // Emit into a trash buffer and count bytes emitted.
 412   // This is a pretty expensive way to compute a size,
 413   // but it works well enough if seldom used.
 414   // All common fixed-size instructions are given a size
 415   // method by the AD file.
 416   // Note that the scratch buffer blob and locs memory are
 417   // allocated at the beginning of the compile task, and
 418   // may be shared by several calls to scratch_emit_size.
 419   // The allocation of the scratch buffer blob is particularly
 420   // expensive, since it has to grab the code cache lock.
 421   BufferBlob* blob = this->scratch_buffer_blob();
 422   assert(blob != NULL, "Initialize BufferBlob at start");
 423   assert(blob->size() > MAX_inst_size, "sanity");
 424   relocInfo* locs_buf = scratch_locs_memory();
 425   address blob_begin = blob->instructions_begin();
 426   address blob_end   = (address)locs_buf;
 427   assert(blob->instructions_contains(blob_end), "sanity");
 428   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 429   buf.initialize_consts_size(MAX_const_size);
 430   buf.initialize_stubs_size(MAX_stubs_size);
 431   assert(locs_buf != NULL, "sanity");
 432   int lsize = MAX_locs_size / 2;
 433   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 434   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 435   n->emit(buf, this->regalloc());
 436   return buf.code_size();
 437 }
 438 
 439 
 440 // ============================================================================
 441 //------------------------------Compile standard-------------------------------
 442 debug_only( int Compile::_debug_idx = 100000; )
 443 
 444 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 445 // the continuation bci for on stack replacement.
 446 
 447 
 448 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 449                 : Phase(Compiler),
 450                   _env(ci_env),
 451                   _log(ci_env->log()),
 452                   _compile_id(ci_env->compile_id()),
 453                   _save_argument_registers(false),
 454                   _stub_name(NULL),
 455                   _stub_function(NULL),
 456                   _stub_entry_point(NULL),
 457                   _method(target),
 458                   _entry_bci(osr_bci),
 459                   _initial_gvn(NULL),
 460                   _for_igvn(NULL),
 461                   _warm_calls(NULL),
 462                   _subsume_loads(subsume_loads),
 463                   _do_escape_analysis(do_escape_analysis),
 464                   _failure_reason(NULL),
 465                   _code_buffer("Compile::Fill_buffer"),
 466                   _orig_pc_slot(0),
 467                   _orig_pc_slot_offset_in_bytes(0),
 468                   _has_method_handle_invokes(false),
 469                   _node_bundling_limit(0),
 470                   _node_bundling_base(NULL),
 471                   _java_calls(0),
 472                   _inner_loops(0),
 473 #ifndef PRODUCT
 474                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 475                   _printer(IdealGraphPrinter::printer()),
 476 #endif
 477                   _congraph(NULL) {
 478   C = this;
 479 
 480   CompileWrapper cw(this);
 481 #ifndef PRODUCT
 482   if (TimeCompiler2) {
 483     tty->print(" ");
 484     target->holder()->name()->print();
 485     tty->print(".");
 486     target->print_short_name();
 487     tty->print("  ");
 488   }
 489   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 490   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 491   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 492   if (!print_opto_assembly) {
 493     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 494     if (print_assembly && !Disassembler::can_decode()) {
 495       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 496       print_opto_assembly = true;
 497     }
 498   }
 499   set_print_assembly(print_opto_assembly);
 500   set_parsed_irreducible_loop(false);
 501 #endif
 502 
 503   if (ProfileTraps) {
 504     // Make sure the method being compiled gets its own MDO,
 505     // so we can at least track the decompile_count().
 506     method()->build_method_data();
 507   }
 508 
 509   Init(::AliasLevel);
 510 
 511 
 512   print_compile_messages();
 513 
 514   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 515     _ilt = InlineTree::build_inline_tree_root();
 516   else
 517     _ilt = NULL;
 518 
 519   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 520   assert(num_alias_types() >= AliasIdxRaw, "");
 521 
 522 #define MINIMUM_NODE_HASH  1023
 523   // Node list that Iterative GVN will start with
 524   Unique_Node_List for_igvn(comp_arena());
 525   set_for_igvn(&for_igvn);
 526 
 527   // GVN that will be run immediately on new nodes
 528   uint estimated_size = method()->code_size()*4+64;
 529   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 530   PhaseGVN gvn(node_arena(), estimated_size);
 531   set_initial_gvn(&gvn);
 532 
 533   { // Scope for timing the parser
 534     TracePhase t3("parse", &_t_parser, true);
 535 
 536     // Put top into the hash table ASAP.
 537     initial_gvn()->transform_no_reclaim(top());
 538 
 539     // Set up tf(), start(), and find a CallGenerator.
 540     CallGenerator* cg;
 541     if (is_osr_compilation()) {
 542       const TypeTuple *domain = StartOSRNode::osr_domain();
 543       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 544       init_tf(TypeFunc::make(domain, range));
 545       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 546       initial_gvn()->set_type_bottom(s);
 547       init_start(s);
 548       cg = CallGenerator::for_osr(method(), entry_bci());
 549     } else {
 550       // Normal case.
 551       init_tf(TypeFunc::make(method()));
 552       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 553       initial_gvn()->set_type_bottom(s);
 554       init_start(s);
 555       float past_uses = method()->interpreter_invocation_count();
 556       float expected_uses = past_uses;
 557       cg = CallGenerator::for_inline(method(), expected_uses);
 558     }
 559     if (failing())  return;
 560     if (cg == NULL) {
 561       record_method_not_compilable_all_tiers("cannot parse method");
 562       return;
 563     }
 564     JVMState* jvms = build_start_state(start(), tf());
 565     if ((jvms = cg->generate(jvms)) == NULL) {
 566       record_method_not_compilable("method parse failed");
 567       return;
 568     }
 569     GraphKit kit(jvms);
 570 
 571     if (!kit.stopped()) {
 572       // Accept return values, and transfer control we know not where.
 573       // This is done by a special, unique ReturnNode bound to root.
 574       return_values(kit.jvms());
 575     }
 576 
 577     if (kit.has_exceptions()) {
 578       // Any exceptions that escape from this call must be rethrown
 579       // to whatever caller is dynamically above us on the stack.
 580       // This is done by a special, unique RethrowNode bound to root.
 581       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 582     }
 583 
 584     if (!failing() && has_stringbuilder()) {
 585       {
 586         // remove useless nodes to make the usage analysis simpler
 587         ResourceMark rm;
 588         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 589       }
 590 
 591       {
 592         ResourceMark rm;
 593         print_method("Before StringOpts", 3);
 594         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 595         print_method("After StringOpts", 3);
 596       }
 597 
 598       // now inline anything that we skipped the first time around
 599       while (_late_inlines.length() > 0) {
 600         CallGenerator* cg = _late_inlines.pop();
 601         cg->do_late_inline();
 602       }
 603     }
 604     assert(_late_inlines.length() == 0, "should have been processed");
 605 
 606     print_method("Before RemoveUseless", 3);
 607 
 608     // Remove clutter produced by parsing.
 609     if (!failing()) {
 610       ResourceMark rm;
 611       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 612     }
 613   }
 614 
 615   // Note:  Large methods are capped off in do_one_bytecode().
 616   if (failing())  return;
 617 
 618   // After parsing, node notes are no longer automagic.
 619   // They must be propagated by register_new_node_with_optimizer(),
 620   // clone(), or the like.
 621   set_default_node_notes(NULL);
 622 
 623   for (;;) {
 624     int successes = Inline_Warm();
 625     if (failing())  return;
 626     if (successes == 0)  break;
 627   }
 628 
 629   // Drain the list.
 630   Finish_Warm();
 631 #ifndef PRODUCT
 632   if (_printer) {
 633     _printer->print_inlining(this);
 634   }
 635 #endif
 636 
 637   if (failing())  return;
 638   NOT_PRODUCT( verify_graph_edges(); )
 639 
 640   // Perform escape analysis
 641   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
 642     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
 643     // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
 644     PhaseGVN* igvn = initial_gvn();
 645     Node* oop_null = igvn->zerocon(T_OBJECT);
 646     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 647 
 648     _congraph = new(comp_arena()) ConnectionGraph(this);
 649     bool has_non_escaping_obj = _congraph->compute_escape();
 650 
 651 #ifndef PRODUCT
 652     if (PrintEscapeAnalysis) {
 653       _congraph->dump();
 654     }
 655 #endif
 656     // Cleanup.
 657     if (oop_null->outcnt() == 0)
 658       igvn->hash_delete(oop_null);
 659     if (noop_null->outcnt() == 0)
 660       igvn->hash_delete(noop_null);
 661 
 662     if (!has_non_escaping_obj) {
 663       _congraph = NULL;
 664     }
 665 
 666     if (failing())  return;
 667   }
 668   // Now optimize
 669   Optimize();
 670   if (failing())  return;
 671   NOT_PRODUCT( verify_graph_edges(); )
 672 
 673 #ifndef PRODUCT
 674   if (PrintIdeal) {
 675     ttyLocker ttyl;  // keep the following output all in one block
 676     // This output goes directly to the tty, not the compiler log.
 677     // To enable tools to match it up with the compilation activity,
 678     // be sure to tag this tty output with the compile ID.
 679     if (xtty != NULL) {
 680       xtty->head("ideal compile_id='%d'%s", compile_id(),
 681                  is_osr_compilation()    ? " compile_kind='osr'" :
 682                  "");
 683     }
 684     root()->dump(9999);
 685     if (xtty != NULL) {
 686       xtty->tail("ideal");
 687     }
 688   }
 689 #endif
 690 
 691   // Now that we know the size of all the monitors we can add a fixed slot
 692   // for the original deopt pc.
 693 
 694   _orig_pc_slot =  fixed_slots();
 695   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 696   set_fixed_slots(next_slot);
 697 
 698   // Now generate code
 699   Code_Gen();
 700   if (failing())  return;
 701 
 702   // Check if we want to skip execution of all compiled code.
 703   {
 704 #ifndef PRODUCT
 705     if (OptoNoExecute) {
 706       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 707       return;
 708     }
 709     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 710 #endif
 711 
 712     if (is_osr_compilation()) {
 713       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 714       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 715     } else {
 716       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 717       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 718     }
 719 
 720     env()->register_method(_method, _entry_bci,
 721                            &_code_offsets,
 722                            _orig_pc_slot_offset_in_bytes,
 723                            code_buffer(),
 724                            frame_size_in_words(), _oop_map_set,
 725                            &_handler_table, &_inc_table,
 726                            compiler,
 727                            env()->comp_level(),
 728                            true, /*has_debug_info*/
 729                            has_unsafe_access()
 730                            );
 731   }
 732 }
 733 
 734 //------------------------------Compile----------------------------------------
 735 // Compile a runtime stub
 736 Compile::Compile( ciEnv* ci_env,
 737                   TypeFunc_generator generator,
 738                   address stub_function,
 739                   const char *stub_name,
 740                   int is_fancy_jump,
 741                   bool pass_tls,
 742                   bool save_arg_registers,
 743                   bool return_pc )
 744   : Phase(Compiler),
 745     _env(ci_env),
 746     _log(ci_env->log()),
 747     _compile_id(-1),
 748     _save_argument_registers(save_arg_registers),
 749     _method(NULL),
 750     _stub_name(stub_name),
 751     _stub_function(stub_function),
 752     _stub_entry_point(NULL),
 753     _entry_bci(InvocationEntryBci),
 754     _initial_gvn(NULL),
 755     _for_igvn(NULL),
 756     _warm_calls(NULL),
 757     _orig_pc_slot(0),
 758     _orig_pc_slot_offset_in_bytes(0),
 759     _subsume_loads(true),
 760     _do_escape_analysis(false),
 761     _failure_reason(NULL),
 762     _code_buffer("Compile::Fill_buffer"),
 763     _has_method_handle_invokes(false),
 764     _node_bundling_limit(0),
 765     _node_bundling_base(NULL),
 766     _java_calls(0),
 767     _inner_loops(0),
 768 #ifndef PRODUCT
 769     _trace_opto_output(TraceOptoOutput),
 770     _printer(NULL),
 771 #endif
 772     _congraph(NULL) {
 773   C = this;
 774 
 775 #ifndef PRODUCT
 776   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 777   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 778   set_print_assembly(PrintFrameConverterAssembly);
 779   set_parsed_irreducible_loop(false);
 780 #endif
 781   CompileWrapper cw(this);
 782   Init(/*AliasLevel=*/ 0);
 783   init_tf((*generator)());
 784 
 785   {
 786     // The following is a dummy for the sake of GraphKit::gen_stub
 787     Unique_Node_List for_igvn(comp_arena());
 788     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 789     PhaseGVN gvn(Thread::current()->resource_area(),255);
 790     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 791     gvn.transform_no_reclaim(top());
 792 
 793     GraphKit kit;
 794     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 795   }
 796 
 797   NOT_PRODUCT( verify_graph_edges(); )
 798   Code_Gen();
 799   if (failing())  return;
 800 
 801 
 802   // Entry point will be accessed using compile->stub_entry_point();
 803   if (code_buffer() == NULL) {
 804     Matcher::soft_match_failure();
 805   } else {
 806     if (PrintAssembly && (WizardMode || Verbose))
 807       tty->print_cr("### Stub::%s", stub_name);
 808 
 809     if (!failing()) {
 810       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 811 
 812       // Make the NMethod
 813       // For now we mark the frame as never safe for profile stackwalking
 814       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 815                                                       code_buffer(),
 816                                                       CodeOffsets::frame_never_safe,
 817                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 818                                                       frame_size_in_words(),
 819                                                       _oop_map_set,
 820                                                       save_arg_registers);
 821       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 822 
 823       _stub_entry_point = rs->entry_point();
 824     }
 825   }
 826 }
 827 
 828 #ifndef PRODUCT
 829 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 830   if(PrintOpto && Verbose) {
 831     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 832   }
 833 }
 834 #endif
 835 
 836 void Compile::print_codes() {
 837 }
 838 
 839 //------------------------------Init-------------------------------------------
 840 // Prepare for a single compilation
 841 void Compile::Init(int aliaslevel) {
 842   _unique  = 0;
 843   _regalloc = NULL;
 844 
 845   _tf      = NULL;  // filled in later
 846   _top     = NULL;  // cached later
 847   _matcher = NULL;  // filled in later
 848   _cfg     = NULL;  // filled in later
 849 
 850   set_24_bit_selection_and_mode(Use24BitFP, false);
 851 
 852   _node_note_array = NULL;
 853   _default_node_notes = NULL;
 854 
 855   _immutable_memory = NULL; // filled in at first inquiry
 856 
 857   // Globally visible Nodes
 858   // First set TOP to NULL to give safe behavior during creation of RootNode
 859   set_cached_top_node(NULL);
 860   set_root(new (this, 3) RootNode());
 861   // Now that you have a Root to point to, create the real TOP
 862   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 863   set_recent_alloc(NULL, NULL);
 864 
 865   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 866   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 867   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 868   env()->set_dependencies(new Dependencies(env()));
 869 
 870   _fixed_slots = 0;
 871   set_has_split_ifs(false);
 872   set_has_loops(has_method() && method()->has_loops()); // first approximation
 873   set_has_stringbuilder(false);
 874   _trap_can_recompile = false;  // no traps emitted yet
 875   _major_progress = true; // start out assuming good things will happen
 876   set_has_unsafe_access(false);
 877   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 878   set_decompile_count(0);
 879 
 880   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 881   // Compilation level related initialization
 882   if (env()->comp_level() == CompLevel_fast_compile) {
 883     set_num_loop_opts(Tier1LoopOptsCount);
 884     set_do_inlining(Tier1Inline != 0);
 885     set_max_inline_size(Tier1MaxInlineSize);
 886     set_freq_inline_size(Tier1FreqInlineSize);
 887     set_do_scheduling(false);
 888     set_do_count_invocations(Tier1CountInvocations);
 889     set_do_method_data_update(Tier1UpdateMethodData);
 890   } else {
 891     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
 892     set_num_loop_opts(LoopOptsCount);
 893     set_do_inlining(Inline);
 894     set_max_inline_size(MaxInlineSize);
 895     set_freq_inline_size(FreqInlineSize);
 896     set_do_scheduling(OptoScheduling);
 897     set_do_count_invocations(false);
 898     set_do_method_data_update(false);
 899   }
 900 
 901   if (debug_info()->recording_non_safepoints()) {
 902     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 903                         (comp_arena(), 8, 0, NULL));
 904     set_default_node_notes(Node_Notes::make(this));
 905   }
 906 
 907   // // -- Initialize types before each compile --
 908   // // Update cached type information
 909   // if( _method && _method->constants() )
 910   //   Type::update_loaded_types(_method, _method->constants());
 911 
 912   // Init alias_type map.
 913   if (!_do_escape_analysis && aliaslevel == 3)
 914     aliaslevel = 2;  // No unique types without escape analysis
 915   _AliasLevel = aliaslevel;
 916   const int grow_ats = 16;
 917   _max_alias_types = grow_ats;
 918   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 919   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 920   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 921   {
 922     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 923   }
 924   // Initialize the first few types.
 925   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 926   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 927   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 928   _num_alias_types = AliasIdxRaw+1;
 929   // Zero out the alias type cache.
 930   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 931   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 932   probe_alias_cache(NULL)->_index = AliasIdxTop;
 933 
 934   _intrinsics = NULL;
 935   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 936   _predicate_opaqs = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 937   register_library_intrinsics();
 938 }
 939 
 940 //---------------------------init_start----------------------------------------
 941 // Install the StartNode on this compile object.
 942 void Compile::init_start(StartNode* s) {
 943   if (failing())
 944     return; // already failing
 945   assert(s == start(), "");
 946 }
 947 
 948 StartNode* Compile::start() const {
 949   assert(!failing(), "");
 950   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 951     Node* start = root()->fast_out(i);
 952     if( start->is_Start() )
 953       return start->as_Start();
 954   }
 955   ShouldNotReachHere();
 956   return NULL;
 957 }
 958 
 959 //-------------------------------immutable_memory-------------------------------------
 960 // Access immutable memory
 961 Node* Compile::immutable_memory() {
 962   if (_immutable_memory != NULL) {
 963     return _immutable_memory;
 964   }
 965   StartNode* s = start();
 966   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 967     Node *p = s->fast_out(i);
 968     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 969       _immutable_memory = p;
 970       return _immutable_memory;
 971     }
 972   }
 973   ShouldNotReachHere();
 974   return NULL;
 975 }
 976 
 977 //----------------------set_cached_top_node------------------------------------
 978 // Install the cached top node, and make sure Node::is_top works correctly.
 979 void Compile::set_cached_top_node(Node* tn) {
 980   if (tn != NULL)  verify_top(tn);
 981   Node* old_top = _top;
 982   _top = tn;
 983   // Calling Node::setup_is_top allows the nodes the chance to adjust
 984   // their _out arrays.
 985   if (_top != NULL)     _top->setup_is_top();
 986   if (old_top != NULL)  old_top->setup_is_top();
 987   assert(_top == NULL || top()->is_top(), "");
 988 }
 989 
 990 #ifndef PRODUCT
 991 void Compile::verify_top(Node* tn) const {
 992   if (tn != NULL) {
 993     assert(tn->is_Con(), "top node must be a constant");
 994     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
 995     assert(tn->in(0) != NULL, "must have live top node");
 996   }
 997 }
 998 #endif
 999 
1000 
1001 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1002 
1003 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1004   guarantee(arr != NULL, "");
1005   int num_blocks = arr->length();
1006   if (grow_by < num_blocks)  grow_by = num_blocks;
1007   int num_notes = grow_by * _node_notes_block_size;
1008   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1009   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1010   while (num_notes > 0) {
1011     arr->append(notes);
1012     notes     += _node_notes_block_size;
1013     num_notes -= _node_notes_block_size;
1014   }
1015   assert(num_notes == 0, "exact multiple, please");
1016 }
1017 
1018 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1019   if (source == NULL || dest == NULL)  return false;
1020 
1021   if (dest->is_Con())
1022     return false;               // Do not push debug info onto constants.
1023 
1024 #ifdef ASSERT
1025   // Leave a bread crumb trail pointing to the original node:
1026   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1027     dest->set_debug_orig(source);
1028   }
1029 #endif
1030 
1031   if (node_note_array() == NULL)
1032     return false;               // Not collecting any notes now.
1033 
1034   // This is a copy onto a pre-existing node, which may already have notes.
1035   // If both nodes have notes, do not overwrite any pre-existing notes.
1036   Node_Notes* source_notes = node_notes_at(source->_idx);
1037   if (source_notes == NULL || source_notes->is_clear())  return false;
1038   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1039   if (dest_notes == NULL || dest_notes->is_clear()) {
1040     return set_node_notes_at(dest->_idx, source_notes);
1041   }
1042 
1043   Node_Notes merged_notes = (*source_notes);
1044   // The order of operations here ensures that dest notes will win...
1045   merged_notes.update_from(dest_notes);
1046   return set_node_notes_at(dest->_idx, &merged_notes);
1047 }
1048 
1049 
1050 //--------------------------allow_range_check_smearing-------------------------
1051 // Gating condition for coalescing similar range checks.
1052 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1053 // single covering check that is at least as strong as any of them.
1054 // If the optimization succeeds, the simplified (strengthened) range check
1055 // will always succeed.  If it fails, we will deopt, and then give up
1056 // on the optimization.
1057 bool Compile::allow_range_check_smearing() const {
1058   // If this method has already thrown a range-check,
1059   // assume it was because we already tried range smearing
1060   // and it failed.
1061   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1062   return !already_trapped;
1063 }
1064 
1065 
1066 //------------------------------flatten_alias_type-----------------------------
1067 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1068   int offset = tj->offset();
1069   TypePtr::PTR ptr = tj->ptr();
1070 
1071   // Known instance (scalarizable allocation) alias only with itself.
1072   bool is_known_inst = tj->isa_oopptr() != NULL &&
1073                        tj->is_oopptr()->is_known_instance();
1074 
1075   // Process weird unsafe references.
1076   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1077     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1078     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1079     tj = TypeOopPtr::BOTTOM;
1080     ptr = tj->ptr();
1081     offset = tj->offset();
1082   }
1083 
1084   // Array pointers need some flattening
1085   const TypeAryPtr *ta = tj->isa_aryptr();
1086   if( ta && is_known_inst ) {
1087     if ( offset != Type::OffsetBot &&
1088          offset > arrayOopDesc::length_offset_in_bytes() ) {
1089       offset = Type::OffsetBot; // Flatten constant access into array body only
1090       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1091     }
1092   } else if( ta && _AliasLevel >= 2 ) {
1093     // For arrays indexed by constant indices, we flatten the alias
1094     // space to include all of the array body.  Only the header, klass
1095     // and array length can be accessed un-aliased.
1096     if( offset != Type::OffsetBot ) {
1097       if( ta->const_oop() ) { // methodDataOop or methodOop
1098         offset = Type::OffsetBot;   // Flatten constant access into array body
1099         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1100       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1101         // range is OK as-is.
1102         tj = ta = TypeAryPtr::RANGE;
1103       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1104         tj = TypeInstPtr::KLASS; // all klass loads look alike
1105         ta = TypeAryPtr::RANGE; // generic ignored junk
1106         ptr = TypePtr::BotPTR;
1107       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1108         tj = TypeInstPtr::MARK;
1109         ta = TypeAryPtr::RANGE; // generic ignored junk
1110         ptr = TypePtr::BotPTR;
1111       } else {                  // Random constant offset into array body
1112         offset = Type::OffsetBot;   // Flatten constant access into array body
1113         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1114       }
1115     }
1116     // Arrays of fixed size alias with arrays of unknown size.
1117     if (ta->size() != TypeInt::POS) {
1118       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1119       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1120     }
1121     // Arrays of known objects become arrays of unknown objects.
1122     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1123       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1124       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1125     }
1126     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1127       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1128       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1129     }
1130     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1131     // cannot be distinguished by bytecode alone.
1132     if (ta->elem() == TypeInt::BOOL) {
1133       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1134       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1135       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1136     }
1137     // During the 2nd round of IterGVN, NotNull castings are removed.
1138     // Make sure the Bottom and NotNull variants alias the same.
1139     // Also, make sure exact and non-exact variants alias the same.
1140     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1141       if (ta->const_oop()) {
1142         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1143       } else {
1144         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1145       }
1146     }
1147   }
1148 
1149   // Oop pointers need some flattening
1150   const TypeInstPtr *to = tj->isa_instptr();
1151   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1152     if( ptr == TypePtr::Constant ) {
1153       // No constant oop pointers (such as Strings); they alias with
1154       // unknown strings.
1155       assert(!is_known_inst, "not scalarizable allocation");
1156       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1157     } else if( is_known_inst ) {
1158       tj = to; // Keep NotNull and klass_is_exact for instance type
1159     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1160       // During the 2nd round of IterGVN, NotNull castings are removed.
1161       // Make sure the Bottom and NotNull variants alias the same.
1162       // Also, make sure exact and non-exact variants alias the same.
1163       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1164     }
1165     // Canonicalize the holder of this field
1166     ciInstanceKlass *k = to->klass()->as_instance_klass();
1167     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1168       // First handle header references such as a LoadKlassNode, even if the
1169       // object's klass is unloaded at compile time (4965979).
1170       if (!is_known_inst) { // Do it only for non-instance types
1171         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1172       }
1173     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1174       to = NULL;
1175       tj = TypeOopPtr::BOTTOM;
1176       offset = tj->offset();
1177     } else {
1178       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1179       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1180         if( is_known_inst ) {
1181           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1182         } else {
1183           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1184         }
1185       }
1186     }
1187   }
1188 
1189   // Klass pointers to object array klasses need some flattening
1190   const TypeKlassPtr *tk = tj->isa_klassptr();
1191   if( tk ) {
1192     // If we are referencing a field within a Klass, we need
1193     // to assume the worst case of an Object.  Both exact and
1194     // inexact types must flatten to the same alias class.
1195     // Since the flattened result for a klass is defined to be
1196     // precisely java.lang.Object, use a constant ptr.
1197     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1198 
1199       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1200                                    TypeKlassPtr::OBJECT->klass(),
1201                                    offset);
1202     }
1203 
1204     ciKlass* klass = tk->klass();
1205     if( klass->is_obj_array_klass() ) {
1206       ciKlass* k = TypeAryPtr::OOPS->klass();
1207       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1208         k = TypeInstPtr::BOTTOM->klass();
1209       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1210     }
1211 
1212     // Check for precise loads from the primary supertype array and force them
1213     // to the supertype cache alias index.  Check for generic array loads from
1214     // the primary supertype array and also force them to the supertype cache
1215     // alias index.  Since the same load can reach both, we need to merge
1216     // these 2 disparate memories into the same alias class.  Since the
1217     // primary supertype array is read-only, there's no chance of confusion
1218     // where we bypass an array load and an array store.
1219     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1220     if( offset == Type::OffsetBot ||
1221         off2 < Klass::primary_super_limit()*wordSize ) {
1222       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1223       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1224     }
1225   }
1226 
1227   // Flatten all Raw pointers together.
1228   if (tj->base() == Type::RawPtr)
1229     tj = TypeRawPtr::BOTTOM;
1230 
1231   if (tj->base() == Type::AnyPtr)
1232     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1233 
1234   // Flatten all to bottom for now
1235   switch( _AliasLevel ) {
1236   case 0:
1237     tj = TypePtr::BOTTOM;
1238     break;
1239   case 1:                       // Flatten to: oop, static, field or array
1240     switch (tj->base()) {
1241     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1242     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1243     case Type::AryPtr:   // do not distinguish arrays at all
1244     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1245     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1246     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1247     default: ShouldNotReachHere();
1248     }
1249     break;
1250   case 2:                       // No collapsing at level 2; keep all splits
1251   case 3:                       // No collapsing at level 3; keep all splits
1252     break;
1253   default:
1254     Unimplemented();
1255   }
1256 
1257   offset = tj->offset();
1258   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1259 
1260   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1261           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1262           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1263           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1264           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1265           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1266           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1267           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1268   assert( tj->ptr() != TypePtr::TopPTR &&
1269           tj->ptr() != TypePtr::AnyNull &&
1270           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1271 //    assert( tj->ptr() != TypePtr::Constant ||
1272 //            tj->base() == Type::RawPtr ||
1273 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1274 
1275   return tj;
1276 }
1277 
1278 void Compile::AliasType::Init(int i, const TypePtr* at) {
1279   _index = i;
1280   _adr_type = at;
1281   _field = NULL;
1282   _is_rewritable = true; // default
1283   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1284   if (atoop != NULL && atoop->is_known_instance()) {
1285     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1286     _general_index = Compile::current()->get_alias_index(gt);
1287   } else {
1288     _general_index = 0;
1289   }
1290 }
1291 
1292 //---------------------------------print_on------------------------------------
1293 #ifndef PRODUCT
1294 void Compile::AliasType::print_on(outputStream* st) {
1295   if (index() < 10)
1296         st->print("@ <%d> ", index());
1297   else  st->print("@ <%d>",  index());
1298   st->print(is_rewritable() ? "   " : " RO");
1299   int offset = adr_type()->offset();
1300   if (offset == Type::OffsetBot)
1301         st->print(" +any");
1302   else  st->print(" +%-3d", offset);
1303   st->print(" in ");
1304   adr_type()->dump_on(st);
1305   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1306   if (field() != NULL && tjp) {
1307     if (tjp->klass()  != field()->holder() ||
1308         tjp->offset() != field()->offset_in_bytes()) {
1309       st->print(" != ");
1310       field()->print();
1311       st->print(" ***");
1312     }
1313   }
1314 }
1315 
1316 void print_alias_types() {
1317   Compile* C = Compile::current();
1318   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1319   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1320     C->alias_type(idx)->print_on(tty);
1321     tty->cr();
1322   }
1323 }
1324 #endif
1325 
1326 
1327 //----------------------------probe_alias_cache--------------------------------
1328 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1329   intptr_t key = (intptr_t) adr_type;
1330   key ^= key >> logAliasCacheSize;
1331   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1332 }
1333 
1334 
1335 //-----------------------------grow_alias_types--------------------------------
1336 void Compile::grow_alias_types() {
1337   const int old_ats  = _max_alias_types; // how many before?
1338   const int new_ats  = old_ats;          // how many more?
1339   const int grow_ats = old_ats+new_ats;  // how many now?
1340   _max_alias_types = grow_ats;
1341   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1342   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1343   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1344   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1345 }
1346 
1347 
1348 //--------------------------------find_alias_type------------------------------
1349 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1350   if (_AliasLevel == 0)
1351     return alias_type(AliasIdxBot);
1352 
1353   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1354   if (ace->_adr_type == adr_type) {
1355     return alias_type(ace->_index);
1356   }
1357 
1358   // Handle special cases.
1359   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1360   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1361 
1362   // Do it the slow way.
1363   const TypePtr* flat = flatten_alias_type(adr_type);
1364 
1365 #ifdef ASSERT
1366   assert(flat == flatten_alias_type(flat), "idempotent");
1367   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1368   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1369     const TypeOopPtr* foop = flat->is_oopptr();
1370     // Scalarizable allocations have exact klass always.
1371     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1372     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1373     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1374   }
1375   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1376 #endif
1377 
1378   int idx = AliasIdxTop;
1379   for (int i = 0; i < num_alias_types(); i++) {
1380     if (alias_type(i)->adr_type() == flat) {
1381       idx = i;
1382       break;
1383     }
1384   }
1385 
1386   if (idx == AliasIdxTop) {
1387     if (no_create)  return NULL;
1388     // Grow the array if necessary.
1389     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1390     // Add a new alias type.
1391     idx = _num_alias_types++;
1392     _alias_types[idx]->Init(idx, flat);
1393     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1394     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1395     if (flat->isa_instptr()) {
1396       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1397           && flat->is_instptr()->klass() == env()->Class_klass())
1398         alias_type(idx)->set_rewritable(false);
1399     }
1400     if (flat->isa_klassptr()) {
1401       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1402         alias_type(idx)->set_rewritable(false);
1403       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1404         alias_type(idx)->set_rewritable(false);
1405       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1406         alias_type(idx)->set_rewritable(false);
1407       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1408         alias_type(idx)->set_rewritable(false);
1409     }
1410     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1411     // but the base pointer type is not distinctive enough to identify
1412     // references into JavaThread.)
1413 
1414     // Check for final instance fields.
1415     const TypeInstPtr* tinst = flat->isa_instptr();
1416     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1417       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1418       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1419       // Set field() and is_rewritable() attributes.
1420       if (field != NULL)  alias_type(idx)->set_field(field);
1421     }
1422     const TypeKlassPtr* tklass = flat->isa_klassptr();
1423     // Check for final static fields.
1424     if (tklass && tklass->klass()->is_instance_klass()) {
1425       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1426       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1427       // Set field() and is_rewritable() attributes.
1428       if (field != NULL)   alias_type(idx)->set_field(field);
1429     }
1430   }
1431 
1432   // Fill the cache for next time.
1433   ace->_adr_type = adr_type;
1434   ace->_index    = idx;
1435   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1436 
1437   // Might as well try to fill the cache for the flattened version, too.
1438   AliasCacheEntry* face = probe_alias_cache(flat);
1439   if (face->_adr_type == NULL) {
1440     face->_adr_type = flat;
1441     face->_index    = idx;
1442     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1443   }
1444 
1445   return alias_type(idx);
1446 }
1447 
1448 
1449 Compile::AliasType* Compile::alias_type(ciField* field) {
1450   const TypeOopPtr* t;
1451   if (field->is_static())
1452     t = TypeKlassPtr::make(field->holder());
1453   else
1454     t = TypeOopPtr::make_from_klass_raw(field->holder());
1455   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1456   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1457   return atp;
1458 }
1459 
1460 
1461 //------------------------------have_alias_type--------------------------------
1462 bool Compile::have_alias_type(const TypePtr* adr_type) {
1463   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1464   if (ace->_adr_type == adr_type) {
1465     return true;
1466   }
1467 
1468   // Handle special cases.
1469   if (adr_type == NULL)             return true;
1470   if (adr_type == TypePtr::BOTTOM)  return true;
1471 
1472   return find_alias_type(adr_type, true) != NULL;
1473 }
1474 
1475 //-----------------------------must_alias--------------------------------------
1476 // True if all values of the given address type are in the given alias category.
1477 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1478   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1479   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1480   if (alias_idx == AliasIdxTop)         return false; // the empty category
1481   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1482 
1483   // the only remaining possible overlap is identity
1484   int adr_idx = get_alias_index(adr_type);
1485   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1486   assert(adr_idx == alias_idx ||
1487          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1488           && adr_type                       != TypeOopPtr::BOTTOM),
1489          "should not be testing for overlap with an unsafe pointer");
1490   return adr_idx == alias_idx;
1491 }
1492 
1493 //------------------------------can_alias--------------------------------------
1494 // True if any values of the given address type are in the given alias category.
1495 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1496   if (alias_idx == AliasIdxTop)         return false; // the empty category
1497   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1498   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1499   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1500 
1501   // the only remaining possible overlap is identity
1502   int adr_idx = get_alias_index(adr_type);
1503   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1504   return adr_idx == alias_idx;
1505 }
1506 
1507 
1508 
1509 //---------------------------pop_warm_call-------------------------------------
1510 WarmCallInfo* Compile::pop_warm_call() {
1511   WarmCallInfo* wci = _warm_calls;
1512   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1513   return wci;
1514 }
1515 
1516 //----------------------------Inline_Warm--------------------------------------
1517 int Compile::Inline_Warm() {
1518   // If there is room, try to inline some more warm call sites.
1519   // %%% Do a graph index compaction pass when we think we're out of space?
1520   if (!InlineWarmCalls)  return 0;
1521 
1522   int calls_made_hot = 0;
1523   int room_to_grow   = NodeCountInliningCutoff - unique();
1524   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1525   int amount_grown   = 0;
1526   WarmCallInfo* call;
1527   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1528     int est_size = (int)call->size();
1529     if (est_size > (room_to_grow - amount_grown)) {
1530       // This one won't fit anyway.  Get rid of it.
1531       call->make_cold();
1532       continue;
1533     }
1534     call->make_hot();
1535     calls_made_hot++;
1536     amount_grown   += est_size;
1537     amount_to_grow -= est_size;
1538   }
1539 
1540   if (calls_made_hot > 0)  set_major_progress();
1541   return calls_made_hot;
1542 }
1543 
1544 
1545 //----------------------------Finish_Warm--------------------------------------
1546 void Compile::Finish_Warm() {
1547   if (!InlineWarmCalls)  return;
1548   if (failing())  return;
1549   if (warm_calls() == NULL)  return;
1550 
1551   // Clean up loose ends, if we are out of space for inlining.
1552   WarmCallInfo* call;
1553   while ((call = pop_warm_call()) != NULL) {
1554     call->make_cold();
1555   }
1556 }
1557 
1558 //---------------------cleanup_loop_predicates-----------------------
1559 // Remove the opaque nodes that protect the predicates so that all unused
1560 // checks and uncommon_traps will be eliminated from the ideal graph
1561 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1562   if (predicate_count()==0) return;
1563   for (int i = predicate_count(); i > 0; i--) {
1564     Node * n = predicate_opaque1_node(i-1);
1565     assert(n->Opcode() == Op_Opaque1, "must be");
1566     igvn.replace_node(n, n->in(1));
1567   }
1568   assert(predicate_count()==0, "should be clean!");
1569   igvn.optimize();
1570 }
1571 
1572 //------------------------------Optimize---------------------------------------
1573 // Given a graph, optimize it.
1574 void Compile::Optimize() {
1575   TracePhase t1("optimizer", &_t_optimizer, true);
1576 
1577 #ifndef PRODUCT
1578   if (env()->break_at_compile()) {
1579     BREAKPOINT;
1580   }
1581 
1582 #endif
1583 
1584   ResourceMark rm;
1585   int          loop_opts_cnt;
1586 
1587   NOT_PRODUCT( verify_graph_edges(); )
1588 
1589   print_method("After Parsing");
1590 
1591  {
1592   // Iterative Global Value Numbering, including ideal transforms
1593   // Initialize IterGVN with types and values from parse-time GVN
1594   PhaseIterGVN igvn(initial_gvn());
1595   {
1596     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1597     igvn.optimize();
1598   }
1599 
1600   print_method("Iter GVN 1", 2);
1601 
1602   if (failing())  return;
1603 
1604   // Loop transforms on the ideal graph.  Range Check Elimination,
1605   // peeling, unrolling, etc.
1606 
1607   // Set loop opts counter
1608   loop_opts_cnt = num_loop_opts();
1609   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1610     {
1611       TracePhase t2("idealLoop", &_t_idealLoop, true);
1612       PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1613       loop_opts_cnt--;
1614       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1615       if (failing())  return;
1616     }
1617     // Loop opts pass if partial peeling occurred in previous pass
1618     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1619       TracePhase t3("idealLoop", &_t_idealLoop, true);
1620       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1621       loop_opts_cnt--;
1622       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1623       if (failing())  return;
1624     }
1625     // Loop opts pass for loop-unrolling before CCP
1626     if(major_progress() && (loop_opts_cnt > 0)) {
1627       TracePhase t4("idealLoop", &_t_idealLoop, true);
1628       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1629       loop_opts_cnt--;
1630       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1631     }
1632     if (!failing()) {
1633       // Verify that last round of loop opts produced a valid graph
1634       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1635       PhaseIdealLoop::verify(igvn);
1636     }
1637   }
1638   if (failing())  return;
1639 
1640   // Conditional Constant Propagation;
1641   PhaseCCP ccp( &igvn );
1642   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1643   {
1644     TracePhase t2("ccp", &_t_ccp, true);
1645     ccp.do_transform();
1646   }
1647   print_method("PhaseCPP 1", 2);
1648 
1649   assert( true, "Break here to ccp.dump_old2new_map()");
1650 
1651   // Iterative Global Value Numbering, including ideal transforms
1652   {
1653     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1654     igvn = ccp;
1655     igvn.optimize();
1656   }
1657 
1658   print_method("Iter GVN 2", 2);
1659 
1660   if (failing())  return;
1661 
1662   // Loop transforms on the ideal graph.  Range Check Elimination,
1663   // peeling, unrolling, etc.
1664   if(loop_opts_cnt > 0) {
1665     debug_only( int cnt = 0; );
1666     bool loop_predication = UseLoopPredicate;
1667     while(major_progress() && (loop_opts_cnt > 0)) {
1668       TracePhase t2("idealLoop", &_t_idealLoop, true);
1669       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1670       PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1671       loop_opts_cnt--;
1672       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1673       if (failing())  return;
1674       // Perform loop predication optimization during first iteration after CCP.
1675       // After that switch it off and cleanup unused loop predicates.
1676       if (loop_predication) {
1677         loop_predication = false;
1678         cleanup_loop_predicates(igvn);
1679         if (failing())  return;
1680       }
1681     }
1682   }
1683 
1684   {
1685     // Verify that all previous optimizations produced a valid graph
1686     // at least to this point, even if no loop optimizations were done.
1687     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1688     PhaseIdealLoop::verify(igvn);
1689   }
1690 
1691   {
1692     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1693     PhaseMacroExpand  mex(igvn);
1694     if (mex.expand_macro_nodes()) {
1695       assert(failing(), "must bail out w/ explicit message");
1696       return;
1697     }
1698   }
1699 
1700  } // (End scope of igvn; run destructor if necessary for asserts.)
1701 
1702   // A method with only infinite loops has no edges entering loops from root
1703   {
1704     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1705     if (final_graph_reshaping()) {
1706       assert(failing(), "must bail out w/ explicit message");
1707       return;
1708     }
1709   }
1710 
1711   print_method("Optimize finished", 2);
1712 }
1713 
1714 
1715 //------------------------------Code_Gen---------------------------------------
1716 // Given a graph, generate code for it
1717 void Compile::Code_Gen() {
1718   if (failing())  return;
1719 
1720   // Perform instruction selection.  You might think we could reclaim Matcher
1721   // memory PDQ, but actually the Matcher is used in generating spill code.
1722   // Internals of the Matcher (including some VectorSets) must remain live
1723   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1724   // set a bit in reclaimed memory.
1725 
1726   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1727   // nodes.  Mapping is only valid at the root of each matched subtree.
1728   NOT_PRODUCT( verify_graph_edges(); )
1729 
1730   Node_List proj_list;
1731   Matcher m(proj_list);
1732   _matcher = &m;
1733   {
1734     TracePhase t2("matcher", &_t_matcher, true);
1735     m.match();
1736   }
1737   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1738   // nodes.  Mapping is only valid at the root of each matched subtree.
1739   NOT_PRODUCT( verify_graph_edges(); )
1740 
1741   // If you have too many nodes, or if matching has failed, bail out
1742   check_node_count(0, "out of nodes matching instructions");
1743   if (failing())  return;
1744 
1745   // Build a proper-looking CFG
1746   PhaseCFG cfg(node_arena(), root(), m);
1747   _cfg = &cfg;
1748   {
1749     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1750     cfg.Dominators();
1751     if (failing())  return;
1752 
1753     NOT_PRODUCT( verify_graph_edges(); )
1754 
1755     cfg.Estimate_Block_Frequency();
1756     cfg.GlobalCodeMotion(m,unique(),proj_list);
1757 
1758     print_method("Global code motion", 2);
1759 
1760     if (failing())  return;
1761     NOT_PRODUCT( verify_graph_edges(); )
1762 
1763     debug_only( cfg.verify(); )
1764   }
1765   NOT_PRODUCT( verify_graph_edges(); )
1766 
1767   PhaseChaitin regalloc(unique(),cfg,m);
1768   _regalloc = &regalloc;
1769   {
1770     TracePhase t2("regalloc", &_t_registerAllocation, true);
1771     // Perform any platform dependent preallocation actions.  This is used,
1772     // for example, to avoid taking an implicit null pointer exception
1773     // using the frame pointer on win95.
1774     _regalloc->pd_preallocate_hook();
1775 
1776     // Perform register allocation.  After Chaitin, use-def chains are
1777     // no longer accurate (at spill code) and so must be ignored.
1778     // Node->LRG->reg mappings are still accurate.
1779     _regalloc->Register_Allocate();
1780 
1781     // Bail out if the allocator builds too many nodes
1782     if (failing())  return;
1783   }
1784 
1785   // Prior to register allocation we kept empty basic blocks in case the
1786   // the allocator needed a place to spill.  After register allocation we
1787   // are not adding any new instructions.  If any basic block is empty, we
1788   // can now safely remove it.
1789   {
1790     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1791     cfg.remove_empty();
1792     if (do_freq_based_layout()) {
1793       PhaseBlockLayout layout(cfg);
1794     } else {
1795       cfg.set_loop_alignment();
1796     }
1797     cfg.fixup_flow();
1798   }
1799 
1800   // Perform any platform dependent postallocation verifications.
1801   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1802 
1803   // Apply peephole optimizations
1804   if( OptoPeephole ) {
1805     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1806     PhasePeephole peep( _regalloc, cfg);
1807     peep.do_transform();
1808   }
1809 
1810   // Convert Nodes to instruction bits in a buffer
1811   {
1812     // %%%% workspace merge brought two timers together for one job
1813     TracePhase t2a("output", &_t_output, true);
1814     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1815     Output();
1816   }
1817 
1818   print_method("Final Code");
1819 
1820   // He's dead, Jim.
1821   _cfg     = (PhaseCFG*)0xdeadbeef;
1822   _regalloc = (PhaseChaitin*)0xdeadbeef;
1823 }
1824 
1825 
1826 //------------------------------dump_asm---------------------------------------
1827 // Dump formatted assembly
1828 #ifndef PRODUCT
1829 void Compile::dump_asm(int *pcs, uint pc_limit) {
1830   bool cut_short = false;
1831   tty->print_cr("#");
1832   tty->print("#  ");  _tf->dump();  tty->cr();
1833   tty->print_cr("#");
1834 
1835   // For all blocks
1836   int pc = 0x0;                 // Program counter
1837   char starts_bundle = ' ';
1838   _regalloc->dump_frame();
1839 
1840   Node *n = NULL;
1841   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1842     if (VMThread::should_terminate()) { cut_short = true; break; }
1843     Block *b = _cfg->_blocks[i];
1844     if (b->is_connector() && !Verbose) continue;
1845     n = b->_nodes[0];
1846     if (pcs && n->_idx < pc_limit)
1847       tty->print("%3.3x   ", pcs[n->_idx]);
1848     else
1849       tty->print("      ");
1850     b->dump_head( &_cfg->_bbs );
1851     if (b->is_connector()) {
1852       tty->print_cr("        # Empty connector block");
1853     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1854       tty->print_cr("        # Block is sole successor of call");
1855     }
1856 
1857     // For all instructions
1858     Node *delay = NULL;
1859     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1860       if (VMThread::should_terminate()) { cut_short = true; break; }
1861       n = b->_nodes[j];
1862       if (valid_bundle_info(n)) {
1863         Bundle *bundle = node_bundling(n);
1864         if (bundle->used_in_unconditional_delay()) {
1865           delay = n;
1866           continue;
1867         }
1868         if (bundle->starts_bundle())
1869           starts_bundle = '+';
1870       }
1871 
1872       if (WizardMode) n->dump();
1873 
1874       if( !n->is_Region() &&    // Dont print in the Assembly
1875           !n->is_Phi() &&       // a few noisely useless nodes
1876           !n->is_Proj() &&
1877           !n->is_MachTemp() &&
1878           !n->is_SafePointScalarObject() &&
1879           !n->is_Catch() &&     // Would be nice to print exception table targets
1880           !n->is_MergeMem() &&  // Not very interesting
1881           !n->is_top() &&       // Debug info table constants
1882           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1883           ) {
1884         if (pcs && n->_idx < pc_limit)
1885           tty->print("%3.3x", pcs[n->_idx]);
1886         else
1887           tty->print("   ");
1888         tty->print(" %c ", starts_bundle);
1889         starts_bundle = ' ';
1890         tty->print("\t");
1891         n->format(_regalloc, tty);
1892         tty->cr();
1893       }
1894 
1895       // If we have an instruction with a delay slot, and have seen a delay,
1896       // then back up and print it
1897       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1898         assert(delay != NULL, "no unconditional delay instruction");
1899         if (WizardMode) delay->dump();
1900 
1901         if (node_bundling(delay)->starts_bundle())
1902           starts_bundle = '+';
1903         if (pcs && n->_idx < pc_limit)
1904           tty->print("%3.3x", pcs[n->_idx]);
1905         else
1906           tty->print("   ");
1907         tty->print(" %c ", starts_bundle);
1908         starts_bundle = ' ';
1909         tty->print("\t");
1910         delay->format(_regalloc, tty);
1911         tty->print_cr("");
1912         delay = NULL;
1913       }
1914 
1915       // Dump the exception table as well
1916       if( n->is_Catch() && (Verbose || WizardMode) ) {
1917         // Print the exception table for this offset
1918         _handler_table.print_subtable_for(pc);
1919       }
1920     }
1921 
1922     if (pcs && n->_idx < pc_limit)
1923       tty->print_cr("%3.3x", pcs[n->_idx]);
1924     else
1925       tty->print_cr("");
1926 
1927     assert(cut_short || delay == NULL, "no unconditional delay branch");
1928 
1929   } // End of per-block dump
1930   tty->print_cr("");
1931 
1932   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1933 }
1934 #endif
1935 
1936 //------------------------------Final_Reshape_Counts---------------------------
1937 // This class defines counters to help identify when a method
1938 // may/must be executed using hardware with only 24-bit precision.
1939 struct Final_Reshape_Counts : public StackObj {
1940   int  _call_count;             // count non-inlined 'common' calls
1941   int  _float_count;            // count float ops requiring 24-bit precision
1942   int  _double_count;           // count double ops requiring more precision
1943   int  _java_call_count;        // count non-inlined 'java' calls
1944   int  _inner_loop_count;       // count loops which need alignment
1945   VectorSet _visited;           // Visitation flags
1946   Node_List _tests;             // Set of IfNodes & PCTableNodes
1947 
1948   Final_Reshape_Counts() :
1949     _call_count(0), _float_count(0), _double_count(0),
1950     _java_call_count(0), _inner_loop_count(0),
1951     _visited( Thread::current()->resource_area() ) { }
1952 
1953   void inc_call_count  () { _call_count  ++; }
1954   void inc_float_count () { _float_count ++; }
1955   void inc_double_count() { _double_count++; }
1956   void inc_java_call_count() { _java_call_count++; }
1957   void inc_inner_loop_count() { _inner_loop_count++; }
1958 
1959   int  get_call_count  () const { return _call_count  ; }
1960   int  get_float_count () const { return _float_count ; }
1961   int  get_double_count() const { return _double_count; }
1962   int  get_java_call_count() const { return _java_call_count; }
1963   int  get_inner_loop_count() const { return _inner_loop_count; }
1964 };
1965 
1966 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1967   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1968   // Make sure the offset goes inside the instance layout.
1969   return k->contains_field_offset(tp->offset());
1970   // Note that OffsetBot and OffsetTop are very negative.
1971 }
1972 
1973 //------------------------------final_graph_reshaping_impl----------------------
1974 // Implement items 1-5 from final_graph_reshaping below.
1975 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
1976 
1977   if ( n->outcnt() == 0 ) return; // dead node
1978   uint nop = n->Opcode();
1979 
1980   // Check for 2-input instruction with "last use" on right input.
1981   // Swap to left input.  Implements item (2).
1982   if( n->req() == 3 &&          // two-input instruction
1983       n->in(1)->outcnt() > 1 && // left use is NOT a last use
1984       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1985       n->in(2)->outcnt() == 1 &&// right use IS a last use
1986       !n->in(2)->is_Con() ) {   // right use is not a constant
1987     // Check for commutative opcode
1988     switch( nop ) {
1989     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1990     case Op_MaxI:  case Op_MinI:
1991     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1992     case Op_AndL:  case Op_XorL:  case Op_OrL:
1993     case Op_AndI:  case Op_XorI:  case Op_OrI: {
1994       // Move "last use" input to left by swapping inputs
1995       n->swap_edges(1, 2);
1996       break;
1997     }
1998     default:
1999       break;
2000     }
2001   }
2002 
2003   // Count FPU ops and common calls, implements item (3)
2004   switch( nop ) {
2005   // Count all float operations that may use FPU
2006   case Op_AddF:
2007   case Op_SubF:
2008   case Op_MulF:
2009   case Op_DivF:
2010   case Op_NegF:
2011   case Op_ModF:
2012   case Op_ConvI2F:
2013   case Op_ConF:
2014   case Op_CmpF:
2015   case Op_CmpF3:
2016   // case Op_ConvL2F: // longs are split into 32-bit halves
2017     frc.inc_float_count();
2018     break;
2019 
2020   case Op_ConvF2D:
2021   case Op_ConvD2F:
2022     frc.inc_float_count();
2023     frc.inc_double_count();
2024     break;
2025 
2026   // Count all double operations that may use FPU
2027   case Op_AddD:
2028   case Op_SubD:
2029   case Op_MulD:
2030   case Op_DivD:
2031   case Op_NegD:
2032   case Op_ModD:
2033   case Op_ConvI2D:
2034   case Op_ConvD2I:
2035   // case Op_ConvL2D: // handled by leaf call
2036   // case Op_ConvD2L: // handled by leaf call
2037   case Op_ConD:
2038   case Op_CmpD:
2039   case Op_CmpD3:
2040     frc.inc_double_count();
2041     break;
2042   case Op_Opaque1:              // Remove Opaque Nodes before matching
2043   case Op_Opaque2:              // Remove Opaque Nodes before matching
2044     n->subsume_by(n->in(1));
2045     break;
2046   case Op_CallStaticJava:
2047   case Op_CallJava:
2048   case Op_CallDynamicJava:
2049     frc.inc_java_call_count(); // Count java call site;
2050   case Op_CallRuntime:
2051   case Op_CallLeaf:
2052   case Op_CallLeafNoFP: {
2053     assert( n->is_Call(), "" );
2054     CallNode *call = n->as_Call();
2055     // Count call sites where the FP mode bit would have to be flipped.
2056     // Do not count uncommon runtime calls:
2057     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2058     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2059     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2060       frc.inc_call_count();   // Count the call site
2061     } else {                  // See if uncommon argument is shared
2062       Node *n = call->in(TypeFunc::Parms);
2063       int nop = n->Opcode();
2064       // Clone shared simple arguments to uncommon calls, item (1).
2065       if( n->outcnt() > 1 &&
2066           !n->is_Proj() &&
2067           nop != Op_CreateEx &&
2068           nop != Op_CheckCastPP &&
2069           nop != Op_DecodeN &&
2070           !n->is_Mem() ) {
2071         Node *x = n->clone();
2072         call->set_req( TypeFunc::Parms, x );
2073       }
2074     }
2075     break;
2076   }
2077 
2078   case Op_StoreD:
2079   case Op_LoadD:
2080   case Op_LoadD_unaligned:
2081     frc.inc_double_count();
2082     goto handle_mem;
2083   case Op_StoreF:
2084   case Op_LoadF:
2085     frc.inc_float_count();
2086     goto handle_mem;
2087 
2088   case Op_StoreB:
2089   case Op_StoreC:
2090   case Op_StoreCM:
2091   case Op_StorePConditional:
2092   case Op_StoreI:
2093   case Op_StoreL:
2094   case Op_StoreIConditional:
2095   case Op_StoreLConditional:
2096   case Op_CompareAndSwapI:
2097   case Op_CompareAndSwapL:
2098   case Op_CompareAndSwapP:
2099   case Op_CompareAndSwapN:
2100   case Op_StoreP:
2101   case Op_StoreN:
2102   case Op_LoadB:
2103   case Op_LoadUB:
2104   case Op_LoadUS:
2105   case Op_LoadI:
2106   case Op_LoadUI2L:
2107   case Op_LoadKlass:
2108   case Op_LoadNKlass:
2109   case Op_LoadL:
2110   case Op_LoadL_unaligned:
2111   case Op_LoadPLocked:
2112   case Op_LoadLLocked:
2113   case Op_LoadP:
2114   case Op_LoadN:
2115   case Op_LoadRange:
2116   case Op_LoadS: {
2117   handle_mem:
2118 #ifdef ASSERT
2119     if( VerifyOptoOopOffsets ) {
2120       assert( n->is_Mem(), "" );
2121       MemNode *mem  = (MemNode*)n;
2122       // Check to see if address types have grounded out somehow.
2123       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2124       assert( !tp || oop_offset_is_sane(tp), "" );
2125     }
2126 #endif
2127     break;
2128   }
2129 
2130   case Op_AddP: {               // Assert sane base pointers
2131     Node *addp = n->in(AddPNode::Address);
2132     assert( !addp->is_AddP() ||
2133             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2134             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2135             "Base pointers must match" );
2136 #ifdef _LP64
2137     if (UseCompressedOops &&
2138         addp->Opcode() == Op_ConP &&
2139         addp == n->in(AddPNode::Base) &&
2140         n->in(AddPNode::Offset)->is_Con()) {
2141       // Use addressing with narrow klass to load with offset on x86.
2142       // On sparc loading 32-bits constant and decoding it have less
2143       // instructions (4) then load 64-bits constant (7).
2144       // Do this transformation here since IGVN will convert ConN back to ConP.
2145       const Type* t = addp->bottom_type();
2146       if (t->isa_oopptr()) {
2147         Node* nn = NULL;
2148 
2149         // Look for existing ConN node of the same exact type.
2150         Compile* C = Compile::current();
2151         Node* r  = C->root();
2152         uint cnt = r->outcnt();
2153         for (uint i = 0; i < cnt; i++) {
2154           Node* m = r->raw_out(i);
2155           if (m!= NULL && m->Opcode() == Op_ConN &&
2156               m->bottom_type()->make_ptr() == t) {
2157             nn = m;
2158             break;
2159           }
2160         }
2161         if (nn != NULL) {
2162           // Decode a narrow oop to match address
2163           // [R12 + narrow_oop_reg<<3 + offset]
2164           nn = new (C,  2) DecodeNNode(nn, t);
2165           n->set_req(AddPNode::Base, nn);
2166           n->set_req(AddPNode::Address, nn);
2167           if (addp->outcnt() == 0) {
2168             addp->disconnect_inputs(NULL);
2169           }
2170         }
2171       }
2172     }
2173 #endif
2174     break;
2175   }
2176 
2177 #ifdef _LP64
2178   case Op_CastPP:
2179     if (n->in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks()) {
2180       Compile* C = Compile::current();
2181       Node* in1 = n->in(1);
2182       const Type* t = n->bottom_type();
2183       Node* new_in1 = in1->clone();
2184       new_in1->as_DecodeN()->set_type(t);
2185 
2186       if (!Matcher::narrow_oop_use_complex_address()) {
2187         //
2188         // x86, ARM and friends can handle 2 adds in addressing mode
2189         // and Matcher can fold a DecodeN node into address by using
2190         // a narrow oop directly and do implicit NULL check in address:
2191         //
2192         // [R12 + narrow_oop_reg<<3 + offset]
2193         // NullCheck narrow_oop_reg
2194         //
2195         // On other platforms (Sparc) we have to keep new DecodeN node and
2196         // use it to do implicit NULL check in address:
2197         //
2198         // decode_not_null narrow_oop_reg, base_reg
2199         // [base_reg + offset]
2200         // NullCheck base_reg
2201         //
2202         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2203         // to keep the information to which NULL check the new DecodeN node
2204         // corresponds to use it as value in implicit_null_check().
2205         //
2206         new_in1->set_req(0, n->in(0));
2207       }
2208 
2209       n->subsume_by(new_in1);
2210       if (in1->outcnt() == 0) {
2211         in1->disconnect_inputs(NULL);
2212       }
2213     }
2214     break;
2215 
2216   case Op_CmpP:
2217     // Do this transformation here to preserve CmpPNode::sub() and
2218     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2219     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2220       Node* in1 = n->in(1);
2221       Node* in2 = n->in(2);
2222       if (!in1->is_DecodeN()) {
2223         in2 = in1;
2224         in1 = n->in(2);
2225       }
2226       assert(in1->is_DecodeN(), "sanity");
2227 
2228       Compile* C = Compile::current();
2229       Node* new_in2 = NULL;
2230       if (in2->is_DecodeN()) {
2231         new_in2 = in2->in(1);
2232       } else if (in2->Opcode() == Op_ConP) {
2233         const Type* t = in2->bottom_type();
2234         if (t == TypePtr::NULL_PTR && Universe::narrow_oop_use_implicit_null_checks()) {
2235           new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2236           //
2237           // This transformation together with CastPP transformation above
2238           // will generated code for implicit NULL checks for compressed oops.
2239           //
2240           // The original code after Optimize()
2241           //
2242           //    LoadN memory, narrow_oop_reg
2243           //    decode narrow_oop_reg, base_reg
2244           //    CmpP base_reg, NULL
2245           //    CastPP base_reg // NotNull
2246           //    Load [base_reg + offset], val_reg
2247           //
2248           // after these transformations will be
2249           //
2250           //    LoadN memory, narrow_oop_reg
2251           //    CmpN narrow_oop_reg, NULL
2252           //    decode_not_null narrow_oop_reg, base_reg
2253           //    Load [base_reg + offset], val_reg
2254           //
2255           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2256           // since narrow oops can be used in debug info now (see the code in
2257           // final_graph_reshaping_walk()).
2258           //
2259           // At the end the code will be matched to
2260           // on x86:
2261           //
2262           //    Load_narrow_oop memory, narrow_oop_reg
2263           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2264           //    NullCheck narrow_oop_reg
2265           //
2266           // and on sparc:
2267           //
2268           //    Load_narrow_oop memory, narrow_oop_reg
2269           //    decode_not_null narrow_oop_reg, base_reg
2270           //    Load [base_reg + offset], val_reg
2271           //    NullCheck base_reg
2272           //
2273         } else if (t->isa_oopptr()) {
2274           new_in2 = ConNode::make(C, t->make_narrowoop());
2275         }
2276       }
2277       if (new_in2 != NULL) {
2278         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2279         n->subsume_by( cmpN );
2280         if (in1->outcnt() == 0) {
2281           in1->disconnect_inputs(NULL);
2282         }
2283         if (in2->outcnt() == 0) {
2284           in2->disconnect_inputs(NULL);
2285         }
2286       }
2287     }
2288     break;
2289 
2290   case Op_DecodeN:
2291     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2292     // DecodeN could be pinned on Sparc where it can't be fold into
2293     // an address expression, see the code for Op_CastPP above.
2294     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control except on sparc");
2295     break;
2296 
2297   case Op_EncodeP: {
2298     Node* in1 = n->in(1);
2299     if (in1->is_DecodeN()) {
2300       n->subsume_by(in1->in(1));
2301     } else if (in1->Opcode() == Op_ConP) {
2302       Compile* C = Compile::current();
2303       const Type* t = in1->bottom_type();
2304       if (t == TypePtr::NULL_PTR) {
2305         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2306       } else if (t->isa_oopptr()) {
2307         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2308       }
2309     }
2310     if (in1->outcnt() == 0) {
2311       in1->disconnect_inputs(NULL);
2312     }
2313     break;
2314   }
2315 
2316   case Op_Proj: {
2317     if (OptimizeStringConcat) {
2318       ProjNode* p = n->as_Proj();
2319       if (p->_is_io_use) {
2320         // Separate projections were used for the exception path which
2321         // are normally removed by a late inline.  If it wasn't inlined
2322         // then they will hang around and should just be replaced with
2323         // the original one.
2324         Node* proj = NULL;
2325         // Replace with just one
2326         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2327           Node *use = i.get();
2328           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2329             proj = use;
2330             break;
2331           }
2332         }
2333         assert(p != NULL, "must be found");
2334         p->subsume_by(proj);
2335       }
2336     }
2337     break;
2338   }
2339 
2340   case Op_Phi:
2341     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2342       // The EncodeP optimization may create Phi with the same edges
2343       // for all paths. It is not handled well by Register Allocator.
2344       Node* unique_in = n->in(1);
2345       assert(unique_in != NULL, "");
2346       uint cnt = n->req();
2347       for (uint i = 2; i < cnt; i++) {
2348         Node* m = n->in(i);
2349         assert(m != NULL, "");
2350         if (unique_in != m)
2351           unique_in = NULL;
2352       }
2353       if (unique_in != NULL) {
2354         n->subsume_by(unique_in);
2355       }
2356     }
2357     break;
2358 
2359 #endif
2360 
2361   case Op_ModI:
2362     if (UseDivMod) {
2363       // Check if a%b and a/b both exist
2364       Node* d = n->find_similar(Op_DivI);
2365       if (d) {
2366         // Replace them with a fused divmod if supported
2367         Compile* C = Compile::current();
2368         if (Matcher::has_match_rule(Op_DivModI)) {
2369           DivModINode* divmod = DivModINode::make(C, n);
2370           d->subsume_by(divmod->div_proj());
2371           n->subsume_by(divmod->mod_proj());
2372         } else {
2373           // replace a%b with a-((a/b)*b)
2374           Node* mult = new (C, 3) MulINode(d, d->in(2));
2375           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2376           n->subsume_by( sub );
2377         }
2378       }
2379     }
2380     break;
2381 
2382   case Op_ModL:
2383     if (UseDivMod) {
2384       // Check if a%b and a/b both exist
2385       Node* d = n->find_similar(Op_DivL);
2386       if (d) {
2387         // Replace them with a fused divmod if supported
2388         Compile* C = Compile::current();
2389         if (Matcher::has_match_rule(Op_DivModL)) {
2390           DivModLNode* divmod = DivModLNode::make(C, n);
2391           d->subsume_by(divmod->div_proj());
2392           n->subsume_by(divmod->mod_proj());
2393         } else {
2394           // replace a%b with a-((a/b)*b)
2395           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2396           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2397           n->subsume_by( sub );
2398         }
2399       }
2400     }
2401     break;
2402 
2403   case Op_Load16B:
2404   case Op_Load8B:
2405   case Op_Load4B:
2406   case Op_Load8S:
2407   case Op_Load4S:
2408   case Op_Load2S:
2409   case Op_Load8C:
2410   case Op_Load4C:
2411   case Op_Load2C:
2412   case Op_Load4I:
2413   case Op_Load2I:
2414   case Op_Load2L:
2415   case Op_Load4F:
2416   case Op_Load2F:
2417   case Op_Load2D:
2418   case Op_Store16B:
2419   case Op_Store8B:
2420   case Op_Store4B:
2421   case Op_Store8C:
2422   case Op_Store4C:
2423   case Op_Store2C:
2424   case Op_Store4I:
2425   case Op_Store2I:
2426   case Op_Store2L:
2427   case Op_Store4F:
2428   case Op_Store2F:
2429   case Op_Store2D:
2430     break;
2431 
2432   case Op_PackB:
2433   case Op_PackS:
2434   case Op_PackC:
2435   case Op_PackI:
2436   case Op_PackF:
2437   case Op_PackL:
2438   case Op_PackD:
2439     if (n->req()-1 > 2) {
2440       // Replace many operand PackNodes with a binary tree for matching
2441       PackNode* p = (PackNode*) n;
2442       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2443       n->subsume_by(btp);
2444     }
2445     break;
2446   case Op_Loop:
2447   case Op_CountedLoop:
2448     if (n->as_Loop()->is_inner_loop()) {
2449       frc.inc_inner_loop_count();
2450     }
2451     break;
2452   default:
2453     assert( !n->is_Call(), "" );
2454     assert( !n->is_Mem(), "" );
2455     break;
2456   }
2457 
2458   // Collect CFG split points
2459   if (n->is_MultiBranch())
2460     frc._tests.push(n);
2461 }
2462 
2463 //------------------------------final_graph_reshaping_walk---------------------
2464 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2465 // requires that the walk visits a node's inputs before visiting the node.
2466 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2467   ResourceArea *area = Thread::current()->resource_area();
2468   Unique_Node_List sfpt(area);
2469 
2470   frc._visited.set(root->_idx); // first, mark node as visited
2471   uint cnt = root->req();
2472   Node *n = root;
2473   uint  i = 0;
2474   while (true) {
2475     if (i < cnt) {
2476       // Place all non-visited non-null inputs onto stack
2477       Node* m = n->in(i);
2478       ++i;
2479       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2480         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2481           sfpt.push(m);
2482         cnt = m->req();
2483         nstack.push(n, i); // put on stack parent and next input's index
2484         n = m;
2485         i = 0;
2486       }
2487     } else {
2488       // Now do post-visit work
2489       final_graph_reshaping_impl( n, frc );
2490       if (nstack.is_empty())
2491         break;             // finished
2492       n = nstack.node();   // Get node from stack
2493       cnt = n->req();
2494       i = nstack.index();
2495       nstack.pop();        // Shift to the next node on stack
2496     }
2497   }
2498 
2499   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2500   // It could be done for an uncommon traps or any safepoints/calls
2501   // if the DecodeN node is referenced only in a debug info.
2502   while (sfpt.size() > 0) {
2503     n = sfpt.pop();
2504     JVMState *jvms = n->as_SafePoint()->jvms();
2505     assert(jvms != NULL, "sanity");
2506     int start = jvms->debug_start();
2507     int end   = n->req();
2508     bool is_uncommon = (n->is_CallStaticJava() &&
2509                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2510     for (int j = start; j < end; j++) {
2511       Node* in = n->in(j);
2512       if (in->is_DecodeN()) {
2513         bool safe_to_skip = true;
2514         if (!is_uncommon ) {
2515           // Is it safe to skip?
2516           for (uint i = 0; i < in->outcnt(); i++) {
2517             Node* u = in->raw_out(i);
2518             if (!u->is_SafePoint() ||
2519                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2520               safe_to_skip = false;
2521             }
2522           }
2523         }
2524         if (safe_to_skip) {
2525           n->set_req(j, in->in(1));
2526         }
2527         if (in->outcnt() == 0) {
2528           in->disconnect_inputs(NULL);
2529         }
2530       }
2531     }
2532   }
2533 }
2534 
2535 //------------------------------final_graph_reshaping--------------------------
2536 // Final Graph Reshaping.
2537 //
2538 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2539 //     and not commoned up and forced early.  Must come after regular
2540 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2541 //     inputs to Loop Phis; these will be split by the allocator anyways.
2542 //     Remove Opaque nodes.
2543 // (2) Move last-uses by commutative operations to the left input to encourage
2544 //     Intel update-in-place two-address operations and better register usage
2545 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2546 //     calls canonicalizing them back.
2547 // (3) Count the number of double-precision FP ops, single-precision FP ops
2548 //     and call sites.  On Intel, we can get correct rounding either by
2549 //     forcing singles to memory (requires extra stores and loads after each
2550 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2551 //     clearing the mode bit around call sites).  The mode bit is only used
2552 //     if the relative frequency of single FP ops to calls is low enough.
2553 //     This is a key transform for SPEC mpeg_audio.
2554 // (4) Detect infinite loops; blobs of code reachable from above but not
2555 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2556 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2557 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2558 //     Detection is by looking for IfNodes where only 1 projection is
2559 //     reachable from below or CatchNodes missing some targets.
2560 // (5) Assert for insane oop offsets in debug mode.
2561 
2562 bool Compile::final_graph_reshaping() {
2563   // an infinite loop may have been eliminated by the optimizer,
2564   // in which case the graph will be empty.
2565   if (root()->req() == 1) {
2566     record_method_not_compilable("trivial infinite loop");
2567     return true;
2568   }
2569 
2570   Final_Reshape_Counts frc;
2571 
2572   // Visit everybody reachable!
2573   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2574   Node_Stack nstack(unique() >> 1);
2575   final_graph_reshaping_walk(nstack, root(), frc);
2576 
2577   // Check for unreachable (from below) code (i.e., infinite loops).
2578   for( uint i = 0; i < frc._tests.size(); i++ ) {
2579     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2580     // Get number of CFG targets.
2581     // Note that PCTables include exception targets after calls.
2582     uint required_outcnt = n->required_outcnt();
2583     if (n->outcnt() != required_outcnt) {
2584       // Check for a few special cases.  Rethrow Nodes never take the
2585       // 'fall-thru' path, so expected kids is 1 less.
2586       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2587         if (n->in(0)->in(0)->is_Call()) {
2588           CallNode *call = n->in(0)->in(0)->as_Call();
2589           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2590             required_outcnt--;      // Rethrow always has 1 less kid
2591           } else if (call->req() > TypeFunc::Parms &&
2592                      call->is_CallDynamicJava()) {
2593             // Check for null receiver. In such case, the optimizer has
2594             // detected that the virtual call will always result in a null
2595             // pointer exception. The fall-through projection of this CatchNode
2596             // will not be populated.
2597             Node *arg0 = call->in(TypeFunc::Parms);
2598             if (arg0->is_Type() &&
2599                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2600               required_outcnt--;
2601             }
2602           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2603                      call->req() > TypeFunc::Parms+1 &&
2604                      call->is_CallStaticJava()) {
2605             // Check for negative array length. In such case, the optimizer has
2606             // detected that the allocation attempt will always result in an
2607             // exception. There is no fall-through projection of this CatchNode .
2608             Node *arg1 = call->in(TypeFunc::Parms+1);
2609             if (arg1->is_Type() &&
2610                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2611               required_outcnt--;
2612             }
2613           }
2614         }
2615       }
2616       // Recheck with a better notion of 'required_outcnt'
2617       if (n->outcnt() != required_outcnt) {
2618         record_method_not_compilable("malformed control flow");
2619         return true;            // Not all targets reachable!
2620       }
2621     }
2622     // Check that I actually visited all kids.  Unreached kids
2623     // must be infinite loops.
2624     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2625       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2626         record_method_not_compilable("infinite loop");
2627         return true;            // Found unvisited kid; must be unreach
2628       }
2629   }
2630 
2631   // If original bytecodes contained a mixture of floats and doubles
2632   // check if the optimizer has made it homogenous, item (3).
2633   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2634       frc.get_float_count() > 32 &&
2635       frc.get_double_count() == 0 &&
2636       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2637     set_24_bit_selection_and_mode( false,  true );
2638   }
2639 
2640   set_java_calls(frc.get_java_call_count());
2641   set_inner_loops(frc.get_inner_loop_count());
2642 
2643   // No infinite loops, no reason to bail out.
2644   return false;
2645 }
2646 
2647 //-----------------------------too_many_traps----------------------------------
2648 // Report if there are too many traps at the current method and bci.
2649 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2650 bool Compile::too_many_traps(ciMethod* method,
2651                              int bci,
2652                              Deoptimization::DeoptReason reason) {
2653   ciMethodData* md = method->method_data();
2654   if (md->is_empty()) {
2655     // Assume the trap has not occurred, or that it occurred only
2656     // because of a transient condition during start-up in the interpreter.
2657     return false;
2658   }
2659   if (md->has_trap_at(bci, reason) != 0) {
2660     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2661     // Also, if there are multiple reasons, or if there is no per-BCI record,
2662     // assume the worst.
2663     if (log())
2664       log()->elem("observe trap='%s' count='%d'",
2665                   Deoptimization::trap_reason_name(reason),
2666                   md->trap_count(reason));
2667     return true;
2668   } else {
2669     // Ignore method/bci and see if there have been too many globally.
2670     return too_many_traps(reason, md);
2671   }
2672 }
2673 
2674 // Less-accurate variant which does not require a method and bci.
2675 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2676                              ciMethodData* logmd) {
2677  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2678     // Too many traps globally.
2679     // Note that we use cumulative trap_count, not just md->trap_count.
2680     if (log()) {
2681       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2682       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2683                   Deoptimization::trap_reason_name(reason),
2684                   mcount, trap_count(reason));
2685     }
2686     return true;
2687   } else {
2688     // The coast is clear.
2689     return false;
2690   }
2691 }
2692 
2693 //--------------------------too_many_recompiles--------------------------------
2694 // Report if there are too many recompiles at the current method and bci.
2695 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2696 // Is not eager to return true, since this will cause the compiler to use
2697 // Action_none for a trap point, to avoid too many recompilations.
2698 bool Compile::too_many_recompiles(ciMethod* method,
2699                                   int bci,
2700                                   Deoptimization::DeoptReason reason) {
2701   ciMethodData* md = method->method_data();
2702   if (md->is_empty()) {
2703     // Assume the trap has not occurred, or that it occurred only
2704     // because of a transient condition during start-up in the interpreter.
2705     return false;
2706   }
2707   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2708   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2709   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2710   Deoptimization::DeoptReason per_bc_reason
2711     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2712   if ((per_bc_reason == Deoptimization::Reason_none
2713        || md->has_trap_at(bci, reason) != 0)
2714       // The trap frequency measure we care about is the recompile count:
2715       && md->trap_recompiled_at(bci)
2716       && md->overflow_recompile_count() >= bc_cutoff) {
2717     // Do not emit a trap here if it has already caused recompilations.
2718     // Also, if there are multiple reasons, or if there is no per-BCI record,
2719     // assume the worst.
2720     if (log())
2721       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2722                   Deoptimization::trap_reason_name(reason),
2723                   md->trap_count(reason),
2724                   md->overflow_recompile_count());
2725     return true;
2726   } else if (trap_count(reason) != 0
2727              && decompile_count() >= m_cutoff) {
2728     // Too many recompiles globally, and we have seen this sort of trap.
2729     // Use cumulative decompile_count, not just md->decompile_count.
2730     if (log())
2731       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2732                   Deoptimization::trap_reason_name(reason),
2733                   md->trap_count(reason), trap_count(reason),
2734                   md->decompile_count(), decompile_count());
2735     return true;
2736   } else {
2737     // The coast is clear.
2738     return false;
2739   }
2740 }
2741 
2742 
2743 #ifndef PRODUCT
2744 //------------------------------verify_graph_edges---------------------------
2745 // Walk the Graph and verify that there is a one-to-one correspondence
2746 // between Use-Def edges and Def-Use edges in the graph.
2747 void Compile::verify_graph_edges(bool no_dead_code) {
2748   if (VerifyGraphEdges) {
2749     ResourceArea *area = Thread::current()->resource_area();
2750     Unique_Node_List visited(area);
2751     // Call recursive graph walk to check edges
2752     _root->verify_edges(visited);
2753     if (no_dead_code) {
2754       // Now make sure that no visited node is used by an unvisited node.
2755       bool dead_nodes = 0;
2756       Unique_Node_List checked(area);
2757       while (visited.size() > 0) {
2758         Node* n = visited.pop();
2759         checked.push(n);
2760         for (uint i = 0; i < n->outcnt(); i++) {
2761           Node* use = n->raw_out(i);
2762           if (checked.member(use))  continue;  // already checked
2763           if (visited.member(use))  continue;  // already in the graph
2764           if (use->is_Con())        continue;  // a dead ConNode is OK
2765           // At this point, we have found a dead node which is DU-reachable.
2766           if (dead_nodes++ == 0)
2767             tty->print_cr("*** Dead nodes reachable via DU edges:");
2768           use->dump(2);
2769           tty->print_cr("---");
2770           checked.push(use);  // No repeats; pretend it is now checked.
2771         }
2772       }
2773       assert(dead_nodes == 0, "using nodes must be reachable from root");
2774     }
2775   }
2776 }
2777 #endif
2778 
2779 // The Compile object keeps track of failure reasons separately from the ciEnv.
2780 // This is required because there is not quite a 1-1 relation between the
2781 // ciEnv and its compilation task and the Compile object.  Note that one
2782 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2783 // to backtrack and retry without subsuming loads.  Other than this backtracking
2784 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2785 // by the logic in C2Compiler.
2786 void Compile::record_failure(const char* reason) {
2787   if (log() != NULL) {
2788     log()->elem("failure reason='%s' phase='compile'", reason);
2789   }
2790   if (_failure_reason == NULL) {
2791     // Record the first failure reason.
2792     _failure_reason = reason;
2793   }
2794   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2795     C->print_method(_failure_reason);
2796   }
2797   _root = NULL;  // flush the graph, too
2798 }
2799 
2800 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2801   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2802 {
2803   if (dolog) {
2804     C = Compile::current();
2805     _log = C->log();
2806   } else {
2807     C = NULL;
2808     _log = NULL;
2809   }
2810   if (_log != NULL) {
2811     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2812     _log->stamp();
2813     _log->end_head();
2814   }
2815 }
2816 
2817 Compile::TracePhase::~TracePhase() {
2818   if (_log != NULL) {
2819     _log->done("phase nodes='%d'", C->unique());
2820   }
2821 }