1 /*
   2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Optimization - Graph Style
  26 
  27 #include "incls/_precompiled.incl"
  28 #include "incls/_lcm.cpp.incl"
  29 
  30 //------------------------------implicit_null_check----------------------------
  31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  33 // I can generate a memory op if there is not one nearby.
  34 // The proj is the control projection for the not-null case.
  35 // The val is the pointer being checked for nullness.
  36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  37   // Assume if null check need for 0 offset then always needed
  38   // Intel solaris doesn't support any null checks yet and no
  39   // mechanism exists (yet) to set the switches at an os_cpu level
  40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  41 
  42   // Make sure the ptr-is-null path appears to be uncommon!
  43   float f = end()->as_MachIf()->_prob;
  44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  45   if( f > PROB_UNLIKELY_MAG(4) ) return;
  46 
  47   uint bidx = 0;                // Capture index of value into memop
  48   bool was_store;               // Memory op is a store op
  49 
  50   // Get the successor block for if the test ptr is non-null
  51   Block* not_null_block;  // this one goes with the proj
  52   Block* null_block;
  53   if (_nodes[_nodes.size()-1] == proj) {
  54     null_block     = _succs[0];
  55     not_null_block = _succs[1];
  56   } else {
  57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  58     not_null_block = _succs[0];
  59     null_block     = _succs[1];
  60   }
  61   while (null_block->is_Empty() == Block::empty_with_goto) {
  62     null_block     = null_block->_succs[0];
  63   }
  64 
  65   // Search the exception block for an uncommon trap.
  66   // (See Parse::do_if and Parse::do_ifnull for the reason
  67   // we need an uncommon trap.  Briefly, we need a way to
  68   // detect failure of this optimization, as in 6366351.)
  69   {
  70     bool found_trap = false;
  71     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  72       Node* nn = null_block->_nodes[i1];
  73       if (nn->is_MachCall() &&
  74           nn->as_MachCall()->entry_point() ==
  75           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
  76         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
  77         if (trtype->isa_int() && trtype->is_int()->is_con()) {
  78           jint tr_con = trtype->is_int()->get_con();
  79           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
  80           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
  81           assert((int)reason < (int)BitsPerInt, "recode bit map");
  82           if (is_set_nth_bit(allowed_reasons, (int) reason)
  83               && action != Deoptimization::Action_none) {
  84             // This uncommon trap is sure to recompile, eventually.
  85             // When that happens, C->too_many_traps will prevent
  86             // this transformation from happening again.
  87             found_trap = true;
  88           }
  89         }
  90         break;
  91       }
  92     }
  93     if (!found_trap) {
  94       // We did not find an uncommon trap.
  95       return;
  96     }
  97   }
  98 
  99   // Search the successor block for a load or store who's base value is also
 100   // the tested value.  There may be several.
 101   Node_List *out = new Node_List(Thread::current()->resource_area());
 102   MachNode *best = NULL;        // Best found so far
 103   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 104     Node *m = val->out(i);
 105     if( !m->is_Mach() ) continue;
 106     MachNode *mach = m->as_Mach();
 107     was_store = false;
 108     switch( mach->ideal_Opcode() ) {
 109     case Op_LoadB:
 110     case Op_LoadUS:
 111     case Op_LoadD:
 112     case Op_LoadF:
 113     case Op_LoadI:
 114     case Op_LoadL:
 115     case Op_LoadP:
 116     case Op_LoadN:
 117     case Op_LoadS:
 118     case Op_LoadKlass:
 119     case Op_LoadNKlass:
 120     case Op_LoadRange:
 121     case Op_LoadD_unaligned:
 122     case Op_LoadL_unaligned:
 123       assert(mach->in(2) == val, "should be address");
 124       break;
 125     case Op_StoreB:
 126     case Op_StoreC:
 127     case Op_StoreCM:
 128     case Op_StoreD:
 129     case Op_StoreF:
 130     case Op_StoreI:
 131     case Op_StoreL:
 132     case Op_StoreP:
 133     case Op_StoreN:
 134       was_store = true;         // Memory op is a store op
 135       // Stores will have their address in slot 2 (memory in slot 1).
 136       // If the value being nul-checked is in another slot, it means we
 137       // are storing the checked value, which does NOT check the value!
 138       if( mach->in(2) != val ) continue;
 139       break;                    // Found a memory op?
 140     case Op_StrComp:
 141     case Op_StrEquals:
 142     case Op_StrIndexOf:
 143     case Op_AryEq:
 144       // Not a legit memory op for implicit null check regardless of
 145       // embedded loads
 146       continue;
 147     default:                    // Also check for embedded loads
 148       if( !mach->needs_anti_dependence_check() )
 149         continue;               // Not an memory op; skip it
 150       {
 151         // Check that value is used in memory address.
 152         Node* base;
 153         Node* index;
 154         const MachOper* oper = mach->memory_inputs(base, index);
 155         if (oper == NULL || oper == (MachOper*)-1) {
 156           continue;             // Not an memory op; skip it
 157         }
 158         if (val == base ||
 159             val == index && val->bottom_type()->isa_narrowoop()) {
 160           break;                // Found it
 161         } else {
 162           continue;             // Skip it
 163         }
 164       }
 165       break;
 166     }
 167     // check if the offset is not too high for implicit exception
 168     {
 169       intptr_t offset = 0;
 170       const TypePtr *adr_type = NULL;  // Do not need this return value here
 171       const Node* base = mach->get_base_and_disp(offset, adr_type);
 172       if (base == NULL || base == NodeSentinel) {
 173         // Narrow oop address doesn't have base, only index
 174         if( val->bottom_type()->isa_narrowoop() &&
 175             MacroAssembler::needs_explicit_null_check(offset) )
 176           continue;             // Give up if offset is beyond page size
 177         // cannot reason about it; is probably not implicit null exception
 178       } else {
 179         const TypePtr* tptr;
 180         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
 181           // 32-bits narrow oop can be the base of address expressions
 182           tptr = base->bottom_type()->make_ptr();
 183         } else {
 184           // only regular oops are expected here
 185           tptr = base->bottom_type()->is_ptr();
 186         }
 187         // Give up if offset is not a compile-time constant
 188         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 189           continue;
 190         offset += tptr->_offset; // correct if base is offseted
 191         if( MacroAssembler::needs_explicit_null_check(offset) )
 192           continue;             // Give up is reference is beyond 4K page size
 193       }
 194     }
 195 
 196     // Check ctrl input to see if the null-check dominates the memory op
 197     Block *cb = cfg->_bbs[mach->_idx];
 198     cb = cb->_idom;             // Always hoist at least 1 block
 199     if( !was_store ) {          // Stores can be hoisted only one block
 200       while( cb->_dom_depth > (_dom_depth + 1))
 201         cb = cb->_idom;         // Hoist loads as far as we want
 202       // The non-null-block should dominate the memory op, too. Live
 203       // range spilling will insert a spill in the non-null-block if it is
 204       // needs to spill the memory op for an implicit null check.
 205       if (cb->_dom_depth == (_dom_depth + 1)) {
 206         if (cb != not_null_block) continue;
 207         cb = cb->_idom;
 208       }
 209     }
 210     if( cb != this ) continue;
 211 
 212     // Found a memory user; see if it can be hoisted to check-block
 213     uint vidx = 0;              // Capture index of value into memop
 214     uint j;
 215     for( j = mach->req()-1; j > 0; j-- ) {
 216       if( mach->in(j) == val ) vidx = j;
 217       // Block of memory-op input
 218       Block *inb = cfg->_bbs[mach->in(j)->_idx];
 219       Block *b = this;          // Start from nul check
 220       while( b != inb && b->_dom_depth > inb->_dom_depth )
 221         b = b->_idom;           // search upwards for input
 222       // See if input dominates null check
 223       if( b != inb )
 224         break;
 225     }
 226     if( j > 0 )
 227       continue;
 228     Block *mb = cfg->_bbs[mach->_idx];
 229     // Hoisting stores requires more checks for the anti-dependence case.
 230     // Give up hoisting if we have to move the store past any load.
 231     if( was_store ) {
 232       Block *b = mb;            // Start searching here for a local load
 233       // mach use (faulting) trying to hoist
 234       // n might be blocker to hoisting
 235       while( b != this ) {
 236         uint k;
 237         for( k = 1; k < b->_nodes.size(); k++ ) {
 238           Node *n = b->_nodes[k];
 239           if( n->needs_anti_dependence_check() &&
 240               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 241             break;              // Found anti-dependent load
 242         }
 243         if( k < b->_nodes.size() )
 244           break;                // Found anti-dependent load
 245         // Make sure control does not do a merge (would have to check allpaths)
 246         if( b->num_preds() != 2 ) break;
 247         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
 248       }
 249       if( b != this ) continue;
 250     }
 251 
 252     // Make sure this memory op is not already being used for a NullCheck
 253     Node *e = mb->end();
 254     if( e->is_MachNullCheck() && e->in(1) == mach )
 255       continue;                 // Already being used as a NULL check
 256 
 257     // Found a candidate!  Pick one with least dom depth - the highest
 258     // in the dom tree should be closest to the null check.
 259     if( !best ||
 260         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
 261       best = mach;
 262       bidx = vidx;
 263 
 264     }
 265   }
 266   // No candidate!
 267   if( !best ) return;
 268 
 269   // ---- Found an implicit null check
 270   extern int implicit_null_checks;
 271   implicit_null_checks++;
 272 
 273   // Hoist the memory candidate up to the end of the test block.
 274   Block *old_block = cfg->_bbs[best->_idx];
 275   old_block->find_remove(best);
 276   add_inst(best);
 277   cfg->_bbs.map(best->_idx,this);
 278 
 279   // Move the control dependence
 280   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 281     best->set_req(0, _nodes[0]);
 282 
 283   // Check for flag-killing projections that also need to be hoisted
 284   // Should be DU safe because no edge updates.
 285   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 286     Node* n = best->fast_out(j);
 287     if( n->Opcode() == Op_MachProj ) {
 288       cfg->_bbs[n->_idx]->find_remove(n);
 289       add_inst(n);
 290       cfg->_bbs.map(n->_idx,this);
 291     }
 292   }
 293 
 294   Compile *C = cfg->C;
 295   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 296   // One of two graph shapes got matched:
 297   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 298   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 299   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 300   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 301   // We need to flip the projections to keep the same semantics.
 302   if( proj->Opcode() == Op_IfTrue ) {
 303     // Swap order of projections in basic block to swap branch targets
 304     Node *tmp1 = _nodes[end_idx()+1];
 305     Node *tmp2 = _nodes[end_idx()+2];
 306     _nodes.map(end_idx()+1, tmp2);
 307     _nodes.map(end_idx()+2, tmp1);
 308     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
 309     tmp1->replace_by(tmp);
 310     tmp2->replace_by(tmp1);
 311     tmp->replace_by(tmp2);
 312     tmp->destruct();
 313   }
 314 
 315   // Remove the existing null check; use a new implicit null check instead.
 316   // Since schedule-local needs precise def-use info, we need to correct
 317   // it as well.
 318   Node *old_tst = proj->in(0);
 319   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 320   _nodes.map(end_idx(),nul_chk);
 321   cfg->_bbs.map(nul_chk->_idx,this);
 322   // Redirect users of old_test to nul_chk
 323   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 324     old_tst->last_out(i2)->set_req(0, nul_chk);
 325   // Clean-up any dead code
 326   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 327     old_tst->set_req(i3, NULL);
 328 
 329   cfg->latency_from_uses(nul_chk);
 330   cfg->latency_from_uses(best);
 331 }
 332 
 333 
 334 //------------------------------select-----------------------------------------
 335 // Select a nice fellow from the worklist to schedule next. If there is only
 336 // one choice, then use it. Projections take top priority for correctness
 337 // reasons - if I see a projection, then it is next.  There are a number of
 338 // other special cases, for instructions that consume condition codes, et al.
 339 // These are chosen immediately. Some instructions are required to immediately
 340 // precede the last instruction in the block, and these are taken last. Of the
 341 // remaining cases (most), choose the instruction with the greatest latency
 342 // (that is, the most number of pseudo-cycles required to the end of the
 343 // routine). If there is a tie, choose the instruction with the most inputs.
 344 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
 345 
 346   // If only a single entry on the stack, use it
 347   uint cnt = worklist.size();
 348   if (cnt == 1) {
 349     Node *n = worklist[0];
 350     worklist.map(0,worklist.pop());
 351     return n;
 352   }
 353 
 354   uint choice  = 0; // Bigger is most important
 355   uint latency = 0; // Bigger is scheduled first
 356   uint score   = 0; // Bigger is better
 357   int idx = -1;     // Index in worklist
 358 
 359   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 360     // Order in worklist is used to break ties.
 361     // See caller for how this is used to delay scheduling
 362     // of induction variable increments to after the other
 363     // uses of the phi are scheduled.
 364     Node *n = worklist[i];      // Get Node on worklist
 365 
 366     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 367     if( n->is_Proj() ||         // Projections always win
 368         n->Opcode()== Op_Con || // So does constant 'Top'
 369         iop == Op_CreateEx ||   // Create-exception must start block
 370         iop == Op_CheckCastPP
 371         ) {
 372       worklist.map(i,worklist.pop());
 373       return n;
 374     }
 375 
 376     // Final call in a block must be adjacent to 'catch'
 377     Node *e = end();
 378     if( e->is_Catch() && e->in(0)->in(0) == n )
 379       continue;
 380 
 381     // Memory op for an implicit null check has to be at the end of the block
 382     if( e->is_MachNullCheck() && e->in(1) == n )
 383       continue;
 384 
 385     uint n_choice  = 2;
 386 
 387     // See if this instruction is consumed by a branch. If so, then (as the
 388     // branch is the last instruction in the basic block) force it to the
 389     // end of the basic block
 390     if ( must_clone[iop] ) {
 391       // See if any use is a branch
 392       bool found_machif = false;
 393 
 394       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 395         Node* use = n->fast_out(j);
 396 
 397         // The use is a conditional branch, make them adjacent
 398         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
 399           found_machif = true;
 400           break;
 401         }
 402 
 403         // More than this instruction pending for successor to be ready,
 404         // don't choose this if other opportunities are ready
 405         if (ready_cnt[use->_idx] > 1)
 406           n_choice = 1;
 407       }
 408 
 409       // loop terminated, prefer not to use this instruction
 410       if (found_machif)
 411         continue;
 412     }
 413 
 414     // See if this has a predecessor that is "must_clone", i.e. sets the
 415     // condition code. If so, choose this first
 416     for (uint j = 0; j < n->req() ; j++) {
 417       Node *inn = n->in(j);
 418       if (inn) {
 419         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 420           n_choice = 3;
 421           break;
 422         }
 423       }
 424     }
 425 
 426     // MachTemps should be scheduled last so they are near their uses
 427     if (n->is_MachTemp()) {
 428       n_choice = 1;
 429     }
 430 
 431     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
 432     uint n_score   = n->req();   // Many inputs get high score to break ties
 433 
 434     // Keep best latency found
 435     if( choice < n_choice ||
 436         ( choice == n_choice &&
 437           ( latency < n_latency ||
 438             ( latency == n_latency &&
 439               ( score < n_score ))))) {
 440       choice  = n_choice;
 441       latency = n_latency;
 442       score   = n_score;
 443       idx     = i;               // Also keep index in worklist
 444     }
 445   } // End of for all ready nodes in worklist
 446 
 447   assert(idx >= 0, "index should be set");
 448   Node *n = worklist[(uint)idx];      // Get the winner
 449 
 450   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 451   return n;
 452 }
 453 
 454 
 455 //------------------------------set_next_call----------------------------------
 456 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
 457   if( next_call.test_set(n->_idx) ) return;
 458   for( uint i=0; i<n->len(); i++ ) {
 459     Node *m = n->in(i);
 460     if( !m ) continue;  // must see all nodes in block that precede call
 461     if( bbs[m->_idx] == this )
 462       set_next_call( m, next_call, bbs );
 463   }
 464 }
 465 
 466 //------------------------------needed_for_next_call---------------------------
 467 // Set the flag 'next_call' for each Node that is needed for the next call to
 468 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 469 // next subroutine call get priority - basically it moves things NOT needed
 470 // for the next call till after the call.  This prevents me from trying to
 471 // carry lots of stuff live across a call.
 472 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
 473   // Find the next control-defining Node in this block
 474   Node* call = NULL;
 475   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 476     Node* m = this_call->fast_out(i);
 477     if( bbs[m->_idx] == this && // Local-block user
 478         m != this_call &&       // Not self-start node
 479         m->is_Call() )
 480       call = m;
 481       break;
 482   }
 483   if (call == NULL)  return;    // No next call (e.g., block end is near)
 484   // Set next-call for all inputs to this call
 485   set_next_call(call, next_call, bbs);
 486 }
 487 
 488 //------------------------------sched_call-------------------------------------
 489 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 490   RegMask regs;
 491 
 492   // Schedule all the users of the call right now.  All the users are
 493   // projection Nodes, so they must be scheduled next to the call.
 494   // Collect all the defined registers.
 495   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 496     Node* n = mcall->fast_out(i);
 497     assert( n->Opcode()==Op_MachProj, "" );
 498     --ready_cnt[n->_idx];
 499     assert( !ready_cnt[n->_idx], "" );
 500     // Schedule next to call
 501     _nodes.map(node_cnt++, n);
 502     // Collect defined registers
 503     regs.OR(n->out_RegMask());
 504     // Check for scheduling the next control-definer
 505     if( n->bottom_type() == Type::CONTROL )
 506       // Warm up next pile of heuristic bits
 507       needed_for_next_call(n, next_call, bbs);
 508 
 509     // Children of projections are now all ready
 510     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 511       Node* m = n->fast_out(j); // Get user
 512       if( bbs[m->_idx] != this ) continue;
 513       if( m->is_Phi() ) continue;
 514       if( !--ready_cnt[m->_idx] )
 515         worklist.push(m);
 516     }
 517 
 518   }
 519 
 520   // Act as if the call defines the Frame Pointer.
 521   // Certainly the FP is alive and well after the call.
 522   regs.Insert(matcher.c_frame_pointer());
 523 
 524   // Set all registers killed and not already defined by the call.
 525   uint r_cnt = mcall->tf()->range()->cnt();
 526   int op = mcall->ideal_Opcode();
 527   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 528   bbs.map(proj->_idx,this);
 529   _nodes.insert(node_cnt++, proj);
 530 
 531   // Select the right register save policy.
 532   const char * save_policy;
 533   switch (op) {
 534     case Op_CallRuntime:
 535     case Op_CallLeaf:
 536     case Op_CallLeafNoFP:
 537       // Calling C code so use C calling convention
 538       save_policy = matcher._c_reg_save_policy;
 539       break;
 540 
 541     case Op_CallStaticJava:
 542     case Op_CallDynamicJava:
 543       // Calling Java code so use Java calling convention
 544       save_policy = matcher._register_save_policy;
 545       break;
 546 
 547     default:
 548       ShouldNotReachHere();
 549   }
 550 
 551   // When using CallRuntime mark SOE registers as killed by the call
 552   // so values that could show up in the RegisterMap aren't live in a
 553   // callee saved register since the register wouldn't know where to
 554   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 555   // have debug info on them.  Strictly speaking this only needs to be
 556   // done for oops since idealreg2debugmask takes care of debug info
 557   // references but there no way to handle oops differently than other
 558   // pointers as far as the kill mask goes.
 559   bool exclude_soe = op == Op_CallRuntime;
 560 
 561   // If the call is a MethodHandle invoke, we need to exclude the
 562   // register which is used to save the SP value over MH invokes from
 563   // the mask.  Otherwise this register could be used for
 564   // deoptimization information.
 565   if (op == Op_CallStaticJava) {
 566     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 567     if (mcallstaticjava->_method_handle_invoke)
 568       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 569   }
 570 
 571   // Fill in the kill mask for the call
 572   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 573     if( !regs.Member(r) ) {     // Not already defined by the call
 574       // Save-on-call register?
 575       if ((save_policy[r] == 'C') ||
 576           (save_policy[r] == 'A') ||
 577           ((save_policy[r] == 'E') && exclude_soe)) {
 578         proj->_rout.Insert(r);
 579       }
 580     }
 581   }
 582 
 583   return node_cnt;
 584 }
 585 
 586 
 587 //------------------------------schedule_local---------------------------------
 588 // Topological sort within a block.  Someday become a real scheduler.
 589 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
 590   // Already "sorted" are the block start Node (as the first entry), and
 591   // the block-ending Node and any trailing control projections.  We leave
 592   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 593   // Node.  Everything else gets topo-sorted.
 594 
 595 #ifndef PRODUCT
 596     if (cfg->trace_opto_pipelining()) {
 597       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 598       for (uint i = 0;i < _nodes.size();i++) {
 599         tty->print("# ");
 600         _nodes[i]->fast_dump();
 601       }
 602       tty->print_cr("#");
 603     }
 604 #endif
 605 
 606   // RootNode is already sorted
 607   if( _nodes.size() == 1 ) return true;
 608 
 609   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 610   uint node_cnt = end_idx();
 611   uint phi_cnt = 1;
 612   uint i;
 613   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 614     Node *n = _nodes[i];
 615     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 616         (n->is_Proj()  && n->in(0) == head()) ) {
 617       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 618       _nodes.map(i,_nodes[phi_cnt]);
 619       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 620     } else {                    // All others
 621       // Count block-local inputs to 'n'
 622       uint cnt = n->len();      // Input count
 623       uint local = 0;
 624       for( uint j=0; j<cnt; j++ ) {
 625         Node *m = n->in(j);
 626         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
 627           local++;              // One more block-local input
 628       }
 629       ready_cnt[n->_idx] = local; // Count em up
 630 
 631       // A few node types require changing a required edge to a precedence edge
 632       // before allocation.
 633       if( UseConcMarkSweepGC || UseG1GC ) {
 634         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 635           // Note: Required edges with an index greater than oper_input_base
 636           // are not supported by the allocator.
 637           // Note2: Can only depend on unmatched edge being last,
 638           // can not depend on its absolute position.
 639           Node *oop_store = n->in(n->req() - 1);
 640           n->del_req(n->req() - 1);
 641           n->add_prec(oop_store);
 642           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 643         }
 644       }
 645       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 646           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 647            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 648         // MemBarAcquire could be created without Precedent edge.
 649         // del_req() replaces the specified edge with the last input edge
 650         // and then removes the last edge. If the specified edge > number of
 651         // edges the last edge will be moved outside of the input edges array
 652         // and the edge will be lost. This is why this code should be
 653         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 654         Node *x = n->in(TypeFunc::Parms);
 655         n->del_req(TypeFunc::Parms);
 656         n->add_prec(x);
 657       }
 658     }
 659   }
 660   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 661     ready_cnt[_nodes[i2]->_idx] = 0;
 662 
 663   // All the prescheduled guys do not hold back internal nodes
 664   uint i3;
 665   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 666     Node *n = _nodes[i3];       // Get pre-scheduled
 667     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 668       Node* m = n->fast_out(j);
 669       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
 670         ready_cnt[m->_idx]--;   // Fix ready count
 671     }
 672   }
 673 
 674   Node_List delay;
 675   // Make a worklist
 676   Node_List worklist;
 677   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 678     Node *m = _nodes[i4];
 679     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
 680       if (m->is_iteratively_computed()) {
 681         // Push induction variable increments last to allow other uses
 682         // of the phi to be scheduled first. The select() method breaks
 683         // ties in scheduling by worklist order.
 684         delay.push(m);
 685       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 686         // Force the CreateEx to the top of the list so it's processed
 687         // first and ends up at the start of the block.
 688         worklist.insert(0, m);
 689       } else {
 690         worklist.push(m);         // Then on to worklist!
 691       }
 692     }
 693   }
 694   while (delay.size()) {
 695     Node* d = delay.pop();
 696     worklist.push(d);
 697   }
 698 
 699   // Warm up the 'next_call' heuristic bits
 700   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
 701 
 702 #ifndef PRODUCT
 703     if (cfg->trace_opto_pipelining()) {
 704       for (uint j=0; j<_nodes.size(); j++) {
 705         Node     *n = _nodes[j];
 706         int     idx = n->_idx;
 707         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
 708         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
 709         tty->print("%4d: %s\n", idx, n->Name());
 710       }
 711     }
 712 #endif
 713 
 714   // Pull from worklist and schedule
 715   while( worklist.size() ) {    // Worklist is not ready
 716 
 717 #ifndef PRODUCT
 718     if (cfg->trace_opto_pipelining()) {
 719       tty->print("#   ready list:");
 720       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 721         Node *n = worklist[i];      // Get Node on worklist
 722         tty->print(" %d", n->_idx);
 723       }
 724       tty->cr();
 725     }
 726 #endif
 727 
 728     // Select and pop a ready guy from worklist
 729     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 730     _nodes.map(phi_cnt++,n);    // Schedule him next
 731 
 732 #ifndef PRODUCT
 733     if (cfg->trace_opto_pipelining()) {
 734       tty->print("#    select %d: %s", n->_idx, n->Name());
 735       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
 736       n->dump();
 737       if (Verbose) {
 738         tty->print("#   ready list:");
 739         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 740           Node *n = worklist[i];      // Get Node on worklist
 741           tty->print(" %d", n->_idx);
 742         }
 743         tty->cr();
 744       }
 745     }
 746 
 747 #endif
 748     if( n->is_MachCall() ) {
 749       MachCallNode *mcall = n->as_MachCall();
 750       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
 751       continue;
 752     }
 753     // Children are now all ready
 754     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 755       Node* m = n->fast_out(i5); // Get user
 756       if( cfg->_bbs[m->_idx] != this ) continue;
 757       if( m->is_Phi() ) continue;
 758       if( !--ready_cnt[m->_idx] )
 759         worklist.push(m);
 760     }
 761   }
 762 
 763   if( phi_cnt != end_idx() ) {
 764     // did not schedule all.  Retry, Bailout, or Die
 765     Compile* C = matcher.C;
 766     if (C->subsume_loads() == true && !C->failing()) {
 767       // Retry with subsume_loads == false
 768       // If this is the first failure, the sentinel string will "stick"
 769       // to the Compile object, and the C2Compiler will see it and retry.
 770       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 771     }
 772     // assert( phi_cnt == end_idx(), "did not schedule all" );
 773     return false;
 774   }
 775 
 776 #ifndef PRODUCT
 777   if (cfg->trace_opto_pipelining()) {
 778     tty->print_cr("#");
 779     tty->print_cr("# after schedule_local");
 780     for (uint i = 0;i < _nodes.size();i++) {
 781       tty->print("# ");
 782       _nodes[i]->fast_dump();
 783     }
 784     tty->cr();
 785   }
 786 #endif
 787 
 788 
 789   return true;
 790 }
 791 
 792 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 793 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 794   for (uint l = 0; l < use->len(); l++) {
 795     if (use->in(l) == old_def) {
 796       if (l < use->req()) {
 797         use->set_req(l, new_def);
 798       } else {
 799         use->rm_prec(l);
 800         use->add_prec(new_def);
 801         l--;
 802       }
 803     }
 804   }
 805 }
 806 
 807 //------------------------------catch_cleanup_find_cloned_def------------------
 808 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 809   assert( use_blk != def_blk, "Inter-block cleanup only");
 810 
 811   // The use is some block below the Catch.  Find and return the clone of the def
 812   // that dominates the use. If there is no clone in a dominating block, then
 813   // create a phi for the def in a dominating block.
 814 
 815   // Find which successor block dominates this use.  The successor
 816   // blocks must all be single-entry (from the Catch only; I will have
 817   // split blocks to make this so), hence they all dominate.
 818   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 819     use_blk = use_blk->_idom;
 820 
 821   // Find the successor
 822   Node *fixup = NULL;
 823 
 824   uint j;
 825   for( j = 0; j < def_blk->_num_succs; j++ )
 826     if( use_blk == def_blk->_succs[j] )
 827       break;
 828 
 829   if( j == def_blk->_num_succs ) {
 830     // Block at same level in dom-tree is not a successor.  It needs a
 831     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 832     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 833     for(uint k = 1; k < use_blk->num_preds(); k++) {
 834       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
 835     }
 836 
 837     // Check to see if the use_blk already has an identical phi inserted.
 838     // If it exists, it will be at the first position since all uses of a
 839     // def are processed together.
 840     Node *phi = use_blk->_nodes[1];
 841     if( phi->is_Phi() ) {
 842       fixup = phi;
 843       for (uint k = 1; k < use_blk->num_preds(); k++) {
 844         if (phi->in(k) != inputs[k]) {
 845           // Not a match
 846           fixup = NULL;
 847           break;
 848         }
 849       }
 850     }
 851 
 852     // If an existing PhiNode was not found, make a new one.
 853     if (fixup == NULL) {
 854       Node *new_phi = PhiNode::make(use_blk->head(), def);
 855       use_blk->_nodes.insert(1, new_phi);
 856       bbs.map(new_phi->_idx, use_blk);
 857       for (uint k = 1; k < use_blk->num_preds(); k++) {
 858         new_phi->set_req(k, inputs[k]);
 859       }
 860       fixup = new_phi;
 861     }
 862 
 863   } else {
 864     // Found the use just below the Catch.  Make it use the clone.
 865     fixup = use_blk->_nodes[n_clone_idx];
 866   }
 867 
 868   return fixup;
 869 }
 870 
 871 //--------------------------catch_cleanup_intra_block--------------------------
 872 // Fix all input edges in use that reference "def".  The use is in the same
 873 // block as the def and both have been cloned in each successor block.
 874 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 875 
 876   // Both the use and def have been cloned. For each successor block,
 877   // get the clone of the use, and make its input the clone of the def
 878   // found in that block.
 879 
 880   uint use_idx = blk->find_node(use);
 881   uint offset_idx = use_idx - beg;
 882   for( uint k = 0; k < blk->_num_succs; k++ ) {
 883     // Get clone in each successor block
 884     Block *sb = blk->_succs[k];
 885     Node *clone = sb->_nodes[offset_idx+1];
 886     assert( clone->Opcode() == use->Opcode(), "" );
 887 
 888     // Make use-clone reference the def-clone
 889     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
 890   }
 891 }
 892 
 893 //------------------------------catch_cleanup_inter_block---------------------
 894 // Fix all input edges in use that reference "def".  The use is in a different
 895 // block than the def.
 896 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 897   if( !use_blk ) return;        // Can happen if the use is a precedence edge
 898 
 899   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
 900   catch_cleanup_fix_all_inputs(use, def, new_def);
 901 }
 902 
 903 //------------------------------call_catch_cleanup-----------------------------
 904 // If we inserted any instructions between a Call and his CatchNode,
 905 // clone the instructions on all paths below the Catch.
 906 void Block::call_catch_cleanup(Block_Array &bbs) {
 907 
 908   // End of region to clone
 909   uint end = end_idx();
 910   if( !_nodes[end]->is_Catch() ) return;
 911   // Start of region to clone
 912   uint beg = end;
 913   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
 914         !_nodes[beg-1]->in(0)->is_Call() ) {
 915     beg--;
 916     assert(beg > 0,"Catch cleanup walking beyond block boundary");
 917   }
 918   // Range of inserted instructions is [beg, end)
 919   if( beg == end ) return;
 920 
 921   // Clone along all Catch output paths.  Clone area between the 'beg' and
 922   // 'end' indices.
 923   for( uint i = 0; i < _num_succs; i++ ) {
 924     Block *sb = _succs[i];
 925     // Clone the entire area; ignoring the edge fixup for now.
 926     for( uint j = end; j > beg; j-- ) {
 927       Node *clone = _nodes[j-1]->clone();
 928       sb->_nodes.insert( 1, clone );
 929       bbs.map(clone->_idx,sb);
 930     }
 931   }
 932 
 933 
 934   // Fixup edges.  Check the def-use info per cloned Node
 935   for(uint i2 = beg; i2 < end; i2++ ) {
 936     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
 937     Node *n = _nodes[i2];        // Node that got cloned
 938     // Need DU safe iterator because of edge manipulation in calls.
 939     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
 940     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
 941       out->push(n->fast_out(j1));
 942     }
 943     uint max = out->size();
 944     for (uint j = 0; j < max; j++) {// For all users
 945       Node *use = out->pop();
 946       Block *buse = bbs[use->_idx];
 947       if( use->is_Phi() ) {
 948         for( uint k = 1; k < use->req(); k++ )
 949           if( use->in(k) == n ) {
 950             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
 951             use->set_req(k, fixup);
 952           }
 953       } else {
 954         if (this == buse) {
 955           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
 956         } else {
 957           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
 958         }
 959       }
 960     } // End for all users
 961 
 962   } // End of for all Nodes in cloned area
 963 
 964   // Remove the now-dead cloned ops
 965   for(uint i3 = beg; i3 < end; i3++ ) {
 966     _nodes[beg]->disconnect_inputs(NULL);
 967     _nodes.remove(beg);
 968   }
 969 
 970   // If the successor blocks have a CreateEx node, move it back to the top
 971   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
 972     Block *sb = _succs[i4];
 973     uint new_cnt = end - beg;
 974     // Remove any newly created, but dead, nodes.
 975     for( uint j = new_cnt; j > 0; j-- ) {
 976       Node *n = sb->_nodes[j];
 977       if (n->outcnt() == 0 &&
 978           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
 979         n->disconnect_inputs(NULL);
 980         sb->_nodes.remove(j);
 981         new_cnt--;
 982       }
 983     }
 984     // If any newly created nodes remain, move the CreateEx node to the top
 985     if (new_cnt > 0) {
 986       Node *cex = sb->_nodes[1+new_cnt];
 987       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 988         sb->_nodes.remove(1+new_cnt);
 989         sb->_nodes.insert(1,cex);
 990       }
 991     }
 992   }
 993 }