1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_matcher.cpp.incl"
  27 
  28 OptoReg::Name OptoReg::c_frame_pointer;
  29 
  30 
  31 
  32 const int Matcher::base2reg[Type::lastype] = {
  33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  36   0, 0/*abio*/,
  37   Op_RegP /* Return address */, 0, /* the memories */
  38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  39   0  /*bottom*/
  40 };
  41 
  42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  44 RegMask Matcher::STACK_ONLY_mask;
  45 RegMask Matcher::c_frame_ptr_mask;
  46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  48 
  49 //---------------------------Matcher-------------------------------------------
  50 Matcher::Matcher( Node_List &proj_list ) :
  51   PhaseTransform( Phase::Ins_Select ),
  52 #ifdef ASSERT
  53   _old2new_map(C->comp_arena()),
  54   _new2old_map(C->comp_arena()),
  55 #endif
  56   _shared_nodes(C->comp_arena()),
  57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  58   _swallowed(swallowed),
  59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  61   _must_clone(must_clone), _proj_list(proj_list),
  62   _register_save_policy(register_save_policy),
  63   _c_reg_save_policy(c_reg_save_policy),
  64   _register_save_type(register_save_type),
  65   _ruleName(ruleName),
  66   _allocation_started(false),
  67   _states_arena(Chunk::medium_size),
  68   _visited(&_states_arena),
  69   _shared(&_states_arena),
  70   _dontcare(&_states_arena) {
  71   C->set_matcher(this);
  72 
  73   idealreg2spillmask  [Op_RegI] = NULL;
  74   idealreg2spillmask  [Op_RegN] = NULL;
  75   idealreg2spillmask  [Op_RegL] = NULL;
  76   idealreg2spillmask  [Op_RegF] = NULL;
  77   idealreg2spillmask  [Op_RegD] = NULL;
  78   idealreg2spillmask  [Op_RegP] = NULL;
  79 
  80   idealreg2debugmask  [Op_RegI] = NULL;
  81   idealreg2debugmask  [Op_RegN] = NULL;
  82   idealreg2debugmask  [Op_RegL] = NULL;
  83   idealreg2debugmask  [Op_RegF] = NULL;
  84   idealreg2debugmask  [Op_RegD] = NULL;
  85   idealreg2debugmask  [Op_RegP] = NULL;
  86 
  87   idealreg2mhdebugmask[Op_RegI] = NULL;
  88   idealreg2mhdebugmask[Op_RegN] = NULL;
  89   idealreg2mhdebugmask[Op_RegL] = NULL;
  90   idealreg2mhdebugmask[Op_RegF] = NULL;
  91   idealreg2mhdebugmask[Op_RegD] = NULL;
  92   idealreg2mhdebugmask[Op_RegP] = NULL;
  93 
  94   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
  95 }
  96 
  97 //------------------------------warp_incoming_stk_arg------------------------
  98 // This warps a VMReg into an OptoReg::Name
  99 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 100   OptoReg::Name warped;
 101   if( reg->is_stack() ) {  // Stack slot argument?
 102     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 103     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 104     if( warped >= _in_arg_limit )
 105       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 106     if (!RegMask::can_represent(warped)) {
 107       // the compiler cannot represent this method's calling sequence
 108       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 109       return OptoReg::Bad;
 110     }
 111     return warped;
 112   }
 113   return OptoReg::as_OptoReg(reg);
 114 }
 115 
 116 //---------------------------compute_old_SP------------------------------------
 117 OptoReg::Name Compile::compute_old_SP() {
 118   int fixed    = fixed_slots();
 119   int preserve = in_preserve_stack_slots();
 120   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 121 }
 122 
 123 
 124 
 125 #ifdef ASSERT
 126 void Matcher::verify_new_nodes_only(Node* xroot) {
 127   // Make sure that the new graph only references new nodes
 128   ResourceMark rm;
 129   Unique_Node_List worklist;
 130   VectorSet visited(Thread::current()->resource_area());
 131   worklist.push(xroot);
 132   while (worklist.size() > 0) {
 133     Node* n = worklist.pop();
 134     visited <<= n->_idx;
 135     assert(C->node_arena()->contains(n), "dead node");
 136     for (uint j = 0; j < n->req(); j++) {
 137       Node* in = n->in(j);
 138       if (in != NULL) {
 139         assert(C->node_arena()->contains(in), "dead node");
 140         if (!visited.test(in->_idx)) {
 141           worklist.push(in);
 142         }
 143       }
 144     }
 145   }
 146 }
 147 #endif
 148 
 149 
 150 //---------------------------match---------------------------------------------
 151 void Matcher::match( ) {
 152   if( MaxLabelRootDepth < 100 ) { // Too small?
 153     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 154     MaxLabelRootDepth = 100;
 155   }
 156   // One-time initialization of some register masks.
 157   init_spill_mask( C->root()->in(1) );
 158   _return_addr_mask = return_addr();
 159 #ifdef _LP64
 160   // Pointers take 2 slots in 64-bit land
 161   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 162 #endif
 163 
 164   // Map a Java-signature return type into return register-value
 165   // machine registers for 0, 1 and 2 returned values.
 166   const TypeTuple *range = C->tf()->range();
 167   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 168     // Get ideal-register return type
 169     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 170     // Get machine return register
 171     uint sop = C->start()->Opcode();
 172     OptoRegPair regs = return_value(ireg, false);
 173 
 174     // And mask for same
 175     _return_value_mask = RegMask(regs.first());
 176     if( OptoReg::is_valid(regs.second()) )
 177       _return_value_mask.Insert(regs.second());
 178   }
 179 
 180   // ---------------
 181   // Frame Layout
 182 
 183   // Need the method signature to determine the incoming argument types,
 184   // because the types determine which registers the incoming arguments are
 185   // in, and this affects the matched code.
 186   const TypeTuple *domain = C->tf()->domain();
 187   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 188   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 189   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 190   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 191   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 192   uint i;
 193   for( i = 0; i<argcnt; i++ ) {
 194     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 195   }
 196 
 197   // Pass array of ideal registers and length to USER code (from the AD file)
 198   // that will convert this to an array of register numbers.
 199   const StartNode *start = C->start();
 200   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 201 #ifdef ASSERT
 202   // Sanity check users' calling convention.  Real handy while trying to
 203   // get the initial port correct.
 204   { for (uint i = 0; i<argcnt; i++) {
 205       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 206         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 207         _parm_regs[i].set_bad();
 208         continue;
 209       }
 210       VMReg parm_reg = vm_parm_regs[i].first();
 211       assert(parm_reg->is_valid(), "invalid arg?");
 212       if (parm_reg->is_reg()) {
 213         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 214         assert(can_be_java_arg(opto_parm_reg) ||
 215                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 216                opto_parm_reg == inline_cache_reg(),
 217                "parameters in register must be preserved by runtime stubs");
 218       }
 219       for (uint j = 0; j < i; j++) {
 220         assert(parm_reg != vm_parm_regs[j].first(),
 221                "calling conv. must produce distinct regs");
 222       }
 223     }
 224   }
 225 #endif
 226 
 227   // Do some initial frame layout.
 228 
 229   // Compute the old incoming SP (may be called FP) as
 230   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 231   _old_SP = C->compute_old_SP();
 232   assert( is_even(_old_SP), "must be even" );
 233 
 234   // Compute highest incoming stack argument as
 235   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 236   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 237   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 238   for( i = 0; i < argcnt; i++ ) {
 239     // Permit args to have no register
 240     _calling_convention_mask[i].Clear();
 241     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 242       continue;
 243     }
 244     // calling_convention returns stack arguments as a count of
 245     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 246     // the allocators point of view, taking into account all the
 247     // preserve area, locks & pad2.
 248 
 249     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 250     if( OptoReg::is_valid(reg1))
 251       _calling_convention_mask[i].Insert(reg1);
 252 
 253     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 254     if( OptoReg::is_valid(reg2))
 255       _calling_convention_mask[i].Insert(reg2);
 256 
 257     // Saved biased stack-slot register number
 258     _parm_regs[i].set_pair(reg2, reg1);
 259   }
 260 
 261   // Finally, make sure the incoming arguments take up an even number of
 262   // words, in case the arguments or locals need to contain doubleword stack
 263   // slots.  The rest of the system assumes that stack slot pairs (in
 264   // particular, in the spill area) which look aligned will in fact be
 265   // aligned relative to the stack pointer in the target machine.  Double
 266   // stack slots will always be allocated aligned.
 267   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 268 
 269   // Compute highest outgoing stack argument as
 270   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 271   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 272   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 273 
 274   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 275     // the compiler cannot represent this method's calling sequence
 276     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 277   }
 278 
 279   if (C->failing())  return;  // bailed out on incoming arg failure
 280 
 281   // ---------------
 282   // Collect roots of matcher trees.  Every node for which
 283   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 284   // can be a valid interior of some tree.
 285   find_shared( C->root() );
 286   find_shared( C->top() );
 287 
 288   C->print_method("Before Matching");
 289 
 290   // Create new ideal node ConP #NULL even if it does exist in old space
 291   // to avoid false sharing if the corresponding mach node is not used.
 292   // The corresponding mach node is only used in rare cases for derived
 293   // pointers.
 294   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 295 
 296   // Swap out to old-space; emptying new-space
 297   Arena *old = C->node_arena()->move_contents(C->old_arena());
 298 
 299   // Save debug and profile information for nodes in old space:
 300   _old_node_note_array = C->node_note_array();
 301   if (_old_node_note_array != NULL) {
 302     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 303                            (C->comp_arena(), _old_node_note_array->length(),
 304                             0, NULL));
 305   }
 306 
 307   // Pre-size the new_node table to avoid the need for range checks.
 308   grow_new_node_array(C->unique());
 309 
 310   // Reset node counter so MachNodes start with _idx at 0
 311   int nodes = C->unique(); // save value
 312   C->set_unique(0);
 313 
 314   // Recursively match trees from old space into new space.
 315   // Correct leaves of new-space Nodes; they point to old-space.
 316   _visited.Clear();             // Clear visit bits for xform call
 317   C->set_cached_top_node(xform( C->top(), nodes ));
 318   if (!C->failing()) {
 319     Node* xroot =        xform( C->root(), 1 );
 320     if (xroot == NULL) {
 321       Matcher::soft_match_failure();  // recursive matching process failed
 322       C->record_method_not_compilable("instruction match failed");
 323     } else {
 324       // During matching shared constants were attached to C->root()
 325       // because xroot wasn't available yet, so transfer the uses to
 326       // the xroot.
 327       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 328         Node* n = C->root()->fast_out(j);
 329         if (C->node_arena()->contains(n)) {
 330           assert(n->in(0) == C->root(), "should be control user");
 331           n->set_req(0, xroot);
 332           --j;
 333           --jmax;
 334         }
 335       }
 336 
 337       // Generate new mach node for ConP #NULL
 338       assert(new_ideal_null != NULL, "sanity");
 339       _mach_null = match_tree(new_ideal_null);
 340       // Don't set control, it will confuse GCM since there are no uses.
 341       // The control will be set when this node is used first time
 342       // in find_base_for_derived().
 343       assert(_mach_null != NULL, "");
 344 
 345       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 346 
 347 #ifdef ASSERT
 348       verify_new_nodes_only(xroot);
 349 #endif
 350     }
 351   }
 352   if (C->top() == NULL || C->root() == NULL) {
 353     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 354   }
 355   if (C->failing()) {
 356     // delete old;
 357     old->destruct_contents();
 358     return;
 359   }
 360   assert( C->top(), "" );
 361   assert( C->root(), "" );
 362   validate_null_checks();
 363 
 364   // Now smoke old-space
 365   NOT_DEBUG( old->destruct_contents() );
 366 
 367   // ------------------------
 368   // Set up save-on-entry registers
 369   Fixup_Save_On_Entry( );
 370 }
 371 
 372 
 373 //------------------------------Fixup_Save_On_Entry----------------------------
 374 // The stated purpose of this routine is to take care of save-on-entry
 375 // registers.  However, the overall goal of the Match phase is to convert into
 376 // machine-specific instructions which have RegMasks to guide allocation.
 377 // So what this procedure really does is put a valid RegMask on each input
 378 // to the machine-specific variations of all Return, TailCall and Halt
 379 // instructions.  It also adds edgs to define the save-on-entry values (and of
 380 // course gives them a mask).
 381 
 382 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 383   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 384   // Do all the pre-defined register masks
 385   rms[TypeFunc::Control  ] = RegMask::Empty;
 386   rms[TypeFunc::I_O      ] = RegMask::Empty;
 387   rms[TypeFunc::Memory   ] = RegMask::Empty;
 388   rms[TypeFunc::ReturnAdr] = ret_adr;
 389   rms[TypeFunc::FramePtr ] = fp;
 390   return rms;
 391 }
 392 
 393 //---------------------------init_first_stack_mask-----------------------------
 394 // Create the initial stack mask used by values spilling to the stack.
 395 // Disallow any debug info in outgoing argument areas by setting the
 396 // initial mask accordingly.
 397 void Matcher::init_first_stack_mask() {
 398 
 399   // Allocate storage for spill masks as masks for the appropriate load type.
 400   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 401 
 402   idealreg2spillmask  [Op_RegN] = &rms[0];
 403   idealreg2spillmask  [Op_RegI] = &rms[1];
 404   idealreg2spillmask  [Op_RegL] = &rms[2];
 405   idealreg2spillmask  [Op_RegF] = &rms[3];
 406   idealreg2spillmask  [Op_RegD] = &rms[4];
 407   idealreg2spillmask  [Op_RegP] = &rms[5];
 408 
 409   idealreg2debugmask  [Op_RegN] = &rms[6];
 410   idealreg2debugmask  [Op_RegI] = &rms[7];
 411   idealreg2debugmask  [Op_RegL] = &rms[8];
 412   idealreg2debugmask  [Op_RegF] = &rms[9];
 413   idealreg2debugmask  [Op_RegD] = &rms[10];
 414   idealreg2debugmask  [Op_RegP] = &rms[11];
 415 
 416   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 417   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 418   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 419   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 420   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 421   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 422 
 423   OptoReg::Name i;
 424 
 425   // At first, start with the empty mask
 426   C->FIRST_STACK_mask().Clear();
 427 
 428   // Add in the incoming argument area
 429   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 430   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 431     C->FIRST_STACK_mask().Insert(i);
 432 
 433   // Add in all bits past the outgoing argument area
 434   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 435             "must be able to represent all call arguments in reg mask");
 436   init = _out_arg_limit;
 437   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 438     C->FIRST_STACK_mask().Insert(i);
 439 
 440   // Finally, set the "infinite stack" bit.
 441   C->FIRST_STACK_mask().set_AllStack();
 442 
 443   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 444 #ifdef _LP64
 445   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 446    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 447 #endif
 448   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 449    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 450   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 451    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 452   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 453    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 454   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 455    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 456   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 457    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 458 
 459   // Make up debug masks.  Any spill slot plus callee-save registers.
 460   // Caller-save registers are assumed to be trashable by the various
 461   // inline-cache fixup routines.
 462   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 463   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 464   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 465   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 466   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 467   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 468 
 469   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 470   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 471   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 472   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 473   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 474   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 475 
 476   // Prevent stub compilations from attempting to reference
 477   // callee-saved registers from debug info
 478   bool exclude_soe = !Compile::current()->is_method_compilation();
 479 
 480   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 481     // registers the caller has to save do not work
 482     if( _register_save_policy[i] == 'C' ||
 483         _register_save_policy[i] == 'A' ||
 484         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 485       idealreg2debugmask  [Op_RegN]->Remove(i);
 486       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 487       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 488       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 489       idealreg2debugmask  [Op_RegD]->Remove(i);
 490       idealreg2debugmask  [Op_RegP]->Remove(i);
 491 
 492       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 493       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 494       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 495       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 496       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 497       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 498     }
 499   }
 500 
 501   // Subtract the register we use to save the SP for MethodHandle
 502   // invokes to from the debug mask.
 503   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 504   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 505   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 506   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 507   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 508   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 509   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 510 }
 511 
 512 //---------------------------is_save_on_entry----------------------------------
 513 bool Matcher::is_save_on_entry( int reg ) {
 514   return
 515     _register_save_policy[reg] == 'E' ||
 516     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 517     // Also save argument registers in the trampolining stubs
 518     (C->save_argument_registers() && is_spillable_arg(reg));
 519 }
 520 
 521 //---------------------------Fixup_Save_On_Entry-------------------------------
 522 void Matcher::Fixup_Save_On_Entry( ) {
 523   init_first_stack_mask();
 524 
 525   Node *root = C->root();       // Short name for root
 526   // Count number of save-on-entry registers.
 527   uint soe_cnt = number_of_saved_registers();
 528   uint i;
 529 
 530   // Find the procedure Start Node
 531   StartNode *start = C->start();
 532   assert( start, "Expect a start node" );
 533 
 534   // Save argument registers in the trampolining stubs
 535   if( C->save_argument_registers() )
 536     for( i = 0; i < _last_Mach_Reg; i++ )
 537       if( is_spillable_arg(i) )
 538         soe_cnt++;
 539 
 540   // Input RegMask array shared by all Returns.
 541   // The type for doubles and longs has a count of 2, but
 542   // there is only 1 returned value
 543   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 544   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 545   // Returns have 0 or 1 returned values depending on call signature.
 546   // Return register is specified by return_value in the AD file.
 547   if (ret_edge_cnt > TypeFunc::Parms)
 548     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 549 
 550   // Input RegMask array shared by all Rethrows.
 551   uint reth_edge_cnt = TypeFunc::Parms+1;
 552   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 553   // Rethrow takes exception oop only, but in the argument 0 slot.
 554   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 555 #ifdef _LP64
 556   // Need two slots for ptrs in 64-bit land
 557   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 558 #endif
 559 
 560   // Input RegMask array shared by all TailCalls
 561   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 562   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 563 
 564   // Input RegMask array shared by all TailJumps
 565   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 566   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 567 
 568   // TailCalls have 2 returned values (target & moop), whose masks come
 569   // from the usual MachNode/MachOper mechanism.  Find a sample
 570   // TailCall to extract these masks and put the correct masks into
 571   // the tail_call_rms array.
 572   for( i=1; i < root->req(); i++ ) {
 573     MachReturnNode *m = root->in(i)->as_MachReturn();
 574     if( m->ideal_Opcode() == Op_TailCall ) {
 575       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 576       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 577       break;
 578     }
 579   }
 580 
 581   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 582   // from the usual MachNode/MachOper mechanism.  Find a sample
 583   // TailJump to extract these masks and put the correct masks into
 584   // the tail_jump_rms array.
 585   for( i=1; i < root->req(); i++ ) {
 586     MachReturnNode *m = root->in(i)->as_MachReturn();
 587     if( m->ideal_Opcode() == Op_TailJump ) {
 588       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 589       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 590       break;
 591     }
 592   }
 593 
 594   // Input RegMask array shared by all Halts
 595   uint halt_edge_cnt = TypeFunc::Parms;
 596   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 597 
 598   // Capture the return input masks into each exit flavor
 599   for( i=1; i < root->req(); i++ ) {
 600     MachReturnNode *exit = root->in(i)->as_MachReturn();
 601     switch( exit->ideal_Opcode() ) {
 602       case Op_Return   : exit->_in_rms = ret_rms;  break;
 603       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 604       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 605       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 606       case Op_Halt     : exit->_in_rms = halt_rms; break;
 607       default          : ShouldNotReachHere();
 608     }
 609   }
 610 
 611   // Next unused projection number from Start.
 612   int proj_cnt = C->tf()->domain()->cnt();
 613 
 614   // Do all the save-on-entry registers.  Make projections from Start for
 615   // them, and give them a use at the exit points.  To the allocator, they
 616   // look like incoming register arguments.
 617   for( i = 0; i < _last_Mach_Reg; i++ ) {
 618     if( is_save_on_entry(i) ) {
 619 
 620       // Add the save-on-entry to the mask array
 621       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 622       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 623       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 624       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 625       // Halts need the SOE registers, but only in the stack as debug info.
 626       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 627       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 628 
 629       Node *mproj;
 630 
 631       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 632       // into a single RegD.
 633       if( (i&1) == 0 &&
 634           _register_save_type[i  ] == Op_RegF &&
 635           _register_save_type[i+1] == Op_RegF &&
 636           is_save_on_entry(i+1) ) {
 637         // Add other bit for double
 638         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 639         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 640         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 641         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 642         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 643         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 644         proj_cnt += 2;          // Skip 2 for doubles
 645       }
 646       else if( (i&1) == 1 &&    // Else check for high half of double
 647                _register_save_type[i-1] == Op_RegF &&
 648                _register_save_type[i  ] == Op_RegF &&
 649                is_save_on_entry(i-1) ) {
 650         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 651         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 652         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 653         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 654         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 655         mproj = C->top();
 656       }
 657       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 658       // into a single RegL.
 659       else if( (i&1) == 0 &&
 660           _register_save_type[i  ] == Op_RegI &&
 661           _register_save_type[i+1] == Op_RegI &&
 662         is_save_on_entry(i+1) ) {
 663         // Add other bit for long
 664         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 665         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 666         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 667         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 668         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 669         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 670         proj_cnt += 2;          // Skip 2 for longs
 671       }
 672       else if( (i&1) == 1 &&    // Else check for high half of long
 673                _register_save_type[i-1] == Op_RegI &&
 674                _register_save_type[i  ] == Op_RegI &&
 675                is_save_on_entry(i-1) ) {
 676         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 677         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 678         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 679         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 680         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 681         mproj = C->top();
 682       } else {
 683         // Make a projection for it off the Start
 684         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 685       }
 686 
 687       ret_edge_cnt ++;
 688       reth_edge_cnt ++;
 689       tail_call_edge_cnt ++;
 690       tail_jump_edge_cnt ++;
 691       halt_edge_cnt ++;
 692 
 693       // Add a use of the SOE register to all exit paths
 694       for( uint j=1; j < root->req(); j++ )
 695         root->in(j)->add_req(mproj);
 696     } // End of if a save-on-entry register
 697   } // End of for all machine registers
 698 }
 699 
 700 //------------------------------init_spill_mask--------------------------------
 701 void Matcher::init_spill_mask( Node *ret ) {
 702   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 703 
 704   OptoReg::c_frame_pointer = c_frame_pointer();
 705   c_frame_ptr_mask = c_frame_pointer();
 706 #ifdef _LP64
 707   // pointers are twice as big
 708   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 709 #endif
 710 
 711   // Start at OptoReg::stack0()
 712   STACK_ONLY_mask.Clear();
 713   OptoReg::Name init = OptoReg::stack2reg(0);
 714   // STACK_ONLY_mask is all stack bits
 715   OptoReg::Name i;
 716   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 717     STACK_ONLY_mask.Insert(i);
 718   // Also set the "infinite stack" bit.
 719   STACK_ONLY_mask.set_AllStack();
 720 
 721   // Copy the register names over into the shared world
 722   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 723     // SharedInfo::regName[i] = regName[i];
 724     // Handy RegMasks per machine register
 725     mreg2regmask[i].Insert(i);
 726   }
 727 
 728   // Grab the Frame Pointer
 729   Node *fp  = ret->in(TypeFunc::FramePtr);
 730   Node *mem = ret->in(TypeFunc::Memory);
 731   const TypePtr* atp = TypePtr::BOTTOM;
 732   // Share frame pointer while making spill ops
 733   set_shared(fp);
 734 
 735   // Compute generic short-offset Loads
 736 #ifdef _LP64
 737   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 738 #endif
 739   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 740   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 741   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 742   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 743   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 744   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 745          spillD != NULL && spillP != NULL, "");
 746 
 747   // Get the ADLC notion of the right regmask, for each basic type.
 748 #ifdef _LP64
 749   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 750 #endif
 751   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 752   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 753   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 754   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 755   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 756 }
 757 
 758 #ifdef ASSERT
 759 static void match_alias_type(Compile* C, Node* n, Node* m) {
 760   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 761   const TypePtr* nat = n->adr_type();
 762   const TypePtr* mat = m->adr_type();
 763   int nidx = C->get_alias_index(nat);
 764   int midx = C->get_alias_index(mat);
 765   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 766   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 767     for (uint i = 1; i < n->req(); i++) {
 768       Node* n1 = n->in(i);
 769       const TypePtr* n1at = n1->adr_type();
 770       if (n1at != NULL) {
 771         nat = n1at;
 772         nidx = C->get_alias_index(n1at);
 773       }
 774     }
 775   }
 776   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 777   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 778     switch (n->Opcode()) {
 779     case Op_PrefetchRead:
 780     case Op_PrefetchWrite:
 781       nidx = Compile::AliasIdxRaw;
 782       nat = TypeRawPtr::BOTTOM;
 783       break;
 784     }
 785   }
 786   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 787     switch (n->Opcode()) {
 788     case Op_ClearArray:
 789       midx = Compile::AliasIdxRaw;
 790       mat = TypeRawPtr::BOTTOM;
 791       break;
 792     }
 793   }
 794   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 795     switch (n->Opcode()) {
 796     case Op_Return:
 797     case Op_Rethrow:
 798     case Op_Halt:
 799     case Op_TailCall:
 800     case Op_TailJump:
 801       nidx = Compile::AliasIdxBot;
 802       nat = TypePtr::BOTTOM;
 803       break;
 804     }
 805   }
 806   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 807     switch (n->Opcode()) {
 808     case Op_StrComp:
 809     case Op_StrEquals:
 810     case Op_StrIndexOf:
 811     case Op_AryEq:
 812     case Op_MemBarVolatile:
 813     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 814       nidx = Compile::AliasIdxTop;
 815       nat = NULL;
 816       break;
 817     }
 818   }
 819   if (nidx != midx) {
 820     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 821       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 822       n->dump();
 823       m->dump();
 824     }
 825     assert(C->subsume_loads() && C->must_alias(nat, midx),
 826            "must not lose alias info when matching");
 827   }
 828 }
 829 #endif
 830 
 831 
 832 //------------------------------MStack-----------------------------------------
 833 // State and MStack class used in xform() and find_shared() iterative methods.
 834 enum Node_State { Pre_Visit,  // node has to be pre-visited
 835                       Visit,  // visit node
 836                  Post_Visit,  // post-visit node
 837              Alt_Post_Visit   // alternative post-visit path
 838                 };
 839 
 840 class MStack: public Node_Stack {
 841   public:
 842     MStack(int size) : Node_Stack(size) { }
 843 
 844     void push(Node *n, Node_State ns) {
 845       Node_Stack::push(n, (uint)ns);
 846     }
 847     void push(Node *n, Node_State ns, Node *parent, int indx) {
 848       ++_inode_top;
 849       if ((_inode_top + 1) >= _inode_max) grow();
 850       _inode_top->node = parent;
 851       _inode_top->indx = (uint)indx;
 852       ++_inode_top;
 853       _inode_top->node = n;
 854       _inode_top->indx = (uint)ns;
 855     }
 856     Node *parent() {
 857       pop();
 858       return node();
 859     }
 860     Node_State state() const {
 861       return (Node_State)index();
 862     }
 863     void set_state(Node_State ns) {
 864       set_index((uint)ns);
 865     }
 866 };
 867 
 868 
 869 //------------------------------xform------------------------------------------
 870 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 871 // Node in new-space.  Given a new-space Node, recursively walk his children.
 872 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 873 Node *Matcher::xform( Node *n, int max_stack ) {
 874   // Use one stack to keep both: child's node/state and parent's node/index
 875   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 876   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 877 
 878   while (mstack.is_nonempty()) {
 879     n = mstack.node();          // Leave node on stack
 880     Node_State nstate = mstack.state();
 881     if (nstate == Visit) {
 882       mstack.set_state(Post_Visit);
 883       Node *oldn = n;
 884       // Old-space or new-space check
 885       if (!C->node_arena()->contains(n)) {
 886         // Old space!
 887         Node* m;
 888         if (has_new_node(n)) {  // Not yet Label/Reduced
 889           m = new_node(n);
 890         } else {
 891           if (!is_dontcare(n)) { // Matcher can match this guy
 892             // Calls match special.  They match alone with no children.
 893             // Their children, the incoming arguments, match normally.
 894             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 895             if (C->failing())  return NULL;
 896             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 897           } else {                  // Nothing the matcher cares about
 898             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 899               // Convert to machine-dependent projection
 900               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 901 #ifdef ASSERT
 902               _new2old_map.map(m->_idx, n);
 903 #endif
 904               if (m->in(0) != NULL) // m might be top
 905                 collect_null_checks(m, n);
 906             } else {                // Else just a regular 'ol guy
 907               m = n->clone();       // So just clone into new-space
 908 #ifdef ASSERT
 909               _new2old_map.map(m->_idx, n);
 910 #endif
 911               // Def-Use edges will be added incrementally as Uses
 912               // of this node are matched.
 913               assert(m->outcnt() == 0, "no Uses of this clone yet");
 914             }
 915           }
 916 
 917           set_new_node(n, m);       // Map old to new
 918           if (_old_node_note_array != NULL) {
 919             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 920                                                   n->_idx);
 921             C->set_node_notes_at(m->_idx, nn);
 922           }
 923           debug_only(match_alias_type(C, n, m));
 924         }
 925         n = m;    // n is now a new-space node
 926         mstack.set_node(n);
 927       }
 928 
 929       // New space!
 930       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 931 
 932       int i;
 933       // Put precedence edges on stack first (match them last).
 934       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 935         Node *m = oldn->in(i);
 936         if (m == NULL) break;
 937         // set -1 to call add_prec() instead of set_req() during Step1
 938         mstack.push(m, Visit, n, -1);
 939       }
 940 
 941       // For constant debug info, I'd rather have unmatched constants.
 942       int cnt = n->req();
 943       JVMState* jvms = n->jvms();
 944       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 945 
 946       // Now do only debug info.  Clone constants rather than matching.
 947       // Constants are represented directly in the debug info without
 948       // the need for executable machine instructions.
 949       // Monitor boxes are also represented directly.
 950       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 951         Node *m = n->in(i);          // Get input
 952         int op = m->Opcode();
 953         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 954         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 955             op == Op_ConF || op == Op_ConD || op == Op_ConL
 956             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
 957             ) {
 958           m = m->clone();
 959 #ifdef ASSERT
 960           _new2old_map.map(m->_idx, n);
 961 #endif
 962           mstack.push(m, Post_Visit, n, i); // Don't need to visit
 963           mstack.push(m->in(0), Visit, m, 0);
 964         } else {
 965           mstack.push(m, Visit, n, i);
 966         }
 967       }
 968 
 969       // And now walk his children, and convert his inputs to new-space.
 970       for( ; i >= 0; --i ) { // For all normal inputs do
 971         Node *m = n->in(i);  // Get input
 972         if(m != NULL)
 973           mstack.push(m, Visit, n, i);
 974       }
 975 
 976     }
 977     else if (nstate == Post_Visit) {
 978       // Set xformed input
 979       Node *p = mstack.parent();
 980       if (p != NULL) { // root doesn't have parent
 981         int i = (int)mstack.index();
 982         if (i >= 0)
 983           p->set_req(i, n); // required input
 984         else if (i == -1)
 985           p->add_prec(n);   // precedence input
 986         else
 987           ShouldNotReachHere();
 988       }
 989       mstack.pop(); // remove processed node from stack
 990     }
 991     else {
 992       ShouldNotReachHere();
 993     }
 994   } // while (mstack.is_nonempty())
 995   return n; // Return new-space Node
 996 }
 997 
 998 //------------------------------warp_outgoing_stk_arg------------------------
 999 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1000   // Convert outgoing argument location to a pre-biased stack offset
1001   if (reg->is_stack()) {
1002     OptoReg::Name warped = reg->reg2stack();
1003     // Adjust the stack slot offset to be the register number used
1004     // by the allocator.
1005     warped = OptoReg::add(begin_out_arg_area, warped);
1006     // Keep track of the largest numbered stack slot used for an arg.
1007     // Largest used slot per call-site indicates the amount of stack
1008     // that is killed by the call.
1009     if( warped >= out_arg_limit_per_call )
1010       out_arg_limit_per_call = OptoReg::add(warped,1);
1011     if (!RegMask::can_represent(warped)) {
1012       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1013       return OptoReg::Bad;
1014     }
1015     return warped;
1016   }
1017   return OptoReg::as_OptoReg(reg);
1018 }
1019 
1020 
1021 //------------------------------match_sfpt-------------------------------------
1022 // Helper function to match call instructions.  Calls match special.
1023 // They match alone with no children.  Their children, the incoming
1024 // arguments, match normally.
1025 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1026   MachSafePointNode *msfpt = NULL;
1027   MachCallNode      *mcall = NULL;
1028   uint               cnt;
1029   // Split out case for SafePoint vs Call
1030   CallNode *call;
1031   const TypeTuple *domain;
1032   ciMethod*        method = NULL;
1033   bool             is_method_handle_invoke = false;  // for special kill effects
1034   if( sfpt->is_Call() ) {
1035     call = sfpt->as_Call();
1036     domain = call->tf()->domain();
1037     cnt = domain->cnt();
1038 
1039     // Match just the call, nothing else
1040     MachNode *m = match_tree(call);
1041     if (C->failing())  return NULL;
1042     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1043 
1044     // Copy data from the Ideal SafePoint to the machine version
1045     mcall = m->as_MachCall();
1046 
1047     mcall->set_tf(         call->tf());
1048     mcall->set_entry_point(call->entry_point());
1049     mcall->set_cnt(        call->cnt());
1050 
1051     if( mcall->is_MachCallJava() ) {
1052       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1053       const CallJavaNode *call_java =  call->as_CallJava();
1054       method = call_java->method();
1055       mcall_java->_method = method;
1056       mcall_java->_bci = call_java->_bci;
1057       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1058       is_method_handle_invoke = call_java->is_method_handle_invoke();
1059       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1060       if( mcall_java->is_MachCallStaticJava() )
1061         mcall_java->as_MachCallStaticJava()->_name =
1062          call_java->as_CallStaticJava()->_name;
1063       if( mcall_java->is_MachCallDynamicJava() )
1064         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1065          call_java->as_CallDynamicJava()->_vtable_index;
1066     }
1067     else if( mcall->is_MachCallRuntime() ) {
1068       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1069     }
1070     msfpt = mcall;
1071   }
1072   // This is a non-call safepoint
1073   else {
1074     call = NULL;
1075     domain = NULL;
1076     MachNode *mn = match_tree(sfpt);
1077     if (C->failing())  return NULL;
1078     msfpt = mn->as_MachSafePoint();
1079     cnt = TypeFunc::Parms;
1080   }
1081 
1082   // Advertise the correct memory effects (for anti-dependence computation).
1083   msfpt->set_adr_type(sfpt->adr_type());
1084 
1085   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1086   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1087   // Empty them all.
1088   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1089 
1090   // Do all the pre-defined non-Empty register masks
1091   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1092   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1093 
1094   // Place first outgoing argument can possibly be put.
1095   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1096   assert( is_even(begin_out_arg_area), "" );
1097   // Compute max outgoing register number per call site.
1098   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1099   // Calls to C may hammer extra stack slots above and beyond any arguments.
1100   // These are usually backing store for register arguments for varargs.
1101   if( call != NULL && call->is_CallRuntime() )
1102     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1103 
1104 
1105   // Do the normal argument list (parameters) register masks
1106   int argcnt = cnt - TypeFunc::Parms;
1107   if( argcnt > 0 ) {          // Skip it all if we have no args
1108     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1109     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1110     int i;
1111     for( i = 0; i < argcnt; i++ ) {
1112       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1113     }
1114     // V-call to pick proper calling convention
1115     call->calling_convention( sig_bt, parm_regs, argcnt );
1116 
1117 #ifdef ASSERT
1118     // Sanity check users' calling convention.  Really handy during
1119     // the initial porting effort.  Fairly expensive otherwise.
1120     { for (int i = 0; i<argcnt; i++) {
1121       if( !parm_regs[i].first()->is_valid() &&
1122           !parm_regs[i].second()->is_valid() ) continue;
1123       VMReg reg1 = parm_regs[i].first();
1124       VMReg reg2 = parm_regs[i].second();
1125       for (int j = 0; j < i; j++) {
1126         if( !parm_regs[j].first()->is_valid() &&
1127             !parm_regs[j].second()->is_valid() ) continue;
1128         VMReg reg3 = parm_regs[j].first();
1129         VMReg reg4 = parm_regs[j].second();
1130         if( !reg1->is_valid() ) {
1131           assert( !reg2->is_valid(), "valid halvsies" );
1132         } else if( !reg3->is_valid() ) {
1133           assert( !reg4->is_valid(), "valid halvsies" );
1134         } else {
1135           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1136           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1137           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1138           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1139           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1140           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1141         }
1142       }
1143     }
1144     }
1145 #endif
1146 
1147     // Visit each argument.  Compute its outgoing register mask.
1148     // Return results now can have 2 bits returned.
1149     // Compute max over all outgoing arguments both per call-site
1150     // and over the entire method.
1151     for( i = 0; i < argcnt; i++ ) {
1152       // Address of incoming argument mask to fill in
1153       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1154       if( !parm_regs[i].first()->is_valid() &&
1155           !parm_regs[i].second()->is_valid() ) {
1156         continue;               // Avoid Halves
1157       }
1158       // Grab first register, adjust stack slots and insert in mask.
1159       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1160       if (OptoReg::is_valid(reg1))
1161         rm->Insert( reg1 );
1162       // Grab second register (if any), adjust stack slots and insert in mask.
1163       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1164       if (OptoReg::is_valid(reg2))
1165         rm->Insert( reg2 );
1166     } // End of for all arguments
1167 
1168     // Compute number of stack slots needed to restore stack in case of
1169     // Pascal-style argument popping.
1170     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1171   }
1172 
1173   if (is_method_handle_invoke) {
1174     // Kill some extra stack space in case method handles want to do
1175     // a little in-place argument insertion.
1176     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1177     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1178     // Do not update mcall->_argsize because (a) the extra space is not
1179     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1180   }
1181 
1182   // Compute the max stack slot killed by any call.  These will not be
1183   // available for debug info, and will be used to adjust FIRST_STACK_mask
1184   // after all call sites have been visited.
1185   if( _out_arg_limit < out_arg_limit_per_call)
1186     _out_arg_limit = out_arg_limit_per_call;
1187 
1188   if (mcall) {
1189     // Kill the outgoing argument area, including any non-argument holes and
1190     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1191     // Since the max-per-method covers the max-per-call-site and debug info
1192     // is excluded on the max-per-method basis, debug info cannot land in
1193     // this killed area.
1194     uint r_cnt = mcall->tf()->range()->cnt();
1195     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1196     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1197       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1198     } else {
1199       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1200         proj->_rout.Insert(OptoReg::Name(i));
1201     }
1202     if( proj->_rout.is_NotEmpty() )
1203       _proj_list.push(proj);
1204   }
1205   // Transfer the safepoint information from the call to the mcall
1206   // Move the JVMState list
1207   msfpt->set_jvms(sfpt->jvms());
1208   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1209     jvms->set_map(sfpt);
1210   }
1211 
1212   // Debug inputs begin just after the last incoming parameter
1213   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1214           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1215 
1216   // Move the OopMap
1217   msfpt->_oop_map = sfpt->_oop_map;
1218 
1219   // Registers killed by the call are set in the local scheduling pass
1220   // of Global Code Motion.
1221   return msfpt;
1222 }
1223 
1224 //---------------------------match_tree----------------------------------------
1225 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1226 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1227 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1228 // a Load's result RegMask for memoization in idealreg2regmask[]
1229 MachNode *Matcher::match_tree( const Node *n ) {
1230   assert( n->Opcode() != Op_Phi, "cannot match" );
1231   assert( !n->is_block_start(), "cannot match" );
1232   // Set the mark for all locally allocated State objects.
1233   // When this call returns, the _states_arena arena will be reset
1234   // freeing all State objects.
1235   ResourceMark rm( &_states_arena );
1236 
1237   LabelRootDepth = 0;
1238 
1239   // StoreNodes require their Memory input to match any LoadNodes
1240   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1241 #ifdef ASSERT
1242   Node* save_mem_node = _mem_node;
1243   _mem_node = n->is_Store() ? (Node*)n : NULL;
1244 #endif
1245   // State object for root node of match tree
1246   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1247   State *s = new (&_states_arena) State;
1248   s->_kids[0] = NULL;
1249   s->_kids[1] = NULL;
1250   s->_leaf = (Node*)n;
1251   // Label the input tree, allocating labels from top-level arena
1252   Label_Root( n, s, n->in(0), mem );
1253   if (C->failing())  return NULL;
1254 
1255   // The minimum cost match for the whole tree is found at the root State
1256   uint mincost = max_juint;
1257   uint cost = max_juint;
1258   uint i;
1259   for( i = 0; i < NUM_OPERANDS; i++ ) {
1260     if( s->valid(i) &&                // valid entry and
1261         s->_cost[i] < cost &&         // low cost and
1262         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1263       cost = s->_cost[mincost=i];
1264   }
1265   if (mincost == max_juint) {
1266 #ifndef PRODUCT
1267     tty->print("No matching rule for:");
1268     s->dump();
1269 #endif
1270     Matcher::soft_match_failure();
1271     return NULL;
1272   }
1273   // Reduce input tree based upon the state labels to machine Nodes
1274   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1275 #ifdef ASSERT
1276   _old2new_map.map(n->_idx, m);
1277   _new2old_map.map(m->_idx, (Node*)n);
1278 #endif
1279 
1280   // Add any Matcher-ignored edges
1281   uint cnt = n->req();
1282   uint start = 1;
1283   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1284   if( n->is_AddP() ) {
1285     assert( mem == (Node*)1, "" );
1286     start = AddPNode::Base+1;
1287   }
1288   for( i = start; i < cnt; i++ ) {
1289     if( !n->match_edge(i) ) {
1290       if( i < m->req() )
1291         m->ins_req( i, n->in(i) );
1292       else
1293         m->add_req( n->in(i) );
1294     }
1295   }
1296 
1297   debug_only( _mem_node = save_mem_node; )
1298   return m;
1299 }
1300 
1301 
1302 //------------------------------match_into_reg---------------------------------
1303 // Choose to either match this Node in a register or part of the current
1304 // match tree.  Return true for requiring a register and false for matching
1305 // as part of the current match tree.
1306 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1307 
1308   const Type *t = m->bottom_type();
1309 
1310   if( t->singleton() ) {
1311     // Never force constants into registers.  Allow them to match as
1312     // constants or registers.  Copies of the same value will share
1313     // the same register.  See find_shared_node.
1314     return false;
1315   } else {                      // Not a constant
1316     // Stop recursion if they have different Controls.
1317     // Slot 0 of constants is not really a Control.
1318     if( control && m->in(0) && control != m->in(0) ) {
1319 
1320       // Actually, we can live with the most conservative control we
1321       // find, if it post-dominates the others.  This allows us to
1322       // pick up load/op/store trees where the load can float a little
1323       // above the store.
1324       Node *x = control;
1325       const uint max_scan = 6;   // Arbitrary scan cutoff
1326       uint j;
1327       for( j=0; j<max_scan; j++ ) {
1328         if( x->is_Region() )    // Bail out at merge points
1329           return true;
1330         x = x->in(0);
1331         if( x == m->in(0) )     // Does 'control' post-dominate
1332           break;                // m->in(0)?  If so, we can use it
1333       }
1334       if( j == max_scan )       // No post-domination before scan end?
1335         return true;            // Then break the match tree up
1336     }
1337     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
1338       // These are commonly used in address expressions and can
1339       // efficiently fold into them on X64 in some cases.
1340       return false;
1341     }
1342   }
1343 
1344   // Not forceable cloning.  If shared, put it into a register.
1345   return shared;
1346 }
1347 
1348 
1349 //------------------------------Instruction Selection--------------------------
1350 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1351 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1352 // things the Matcher does not match (e.g., Memory), and things with different
1353 // Controls (hence forced into different blocks).  We pass in the Control
1354 // selected for this entire State tree.
1355 
1356 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1357 // Store and the Load must have identical Memories (as well as identical
1358 // pointers).  Since the Matcher does not have anything for Memory (and
1359 // does not handle DAGs), I have to match the Memory input myself.  If the
1360 // Tree root is a Store, I require all Loads to have the identical memory.
1361 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1362   // Since Label_Root is a recursive function, its possible that we might run
1363   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1364   LabelRootDepth++;
1365   if (LabelRootDepth > MaxLabelRootDepth) {
1366     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1367     return NULL;
1368   }
1369   uint care = 0;                // Edges matcher cares about
1370   uint cnt = n->req();
1371   uint i = 0;
1372 
1373   // Examine children for memory state
1374   // Can only subsume a child into your match-tree if that child's memory state
1375   // is not modified along the path to another input.
1376   // It is unsafe even if the other inputs are separate roots.
1377   Node *input_mem = NULL;
1378   for( i = 1; i < cnt; i++ ) {
1379     if( !n->match_edge(i) ) continue;
1380     Node *m = n->in(i);         // Get ith input
1381     assert( m, "expect non-null children" );
1382     if( m->is_Load() ) {
1383       if( input_mem == NULL ) {
1384         input_mem = m->in(MemNode::Memory);
1385       } else if( input_mem != m->in(MemNode::Memory) ) {
1386         input_mem = NodeSentinel;
1387       }
1388     }
1389   }
1390 
1391   for( i = 1; i < cnt; i++ ){// For my children
1392     if( !n->match_edge(i) ) continue;
1393     Node *m = n->in(i);         // Get ith input
1394     // Allocate states out of a private arena
1395     State *s = new (&_states_arena) State;
1396     svec->_kids[care++] = s;
1397     assert( care <= 2, "binary only for now" );
1398 
1399     // Recursively label the State tree.
1400     s->_kids[0] = NULL;
1401     s->_kids[1] = NULL;
1402     s->_leaf = m;
1403 
1404     // Check for leaves of the State Tree; things that cannot be a part of
1405     // the current tree.  If it finds any, that value is matched as a
1406     // register operand.  If not, then the normal matching is used.
1407     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1408         //
1409         // Stop recursion if this is LoadNode and the root of this tree is a
1410         // StoreNode and the load & store have different memories.
1411         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1412         // Can NOT include the match of a subtree when its memory state
1413         // is used by any of the other subtrees
1414         (input_mem == NodeSentinel) ) {
1415 #ifndef PRODUCT
1416       // Print when we exclude matching due to different memory states at input-loads
1417       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1418         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1419         tty->print_cr("invalid input_mem");
1420       }
1421 #endif
1422       // Switch to a register-only opcode; this value must be in a register
1423       // and cannot be subsumed as part of a larger instruction.
1424       s->DFA( m->ideal_reg(), m );
1425 
1426     } else {
1427       // If match tree has no control and we do, adopt it for entire tree
1428       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1429         control = m->in(0);         // Pick up control
1430       // Else match as a normal part of the match tree.
1431       control = Label_Root(m,s,control,mem);
1432       if (C->failing()) return NULL;
1433     }
1434   }
1435 
1436 
1437   // Call DFA to match this node, and return
1438   svec->DFA( n->Opcode(), n );
1439 
1440 #ifdef ASSERT
1441   uint x;
1442   for( x = 0; x < _LAST_MACH_OPER; x++ )
1443     if( svec->valid(x) )
1444       break;
1445 
1446   if (x >= _LAST_MACH_OPER) {
1447     n->dump();
1448     svec->dump();
1449     assert( false, "bad AD file" );
1450   }
1451 #endif
1452   return control;
1453 }
1454 
1455 
1456 // Con nodes reduced using the same rule can share their MachNode
1457 // which reduces the number of copies of a constant in the final
1458 // program.  The register allocator is free to split uses later to
1459 // split live ranges.
1460 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1461   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1462 
1463   // See if this Con has already been reduced using this rule.
1464   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1465   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1466   if (last != NULL && rule == last->rule()) {
1467     // Don't expect control change for DecodeN
1468     if (leaf->is_DecodeN())
1469       return last;
1470     // Get the new space root.
1471     Node* xroot = new_node(C->root());
1472     if (xroot == NULL) {
1473       // This shouldn't happen give the order of matching.
1474       return NULL;
1475     }
1476 
1477     // Shared constants need to have their control be root so they
1478     // can be scheduled properly.
1479     Node* control = last->in(0);
1480     if (control != xroot) {
1481       if (control == NULL || control == C->root()) {
1482         last->set_req(0, xroot);
1483       } else {
1484         assert(false, "unexpected control");
1485         return NULL;
1486       }
1487     }
1488     return last;
1489   }
1490   return NULL;
1491 }
1492 
1493 
1494 //------------------------------ReduceInst-------------------------------------
1495 // Reduce a State tree (with given Control) into a tree of MachNodes.
1496 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1497 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1498 // Each MachNode has a number of complicated MachOper operands; each
1499 // MachOper also covers a further tree of Ideal Nodes.
1500 
1501 // The root of the Ideal match tree is always an instruction, so we enter
1502 // the recursion here.  After building the MachNode, we need to recurse
1503 // the tree checking for these cases:
1504 // (1) Child is an instruction -
1505 //     Build the instruction (recursively), add it as an edge.
1506 //     Build a simple operand (register) to hold the result of the instruction.
1507 // (2) Child is an interior part of an instruction -
1508 //     Skip over it (do nothing)
1509 // (3) Child is the start of a operand -
1510 //     Build the operand, place it inside the instruction
1511 //     Call ReduceOper.
1512 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1513   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1514 
1515   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1516   if (shared_node != NULL) {
1517     return shared_node;
1518   }
1519 
1520   // Build the object to represent this state & prepare for recursive calls
1521   MachNode *mach = s->MachNodeGenerator( rule, C );
1522   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1523   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1524   Node *leaf = s->_leaf;
1525   // Check for instruction or instruction chain rule
1526   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1527     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1528            "duplicating node that's already been matched");
1529     // Instruction
1530     mach->add_req( leaf->in(0) ); // Set initial control
1531     // Reduce interior of complex instruction
1532     ReduceInst_Interior( s, rule, mem, mach, 1 );
1533   } else {
1534     // Instruction chain rules are data-dependent on their inputs
1535     mach->add_req(0);             // Set initial control to none
1536     ReduceInst_Chain_Rule( s, rule, mem, mach );
1537   }
1538 
1539   // If a Memory was used, insert a Memory edge
1540   if( mem != (Node*)1 ) {
1541     mach->ins_req(MemNode::Memory,mem);
1542 #ifdef ASSERT
1543     // Verify adr type after matching memory operation
1544     const MachOper* oper = mach->memory_operand();
1545     if (oper != NULL && oper != (MachOper*)-1) {
1546       // It has a unique memory operand.  Find corresponding ideal mem node.
1547       Node* m = NULL;
1548       if (leaf->is_Mem()) {
1549         m = leaf;
1550       } else {
1551         m = _mem_node;
1552         assert(m != NULL && m->is_Mem(), "expecting memory node");
1553       }
1554       const Type* mach_at = mach->adr_type();
1555       // DecodeN node consumed by an address may have different type
1556       // then its input. Don't compare types for such case.
1557       if (m->adr_type() != mach_at &&
1558           (m->in(MemNode::Address)->is_DecodeN() ||
1559            m->in(MemNode::Address)->is_AddP() &&
1560            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1561            m->in(MemNode::Address)->is_AddP() &&
1562            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1563            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1564         mach_at = m->adr_type();
1565       }
1566       if (m->adr_type() != mach_at) {
1567         m->dump();
1568         tty->print_cr("mach:");
1569         mach->dump(1);
1570       }
1571       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1572     }
1573 #endif
1574   }
1575 
1576   // If the _leaf is an AddP, insert the base edge
1577   if( leaf->is_AddP() )
1578     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1579 
1580   uint num_proj = _proj_list.size();
1581 
1582   // Perform any 1-to-many expansions required
1583   MachNode *ex = mach->Expand(s,_proj_list, mem);
1584   if( ex != mach ) {
1585     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1586     if( ex->in(1)->is_Con() )
1587       ex->in(1)->set_req(0, C->root());
1588     // Remove old node from the graph
1589     for( uint i=0; i<mach->req(); i++ ) {
1590       mach->set_req(i,NULL);
1591     }
1592 #ifdef ASSERT
1593     _new2old_map.map(ex->_idx, s->_leaf);
1594 #endif
1595   }
1596 
1597   // PhaseChaitin::fixup_spills will sometimes generate spill code
1598   // via the matcher.  By the time, nodes have been wired into the CFG,
1599   // and any further nodes generated by expand rules will be left hanging
1600   // in space, and will not get emitted as output code.  Catch this.
1601   // Also, catch any new register allocation constraints ("projections")
1602   // generated belatedly during spill code generation.
1603   if (_allocation_started) {
1604     guarantee(ex == mach, "no expand rules during spill generation");
1605     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1606   }
1607 
1608   if (leaf->is_Con() || leaf->is_DecodeN()) {
1609     // Record the con for sharing
1610     _shared_nodes.map(leaf->_idx, ex);
1611   }
1612 
1613   return ex;
1614 }
1615 
1616 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1617   // 'op' is what I am expecting to receive
1618   int op = _leftOp[rule];
1619   // Operand type to catch childs result
1620   // This is what my child will give me.
1621   int opnd_class_instance = s->_rule[op];
1622   // Choose between operand class or not.
1623   // This is what I will receive.
1624   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1625   // New rule for child.  Chase operand classes to get the actual rule.
1626   int newrule = s->_rule[catch_op];
1627 
1628   if( newrule < NUM_OPERANDS ) {
1629     // Chain from operand or operand class, may be output of shared node
1630     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1631             "Bad AD file: Instruction chain rule must chain from operand");
1632     // Insert operand into array of operands for this instruction
1633     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1634 
1635     ReduceOper( s, newrule, mem, mach );
1636   } else {
1637     // Chain from the result of an instruction
1638     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1639     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1640     Node *mem1 = (Node*)1;
1641     debug_only(Node *save_mem_node = _mem_node;)
1642     mach->add_req( ReduceInst(s, newrule, mem1) );
1643     debug_only(_mem_node = save_mem_node;)
1644   }
1645   return;
1646 }
1647 
1648 
1649 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1650   if( s->_leaf->is_Load() ) {
1651     Node *mem2 = s->_leaf->in(MemNode::Memory);
1652     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1653     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1654     mem = mem2;
1655   }
1656   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1657     if( mach->in(0) == NULL )
1658       mach->set_req(0, s->_leaf->in(0));
1659   }
1660 
1661   // Now recursively walk the state tree & add operand list.
1662   for( uint i=0; i<2; i++ ) {   // binary tree
1663     State *newstate = s->_kids[i];
1664     if( newstate == NULL ) break;      // Might only have 1 child
1665     // 'op' is what I am expecting to receive
1666     int op;
1667     if( i == 0 ) {
1668       op = _leftOp[rule];
1669     } else {
1670       op = _rightOp[rule];
1671     }
1672     // Operand type to catch childs result
1673     // This is what my child will give me.
1674     int opnd_class_instance = newstate->_rule[op];
1675     // Choose between operand class or not.
1676     // This is what I will receive.
1677     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1678     // New rule for child.  Chase operand classes to get the actual rule.
1679     int newrule = newstate->_rule[catch_op];
1680 
1681     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1682       // Operand/operandClass
1683       // Insert operand into array of operands for this instruction
1684       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1685       ReduceOper( newstate, newrule, mem, mach );
1686 
1687     } else {                    // Child is internal operand or new instruction
1688       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1689         // internal operand --> call ReduceInst_Interior
1690         // Interior of complex instruction.  Do nothing but recurse.
1691         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1692       } else {
1693         // instruction --> call build operand(  ) to catch result
1694         //             --> ReduceInst( newrule )
1695         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1696         Node *mem1 = (Node*)1;
1697         debug_only(Node *save_mem_node = _mem_node;)
1698         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1699         debug_only(_mem_node = save_mem_node;)
1700       }
1701     }
1702     assert( mach->_opnds[num_opnds-1], "" );
1703   }
1704   return num_opnds;
1705 }
1706 
1707 // This routine walks the interior of possible complex operands.
1708 // At each point we check our children in the match tree:
1709 // (1) No children -
1710 //     We are a leaf; add _leaf field as an input to the MachNode
1711 // (2) Child is an internal operand -
1712 //     Skip over it ( do nothing )
1713 // (3) Child is an instruction -
1714 //     Call ReduceInst recursively and
1715 //     and instruction as an input to the MachNode
1716 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1717   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1718   State *kid = s->_kids[0];
1719   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1720 
1721   // Leaf?  And not subsumed?
1722   if( kid == NULL && !_swallowed[rule] ) {
1723     mach->add_req( s->_leaf );  // Add leaf pointer
1724     return;                     // Bail out
1725   }
1726 
1727   if( s->_leaf->is_Load() ) {
1728     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1729     mem = s->_leaf->in(MemNode::Memory);
1730     debug_only(_mem_node = s->_leaf;)
1731   }
1732   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1733     if( !mach->in(0) )
1734       mach->set_req(0,s->_leaf->in(0));
1735     else {
1736       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1737     }
1738   }
1739 
1740   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1741     int newrule;
1742     if( i == 0 )
1743       newrule = kid->_rule[_leftOp[rule]];
1744     else
1745       newrule = kid->_rule[_rightOp[rule]];
1746 
1747     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1748       // Internal operand; recurse but do nothing else
1749       ReduceOper( kid, newrule, mem, mach );
1750 
1751     } else {                    // Child is a new instruction
1752       // Reduce the instruction, and add a direct pointer from this
1753       // machine instruction to the newly reduced one.
1754       Node *mem1 = (Node*)1;
1755       debug_only(Node *save_mem_node = _mem_node;)
1756       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1757       debug_only(_mem_node = save_mem_node;)
1758     }
1759   }
1760 }
1761 
1762 
1763 // -------------------------------------------------------------------------
1764 // Java-Java calling convention
1765 // (what you use when Java calls Java)
1766 
1767 //------------------------------find_receiver----------------------------------
1768 // For a given signature, return the OptoReg for parameter 0.
1769 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1770   VMRegPair regs;
1771   BasicType sig_bt = T_OBJECT;
1772   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1773   // Return argument 0 register.  In the LP64 build pointers
1774   // take 2 registers, but the VM wants only the 'main' name.
1775   return OptoReg::as_OptoReg(regs.first());
1776 }
1777 
1778 // A method-klass-holder may be passed in the inline_cache_reg
1779 // and then expanded into the inline_cache_reg and a method_oop register
1780 //   defined in ad_<arch>.cpp
1781 
1782 
1783 //------------------------------find_shared------------------------------------
1784 // Set bits if Node is shared or otherwise a root
1785 void Matcher::find_shared( Node *n ) {
1786   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1787   MStack mstack(C->unique() * 2);
1788   // Mark nodes as address_visited if they are inputs to an address expression
1789   VectorSet address_visited(Thread::current()->resource_area());
1790   mstack.push(n, Visit);     // Don't need to pre-visit root node
1791   while (mstack.is_nonempty()) {
1792     n = mstack.node();       // Leave node on stack
1793     Node_State nstate = mstack.state();
1794     uint nop = n->Opcode();
1795     if (nstate == Pre_Visit) {
1796       if (address_visited.test(n->_idx)) { // Visited in address already?
1797         // Flag as visited and shared now.
1798         set_visited(n);
1799       }
1800       if (is_visited(n)) {   // Visited already?
1801         // Node is shared and has no reason to clone.  Flag it as shared.
1802         // This causes it to match into a register for the sharing.
1803         set_shared(n);       // Flag as shared and
1804         mstack.pop();        // remove node from stack
1805         continue;
1806       }
1807       nstate = Visit; // Not already visited; so visit now
1808     }
1809     if (nstate == Visit) {
1810       mstack.set_state(Post_Visit);
1811       set_visited(n);   // Flag as visited now
1812       bool mem_op = false;
1813 
1814       switch( nop ) {  // Handle some opcodes special
1815       case Op_Phi:             // Treat Phis as shared roots
1816       case Op_Parm:
1817       case Op_Proj:            // All handled specially during matching
1818       case Op_SafePointScalarObject:
1819         set_shared(n);
1820         set_dontcare(n);
1821         break;
1822       case Op_If:
1823       case Op_CountedLoopEnd:
1824         mstack.set_state(Alt_Post_Visit); // Alternative way
1825         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1826         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1827         // Bool and CmpX side-by-side, because it can only get at constants
1828         // that are at the leaves of Match trees, and the Bool's condition acts
1829         // as a constant here.
1830         mstack.push(n->in(1), Visit);         // Clone the Bool
1831         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1832         continue; // while (mstack.is_nonempty())
1833       case Op_ConvI2D:         // These forms efficiently match with a prior
1834       case Op_ConvI2F:         //   Load but not a following Store
1835         if( n->in(1)->is_Load() &&        // Prior load
1836             n->outcnt() == 1 &&           // Not already shared
1837             n->unique_out()->is_Store() ) // Following store
1838           set_shared(n);       // Force it to be a root
1839         break;
1840       case Op_ReverseBytesI:
1841       case Op_ReverseBytesL:
1842         if( n->in(1)->is_Load() &&        // Prior load
1843             n->outcnt() == 1 )            // Not already shared
1844           set_shared(n);                  // Force it to be a root
1845         break;
1846       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1847       case Op_IfFalse:
1848       case Op_IfTrue:
1849       case Op_MachProj:
1850       case Op_MergeMem:
1851       case Op_Catch:
1852       case Op_CatchProj:
1853       case Op_CProj:
1854       case Op_JumpProj:
1855       case Op_JProj:
1856       case Op_NeverBranch:
1857         set_dontcare(n);
1858         break;
1859       case Op_Jump:
1860         mstack.push(n->in(1), Visit);         // Switch Value
1861         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1862         continue;                             // while (mstack.is_nonempty())
1863       case Op_StrComp:
1864       case Op_StrEquals:
1865       case Op_StrIndexOf:
1866       case Op_AryEq:
1867         set_shared(n); // Force result into register (it will be anyways)
1868         break;
1869       case Op_ConP: {  // Convert pointers above the centerline to NUL
1870         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1871         const TypePtr* tp = tn->type()->is_ptr();
1872         if (tp->_ptr == TypePtr::AnyNull) {
1873           tn->set_type(TypePtr::NULL_PTR);
1874         }
1875         break;
1876       }
1877       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1878         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1879         const TypePtr* tp = tn->type()->make_ptr();
1880         if (tp && tp->_ptr == TypePtr::AnyNull) {
1881           tn->set_type(TypeNarrowOop::NULL_PTR);
1882         }
1883         break;
1884       }
1885       case Op_Binary:         // These are introduced in the Post_Visit state.
1886         ShouldNotReachHere();
1887         break;
1888       case Op_ClearArray:
1889       case Op_SafePoint:
1890         mem_op = true;
1891         break;
1892       default:
1893         if( n->is_Store() ) {
1894           // Do match stores, despite no ideal reg
1895           mem_op = true;
1896           break;
1897         }
1898         if( n->is_Mem() ) { // Loads and LoadStores
1899           mem_op = true;
1900           // Loads must be root of match tree due to prior load conflict
1901           if( C->subsume_loads() == false )
1902             set_shared(n);
1903         }
1904         // Fall into default case
1905         if( !n->ideal_reg() )
1906           set_dontcare(n);  // Unmatchable Nodes
1907       } // end_switch
1908 
1909       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1910         Node *m = n->in(i); // Get ith input
1911         if (m == NULL) continue;  // Ignore NULLs
1912         uint mop = m->Opcode();
1913 
1914         // Must clone all producers of flags, or we will not match correctly.
1915         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1916         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1917         // are also there, so we may match a float-branch to int-flags and
1918         // expect the allocator to haul the flags from the int-side to the
1919         // fp-side.  No can do.
1920         if( _must_clone[mop] ) {
1921           mstack.push(m, Visit);
1922           continue; // for(int i = ...)
1923         }
1924 
1925         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1926           // Bases used in addresses must be shared but since
1927           // they are shared through a DecodeN they may appear
1928           // to have a single use so force sharing here.
1929           set_shared(m->in(AddPNode::Base)->in(1));
1930         }
1931 
1932         // Clone addressing expressions as they are "free" in memory access instructions
1933         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1934           // Some inputs for address expression are not put on stack
1935           // to avoid marking them as shared and forcing them into register
1936           // if they are used only in address expressions.
1937           // But they should be marked as shared if there are other uses
1938           // besides address expressions.
1939 
1940           Node *off = m->in(AddPNode::Offset);
1941           if( off->is_Con() &&
1942               // When there are other uses besides address expressions
1943               // put it on stack and mark as shared.
1944               !is_visited(m) ) {
1945             address_visited.test_set(m->_idx); // Flag as address_visited
1946             Node *adr = m->in(AddPNode::Address);
1947 
1948             // Intel, ARM and friends can handle 2 adds in addressing mode
1949             if( clone_shift_expressions && adr->is_AddP() &&
1950                 // AtomicAdd is not an addressing expression.
1951                 // Cheap to find it by looking for screwy base.
1952                 !adr->in(AddPNode::Base)->is_top() &&
1953                 // Are there other uses besides address expressions?
1954                 !is_visited(adr) ) {
1955               address_visited.set(adr->_idx); // Flag as address_visited
1956               Node *shift = adr->in(AddPNode::Offset);
1957               // Check for shift by small constant as well
1958               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
1959                   shift->in(2)->get_int() <= 3 &&
1960                   // Are there other uses besides address expressions?
1961                   !is_visited(shift) ) {
1962                 address_visited.set(shift->_idx); // Flag as address_visited
1963                 mstack.push(shift->in(2), Visit);
1964                 Node *conv = shift->in(1);
1965 #ifdef _LP64
1966                 // Allow Matcher to match the rule which bypass
1967                 // ConvI2L operation for an array index on LP64
1968                 // if the index value is positive.
1969                 if( conv->Opcode() == Op_ConvI2L &&
1970                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
1971                     // Are there other uses besides address expressions?
1972                     !is_visited(conv) ) {
1973                   address_visited.set(conv->_idx); // Flag as address_visited
1974                   mstack.push(conv->in(1), Pre_Visit);
1975                 } else
1976 #endif
1977                 mstack.push(conv, Pre_Visit);
1978               } else {
1979                 mstack.push(shift, Pre_Visit);
1980               }
1981               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1982               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1983             } else {  // Sparc, Alpha, PPC and friends
1984               mstack.push(adr, Pre_Visit);
1985             }
1986 
1987             // Clone X+offset as it also folds into most addressing expressions
1988             mstack.push(off, Visit);
1989             mstack.push(m->in(AddPNode::Base), Pre_Visit);
1990             continue; // for(int i = ...)
1991           } // if( off->is_Con() )
1992         }   // if( mem_op &&
1993         mstack.push(m, Pre_Visit);
1994       }     // for(int i = ...)
1995     }
1996     else if (nstate == Alt_Post_Visit) {
1997       mstack.pop(); // Remove node from stack
1998       // We cannot remove the Cmp input from the Bool here, as the Bool may be
1999       // shared and all users of the Bool need to move the Cmp in parallel.
2000       // This leaves both the Bool and the If pointing at the Cmp.  To
2001       // prevent the Matcher from trying to Match the Cmp along both paths
2002       // BoolNode::match_edge always returns a zero.
2003 
2004       // We reorder the Op_If in a pre-order manner, so we can visit without
2005       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2006       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2007     }
2008     else if (nstate == Post_Visit) {
2009       mstack.pop(); // Remove node from stack
2010 
2011       // Now hack a few special opcodes
2012       switch( n->Opcode() ) {       // Handle some opcodes special
2013       case Op_StorePConditional:
2014       case Op_StoreIConditional:
2015       case Op_StoreLConditional:
2016       case Op_CompareAndSwapI:
2017       case Op_CompareAndSwapL:
2018       case Op_CompareAndSwapP:
2019       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2020         Node *newval = n->in(MemNode::ValueIn );
2021         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2022         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2023         n->set_req(MemNode::ValueIn,pair);
2024         n->del_req(LoadStoreNode::ExpectedIn);
2025         break;
2026       }
2027       case Op_CMoveD:              // Convert trinary to binary-tree
2028       case Op_CMoveF:
2029       case Op_CMoveI:
2030       case Op_CMoveL:
2031       case Op_CMoveN:
2032       case Op_CMoveP: {
2033         // Restructure into a binary tree for Matching.  It's possible that
2034         // we could move this code up next to the graph reshaping for IfNodes
2035         // or vice-versa, but I do not want to debug this for Ladybird.
2036         // 10/2/2000 CNC.
2037         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2038         n->set_req(1,pair1);
2039         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2040         n->set_req(2,pair2);
2041         n->del_req(3);
2042         break;
2043       }
2044       case Op_StrEquals: {
2045         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2046         n->set_req(2,pair1);
2047         n->set_req(3,n->in(4));
2048         n->del_req(4);
2049         break;
2050       }
2051       case Op_StrComp:
2052       case Op_StrIndexOf: {
2053         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2054         n->set_req(2,pair1);
2055         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2056         n->set_req(3,pair2);
2057         n->del_req(5);
2058         n->del_req(4);
2059         break;
2060       }
2061       default:
2062         break;
2063       }
2064     }
2065     else {
2066       ShouldNotReachHere();
2067     }
2068   } // end of while (mstack.is_nonempty())
2069 }
2070 
2071 #ifdef ASSERT
2072 // machine-independent root to machine-dependent root
2073 void Matcher::dump_old2new_map() {
2074   _old2new_map.dump();
2075 }
2076 #endif
2077 
2078 //---------------------------collect_null_checks-------------------------------
2079 // Find null checks in the ideal graph; write a machine-specific node for
2080 // it.  Used by later implicit-null-check handling.  Actually collects
2081 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2082 // value being tested.
2083 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2084   Node *iff = proj->in(0);
2085   if( iff->Opcode() == Op_If ) {
2086     // During matching If's have Bool & Cmp side-by-side
2087     BoolNode *b = iff->in(1)->as_Bool();
2088     Node *cmp = iff->in(2);
2089     int opc = cmp->Opcode();
2090     if (opc != Op_CmpP && opc != Op_CmpN) return;
2091 
2092     const Type* ct = cmp->in(2)->bottom_type();
2093     if (ct == TypePtr::NULL_PTR ||
2094         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2095 
2096       bool push_it = false;
2097       if( proj->Opcode() == Op_IfTrue ) {
2098         extern int all_null_checks_found;
2099         all_null_checks_found++;
2100         if( b->_test._test == BoolTest::ne ) {
2101           push_it = true;
2102         }
2103       } else {
2104         assert( proj->Opcode() == Op_IfFalse, "" );
2105         if( b->_test._test == BoolTest::eq ) {
2106           push_it = true;
2107         }
2108       }
2109       if( push_it ) {
2110         _null_check_tests.push(proj);
2111         Node* val = cmp->in(1);
2112 #ifdef _LP64
2113         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
2114             val->bottom_type()->isa_narrowoop()) {
2115           //
2116           // Look for DecodeN node which should be pinned to orig_proj.
2117           // On platforms (Sparc) which can not handle 2 adds
2118           // in addressing mode we have to keep a DecodeN node and
2119           // use it to do implicit NULL check in address.
2120           //
2121           // DecodeN node was pinned to non-null path (orig_proj) during
2122           // CastPP transformation in final_graph_reshaping_impl().
2123           //
2124           uint cnt = orig_proj->outcnt();
2125           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2126             Node* d = orig_proj->raw_out(i);
2127             if (d->is_DecodeN() && d->in(1) == val) {
2128               val = d;
2129               val->set_req(0, NULL); // Unpin now.
2130               break;
2131             }
2132           }
2133         }
2134 #endif
2135         _null_check_tests.push(val);
2136       }
2137     }
2138   }
2139 }
2140 
2141 //---------------------------validate_null_checks------------------------------
2142 // Its possible that the value being NULL checked is not the root of a match
2143 // tree.  If so, I cannot use the value in an implicit null check.
2144 void Matcher::validate_null_checks( ) {
2145   uint cnt = _null_check_tests.size();
2146   for( uint i=0; i < cnt; i+=2 ) {
2147     Node *test = _null_check_tests[i];
2148     Node *val = _null_check_tests[i+1];
2149     if (has_new_node(val)) {
2150       // Is a match-tree root, so replace with the matched value
2151       _null_check_tests.map(i+1, new_node(val));
2152     } else {
2153       // Yank from candidate list
2154       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2155       _null_check_tests.map(i,_null_check_tests[--cnt]);
2156       _null_check_tests.pop();
2157       _null_check_tests.pop();
2158       i-=2;
2159     }
2160   }
2161 }
2162 
2163 
2164 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2165 // acting as an Acquire and thus we don't need an Acquire here.  We
2166 // retain the Node to act as a compiler ordering barrier.
2167 bool Matcher::prior_fast_lock( const Node *acq ) {
2168   Node *r = acq->in(0);
2169   if( !r->is_Region() || r->req() <= 1 ) return false;
2170   Node *proj = r->in(1);
2171   if( !proj->is_Proj() ) return false;
2172   Node *call = proj->in(0);
2173   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2174     return false;
2175 
2176   return true;
2177 }
2178 
2179 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2180 // acting as a Release and thus we don't need a Release here.  We
2181 // retain the Node to act as a compiler ordering barrier.
2182 bool Matcher::post_fast_unlock( const Node *rel ) {
2183   Compile *C = Compile::current();
2184   assert( rel->Opcode() == Op_MemBarRelease, "" );
2185   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2186   DUIterator_Fast imax, i = mem->fast_outs(imax);
2187   Node *ctrl = NULL;
2188   while( true ) {
2189     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2190     assert( ctrl->is_Proj(), "only projections here" );
2191     ProjNode *proj = (ProjNode*)ctrl;
2192     if( proj->_con == TypeFunc::Control &&
2193         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2194       break;
2195     i++;
2196   }
2197   Node *iff = NULL;
2198   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2199     Node *x = ctrl->fast_out(j);
2200     if( x->is_If() && x->req() > 1 &&
2201         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2202       iff = x;
2203       break;
2204     }
2205   }
2206   if( !iff ) return false;
2207   Node *bol = iff->in(1);
2208   // The iff might be some random subclass of If or bol might be Con-Top
2209   if (!bol->is_Bool())  return false;
2210   assert( bol->req() > 1, "" );
2211   return (bol->in(1)->Opcode() == Op_FastUnlock);
2212 }
2213 
2214 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2215 // atomic instruction acting as a store_load barrier without any
2216 // intervening volatile load, and thus we don't need a barrier here.
2217 // We retain the Node to act as a compiler ordering barrier.
2218 bool Matcher::post_store_load_barrier(const Node *vmb) {
2219   Compile *C = Compile::current();
2220   assert( vmb->is_MemBar(), "" );
2221   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2222   const MemBarNode *mem = (const MemBarNode*)vmb;
2223 
2224   // Get the Proj node, ctrl, that can be used to iterate forward
2225   Node *ctrl = NULL;
2226   DUIterator_Fast imax, i = mem->fast_outs(imax);
2227   while( true ) {
2228     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2229     assert( ctrl->is_Proj(), "only projections here" );
2230     ProjNode *proj = (ProjNode*)ctrl;
2231     if( proj->_con == TypeFunc::Control &&
2232         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2233       break;
2234     i++;
2235   }
2236 
2237   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2238     Node *x = ctrl->fast_out(j);
2239     int xop = x->Opcode();
2240 
2241     // We don't need current barrier if we see another or a lock
2242     // before seeing volatile load.
2243     //
2244     // Op_Fastunlock previously appeared in the Op_* list below.
2245     // With the advent of 1-0 lock operations we're no longer guaranteed
2246     // that a monitor exit operation contains a serializing instruction.
2247 
2248     if (xop == Op_MemBarVolatile ||
2249         xop == Op_FastLock ||
2250         xop == Op_CompareAndSwapL ||
2251         xop == Op_CompareAndSwapP ||
2252         xop == Op_CompareAndSwapN ||
2253         xop == Op_CompareAndSwapI)
2254       return true;
2255 
2256     if (x->is_MemBar()) {
2257       // We must retain this membar if there is an upcoming volatile
2258       // load, which will be preceded by acquire membar.
2259       if (xop == Op_MemBarAcquire)
2260         return false;
2261       // For other kinds of barriers, check by pretending we
2262       // are them, and seeing if we can be removed.
2263       else
2264         return post_store_load_barrier((const MemBarNode*)x);
2265     }
2266 
2267     // Delicate code to detect case of an upcoming fastlock block
2268     if( x->is_If() && x->req() > 1 &&
2269         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2270       Node *iff = x;
2271       Node *bol = iff->in(1);
2272       // The iff might be some random subclass of If or bol might be Con-Top
2273       if (!bol->is_Bool())  return false;
2274       assert( bol->req() > 1, "" );
2275       return (bol->in(1)->Opcode() == Op_FastUnlock);
2276     }
2277     // probably not necessary to check for these
2278     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2279       return false;
2280   }
2281   return false;
2282 }
2283 
2284 //=============================================================================
2285 //---------------------------State---------------------------------------------
2286 State::State(void) {
2287 #ifdef ASSERT
2288   _id = 0;
2289   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2290   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2291   //memset(_cost, -1, sizeof(_cost));
2292   //memset(_rule, -1, sizeof(_rule));
2293 #endif
2294   memset(_valid, 0, sizeof(_valid));
2295 }
2296 
2297 #ifdef ASSERT
2298 State::~State() {
2299   _id = 99;
2300   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2301   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2302   memset(_cost, -3, sizeof(_cost));
2303   memset(_rule, -3, sizeof(_rule));
2304 }
2305 #endif
2306 
2307 #ifndef PRODUCT
2308 //---------------------------dump----------------------------------------------
2309 void State::dump() {
2310   tty->print("\n");
2311   dump(0);
2312 }
2313 
2314 void State::dump(int depth) {
2315   for( int j = 0; j < depth; j++ )
2316     tty->print("   ");
2317   tty->print("--N: ");
2318   _leaf->dump();
2319   uint i;
2320   for( i = 0; i < _LAST_MACH_OPER; i++ )
2321     // Check for valid entry
2322     if( valid(i) ) {
2323       for( int j = 0; j < depth; j++ )
2324         tty->print("   ");
2325         assert(_cost[i] != max_juint, "cost must be a valid value");
2326         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2327         tty->print_cr("%s  %d  %s",
2328                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2329       }
2330   tty->print_cr("");
2331 
2332   for( i=0; i<2; i++ )
2333     if( _kids[i] )
2334       _kids[i]->dump(depth+1);
2335 }
2336 #endif