1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_stubGenerator_x86_64.cpp.incl"
  27 
  28 // Declaration and definition of StubGenerator (no .hpp file).
  29 // For a more detailed description of the stub routine structure
  30 // see the comment in stubRoutines.hpp
  31 
  32 #define __ _masm->
  33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  34 #define a__ ((Assembler*)_masm)->
  35 
  36 #ifdef PRODUCT
  37 #define BLOCK_COMMENT(str) /* nothing */
  38 #else
  39 #define BLOCK_COMMENT(str) __ block_comment(str)
  40 #endif
  41 
  42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  44 
  45 // Stub Code definitions
  46 
  47 static address handle_unsafe_access() {
  48   JavaThread* thread = JavaThread::current();
  49   address pc = thread->saved_exception_pc();
  50   // pc is the instruction which we must emulate
  51   // doing a no-op is fine:  return garbage from the load
  52   // therefore, compute npc
  53   address npc = Assembler::locate_next_instruction(pc);
  54 
  55   // request an async exception
  56   thread->set_pending_unsafe_access_error();
  57 
  58   // return address of next instruction to execute
  59   return npc;
  60 }
  61 
  62 class StubGenerator: public StubCodeGenerator {
  63  private:
  64 
  65 #ifdef PRODUCT
  66 #define inc_counter_np(counter) (0)
  67 #else
  68   void inc_counter_np_(int& counter) {
  69     __ incrementl(ExternalAddress((address)&counter));
  70   }
  71 #define inc_counter_np(counter) \
  72   BLOCK_COMMENT("inc_counter " #counter); \
  73   inc_counter_np_(counter);
  74 #endif
  75 
  76   // Call stubs are used to call Java from C
  77   //
  78   // Linux Arguments:
  79   //    c_rarg0:   call wrapper address                   address
  80   //    c_rarg1:   result                                 address
  81   //    c_rarg2:   result type                            BasicType
  82   //    c_rarg3:   method                                 methodOop
  83   //    c_rarg4:   (interpreter) entry point              address
  84   //    c_rarg5:   parameters                             intptr_t*
  85   //    16(rbp): parameter size (in words)              int
  86   //    24(rbp): thread                                 Thread*
  87   //
  88   //     [ return_from_Java     ] <--- rsp
  89   //     [ argument word n      ]
  90   //      ...
  91   // -12 [ argument word 1      ]
  92   // -11 [ saved r15            ] <--- rsp_after_call
  93   // -10 [ saved r14            ]
  94   //  -9 [ saved r13            ]
  95   //  -8 [ saved r12            ]
  96   //  -7 [ saved rbx            ]
  97   //  -6 [ call wrapper         ]
  98   //  -5 [ result               ]
  99   //  -4 [ result type          ]
 100   //  -3 [ method               ]
 101   //  -2 [ entry point          ]
 102   //  -1 [ parameters           ]
 103   //   0 [ saved rbp            ] <--- rbp
 104   //   1 [ return address       ]
 105   //   2 [ parameter size       ]
 106   //   3 [ thread               ]
 107   //
 108   // Windows Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    48(rbp): (interpreter) entry point              address
 114   //    56(rbp): parameters                             intptr_t*
 115   //    64(rbp): parameter size (in words)              int
 116   //    72(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   //  -8 [ argument word 1      ]
 122   //  -7 [ saved r15            ] <--- rsp_after_call
 123   //  -6 [ saved r14            ]
 124   //  -5 [ saved r13            ]
 125   //  -4 [ saved r12            ]
 126   //  -3 [ saved rdi            ]
 127   //  -2 [ saved rsi            ]
 128   //  -1 [ saved rbx            ]
 129   //   0 [ saved rbp            ] <--- rbp
 130   //   1 [ return address       ]
 131   //   2 [ call wrapper         ]
 132   //   3 [ result               ]
 133   //   4 [ result type          ]
 134   //   5 [ method               ]
 135   //   6 [ entry point          ]
 136   //   7 [ parameters           ]
 137   //   8 [ parameter size       ]
 138   //   9 [ thread               ]
 139   //
 140   //    Windows reserves the callers stack space for arguments 1-4.
 141   //    We spill c_rarg0-c_rarg3 to this space.
 142 
 143   // Call stub stack layout word offsets from rbp
 144   enum call_stub_layout {
 145 #ifdef _WIN64
 146     rsp_after_call_off = -7,
 147     r15_off            = rsp_after_call_off,
 148     r14_off            = -6,
 149     r13_off            = -5,
 150     r12_off            = -4,
 151     rdi_off            = -3,
 152     rsi_off            = -2,
 153     rbx_off            = -1,
 154     rbp_off            =  0,
 155     retaddr_off        =  1,
 156     call_wrapper_off   =  2,
 157     result_off         =  3,
 158     result_type_off    =  4,
 159     method_off         =  5,
 160     entry_point_off    =  6,
 161     parameters_off     =  7,
 162     parameter_size_off =  8,
 163     thread_off         =  9
 164 #else
 165     rsp_after_call_off = -12,
 166     mxcsr_off          = rsp_after_call_off,
 167     r15_off            = -11,
 168     r14_off            = -10,
 169     r13_off            = -9,
 170     r12_off            = -8,
 171     rbx_off            = -7,
 172     call_wrapper_off   = -6,
 173     result_off         = -5,
 174     result_type_off    = -4,
 175     method_off         = -3,
 176     entry_point_off    = -2,
 177     parameters_off     = -1,
 178     rbp_off            =  0,
 179     retaddr_off        =  1,
 180     parameter_size_off =  2,
 181     thread_off         =  3
 182 #endif
 183   };
 184 
 185   address generate_call_stub(address& return_address) {
 186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 188            "adjust this code");
 189     StubCodeMark mark(this, "StubRoutines", "call_stub");
 190     address start = __ pc();
 191 
 192     // same as in generate_catch_exception()!
 193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 194 
 195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 196     const Address result        (rbp, result_off         * wordSize);
 197     const Address result_type   (rbp, result_type_off    * wordSize);
 198     const Address method        (rbp, method_off         * wordSize);
 199     const Address entry_point   (rbp, entry_point_off    * wordSize);
 200     const Address parameters    (rbp, parameters_off     * wordSize);
 201     const Address parameter_size(rbp, parameter_size_off * wordSize);
 202 
 203     // same as in generate_catch_exception()!
 204     const Address thread        (rbp, thread_off         * wordSize);
 205 
 206     const Address r15_save(rbp, r15_off * wordSize);
 207     const Address r14_save(rbp, r14_off * wordSize);
 208     const Address r13_save(rbp, r13_off * wordSize);
 209     const Address r12_save(rbp, r12_off * wordSize);
 210     const Address rbx_save(rbp, rbx_off * wordSize);
 211 
 212     // stub code
 213     __ enter();
 214     __ subptr(rsp, -rsp_after_call_off * wordSize);
 215 
 216     // save register parameters
 217 #ifndef _WIN64
 218     __ movptr(parameters,   c_rarg5); // parameters
 219     __ movptr(entry_point,  c_rarg4); // entry_point
 220 #endif
 221 
 222     __ movptr(method,       c_rarg3); // method
 223     __ movl(result_type,  c_rarg2);   // result type
 224     __ movptr(result,       c_rarg1); // result
 225     __ movptr(call_wrapper, c_rarg0); // call wrapper
 226 
 227     // save regs belonging to calling function
 228     __ movptr(rbx_save, rbx);
 229     __ movptr(r12_save, r12);
 230     __ movptr(r13_save, r13);
 231     __ movptr(r14_save, r14);
 232     __ movptr(r15_save, r15);
 233 
 234 #ifdef _WIN64
 235     const Address rdi_save(rbp, rdi_off * wordSize);
 236     const Address rsi_save(rbp, rsi_off * wordSize);
 237 
 238     __ movptr(rsi_save, rsi);
 239     __ movptr(rdi_save, rdi);
 240 #else
 241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 242     {
 243       Label skip_ldmx;
 244       __ stmxcsr(mxcsr_save);
 245       __ movl(rax, mxcsr_save);
 246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 248       __ cmp32(rax, mxcsr_std);
 249       __ jcc(Assembler::equal, skip_ldmx);
 250       __ ldmxcsr(mxcsr_std);
 251       __ bind(skip_ldmx);
 252     }
 253 #endif
 254 
 255     // Load up thread register
 256     __ movptr(r15_thread, thread);
 257     __ reinit_heapbase();
 258 
 259 #ifdef ASSERT
 260     // make sure we have no pending exceptions
 261     {
 262       Label L;
 263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 264       __ jcc(Assembler::equal, L);
 265       __ stop("StubRoutines::call_stub: entered with pending exception");
 266       __ bind(L);
 267     }
 268 #endif
 269 
 270     // pass parameters if any
 271     BLOCK_COMMENT("pass parameters if any");
 272     Label parameters_done;
 273     __ movl(c_rarg3, parameter_size);
 274     __ testl(c_rarg3, c_rarg3);
 275     __ jcc(Assembler::zero, parameters_done);
 276 
 277     Label loop;
 278     __ movptr(c_rarg2, parameters);       // parameter pointer
 279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 280     __ BIND(loop);
 281     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 282     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 283     __ decrementl(c_rarg1);             // decrement counter
 284     __ push(rax);                       // pass parameter
 285     __ jcc(Assembler::notZero, loop);
 286 
 287     // call Java function
 288     __ BIND(parameters_done);
 289     __ movptr(rbx, method);             // get methodOop
 290     __ movptr(c_rarg1, entry_point);    // get entry_point
 291     __ mov(r13, rsp);                   // set sender sp
 292     BLOCK_COMMENT("call Java function");
 293     __ call(c_rarg1);
 294 
 295     BLOCK_COMMENT("call_stub_return_address:");
 296     return_address = __ pc();
 297 
 298     // store result depending on type (everything that is not
 299     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 300     __ movptr(c_rarg0, result);
 301     Label is_long, is_float, is_double, exit;
 302     __ movl(c_rarg1, result_type);
 303     __ cmpl(c_rarg1, T_OBJECT);
 304     __ jcc(Assembler::equal, is_long);
 305     __ cmpl(c_rarg1, T_LONG);
 306     __ jcc(Assembler::equal, is_long);
 307     __ cmpl(c_rarg1, T_FLOAT);
 308     __ jcc(Assembler::equal, is_float);
 309     __ cmpl(c_rarg1, T_DOUBLE);
 310     __ jcc(Assembler::equal, is_double);
 311 
 312     // handle T_INT case
 313     __ movl(Address(c_rarg0, 0), rax);
 314 
 315     __ BIND(exit);
 316 
 317     // pop parameters
 318     __ lea(rsp, rsp_after_call);
 319 
 320 #ifdef ASSERT
 321     // verify that threads correspond
 322     {
 323       Label L, S;
 324       __ cmpptr(r15_thread, thread);
 325       __ jcc(Assembler::notEqual, S);
 326       __ get_thread(rbx);
 327       __ cmpptr(r15_thread, rbx);
 328       __ jcc(Assembler::equal, L);
 329       __ bind(S);
 330       __ jcc(Assembler::equal, L);
 331       __ stop("StubRoutines::call_stub: threads must correspond");
 332       __ bind(L);
 333     }
 334 #endif
 335 
 336     // restore regs belonging to calling function
 337     __ movptr(r15, r15_save);
 338     __ movptr(r14, r14_save);
 339     __ movptr(r13, r13_save);
 340     __ movptr(r12, r12_save);
 341     __ movptr(rbx, rbx_save);
 342 
 343 #ifdef _WIN64
 344     __ movptr(rdi, rdi_save);
 345     __ movptr(rsi, rsi_save);
 346 #else
 347     __ ldmxcsr(mxcsr_save);
 348 #endif
 349 
 350     // restore rsp
 351     __ addptr(rsp, -rsp_after_call_off * wordSize);
 352 
 353     // return
 354     __ pop(rbp);
 355     __ ret(0);
 356 
 357     // handle return types different from T_INT
 358     __ BIND(is_long);
 359     __ movq(Address(c_rarg0, 0), rax);
 360     __ jmp(exit);
 361 
 362     __ BIND(is_float);
 363     __ movflt(Address(c_rarg0, 0), xmm0);
 364     __ jmp(exit);
 365 
 366     __ BIND(is_double);
 367     __ movdbl(Address(c_rarg0, 0), xmm0);
 368     __ jmp(exit);
 369 
 370     return start;
 371   }
 372 
 373   // Return point for a Java call if there's an exception thrown in
 374   // Java code.  The exception is caught and transformed into a
 375   // pending exception stored in JavaThread that can be tested from
 376   // within the VM.
 377   //
 378   // Note: Usually the parameters are removed by the callee. In case
 379   // of an exception crossing an activation frame boundary, that is
 380   // not the case if the callee is compiled code => need to setup the
 381   // rsp.
 382   //
 383   // rax: exception oop
 384 
 385   address generate_catch_exception() {
 386     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 387     address start = __ pc();
 388 
 389     // same as in generate_call_stub():
 390     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 391     const Address thread        (rbp, thread_off         * wordSize);
 392 
 393 #ifdef ASSERT
 394     // verify that threads correspond
 395     {
 396       Label L, S;
 397       __ cmpptr(r15_thread, thread);
 398       __ jcc(Assembler::notEqual, S);
 399       __ get_thread(rbx);
 400       __ cmpptr(r15_thread, rbx);
 401       __ jcc(Assembler::equal, L);
 402       __ bind(S);
 403       __ stop("StubRoutines::catch_exception: threads must correspond");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // set pending exception
 409     __ verify_oop(rax);
 410 
 411     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 412     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 413     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 414     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 415 
 416     // complete return to VM
 417     assert(StubRoutines::_call_stub_return_address != NULL,
 418            "_call_stub_return_address must have been generated before");
 419     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 420 
 421     return start;
 422   }
 423 
 424   // Continuation point for runtime calls returning with a pending
 425   // exception.  The pending exception check happened in the runtime
 426   // or native call stub.  The pending exception in Thread is
 427   // converted into a Java-level exception.
 428   //
 429   // Contract with Java-level exception handlers:
 430   // rax: exception
 431   // rdx: throwing pc
 432   //
 433   // NOTE: At entry of this stub, exception-pc must be on stack !!
 434 
 435   address generate_forward_exception() {
 436     StubCodeMark mark(this, "StubRoutines", "forward exception");
 437     address start = __ pc();
 438 
 439     // Upon entry, the sp points to the return address returning into
 440     // Java (interpreted or compiled) code; i.e., the return address
 441     // becomes the throwing pc.
 442     //
 443     // Arguments pushed before the runtime call are still on the stack
 444     // but the exception handler will reset the stack pointer ->
 445     // ignore them.  A potential result in registers can be ignored as
 446     // well.
 447 
 448 #ifdef ASSERT
 449     // make sure this code is only executed if there is a pending exception
 450     {
 451       Label L;
 452       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 453       __ jcc(Assembler::notEqual, L);
 454       __ stop("StubRoutines::forward exception: no pending exception (1)");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // compute exception handler into rbx
 460     __ movptr(c_rarg0, Address(rsp, 0));
 461     BLOCK_COMMENT("call exception_handler_for_return_address");
 462     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 463                          SharedRuntime::exception_handler_for_return_address),
 464                     r15_thread, c_rarg0);
 465     __ mov(rbx, rax);
 466 
 467     // setup rax & rdx, remove return address & clear pending exception
 468     __ pop(rdx);
 469     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 470     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 471 
 472 #ifdef ASSERT
 473     // make sure exception is set
 474     {
 475       Label L;
 476       __ testptr(rax, rax);
 477       __ jcc(Assembler::notEqual, L);
 478       __ stop("StubRoutines::forward exception: no pending exception (2)");
 479       __ bind(L);
 480     }
 481 #endif
 482 
 483     // continue at exception handler (return address removed)
 484     // rax: exception
 485     // rbx: exception handler
 486     // rdx: throwing pc
 487     __ verify_oop(rax);
 488     __ jmp(rbx);
 489 
 490     return start;
 491   }
 492 
 493   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 494   //
 495   // Arguments :
 496   //    c_rarg0: exchange_value
 497   //    c_rarg0: dest
 498   //
 499   // Result:
 500   //    *dest <- ex, return (orig *dest)
 501   address generate_atomic_xchg() {
 502     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 503     address start = __ pc();
 504 
 505     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 506     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 507     __ ret(0);
 508 
 509     return start;
 510   }
 511 
 512   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 513   //
 514   // Arguments :
 515   //    c_rarg0: exchange_value
 516   //    c_rarg1: dest
 517   //
 518   // Result:
 519   //    *dest <- ex, return (orig *dest)
 520   address generate_atomic_xchg_ptr() {
 521     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 522     address start = __ pc();
 523 
 524     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 525     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 526     __ ret(0);
 527 
 528     return start;
 529   }
 530 
 531   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 532   //                                         jint compare_value)
 533   //
 534   // Arguments :
 535   //    c_rarg0: exchange_value
 536   //    c_rarg1: dest
 537   //    c_rarg2: compare_value
 538   //
 539   // Result:
 540   //    if ( compare_value == *dest ) {
 541   //       *dest = exchange_value
 542   //       return compare_value;
 543   //    else
 544   //       return *dest;
 545   address generate_atomic_cmpxchg() {
 546     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 547     address start = __ pc();
 548 
 549     __ movl(rax, c_rarg2);
 550    if ( os::is_MP() ) __ lock();
 551     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 552     __ ret(0);
 553 
 554     return start;
 555   }
 556 
 557   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 558   //                                             volatile jlong* dest,
 559   //                                             jlong compare_value)
 560   // Arguments :
 561   //    c_rarg0: exchange_value
 562   //    c_rarg1: dest
 563   //    c_rarg2: compare_value
 564   //
 565   // Result:
 566   //    if ( compare_value == *dest ) {
 567   //       *dest = exchange_value
 568   //       return compare_value;
 569   //    else
 570   //       return *dest;
 571   address generate_atomic_cmpxchg_long() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 573     address start = __ pc();
 574 
 575     __ movq(rax, c_rarg2);
 576    if ( os::is_MP() ) __ lock();
 577     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 578     __ ret(0);
 579 
 580     return start;
 581   }
 582 
 583   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 584   //
 585   // Arguments :
 586   //    c_rarg0: add_value
 587   //    c_rarg1: dest
 588   //
 589   // Result:
 590   //    *dest += add_value
 591   //    return *dest;
 592   address generate_atomic_add() {
 593     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 594     address start = __ pc();
 595 
 596     __ movl(rax, c_rarg0);
 597    if ( os::is_MP() ) __ lock();
 598     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 599     __ addl(rax, c_rarg0);
 600     __ ret(0);
 601 
 602     return start;
 603   }
 604 
 605   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 606   //
 607   // Arguments :
 608   //    c_rarg0: add_value
 609   //    c_rarg1: dest
 610   //
 611   // Result:
 612   //    *dest += add_value
 613   //    return *dest;
 614   address generate_atomic_add_ptr() {
 615     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 616     address start = __ pc();
 617 
 618     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 619    if ( os::is_MP() ) __ lock();
 620     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 621     __ addptr(rax, c_rarg0);
 622     __ ret(0);
 623 
 624     return start;
 625   }
 626 
 627   // Support for intptr_t OrderAccess::fence()
 628   //
 629   // Arguments :
 630   //
 631   // Result:
 632   address generate_orderaccess_fence() {
 633     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 634     address start = __ pc();
 635     __ membar(Assembler::StoreLoad);
 636     __ ret(0);
 637 
 638     return start;
 639   }
 640 
 641   // Support for intptr_t get_previous_fp()
 642   //
 643   // This routine is used to find the previous frame pointer for the
 644   // caller (current_frame_guess). This is used as part of debugging
 645   // ps() is seemingly lost trying to find frames.
 646   // This code assumes that caller current_frame_guess) has a frame.
 647   address generate_get_previous_fp() {
 648     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 649     const Address old_fp(rbp, 0);
 650     const Address older_fp(rax, 0);
 651     address start = __ pc();
 652 
 653     __ enter();
 654     __ movptr(rax, old_fp); // callers fp
 655     __ movptr(rax, older_fp); // the frame for ps()
 656     __ pop(rbp);
 657     __ ret(0);
 658 
 659     return start;
 660   }
 661 
 662   //----------------------------------------------------------------------------------------------------
 663   // Support for void verify_mxcsr()
 664   //
 665   // This routine is used with -Xcheck:jni to verify that native
 666   // JNI code does not return to Java code without restoring the
 667   // MXCSR register to our expected state.
 668 
 669   address generate_verify_mxcsr() {
 670     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 671     address start = __ pc();
 672 
 673     const Address mxcsr_save(rsp, 0);
 674 
 675     if (CheckJNICalls) {
 676       Label ok_ret;
 677       __ push(rax);
 678       __ subptr(rsp, wordSize);      // allocate a temp location
 679       __ stmxcsr(mxcsr_save);
 680       __ movl(rax, mxcsr_save);
 681       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 682       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 683       __ jcc(Assembler::equal, ok_ret);
 684 
 685       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 686 
 687       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 688 
 689       __ bind(ok_ret);
 690       __ addptr(rsp, wordSize);
 691       __ pop(rax);
 692     }
 693 
 694     __ ret(0);
 695 
 696     return start;
 697   }
 698 
 699   address generate_f2i_fixup() {
 700     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 701     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 702 
 703     address start = __ pc();
 704 
 705     Label L;
 706 
 707     __ push(rax);
 708     __ push(c_rarg3);
 709     __ push(c_rarg2);
 710     __ push(c_rarg1);
 711 
 712     __ movl(rax, 0x7f800000);
 713     __ xorl(c_rarg3, c_rarg3);
 714     __ movl(c_rarg2, inout);
 715     __ movl(c_rarg1, c_rarg2);
 716     __ andl(c_rarg1, 0x7fffffff);
 717     __ cmpl(rax, c_rarg1); // NaN? -> 0
 718     __ jcc(Assembler::negative, L);
 719     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 720     __ movl(c_rarg3, 0x80000000);
 721     __ movl(rax, 0x7fffffff);
 722     __ cmovl(Assembler::positive, c_rarg3, rax);
 723 
 724     __ bind(L);
 725     __ movptr(inout, c_rarg3);
 726 
 727     __ pop(c_rarg1);
 728     __ pop(c_rarg2);
 729     __ pop(c_rarg3);
 730     __ pop(rax);
 731 
 732     __ ret(0);
 733 
 734     return start;
 735   }
 736 
 737   address generate_f2l_fixup() {
 738     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 739     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 740     address start = __ pc();
 741 
 742     Label L;
 743 
 744     __ push(rax);
 745     __ push(c_rarg3);
 746     __ push(c_rarg2);
 747     __ push(c_rarg1);
 748 
 749     __ movl(rax, 0x7f800000);
 750     __ xorl(c_rarg3, c_rarg3);
 751     __ movl(c_rarg2, inout);
 752     __ movl(c_rarg1, c_rarg2);
 753     __ andl(c_rarg1, 0x7fffffff);
 754     __ cmpl(rax, c_rarg1); // NaN? -> 0
 755     __ jcc(Assembler::negative, L);
 756     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 757     __ mov64(c_rarg3, 0x8000000000000000);
 758     __ mov64(rax, 0x7fffffffffffffff);
 759     __ cmov(Assembler::positive, c_rarg3, rax);
 760 
 761     __ bind(L);
 762     __ movptr(inout, c_rarg3);
 763 
 764     __ pop(c_rarg1);
 765     __ pop(c_rarg2);
 766     __ pop(c_rarg3);
 767     __ pop(rax);
 768 
 769     __ ret(0);
 770 
 771     return start;
 772   }
 773 
 774   address generate_d2i_fixup() {
 775     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 776     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 777 
 778     address start = __ pc();
 779 
 780     Label L;
 781 
 782     __ push(rax);
 783     __ push(c_rarg3);
 784     __ push(c_rarg2);
 785     __ push(c_rarg1);
 786     __ push(c_rarg0);
 787 
 788     __ movl(rax, 0x7ff00000);
 789     __ movq(c_rarg2, inout);
 790     __ movl(c_rarg3, c_rarg2);
 791     __ mov(c_rarg1, c_rarg2);
 792     __ mov(c_rarg0, c_rarg2);
 793     __ negl(c_rarg3);
 794     __ shrptr(c_rarg1, 0x20);
 795     __ orl(c_rarg3, c_rarg2);
 796     __ andl(c_rarg1, 0x7fffffff);
 797     __ xorl(c_rarg2, c_rarg2);
 798     __ shrl(c_rarg3, 0x1f);
 799     __ orl(c_rarg1, c_rarg3);
 800     __ cmpl(rax, c_rarg1);
 801     __ jcc(Assembler::negative, L); // NaN -> 0
 802     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 803     __ movl(c_rarg2, 0x80000000);
 804     __ movl(rax, 0x7fffffff);
 805     __ cmov(Assembler::positive, c_rarg2, rax);
 806 
 807     __ bind(L);
 808     __ movptr(inout, c_rarg2);
 809 
 810     __ pop(c_rarg0);
 811     __ pop(c_rarg1);
 812     __ pop(c_rarg2);
 813     __ pop(c_rarg3);
 814     __ pop(rax);
 815 
 816     __ ret(0);
 817 
 818     return start;
 819   }
 820 
 821   address generate_d2l_fixup() {
 822     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 824 
 825     address start = __ pc();
 826 
 827     Label L;
 828 
 829     __ push(rax);
 830     __ push(c_rarg3);
 831     __ push(c_rarg2);
 832     __ push(c_rarg1);
 833     __ push(c_rarg0);
 834 
 835     __ movl(rax, 0x7ff00000);
 836     __ movq(c_rarg2, inout);
 837     __ movl(c_rarg3, c_rarg2);
 838     __ mov(c_rarg1, c_rarg2);
 839     __ mov(c_rarg0, c_rarg2);
 840     __ negl(c_rarg3);
 841     __ shrptr(c_rarg1, 0x20);
 842     __ orl(c_rarg3, c_rarg2);
 843     __ andl(c_rarg1, 0x7fffffff);
 844     __ xorl(c_rarg2, c_rarg2);
 845     __ shrl(c_rarg3, 0x1f);
 846     __ orl(c_rarg1, c_rarg3);
 847     __ cmpl(rax, c_rarg1);
 848     __ jcc(Assembler::negative, L); // NaN -> 0
 849     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 850     __ mov64(c_rarg2, 0x8000000000000000);
 851     __ mov64(rax, 0x7fffffffffffffff);
 852     __ cmovq(Assembler::positive, c_rarg2, rax);
 853 
 854     __ bind(L);
 855     __ movq(inout, c_rarg2);
 856 
 857     __ pop(c_rarg0);
 858     __ pop(c_rarg1);
 859     __ pop(c_rarg2);
 860     __ pop(c_rarg3);
 861     __ pop(rax);
 862 
 863     __ ret(0);
 864 
 865     return start;
 866   }
 867 
 868   address generate_fp_mask(const char *stub_name, int64_t mask) {
 869     __ align(CodeEntryAlignment);
 870     StubCodeMark mark(this, "StubRoutines", stub_name);
 871     address start = __ pc();
 872 
 873     __ emit_data64( mask, relocInfo::none );
 874     __ emit_data64( mask, relocInfo::none );
 875 
 876     return start;
 877   }
 878 
 879   // The following routine generates a subroutine to throw an
 880   // asynchronous UnknownError when an unsafe access gets a fault that
 881   // could not be reasonably prevented by the programmer.  (Example:
 882   // SIGBUS/OBJERR.)
 883   address generate_handler_for_unsafe_access() {
 884     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 885     address start = __ pc();
 886 
 887     __ push(0);                       // hole for return address-to-be
 888     __ pusha();                       // push registers
 889     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 890 
 891     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 892     BLOCK_COMMENT("call handle_unsafe_access");
 893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 894     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 895 
 896     __ movptr(next_pc, rax);          // stuff next address
 897     __ popa();
 898     __ ret(0);                        // jump to next address
 899 
 900     return start;
 901   }
 902 
 903   // Non-destructive plausibility checks for oops
 904   //
 905   // Arguments:
 906   //    all args on stack!
 907   //
 908   // Stack after saving c_rarg3:
 909   //    [tos + 0]: saved c_rarg3
 910   //    [tos + 1]: saved c_rarg2
 911   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 912   //    [tos + 3]: saved flags
 913   //    [tos + 4]: return address
 914   //  * [tos + 5]: error message (char*)
 915   //  * [tos + 6]: object to verify (oop)
 916   //  * [tos + 7]: saved rax - saved by caller and bashed
 917   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 918   //  * = popped on exit
 919   address generate_verify_oop() {
 920     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 921     address start = __ pc();
 922 
 923     Label exit, error;
 924 
 925     __ pushf();
 926     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 927 
 928     __ push(r12);
 929 
 930     // save c_rarg2 and c_rarg3
 931     __ push(c_rarg2);
 932     __ push(c_rarg3);
 933 
 934     enum {
 935            // After previous pushes.
 936            oop_to_verify = 6 * wordSize,
 937            saved_rax     = 7 * wordSize,
 938            saved_r10     = 8 * wordSize,
 939 
 940            // Before the call to MacroAssembler::debug(), see below.
 941            return_addr   = 16 * wordSize,
 942            error_msg     = 17 * wordSize
 943     };
 944 
 945     // get object
 946     __ movptr(rax, Address(rsp, oop_to_verify));
 947 
 948     // make sure object is 'reasonable'
 949     __ testptr(rax, rax);
 950     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
 951     // Check if the oop is in the right area of memory
 952     __ movptr(c_rarg2, rax);
 953     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
 954     __ andptr(c_rarg2, c_rarg3);
 955     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
 956     __ cmpptr(c_rarg2, c_rarg3);
 957     __ jcc(Assembler::notZero, error);
 958 
 959     // set r12 to heapbase for load_klass()
 960     __ reinit_heapbase();
 961 
 962     // make sure klass is 'reasonable'
 963     __ load_klass(rax, rax);  // get klass
 964     __ testptr(rax, rax);
 965     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
 966     // Check if the klass is in the right area of memory
 967     __ mov(c_rarg2, rax);
 968     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 969     __ andptr(c_rarg2, c_rarg3);
 970     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 971     __ cmpptr(c_rarg2, c_rarg3);
 972     __ jcc(Assembler::notZero, error);
 973 
 974     // make sure klass' klass is 'reasonable'
 975     __ load_klass(rax, rax);
 976     __ testptr(rax, rax);
 977     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
 978     // Check if the klass' klass is in the right area of memory
 979     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 980     __ andptr(rax, c_rarg3);
 981     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 982     __ cmpptr(rax, c_rarg3);
 983     __ jcc(Assembler::notZero, error);
 984 
 985     // return if everything seems ok
 986     __ bind(exit);
 987     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 988     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
 989     __ pop(c_rarg3);                             // restore c_rarg3
 990     __ pop(c_rarg2);                             // restore c_rarg2
 991     __ pop(r12);                                 // restore r12
 992     __ popf();                                   // restore flags
 993     __ ret(4 * wordSize);                        // pop caller saved stuff
 994 
 995     // handle errors
 996     __ bind(error);
 997     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 998     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
 999     __ pop(c_rarg3);                             // get saved c_rarg3 back
1000     __ pop(c_rarg2);                             // get saved c_rarg2 back
1001     __ pop(r12);                                 // get saved r12 back
1002     __ popf();                                   // get saved flags off stack --
1003                                                  // will be ignored
1004 
1005     __ pusha();                                  // push registers
1006                                                  // (rip is already
1007                                                  // already pushed)
1008     // debug(char* msg, int64_t pc, int64_t regs[])
1009     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1010     // pushed all the registers, so now the stack looks like:
1011     //     [tos +  0] 16 saved registers
1012     //     [tos + 16] return address
1013     //   * [tos + 17] error message (char*)
1014     //   * [tos + 18] object to verify (oop)
1015     //   * [tos + 19] saved rax - saved by caller and bashed
1016     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1017     //   * = popped on exit
1018 
1019     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1020     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1021     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1022     __ mov(r12, rsp);                               // remember rsp
1023     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1024     __ andptr(rsp, -16);                            // align stack as required by ABI
1025     BLOCK_COMMENT("call MacroAssembler::debug");
1026     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1027     __ mov(rsp, r12);                               // restore rsp
1028     __ popa();                                      // pop registers (includes r12)
1029     __ ret(4 * wordSize);                           // pop caller saved stuff
1030 
1031     return start;
1032   }
1033 
1034   static address disjoint_byte_copy_entry;
1035   static address disjoint_short_copy_entry;
1036   static address disjoint_int_copy_entry;
1037   static address disjoint_long_copy_entry;
1038   static address disjoint_oop_copy_entry;
1039 
1040   static address byte_copy_entry;
1041   static address short_copy_entry;
1042   static address int_copy_entry;
1043   static address long_copy_entry;
1044   static address oop_copy_entry;
1045 
1046   static address checkcast_copy_entry;
1047 
1048   //
1049   // Verify that a register contains clean 32-bits positive value
1050   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1051   //
1052   //  Input:
1053   //    Rint  -  32-bits value
1054   //    Rtmp  -  scratch
1055   //
1056   void assert_clean_int(Register Rint, Register Rtmp) {
1057 #ifdef ASSERT
1058     Label L;
1059     assert_different_registers(Rtmp, Rint);
1060     __ movslq(Rtmp, Rint);
1061     __ cmpq(Rtmp, Rint);
1062     __ jcc(Assembler::equal, L);
1063     __ stop("high 32-bits of int value are not 0");
1064     __ bind(L);
1065 #endif
1066   }
1067 
1068   //  Generate overlap test for array copy stubs
1069   //
1070   //  Input:
1071   //     c_rarg0 - from
1072   //     c_rarg1 - to
1073   //     c_rarg2 - element count
1074   //
1075   //  Output:
1076   //     rax   - &from[element count - 1]
1077   //
1078   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1079     assert(no_overlap_target != NULL, "must be generated");
1080     array_overlap_test(no_overlap_target, NULL, sf);
1081   }
1082   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1083     array_overlap_test(NULL, &L_no_overlap, sf);
1084   }
1085   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1086     const Register from     = c_rarg0;
1087     const Register to       = c_rarg1;
1088     const Register count    = c_rarg2;
1089     const Register end_from = rax;
1090 
1091     __ cmpptr(to, from);
1092     __ lea(end_from, Address(from, count, sf, 0));
1093     if (NOLp == NULL) {
1094       ExternalAddress no_overlap(no_overlap_target);
1095       __ jump_cc(Assembler::belowEqual, no_overlap);
1096       __ cmpptr(to, end_from);
1097       __ jump_cc(Assembler::aboveEqual, no_overlap);
1098     } else {
1099       __ jcc(Assembler::belowEqual, (*NOLp));
1100       __ cmpptr(to, end_from);
1101       __ jcc(Assembler::aboveEqual, (*NOLp));
1102     }
1103   }
1104 
1105   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1106   //
1107   // Outputs:
1108   //    rdi - rcx
1109   //    rsi - rdx
1110   //    rdx - r8
1111   //    rcx - r9
1112   //
1113   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1114   // are non-volatile.  r9 and r10 should not be used by the caller.
1115   //
1116   void setup_arg_regs(int nargs = 3) {
1117     const Register saved_rdi = r9;
1118     const Register saved_rsi = r10;
1119     assert(nargs == 3 || nargs == 4, "else fix");
1120 #ifdef _WIN64
1121     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1122            "unexpected argument registers");
1123     if (nargs >= 4)
1124       __ mov(rax, r9);  // r9 is also saved_rdi
1125     __ movptr(saved_rdi, rdi);
1126     __ movptr(saved_rsi, rsi);
1127     __ mov(rdi, rcx); // c_rarg0
1128     __ mov(rsi, rdx); // c_rarg1
1129     __ mov(rdx, r8);  // c_rarg2
1130     if (nargs >= 4)
1131       __ mov(rcx, rax); // c_rarg3 (via rax)
1132 #else
1133     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1134            "unexpected argument registers");
1135 #endif
1136   }
1137 
1138   void restore_arg_regs() {
1139     const Register saved_rdi = r9;
1140     const Register saved_rsi = r10;
1141 #ifdef _WIN64
1142     __ movptr(rdi, saved_rdi);
1143     __ movptr(rsi, saved_rsi);
1144 #endif
1145   }
1146 
1147   // Generate code for an array write pre barrier
1148   //
1149   //     addr    -  starting address
1150   //     count    -  element count
1151   //
1152   //     Destroy no registers!
1153   //
1154   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1155     BarrierSet* bs = Universe::heap()->barrier_set();
1156     switch (bs->kind()) {
1157       case BarrierSet::G1SATBCT:
1158       case BarrierSet::G1SATBCTLogging:
1159         {
1160           __ pusha();                      // push registers
1161           if (count == c_rarg0) {
1162             if (addr == c_rarg1) {
1163               // exactly backwards!!
1164               __ xchgptr(c_rarg1, c_rarg0);
1165             } else {
1166               __ movptr(c_rarg1, count);
1167               __ movptr(c_rarg0, addr);
1168             }
1169 
1170           } else {
1171             __ movptr(c_rarg0, addr);
1172             __ movptr(c_rarg1, count);
1173           }
1174           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1175           __ popa();
1176         }
1177         break;
1178       case BarrierSet::CardTableModRef:
1179       case BarrierSet::CardTableExtension:
1180       case BarrierSet::ModRef:
1181         break;
1182       default:
1183         ShouldNotReachHere();
1184 
1185     }
1186   }
1187 
1188   //
1189   // Generate code for an array write post barrier
1190   //
1191   //  Input:
1192   //     start    - register containing starting address of destination array
1193   //     end      - register containing ending address of destination array
1194   //     scratch  - scratch register
1195   //
1196   //  The input registers are overwritten.
1197   //  The ending address is inclusive.
1198   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1199     assert_different_registers(start, end, scratch);
1200     BarrierSet* bs = Universe::heap()->barrier_set();
1201     switch (bs->kind()) {
1202       case BarrierSet::G1SATBCT:
1203       case BarrierSet::G1SATBCTLogging:
1204 
1205         {
1206           __ pusha();                      // push registers (overkill)
1207           // must compute element count unless barrier set interface is changed (other platforms supply count)
1208           assert_different_registers(start, end, scratch);
1209           __ lea(scratch, Address(end, BytesPerHeapOop));
1210           __ subptr(scratch, start);               // subtract start to get #bytes
1211           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1212           __ mov(c_rarg0, start);
1213           __ mov(c_rarg1, scratch);
1214           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1215           __ popa();
1216         }
1217         break;
1218       case BarrierSet::CardTableModRef:
1219       case BarrierSet::CardTableExtension:
1220         {
1221           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1222           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1223 
1224           Label L_loop;
1225 
1226            __ shrptr(start, CardTableModRefBS::card_shift);
1227            __ addptr(end, BytesPerHeapOop);
1228            __ shrptr(end, CardTableModRefBS::card_shift);
1229            __ subptr(end, start); // number of bytes to copy
1230 
1231           intptr_t disp = (intptr_t) ct->byte_map_base;
1232           if (__ is_simm32(disp)) {
1233             Address cardtable(noreg, noreg, Address::no_scale, disp);
1234             __ lea(scratch, cardtable);
1235           } else {
1236             ExternalAddress cardtable((address)disp);
1237             __ lea(scratch, cardtable);
1238           }
1239 
1240           const Register count = end; // 'end' register contains bytes count now
1241           __ addptr(start, scratch);
1242         __ BIND(L_loop);
1243           __ movb(Address(start, count, Address::times_1), 0);
1244           __ decrement(count);
1245           __ jcc(Assembler::greaterEqual, L_loop);
1246         }
1247         break;
1248       default:
1249         ShouldNotReachHere();
1250 
1251     }
1252   }
1253 
1254 
1255   // Copy big chunks forward
1256   //
1257   // Inputs:
1258   //   end_from     - source arrays end address
1259   //   end_to       - destination array end address
1260   //   qword_count  - 64-bits element count, negative
1261   //   to           - scratch
1262   //   L_copy_32_bytes - entry label
1263   //   L_copy_8_bytes  - exit  label
1264   //
1265   void copy_32_bytes_forward(Register end_from, Register end_to,
1266                              Register qword_count, Register to,
1267                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1268     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1269     Label L_loop;
1270     __ align(OptoLoopAlignment);
1271   __ BIND(L_loop);
1272     if(UseUnalignedLoadStores) {
1273       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1274       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1275       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1276       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1277 
1278     } else {
1279       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1280       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1281       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1282       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1283       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1284       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1285       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1286       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1287     }
1288   __ BIND(L_copy_32_bytes);
1289     __ addptr(qword_count, 4);
1290     __ jcc(Assembler::lessEqual, L_loop);
1291     __ subptr(qword_count, 4);
1292     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1293   }
1294 
1295 
1296   // Copy big chunks backward
1297   //
1298   // Inputs:
1299   //   from         - source arrays address
1300   //   dest         - destination array address
1301   //   qword_count  - 64-bits element count
1302   //   to           - scratch
1303   //   L_copy_32_bytes - entry label
1304   //   L_copy_8_bytes  - exit  label
1305   //
1306   void copy_32_bytes_backward(Register from, Register dest,
1307                               Register qword_count, Register to,
1308                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1309     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1310     Label L_loop;
1311     __ align(OptoLoopAlignment);
1312   __ BIND(L_loop);
1313     if(UseUnalignedLoadStores) {
1314       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1315       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1316       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1317       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1318 
1319     } else {
1320       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1321       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1322       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1323       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1324       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1325       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1326       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1327       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1328     }
1329   __ BIND(L_copy_32_bytes);
1330     __ subptr(qword_count, 4);
1331     __ jcc(Assembler::greaterEqual, L_loop);
1332     __ addptr(qword_count, 4);
1333     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1334   }
1335 
1336 
1337   // Arguments:
1338   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1339   //             ignored
1340   //   name    - stub name string
1341   //
1342   // Inputs:
1343   //   c_rarg0   - source array address
1344   //   c_rarg1   - destination array address
1345   //   c_rarg2   - element count, treated as ssize_t, can be zero
1346   //
1347   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1348   // we let the hardware handle it.  The one to eight bytes within words,
1349   // dwords or qwords that span cache line boundaries will still be loaded
1350   // and stored atomically.
1351   //
1352   // Side Effects:
1353   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1354   //   used by generate_conjoint_byte_copy().
1355   //
1356   address generate_disjoint_byte_copy(bool aligned, const char *name) {
1357     __ align(CodeEntryAlignment);
1358     StubCodeMark mark(this, "StubRoutines", name);
1359     address start = __ pc();
1360 
1361     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1362     Label L_copy_byte, L_exit;
1363     const Register from        = rdi;  // source array address
1364     const Register to          = rsi;  // destination array address
1365     const Register count       = rdx;  // elements count
1366     const Register byte_count  = rcx;
1367     const Register qword_count = count;
1368     const Register end_from    = from; // source array end address
1369     const Register end_to      = to;   // destination array end address
1370     // End pointers are inclusive, and if count is not zero they point
1371     // to the last unit copied:  end_to[0] := end_from[0]
1372 
1373     __ enter(); // required for proper stackwalking of RuntimeStub frame
1374     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1375 
1376     disjoint_byte_copy_entry = __ pc();
1377     BLOCK_COMMENT("Entry:");
1378     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1379 
1380     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1381                       // r9 and r10 may be used to save non-volatile registers
1382 
1383     // 'from', 'to' and 'count' are now valid
1384     __ movptr(byte_count, count);
1385     __ shrptr(count, 3); // count => qword_count
1386 
1387     // Copy from low to high addresses.  Use 'to' as scratch.
1388     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1389     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1390     __ negptr(qword_count); // make the count negative
1391     __ jmp(L_copy_32_bytes);
1392 
1393     // Copy trailing qwords
1394   __ BIND(L_copy_8_bytes);
1395     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1396     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1397     __ increment(qword_count);
1398     __ jcc(Assembler::notZero, L_copy_8_bytes);
1399 
1400     // Check for and copy trailing dword
1401   __ BIND(L_copy_4_bytes);
1402     __ testl(byte_count, 4);
1403     __ jccb(Assembler::zero, L_copy_2_bytes);
1404     __ movl(rax, Address(end_from, 8));
1405     __ movl(Address(end_to, 8), rax);
1406 
1407     __ addptr(end_from, 4);
1408     __ addptr(end_to, 4);
1409 
1410     // Check for and copy trailing word
1411   __ BIND(L_copy_2_bytes);
1412     __ testl(byte_count, 2);
1413     __ jccb(Assembler::zero, L_copy_byte);
1414     __ movw(rax, Address(end_from, 8));
1415     __ movw(Address(end_to, 8), rax);
1416 
1417     __ addptr(end_from, 2);
1418     __ addptr(end_to, 2);
1419 
1420     // Check for and copy trailing byte
1421   __ BIND(L_copy_byte);
1422     __ testl(byte_count, 1);
1423     __ jccb(Assembler::zero, L_exit);
1424     __ movb(rax, Address(end_from, 8));
1425     __ movb(Address(end_to, 8), rax);
1426 
1427   __ BIND(L_exit);
1428     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1429     restore_arg_regs();
1430     __ xorptr(rax, rax); // return 0
1431     __ leave(); // required for proper stackwalking of RuntimeStub frame
1432     __ ret(0);
1433 
1434     // Copy in 32-bytes chunks
1435     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1436     __ jmp(L_copy_4_bytes);
1437 
1438     return start;
1439   }
1440 
1441   // Arguments:
1442   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1443   //             ignored
1444   //   name    - stub name string
1445   //
1446   // Inputs:
1447   //   c_rarg0   - source array address
1448   //   c_rarg1   - destination array address
1449   //   c_rarg2   - element count, treated as ssize_t, can be zero
1450   //
1451   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1452   // we let the hardware handle it.  The one to eight bytes within words,
1453   // dwords or qwords that span cache line boundaries will still be loaded
1454   // and stored atomically.
1455   //
1456   address generate_conjoint_byte_copy(bool aligned, const char *name) {
1457     __ align(CodeEntryAlignment);
1458     StubCodeMark mark(this, "StubRoutines", name);
1459     address start = __ pc();
1460 
1461     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1462     const Register from        = rdi;  // source array address
1463     const Register to          = rsi;  // destination array address
1464     const Register count       = rdx;  // elements count
1465     const Register byte_count  = rcx;
1466     const Register qword_count = count;
1467 
1468     __ enter(); // required for proper stackwalking of RuntimeStub frame
1469     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1470 
1471     byte_copy_entry = __ pc();
1472     BLOCK_COMMENT("Entry:");
1473     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1474 
1475     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1476     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1477                       // r9 and r10 may be used to save non-volatile registers
1478 
1479     // 'from', 'to' and 'count' are now valid
1480     __ movptr(byte_count, count);
1481     __ shrptr(count, 3);   // count => qword_count
1482 
1483     // Copy from high to low addresses.
1484 
1485     // Check for and copy trailing byte
1486     __ testl(byte_count, 1);
1487     __ jcc(Assembler::zero, L_copy_2_bytes);
1488     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1489     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1490     __ decrement(byte_count); // Adjust for possible trailing word
1491 
1492     // Check for and copy trailing word
1493   __ BIND(L_copy_2_bytes);
1494     __ testl(byte_count, 2);
1495     __ jcc(Assembler::zero, L_copy_4_bytes);
1496     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1497     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1498 
1499     // Check for and copy trailing dword
1500   __ BIND(L_copy_4_bytes);
1501     __ testl(byte_count, 4);
1502     __ jcc(Assembler::zero, L_copy_32_bytes);
1503     __ movl(rax, Address(from, qword_count, Address::times_8));
1504     __ movl(Address(to, qword_count, Address::times_8), rax);
1505     __ jmp(L_copy_32_bytes);
1506 
1507     // Copy trailing qwords
1508   __ BIND(L_copy_8_bytes);
1509     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1510     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1511     __ decrement(qword_count);
1512     __ jcc(Assembler::notZero, L_copy_8_bytes);
1513 
1514     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1515     restore_arg_regs();
1516     __ xorptr(rax, rax); // return 0
1517     __ leave(); // required for proper stackwalking of RuntimeStub frame
1518     __ ret(0);
1519 
1520     // Copy in 32-bytes chunks
1521     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1522 
1523     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1524     restore_arg_regs();
1525     __ xorptr(rax, rax); // return 0
1526     __ leave(); // required for proper stackwalking of RuntimeStub frame
1527     __ ret(0);
1528 
1529     return start;
1530   }
1531 
1532   // Arguments:
1533   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1534   //             ignored
1535   //   name    - stub name string
1536   //
1537   // Inputs:
1538   //   c_rarg0   - source array address
1539   //   c_rarg1   - destination array address
1540   //   c_rarg2   - element count, treated as ssize_t, can be zero
1541   //
1542   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1543   // let the hardware handle it.  The two or four words within dwords
1544   // or qwords that span cache line boundaries will still be loaded
1545   // and stored atomically.
1546   //
1547   // Side Effects:
1548   //   disjoint_short_copy_entry is set to the no-overlap entry point
1549   //   used by generate_conjoint_short_copy().
1550   //
1551   address generate_disjoint_short_copy(bool aligned, const char *name) {
1552     __ align(CodeEntryAlignment);
1553     StubCodeMark mark(this, "StubRoutines", name);
1554     address start = __ pc();
1555 
1556     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1557     const Register from        = rdi;  // source array address
1558     const Register to          = rsi;  // destination array address
1559     const Register count       = rdx;  // elements count
1560     const Register word_count  = rcx;
1561     const Register qword_count = count;
1562     const Register end_from    = from; // source array end address
1563     const Register end_to      = to;   // destination array end address
1564     // End pointers are inclusive, and if count is not zero they point
1565     // to the last unit copied:  end_to[0] := end_from[0]
1566 
1567     __ enter(); // required for proper stackwalking of RuntimeStub frame
1568     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1569 
1570     disjoint_short_copy_entry = __ pc();
1571     BLOCK_COMMENT("Entry:");
1572     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1573 
1574     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1575                       // r9 and r10 may be used to save non-volatile registers
1576 
1577     // 'from', 'to' and 'count' are now valid
1578     __ movptr(word_count, count);
1579     __ shrptr(count, 2); // count => qword_count
1580 
1581     // Copy from low to high addresses.  Use 'to' as scratch.
1582     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1583     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1584     __ negptr(qword_count);
1585     __ jmp(L_copy_32_bytes);
1586 
1587     // Copy trailing qwords
1588   __ BIND(L_copy_8_bytes);
1589     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1590     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1591     __ increment(qword_count);
1592     __ jcc(Assembler::notZero, L_copy_8_bytes);
1593 
1594     // Original 'dest' is trashed, so we can't use it as a
1595     // base register for a possible trailing word copy
1596 
1597     // Check for and copy trailing dword
1598   __ BIND(L_copy_4_bytes);
1599     __ testl(word_count, 2);
1600     __ jccb(Assembler::zero, L_copy_2_bytes);
1601     __ movl(rax, Address(end_from, 8));
1602     __ movl(Address(end_to, 8), rax);
1603 
1604     __ addptr(end_from, 4);
1605     __ addptr(end_to, 4);
1606 
1607     // Check for and copy trailing word
1608   __ BIND(L_copy_2_bytes);
1609     __ testl(word_count, 1);
1610     __ jccb(Assembler::zero, L_exit);
1611     __ movw(rax, Address(end_from, 8));
1612     __ movw(Address(end_to, 8), rax);
1613 
1614   __ BIND(L_exit);
1615     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1616     restore_arg_regs();
1617     __ xorptr(rax, rax); // return 0
1618     __ leave(); // required for proper stackwalking of RuntimeStub frame
1619     __ ret(0);
1620 
1621     // Copy in 32-bytes chunks
1622     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1623     __ jmp(L_copy_4_bytes);
1624 
1625     return start;
1626   }
1627 
1628   // Arguments:
1629   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1630   //             ignored
1631   //   name    - stub name string
1632   //
1633   // Inputs:
1634   //   c_rarg0   - source array address
1635   //   c_rarg1   - destination array address
1636   //   c_rarg2   - element count, treated as ssize_t, can be zero
1637   //
1638   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1639   // let the hardware handle it.  The two or four words within dwords
1640   // or qwords that span cache line boundaries will still be loaded
1641   // and stored atomically.
1642   //
1643   address generate_conjoint_short_copy(bool aligned, const char *name) {
1644     __ align(CodeEntryAlignment);
1645     StubCodeMark mark(this, "StubRoutines", name);
1646     address start = __ pc();
1647 
1648     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1649     const Register from        = rdi;  // source array address
1650     const Register to          = rsi;  // destination array address
1651     const Register count       = rdx;  // elements count
1652     const Register word_count  = rcx;
1653     const Register qword_count = count;
1654 
1655     __ enter(); // required for proper stackwalking of RuntimeStub frame
1656     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1657 
1658     short_copy_entry = __ pc();
1659     BLOCK_COMMENT("Entry:");
1660     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1661 
1662     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1663     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1664                       // r9 and r10 may be used to save non-volatile registers
1665 
1666     // 'from', 'to' and 'count' are now valid
1667     __ movptr(word_count, count);
1668     __ shrptr(count, 2); // count => qword_count
1669 
1670     // Copy from high to low addresses.  Use 'to' as scratch.
1671 
1672     // Check for and copy trailing word
1673     __ testl(word_count, 1);
1674     __ jccb(Assembler::zero, L_copy_4_bytes);
1675     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1676     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1677 
1678     // Check for and copy trailing dword
1679   __ BIND(L_copy_4_bytes);
1680     __ testl(word_count, 2);
1681     __ jcc(Assembler::zero, L_copy_32_bytes);
1682     __ movl(rax, Address(from, qword_count, Address::times_8));
1683     __ movl(Address(to, qword_count, Address::times_8), rax);
1684     __ jmp(L_copy_32_bytes);
1685 
1686     // Copy trailing qwords
1687   __ BIND(L_copy_8_bytes);
1688     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1689     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1690     __ decrement(qword_count);
1691     __ jcc(Assembler::notZero, L_copy_8_bytes);
1692 
1693     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1694     restore_arg_regs();
1695     __ xorptr(rax, rax); // return 0
1696     __ leave(); // required for proper stackwalking of RuntimeStub frame
1697     __ ret(0);
1698 
1699     // Copy in 32-bytes chunks
1700     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1701 
1702     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1703     restore_arg_regs();
1704     __ xorptr(rax, rax); // return 0
1705     __ leave(); // required for proper stackwalking of RuntimeStub frame
1706     __ ret(0);
1707 
1708     return start;
1709   }
1710 
1711   // Arguments:
1712   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1713   //             ignored
1714   //   is_oop  - true => oop array, so generate store check code
1715   //   name    - stub name string
1716   //
1717   // Inputs:
1718   //   c_rarg0   - source array address
1719   //   c_rarg1   - destination array address
1720   //   c_rarg2   - element count, treated as ssize_t, can be zero
1721   //
1722   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1723   // the hardware handle it.  The two dwords within qwords that span
1724   // cache line boundaries will still be loaded and stored atomicly.
1725   //
1726   // Side Effects:
1727   //   disjoint_int_copy_entry is set to the no-overlap entry point
1728   //   used by generate_conjoint_int_oop_copy().
1729   //
1730   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1731     __ align(CodeEntryAlignment);
1732     StubCodeMark mark(this, "StubRoutines", name);
1733     address start = __ pc();
1734 
1735     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1736     const Register from        = rdi;  // source array address
1737     const Register to          = rsi;  // destination array address
1738     const Register count       = rdx;  // elements count
1739     const Register dword_count = rcx;
1740     const Register qword_count = count;
1741     const Register end_from    = from; // source array end address
1742     const Register end_to      = to;   // destination array end address
1743     const Register saved_to    = r11;  // saved destination array address
1744     // End pointers are inclusive, and if count is not zero they point
1745     // to the last unit copied:  end_to[0] := end_from[0]
1746 
1747     __ enter(); // required for proper stackwalking of RuntimeStub frame
1748     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1749 
1750     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1751 
1752     if (is_oop) {
1753       // no registers are destroyed by this call
1754       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1755     }
1756 
1757     BLOCK_COMMENT("Entry:");
1758     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1759 
1760     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1761                       // r9 and r10 may be used to save non-volatile registers
1762 
1763     if (is_oop) {
1764       __ movq(saved_to, to);
1765     }
1766 
1767     // 'from', 'to' and 'count' are now valid
1768     __ movptr(dword_count, count);
1769     __ shrptr(count, 1); // count => qword_count
1770 
1771     // Copy from low to high addresses.  Use 'to' as scratch.
1772     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1773     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1774     __ negptr(qword_count);
1775     __ jmp(L_copy_32_bytes);
1776 
1777     // Copy trailing qwords
1778   __ BIND(L_copy_8_bytes);
1779     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1780     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1781     __ increment(qword_count);
1782     __ jcc(Assembler::notZero, L_copy_8_bytes);
1783 
1784     // Check for and copy trailing dword
1785   __ BIND(L_copy_4_bytes);
1786     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1787     __ jccb(Assembler::zero, L_exit);
1788     __ movl(rax, Address(end_from, 8));
1789     __ movl(Address(end_to, 8), rax);
1790 
1791   __ BIND(L_exit);
1792     if (is_oop) {
1793       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1794       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1795     }
1796     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1797     restore_arg_regs();
1798     __ xorptr(rax, rax); // return 0
1799     __ leave(); // required for proper stackwalking of RuntimeStub frame
1800     __ ret(0);
1801 
1802     // Copy 32-bytes chunks
1803     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1804     __ jmp(L_copy_4_bytes);
1805 
1806     return start;
1807   }
1808 
1809   // Arguments:
1810   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1811   //             ignored
1812   //   is_oop  - true => oop array, so generate store check code
1813   //   name    - stub name string
1814   //
1815   // Inputs:
1816   //   c_rarg0   - source array address
1817   //   c_rarg1   - destination array address
1818   //   c_rarg2   - element count, treated as ssize_t, can be zero
1819   //
1820   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1821   // the hardware handle it.  The two dwords within qwords that span
1822   // cache line boundaries will still be loaded and stored atomicly.
1823   //
1824   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1825     __ align(CodeEntryAlignment);
1826     StubCodeMark mark(this, "StubRoutines", name);
1827     address start = __ pc();
1828 
1829     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1830     const Register from        = rdi;  // source array address
1831     const Register to          = rsi;  // destination array address
1832     const Register count       = rdx;  // elements count
1833     const Register dword_count = rcx;
1834     const Register qword_count = count;
1835 
1836     __ enter(); // required for proper stackwalking of RuntimeStub frame
1837     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1838 
1839     if (is_oop) {
1840       // no registers are destroyed by this call
1841       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1842     }
1843 
1844     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1845     BLOCK_COMMENT("Entry:");
1846     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1847 
1848     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1849                        Address::times_4);
1850     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1851                       // r9 and r10 may be used to save non-volatile registers
1852 
1853     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1854     // 'from', 'to' and 'count' are now valid
1855     __ movptr(dword_count, count);
1856     __ shrptr(count, 1); // count => qword_count
1857 
1858     // Copy from high to low addresses.  Use 'to' as scratch.
1859 
1860     // Check for and copy trailing dword
1861     __ testl(dword_count, 1);
1862     __ jcc(Assembler::zero, L_copy_32_bytes);
1863     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1864     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1865     __ jmp(L_copy_32_bytes);
1866 
1867     // Copy trailing qwords
1868   __ BIND(L_copy_8_bytes);
1869     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1870     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1871     __ decrement(qword_count);
1872     __ jcc(Assembler::notZero, L_copy_8_bytes);
1873 
1874     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1875     if (is_oop) {
1876       __ jmp(L_exit);
1877     }
1878     restore_arg_regs();
1879     __ xorptr(rax, rax); // return 0
1880     __ leave(); // required for proper stackwalking of RuntimeStub frame
1881     __ ret(0);
1882 
1883     // Copy in 32-bytes chunks
1884     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1885 
1886    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1887    __ bind(L_exit);
1888      if (is_oop) {
1889        Register end_to = rdx;
1890        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1891        gen_write_ref_array_post_barrier(to, end_to, rax);
1892      }
1893     restore_arg_regs();
1894     __ xorptr(rax, rax); // return 0
1895     __ leave(); // required for proper stackwalking of RuntimeStub frame
1896     __ ret(0);
1897 
1898     return start;
1899   }
1900 
1901   // Arguments:
1902   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1903   //             ignored
1904   //   is_oop  - true => oop array, so generate store check code
1905   //   name    - stub name string
1906   //
1907   // Inputs:
1908   //   c_rarg0   - source array address
1909   //   c_rarg1   - destination array address
1910   //   c_rarg2   - element count, treated as ssize_t, can be zero
1911   //
1912  // Side Effects:
1913   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1914   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1915   //
1916   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1917     __ align(CodeEntryAlignment);
1918     StubCodeMark mark(this, "StubRoutines", name);
1919     address start = __ pc();
1920 
1921     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1922     const Register from        = rdi;  // source array address
1923     const Register to          = rsi;  // destination array address
1924     const Register qword_count = rdx;  // elements count
1925     const Register end_from    = from; // source array end address
1926     const Register end_to      = rcx;  // destination array end address
1927     const Register saved_to    = to;
1928     // End pointers are inclusive, and if count is not zero they point
1929     // to the last unit copied:  end_to[0] := end_from[0]
1930 
1931     __ enter(); // required for proper stackwalking of RuntimeStub frame
1932     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1933     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1934 
1935     if (is_oop) {
1936       disjoint_oop_copy_entry  = __ pc();
1937       // no registers are destroyed by this call
1938       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1939     } else {
1940       disjoint_long_copy_entry = __ pc();
1941     }
1942     BLOCK_COMMENT("Entry:");
1943     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1944 
1945     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1946                       // r9 and r10 may be used to save non-volatile registers
1947 
1948     // 'from', 'to' and 'qword_count' are now valid
1949 
1950     // Copy from low to high addresses.  Use 'to' as scratch.
1951     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1952     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1953     __ negptr(qword_count);
1954     __ jmp(L_copy_32_bytes);
1955 
1956     // Copy trailing qwords
1957   __ BIND(L_copy_8_bytes);
1958     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1959     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1960     __ increment(qword_count);
1961     __ jcc(Assembler::notZero, L_copy_8_bytes);
1962 
1963     if (is_oop) {
1964       __ jmp(L_exit);
1965     } else {
1966       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1967       restore_arg_regs();
1968       __ xorptr(rax, rax); // return 0
1969       __ leave(); // required for proper stackwalking of RuntimeStub frame
1970       __ ret(0);
1971     }
1972 
1973     // Copy 64-byte chunks
1974     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1975 
1976     if (is_oop) {
1977     __ BIND(L_exit);
1978       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1979       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1980     } else {
1981       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1982     }
1983     restore_arg_regs();
1984     __ xorptr(rax, rax); // return 0
1985     __ leave(); // required for proper stackwalking of RuntimeStub frame
1986     __ ret(0);
1987 
1988     return start;
1989   }
1990 
1991   // Arguments:
1992   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1993   //             ignored
1994   //   is_oop  - true => oop array, so generate store check code
1995   //   name    - stub name string
1996   //
1997   // Inputs:
1998   //   c_rarg0   - source array address
1999   //   c_rarg1   - destination array address
2000   //   c_rarg2   - element count, treated as ssize_t, can be zero
2001   //
2002   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
2003     __ align(CodeEntryAlignment);
2004     StubCodeMark mark(this, "StubRoutines", name);
2005     address start = __ pc();
2006 
2007     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2008     const Register from        = rdi;  // source array address
2009     const Register to          = rsi;  // destination array address
2010     const Register qword_count = rdx;  // elements count
2011     const Register saved_count = rcx;
2012 
2013     __ enter(); // required for proper stackwalking of RuntimeStub frame
2014     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2015 
2016     address disjoint_copy_entry = NULL;
2017     if (is_oop) {
2018       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
2019       disjoint_copy_entry = disjoint_oop_copy_entry;
2020       oop_copy_entry  = __ pc();
2021       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
2022     } else {
2023       disjoint_copy_entry = disjoint_long_copy_entry;
2024       long_copy_entry = __ pc();
2025       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
2026     }
2027     BLOCK_COMMENT("Entry:");
2028     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2029 
2030     array_overlap_test(disjoint_copy_entry, Address::times_8);
2031     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2032                       // r9 and r10 may be used to save non-volatile registers
2033 
2034     // 'from', 'to' and 'qword_count' are now valid
2035 
2036     if (is_oop) {
2037       // Save to and count for store barrier
2038       __ movptr(saved_count, qword_count);
2039       // No registers are destroyed by this call
2040       gen_write_ref_array_pre_barrier(to, saved_count);
2041     }
2042 
2043     __ jmp(L_copy_32_bytes);
2044 
2045     // Copy trailing qwords
2046   __ BIND(L_copy_8_bytes);
2047     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2048     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2049     __ decrement(qword_count);
2050     __ jcc(Assembler::notZero, L_copy_8_bytes);
2051 
2052     if (is_oop) {
2053       __ jmp(L_exit);
2054     } else {
2055       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2056       restore_arg_regs();
2057       __ xorptr(rax, rax); // return 0
2058       __ leave(); // required for proper stackwalking of RuntimeStub frame
2059       __ ret(0);
2060     }
2061 
2062     // Copy in 32-bytes chunks
2063     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2064 
2065     if (is_oop) {
2066     __ BIND(L_exit);
2067       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2068       gen_write_ref_array_post_barrier(to, rcx, rax);
2069       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2070     } else {
2071       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2072     }
2073     restore_arg_regs();
2074     __ xorptr(rax, rax); // return 0
2075     __ leave(); // required for proper stackwalking of RuntimeStub frame
2076     __ ret(0);
2077 
2078     return start;
2079   }
2080 
2081 
2082   // Helper for generating a dynamic type check.
2083   // Smashes no registers.
2084   void generate_type_check(Register sub_klass,
2085                            Register super_check_offset,
2086                            Register super_klass,
2087                            Label& L_success) {
2088     assert_different_registers(sub_klass, super_check_offset, super_klass);
2089 
2090     BLOCK_COMMENT("type_check:");
2091 
2092     Label L_miss;
2093 
2094     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2095                                      super_check_offset);
2096     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2097 
2098     // Fall through on failure!
2099     __ BIND(L_miss);
2100   }
2101 
2102   //
2103   //  Generate checkcasting array copy stub
2104   //
2105   //  Input:
2106   //    c_rarg0   - source array address
2107   //    c_rarg1   - destination array address
2108   //    c_rarg2   - element count, treated as ssize_t, can be zero
2109   //    c_rarg3   - size_t ckoff (super_check_offset)
2110   // not Win64
2111   //    c_rarg4   - oop ckval (super_klass)
2112   // Win64
2113   //    rsp+40    - oop ckval (super_klass)
2114   //
2115   //  Output:
2116   //    rax ==  0  -  success
2117   //    rax == -1^K - failure, where K is partial transfer count
2118   //
2119   address generate_checkcast_copy(const char *name) {
2120 
2121     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2122 
2123     // Input registers (after setup_arg_regs)
2124     const Register from        = rdi;   // source array address
2125     const Register to          = rsi;   // destination array address
2126     const Register length      = rdx;   // elements count
2127     const Register ckoff       = rcx;   // super_check_offset
2128     const Register ckval       = r8;    // super_klass
2129 
2130     // Registers used as temps (r13, r14 are save-on-entry)
2131     const Register end_from    = from;  // source array end address
2132     const Register end_to      = r13;   // destination array end address
2133     const Register count       = rdx;   // -(count_remaining)
2134     const Register r14_length  = r14;   // saved copy of length
2135     // End pointers are inclusive, and if length is not zero they point
2136     // to the last unit copied:  end_to[0] := end_from[0]
2137 
2138     const Register rax_oop    = rax;    // actual oop copied
2139     const Register r11_klass  = r11;    // oop._klass
2140 
2141     //---------------------------------------------------------------
2142     // Assembler stub will be used for this call to arraycopy
2143     // if the two arrays are subtypes of Object[] but the
2144     // destination array type is not equal to or a supertype
2145     // of the source type.  Each element must be separately
2146     // checked.
2147 
2148     __ align(CodeEntryAlignment);
2149     StubCodeMark mark(this, "StubRoutines", name);
2150     address start = __ pc();
2151 
2152     __ enter(); // required for proper stackwalking of RuntimeStub frame
2153 
2154     checkcast_copy_entry  = __ pc();
2155     BLOCK_COMMENT("Entry:");
2156 
2157 #ifdef ASSERT
2158     // caller guarantees that the arrays really are different
2159     // otherwise, we would have to make conjoint checks
2160     { Label L;
2161       array_overlap_test(L, TIMES_OOP);
2162       __ stop("checkcast_copy within a single array");
2163       __ bind(L);
2164     }
2165 #endif //ASSERT
2166 
2167     // allocate spill slots for r13, r14
2168     enum {
2169       saved_r13_offset,
2170       saved_r14_offset,
2171       saved_rbp_offset,
2172       saved_rip_offset,
2173       saved_rarg0_offset
2174     };
2175     __ subptr(rsp, saved_rbp_offset * wordSize);
2176     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2177     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2178     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2179                        // ckoff => rcx, ckval => r8
2180                        // r9 and r10 may be used to save non-volatile registers
2181 #ifdef _WIN64
2182     // last argument (#4) is on stack on Win64
2183     const int ckval_offset = saved_rarg0_offset + 4;
2184     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
2185 #endif
2186 
2187     // check that int operands are properly extended to size_t
2188     assert_clean_int(length, rax);
2189     assert_clean_int(ckoff, rax);
2190 
2191 #ifdef ASSERT
2192     BLOCK_COMMENT("assert consistent ckoff/ckval");
2193     // The ckoff and ckval must be mutually consistent,
2194     // even though caller generates both.
2195     { Label L;
2196       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2197                         Klass::super_check_offset_offset_in_bytes());
2198       __ cmpl(ckoff, Address(ckval, sco_offset));
2199       __ jcc(Assembler::equal, L);
2200       __ stop("super_check_offset inconsistent");
2201       __ bind(L);
2202     }
2203 #endif //ASSERT
2204 
2205     // Loop-invariant addresses.  They are exclusive end pointers.
2206     Address end_from_addr(from, length, TIMES_OOP, 0);
2207     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2208     // Loop-variant addresses.  They assume post-incremented count < 0.
2209     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2210     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2211 
2212     gen_write_ref_array_pre_barrier(to, count);
2213 
2214     // Copy from low to high addresses, indexed from the end of each array.
2215     __ lea(end_from, end_from_addr);
2216     __ lea(end_to,   end_to_addr);
2217     __ movptr(r14_length, length);        // save a copy of the length
2218     assert(length == count, "");          // else fix next line:
2219     __ negptr(count);                     // negate and test the length
2220     __ jcc(Assembler::notZero, L_load_element);
2221 
2222     // Empty array:  Nothing to do.
2223     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2224     __ jmp(L_done);
2225 
2226     // ======== begin loop ========
2227     // (Loop is rotated; its entry is L_load_element.)
2228     // Loop control:
2229     //   for (count = -count; count != 0; count++)
2230     // Base pointers src, dst are biased by 8*(count-1),to last element.
2231     __ align(OptoLoopAlignment);
2232 
2233     __ BIND(L_store_element);
2234     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2235     __ increment(count);               // increment the count toward zero
2236     __ jcc(Assembler::zero, L_do_card_marks);
2237 
2238     // ======== loop entry is here ========
2239     __ BIND(L_load_element);
2240     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2241     __ testptr(rax_oop, rax_oop);
2242     __ jcc(Assembler::zero, L_store_element);
2243 
2244     __ load_klass(r11_klass, rax_oop);// query the object klass
2245     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2246     // ======== end loop ========
2247 
2248     // It was a real error; we must depend on the caller to finish the job.
2249     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2250     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2251     // and report their number to the caller.
2252     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2253     __ lea(end_to, to_element_addr);
2254     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2255     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2256     __ movptr(rax, r14_length);           // original oops
2257     __ addptr(rax, count);                // K = (original - remaining) oops
2258     __ notptr(rax);                       // report (-1^K) to caller
2259     __ jmp(L_done);
2260 
2261     // Come here on success only.
2262     __ BIND(L_do_card_marks);
2263     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2264     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2265     __ xorptr(rax, rax);                  // return 0 on success
2266 
2267     // Common exit point (success or failure).
2268     __ BIND(L_done);
2269     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2270     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2271     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2272     restore_arg_regs();
2273     __ leave(); // required for proper stackwalking of RuntimeStub frame
2274     __ ret(0);
2275 
2276     return start;
2277   }
2278 
2279   //
2280   //  Generate 'unsafe' array copy stub
2281   //  Though just as safe as the other stubs, it takes an unscaled
2282   //  size_t argument instead of an element count.
2283   //
2284   //  Input:
2285   //    c_rarg0   - source array address
2286   //    c_rarg1   - destination array address
2287   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2288   //
2289   // Examines the alignment of the operands and dispatches
2290   // to a long, int, short, or byte copy loop.
2291   //
2292   address generate_unsafe_copy(const char *name) {
2293 
2294     Label L_long_aligned, L_int_aligned, L_short_aligned;
2295 
2296     // Input registers (before setup_arg_regs)
2297     const Register from        = c_rarg0;  // source array address
2298     const Register to          = c_rarg1;  // destination array address
2299     const Register size        = c_rarg2;  // byte count (size_t)
2300 
2301     // Register used as a temp
2302     const Register bits        = rax;      // test copy of low bits
2303 
2304     __ align(CodeEntryAlignment);
2305     StubCodeMark mark(this, "StubRoutines", name);
2306     address start = __ pc();
2307 
2308     __ enter(); // required for proper stackwalking of RuntimeStub frame
2309 
2310     // bump this on entry, not on exit:
2311     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2312 
2313     __ mov(bits, from);
2314     __ orptr(bits, to);
2315     __ orptr(bits, size);
2316 
2317     __ testb(bits, BytesPerLong-1);
2318     __ jccb(Assembler::zero, L_long_aligned);
2319 
2320     __ testb(bits, BytesPerInt-1);
2321     __ jccb(Assembler::zero, L_int_aligned);
2322 
2323     __ testb(bits, BytesPerShort-1);
2324     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2325 
2326     __ BIND(L_short_aligned);
2327     __ shrptr(size, LogBytesPerShort); // size => short_count
2328     __ jump(RuntimeAddress(short_copy_entry));
2329 
2330     __ BIND(L_int_aligned);
2331     __ shrptr(size, LogBytesPerInt); // size => int_count
2332     __ jump(RuntimeAddress(int_copy_entry));
2333 
2334     __ BIND(L_long_aligned);
2335     __ shrptr(size, LogBytesPerLong); // size => qword_count
2336     __ jump(RuntimeAddress(long_copy_entry));
2337 
2338     return start;
2339   }
2340 
2341   // Perform range checks on the proposed arraycopy.
2342   // Kills temp, but nothing else.
2343   // Also, clean the sign bits of src_pos and dst_pos.
2344   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2345                               Register src_pos, // source position (c_rarg1)
2346                               Register dst,     // destination array oo (c_rarg2)
2347                               Register dst_pos, // destination position (c_rarg3)
2348                               Register length,
2349                               Register temp,
2350                               Label& L_failed) {
2351     BLOCK_COMMENT("arraycopy_range_checks:");
2352 
2353     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2354     __ movl(temp, length);
2355     __ addl(temp, src_pos);             // src_pos + length
2356     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2357     __ jcc(Assembler::above, L_failed);
2358 
2359     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2360     __ movl(temp, length);
2361     __ addl(temp, dst_pos);             // dst_pos + length
2362     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2363     __ jcc(Assembler::above, L_failed);
2364 
2365     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2366     // Move with sign extension can be used since they are positive.
2367     __ movslq(src_pos, src_pos);
2368     __ movslq(dst_pos, dst_pos);
2369 
2370     BLOCK_COMMENT("arraycopy_range_checks done");
2371   }
2372 
2373   //
2374   //  Generate generic array copy stubs
2375   //
2376   //  Input:
2377   //    c_rarg0    -  src oop
2378   //    c_rarg1    -  src_pos (32-bits)
2379   //    c_rarg2    -  dst oop
2380   //    c_rarg3    -  dst_pos (32-bits)
2381   // not Win64
2382   //    c_rarg4    -  element count (32-bits)
2383   // Win64
2384   //    rsp+40     -  element count (32-bits)
2385   //
2386   //  Output:
2387   //    rax ==  0  -  success
2388   //    rax == -1^K - failure, where K is partial transfer count
2389   //
2390   address generate_generic_copy(const char *name) {
2391 
2392     Label L_failed, L_failed_0, L_objArray;
2393     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2394 
2395     // Input registers
2396     const Register src        = c_rarg0;  // source array oop
2397     const Register src_pos    = c_rarg1;  // source position
2398     const Register dst        = c_rarg2;  // destination array oop
2399     const Register dst_pos    = c_rarg3;  // destination position
2400     // elements count is on stack on Win64
2401 #ifdef _WIN64
2402 #define C_RARG4 Address(rsp, 6 * wordSize)
2403 #else
2404 #define C_RARG4 c_rarg4
2405 #endif
2406 
2407     { int modulus = CodeEntryAlignment;
2408       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2409       int advance = target - (__ offset() % modulus);
2410       if (advance < 0)  advance += modulus;
2411       if (advance > 0)  __ nop(advance);
2412     }
2413     StubCodeMark mark(this, "StubRoutines", name);
2414 
2415     // Short-hop target to L_failed.  Makes for denser prologue code.
2416     __ BIND(L_failed_0);
2417     __ jmp(L_failed);
2418     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2419 
2420     __ align(CodeEntryAlignment);
2421     address start = __ pc();
2422 
2423     __ enter(); // required for proper stackwalking of RuntimeStub frame
2424 
2425     // bump this on entry, not on exit:
2426     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2427 
2428     //-----------------------------------------------------------------------
2429     // Assembler stub will be used for this call to arraycopy
2430     // if the following conditions are met:
2431     //
2432     // (1) src and dst must not be null.
2433     // (2) src_pos must not be negative.
2434     // (3) dst_pos must not be negative.
2435     // (4) length  must not be negative.
2436     // (5) src klass and dst klass should be the same and not NULL.
2437     // (6) src and dst should be arrays.
2438     // (7) src_pos + length must not exceed length of src.
2439     // (8) dst_pos + length must not exceed length of dst.
2440     //
2441 
2442     //  if (src == NULL) return -1;
2443     __ testptr(src, src);         // src oop
2444     size_t j1off = __ offset();
2445     __ jccb(Assembler::zero, L_failed_0);
2446 
2447     //  if (src_pos < 0) return -1;
2448     __ testl(src_pos, src_pos); // src_pos (32-bits)
2449     __ jccb(Assembler::negative, L_failed_0);
2450 
2451     //  if (dst == NULL) return -1;
2452     __ testptr(dst, dst);         // dst oop
2453     __ jccb(Assembler::zero, L_failed_0);
2454 
2455     //  if (dst_pos < 0) return -1;
2456     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2457     size_t j4off = __ offset();
2458     __ jccb(Assembler::negative, L_failed_0);
2459 
2460     // The first four tests are very dense code,
2461     // but not quite dense enough to put four
2462     // jumps in a 16-byte instruction fetch buffer.
2463     // That's good, because some branch predicters
2464     // do not like jumps so close together.
2465     // Make sure of this.
2466     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2467 
2468     // registers used as temp
2469     const Register r11_length    = r11; // elements count to copy
2470     const Register r10_src_klass = r10; // array klass
2471     const Register r9_dst_klass  = r9;  // dest array klass
2472 
2473     //  if (length < 0) return -1;
2474     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2475     __ testl(r11_length, r11_length);
2476     __ jccb(Assembler::negative, L_failed_0);
2477 
2478     __ load_klass(r10_src_klass, src);
2479 #ifdef ASSERT
2480     //  assert(src->klass() != NULL);
2481     BLOCK_COMMENT("assert klasses not null");
2482     { Label L1, L2;
2483       __ testptr(r10_src_klass, r10_src_klass);
2484       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2485       __ bind(L1);
2486       __ stop("broken null klass");
2487       __ bind(L2);
2488       __ load_klass(r9_dst_klass, dst);
2489       __ cmpq(r9_dst_klass, 0);
2490       __ jcc(Assembler::equal, L1);     // this would be broken also
2491       BLOCK_COMMENT("assert done");
2492     }
2493 #endif
2494 
2495     // Load layout helper (32-bits)
2496     //
2497     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2498     // 32        30    24            16              8     2                 0
2499     //
2500     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2501     //
2502 
2503     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2504                     Klass::layout_helper_offset_in_bytes();
2505 
2506     const Register rax_lh = rax;  // layout helper
2507 
2508     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2509 
2510     // Handle objArrays completely differently...
2511     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2512     __ cmpl(rax_lh, objArray_lh);
2513     __ jcc(Assembler::equal, L_objArray);
2514 
2515     //  if (src->klass() != dst->klass()) return -1;
2516     __ load_klass(r9_dst_klass, dst);
2517     __ cmpq(r10_src_klass, r9_dst_klass);
2518     __ jcc(Assembler::notEqual, L_failed);
2519 
2520     //  if (!src->is_Array()) return -1;
2521     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2522     __ jcc(Assembler::greaterEqual, L_failed);
2523 
2524     // At this point, it is known to be a typeArray (array_tag 0x3).
2525 #ifdef ASSERT
2526     { Label L;
2527       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2528       __ jcc(Assembler::greaterEqual, L);
2529       __ stop("must be a primitive array");
2530       __ bind(L);
2531     }
2532 #endif
2533 
2534     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2535                            r10, L_failed);
2536 
2537     // typeArrayKlass
2538     //
2539     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2540     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2541     //
2542 
2543     const Register r10_offset = r10;    // array offset
2544     const Register rax_elsize = rax_lh; // element size
2545 
2546     __ movl(r10_offset, rax_lh);
2547     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2548     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2549     __ addptr(src, r10_offset);           // src array offset
2550     __ addptr(dst, r10_offset);           // dst array offset
2551     BLOCK_COMMENT("choose copy loop based on element size");
2552     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2553 
2554     // next registers should be set before the jump to corresponding stub
2555     const Register from     = c_rarg0;  // source array address
2556     const Register to       = c_rarg1;  // destination array address
2557     const Register count    = c_rarg2;  // elements count
2558 
2559     // 'from', 'to', 'count' registers should be set in such order
2560     // since they are the same as 'src', 'src_pos', 'dst'.
2561 
2562   __ BIND(L_copy_bytes);
2563     __ cmpl(rax_elsize, 0);
2564     __ jccb(Assembler::notEqual, L_copy_shorts);
2565     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2566     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2567     __ movl2ptr(count, r11_length); // length
2568     __ jump(RuntimeAddress(byte_copy_entry));
2569 
2570   __ BIND(L_copy_shorts);
2571     __ cmpl(rax_elsize, LogBytesPerShort);
2572     __ jccb(Assembler::notEqual, L_copy_ints);
2573     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2574     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2575     __ movl2ptr(count, r11_length); // length
2576     __ jump(RuntimeAddress(short_copy_entry));
2577 
2578   __ BIND(L_copy_ints);
2579     __ cmpl(rax_elsize, LogBytesPerInt);
2580     __ jccb(Assembler::notEqual, L_copy_longs);
2581     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2582     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2583     __ movl2ptr(count, r11_length); // length
2584     __ jump(RuntimeAddress(int_copy_entry));
2585 
2586   __ BIND(L_copy_longs);
2587 #ifdef ASSERT
2588     { Label L;
2589       __ cmpl(rax_elsize, LogBytesPerLong);
2590       __ jcc(Assembler::equal, L);
2591       __ stop("must be long copy, but elsize is wrong");
2592       __ bind(L);
2593     }
2594 #endif
2595     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2596     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2597     __ movl2ptr(count, r11_length); // length
2598     __ jump(RuntimeAddress(long_copy_entry));
2599 
2600     // objArrayKlass
2601   __ BIND(L_objArray);
2602     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2603 
2604     Label L_plain_copy, L_checkcast_copy;
2605     //  test array classes for subtyping
2606     __ load_klass(r9_dst_klass, dst);
2607     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2608     __ jcc(Assembler::notEqual, L_checkcast_copy);
2609 
2610     // Identically typed arrays can be copied without element-wise checks.
2611     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2612                            r10, L_failed);
2613 
2614     __ lea(from, Address(src, src_pos, TIMES_OOP,
2615                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2616     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2617                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2618     __ movl2ptr(count, r11_length); // length
2619   __ BIND(L_plain_copy);
2620     __ jump(RuntimeAddress(oop_copy_entry));
2621 
2622   __ BIND(L_checkcast_copy);
2623     // live at this point:  r10_src_klass, !r11_length
2624     {
2625       // assert(r11_length == C_RARG4); // will reload from here
2626       Register r11_dst_klass = r11;
2627       __ load_klass(r11_dst_klass, dst);
2628 
2629       // Before looking at dst.length, make sure dst is also an objArray.
2630       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2631       __ jcc(Assembler::notEqual, L_failed);
2632 
2633       // It is safe to examine both src.length and dst.length.
2634 #ifndef _WIN64
2635       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2636                              rax, L_failed);
2637 #else
2638       __ movl(r11_length, C_RARG4);     // reload
2639       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2640                              rax, L_failed);
2641       __ load_klass(r11_dst_klass, dst); // reload
2642 #endif
2643 
2644       // Marshal the base address arguments now, freeing registers.
2645       __ lea(from, Address(src, src_pos, TIMES_OOP,
2646                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2647       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2648                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2649       __ movl(count, C_RARG4);          // length (reloaded)
2650       Register sco_temp = c_rarg3;      // this register is free now
2651       assert_different_registers(from, to, count, sco_temp,
2652                                  r11_dst_klass, r10_src_klass);
2653       assert_clean_int(count, sco_temp);
2654 
2655       // Generate the type check.
2656       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2657                         Klass::super_check_offset_offset_in_bytes());
2658       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2659       assert_clean_int(sco_temp, rax);
2660       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2661 
2662       // Fetch destination element klass from the objArrayKlass header.
2663       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2664                        objArrayKlass::element_klass_offset_in_bytes());
2665       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2666       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2667       assert_clean_int(sco_temp, rax);
2668 
2669       // the checkcast_copy loop needs two extra arguments:
2670       assert(c_rarg3 == sco_temp, "#3 already in place");
2671       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2672       __ jump(RuntimeAddress(checkcast_copy_entry));
2673     }
2674 
2675   __ BIND(L_failed);
2676     __ xorptr(rax, rax);
2677     __ notptr(rax); // return -1
2678     __ leave();   // required for proper stackwalking of RuntimeStub frame
2679     __ ret(0);
2680 
2681     return start;
2682   }
2683 
2684 #undef length_arg
2685 
2686   void generate_arraycopy_stubs() {
2687     // Call the conjoint generation methods immediately after
2688     // the disjoint ones so that short branches from the former
2689     // to the latter can be generated.
2690     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2691     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2692 
2693     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2694     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2695 
2696     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2697     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2698 
2699     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2700     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2701 
2702 
2703     if (UseCompressedOops) {
2704       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2705       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2706     } else {
2707       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2708       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2709     }
2710 
2711     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2712     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2713     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2714 
2715     // We don't generate specialized code for HeapWord-aligned source
2716     // arrays, so just use the code we've already generated
2717     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2718     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2719 
2720     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2721     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2722 
2723     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2724     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2725 
2726     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2727     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2728 
2729     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2730     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2731   }
2732 
2733   void generate_math_stubs() {
2734     {
2735       StubCodeMark mark(this, "StubRoutines", "log");
2736       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2737 
2738       __ subq(rsp, 8);
2739       __ movdbl(Address(rsp, 0), xmm0);
2740       __ fld_d(Address(rsp, 0));
2741       __ flog();
2742       __ fstp_d(Address(rsp, 0));
2743       __ movdbl(xmm0, Address(rsp, 0));
2744       __ addq(rsp, 8);
2745       __ ret(0);
2746     }
2747     {
2748       StubCodeMark mark(this, "StubRoutines", "log10");
2749       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2750 
2751       __ subq(rsp, 8);
2752       __ movdbl(Address(rsp, 0), xmm0);
2753       __ fld_d(Address(rsp, 0));
2754       __ flog10();
2755       __ fstp_d(Address(rsp, 0));
2756       __ movdbl(xmm0, Address(rsp, 0));
2757       __ addq(rsp, 8);
2758       __ ret(0);
2759     }
2760     {
2761       StubCodeMark mark(this, "StubRoutines", "sin");
2762       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2763 
2764       __ subq(rsp, 8);
2765       __ movdbl(Address(rsp, 0), xmm0);
2766       __ fld_d(Address(rsp, 0));
2767       __ trigfunc('s');
2768       __ fstp_d(Address(rsp, 0));
2769       __ movdbl(xmm0, Address(rsp, 0));
2770       __ addq(rsp, 8);
2771       __ ret(0);
2772     }
2773     {
2774       StubCodeMark mark(this, "StubRoutines", "cos");
2775       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2776 
2777       __ subq(rsp, 8);
2778       __ movdbl(Address(rsp, 0), xmm0);
2779       __ fld_d(Address(rsp, 0));
2780       __ trigfunc('c');
2781       __ fstp_d(Address(rsp, 0));
2782       __ movdbl(xmm0, Address(rsp, 0));
2783       __ addq(rsp, 8);
2784       __ ret(0);
2785     }
2786     {
2787       StubCodeMark mark(this, "StubRoutines", "tan");
2788       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2789 
2790       __ subq(rsp, 8);
2791       __ movdbl(Address(rsp, 0), xmm0);
2792       __ fld_d(Address(rsp, 0));
2793       __ trigfunc('t');
2794       __ fstp_d(Address(rsp, 0));
2795       __ movdbl(xmm0, Address(rsp, 0));
2796       __ addq(rsp, 8);
2797       __ ret(0);
2798     }
2799 
2800     // The intrinsic version of these seem to return the same value as
2801     // the strict version.
2802     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2803     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2804   }
2805 
2806 #undef __
2807 #define __ masm->
2808 
2809   // Continuation point for throwing of implicit exceptions that are
2810   // not handled in the current activation. Fabricates an exception
2811   // oop and initiates normal exception dispatching in this
2812   // frame. Since we need to preserve callee-saved values (currently
2813   // only for C2, but done for C1 as well) we need a callee-saved oop
2814   // map and therefore have to make these stubs into RuntimeStubs
2815   // rather than BufferBlobs.  If the compiler needs all registers to
2816   // be preserved between the fault point and the exception handler
2817   // then it must assume responsibility for that in
2818   // AbstractCompiler::continuation_for_implicit_null_exception or
2819   // continuation_for_implicit_division_by_zero_exception. All other
2820   // implicit exceptions (e.g., NullPointerException or
2821   // AbstractMethodError on entry) are either at call sites or
2822   // otherwise assume that stack unwinding will be initiated, so
2823   // caller saved registers were assumed volatile in the compiler.
2824   address generate_throw_exception(const char* name,
2825                                    address runtime_entry,
2826                                    bool restore_saved_exception_pc) {
2827     // Information about frame layout at time of blocking runtime call.
2828     // Note that we only have to preserve callee-saved registers since
2829     // the compilers are responsible for supplying a continuation point
2830     // if they expect all registers to be preserved.
2831     enum layout {
2832       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2833       rbp_off2,
2834       return_off,
2835       return_off2,
2836       framesize // inclusive of return address
2837     };
2838 
2839     int insts_size = 512;
2840     int locs_size  = 64;
2841 
2842     CodeBuffer code(name, insts_size, locs_size);
2843     OopMapSet* oop_maps  = new OopMapSet();
2844     MacroAssembler* masm = new MacroAssembler(&code);
2845 
2846     address start = __ pc();
2847 
2848     // This is an inlined and slightly modified version of call_VM
2849     // which has the ability to fetch the return PC out of
2850     // thread-local storage and also sets up last_Java_sp slightly
2851     // differently than the real call_VM
2852     if (restore_saved_exception_pc) {
2853       __ movptr(rax,
2854                 Address(r15_thread,
2855                         in_bytes(JavaThread::saved_exception_pc_offset())));
2856       __ push(rax);
2857     }
2858 
2859     __ enter(); // required for proper stackwalking of RuntimeStub frame
2860 
2861     assert(is_even(framesize/2), "sp not 16-byte aligned");
2862 
2863     // return address and rbp are already in place
2864     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2865 
2866     int frame_complete = __ pc() - start;
2867 
2868     // Set up last_Java_sp and last_Java_fp
2869     __ set_last_Java_frame(rsp, rbp, NULL);
2870 
2871     // Call runtime
2872     __ movptr(c_rarg0, r15_thread);
2873     BLOCK_COMMENT("call runtime_entry");
2874     __ call(RuntimeAddress(runtime_entry));
2875 
2876     // Generate oop map
2877     OopMap* map = new OopMap(framesize, 0);
2878 
2879     oop_maps->add_gc_map(__ pc() - start, map);
2880 
2881     __ reset_last_Java_frame(true, false);
2882 
2883     __ leave(); // required for proper stackwalking of RuntimeStub frame
2884 
2885     // check for pending exceptions
2886 #ifdef ASSERT
2887     Label L;
2888     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
2889             (int32_t) NULL_WORD);
2890     __ jcc(Assembler::notEqual, L);
2891     __ should_not_reach_here();
2892     __ bind(L);
2893 #endif // ASSERT
2894     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2895 
2896 
2897     // codeBlob framesize is in words (not VMRegImpl::slot_size)
2898     RuntimeStub* stub =
2899       RuntimeStub::new_runtime_stub(name,
2900                                     &code,
2901                                     frame_complete,
2902                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2903                                     oop_maps, false);
2904     return stub->entry_point();
2905   }
2906 
2907   // Initialization
2908   void generate_initial() {
2909     // Generates all stubs and initializes the entry points
2910 
2911     // This platform-specific stub is needed by generate_call_stub()
2912     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2913 
2914     // entry points that exist in all platforms Note: This is code
2915     // that could be shared among different platforms - however the
2916     // benefit seems to be smaller than the disadvantage of having a
2917     // much more complicated generator structure. See also comment in
2918     // stubRoutines.hpp.
2919 
2920     StubRoutines::_forward_exception_entry = generate_forward_exception();
2921 
2922     StubRoutines::_call_stub_entry =
2923       generate_call_stub(StubRoutines::_call_stub_return_address);
2924 
2925     // is referenced by megamorphic call
2926     StubRoutines::_catch_exception_entry = generate_catch_exception();
2927 
2928     // atomic calls
2929     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2930     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2931     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2932     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2933     StubRoutines::_atomic_add_entry          = generate_atomic_add();
2934     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2935     StubRoutines::_fence_entry               = generate_orderaccess_fence();
2936 
2937     StubRoutines::_handler_for_unsafe_access_entry =
2938       generate_handler_for_unsafe_access();
2939 
2940     // platform dependent
2941     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
2942 
2943     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
2944   }
2945 
2946   void generate_all() {
2947     // Generates all stubs and initializes the entry points
2948 
2949     // These entry points require SharedInfo::stack0 to be set up in
2950     // non-core builds and need to be relocatable, so they each
2951     // fabricate a RuntimeStub internally.
2952     StubRoutines::_throw_AbstractMethodError_entry =
2953       generate_throw_exception("AbstractMethodError throw_exception",
2954                                CAST_FROM_FN_PTR(address,
2955                                                 SharedRuntime::
2956                                                 throw_AbstractMethodError),
2957                                false);
2958 
2959     StubRoutines::_throw_IncompatibleClassChangeError_entry =
2960       generate_throw_exception("IncompatibleClassChangeError throw_exception",
2961                                CAST_FROM_FN_PTR(address,
2962                                                 SharedRuntime::
2963                                                 throw_IncompatibleClassChangeError),
2964                                false);
2965 
2966     StubRoutines::_throw_ArithmeticException_entry =
2967       generate_throw_exception("ArithmeticException throw_exception",
2968                                CAST_FROM_FN_PTR(address,
2969                                                 SharedRuntime::
2970                                                 throw_ArithmeticException),
2971                                true);
2972 
2973     StubRoutines::_throw_NullPointerException_entry =
2974       generate_throw_exception("NullPointerException throw_exception",
2975                                CAST_FROM_FN_PTR(address,
2976                                                 SharedRuntime::
2977                                                 throw_NullPointerException),
2978                                true);
2979 
2980     StubRoutines::_throw_NullPointerException_at_call_entry =
2981       generate_throw_exception("NullPointerException at call throw_exception",
2982                                CAST_FROM_FN_PTR(address,
2983                                                 SharedRuntime::
2984                                                 throw_NullPointerException_at_call),
2985                                false);
2986 
2987     StubRoutines::_throw_StackOverflowError_entry =
2988       generate_throw_exception("StackOverflowError throw_exception",
2989                                CAST_FROM_FN_PTR(address,
2990                                                 SharedRuntime::
2991                                                 throw_StackOverflowError),
2992                                false);
2993 
2994     // entry points that are platform specific
2995     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
2996     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
2997     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
2998     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
2999 
3000     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3001     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3002     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3003     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3004 
3005     // support for verify_oop (must happen after universe_init)
3006     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3007 
3008     // arraycopy stubs used by compilers
3009     generate_arraycopy_stubs();
3010 
3011     generate_math_stubs();
3012   }
3013 
3014  public:
3015   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3016     if (all) {
3017       generate_all();
3018     } else {
3019       generate_initial();
3020     }
3021   }
3022 }; // end class declaration
3023 
3024 address StubGenerator::disjoint_byte_copy_entry  = NULL;
3025 address StubGenerator::disjoint_short_copy_entry = NULL;
3026 address StubGenerator::disjoint_int_copy_entry   = NULL;
3027 address StubGenerator::disjoint_long_copy_entry  = NULL;
3028 address StubGenerator::disjoint_oop_copy_entry   = NULL;
3029 
3030 address StubGenerator::byte_copy_entry  = NULL;
3031 address StubGenerator::short_copy_entry = NULL;
3032 address StubGenerator::int_copy_entry   = NULL;
3033 address StubGenerator::long_copy_entry  = NULL;
3034 address StubGenerator::oop_copy_entry   = NULL;
3035 
3036 address StubGenerator::checkcast_copy_entry = NULL;
3037 
3038 void StubGenerator_generate(CodeBuffer* code, bool all) {
3039   StubGenerator g(code, all);
3040 }