1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_stubGenerator_x86_64.cpp.incl"
  27 
  28 // Declaration and definition of StubGenerator (no .hpp file).
  29 // For a more detailed description of the stub routine structure
  30 // see the comment in stubRoutines.hpp
  31 
  32 #define __ _masm->
  33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  34 #define a__ ((Assembler*)_masm)->
  35 
  36 #ifdef PRODUCT
  37 #define BLOCK_COMMENT(str) /* nothing */
  38 #else
  39 #define BLOCK_COMMENT(str) __ block_comment(str)
  40 #endif
  41 
  42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  44 
  45 // Stub Code definitions
  46 
  47 static address handle_unsafe_access() {
  48   JavaThread* thread = JavaThread::current();
  49   address pc = thread->saved_exception_pc();
  50   // pc is the instruction which we must emulate
  51   // doing a no-op is fine:  return garbage from the load
  52   // therefore, compute npc
  53   address npc = Assembler::locate_next_instruction(pc);
  54 
  55   // request an async exception
  56   thread->set_pending_unsafe_access_error();
  57 
  58   // return address of next instruction to execute
  59   return npc;
  60 }
  61 
  62 class StubGenerator: public StubCodeGenerator {
  63  private:
  64 
  65 #ifdef PRODUCT
  66 #define inc_counter_np(counter) (0)
  67 #else
  68   void inc_counter_np_(int& counter) {
  69     __ incrementl(ExternalAddress((address)&counter));
  70   }
  71 #define inc_counter_np(counter) \
  72   BLOCK_COMMENT("inc_counter " #counter); \
  73   inc_counter_np_(counter);
  74 #endif
  75 
  76   // Call stubs are used to call Java from C
  77   //
  78   // Linux Arguments:
  79   //    c_rarg0:   call wrapper address                   address
  80   //    c_rarg1:   result                                 address
  81   //    c_rarg2:   result type                            BasicType
  82   //    c_rarg3:   method                                 methodOop
  83   //    c_rarg4:   (interpreter) entry point              address
  84   //    c_rarg5:   parameters                             intptr_t*
  85   //    16(rbp): parameter size (in words)              int
  86   //    24(rbp): thread                                 Thread*
  87   //
  88   //     [ return_from_Java     ] <--- rsp
  89   //     [ argument word n      ]
  90   //      ...
  91   // -12 [ argument word 1      ]
  92   // -11 [ saved r15            ] <--- rsp_after_call
  93   // -10 [ saved r14            ]
  94   //  -9 [ saved r13            ]
  95   //  -8 [ saved r12            ]
  96   //  -7 [ saved rbx            ]
  97   //  -6 [ call wrapper         ]
  98   //  -5 [ result               ]
  99   //  -4 [ result type          ]
 100   //  -3 [ method               ]
 101   //  -2 [ entry point          ]
 102   //  -1 [ parameters           ]
 103   //   0 [ saved rbp            ] <--- rbp
 104   //   1 [ return address       ]
 105   //   2 [ parameter size       ]
 106   //   3 [ thread               ]
 107   //
 108   // Windows Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    48(rbp): (interpreter) entry point              address
 114   //    56(rbp): parameters                             intptr_t*
 115   //    64(rbp): parameter size (in words)              int
 116   //    72(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   //  -8 [ argument word 1      ]
 122   //  -7 [ saved r15            ] <--- rsp_after_call
 123   //  -6 [ saved r14            ]
 124   //  -5 [ saved r13            ]
 125   //  -4 [ saved r12            ]
 126   //  -3 [ saved rdi            ]
 127   //  -2 [ saved rsi            ]
 128   //  -1 [ saved rbx            ]
 129   //   0 [ saved rbp            ] <--- rbp
 130   //   1 [ return address       ]
 131   //   2 [ call wrapper         ]
 132   //   3 [ result               ]
 133   //   4 [ result type          ]
 134   //   5 [ method               ]
 135   //   6 [ entry point          ]
 136   //   7 [ parameters           ]
 137   //   8 [ parameter size       ]
 138   //   9 [ thread               ]
 139   //
 140   //    Windows reserves the callers stack space for arguments 1-4.
 141   //    We spill c_rarg0-c_rarg3 to this space.
 142 
 143   // Call stub stack layout word offsets from rbp
 144   enum call_stub_layout {
 145 #ifdef _WIN64
 146     rsp_after_call_off = -7,
 147     r15_off            = rsp_after_call_off,
 148     r14_off            = -6,
 149     r13_off            = -5,
 150     r12_off            = -4,
 151     rdi_off            = -3,
 152     rsi_off            = -2,
 153     rbx_off            = -1,
 154     rbp_off            =  0,
 155     retaddr_off        =  1,
 156     call_wrapper_off   =  2,
 157     result_off         =  3,
 158     result_type_off    =  4,
 159     method_off         =  5,
 160     entry_point_off    =  6,
 161     parameters_off     =  7,
 162     parameter_size_off =  8,
 163     thread_off         =  9
 164 #else
 165     rsp_after_call_off = -12,
 166     mxcsr_off          = rsp_after_call_off,
 167     r15_off            = -11,
 168     r14_off            = -10,
 169     r13_off            = -9,
 170     r12_off            = -8,
 171     rbx_off            = -7,
 172     call_wrapper_off   = -6,
 173     result_off         = -5,
 174     result_type_off    = -4,
 175     method_off         = -3,
 176     entry_point_off    = -2,
 177     parameters_off     = -1,
 178     rbp_off            =  0,
 179     retaddr_off        =  1,
 180     parameter_size_off =  2,
 181     thread_off         =  3
 182 #endif
 183   };
 184 
 185   address generate_call_stub(address& return_address) {
 186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 188            "adjust this code");
 189     StubCodeMark mark(this, "StubRoutines", "call_stub");
 190     address start = __ pc();
 191 
 192     // same as in generate_catch_exception()!
 193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 194 
 195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 196     const Address result        (rbp, result_off         * wordSize);
 197     const Address result_type   (rbp, result_type_off    * wordSize);
 198     const Address method        (rbp, method_off         * wordSize);
 199     const Address entry_point   (rbp, entry_point_off    * wordSize);
 200     const Address parameters    (rbp, parameters_off     * wordSize);
 201     const Address parameter_size(rbp, parameter_size_off * wordSize);
 202 
 203     // same as in generate_catch_exception()!
 204     const Address thread        (rbp, thread_off         * wordSize);
 205 
 206     const Address r15_save(rbp, r15_off * wordSize);
 207     const Address r14_save(rbp, r14_off * wordSize);
 208     const Address r13_save(rbp, r13_off * wordSize);
 209     const Address r12_save(rbp, r12_off * wordSize);
 210     const Address rbx_save(rbp, rbx_off * wordSize);
 211 
 212     // stub code
 213     __ enter();
 214     __ subptr(rsp, -rsp_after_call_off * wordSize);
 215 
 216     // save register parameters
 217 #ifndef _WIN64
 218     __ movptr(parameters,   c_rarg5); // parameters
 219     __ movptr(entry_point,  c_rarg4); // entry_point
 220 #endif
 221 
 222     __ movptr(method,       c_rarg3); // method
 223     __ movl(result_type,  c_rarg2);   // result type
 224     __ movptr(result,       c_rarg1); // result
 225     __ movptr(call_wrapper, c_rarg0); // call wrapper
 226 
 227     // save regs belonging to calling function
 228     __ movptr(rbx_save, rbx);
 229     __ movptr(r12_save, r12);
 230     __ movptr(r13_save, r13);
 231     __ movptr(r14_save, r14);
 232     __ movptr(r15_save, r15);
 233 
 234 #ifdef _WIN64
 235     const Address rdi_save(rbp, rdi_off * wordSize);
 236     const Address rsi_save(rbp, rsi_off * wordSize);
 237 
 238     __ movptr(rsi_save, rsi);
 239     __ movptr(rdi_save, rdi);
 240 #else
 241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 242     {
 243       Label skip_ldmx;
 244       __ stmxcsr(mxcsr_save);
 245       __ movl(rax, mxcsr_save);
 246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 248       __ cmp32(rax, mxcsr_std);
 249       __ jcc(Assembler::equal, skip_ldmx);
 250       __ ldmxcsr(mxcsr_std);
 251       __ bind(skip_ldmx);
 252     }
 253 #endif
 254 
 255     // Load up thread register
 256     __ movptr(r15_thread, thread);
 257     __ reinit_heapbase();
 258 
 259 #ifdef ASSERT
 260     // make sure we have no pending exceptions
 261     {
 262       Label L;
 263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 264       __ jcc(Assembler::equal, L);
 265       __ stop("StubRoutines::call_stub: entered with pending exception");
 266       __ bind(L);
 267     }
 268 #endif
 269 
 270     // pass parameters if any
 271     BLOCK_COMMENT("pass parameters if any");
 272     Label parameters_done;
 273     __ movl(c_rarg3, parameter_size);
 274     __ testl(c_rarg3, c_rarg3);
 275     __ jcc(Assembler::zero, parameters_done);
 276 
 277     Label loop;
 278     __ movptr(c_rarg2, parameters);       // parameter pointer
 279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 280     __ BIND(loop);
 281     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 282     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 283     __ decrementl(c_rarg1);             // decrement counter
 284     __ push(rax);                       // pass parameter
 285     __ jcc(Assembler::notZero, loop);
 286 
 287     // call Java function
 288     __ BIND(parameters_done);
 289     __ movptr(rbx, method);             // get methodOop
 290     __ movptr(c_rarg1, entry_point);    // get entry_point
 291     __ mov(r13, rsp);                   // set sender sp
 292     BLOCK_COMMENT("call Java function");
 293     __ call(c_rarg1);
 294 
 295     BLOCK_COMMENT("call_stub_return_address:");
 296     return_address = __ pc();
 297 
 298     // store result depending on type (everything that is not
 299     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 300     __ movptr(c_rarg0, result);
 301     Label is_long, is_float, is_double, exit;
 302     __ movl(c_rarg1, result_type);
 303     __ cmpl(c_rarg1, T_OBJECT);
 304     __ jcc(Assembler::equal, is_long);
 305     __ cmpl(c_rarg1, T_LONG);
 306     __ jcc(Assembler::equal, is_long);
 307     __ cmpl(c_rarg1, T_FLOAT);
 308     __ jcc(Assembler::equal, is_float);
 309     __ cmpl(c_rarg1, T_DOUBLE);
 310     __ jcc(Assembler::equal, is_double);
 311 
 312     // handle T_INT case
 313     __ movl(Address(c_rarg0, 0), rax);
 314 
 315     __ BIND(exit);
 316 
 317     // pop parameters
 318     __ lea(rsp, rsp_after_call);
 319 
 320 #ifdef ASSERT
 321     // verify that threads correspond
 322     {
 323       Label L, S;
 324       __ cmpptr(r15_thread, thread);
 325       __ jcc(Assembler::notEqual, S);
 326       __ get_thread(rbx);
 327       __ cmpptr(r15_thread, rbx);
 328       __ jcc(Assembler::equal, L);
 329       __ bind(S);
 330       __ jcc(Assembler::equal, L);
 331       __ stop("StubRoutines::call_stub: threads must correspond");
 332       __ bind(L);
 333     }
 334 #endif
 335 
 336     // restore regs belonging to calling function
 337     __ movptr(r15, r15_save);
 338     __ movptr(r14, r14_save);
 339     __ movptr(r13, r13_save);
 340     __ movptr(r12, r12_save);
 341     __ movptr(rbx, rbx_save);
 342 
 343 #ifdef _WIN64
 344     __ movptr(rdi, rdi_save);
 345     __ movptr(rsi, rsi_save);
 346 #else
 347     __ ldmxcsr(mxcsr_save);
 348 #endif
 349 
 350     // restore rsp
 351     __ addptr(rsp, -rsp_after_call_off * wordSize);
 352 
 353     // return
 354     __ pop(rbp);
 355     __ ret(0);
 356 
 357     // handle return types different from T_INT
 358     __ BIND(is_long);
 359     __ movq(Address(c_rarg0, 0), rax);
 360     __ jmp(exit);
 361 
 362     __ BIND(is_float);
 363     __ movflt(Address(c_rarg0, 0), xmm0);
 364     __ jmp(exit);
 365 
 366     __ BIND(is_double);
 367     __ movdbl(Address(c_rarg0, 0), xmm0);
 368     __ jmp(exit);
 369 
 370     return start;
 371   }
 372 
 373   // Return point for a Java call if there's an exception thrown in
 374   // Java code.  The exception is caught and transformed into a
 375   // pending exception stored in JavaThread that can be tested from
 376   // within the VM.
 377   //
 378   // Note: Usually the parameters are removed by the callee. In case
 379   // of an exception crossing an activation frame boundary, that is
 380   // not the case if the callee is compiled code => need to setup the
 381   // rsp.
 382   //
 383   // rax: exception oop
 384 
 385   address generate_catch_exception() {
 386     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 387     address start = __ pc();
 388 
 389     // same as in generate_call_stub():
 390     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 391     const Address thread        (rbp, thread_off         * wordSize);
 392 
 393 #ifdef ASSERT
 394     // verify that threads correspond
 395     {
 396       Label L, S;
 397       __ cmpptr(r15_thread, thread);
 398       __ jcc(Assembler::notEqual, S);
 399       __ get_thread(rbx);
 400       __ cmpptr(r15_thread, rbx);
 401       __ jcc(Assembler::equal, L);
 402       __ bind(S);
 403       __ stop("StubRoutines::catch_exception: threads must correspond");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // set pending exception
 409     __ verify_oop(rax);
 410 
 411     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 412     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 413     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 414     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 415 
 416     // complete return to VM
 417     assert(StubRoutines::_call_stub_return_address != NULL,
 418            "_call_stub_return_address must have been generated before");
 419     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 420 
 421     return start;
 422   }
 423 
 424   // Continuation point for runtime calls returning with a pending
 425   // exception.  The pending exception check happened in the runtime
 426   // or native call stub.  The pending exception in Thread is
 427   // converted into a Java-level exception.
 428   //
 429   // Contract with Java-level exception handlers:
 430   // rax: exception
 431   // rdx: throwing pc
 432   //
 433   // NOTE: At entry of this stub, exception-pc must be on stack !!
 434 
 435   address generate_forward_exception() {
 436     StubCodeMark mark(this, "StubRoutines", "forward exception");
 437     address start = __ pc();
 438 
 439     // Upon entry, the sp points to the return address returning into
 440     // Java (interpreted or compiled) code; i.e., the return address
 441     // becomes the throwing pc.
 442     //
 443     // Arguments pushed before the runtime call are still on the stack
 444     // but the exception handler will reset the stack pointer ->
 445     // ignore them.  A potential result in registers can be ignored as
 446     // well.
 447 
 448 #ifdef ASSERT
 449     // make sure this code is only executed if there is a pending exception
 450     {
 451       Label L;
 452       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 453       __ jcc(Assembler::notEqual, L);
 454       __ stop("StubRoutines::forward exception: no pending exception (1)");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // compute exception handler into rbx
 460     __ movptr(c_rarg0, Address(rsp, 0));
 461     BLOCK_COMMENT("call exception_handler_for_return_address");
 462     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 463                          SharedRuntime::exception_handler_for_return_address),
 464                     r15_thread, c_rarg0);
 465     __ mov(rbx, rax);
 466 
 467     // setup rax & rdx, remove return address & clear pending exception
 468     __ pop(rdx);
 469     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 470     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 471 
 472 #ifdef ASSERT
 473     // make sure exception is set
 474     {
 475       Label L;
 476       __ testptr(rax, rax);
 477       __ jcc(Assembler::notEqual, L);
 478       __ stop("StubRoutines::forward exception: no pending exception (2)");
 479       __ bind(L);
 480     }
 481 #endif
 482 
 483     // continue at exception handler (return address removed)
 484     // rax: exception
 485     // rbx: exception handler
 486     // rdx: throwing pc
 487     __ verify_oop(rax);
 488     __ jmp(rbx);
 489 
 490     return start;
 491   }
 492 
 493   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 494   //
 495   // Arguments :
 496   //    c_rarg0: exchange_value
 497   //    c_rarg0: dest
 498   //
 499   // Result:
 500   //    *dest <- ex, return (orig *dest)
 501   address generate_atomic_xchg() {
 502     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 503     address start = __ pc();
 504 
 505     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 506     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 507     __ ret(0);
 508 
 509     return start;
 510   }
 511 
 512   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 513   //
 514   // Arguments :
 515   //    c_rarg0: exchange_value
 516   //    c_rarg1: dest
 517   //
 518   // Result:
 519   //    *dest <- ex, return (orig *dest)
 520   address generate_atomic_xchg_ptr() {
 521     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 522     address start = __ pc();
 523 
 524     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 525     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 526     __ ret(0);
 527 
 528     return start;
 529   }
 530 
 531   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 532   //                                         jint compare_value)
 533   //
 534   // Arguments :
 535   //    c_rarg0: exchange_value
 536   //    c_rarg1: dest
 537   //    c_rarg2: compare_value
 538   //
 539   // Result:
 540   //    if ( compare_value == *dest ) {
 541   //       *dest = exchange_value
 542   //       return compare_value;
 543   //    else
 544   //       return *dest;
 545   address generate_atomic_cmpxchg() {
 546     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 547     address start = __ pc();
 548 
 549     __ movl(rax, c_rarg2);
 550    if ( os::is_MP() ) __ lock();
 551     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 552     __ ret(0);
 553 
 554     return start;
 555   }
 556 
 557   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 558   //                                             volatile jlong* dest,
 559   //                                             jlong compare_value)
 560   // Arguments :
 561   //    c_rarg0: exchange_value
 562   //    c_rarg1: dest
 563   //    c_rarg2: compare_value
 564   //
 565   // Result:
 566   //    if ( compare_value == *dest ) {
 567   //       *dest = exchange_value
 568   //       return compare_value;
 569   //    else
 570   //       return *dest;
 571   address generate_atomic_cmpxchg_long() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 573     address start = __ pc();
 574 
 575     __ movq(rax, c_rarg2);
 576    if ( os::is_MP() ) __ lock();
 577     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 578     __ ret(0);
 579 
 580     return start;
 581   }
 582 
 583   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 584   //
 585   // Arguments :
 586   //    c_rarg0: add_value
 587   //    c_rarg1: dest
 588   //
 589   // Result:
 590   //    *dest += add_value
 591   //    return *dest;
 592   address generate_atomic_add() {
 593     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 594     address start = __ pc();
 595 
 596     __ movl(rax, c_rarg0);
 597    if ( os::is_MP() ) __ lock();
 598     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 599     __ addl(rax, c_rarg0);
 600     __ ret(0);
 601 
 602     return start;
 603   }
 604 
 605   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 606   //
 607   // Arguments :
 608   //    c_rarg0: add_value
 609   //    c_rarg1: dest
 610   //
 611   // Result:
 612   //    *dest += add_value
 613   //    return *dest;
 614   address generate_atomic_add_ptr() {
 615     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 616     address start = __ pc();
 617 
 618     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 619    if ( os::is_MP() ) __ lock();
 620     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 621     __ addptr(rax, c_rarg0);
 622     __ ret(0);
 623 
 624     return start;
 625   }
 626 
 627   // Support for intptr_t OrderAccess::fence()
 628   //
 629   // Arguments :
 630   //
 631   // Result:
 632   address generate_orderaccess_fence() {
 633     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 634     address start = __ pc();
 635     __ membar(Assembler::StoreLoad);
 636     __ ret(0);
 637 
 638     return start;
 639   }
 640 
 641   // Support for intptr_t get_previous_fp()
 642   //
 643   // This routine is used to find the previous frame pointer for the
 644   // caller (current_frame_guess). This is used as part of debugging
 645   // ps() is seemingly lost trying to find frames.
 646   // This code assumes that caller current_frame_guess) has a frame.
 647   address generate_get_previous_fp() {
 648     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 649     const Address old_fp(rbp, 0);
 650     const Address older_fp(rax, 0);
 651     address start = __ pc();
 652 
 653     __ enter();
 654     __ movptr(rax, old_fp); // callers fp
 655     __ movptr(rax, older_fp); // the frame for ps()
 656     __ pop(rbp);
 657     __ ret(0);
 658 
 659     return start;
 660   }
 661 
 662   //----------------------------------------------------------------------------------------------------
 663   // Support for void verify_mxcsr()
 664   //
 665   // This routine is used with -Xcheck:jni to verify that native
 666   // JNI code does not return to Java code without restoring the
 667   // MXCSR register to our expected state.
 668 
 669   address generate_verify_mxcsr() {
 670     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 671     address start = __ pc();
 672 
 673     const Address mxcsr_save(rsp, 0);
 674 
 675     if (CheckJNICalls) {
 676       Label ok_ret;
 677       __ push(rax);
 678       __ subptr(rsp, wordSize);      // allocate a temp location
 679       __ stmxcsr(mxcsr_save);
 680       __ movl(rax, mxcsr_save);
 681       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 682       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 683       __ jcc(Assembler::equal, ok_ret);
 684 
 685       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 686 
 687       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 688 
 689       __ bind(ok_ret);
 690       __ addptr(rsp, wordSize);
 691       __ pop(rax);
 692     }
 693 
 694     __ ret(0);
 695 
 696     return start;
 697   }
 698 
 699   address generate_f2i_fixup() {
 700     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 701     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 702 
 703     address start = __ pc();
 704 
 705     Label L;
 706 
 707     __ push(rax);
 708     __ push(c_rarg3);
 709     __ push(c_rarg2);
 710     __ push(c_rarg1);
 711 
 712     __ movl(rax, 0x7f800000);
 713     __ xorl(c_rarg3, c_rarg3);
 714     __ movl(c_rarg2, inout);
 715     __ movl(c_rarg1, c_rarg2);
 716     __ andl(c_rarg1, 0x7fffffff);
 717     __ cmpl(rax, c_rarg1); // NaN? -> 0
 718     __ jcc(Assembler::negative, L);
 719     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 720     __ movl(c_rarg3, 0x80000000);
 721     __ movl(rax, 0x7fffffff);
 722     __ cmovl(Assembler::positive, c_rarg3, rax);
 723 
 724     __ bind(L);
 725     __ movptr(inout, c_rarg3);
 726 
 727     __ pop(c_rarg1);
 728     __ pop(c_rarg2);
 729     __ pop(c_rarg3);
 730     __ pop(rax);
 731 
 732     __ ret(0);
 733 
 734     return start;
 735   }
 736 
 737   address generate_f2l_fixup() {
 738     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 739     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 740     address start = __ pc();
 741 
 742     Label L;
 743 
 744     __ push(rax);
 745     __ push(c_rarg3);
 746     __ push(c_rarg2);
 747     __ push(c_rarg1);
 748 
 749     __ movl(rax, 0x7f800000);
 750     __ xorl(c_rarg3, c_rarg3);
 751     __ movl(c_rarg2, inout);
 752     __ movl(c_rarg1, c_rarg2);
 753     __ andl(c_rarg1, 0x7fffffff);
 754     __ cmpl(rax, c_rarg1); // NaN? -> 0
 755     __ jcc(Assembler::negative, L);
 756     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 757     __ mov64(c_rarg3, 0x8000000000000000);
 758     __ mov64(rax, 0x7fffffffffffffff);
 759     __ cmov(Assembler::positive, c_rarg3, rax);
 760 
 761     __ bind(L);
 762     __ movptr(inout, c_rarg3);
 763 
 764     __ pop(c_rarg1);
 765     __ pop(c_rarg2);
 766     __ pop(c_rarg3);
 767     __ pop(rax);
 768 
 769     __ ret(0);
 770 
 771     return start;
 772   }
 773 
 774   address generate_d2i_fixup() {
 775     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 776     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 777 
 778     address start = __ pc();
 779 
 780     Label L;
 781 
 782     __ push(rax);
 783     __ push(c_rarg3);
 784     __ push(c_rarg2);
 785     __ push(c_rarg1);
 786     __ push(c_rarg0);
 787 
 788     __ movl(rax, 0x7ff00000);
 789     __ movq(c_rarg2, inout);
 790     __ movl(c_rarg3, c_rarg2);
 791     __ mov(c_rarg1, c_rarg2);
 792     __ mov(c_rarg0, c_rarg2);
 793     __ negl(c_rarg3);
 794     __ shrptr(c_rarg1, 0x20);
 795     __ orl(c_rarg3, c_rarg2);
 796     __ andl(c_rarg1, 0x7fffffff);
 797     __ xorl(c_rarg2, c_rarg2);
 798     __ shrl(c_rarg3, 0x1f);
 799     __ orl(c_rarg1, c_rarg3);
 800     __ cmpl(rax, c_rarg1);
 801     __ jcc(Assembler::negative, L); // NaN -> 0
 802     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 803     __ movl(c_rarg2, 0x80000000);
 804     __ movl(rax, 0x7fffffff);
 805     __ cmov(Assembler::positive, c_rarg2, rax);
 806 
 807     __ bind(L);
 808     __ movptr(inout, c_rarg2);
 809 
 810     __ pop(c_rarg0);
 811     __ pop(c_rarg1);
 812     __ pop(c_rarg2);
 813     __ pop(c_rarg3);
 814     __ pop(rax);
 815 
 816     __ ret(0);
 817 
 818     return start;
 819   }
 820 
 821   address generate_d2l_fixup() {
 822     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 824 
 825     address start = __ pc();
 826 
 827     Label L;
 828 
 829     __ push(rax);
 830     __ push(c_rarg3);
 831     __ push(c_rarg2);
 832     __ push(c_rarg1);
 833     __ push(c_rarg0);
 834 
 835     __ movl(rax, 0x7ff00000);
 836     __ movq(c_rarg2, inout);
 837     __ movl(c_rarg3, c_rarg2);
 838     __ mov(c_rarg1, c_rarg2);
 839     __ mov(c_rarg0, c_rarg2);
 840     __ negl(c_rarg3);
 841     __ shrptr(c_rarg1, 0x20);
 842     __ orl(c_rarg3, c_rarg2);
 843     __ andl(c_rarg1, 0x7fffffff);
 844     __ xorl(c_rarg2, c_rarg2);
 845     __ shrl(c_rarg3, 0x1f);
 846     __ orl(c_rarg1, c_rarg3);
 847     __ cmpl(rax, c_rarg1);
 848     __ jcc(Assembler::negative, L); // NaN -> 0
 849     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 850     __ mov64(c_rarg2, 0x8000000000000000);
 851     __ mov64(rax, 0x7fffffffffffffff);
 852     __ cmovq(Assembler::positive, c_rarg2, rax);
 853 
 854     __ bind(L);
 855     __ movq(inout, c_rarg2);
 856 
 857     __ pop(c_rarg0);
 858     __ pop(c_rarg1);
 859     __ pop(c_rarg2);
 860     __ pop(c_rarg3);
 861     __ pop(rax);
 862 
 863     __ ret(0);
 864 
 865     return start;
 866   }
 867 
 868   address generate_fp_mask(const char *stub_name, int64_t mask) {
 869     __ align(CodeEntryAlignment);
 870     StubCodeMark mark(this, "StubRoutines", stub_name);
 871     address start = __ pc();
 872 
 873     __ emit_data64( mask, relocInfo::none );
 874     __ emit_data64( mask, relocInfo::none );
 875 
 876     return start;
 877   }
 878 
 879   // The following routine generates a subroutine to throw an
 880   // asynchronous UnknownError when an unsafe access gets a fault that
 881   // could not be reasonably prevented by the programmer.  (Example:
 882   // SIGBUS/OBJERR.)
 883   address generate_handler_for_unsafe_access() {
 884     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 885     address start = __ pc();
 886 
 887     __ push(0);                       // hole for return address-to-be
 888     __ pusha();                       // push registers
 889     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 890 
 891     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 892     BLOCK_COMMENT("call handle_unsafe_access");
 893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 894     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 895 
 896     __ movptr(next_pc, rax);          // stuff next address
 897     __ popa();
 898     __ ret(0);                        // jump to next address
 899 
 900     return start;
 901   }
 902 
 903   // Non-destructive plausibility checks for oops
 904   //
 905   // Arguments:
 906   //    all args on stack!
 907   //
 908   // Stack after saving c_rarg3:
 909   //    [tos + 0]: saved c_rarg3
 910   //    [tos + 1]: saved c_rarg2
 911   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 912   //    [tos + 3]: saved flags
 913   //    [tos + 4]: return address
 914   //  * [tos + 5]: error message (char*)
 915   //  * [tos + 6]: object to verify (oop)
 916   //  * [tos + 7]: saved rax - saved by caller and bashed
 917   //  * = popped on exit
 918   address generate_verify_oop() {
 919     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 920     address start = __ pc();
 921 
 922     Label exit, error;
 923 
 924     __ pushf();
 925     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 926 
 927     __ push(r12);
 928 
 929     // save c_rarg2 and c_rarg3
 930     __ push(c_rarg2);
 931     __ push(c_rarg3);
 932 
 933     enum {
 934            // After previous pushes.
 935            oop_to_verify = 6 * wordSize,
 936            saved_rax     = 7 * wordSize,
 937 
 938            // Before the call to MacroAssembler::debug(), see below.
 939            return_addr   = 16 * wordSize,
 940            error_msg     = 17 * wordSize
 941     };
 942 
 943     // get object
 944     __ movptr(rax, Address(rsp, oop_to_verify));
 945 
 946     // make sure object is 'reasonable'
 947     __ testptr(rax, rax);
 948     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
 949     // Check if the oop is in the right area of memory
 950     __ movptr(c_rarg2, rax);
 951     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
 952     __ andptr(c_rarg2, c_rarg3);
 953     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
 954     __ cmpptr(c_rarg2, c_rarg3);
 955     __ jcc(Assembler::notZero, error);
 956 
 957     // set r12 to heapbase for load_klass()
 958     __ reinit_heapbase();
 959 
 960     // make sure klass is 'reasonable'
 961     __ load_klass(rax, rax);  // get klass
 962     __ testptr(rax, rax);
 963     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
 964     // Check if the klass is in the right area of memory
 965     __ mov(c_rarg2, rax);
 966     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 967     __ andptr(c_rarg2, c_rarg3);
 968     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 969     __ cmpptr(c_rarg2, c_rarg3);
 970     __ jcc(Assembler::notZero, error);
 971 
 972     // make sure klass' klass is 'reasonable'
 973     __ load_klass(rax, rax);
 974     __ testptr(rax, rax);
 975     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
 976     // Check if the klass' klass is in the right area of memory
 977     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 978     __ andptr(rax, c_rarg3);
 979     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 980     __ cmpptr(rax, c_rarg3);
 981     __ jcc(Assembler::notZero, error);
 982 
 983     // return if everything seems ok
 984     __ bind(exit);
 985     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 986     __ pop(c_rarg3);                             // restore c_rarg3
 987     __ pop(c_rarg2);                             // restore c_rarg2
 988     __ pop(r12);                                 // restore r12
 989     __ popf();                                   // restore flags
 990     __ ret(3 * wordSize);                        // pop caller saved stuff
 991 
 992     // handle errors
 993     __ bind(error);
 994     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 995     __ pop(c_rarg3);                             // get saved c_rarg3 back
 996     __ pop(c_rarg2);                             // get saved c_rarg2 back
 997     __ pop(r12);                                 // get saved r12 back
 998     __ popf();                                   // get saved flags off stack --
 999                                                  // will be ignored
1000 
1001     __ pusha();                                  // push registers
1002                                                  // (rip is already
1003                                                  // already pushed)
1004     // debug(char* msg, int64_t pc, int64_t regs[])
1005     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1006     // pushed all the registers, so now the stack looks like:
1007     //     [tos +  0] 16 saved registers
1008     //     [tos + 16] return address
1009     //   * [tos + 17] error message (char*)
1010     //   * [tos + 18] object to verify (oop)
1011     //   * [tos + 19] saved rax - saved by caller and bashed
1012     //   * = popped on exit
1013 
1014     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1015     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1016     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1017     __ mov(r12, rsp);                               // remember rsp
1018     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1019     __ andptr(rsp, -16);                            // align stack as required by ABI
1020     BLOCK_COMMENT("call MacroAssembler::debug");
1021     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1022     __ mov(rsp, r12);                               // restore rsp
1023     __ popa();                                      // pop registers (includes r12)
1024     __ ret(3 * wordSize);                           // pop caller saved stuff
1025 
1026     return start;
1027   }
1028 
1029   static address disjoint_byte_copy_entry;
1030   static address disjoint_short_copy_entry;
1031   static address disjoint_int_copy_entry;
1032   static address disjoint_long_copy_entry;
1033   static address disjoint_oop_copy_entry;
1034 
1035   static address byte_copy_entry;
1036   static address short_copy_entry;
1037   static address int_copy_entry;
1038   static address long_copy_entry;
1039   static address oop_copy_entry;
1040 
1041   static address checkcast_copy_entry;
1042 
1043   //
1044   // Verify that a register contains clean 32-bits positive value
1045   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1046   //
1047   //  Input:
1048   //    Rint  -  32-bits value
1049   //    Rtmp  -  scratch
1050   //
1051   void assert_clean_int(Register Rint, Register Rtmp) {
1052 #ifdef ASSERT
1053     Label L;
1054     assert_different_registers(Rtmp, Rint);
1055     __ movslq(Rtmp, Rint);
1056     __ cmpq(Rtmp, Rint);
1057     __ jcc(Assembler::equal, L);
1058     __ stop("high 32-bits of int value are not 0");
1059     __ bind(L);
1060 #endif
1061   }
1062 
1063   //  Generate overlap test for array copy stubs
1064   //
1065   //  Input:
1066   //     c_rarg0 - from
1067   //     c_rarg1 - to
1068   //     c_rarg2 - element count
1069   //
1070   //  Output:
1071   //     rax   - &from[element count - 1]
1072   //
1073   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1074     assert(no_overlap_target != NULL, "must be generated");
1075     array_overlap_test(no_overlap_target, NULL, sf);
1076   }
1077   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1078     array_overlap_test(NULL, &L_no_overlap, sf);
1079   }
1080   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1081     const Register from     = c_rarg0;
1082     const Register to       = c_rarg1;
1083     const Register count    = c_rarg2;
1084     const Register end_from = rax;
1085 
1086     __ cmpptr(to, from);
1087     __ lea(end_from, Address(from, count, sf, 0));
1088     if (NOLp == NULL) {
1089       ExternalAddress no_overlap(no_overlap_target);
1090       __ jump_cc(Assembler::belowEqual, no_overlap);
1091       __ cmpptr(to, end_from);
1092       __ jump_cc(Assembler::aboveEqual, no_overlap);
1093     } else {
1094       __ jcc(Assembler::belowEqual, (*NOLp));
1095       __ cmpptr(to, end_from);
1096       __ jcc(Assembler::aboveEqual, (*NOLp));
1097     }
1098   }
1099 
1100   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1101   //
1102   // Outputs:
1103   //    rdi - rcx
1104   //    rsi - rdx
1105   //    rdx - r8
1106   //    rcx - r9
1107   //
1108   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1109   // are non-volatile.  r9 and r10 should not be used by the caller.
1110   //
1111   void setup_arg_regs(int nargs = 3) {
1112     const Register saved_rdi = r9;
1113     const Register saved_rsi = r10;
1114     assert(nargs == 3 || nargs == 4, "else fix");
1115 #ifdef _WIN64
1116     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1117            "unexpected argument registers");
1118     if (nargs >= 4)
1119       __ mov(rax, r9);  // r9 is also saved_rdi
1120     __ movptr(saved_rdi, rdi);
1121     __ movptr(saved_rsi, rsi);
1122     __ mov(rdi, rcx); // c_rarg0
1123     __ mov(rsi, rdx); // c_rarg1
1124     __ mov(rdx, r8);  // c_rarg2
1125     if (nargs >= 4)
1126       __ mov(rcx, rax); // c_rarg3 (via rax)
1127 #else
1128     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1129            "unexpected argument registers");
1130 #endif
1131   }
1132 
1133   void restore_arg_regs() {
1134     const Register saved_rdi = r9;
1135     const Register saved_rsi = r10;
1136 #ifdef _WIN64
1137     __ movptr(rdi, saved_rdi);
1138     __ movptr(rsi, saved_rsi);
1139 #endif
1140   }
1141 
1142   // Generate code for an array write pre barrier
1143   //
1144   //     addr    -  starting address
1145   //     count    -  element count
1146   //
1147   //     Destroy no registers!
1148   //
1149   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1150     BarrierSet* bs = Universe::heap()->barrier_set();
1151     switch (bs->kind()) {
1152       case BarrierSet::G1SATBCT:
1153       case BarrierSet::G1SATBCTLogging:
1154         {
1155           __ pusha();                      // push registers
1156           if (count == c_rarg0) {
1157             if (addr == c_rarg1) {
1158               // exactly backwards!!
1159               __ xchgptr(c_rarg1, c_rarg0);
1160             } else {
1161               __ movptr(c_rarg1, count);
1162               __ movptr(c_rarg0, addr);
1163             }
1164 
1165           } else {
1166             __ movptr(c_rarg0, addr);
1167             __ movptr(c_rarg1, count);
1168           }
1169           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1170           __ popa();
1171         }
1172         break;
1173       case BarrierSet::CardTableModRef:
1174       case BarrierSet::CardTableExtension:
1175       case BarrierSet::ModRef:
1176         break;
1177       default:
1178         ShouldNotReachHere();
1179 
1180     }
1181   }
1182 
1183   //
1184   // Generate code for an array write post barrier
1185   //
1186   //  Input:
1187   //     start    - register containing starting address of destination array
1188   //     end      - register containing ending address of destination array
1189   //     scratch  - scratch register
1190   //
1191   //  The input registers are overwritten.
1192   //  The ending address is inclusive.
1193   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1194     assert_different_registers(start, end, scratch);
1195     BarrierSet* bs = Universe::heap()->barrier_set();
1196     switch (bs->kind()) {
1197       case BarrierSet::G1SATBCT:
1198       case BarrierSet::G1SATBCTLogging:
1199 
1200         {
1201           __ pusha();                      // push registers (overkill)
1202           // must compute element count unless barrier set interface is changed (other platforms supply count)
1203           assert_different_registers(start, end, scratch);
1204           __ lea(scratch, Address(end, BytesPerHeapOop));
1205           __ subptr(scratch, start);               // subtract start to get #bytes
1206           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1207           __ mov(c_rarg0, start);
1208           __ mov(c_rarg1, scratch);
1209           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1210           __ popa();
1211         }
1212         break;
1213       case BarrierSet::CardTableModRef:
1214       case BarrierSet::CardTableExtension:
1215         {
1216           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1217           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1218 
1219           Label L_loop;
1220 
1221            __ shrptr(start, CardTableModRefBS::card_shift);
1222            __ addptr(end, BytesPerHeapOop);
1223            __ shrptr(end, CardTableModRefBS::card_shift);
1224            __ subptr(end, start); // number of bytes to copy
1225 
1226           intptr_t disp = (intptr_t) ct->byte_map_base;
1227           if (__ is_simm32(disp)) {
1228             Address cardtable(noreg, noreg, Address::no_scale, disp);
1229             __ lea(scratch, cardtable);
1230           } else {
1231             ExternalAddress cardtable((address)disp);
1232             __ lea(scratch, cardtable);
1233           }
1234 
1235           const Register count = end; // 'end' register contains bytes count now
1236           __ addptr(start, scratch);
1237         __ BIND(L_loop);
1238           __ movb(Address(start, count, Address::times_1), 0);
1239           __ decrement(count);
1240           __ jcc(Assembler::greaterEqual, L_loop);
1241         }
1242         break;
1243       default:
1244         ShouldNotReachHere();
1245 
1246     }
1247   }
1248 
1249 
1250   // Copy big chunks forward
1251   //
1252   // Inputs:
1253   //   end_from     - source arrays end address
1254   //   end_to       - destination array end address
1255   //   qword_count  - 64-bits element count, negative
1256   //   to           - scratch
1257   //   L_copy_32_bytes - entry label
1258   //   L_copy_8_bytes  - exit  label
1259   //
1260   void copy_32_bytes_forward(Register end_from, Register end_to,
1261                              Register qword_count, Register to,
1262                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1263     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1264     Label L_loop;
1265     __ align(OptoLoopAlignment);
1266   __ BIND(L_loop);
1267     if(UseUnalignedLoadStores) {
1268       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1269       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1270       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1271       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1272 
1273     } else {
1274       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1275       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1276       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1277       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1278       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1279       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1280       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1281       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1282     }
1283   __ BIND(L_copy_32_bytes);
1284     __ addptr(qword_count, 4);
1285     __ jcc(Assembler::lessEqual, L_loop);
1286     __ subptr(qword_count, 4);
1287     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1288   }
1289 
1290 
1291   // Copy big chunks backward
1292   //
1293   // Inputs:
1294   //   from         - source arrays address
1295   //   dest         - destination array address
1296   //   qword_count  - 64-bits element count
1297   //   to           - scratch
1298   //   L_copy_32_bytes - entry label
1299   //   L_copy_8_bytes  - exit  label
1300   //
1301   void copy_32_bytes_backward(Register from, Register dest,
1302                               Register qword_count, Register to,
1303                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1304     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1305     Label L_loop;
1306     __ align(OptoLoopAlignment);
1307   __ BIND(L_loop);
1308     if(UseUnalignedLoadStores) {
1309       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1310       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1311       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1312       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1313 
1314     } else {
1315       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1316       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1317       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1318       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1319       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1320       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1321       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1322       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1323     }
1324   __ BIND(L_copy_32_bytes);
1325     __ subptr(qword_count, 4);
1326     __ jcc(Assembler::greaterEqual, L_loop);
1327     __ addptr(qword_count, 4);
1328     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1329   }
1330 
1331 
1332   // Arguments:
1333   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1334   //             ignored
1335   //   name    - stub name string
1336   //
1337   // Inputs:
1338   //   c_rarg0   - source array address
1339   //   c_rarg1   - destination array address
1340   //   c_rarg2   - element count, treated as ssize_t, can be zero
1341   //
1342   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1343   // we let the hardware handle it.  The one to eight bytes within words,
1344   // dwords or qwords that span cache line boundaries will still be loaded
1345   // and stored atomically.
1346   //
1347   // Side Effects:
1348   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1349   //   used by generate_conjoint_byte_copy().
1350   //
1351   address generate_disjoint_byte_copy(bool aligned, const char *name) {
1352     __ align(CodeEntryAlignment);
1353     StubCodeMark mark(this, "StubRoutines", name);
1354     address start = __ pc();
1355 
1356     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1357     Label L_copy_byte, L_exit;
1358     const Register from        = rdi;  // source array address
1359     const Register to          = rsi;  // destination array address
1360     const Register count       = rdx;  // elements count
1361     const Register byte_count  = rcx;
1362     const Register qword_count = count;
1363     const Register end_from    = from; // source array end address
1364     const Register end_to      = to;   // destination array end address
1365     // End pointers are inclusive, and if count is not zero they point
1366     // to the last unit copied:  end_to[0] := end_from[0]
1367 
1368     __ enter(); // required for proper stackwalking of RuntimeStub frame
1369     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1370 
1371     disjoint_byte_copy_entry = __ pc();
1372     BLOCK_COMMENT("Entry:");
1373     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1374 
1375     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1376                       // r9 and r10 may be used to save non-volatile registers
1377 
1378     // 'from', 'to' and 'count' are now valid
1379     __ movptr(byte_count, count);
1380     __ shrptr(count, 3); // count => qword_count
1381 
1382     // Copy from low to high addresses.  Use 'to' as scratch.
1383     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1384     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1385     __ negptr(qword_count); // make the count negative
1386     __ jmp(L_copy_32_bytes);
1387 
1388     // Copy trailing qwords
1389   __ BIND(L_copy_8_bytes);
1390     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1391     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1392     __ increment(qword_count);
1393     __ jcc(Assembler::notZero, L_copy_8_bytes);
1394 
1395     // Check for and copy trailing dword
1396   __ BIND(L_copy_4_bytes);
1397     __ testl(byte_count, 4);
1398     __ jccb(Assembler::zero, L_copy_2_bytes);
1399     __ movl(rax, Address(end_from, 8));
1400     __ movl(Address(end_to, 8), rax);
1401 
1402     __ addptr(end_from, 4);
1403     __ addptr(end_to, 4);
1404 
1405     // Check for and copy trailing word
1406   __ BIND(L_copy_2_bytes);
1407     __ testl(byte_count, 2);
1408     __ jccb(Assembler::zero, L_copy_byte);
1409     __ movw(rax, Address(end_from, 8));
1410     __ movw(Address(end_to, 8), rax);
1411 
1412     __ addptr(end_from, 2);
1413     __ addptr(end_to, 2);
1414 
1415     // Check for and copy trailing byte
1416   __ BIND(L_copy_byte);
1417     __ testl(byte_count, 1);
1418     __ jccb(Assembler::zero, L_exit);
1419     __ movb(rax, Address(end_from, 8));
1420     __ movb(Address(end_to, 8), rax);
1421 
1422   __ BIND(L_exit);
1423     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1424     restore_arg_regs();
1425     __ xorptr(rax, rax); // return 0
1426     __ leave(); // required for proper stackwalking of RuntimeStub frame
1427     __ ret(0);
1428 
1429     // Copy in 32-bytes chunks
1430     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1431     __ jmp(L_copy_4_bytes);
1432 
1433     return start;
1434   }
1435 
1436   // Arguments:
1437   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1438   //             ignored
1439   //   name    - stub name string
1440   //
1441   // Inputs:
1442   //   c_rarg0   - source array address
1443   //   c_rarg1   - destination array address
1444   //   c_rarg2   - element count, treated as ssize_t, can be zero
1445   //
1446   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1447   // we let the hardware handle it.  The one to eight bytes within words,
1448   // dwords or qwords that span cache line boundaries will still be loaded
1449   // and stored atomically.
1450   //
1451   address generate_conjoint_byte_copy(bool aligned, const char *name) {
1452     __ align(CodeEntryAlignment);
1453     StubCodeMark mark(this, "StubRoutines", name);
1454     address start = __ pc();
1455 
1456     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1457     const Register from        = rdi;  // source array address
1458     const Register to          = rsi;  // destination array address
1459     const Register count       = rdx;  // elements count
1460     const Register byte_count  = rcx;
1461     const Register qword_count = count;
1462 
1463     __ enter(); // required for proper stackwalking of RuntimeStub frame
1464     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1465 
1466     byte_copy_entry = __ pc();
1467     BLOCK_COMMENT("Entry:");
1468     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1469 
1470     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1471     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1472                       // r9 and r10 may be used to save non-volatile registers
1473 
1474     // 'from', 'to' and 'count' are now valid
1475     __ movptr(byte_count, count);
1476     __ shrptr(count, 3);   // count => qword_count
1477 
1478     // Copy from high to low addresses.
1479 
1480     // Check for and copy trailing byte
1481     __ testl(byte_count, 1);
1482     __ jcc(Assembler::zero, L_copy_2_bytes);
1483     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1484     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1485     __ decrement(byte_count); // Adjust for possible trailing word
1486 
1487     // Check for and copy trailing word
1488   __ BIND(L_copy_2_bytes);
1489     __ testl(byte_count, 2);
1490     __ jcc(Assembler::zero, L_copy_4_bytes);
1491     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1492     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1493 
1494     // Check for and copy trailing dword
1495   __ BIND(L_copy_4_bytes);
1496     __ testl(byte_count, 4);
1497     __ jcc(Assembler::zero, L_copy_32_bytes);
1498     __ movl(rax, Address(from, qword_count, Address::times_8));
1499     __ movl(Address(to, qword_count, Address::times_8), rax);
1500     __ jmp(L_copy_32_bytes);
1501 
1502     // Copy trailing qwords
1503   __ BIND(L_copy_8_bytes);
1504     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1505     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1506     __ decrement(qword_count);
1507     __ jcc(Assembler::notZero, L_copy_8_bytes);
1508 
1509     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1510     restore_arg_regs();
1511     __ xorptr(rax, rax); // return 0
1512     __ leave(); // required for proper stackwalking of RuntimeStub frame
1513     __ ret(0);
1514 
1515     // Copy in 32-bytes chunks
1516     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1517 
1518     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1519     restore_arg_regs();
1520     __ xorptr(rax, rax); // return 0
1521     __ leave(); // required for proper stackwalking of RuntimeStub frame
1522     __ ret(0);
1523 
1524     return start;
1525   }
1526 
1527   // Arguments:
1528   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1529   //             ignored
1530   //   name    - stub name string
1531   //
1532   // Inputs:
1533   //   c_rarg0   - source array address
1534   //   c_rarg1   - destination array address
1535   //   c_rarg2   - element count, treated as ssize_t, can be zero
1536   //
1537   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1538   // let the hardware handle it.  The two or four words within dwords
1539   // or qwords that span cache line boundaries will still be loaded
1540   // and stored atomically.
1541   //
1542   // Side Effects:
1543   //   disjoint_short_copy_entry is set to the no-overlap entry point
1544   //   used by generate_conjoint_short_copy().
1545   //
1546   address generate_disjoint_short_copy(bool aligned, const char *name) {
1547     __ align(CodeEntryAlignment);
1548     StubCodeMark mark(this, "StubRoutines", name);
1549     address start = __ pc();
1550 
1551     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1552     const Register from        = rdi;  // source array address
1553     const Register to          = rsi;  // destination array address
1554     const Register count       = rdx;  // elements count
1555     const Register word_count  = rcx;
1556     const Register qword_count = count;
1557     const Register end_from    = from; // source array end address
1558     const Register end_to      = to;   // destination array end address
1559     // End pointers are inclusive, and if count is not zero they point
1560     // to the last unit copied:  end_to[0] := end_from[0]
1561 
1562     __ enter(); // required for proper stackwalking of RuntimeStub frame
1563     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1564 
1565     disjoint_short_copy_entry = __ pc();
1566     BLOCK_COMMENT("Entry:");
1567     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1568 
1569     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1570                       // r9 and r10 may be used to save non-volatile registers
1571 
1572     // 'from', 'to' and 'count' are now valid
1573     __ movptr(word_count, count);
1574     __ shrptr(count, 2); // count => qword_count
1575 
1576     // Copy from low to high addresses.  Use 'to' as scratch.
1577     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1578     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1579     __ negptr(qword_count);
1580     __ jmp(L_copy_32_bytes);
1581 
1582     // Copy trailing qwords
1583   __ BIND(L_copy_8_bytes);
1584     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1585     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1586     __ increment(qword_count);
1587     __ jcc(Assembler::notZero, L_copy_8_bytes);
1588 
1589     // Original 'dest' is trashed, so we can't use it as a
1590     // base register for a possible trailing word copy
1591 
1592     // Check for and copy trailing dword
1593   __ BIND(L_copy_4_bytes);
1594     __ testl(word_count, 2);
1595     __ jccb(Assembler::zero, L_copy_2_bytes);
1596     __ movl(rax, Address(end_from, 8));
1597     __ movl(Address(end_to, 8), rax);
1598 
1599     __ addptr(end_from, 4);
1600     __ addptr(end_to, 4);
1601 
1602     // Check for and copy trailing word
1603   __ BIND(L_copy_2_bytes);
1604     __ testl(word_count, 1);
1605     __ jccb(Assembler::zero, L_exit);
1606     __ movw(rax, Address(end_from, 8));
1607     __ movw(Address(end_to, 8), rax);
1608 
1609   __ BIND(L_exit);
1610     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1611     restore_arg_regs();
1612     __ xorptr(rax, rax); // return 0
1613     __ leave(); // required for proper stackwalking of RuntimeStub frame
1614     __ ret(0);
1615 
1616     // Copy in 32-bytes chunks
1617     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1618     __ jmp(L_copy_4_bytes);
1619 
1620     return start;
1621   }
1622 
1623   // Arguments:
1624   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1625   //             ignored
1626   //   name    - stub name string
1627   //
1628   // Inputs:
1629   //   c_rarg0   - source array address
1630   //   c_rarg1   - destination array address
1631   //   c_rarg2   - element count, treated as ssize_t, can be zero
1632   //
1633   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1634   // let the hardware handle it.  The two or four words within dwords
1635   // or qwords that span cache line boundaries will still be loaded
1636   // and stored atomically.
1637   //
1638   address generate_conjoint_short_copy(bool aligned, const char *name) {
1639     __ align(CodeEntryAlignment);
1640     StubCodeMark mark(this, "StubRoutines", name);
1641     address start = __ pc();
1642 
1643     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1644     const Register from        = rdi;  // source array address
1645     const Register to          = rsi;  // destination array address
1646     const Register count       = rdx;  // elements count
1647     const Register word_count  = rcx;
1648     const Register qword_count = count;
1649 
1650     __ enter(); // required for proper stackwalking of RuntimeStub frame
1651     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1652 
1653     short_copy_entry = __ pc();
1654     BLOCK_COMMENT("Entry:");
1655     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1656 
1657     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1658     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1659                       // r9 and r10 may be used to save non-volatile registers
1660 
1661     // 'from', 'to' and 'count' are now valid
1662     __ movptr(word_count, count);
1663     __ shrptr(count, 2); // count => qword_count
1664 
1665     // Copy from high to low addresses.  Use 'to' as scratch.
1666 
1667     // Check for and copy trailing word
1668     __ testl(word_count, 1);
1669     __ jccb(Assembler::zero, L_copy_4_bytes);
1670     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1671     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1672 
1673     // Check for and copy trailing dword
1674   __ BIND(L_copy_4_bytes);
1675     __ testl(word_count, 2);
1676     __ jcc(Assembler::zero, L_copy_32_bytes);
1677     __ movl(rax, Address(from, qword_count, Address::times_8));
1678     __ movl(Address(to, qword_count, Address::times_8), rax);
1679     __ jmp(L_copy_32_bytes);
1680 
1681     // Copy trailing qwords
1682   __ BIND(L_copy_8_bytes);
1683     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1684     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1685     __ decrement(qword_count);
1686     __ jcc(Assembler::notZero, L_copy_8_bytes);
1687 
1688     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1689     restore_arg_regs();
1690     __ xorptr(rax, rax); // return 0
1691     __ leave(); // required for proper stackwalking of RuntimeStub frame
1692     __ ret(0);
1693 
1694     // Copy in 32-bytes chunks
1695     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1696 
1697     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1698     restore_arg_regs();
1699     __ xorptr(rax, rax); // return 0
1700     __ leave(); // required for proper stackwalking of RuntimeStub frame
1701     __ ret(0);
1702 
1703     return start;
1704   }
1705 
1706   // Arguments:
1707   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1708   //             ignored
1709   //   is_oop  - true => oop array, so generate store check code
1710   //   name    - stub name string
1711   //
1712   // Inputs:
1713   //   c_rarg0   - source array address
1714   //   c_rarg1   - destination array address
1715   //   c_rarg2   - element count, treated as ssize_t, can be zero
1716   //
1717   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1718   // the hardware handle it.  The two dwords within qwords that span
1719   // cache line boundaries will still be loaded and stored atomicly.
1720   //
1721   // Side Effects:
1722   //   disjoint_int_copy_entry is set to the no-overlap entry point
1723   //   used by generate_conjoint_int_oop_copy().
1724   //
1725   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1726     __ align(CodeEntryAlignment);
1727     StubCodeMark mark(this, "StubRoutines", name);
1728     address start = __ pc();
1729 
1730     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1731     const Register from        = rdi;  // source array address
1732     const Register to          = rsi;  // destination array address
1733     const Register count       = rdx;  // elements count
1734     const Register dword_count = rcx;
1735     const Register qword_count = count;
1736     const Register end_from    = from; // source array end address
1737     const Register end_to      = to;   // destination array end address
1738     const Register saved_to    = r11;  // saved destination array address
1739     // End pointers are inclusive, and if count is not zero they point
1740     // to the last unit copied:  end_to[0] := end_from[0]
1741 
1742     __ enter(); // required for proper stackwalking of RuntimeStub frame
1743     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1744 
1745     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1746 
1747     if (is_oop) {
1748       // no registers are destroyed by this call
1749       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1750     }
1751 
1752     BLOCK_COMMENT("Entry:");
1753     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1754 
1755     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1756                       // r9 and r10 may be used to save non-volatile registers
1757 
1758     if (is_oop) {
1759       __ movq(saved_to, to);
1760     }
1761 
1762     // 'from', 'to' and 'count' are now valid
1763     __ movptr(dword_count, count);
1764     __ shrptr(count, 1); // count => qword_count
1765 
1766     // Copy from low to high addresses.  Use 'to' as scratch.
1767     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1768     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1769     __ negptr(qword_count);
1770     __ jmp(L_copy_32_bytes);
1771 
1772     // Copy trailing qwords
1773   __ BIND(L_copy_8_bytes);
1774     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1775     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1776     __ increment(qword_count);
1777     __ jcc(Assembler::notZero, L_copy_8_bytes);
1778 
1779     // Check for and copy trailing dword
1780   __ BIND(L_copy_4_bytes);
1781     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1782     __ jccb(Assembler::zero, L_exit);
1783     __ movl(rax, Address(end_from, 8));
1784     __ movl(Address(end_to, 8), rax);
1785 
1786   __ BIND(L_exit);
1787     if (is_oop) {
1788       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1789       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1790     }
1791     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1792     restore_arg_regs();
1793     __ xorptr(rax, rax); // return 0
1794     __ leave(); // required for proper stackwalking of RuntimeStub frame
1795     __ ret(0);
1796 
1797     // Copy 32-bytes chunks
1798     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1799     __ jmp(L_copy_4_bytes);
1800 
1801     return start;
1802   }
1803 
1804   // Arguments:
1805   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1806   //             ignored
1807   //   is_oop  - true => oop array, so generate store check code
1808   //   name    - stub name string
1809   //
1810   // Inputs:
1811   //   c_rarg0   - source array address
1812   //   c_rarg1   - destination array address
1813   //   c_rarg2   - element count, treated as ssize_t, can be zero
1814   //
1815   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1816   // the hardware handle it.  The two dwords within qwords that span
1817   // cache line boundaries will still be loaded and stored atomicly.
1818   //
1819   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1820     __ align(CodeEntryAlignment);
1821     StubCodeMark mark(this, "StubRoutines", name);
1822     address start = __ pc();
1823 
1824     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1825     const Register from        = rdi;  // source array address
1826     const Register to          = rsi;  // destination array address
1827     const Register count       = rdx;  // elements count
1828     const Register dword_count = rcx;
1829     const Register qword_count = count;
1830 
1831     __ enter(); // required for proper stackwalking of RuntimeStub frame
1832     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1833 
1834     if (is_oop) {
1835       // no registers are destroyed by this call
1836       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1837     }
1838 
1839     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1840     BLOCK_COMMENT("Entry:");
1841     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1842 
1843     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1844                        Address::times_4);
1845     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1846                       // r9 and r10 may be used to save non-volatile registers
1847 
1848     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1849     // 'from', 'to' and 'count' are now valid
1850     __ movptr(dword_count, count);
1851     __ shrptr(count, 1); // count => qword_count
1852 
1853     // Copy from high to low addresses.  Use 'to' as scratch.
1854 
1855     // Check for and copy trailing dword
1856     __ testl(dword_count, 1);
1857     __ jcc(Assembler::zero, L_copy_32_bytes);
1858     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1859     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1860     __ jmp(L_copy_32_bytes);
1861 
1862     // Copy trailing qwords
1863   __ BIND(L_copy_8_bytes);
1864     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1865     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1866     __ decrement(qword_count);
1867     __ jcc(Assembler::notZero, L_copy_8_bytes);
1868 
1869     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1870     if (is_oop) {
1871       __ jmp(L_exit);
1872     }
1873     restore_arg_regs();
1874     __ xorptr(rax, rax); // return 0
1875     __ leave(); // required for proper stackwalking of RuntimeStub frame
1876     __ ret(0);
1877 
1878     // Copy in 32-bytes chunks
1879     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1880 
1881    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1882    __ bind(L_exit);
1883      if (is_oop) {
1884        Register end_to = rdx;
1885        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1886        gen_write_ref_array_post_barrier(to, end_to, rax);
1887      }
1888     restore_arg_regs();
1889     __ xorptr(rax, rax); // return 0
1890     __ leave(); // required for proper stackwalking of RuntimeStub frame
1891     __ ret(0);
1892 
1893     return start;
1894   }
1895 
1896   // Arguments:
1897   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1898   //             ignored
1899   //   is_oop  - true => oop array, so generate store check code
1900   //   name    - stub name string
1901   //
1902   // Inputs:
1903   //   c_rarg0   - source array address
1904   //   c_rarg1   - destination array address
1905   //   c_rarg2   - element count, treated as ssize_t, can be zero
1906   //
1907  // Side Effects:
1908   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1909   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1910   //
1911   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1912     __ align(CodeEntryAlignment);
1913     StubCodeMark mark(this, "StubRoutines", name);
1914     address start = __ pc();
1915 
1916     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1917     const Register from        = rdi;  // source array address
1918     const Register to          = rsi;  // destination array address
1919     const Register qword_count = rdx;  // elements count
1920     const Register end_from    = from; // source array end address
1921     const Register end_to      = rcx;  // destination array end address
1922     const Register saved_to    = to;
1923     // End pointers are inclusive, and if count is not zero they point
1924     // to the last unit copied:  end_to[0] := end_from[0]
1925 
1926     __ enter(); // required for proper stackwalking of RuntimeStub frame
1927     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1928     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1929 
1930     if (is_oop) {
1931       disjoint_oop_copy_entry  = __ pc();
1932       // no registers are destroyed by this call
1933       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1934     } else {
1935       disjoint_long_copy_entry = __ pc();
1936     }
1937     BLOCK_COMMENT("Entry:");
1938     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1939 
1940     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1941                       // r9 and r10 may be used to save non-volatile registers
1942 
1943     // 'from', 'to' and 'qword_count' are now valid
1944 
1945     // Copy from low to high addresses.  Use 'to' as scratch.
1946     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1947     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1948     __ negptr(qword_count);
1949     __ jmp(L_copy_32_bytes);
1950 
1951     // Copy trailing qwords
1952   __ BIND(L_copy_8_bytes);
1953     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1954     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1955     __ increment(qword_count);
1956     __ jcc(Assembler::notZero, L_copy_8_bytes);
1957 
1958     if (is_oop) {
1959       __ jmp(L_exit);
1960     } else {
1961       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1962       restore_arg_regs();
1963       __ xorptr(rax, rax); // return 0
1964       __ leave(); // required for proper stackwalking of RuntimeStub frame
1965       __ ret(0);
1966     }
1967 
1968     // Copy 64-byte chunks
1969     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1970 
1971     if (is_oop) {
1972     __ BIND(L_exit);
1973       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1974       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1975     } else {
1976       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1977     }
1978     restore_arg_regs();
1979     __ xorptr(rax, rax); // return 0
1980     __ leave(); // required for proper stackwalking of RuntimeStub frame
1981     __ ret(0);
1982 
1983     return start;
1984   }
1985 
1986   // Arguments:
1987   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1988   //             ignored
1989   //   is_oop  - true => oop array, so generate store check code
1990   //   name    - stub name string
1991   //
1992   // Inputs:
1993   //   c_rarg0   - source array address
1994   //   c_rarg1   - destination array address
1995   //   c_rarg2   - element count, treated as ssize_t, can be zero
1996   //
1997   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1998     __ align(CodeEntryAlignment);
1999     StubCodeMark mark(this, "StubRoutines", name);
2000     address start = __ pc();
2001 
2002     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2003     const Register from        = rdi;  // source array address
2004     const Register to          = rsi;  // destination array address
2005     const Register qword_count = rdx;  // elements count
2006     const Register saved_count = rcx;
2007 
2008     __ enter(); // required for proper stackwalking of RuntimeStub frame
2009     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2010 
2011     address disjoint_copy_entry = NULL;
2012     if (is_oop) {
2013       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
2014       disjoint_copy_entry = disjoint_oop_copy_entry;
2015       oop_copy_entry  = __ pc();
2016       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
2017     } else {
2018       disjoint_copy_entry = disjoint_long_copy_entry;
2019       long_copy_entry = __ pc();
2020       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
2021     }
2022     BLOCK_COMMENT("Entry:");
2023     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2024 
2025     array_overlap_test(disjoint_copy_entry, Address::times_8);
2026     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2027                       // r9 and r10 may be used to save non-volatile registers
2028 
2029     // 'from', 'to' and 'qword_count' are now valid
2030 
2031     if (is_oop) {
2032       // Save to and count for store barrier
2033       __ movptr(saved_count, qword_count);
2034       // No registers are destroyed by this call
2035       gen_write_ref_array_pre_barrier(to, saved_count);
2036     }
2037 
2038     __ jmp(L_copy_32_bytes);
2039 
2040     // Copy trailing qwords
2041   __ BIND(L_copy_8_bytes);
2042     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2043     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2044     __ decrement(qword_count);
2045     __ jcc(Assembler::notZero, L_copy_8_bytes);
2046 
2047     if (is_oop) {
2048       __ jmp(L_exit);
2049     } else {
2050       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2051       restore_arg_regs();
2052       __ xorptr(rax, rax); // return 0
2053       __ leave(); // required for proper stackwalking of RuntimeStub frame
2054       __ ret(0);
2055     }
2056 
2057     // Copy in 32-bytes chunks
2058     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2059 
2060     if (is_oop) {
2061     __ BIND(L_exit);
2062       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2063       gen_write_ref_array_post_barrier(to, rcx, rax);
2064       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2065     } else {
2066       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2067     }
2068     restore_arg_regs();
2069     __ xorptr(rax, rax); // return 0
2070     __ leave(); // required for proper stackwalking of RuntimeStub frame
2071     __ ret(0);
2072 
2073     return start;
2074   }
2075 
2076 
2077   // Helper for generating a dynamic type check.
2078   // Smashes no registers.
2079   void generate_type_check(Register sub_klass,
2080                            Register super_check_offset,
2081                            Register super_klass,
2082                            Label& L_success) {
2083     assert_different_registers(sub_klass, super_check_offset, super_klass);
2084 
2085     BLOCK_COMMENT("type_check:");
2086 
2087     Label L_miss;
2088 
2089     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2090                                      super_check_offset);
2091     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2092 
2093     // Fall through on failure!
2094     __ BIND(L_miss);
2095   }
2096 
2097   //
2098   //  Generate checkcasting array copy stub
2099   //
2100   //  Input:
2101   //    c_rarg0   - source array address
2102   //    c_rarg1   - destination array address
2103   //    c_rarg2   - element count, treated as ssize_t, can be zero
2104   //    c_rarg3   - size_t ckoff (super_check_offset)
2105   // not Win64
2106   //    c_rarg4   - oop ckval (super_klass)
2107   // Win64
2108   //    rsp+40    - oop ckval (super_klass)
2109   //
2110   //  Output:
2111   //    rax ==  0  -  success
2112   //    rax == -1^K - failure, where K is partial transfer count
2113   //
2114   address generate_checkcast_copy(const char *name) {
2115 
2116     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2117 
2118     // Input registers (after setup_arg_regs)
2119     const Register from        = rdi;   // source array address
2120     const Register to          = rsi;   // destination array address
2121     const Register length      = rdx;   // elements count
2122     const Register ckoff       = rcx;   // super_check_offset
2123     const Register ckval       = r8;    // super_klass
2124 
2125     // Registers used as temps (r13, r14 are save-on-entry)
2126     const Register end_from    = from;  // source array end address
2127     const Register end_to      = r13;   // destination array end address
2128     const Register count       = rdx;   // -(count_remaining)
2129     const Register r14_length  = r14;   // saved copy of length
2130     // End pointers are inclusive, and if length is not zero they point
2131     // to the last unit copied:  end_to[0] := end_from[0]
2132 
2133     const Register rax_oop    = rax;    // actual oop copied
2134     const Register r11_klass  = r11;    // oop._klass
2135 
2136     //---------------------------------------------------------------
2137     // Assembler stub will be used for this call to arraycopy
2138     // if the two arrays are subtypes of Object[] but the
2139     // destination array type is not equal to or a supertype
2140     // of the source type.  Each element must be separately
2141     // checked.
2142 
2143     __ align(CodeEntryAlignment);
2144     StubCodeMark mark(this, "StubRoutines", name);
2145     address start = __ pc();
2146 
2147     __ enter(); // required for proper stackwalking of RuntimeStub frame
2148 
2149     checkcast_copy_entry  = __ pc();
2150     BLOCK_COMMENT("Entry:");
2151 
2152 #ifdef ASSERT
2153     // caller guarantees that the arrays really are different
2154     // otherwise, we would have to make conjoint checks
2155     { Label L;
2156       array_overlap_test(L, TIMES_OOP);
2157       __ stop("checkcast_copy within a single array");
2158       __ bind(L);
2159     }
2160 #endif //ASSERT
2161 
2162     // allocate spill slots for r13, r14
2163     enum {
2164       saved_r13_offset,
2165       saved_r14_offset,
2166       saved_rbp_offset,
2167       saved_rip_offset,
2168       saved_rarg0_offset
2169     };
2170     __ subptr(rsp, saved_rbp_offset * wordSize);
2171     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2172     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2173     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2174                        // ckoff => rcx, ckval => r8
2175                        // r9 and r10 may be used to save non-volatile registers
2176 #ifdef _WIN64
2177     // last argument (#4) is on stack on Win64
2178     const int ckval_offset = saved_rarg0_offset + 4;
2179     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
2180 #endif
2181 
2182     // check that int operands are properly extended to size_t
2183     assert_clean_int(length, rax);
2184     assert_clean_int(ckoff, rax);
2185 
2186 #ifdef ASSERT
2187     BLOCK_COMMENT("assert consistent ckoff/ckval");
2188     // The ckoff and ckval must be mutually consistent,
2189     // even though caller generates both.
2190     { Label L;
2191       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2192                         Klass::super_check_offset_offset_in_bytes());
2193       __ cmpl(ckoff, Address(ckval, sco_offset));
2194       __ jcc(Assembler::equal, L);
2195       __ stop("super_check_offset inconsistent");
2196       __ bind(L);
2197     }
2198 #endif //ASSERT
2199 
2200     // Loop-invariant addresses.  They are exclusive end pointers.
2201     Address end_from_addr(from, length, TIMES_OOP, 0);
2202     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2203     // Loop-variant addresses.  They assume post-incremented count < 0.
2204     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2205     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2206 
2207     gen_write_ref_array_pre_barrier(to, count);
2208 
2209     // Copy from low to high addresses, indexed from the end of each array.
2210     __ lea(end_from, end_from_addr);
2211     __ lea(end_to,   end_to_addr);
2212     __ movptr(r14_length, length);        // save a copy of the length
2213     assert(length == count, "");          // else fix next line:
2214     __ negptr(count);                     // negate and test the length
2215     __ jcc(Assembler::notZero, L_load_element);
2216 
2217     // Empty array:  Nothing to do.
2218     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2219     __ jmp(L_done);
2220 
2221     // ======== begin loop ========
2222     // (Loop is rotated; its entry is L_load_element.)
2223     // Loop control:
2224     //   for (count = -count; count != 0; count++)
2225     // Base pointers src, dst are biased by 8*(count-1),to last element.
2226     __ align(OptoLoopAlignment);
2227 
2228     __ BIND(L_store_element);
2229     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2230     __ increment(count);               // increment the count toward zero
2231     __ jcc(Assembler::zero, L_do_card_marks);
2232 
2233     // ======== loop entry is here ========
2234     __ BIND(L_load_element);
2235     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2236     __ testptr(rax_oop, rax_oop);
2237     __ jcc(Assembler::zero, L_store_element);
2238 
2239     __ load_klass(r11_klass, rax_oop);// query the object klass
2240     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2241     // ======== end loop ========
2242 
2243     // It was a real error; we must depend on the caller to finish the job.
2244     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2245     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2246     // and report their number to the caller.
2247     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2248     __ lea(end_to, to_element_addr);
2249     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2250     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2251     __ movptr(rax, r14_length);           // original oops
2252     __ addptr(rax, count);                // K = (original - remaining) oops
2253     __ notptr(rax);                       // report (-1^K) to caller
2254     __ jmp(L_done);
2255 
2256     // Come here on success only.
2257     __ BIND(L_do_card_marks);
2258     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2259     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2260     __ xorptr(rax, rax);                  // return 0 on success
2261 
2262     // Common exit point (success or failure).
2263     __ BIND(L_done);
2264     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2265     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2266     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2267     restore_arg_regs();
2268     __ leave(); // required for proper stackwalking of RuntimeStub frame
2269     __ ret(0);
2270 
2271     return start;
2272   }
2273 
2274   //
2275   //  Generate 'unsafe' array copy stub
2276   //  Though just as safe as the other stubs, it takes an unscaled
2277   //  size_t argument instead of an element count.
2278   //
2279   //  Input:
2280   //    c_rarg0   - source array address
2281   //    c_rarg1   - destination array address
2282   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2283   //
2284   // Examines the alignment of the operands and dispatches
2285   // to a long, int, short, or byte copy loop.
2286   //
2287   address generate_unsafe_copy(const char *name) {
2288 
2289     Label L_long_aligned, L_int_aligned, L_short_aligned;
2290 
2291     // Input registers (before setup_arg_regs)
2292     const Register from        = c_rarg0;  // source array address
2293     const Register to          = c_rarg1;  // destination array address
2294     const Register size        = c_rarg2;  // byte count (size_t)
2295 
2296     // Register used as a temp
2297     const Register bits        = rax;      // test copy of low bits
2298 
2299     __ align(CodeEntryAlignment);
2300     StubCodeMark mark(this, "StubRoutines", name);
2301     address start = __ pc();
2302 
2303     __ enter(); // required for proper stackwalking of RuntimeStub frame
2304 
2305     // bump this on entry, not on exit:
2306     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2307 
2308     __ mov(bits, from);
2309     __ orptr(bits, to);
2310     __ orptr(bits, size);
2311 
2312     __ testb(bits, BytesPerLong-1);
2313     __ jccb(Assembler::zero, L_long_aligned);
2314 
2315     __ testb(bits, BytesPerInt-1);
2316     __ jccb(Assembler::zero, L_int_aligned);
2317 
2318     __ testb(bits, BytesPerShort-1);
2319     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2320 
2321     __ BIND(L_short_aligned);
2322     __ shrptr(size, LogBytesPerShort); // size => short_count
2323     __ jump(RuntimeAddress(short_copy_entry));
2324 
2325     __ BIND(L_int_aligned);
2326     __ shrptr(size, LogBytesPerInt); // size => int_count
2327     __ jump(RuntimeAddress(int_copy_entry));
2328 
2329     __ BIND(L_long_aligned);
2330     __ shrptr(size, LogBytesPerLong); // size => qword_count
2331     __ jump(RuntimeAddress(long_copy_entry));
2332 
2333     return start;
2334   }
2335 
2336   // Perform range checks on the proposed arraycopy.
2337   // Kills temp, but nothing else.
2338   // Also, clean the sign bits of src_pos and dst_pos.
2339   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2340                               Register src_pos, // source position (c_rarg1)
2341                               Register dst,     // destination array oo (c_rarg2)
2342                               Register dst_pos, // destination position (c_rarg3)
2343                               Register length,
2344                               Register temp,
2345                               Label& L_failed) {
2346     BLOCK_COMMENT("arraycopy_range_checks:");
2347 
2348     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2349     __ movl(temp, length);
2350     __ addl(temp, src_pos);             // src_pos + length
2351     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2352     __ jcc(Assembler::above, L_failed);
2353 
2354     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2355     __ movl(temp, length);
2356     __ addl(temp, dst_pos);             // dst_pos + length
2357     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2358     __ jcc(Assembler::above, L_failed);
2359 
2360     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2361     // Move with sign extension can be used since they are positive.
2362     __ movslq(src_pos, src_pos);
2363     __ movslq(dst_pos, dst_pos);
2364 
2365     BLOCK_COMMENT("arraycopy_range_checks done");
2366   }
2367 
2368   //
2369   //  Generate generic array copy stubs
2370   //
2371   //  Input:
2372   //    c_rarg0    -  src oop
2373   //    c_rarg1    -  src_pos (32-bits)
2374   //    c_rarg2    -  dst oop
2375   //    c_rarg3    -  dst_pos (32-bits)
2376   // not Win64
2377   //    c_rarg4    -  element count (32-bits)
2378   // Win64
2379   //    rsp+40     -  element count (32-bits)
2380   //
2381   //  Output:
2382   //    rax ==  0  -  success
2383   //    rax == -1^K - failure, where K is partial transfer count
2384   //
2385   address generate_generic_copy(const char *name) {
2386 
2387     Label L_failed, L_failed_0, L_objArray;
2388     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2389 
2390     // Input registers
2391     const Register src        = c_rarg0;  // source array oop
2392     const Register src_pos    = c_rarg1;  // source position
2393     const Register dst        = c_rarg2;  // destination array oop
2394     const Register dst_pos    = c_rarg3;  // destination position
2395     // elements count is on stack on Win64
2396 #ifdef _WIN64
2397 #define C_RARG4 Address(rsp, 6 * wordSize)
2398 #else
2399 #define C_RARG4 c_rarg4
2400 #endif
2401 
2402     { int modulus = CodeEntryAlignment;
2403       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2404       int advance = target - (__ offset() % modulus);
2405       if (advance < 0)  advance += modulus;
2406       if (advance > 0)  __ nop(advance);
2407     }
2408     StubCodeMark mark(this, "StubRoutines", name);
2409 
2410     // Short-hop target to L_failed.  Makes for denser prologue code.
2411     __ BIND(L_failed_0);
2412     __ jmp(L_failed);
2413     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2414 
2415     __ align(CodeEntryAlignment);
2416     address start = __ pc();
2417 
2418     __ enter(); // required for proper stackwalking of RuntimeStub frame
2419 
2420     // bump this on entry, not on exit:
2421     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2422 
2423     //-----------------------------------------------------------------------
2424     // Assembler stub will be used for this call to arraycopy
2425     // if the following conditions are met:
2426     //
2427     // (1) src and dst must not be null.
2428     // (2) src_pos must not be negative.
2429     // (3) dst_pos must not be negative.
2430     // (4) length  must not be negative.
2431     // (5) src klass and dst klass should be the same and not NULL.
2432     // (6) src and dst should be arrays.
2433     // (7) src_pos + length must not exceed length of src.
2434     // (8) dst_pos + length must not exceed length of dst.
2435     //
2436 
2437     //  if (src == NULL) return -1;
2438     __ testptr(src, src);         // src oop
2439     size_t j1off = __ offset();
2440     __ jccb(Assembler::zero, L_failed_0);
2441 
2442     //  if (src_pos < 0) return -1;
2443     __ testl(src_pos, src_pos); // src_pos (32-bits)
2444     __ jccb(Assembler::negative, L_failed_0);
2445 
2446     //  if (dst == NULL) return -1;
2447     __ testptr(dst, dst);         // dst oop
2448     __ jccb(Assembler::zero, L_failed_0);
2449 
2450     //  if (dst_pos < 0) return -1;
2451     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2452     size_t j4off = __ offset();
2453     __ jccb(Assembler::negative, L_failed_0);
2454 
2455     // The first four tests are very dense code,
2456     // but not quite dense enough to put four
2457     // jumps in a 16-byte instruction fetch buffer.
2458     // That's good, because some branch predicters
2459     // do not like jumps so close together.
2460     // Make sure of this.
2461     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2462 
2463     // registers used as temp
2464     const Register r11_length    = r11; // elements count to copy
2465     const Register r10_src_klass = r10; // array klass
2466     const Register r9_dst_klass  = r9;  // dest array klass
2467 
2468     //  if (length < 0) return -1;
2469     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2470     __ testl(r11_length, r11_length);
2471     __ jccb(Assembler::negative, L_failed_0);
2472 
2473     __ load_klass(r10_src_klass, src);
2474 #ifdef ASSERT
2475     //  assert(src->klass() != NULL);
2476     BLOCK_COMMENT("assert klasses not null");
2477     { Label L1, L2;
2478       __ testptr(r10_src_klass, r10_src_klass);
2479       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2480       __ bind(L1);
2481       __ stop("broken null klass");
2482       __ bind(L2);
2483       __ load_klass(r9_dst_klass, dst);
2484       __ cmpq(r9_dst_klass, 0);
2485       __ jcc(Assembler::equal, L1);     // this would be broken also
2486       BLOCK_COMMENT("assert done");
2487     }
2488 #endif
2489 
2490     // Load layout helper (32-bits)
2491     //
2492     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2493     // 32        30    24            16              8     2                 0
2494     //
2495     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2496     //
2497 
2498     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2499                     Klass::layout_helper_offset_in_bytes();
2500 
2501     const Register rax_lh = rax;  // layout helper
2502 
2503     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2504 
2505     // Handle objArrays completely differently...
2506     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2507     __ cmpl(rax_lh, objArray_lh);
2508     __ jcc(Assembler::equal, L_objArray);
2509 
2510     //  if (src->klass() != dst->klass()) return -1;
2511     __ load_klass(r9_dst_klass, dst);
2512     __ cmpq(r10_src_klass, r9_dst_klass);
2513     __ jcc(Assembler::notEqual, L_failed);
2514 
2515     //  if (!src->is_Array()) return -1;
2516     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2517     __ jcc(Assembler::greaterEqual, L_failed);
2518 
2519     // At this point, it is known to be a typeArray (array_tag 0x3).
2520 #ifdef ASSERT
2521     { Label L;
2522       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2523       __ jcc(Assembler::greaterEqual, L);
2524       __ stop("must be a primitive array");
2525       __ bind(L);
2526     }
2527 #endif
2528 
2529     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2530                            r10, L_failed);
2531 
2532     // typeArrayKlass
2533     //
2534     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2535     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2536     //
2537 
2538     const Register r10_offset = r10;    // array offset
2539     const Register rax_elsize = rax_lh; // element size
2540 
2541     __ movl(r10_offset, rax_lh);
2542     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2543     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2544     __ addptr(src, r10_offset);           // src array offset
2545     __ addptr(dst, r10_offset);           // dst array offset
2546     BLOCK_COMMENT("choose copy loop based on element size");
2547     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2548 
2549     // next registers should be set before the jump to corresponding stub
2550     const Register from     = c_rarg0;  // source array address
2551     const Register to       = c_rarg1;  // destination array address
2552     const Register count    = c_rarg2;  // elements count
2553 
2554     // 'from', 'to', 'count' registers should be set in such order
2555     // since they are the same as 'src', 'src_pos', 'dst'.
2556 
2557   __ BIND(L_copy_bytes);
2558     __ cmpl(rax_elsize, 0);
2559     __ jccb(Assembler::notEqual, L_copy_shorts);
2560     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2561     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2562     __ movl2ptr(count, r11_length); // length
2563     __ jump(RuntimeAddress(byte_copy_entry));
2564 
2565   __ BIND(L_copy_shorts);
2566     __ cmpl(rax_elsize, LogBytesPerShort);
2567     __ jccb(Assembler::notEqual, L_copy_ints);
2568     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2569     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2570     __ movl2ptr(count, r11_length); // length
2571     __ jump(RuntimeAddress(short_copy_entry));
2572 
2573   __ BIND(L_copy_ints);
2574     __ cmpl(rax_elsize, LogBytesPerInt);
2575     __ jccb(Assembler::notEqual, L_copy_longs);
2576     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2577     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2578     __ movl2ptr(count, r11_length); // length
2579     __ jump(RuntimeAddress(int_copy_entry));
2580 
2581   __ BIND(L_copy_longs);
2582 #ifdef ASSERT
2583     { Label L;
2584       __ cmpl(rax_elsize, LogBytesPerLong);
2585       __ jcc(Assembler::equal, L);
2586       __ stop("must be long copy, but elsize is wrong");
2587       __ bind(L);
2588     }
2589 #endif
2590     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2591     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2592     __ movl2ptr(count, r11_length); // length
2593     __ jump(RuntimeAddress(long_copy_entry));
2594 
2595     // objArrayKlass
2596   __ BIND(L_objArray);
2597     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2598 
2599     Label L_plain_copy, L_checkcast_copy;
2600     //  test array classes for subtyping
2601     __ load_klass(r9_dst_klass, dst);
2602     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2603     __ jcc(Assembler::notEqual, L_checkcast_copy);
2604 
2605     // Identically typed arrays can be copied without element-wise checks.
2606     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2607                            r10, L_failed);
2608 
2609     __ lea(from, Address(src, src_pos, TIMES_OOP,
2610                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2611     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2612                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2613     __ movl2ptr(count, r11_length); // length
2614   __ BIND(L_plain_copy);
2615     __ jump(RuntimeAddress(oop_copy_entry));
2616 
2617   __ BIND(L_checkcast_copy);
2618     // live at this point:  r10_src_klass, !r11_length
2619     {
2620       // assert(r11_length == C_RARG4); // will reload from here
2621       Register r11_dst_klass = r11;
2622       __ load_klass(r11_dst_klass, dst);
2623 
2624       // Before looking at dst.length, make sure dst is also an objArray.
2625       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2626       __ jcc(Assembler::notEqual, L_failed);
2627 
2628       // It is safe to examine both src.length and dst.length.
2629 #ifndef _WIN64
2630       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2631                              rax, L_failed);
2632 #else
2633       __ movl(r11_length, C_RARG4);     // reload
2634       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2635                              rax, L_failed);
2636       __ load_klass(r11_dst_klass, dst); // reload
2637 #endif
2638 
2639       // Marshal the base address arguments now, freeing registers.
2640       __ lea(from, Address(src, src_pos, TIMES_OOP,
2641                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2642       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2643                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2644       __ movl(count, C_RARG4);          // length (reloaded)
2645       Register sco_temp = c_rarg3;      // this register is free now
2646       assert_different_registers(from, to, count, sco_temp,
2647                                  r11_dst_klass, r10_src_klass);
2648       assert_clean_int(count, sco_temp);
2649 
2650       // Generate the type check.
2651       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2652                         Klass::super_check_offset_offset_in_bytes());
2653       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2654       assert_clean_int(sco_temp, rax);
2655       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2656 
2657       // Fetch destination element klass from the objArrayKlass header.
2658       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2659                        objArrayKlass::element_klass_offset_in_bytes());
2660       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2661       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2662       assert_clean_int(sco_temp, rax);
2663 
2664       // the checkcast_copy loop needs two extra arguments:
2665       assert(c_rarg3 == sco_temp, "#3 already in place");
2666       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2667       __ jump(RuntimeAddress(checkcast_copy_entry));
2668     }
2669 
2670   __ BIND(L_failed);
2671     __ xorptr(rax, rax);
2672     __ notptr(rax); // return -1
2673     __ leave();   // required for proper stackwalking of RuntimeStub frame
2674     __ ret(0);
2675 
2676     return start;
2677   }
2678 
2679 #undef length_arg
2680 
2681   void generate_arraycopy_stubs() {
2682     // Call the conjoint generation methods immediately after
2683     // the disjoint ones so that short branches from the former
2684     // to the latter can be generated.
2685     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2686     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2687 
2688     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2689     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2690 
2691     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2692     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2693 
2694     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2695     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2696 
2697 
2698     if (UseCompressedOops) {
2699       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2700       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2701     } else {
2702       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2703       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2704     }
2705 
2706     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2707     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2708     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2709 
2710     // We don't generate specialized code for HeapWord-aligned source
2711     // arrays, so just use the code we've already generated
2712     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2713     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2714 
2715     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2716     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2717 
2718     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2719     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2720 
2721     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2722     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2723 
2724     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2725     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2726   }
2727 
2728   void generate_math_stubs() {
2729     {
2730       StubCodeMark mark(this, "StubRoutines", "log");
2731       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2732 
2733       __ subq(rsp, 8);
2734       __ movdbl(Address(rsp, 0), xmm0);
2735       __ fld_d(Address(rsp, 0));
2736       __ flog();
2737       __ fstp_d(Address(rsp, 0));
2738       __ movdbl(xmm0, Address(rsp, 0));
2739       __ addq(rsp, 8);
2740       __ ret(0);
2741     }
2742     {
2743       StubCodeMark mark(this, "StubRoutines", "log10");
2744       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2745 
2746       __ subq(rsp, 8);
2747       __ movdbl(Address(rsp, 0), xmm0);
2748       __ fld_d(Address(rsp, 0));
2749       __ flog10();
2750       __ fstp_d(Address(rsp, 0));
2751       __ movdbl(xmm0, Address(rsp, 0));
2752       __ addq(rsp, 8);
2753       __ ret(0);
2754     }
2755     {
2756       StubCodeMark mark(this, "StubRoutines", "sin");
2757       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2758 
2759       __ subq(rsp, 8);
2760       __ movdbl(Address(rsp, 0), xmm0);
2761       __ fld_d(Address(rsp, 0));
2762       __ trigfunc('s');
2763       __ fstp_d(Address(rsp, 0));
2764       __ movdbl(xmm0, Address(rsp, 0));
2765       __ addq(rsp, 8);
2766       __ ret(0);
2767     }
2768     {
2769       StubCodeMark mark(this, "StubRoutines", "cos");
2770       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2771 
2772       __ subq(rsp, 8);
2773       __ movdbl(Address(rsp, 0), xmm0);
2774       __ fld_d(Address(rsp, 0));
2775       __ trigfunc('c');
2776       __ fstp_d(Address(rsp, 0));
2777       __ movdbl(xmm0, Address(rsp, 0));
2778       __ addq(rsp, 8);
2779       __ ret(0);
2780     }
2781     {
2782       StubCodeMark mark(this, "StubRoutines", "tan");
2783       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2784 
2785       __ subq(rsp, 8);
2786       __ movdbl(Address(rsp, 0), xmm0);
2787       __ fld_d(Address(rsp, 0));
2788       __ trigfunc('t');
2789       __ fstp_d(Address(rsp, 0));
2790       __ movdbl(xmm0, Address(rsp, 0));
2791       __ addq(rsp, 8);
2792       __ ret(0);
2793     }
2794 
2795     // The intrinsic version of these seem to return the same value as
2796     // the strict version.
2797     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2798     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2799   }
2800 
2801 #undef __
2802 #define __ masm->
2803 
2804   // Continuation point for throwing of implicit exceptions that are
2805   // not handled in the current activation. Fabricates an exception
2806   // oop and initiates normal exception dispatching in this
2807   // frame. Since we need to preserve callee-saved values (currently
2808   // only for C2, but done for C1 as well) we need a callee-saved oop
2809   // map and therefore have to make these stubs into RuntimeStubs
2810   // rather than BufferBlobs.  If the compiler needs all registers to
2811   // be preserved between the fault point and the exception handler
2812   // then it must assume responsibility for that in
2813   // AbstractCompiler::continuation_for_implicit_null_exception or
2814   // continuation_for_implicit_division_by_zero_exception. All other
2815   // implicit exceptions (e.g., NullPointerException or
2816   // AbstractMethodError on entry) are either at call sites or
2817   // otherwise assume that stack unwinding will be initiated, so
2818   // caller saved registers were assumed volatile in the compiler.
2819   address generate_throw_exception(const char* name,
2820                                    address runtime_entry,
2821                                    bool restore_saved_exception_pc) {
2822     // Information about frame layout at time of blocking runtime call.
2823     // Note that we only have to preserve callee-saved registers since
2824     // the compilers are responsible for supplying a continuation point
2825     // if they expect all registers to be preserved.
2826     enum layout {
2827       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2828       rbp_off2,
2829       return_off,
2830       return_off2,
2831       framesize // inclusive of return address
2832     };
2833 
2834     int insts_size = 512;
2835     int locs_size  = 64;
2836 
2837     CodeBuffer code(name, insts_size, locs_size);
2838     OopMapSet* oop_maps  = new OopMapSet();
2839     MacroAssembler* masm = new MacroAssembler(&code);
2840 
2841     address start = __ pc();
2842 
2843     // This is an inlined and slightly modified version of call_VM
2844     // which has the ability to fetch the return PC out of
2845     // thread-local storage and also sets up last_Java_sp slightly
2846     // differently than the real call_VM
2847     if (restore_saved_exception_pc) {
2848       __ movptr(rax,
2849                 Address(r15_thread,
2850                         in_bytes(JavaThread::saved_exception_pc_offset())));
2851       __ push(rax);
2852     }
2853 
2854     __ enter(); // required for proper stackwalking of RuntimeStub frame
2855 
2856     assert(is_even(framesize/2), "sp not 16-byte aligned");
2857 
2858     // return address and rbp are already in place
2859     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2860 
2861     int frame_complete = __ pc() - start;
2862 
2863     // Set up last_Java_sp and last_Java_fp
2864     __ set_last_Java_frame(rsp, rbp, NULL);
2865 
2866     // Call runtime
2867     __ movptr(c_rarg0, r15_thread);
2868     BLOCK_COMMENT("call runtime_entry");
2869     __ call(RuntimeAddress(runtime_entry));
2870 
2871     // Generate oop map
2872     OopMap* map = new OopMap(framesize, 0);
2873 
2874     oop_maps->add_gc_map(__ pc() - start, map);
2875 
2876     __ reset_last_Java_frame(true, false);
2877 
2878     __ leave(); // required for proper stackwalking of RuntimeStub frame
2879 
2880     // check for pending exceptions
2881 #ifdef ASSERT
2882     Label L;
2883     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
2884             (int32_t) NULL_WORD);
2885     __ jcc(Assembler::notEqual, L);
2886     __ should_not_reach_here();
2887     __ bind(L);
2888 #endif // ASSERT
2889     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2890 
2891 
2892     // codeBlob framesize is in words (not VMRegImpl::slot_size)
2893     RuntimeStub* stub =
2894       RuntimeStub::new_runtime_stub(name,
2895                                     &code,
2896                                     frame_complete,
2897                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2898                                     oop_maps, false);
2899     return stub->entry_point();
2900   }
2901 
2902   // Initialization
2903   void generate_initial() {
2904     // Generates all stubs and initializes the entry points
2905 
2906     // This platform-specific stub is needed by generate_call_stub()
2907     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2908 
2909     // entry points that exist in all platforms Note: This is code
2910     // that could be shared among different platforms - however the
2911     // benefit seems to be smaller than the disadvantage of having a
2912     // much more complicated generator structure. See also comment in
2913     // stubRoutines.hpp.
2914 
2915     StubRoutines::_forward_exception_entry = generate_forward_exception();
2916 
2917     StubRoutines::_call_stub_entry =
2918       generate_call_stub(StubRoutines::_call_stub_return_address);
2919 
2920     // is referenced by megamorphic call
2921     StubRoutines::_catch_exception_entry = generate_catch_exception();
2922 
2923     // atomic calls
2924     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2925     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2926     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2927     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2928     StubRoutines::_atomic_add_entry          = generate_atomic_add();
2929     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2930     StubRoutines::_fence_entry               = generate_orderaccess_fence();
2931 
2932     StubRoutines::_handler_for_unsafe_access_entry =
2933       generate_handler_for_unsafe_access();
2934 
2935     // platform dependent
2936     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
2937 
2938     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
2939   }
2940 
2941   void generate_all() {
2942     // Generates all stubs and initializes the entry points
2943 
2944     // These entry points require SharedInfo::stack0 to be set up in
2945     // non-core builds and need to be relocatable, so they each
2946     // fabricate a RuntimeStub internally.
2947     StubRoutines::_throw_AbstractMethodError_entry =
2948       generate_throw_exception("AbstractMethodError throw_exception",
2949                                CAST_FROM_FN_PTR(address,
2950                                                 SharedRuntime::
2951                                                 throw_AbstractMethodError),
2952                                false);
2953 
2954     StubRoutines::_throw_IncompatibleClassChangeError_entry =
2955       generate_throw_exception("IncompatibleClassChangeError throw_exception",
2956                                CAST_FROM_FN_PTR(address,
2957                                                 SharedRuntime::
2958                                                 throw_IncompatibleClassChangeError),
2959                                false);
2960 
2961     StubRoutines::_throw_ArithmeticException_entry =
2962       generate_throw_exception("ArithmeticException throw_exception",
2963                                CAST_FROM_FN_PTR(address,
2964                                                 SharedRuntime::
2965                                                 throw_ArithmeticException),
2966                                true);
2967 
2968     StubRoutines::_throw_NullPointerException_entry =
2969       generate_throw_exception("NullPointerException throw_exception",
2970                                CAST_FROM_FN_PTR(address,
2971                                                 SharedRuntime::
2972                                                 throw_NullPointerException),
2973                                true);
2974 
2975     StubRoutines::_throw_NullPointerException_at_call_entry =
2976       generate_throw_exception("NullPointerException at call throw_exception",
2977                                CAST_FROM_FN_PTR(address,
2978                                                 SharedRuntime::
2979                                                 throw_NullPointerException_at_call),
2980                                false);
2981 
2982     StubRoutines::_throw_StackOverflowError_entry =
2983       generate_throw_exception("StackOverflowError throw_exception",
2984                                CAST_FROM_FN_PTR(address,
2985                                                 SharedRuntime::
2986                                                 throw_StackOverflowError),
2987                                false);
2988 
2989     // entry points that are platform specific
2990     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
2991     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
2992     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
2993     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
2994 
2995     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
2996     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
2997     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
2998     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
2999 
3000     // support for verify_oop (must happen after universe_init)
3001     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3002 
3003     // arraycopy stubs used by compilers
3004     generate_arraycopy_stubs();
3005 
3006     generate_math_stubs();
3007   }
3008 
3009  public:
3010   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3011     if (all) {
3012       generate_all();
3013     } else {
3014       generate_initial();
3015     }
3016   }
3017 }; // end class declaration
3018 
3019 address StubGenerator::disjoint_byte_copy_entry  = NULL;
3020 address StubGenerator::disjoint_short_copy_entry = NULL;
3021 address StubGenerator::disjoint_int_copy_entry   = NULL;
3022 address StubGenerator::disjoint_long_copy_entry  = NULL;
3023 address StubGenerator::disjoint_oop_copy_entry   = NULL;
3024 
3025 address StubGenerator::byte_copy_entry  = NULL;
3026 address StubGenerator::short_copy_entry = NULL;
3027 address StubGenerator::int_copy_entry   = NULL;
3028 address StubGenerator::long_copy_entry  = NULL;
3029 address StubGenerator::oop_copy_entry   = NULL;
3030 
3031 address StubGenerator::checkcast_copy_entry = NULL;
3032 
3033 void StubGenerator_generate(CodeBuffer* code, bool all) {
3034   StubGenerator g(code, all);
3035 }