1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_stubGenerator_x86_64.cpp.incl"
  27 
  28 // Declaration and definition of StubGenerator (no .hpp file).
  29 // For a more detailed description of the stub routine structure
  30 // see the comment in stubRoutines.hpp
  31 
  32 #define __ _masm->
  33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  34 #define a__ ((Assembler*)_masm)->
  35 
  36 #ifdef PRODUCT
  37 #define BLOCK_COMMENT(str) /* nothing */
  38 #else
  39 #define BLOCK_COMMENT(str) __ block_comment(str)
  40 #endif
  41 
  42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  44 
  45 // Stub Code definitions
  46 
  47 static address handle_unsafe_access() {
  48   JavaThread* thread = JavaThread::current();
  49   address pc = thread->saved_exception_pc();
  50   // pc is the instruction which we must emulate
  51   // doing a no-op is fine:  return garbage from the load
  52   // therefore, compute npc
  53   address npc = Assembler::locate_next_instruction(pc);
  54 
  55   // request an async exception
  56   thread->set_pending_unsafe_access_error();
  57 
  58   // return address of next instruction to execute
  59   return npc;
  60 }
  61 
  62 class StubGenerator: public StubCodeGenerator {
  63  private:
  64 
  65 #ifdef PRODUCT
  66 #define inc_counter_np(counter) (0)
  67 #else
  68   void inc_counter_np_(int& counter) {
  69     __ incrementl(ExternalAddress((address)&counter));
  70   }
  71 #define inc_counter_np(counter) \
  72   BLOCK_COMMENT("inc_counter " #counter); \
  73   inc_counter_np_(counter);
  74 #endif
  75 
  76   // Call stubs are used to call Java from C
  77   //
  78   // Linux Arguments:
  79   //    c_rarg0:   call wrapper address                   address
  80   //    c_rarg1:   result                                 address
  81   //    c_rarg2:   result type                            BasicType
  82   //    c_rarg3:   method                                 methodOop
  83   //    c_rarg4:   (interpreter) entry point              address
  84   //    c_rarg5:   parameters                             intptr_t*
  85   //    16(rbp): parameter size (in words)              int
  86   //    24(rbp): thread                                 Thread*
  87   //
  88   //     [ return_from_Java     ] <--- rsp
  89   //     [ argument word n      ]
  90   //      ...
  91   // -12 [ argument word 1      ]
  92   // -11 [ saved r15            ] <--- rsp_after_call
  93   // -10 [ saved r14            ]
  94   //  -9 [ saved r13            ]
  95   //  -8 [ saved r12            ]
  96   //  -7 [ saved rbx            ]
  97   //  -6 [ call wrapper         ]
  98   //  -5 [ result               ]
  99   //  -4 [ result type          ]
 100   //  -3 [ method               ]
 101   //  -2 [ entry point          ]
 102   //  -1 [ parameters           ]
 103   //   0 [ saved rbp            ] <--- rbp
 104   //   1 [ return address       ]
 105   //   2 [ parameter size       ]
 106   //   3 [ thread               ]
 107   //
 108   // Windows Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    48(rbp): (interpreter) entry point              address
 114   //    56(rbp): parameters                             intptr_t*
 115   //    64(rbp): parameter size (in words)              int
 116   //    72(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   //  -8 [ argument word 1      ]
 122   //  -7 [ saved r15            ] <--- rsp_after_call
 123   //  -6 [ saved r14            ]
 124   //  -5 [ saved r13            ]
 125   //  -4 [ saved r12            ]
 126   //  -3 [ saved rdi            ]
 127   //  -2 [ saved rsi            ]
 128   //  -1 [ saved rbx            ]
 129   //   0 [ saved rbp            ] <--- rbp
 130   //   1 [ return address       ]
 131   //   2 [ call wrapper         ]
 132   //   3 [ result               ]
 133   //   4 [ result type          ]
 134   //   5 [ method               ]
 135   //   6 [ entry point          ]
 136   //   7 [ parameters           ]
 137   //   8 [ parameter size       ]
 138   //   9 [ thread               ]
 139   //
 140   //    Windows reserves the callers stack space for arguments 1-4.
 141   //    We spill c_rarg0-c_rarg3 to this space.
 142 
 143   // Call stub stack layout word offsets from rbp
 144   enum call_stub_layout {
 145 #ifdef _WIN64
 146     rsp_after_call_off = -7,
 147     r15_off            = rsp_after_call_off,
 148     r14_off            = -6,
 149     r13_off            = -5,
 150     r12_off            = -4,
 151     rdi_off            = -3,
 152     rsi_off            = -2,
 153     rbx_off            = -1,
 154     rbp_off            =  0,
 155     retaddr_off        =  1,
 156     call_wrapper_off   =  2,
 157     result_off         =  3,
 158     result_type_off    =  4,
 159     method_off         =  5,
 160     entry_point_off    =  6,
 161     parameters_off     =  7,
 162     parameter_size_off =  8,
 163     thread_off         =  9
 164 #else
 165     rsp_after_call_off = -12,
 166     mxcsr_off          = rsp_after_call_off,
 167     r15_off            = -11,
 168     r14_off            = -10,
 169     r13_off            = -9,
 170     r12_off            = -8,
 171     rbx_off            = -7,
 172     call_wrapper_off   = -6,
 173     result_off         = -5,
 174     result_type_off    = -4,
 175     method_off         = -3,
 176     entry_point_off    = -2,
 177     parameters_off     = -1,
 178     rbp_off            =  0,
 179     retaddr_off        =  1,
 180     parameter_size_off =  2,
 181     thread_off         =  3
 182 #endif
 183   };
 184 
 185   address generate_call_stub(address& return_address) {
 186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 188            "adjust this code");
 189     StubCodeMark mark(this, "StubRoutines", "call_stub");
 190     address start = __ pc();
 191 
 192     // same as in generate_catch_exception()!
 193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 194 
 195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 196     const Address result        (rbp, result_off         * wordSize);
 197     const Address result_type   (rbp, result_type_off    * wordSize);
 198     const Address method        (rbp, method_off         * wordSize);
 199     const Address entry_point   (rbp, entry_point_off    * wordSize);
 200     const Address parameters    (rbp, parameters_off     * wordSize);
 201     const Address parameter_size(rbp, parameter_size_off * wordSize);
 202 
 203     // same as in generate_catch_exception()!
 204     const Address thread        (rbp, thread_off         * wordSize);
 205 
 206     const Address r15_save(rbp, r15_off * wordSize);
 207     const Address r14_save(rbp, r14_off * wordSize);
 208     const Address r13_save(rbp, r13_off * wordSize);
 209     const Address r12_save(rbp, r12_off * wordSize);
 210     const Address rbx_save(rbp, rbx_off * wordSize);
 211 
 212     // stub code
 213     __ enter();
 214     __ subptr(rsp, -rsp_after_call_off * wordSize);
 215 
 216     // save register parameters
 217 #ifndef _WIN64
 218     __ movptr(parameters,   c_rarg5); // parameters
 219     __ movptr(entry_point,  c_rarg4); // entry_point
 220 #endif
 221 
 222     __ movptr(method,       c_rarg3); // method
 223     __ movl(result_type,  c_rarg2);   // result type
 224     __ movptr(result,       c_rarg1); // result
 225     __ movptr(call_wrapper, c_rarg0); // call wrapper
 226 
 227     // save regs belonging to calling function
 228     __ movptr(rbx_save, rbx);
 229     __ movptr(r12_save, r12);
 230     __ movptr(r13_save, r13);
 231     __ movptr(r14_save, r14);
 232     __ movptr(r15_save, r15);
 233 
 234 #ifdef _WIN64
 235     const Address rdi_save(rbp, rdi_off * wordSize);
 236     const Address rsi_save(rbp, rsi_off * wordSize);
 237 
 238     __ movptr(rsi_save, rsi);
 239     __ movptr(rdi_save, rdi);
 240 #else
 241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 242     {
 243       Label skip_ldmx;
 244       __ stmxcsr(mxcsr_save);
 245       __ movl(rax, mxcsr_save);
 246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 248       __ cmp32(rax, mxcsr_std);
 249       __ jcc(Assembler::equal, skip_ldmx);
 250       __ ldmxcsr(mxcsr_std);
 251       __ bind(skip_ldmx);
 252     }
 253 #endif
 254 
 255     // Load up thread register
 256     __ movptr(r15_thread, thread);
 257     __ reinit_heapbase();
 258 
 259 #ifdef ASSERT
 260     // make sure we have no pending exceptions
 261     {
 262       Label L;
 263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 264       __ jcc(Assembler::equal, L);
 265       __ stop("StubRoutines::call_stub: entered with pending exception");
 266       __ bind(L);
 267     }
 268 #endif
 269 
 270     // pass parameters if any
 271     BLOCK_COMMENT("pass parameters if any");
 272     Label parameters_done;
 273     __ movl(c_rarg3, parameter_size);
 274     __ testl(c_rarg3, c_rarg3);
 275     __ jcc(Assembler::zero, parameters_done);
 276 
 277     Label loop;
 278     __ movptr(c_rarg2, parameters);       // parameter pointer
 279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 280     __ BIND(loop);
 281     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 282     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 283     __ decrementl(c_rarg1);             // decrement counter
 284     __ push(rax);                       // pass parameter
 285     __ jcc(Assembler::notZero, loop);
 286 
 287     // call Java function
 288     __ BIND(parameters_done);
 289     __ movptr(rbx, method);             // get methodOop
 290     __ movptr(c_rarg1, entry_point);    // get entry_point
 291     __ mov(r13, rsp);                   // set sender sp
 292     BLOCK_COMMENT("call Java function");
 293     __ call(c_rarg1);
 294 
 295     BLOCK_COMMENT("call_stub_return_address:");
 296     return_address = __ pc();
 297 
 298     // store result depending on type (everything that is not
 299     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 300     __ movptr(c_rarg0, result);
 301     Label is_long, is_float, is_double, exit;
 302     __ movl(c_rarg1, result_type);
 303     __ cmpl(c_rarg1, T_OBJECT);
 304     __ jcc(Assembler::equal, is_long);
 305     __ cmpl(c_rarg1, T_LONG);
 306     __ jcc(Assembler::equal, is_long);
 307     __ cmpl(c_rarg1, T_FLOAT);
 308     __ jcc(Assembler::equal, is_float);
 309     __ cmpl(c_rarg1, T_DOUBLE);
 310     __ jcc(Assembler::equal, is_double);
 311 
 312     // handle T_INT case
 313     __ movl(Address(c_rarg0, 0), rax);
 314 
 315     __ BIND(exit);
 316 
 317     // pop parameters
 318     __ lea(rsp, rsp_after_call);
 319 
 320 #ifdef ASSERT
 321     // verify that threads correspond
 322     {
 323       Label L, S;
 324       __ cmpptr(r15_thread, thread);
 325       __ jcc(Assembler::notEqual, S);
 326       __ get_thread(rbx);
 327       __ cmpptr(r15_thread, rbx);
 328       __ jcc(Assembler::equal, L);
 329       __ bind(S);
 330       __ jcc(Assembler::equal, L);
 331       __ stop("StubRoutines::call_stub: threads must correspond");
 332       __ bind(L);
 333     }
 334 #endif
 335 
 336     // restore regs belonging to calling function
 337     __ movptr(r15, r15_save);
 338     __ movptr(r14, r14_save);
 339     __ movptr(r13, r13_save);
 340     __ movptr(r12, r12_save);
 341     __ movptr(rbx, rbx_save);
 342 
 343 #ifdef _WIN64
 344     __ movptr(rdi, rdi_save);
 345     __ movptr(rsi, rsi_save);
 346 #else
 347     __ ldmxcsr(mxcsr_save);
 348 #endif
 349 
 350     // restore rsp
 351     __ addptr(rsp, -rsp_after_call_off * wordSize);
 352 
 353     // return
 354     __ pop(rbp);
 355     __ ret(0);
 356 
 357     // handle return types different from T_INT
 358     __ BIND(is_long);
 359     __ movq(Address(c_rarg0, 0), rax);
 360     __ jmp(exit);
 361 
 362     __ BIND(is_float);
 363     __ movflt(Address(c_rarg0, 0), xmm0);
 364     __ jmp(exit);
 365 
 366     __ BIND(is_double);
 367     __ movdbl(Address(c_rarg0, 0), xmm0);
 368     __ jmp(exit);
 369 
 370     return start;
 371   }
 372 
 373   // Return point for a Java call if there's an exception thrown in
 374   // Java code.  The exception is caught and transformed into a
 375   // pending exception stored in JavaThread that can be tested from
 376   // within the VM.
 377   //
 378   // Note: Usually the parameters are removed by the callee. In case
 379   // of an exception crossing an activation frame boundary, that is
 380   // not the case if the callee is compiled code => need to setup the
 381   // rsp.
 382   //
 383   // rax: exception oop
 384 
 385   address generate_catch_exception() {
 386     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 387     address start = __ pc();
 388 
 389     // same as in generate_call_stub():
 390     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 391     const Address thread        (rbp, thread_off         * wordSize);
 392 
 393 #ifdef ASSERT
 394     // verify that threads correspond
 395     {
 396       Label L, S;
 397       __ cmpptr(r15_thread, thread);
 398       __ jcc(Assembler::notEqual, S);
 399       __ get_thread(rbx);
 400       __ cmpptr(r15_thread, rbx);
 401       __ jcc(Assembler::equal, L);
 402       __ bind(S);
 403       __ stop("StubRoutines::catch_exception: threads must correspond");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // set pending exception
 409     __ verify_oop(rax);
 410 
 411     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 412     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 413     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 414     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 415 
 416     // complete return to VM
 417     assert(StubRoutines::_call_stub_return_address != NULL,
 418            "_call_stub_return_address must have been generated before");
 419     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 420 
 421     return start;
 422   }
 423 
 424   // Continuation point for runtime calls returning with a pending
 425   // exception.  The pending exception check happened in the runtime
 426   // or native call stub.  The pending exception in Thread is
 427   // converted into a Java-level exception.
 428   //
 429   // Contract with Java-level exception handlers:
 430   // rax: exception
 431   // rdx: throwing pc
 432   //
 433   // NOTE: At entry of this stub, exception-pc must be on stack !!
 434 
 435   address generate_forward_exception() {
 436     StubCodeMark mark(this, "StubRoutines", "forward exception");
 437     address start = __ pc();
 438 
 439     // Upon entry, the sp points to the return address returning into
 440     // Java (interpreted or compiled) code; i.e., the return address
 441     // becomes the throwing pc.
 442     //
 443     // Arguments pushed before the runtime call are still on the stack
 444     // but the exception handler will reset the stack pointer ->
 445     // ignore them.  A potential result in registers can be ignored as
 446     // well.
 447 
 448 #ifdef ASSERT
 449     // make sure this code is only executed if there is a pending exception
 450     {
 451       Label L;
 452       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 453       __ jcc(Assembler::notEqual, L);
 454       __ stop("StubRoutines::forward exception: no pending exception (1)");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // compute exception handler into rbx
 460     __ movptr(c_rarg0, Address(rsp, 0));
 461     BLOCK_COMMENT("call exception_handler_for_return_address");
 462     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 463                          SharedRuntime::exception_handler_for_return_address),
 464                     r15_thread, c_rarg0);
 465     __ mov(rbx, rax);
 466 
 467     // setup rax & rdx, remove return address & clear pending exception
 468     __ pop(rdx);
 469     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 470     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 471 
 472 #ifdef ASSERT
 473     // make sure exception is set
 474     {
 475       Label L;
 476       __ testptr(rax, rax);
 477       __ jcc(Assembler::notEqual, L);
 478       __ stop("StubRoutines::forward exception: no pending exception (2)");
 479       __ bind(L);
 480     }
 481 #endif
 482 
 483     // continue at exception handler (return address removed)
 484     // rax: exception
 485     // rbx: exception handler
 486     // rdx: throwing pc
 487     __ verify_oop(rax);
 488     __ jmp(rbx);
 489 
 490     return start;
 491   }
 492 
 493   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 494   //
 495   // Arguments :
 496   //    c_rarg0: exchange_value
 497   //    c_rarg0: dest
 498   //
 499   // Result:
 500   //    *dest <- ex, return (orig *dest)
 501   address generate_atomic_xchg() {
 502     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 503     address start = __ pc();
 504 
 505     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 506     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 507     __ ret(0);
 508 
 509     return start;
 510   }
 511 
 512   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 513   //
 514   // Arguments :
 515   //    c_rarg0: exchange_value
 516   //    c_rarg1: dest
 517   //
 518   // Result:
 519   //    *dest <- ex, return (orig *dest)
 520   address generate_atomic_xchg_ptr() {
 521     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 522     address start = __ pc();
 523 
 524     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 525     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 526     __ ret(0);
 527 
 528     return start;
 529   }
 530 
 531   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 532   //                                         jint compare_value)
 533   //
 534   // Arguments :
 535   //    c_rarg0: exchange_value
 536   //    c_rarg1: dest
 537   //    c_rarg2: compare_value
 538   //
 539   // Result:
 540   //    if ( compare_value == *dest ) {
 541   //       *dest = exchange_value
 542   //       return compare_value;
 543   //    else
 544   //       return *dest;
 545   address generate_atomic_cmpxchg() {
 546     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 547     address start = __ pc();
 548 
 549     __ movl(rax, c_rarg2);
 550    if ( os::is_MP() ) __ lock();
 551     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 552     __ ret(0);
 553 
 554     return start;
 555   }
 556 
 557   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 558   //                                             volatile jlong* dest,
 559   //                                             jlong compare_value)
 560   // Arguments :
 561   //    c_rarg0: exchange_value
 562   //    c_rarg1: dest
 563   //    c_rarg2: compare_value
 564   //
 565   // Result:
 566   //    if ( compare_value == *dest ) {
 567   //       *dest = exchange_value
 568   //       return compare_value;
 569   //    else
 570   //       return *dest;
 571   address generate_atomic_cmpxchg_long() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 573     address start = __ pc();
 574 
 575     __ movq(rax, c_rarg2);
 576    if ( os::is_MP() ) __ lock();
 577     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 578     __ ret(0);
 579 
 580     return start;
 581   }
 582 
 583   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 584   //
 585   // Arguments :
 586   //    c_rarg0: add_value
 587   //    c_rarg1: dest
 588   //
 589   // Result:
 590   //    *dest += add_value
 591   //    return *dest;
 592   address generate_atomic_add() {
 593     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 594     address start = __ pc();
 595 
 596     __ movl(rax, c_rarg0);
 597    if ( os::is_MP() ) __ lock();
 598     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 599     __ addl(rax, c_rarg0);
 600     __ ret(0);
 601 
 602     return start;
 603   }
 604 
 605   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 606   //
 607   // Arguments :
 608   //    c_rarg0: add_value
 609   //    c_rarg1: dest
 610   //
 611   // Result:
 612   //    *dest += add_value
 613   //    return *dest;
 614   address generate_atomic_add_ptr() {
 615     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 616     address start = __ pc();
 617 
 618     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 619    if ( os::is_MP() ) __ lock();
 620     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 621     __ addptr(rax, c_rarg0);
 622     __ ret(0);
 623 
 624     return start;
 625   }
 626 
 627   // Support for intptr_t OrderAccess::fence()
 628   //
 629   // Arguments :
 630   //
 631   // Result:
 632   address generate_orderaccess_fence() {
 633     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 634     address start = __ pc();
 635     __ membar(Assembler::StoreLoad);
 636     __ ret(0);
 637 
 638     return start;
 639   }
 640 
 641   // Support for intptr_t get_previous_fp()
 642   //
 643   // This routine is used to find the previous frame pointer for the
 644   // caller (current_frame_guess). This is used as part of debugging
 645   // ps() is seemingly lost trying to find frames.
 646   // This code assumes that caller current_frame_guess) has a frame.
 647   address generate_get_previous_fp() {
 648     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 649     const Address old_fp(rbp, 0);
 650     const Address older_fp(rax, 0);
 651     address start = __ pc();
 652 
 653     __ enter();
 654     __ movptr(rax, old_fp); // callers fp
 655     __ movptr(rax, older_fp); // the frame for ps()
 656     __ pop(rbp);
 657     __ ret(0);
 658 
 659     return start;
 660   }
 661 
 662   //----------------------------------------------------------------------------------------------------
 663   // Support for void verify_mxcsr()
 664   //
 665   // This routine is used with -Xcheck:jni to verify that native
 666   // JNI code does not return to Java code without restoring the
 667   // MXCSR register to our expected state.
 668 
 669   address generate_verify_mxcsr() {
 670     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 671     address start = __ pc();
 672 
 673     const Address mxcsr_save(rsp, 0);
 674 
 675     if (CheckJNICalls) {
 676       Label ok_ret;
 677       __ push(rax);
 678       __ subptr(rsp, wordSize);      // allocate a temp location
 679       __ stmxcsr(mxcsr_save);
 680       __ movl(rax, mxcsr_save);
 681       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 682       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 683       __ jcc(Assembler::equal, ok_ret);
 684 
 685       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 686 
 687       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 688 
 689       __ bind(ok_ret);
 690       __ addptr(rsp, wordSize);
 691       __ pop(rax);
 692     }
 693 
 694     __ ret(0);
 695 
 696     return start;
 697   }
 698 
 699   address generate_f2i_fixup() {
 700     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 701     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 702 
 703     address start = __ pc();
 704 
 705     Label L;
 706 
 707     __ push(rax);
 708     __ push(c_rarg3);
 709     __ push(c_rarg2);
 710     __ push(c_rarg1);
 711 
 712     __ movl(rax, 0x7f800000);
 713     __ xorl(c_rarg3, c_rarg3);
 714     __ movl(c_rarg2, inout);
 715     __ movl(c_rarg1, c_rarg2);
 716     __ andl(c_rarg1, 0x7fffffff);
 717     __ cmpl(rax, c_rarg1); // NaN? -> 0
 718     __ jcc(Assembler::negative, L);
 719     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 720     __ movl(c_rarg3, 0x80000000);
 721     __ movl(rax, 0x7fffffff);
 722     __ cmovl(Assembler::positive, c_rarg3, rax);
 723 
 724     __ bind(L);
 725     __ movptr(inout, c_rarg3);
 726 
 727     __ pop(c_rarg1);
 728     __ pop(c_rarg2);
 729     __ pop(c_rarg3);
 730     __ pop(rax);
 731 
 732     __ ret(0);
 733 
 734     return start;
 735   }
 736 
 737   address generate_f2l_fixup() {
 738     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 739     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 740     address start = __ pc();
 741 
 742     Label L;
 743 
 744     __ push(rax);
 745     __ push(c_rarg3);
 746     __ push(c_rarg2);
 747     __ push(c_rarg1);
 748 
 749     __ movl(rax, 0x7f800000);
 750     __ xorl(c_rarg3, c_rarg3);
 751     __ movl(c_rarg2, inout);
 752     __ movl(c_rarg1, c_rarg2);
 753     __ andl(c_rarg1, 0x7fffffff);
 754     __ cmpl(rax, c_rarg1); // NaN? -> 0
 755     __ jcc(Assembler::negative, L);
 756     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 757     __ mov64(c_rarg3, 0x8000000000000000);
 758     __ mov64(rax, 0x7fffffffffffffff);
 759     __ cmov(Assembler::positive, c_rarg3, rax);
 760 
 761     __ bind(L);
 762     __ movptr(inout, c_rarg3);
 763 
 764     __ pop(c_rarg1);
 765     __ pop(c_rarg2);
 766     __ pop(c_rarg3);
 767     __ pop(rax);
 768 
 769     __ ret(0);
 770 
 771     return start;
 772   }
 773 
 774   address generate_d2i_fixup() {
 775     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 776     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 777 
 778     address start = __ pc();
 779 
 780     Label L;
 781 
 782     __ push(rax);
 783     __ push(c_rarg3);
 784     __ push(c_rarg2);
 785     __ push(c_rarg1);
 786     __ push(c_rarg0);
 787 
 788     __ movl(rax, 0x7ff00000);
 789     __ movq(c_rarg2, inout);
 790     __ movl(c_rarg3, c_rarg2);
 791     __ mov(c_rarg1, c_rarg2);
 792     __ mov(c_rarg0, c_rarg2);
 793     __ negl(c_rarg3);
 794     __ shrptr(c_rarg1, 0x20);
 795     __ orl(c_rarg3, c_rarg2);
 796     __ andl(c_rarg1, 0x7fffffff);
 797     __ xorl(c_rarg2, c_rarg2);
 798     __ shrl(c_rarg3, 0x1f);
 799     __ orl(c_rarg1, c_rarg3);
 800     __ cmpl(rax, c_rarg1);
 801     __ jcc(Assembler::negative, L); // NaN -> 0
 802     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 803     __ movl(c_rarg2, 0x80000000);
 804     __ movl(rax, 0x7fffffff);
 805     __ cmov(Assembler::positive, c_rarg2, rax);
 806 
 807     __ bind(L);
 808     __ movptr(inout, c_rarg2);
 809 
 810     __ pop(c_rarg0);
 811     __ pop(c_rarg1);
 812     __ pop(c_rarg2);
 813     __ pop(c_rarg3);
 814     __ pop(rax);
 815 
 816     __ ret(0);
 817 
 818     return start;
 819   }
 820 
 821   address generate_d2l_fixup() {
 822     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 823     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 824 
 825     address start = __ pc();
 826 
 827     Label L;
 828 
 829     __ push(rax);
 830     __ push(c_rarg3);
 831     __ push(c_rarg2);
 832     __ push(c_rarg1);
 833     __ push(c_rarg0);
 834 
 835     __ movl(rax, 0x7ff00000);
 836     __ movq(c_rarg2, inout);
 837     __ movl(c_rarg3, c_rarg2);
 838     __ mov(c_rarg1, c_rarg2);
 839     __ mov(c_rarg0, c_rarg2);
 840     __ negl(c_rarg3);
 841     __ shrptr(c_rarg1, 0x20);
 842     __ orl(c_rarg3, c_rarg2);
 843     __ andl(c_rarg1, 0x7fffffff);
 844     __ xorl(c_rarg2, c_rarg2);
 845     __ shrl(c_rarg3, 0x1f);
 846     __ orl(c_rarg1, c_rarg3);
 847     __ cmpl(rax, c_rarg1);
 848     __ jcc(Assembler::negative, L); // NaN -> 0
 849     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 850     __ mov64(c_rarg2, 0x8000000000000000);
 851     __ mov64(rax, 0x7fffffffffffffff);
 852     __ cmovq(Assembler::positive, c_rarg2, rax);
 853 
 854     __ bind(L);
 855     __ movq(inout, c_rarg2);
 856 
 857     __ pop(c_rarg0);
 858     __ pop(c_rarg1);
 859     __ pop(c_rarg2);
 860     __ pop(c_rarg3);
 861     __ pop(rax);
 862 
 863     __ ret(0);
 864 
 865     return start;
 866   }
 867 
 868   address generate_fp_mask(const char *stub_name, int64_t mask) {
 869     __ align(CodeEntryAlignment);
 870     StubCodeMark mark(this, "StubRoutines", stub_name);
 871     address start = __ pc();
 872 
 873     __ emit_data64( mask, relocInfo::none );
 874     __ emit_data64( mask, relocInfo::none );
 875 
 876     return start;
 877   }
 878 
 879   // The following routine generates a subroutine to throw an
 880   // asynchronous UnknownError when an unsafe access gets a fault that
 881   // could not be reasonably prevented by the programmer.  (Example:
 882   // SIGBUS/OBJERR.)
 883   address generate_handler_for_unsafe_access() {
 884     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 885     address start = __ pc();
 886 
 887     __ push(0);                       // hole for return address-to-be
 888     __ pusha();                       // push registers
 889     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 890 
 891     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 892     BLOCK_COMMENT("call handle_unsafe_access");
 893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 894     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 895 
 896     __ movptr(next_pc, rax);          // stuff next address
 897     __ popa();
 898     __ ret(0);                        // jump to next address
 899 
 900     return start;
 901   }
 902 
 903   // Non-destructive plausibility checks for oops
 904   //
 905   // Arguments:
 906   //    all args on stack!
 907   //
 908   // Stack after saving c_rarg3:
 909   //    [tos + 0]: saved c_rarg3
 910   //    [tos + 1]: saved c_rarg2
 911   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 912   //    [tos + 3]: saved flags
 913   //    [tos + 4]: return address
 914   //  * [tos + 5]: error message (char*)
 915   //  * [tos + 6]: object to verify (oop)
 916   //    [tos + 7]: saved rax - saved by caller
 917   //    [tos + 8]: saved r10 (rscratch1) - saved by caller
 918   //  * = popped on exit
 919   address generate_verify_oop() {
 920     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 921     address start = __ pc();
 922 
 923     Label exit, error;
 924 
 925     __ pushf();
 926     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 927 
 928     __ push(r12);
 929 
 930     // save c_rarg2 and c_rarg3
 931     __ push(c_rarg2);
 932     __ push(c_rarg3);
 933 
 934     enum {
 935            // After previous pushes.
 936            oop_to_verify = 6 * wordSize,
 937            saved_rax     = 7 * wordSize,
 938 
 939            // Before the call to MacroAssembler::debug(), see below.
 940            return_addr   = 16 * wordSize,
 941            error_msg     = 17 * wordSize
 942     };
 943 
 944     // get object
 945     __ movptr(rax, Address(rsp, oop_to_verify));
 946 
 947     // make sure object is 'reasonable'
 948     __ testptr(rax, rax);
 949     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
 950     // Check if the oop is in the right area of memory
 951     __ movptr(c_rarg2, rax);
 952     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
 953     __ andptr(c_rarg2, c_rarg3);
 954     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
 955     __ cmpptr(c_rarg2, c_rarg3);
 956     __ jcc(Assembler::notZero, error);
 957 
 958     // set r12 to heapbase for load_klass()
 959     __ reinit_heapbase();
 960 
 961     // make sure klass is 'reasonable'
 962     __ load_klass(rax, rax);  // get klass
 963     __ testptr(rax, rax);
 964     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
 965     // Check if the klass is in the right area of memory
 966     __ mov(c_rarg2, rax);
 967     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 968     __ andptr(c_rarg2, c_rarg3);
 969     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 970     __ cmpptr(c_rarg2, c_rarg3);
 971     __ jcc(Assembler::notZero, error);
 972 
 973     // make sure klass' klass is 'reasonable'
 974     __ load_klass(rax, rax);
 975     __ testptr(rax, rax);
 976     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
 977     // Check if the klass' klass is in the right area of memory
 978     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
 979     __ andptr(rax, c_rarg3);
 980     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
 981     __ cmpptr(rax, c_rarg3);
 982     __ jcc(Assembler::notZero, error);
 983 
 984     // return if everything seems ok
 985     __ bind(exit);
 986     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 987     __ pop(c_rarg3);                             // restore c_rarg3
 988     __ pop(c_rarg2);                             // restore c_rarg2
 989     __ pop(r12);                                 // restore r12
 990     __ popf();                                   // restore flags
 991     __ ret(2 * wordSize);                        // pop caller saved stuff
 992 
 993     // handle errors
 994     __ bind(error);
 995     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
 996     __ pop(c_rarg3);                             // get saved c_rarg3 back
 997     __ pop(c_rarg2);                             // get saved c_rarg2 back
 998     __ pop(r12);                                 // get saved r12 back
 999     __ popf();                                   // get saved flags off stack --
1000                                                  // will be ignored
1001 
1002     __ pusha();                                  // push registers
1003                                                  // (rip is already
1004                                                  // already pushed)
1005     // debug(char* msg, int64_t pc, int64_t regs[])
1006     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1007     // pushed all the registers, so now the stack looks like:
1008     //     [tos +  0] 16 saved registers
1009     //     [tos + 16] return address
1010     //   * [tos + 17] error message (char*)
1011     //   * [tos + 18] object to verify (oop)
1012     //     [tos + 19] saved rax - saved by caller
1013     //     [tos + 20] saved r10 (rscratch1) - saved by caller
1014     //   * = popped on exit
1015 
1016     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1017     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1018     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1019     __ mov(r12, rsp);                               // remember rsp
1020     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1021     __ andptr(rsp, -16);                            // align stack as required by ABI
1022     BLOCK_COMMENT("call MacroAssembler::debug");
1023     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1024     __ mov(rsp, r12);                               // restore rsp
1025     __ popa();                                      // pop registers (includes r12)
1026     __ ret(2 * wordSize);                           // pop caller saved stuff
1027 
1028     return start;
1029   }
1030 
1031   static address disjoint_byte_copy_entry;
1032   static address disjoint_short_copy_entry;
1033   static address disjoint_int_copy_entry;
1034   static address disjoint_long_copy_entry;
1035   static address disjoint_oop_copy_entry;
1036 
1037   static address byte_copy_entry;
1038   static address short_copy_entry;
1039   static address int_copy_entry;
1040   static address long_copy_entry;
1041   static address oop_copy_entry;
1042 
1043   static address checkcast_copy_entry;
1044 
1045   //
1046   // Verify that a register contains clean 32-bits positive value
1047   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1048   //
1049   //  Input:
1050   //    Rint  -  32-bits value
1051   //    Rtmp  -  scratch
1052   //
1053   void assert_clean_int(Register Rint, Register Rtmp) {
1054 #ifdef ASSERT
1055     Label L;
1056     assert_different_registers(Rtmp, Rint);
1057     __ movslq(Rtmp, Rint);
1058     __ cmpq(Rtmp, Rint);
1059     __ jcc(Assembler::equal, L);
1060     __ stop("high 32-bits of int value are not 0");
1061     __ bind(L);
1062 #endif
1063   }
1064 
1065   //  Generate overlap test for array copy stubs
1066   //
1067   //  Input:
1068   //     c_rarg0 - from
1069   //     c_rarg1 - to
1070   //     c_rarg2 - element count
1071   //
1072   //  Output:
1073   //     rax   - &from[element count - 1]
1074   //
1075   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1076     assert(no_overlap_target != NULL, "must be generated");
1077     array_overlap_test(no_overlap_target, NULL, sf);
1078   }
1079   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1080     array_overlap_test(NULL, &L_no_overlap, sf);
1081   }
1082   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1083     const Register from     = c_rarg0;
1084     const Register to       = c_rarg1;
1085     const Register count    = c_rarg2;
1086     const Register end_from = rax;
1087 
1088     __ cmpptr(to, from);
1089     __ lea(end_from, Address(from, count, sf, 0));
1090     if (NOLp == NULL) {
1091       ExternalAddress no_overlap(no_overlap_target);
1092       __ jump_cc(Assembler::belowEqual, no_overlap);
1093       __ cmpptr(to, end_from);
1094       __ jump_cc(Assembler::aboveEqual, no_overlap);
1095     } else {
1096       __ jcc(Assembler::belowEqual, (*NOLp));
1097       __ cmpptr(to, end_from);
1098       __ jcc(Assembler::aboveEqual, (*NOLp));
1099     }
1100   }
1101 
1102   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1103   //
1104   // Outputs:
1105   //    rdi - rcx
1106   //    rsi - rdx
1107   //    rdx - r8
1108   //    rcx - r9
1109   //
1110   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1111   // are non-volatile.  r9 and r10 should not be used by the caller.
1112   //
1113   void setup_arg_regs(int nargs = 3) {
1114     const Register saved_rdi = r9;
1115     const Register saved_rsi = r10;
1116     assert(nargs == 3 || nargs == 4, "else fix");
1117 #ifdef _WIN64
1118     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1119            "unexpected argument registers");
1120     if (nargs >= 4)
1121       __ mov(rax, r9);  // r9 is also saved_rdi
1122     __ movptr(saved_rdi, rdi);
1123     __ movptr(saved_rsi, rsi);
1124     __ mov(rdi, rcx); // c_rarg0
1125     __ mov(rsi, rdx); // c_rarg1
1126     __ mov(rdx, r8);  // c_rarg2
1127     if (nargs >= 4)
1128       __ mov(rcx, rax); // c_rarg3 (via rax)
1129 #else
1130     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1131            "unexpected argument registers");
1132 #endif
1133   }
1134 
1135   void restore_arg_regs() {
1136     const Register saved_rdi = r9;
1137     const Register saved_rsi = r10;
1138 #ifdef _WIN64
1139     __ movptr(rdi, saved_rdi);
1140     __ movptr(rsi, saved_rsi);
1141 #endif
1142   }
1143 
1144   // Generate code for an array write pre barrier
1145   //
1146   //     addr    -  starting address
1147   //     count    -  element count
1148   //
1149   //     Destroy no registers!
1150   //
1151   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
1152     BarrierSet* bs = Universe::heap()->barrier_set();
1153     switch (bs->kind()) {
1154       case BarrierSet::G1SATBCT:
1155       case BarrierSet::G1SATBCTLogging:
1156         {
1157           __ pusha();                      // push registers
1158           if (count == c_rarg0) {
1159             if (addr == c_rarg1) {
1160               // exactly backwards!!
1161               __ xchgptr(c_rarg1, c_rarg0);
1162             } else {
1163               __ movptr(c_rarg1, count);
1164               __ movptr(c_rarg0, addr);
1165             }
1166 
1167           } else {
1168             __ movptr(c_rarg0, addr);
1169             __ movptr(c_rarg1, count);
1170           }
1171           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1172           __ popa();
1173         }
1174         break;
1175       case BarrierSet::CardTableModRef:
1176       case BarrierSet::CardTableExtension:
1177       case BarrierSet::ModRef:
1178         break;
1179       default:
1180         ShouldNotReachHere();
1181 
1182     }
1183   }
1184 
1185   //
1186   // Generate code for an array write post barrier
1187   //
1188   //  Input:
1189   //     start    - register containing starting address of destination array
1190   //     end      - register containing ending address of destination array
1191   //     scratch  - scratch register
1192   //
1193   //  The input registers are overwritten.
1194   //  The ending address is inclusive.
1195   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
1196     assert_different_registers(start, end, scratch);
1197     BarrierSet* bs = Universe::heap()->barrier_set();
1198     switch (bs->kind()) {
1199       case BarrierSet::G1SATBCT:
1200       case BarrierSet::G1SATBCTLogging:
1201 
1202         {
1203           __ pusha();                      // push registers (overkill)
1204           // must compute element count unless barrier set interface is changed (other platforms supply count)
1205           assert_different_registers(start, end, scratch);
1206           __ lea(scratch, Address(end, BytesPerHeapOop));
1207           __ subptr(scratch, start);               // subtract start to get #bytes
1208           __ shrptr(scratch, LogBytesPerHeapOop);  // convert to element count
1209           __ mov(c_rarg0, start);
1210           __ mov(c_rarg1, scratch);
1211           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1212           __ popa();
1213         }
1214         break;
1215       case BarrierSet::CardTableModRef:
1216       case BarrierSet::CardTableExtension:
1217         {
1218           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1219           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1220 
1221           Label L_loop;
1222 
1223            __ shrptr(start, CardTableModRefBS::card_shift);
1224            __ addptr(end, BytesPerHeapOop);
1225            __ shrptr(end, CardTableModRefBS::card_shift);
1226            __ subptr(end, start); // number of bytes to copy
1227 
1228           intptr_t disp = (intptr_t) ct->byte_map_base;
1229           if (__ is_simm32(disp)) {
1230             Address cardtable(noreg, noreg, Address::no_scale, disp);
1231             __ lea(scratch, cardtable);
1232           } else {
1233             ExternalAddress cardtable((address)disp);
1234             __ lea(scratch, cardtable);
1235           }
1236 
1237           const Register count = end; // 'end' register contains bytes count now
1238           __ addptr(start, scratch);
1239         __ BIND(L_loop);
1240           __ movb(Address(start, count, Address::times_1), 0);
1241           __ decrement(count);
1242           __ jcc(Assembler::greaterEqual, L_loop);
1243         }
1244         break;
1245       default:
1246         ShouldNotReachHere();
1247 
1248     }
1249   }
1250 
1251 
1252   // Copy big chunks forward
1253   //
1254   // Inputs:
1255   //   end_from     - source arrays end address
1256   //   end_to       - destination array end address
1257   //   qword_count  - 64-bits element count, negative
1258   //   to           - scratch
1259   //   L_copy_32_bytes - entry label
1260   //   L_copy_8_bytes  - exit  label
1261   //
1262   void copy_32_bytes_forward(Register end_from, Register end_to,
1263                              Register qword_count, Register to,
1264                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1265     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1266     Label L_loop;
1267     __ align(OptoLoopAlignment);
1268   __ BIND(L_loop);
1269     if(UseUnalignedLoadStores) {
1270       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1271       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1272       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1273       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1274 
1275     } else {
1276       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1277       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1278       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1279       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1280       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1281       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1282       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1283       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1284     }
1285   __ BIND(L_copy_32_bytes);
1286     __ addptr(qword_count, 4);
1287     __ jcc(Assembler::lessEqual, L_loop);
1288     __ subptr(qword_count, 4);
1289     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1290   }
1291 
1292 
1293   // Copy big chunks backward
1294   //
1295   // Inputs:
1296   //   from         - source arrays address
1297   //   dest         - destination array address
1298   //   qword_count  - 64-bits element count
1299   //   to           - scratch
1300   //   L_copy_32_bytes - entry label
1301   //   L_copy_8_bytes  - exit  label
1302   //
1303   void copy_32_bytes_backward(Register from, Register dest,
1304                               Register qword_count, Register to,
1305                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
1306     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1307     Label L_loop;
1308     __ align(OptoLoopAlignment);
1309   __ BIND(L_loop);
1310     if(UseUnalignedLoadStores) {
1311       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1312       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1313       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1314       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1315 
1316     } else {
1317       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1318       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1319       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1320       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1321       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1322       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1323       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1324       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1325     }
1326   __ BIND(L_copy_32_bytes);
1327     __ subptr(qword_count, 4);
1328     __ jcc(Assembler::greaterEqual, L_loop);
1329     __ addptr(qword_count, 4);
1330     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1331   }
1332 
1333 
1334   // Arguments:
1335   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1336   //             ignored
1337   //   name    - stub name string
1338   //
1339   // Inputs:
1340   //   c_rarg0   - source array address
1341   //   c_rarg1   - destination array address
1342   //   c_rarg2   - element count, treated as ssize_t, can be zero
1343   //
1344   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1345   // we let the hardware handle it.  The one to eight bytes within words,
1346   // dwords or qwords that span cache line boundaries will still be loaded
1347   // and stored atomically.
1348   //
1349   // Side Effects:
1350   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1351   //   used by generate_conjoint_byte_copy().
1352   //
1353   address generate_disjoint_byte_copy(bool aligned, const char *name) {
1354     __ align(CodeEntryAlignment);
1355     StubCodeMark mark(this, "StubRoutines", name);
1356     address start = __ pc();
1357 
1358     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1359     Label L_copy_byte, L_exit;
1360     const Register from        = rdi;  // source array address
1361     const Register to          = rsi;  // destination array address
1362     const Register count       = rdx;  // elements count
1363     const Register byte_count  = rcx;
1364     const Register qword_count = count;
1365     const Register end_from    = from; // source array end address
1366     const Register end_to      = to;   // destination array end address
1367     // End pointers are inclusive, and if count is not zero they point
1368     // to the last unit copied:  end_to[0] := end_from[0]
1369 
1370     __ enter(); // required for proper stackwalking of RuntimeStub frame
1371     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1372 
1373     disjoint_byte_copy_entry = __ pc();
1374     BLOCK_COMMENT("Entry:");
1375     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1376 
1377     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1378                       // r9 and r10 may be used to save non-volatile registers
1379 
1380     // 'from', 'to' and 'count' are now valid
1381     __ movptr(byte_count, count);
1382     __ shrptr(count, 3); // count => qword_count
1383 
1384     // Copy from low to high addresses.  Use 'to' as scratch.
1385     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1386     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1387     __ negptr(qword_count); // make the count negative
1388     __ jmp(L_copy_32_bytes);
1389 
1390     // Copy trailing qwords
1391   __ BIND(L_copy_8_bytes);
1392     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1393     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1394     __ increment(qword_count);
1395     __ jcc(Assembler::notZero, L_copy_8_bytes);
1396 
1397     // Check for and copy trailing dword
1398   __ BIND(L_copy_4_bytes);
1399     __ testl(byte_count, 4);
1400     __ jccb(Assembler::zero, L_copy_2_bytes);
1401     __ movl(rax, Address(end_from, 8));
1402     __ movl(Address(end_to, 8), rax);
1403 
1404     __ addptr(end_from, 4);
1405     __ addptr(end_to, 4);
1406 
1407     // Check for and copy trailing word
1408   __ BIND(L_copy_2_bytes);
1409     __ testl(byte_count, 2);
1410     __ jccb(Assembler::zero, L_copy_byte);
1411     __ movw(rax, Address(end_from, 8));
1412     __ movw(Address(end_to, 8), rax);
1413 
1414     __ addptr(end_from, 2);
1415     __ addptr(end_to, 2);
1416 
1417     // Check for and copy trailing byte
1418   __ BIND(L_copy_byte);
1419     __ testl(byte_count, 1);
1420     __ jccb(Assembler::zero, L_exit);
1421     __ movb(rax, Address(end_from, 8));
1422     __ movb(Address(end_to, 8), rax);
1423 
1424   __ BIND(L_exit);
1425     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1426     restore_arg_regs();
1427     __ xorptr(rax, rax); // return 0
1428     __ leave(); // required for proper stackwalking of RuntimeStub frame
1429     __ ret(0);
1430 
1431     // Copy in 32-bytes chunks
1432     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1433     __ jmp(L_copy_4_bytes);
1434 
1435     return start;
1436   }
1437 
1438   // Arguments:
1439   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1440   //             ignored
1441   //   name    - stub name string
1442   //
1443   // Inputs:
1444   //   c_rarg0   - source array address
1445   //   c_rarg1   - destination array address
1446   //   c_rarg2   - element count, treated as ssize_t, can be zero
1447   //
1448   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1449   // we let the hardware handle it.  The one to eight bytes within words,
1450   // dwords or qwords that span cache line boundaries will still be loaded
1451   // and stored atomically.
1452   //
1453   address generate_conjoint_byte_copy(bool aligned, const char *name) {
1454     __ align(CodeEntryAlignment);
1455     StubCodeMark mark(this, "StubRoutines", name);
1456     address start = __ pc();
1457 
1458     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1459     const Register from        = rdi;  // source array address
1460     const Register to          = rsi;  // destination array address
1461     const Register count       = rdx;  // elements count
1462     const Register byte_count  = rcx;
1463     const Register qword_count = count;
1464 
1465     __ enter(); // required for proper stackwalking of RuntimeStub frame
1466     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1467 
1468     byte_copy_entry = __ pc();
1469     BLOCK_COMMENT("Entry:");
1470     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1471 
1472     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
1473     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1474                       // r9 and r10 may be used to save non-volatile registers
1475 
1476     // 'from', 'to' and 'count' are now valid
1477     __ movptr(byte_count, count);
1478     __ shrptr(count, 3);   // count => qword_count
1479 
1480     // Copy from high to low addresses.
1481 
1482     // Check for and copy trailing byte
1483     __ testl(byte_count, 1);
1484     __ jcc(Assembler::zero, L_copy_2_bytes);
1485     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1486     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1487     __ decrement(byte_count); // Adjust for possible trailing word
1488 
1489     // Check for and copy trailing word
1490   __ BIND(L_copy_2_bytes);
1491     __ testl(byte_count, 2);
1492     __ jcc(Assembler::zero, L_copy_4_bytes);
1493     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1494     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1495 
1496     // Check for and copy trailing dword
1497   __ BIND(L_copy_4_bytes);
1498     __ testl(byte_count, 4);
1499     __ jcc(Assembler::zero, L_copy_32_bytes);
1500     __ movl(rax, Address(from, qword_count, Address::times_8));
1501     __ movl(Address(to, qword_count, Address::times_8), rax);
1502     __ jmp(L_copy_32_bytes);
1503 
1504     // Copy trailing qwords
1505   __ BIND(L_copy_8_bytes);
1506     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1507     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1508     __ decrement(qword_count);
1509     __ jcc(Assembler::notZero, L_copy_8_bytes);
1510 
1511     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1512     restore_arg_regs();
1513     __ xorptr(rax, rax); // return 0
1514     __ leave(); // required for proper stackwalking of RuntimeStub frame
1515     __ ret(0);
1516 
1517     // Copy in 32-bytes chunks
1518     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1519 
1520     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
1521     restore_arg_regs();
1522     __ xorptr(rax, rax); // return 0
1523     __ leave(); // required for proper stackwalking of RuntimeStub frame
1524     __ ret(0);
1525 
1526     return start;
1527   }
1528 
1529   // Arguments:
1530   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1531   //             ignored
1532   //   name    - stub name string
1533   //
1534   // Inputs:
1535   //   c_rarg0   - source array address
1536   //   c_rarg1   - destination array address
1537   //   c_rarg2   - element count, treated as ssize_t, can be zero
1538   //
1539   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1540   // let the hardware handle it.  The two or four words within dwords
1541   // or qwords that span cache line boundaries will still be loaded
1542   // and stored atomically.
1543   //
1544   // Side Effects:
1545   //   disjoint_short_copy_entry is set to the no-overlap entry point
1546   //   used by generate_conjoint_short_copy().
1547   //
1548   address generate_disjoint_short_copy(bool aligned, const char *name) {
1549     __ align(CodeEntryAlignment);
1550     StubCodeMark mark(this, "StubRoutines", name);
1551     address start = __ pc();
1552 
1553     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1554     const Register from        = rdi;  // source array address
1555     const Register to          = rsi;  // destination array address
1556     const Register count       = rdx;  // elements count
1557     const Register word_count  = rcx;
1558     const Register qword_count = count;
1559     const Register end_from    = from; // source array end address
1560     const Register end_to      = to;   // destination array end address
1561     // End pointers are inclusive, and if count is not zero they point
1562     // to the last unit copied:  end_to[0] := end_from[0]
1563 
1564     __ enter(); // required for proper stackwalking of RuntimeStub frame
1565     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1566 
1567     disjoint_short_copy_entry = __ pc();
1568     BLOCK_COMMENT("Entry:");
1569     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1570 
1571     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1572                       // r9 and r10 may be used to save non-volatile registers
1573 
1574     // 'from', 'to' and 'count' are now valid
1575     __ movptr(word_count, count);
1576     __ shrptr(count, 2); // count => qword_count
1577 
1578     // Copy from low to high addresses.  Use 'to' as scratch.
1579     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1580     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1581     __ negptr(qword_count);
1582     __ jmp(L_copy_32_bytes);
1583 
1584     // Copy trailing qwords
1585   __ BIND(L_copy_8_bytes);
1586     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1587     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1588     __ increment(qword_count);
1589     __ jcc(Assembler::notZero, L_copy_8_bytes);
1590 
1591     // Original 'dest' is trashed, so we can't use it as a
1592     // base register for a possible trailing word copy
1593 
1594     // Check for and copy trailing dword
1595   __ BIND(L_copy_4_bytes);
1596     __ testl(word_count, 2);
1597     __ jccb(Assembler::zero, L_copy_2_bytes);
1598     __ movl(rax, Address(end_from, 8));
1599     __ movl(Address(end_to, 8), rax);
1600 
1601     __ addptr(end_from, 4);
1602     __ addptr(end_to, 4);
1603 
1604     // Check for and copy trailing word
1605   __ BIND(L_copy_2_bytes);
1606     __ testl(word_count, 1);
1607     __ jccb(Assembler::zero, L_exit);
1608     __ movw(rax, Address(end_from, 8));
1609     __ movw(Address(end_to, 8), rax);
1610 
1611   __ BIND(L_exit);
1612     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1613     restore_arg_regs();
1614     __ xorptr(rax, rax); // return 0
1615     __ leave(); // required for proper stackwalking of RuntimeStub frame
1616     __ ret(0);
1617 
1618     // Copy in 32-bytes chunks
1619     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1620     __ jmp(L_copy_4_bytes);
1621 
1622     return start;
1623   }
1624 
1625   // Arguments:
1626   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1627   //             ignored
1628   //   name    - stub name string
1629   //
1630   // Inputs:
1631   //   c_rarg0   - source array address
1632   //   c_rarg1   - destination array address
1633   //   c_rarg2   - element count, treated as ssize_t, can be zero
1634   //
1635   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1636   // let the hardware handle it.  The two or four words within dwords
1637   // or qwords that span cache line boundaries will still be loaded
1638   // and stored atomically.
1639   //
1640   address generate_conjoint_short_copy(bool aligned, const char *name) {
1641     __ align(CodeEntryAlignment);
1642     StubCodeMark mark(this, "StubRoutines", name);
1643     address start = __ pc();
1644 
1645     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
1646     const Register from        = rdi;  // source array address
1647     const Register to          = rsi;  // destination array address
1648     const Register count       = rdx;  // elements count
1649     const Register word_count  = rcx;
1650     const Register qword_count = count;
1651 
1652     __ enter(); // required for proper stackwalking of RuntimeStub frame
1653     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1654 
1655     short_copy_entry = __ pc();
1656     BLOCK_COMMENT("Entry:");
1657     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1658 
1659     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
1660     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1661                       // r9 and r10 may be used to save non-volatile registers
1662 
1663     // 'from', 'to' and 'count' are now valid
1664     __ movptr(word_count, count);
1665     __ shrptr(count, 2); // count => qword_count
1666 
1667     // Copy from high to low addresses.  Use 'to' as scratch.
1668 
1669     // Check for and copy trailing word
1670     __ testl(word_count, 1);
1671     __ jccb(Assembler::zero, L_copy_4_bytes);
1672     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1673     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1674 
1675     // Check for and copy trailing dword
1676   __ BIND(L_copy_4_bytes);
1677     __ testl(word_count, 2);
1678     __ jcc(Assembler::zero, L_copy_32_bytes);
1679     __ movl(rax, Address(from, qword_count, Address::times_8));
1680     __ movl(Address(to, qword_count, Address::times_8), rax);
1681     __ jmp(L_copy_32_bytes);
1682 
1683     // Copy trailing qwords
1684   __ BIND(L_copy_8_bytes);
1685     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1686     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1687     __ decrement(qword_count);
1688     __ jcc(Assembler::notZero, L_copy_8_bytes);
1689 
1690     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1691     restore_arg_regs();
1692     __ xorptr(rax, rax); // return 0
1693     __ leave(); // required for proper stackwalking of RuntimeStub frame
1694     __ ret(0);
1695 
1696     // Copy in 32-bytes chunks
1697     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1698 
1699     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
1700     restore_arg_regs();
1701     __ xorptr(rax, rax); // return 0
1702     __ leave(); // required for proper stackwalking of RuntimeStub frame
1703     __ ret(0);
1704 
1705     return start;
1706   }
1707 
1708   // Arguments:
1709   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1710   //             ignored
1711   //   is_oop  - true => oop array, so generate store check code
1712   //   name    - stub name string
1713   //
1714   // Inputs:
1715   //   c_rarg0   - source array address
1716   //   c_rarg1   - destination array address
1717   //   c_rarg2   - element count, treated as ssize_t, can be zero
1718   //
1719   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1720   // the hardware handle it.  The two dwords within qwords that span
1721   // cache line boundaries will still be loaded and stored atomicly.
1722   //
1723   // Side Effects:
1724   //   disjoint_int_copy_entry is set to the no-overlap entry point
1725   //   used by generate_conjoint_int_oop_copy().
1726   //
1727   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1728     __ align(CodeEntryAlignment);
1729     StubCodeMark mark(this, "StubRoutines", name);
1730     address start = __ pc();
1731 
1732     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1733     const Register from        = rdi;  // source array address
1734     const Register to          = rsi;  // destination array address
1735     const Register count       = rdx;  // elements count
1736     const Register dword_count = rcx;
1737     const Register qword_count = count;
1738     const Register end_from    = from; // source array end address
1739     const Register end_to      = to;   // destination array end address
1740     const Register saved_to    = r11;  // saved destination array address
1741     // End pointers are inclusive, and if count is not zero they point
1742     // to the last unit copied:  end_to[0] := end_from[0]
1743 
1744     __ enter(); // required for proper stackwalking of RuntimeStub frame
1745     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1746 
1747     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
1748 
1749     if (is_oop) {
1750       // no registers are destroyed by this call
1751       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1752     }
1753 
1754     BLOCK_COMMENT("Entry:");
1755     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1756 
1757     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1758                       // r9 and r10 may be used to save non-volatile registers
1759 
1760     if (is_oop) {
1761       __ movq(saved_to, to);
1762     }
1763 
1764     // 'from', 'to' and 'count' are now valid
1765     __ movptr(dword_count, count);
1766     __ shrptr(count, 1); // count => qword_count
1767 
1768     // Copy from low to high addresses.  Use 'to' as scratch.
1769     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1770     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1771     __ negptr(qword_count);
1772     __ jmp(L_copy_32_bytes);
1773 
1774     // Copy trailing qwords
1775   __ BIND(L_copy_8_bytes);
1776     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1777     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1778     __ increment(qword_count);
1779     __ jcc(Assembler::notZero, L_copy_8_bytes);
1780 
1781     // Check for and copy trailing dword
1782   __ BIND(L_copy_4_bytes);
1783     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1784     __ jccb(Assembler::zero, L_exit);
1785     __ movl(rax, Address(end_from, 8));
1786     __ movl(Address(end_to, 8), rax);
1787 
1788   __ BIND(L_exit);
1789     if (is_oop) {
1790       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
1791       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1792     }
1793     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1794     restore_arg_regs();
1795     __ xorptr(rax, rax); // return 0
1796     __ leave(); // required for proper stackwalking of RuntimeStub frame
1797     __ ret(0);
1798 
1799     // Copy 32-bytes chunks
1800     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1801     __ jmp(L_copy_4_bytes);
1802 
1803     return start;
1804   }
1805 
1806   // Arguments:
1807   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1808   //             ignored
1809   //   is_oop  - true => oop array, so generate store check code
1810   //   name    - stub name string
1811   //
1812   // Inputs:
1813   //   c_rarg0   - source array address
1814   //   c_rarg1   - destination array address
1815   //   c_rarg2   - element count, treated as ssize_t, can be zero
1816   //
1817   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1818   // the hardware handle it.  The two dwords within qwords that span
1819   // cache line boundaries will still be loaded and stored atomicly.
1820   //
1821   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
1822     __ align(CodeEntryAlignment);
1823     StubCodeMark mark(this, "StubRoutines", name);
1824     address start = __ pc();
1825 
1826     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1827     const Register from        = rdi;  // source array address
1828     const Register to          = rsi;  // destination array address
1829     const Register count       = rdx;  // elements count
1830     const Register dword_count = rcx;
1831     const Register qword_count = count;
1832 
1833     __ enter(); // required for proper stackwalking of RuntimeStub frame
1834     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1835 
1836     if (is_oop) {
1837       // no registers are destroyed by this call
1838       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1839     }
1840 
1841     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
1842     BLOCK_COMMENT("Entry:");
1843     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1844 
1845     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
1846                        Address::times_4);
1847     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1848                       // r9 and r10 may be used to save non-volatile registers
1849 
1850     assert_clean_int(count, rax); // Make sure 'count' is clean int.
1851     // 'from', 'to' and 'count' are now valid
1852     __ movptr(dword_count, count);
1853     __ shrptr(count, 1); // count => qword_count
1854 
1855     // Copy from high to low addresses.  Use 'to' as scratch.
1856 
1857     // Check for and copy trailing dword
1858     __ testl(dword_count, 1);
1859     __ jcc(Assembler::zero, L_copy_32_bytes);
1860     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
1861     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
1862     __ jmp(L_copy_32_bytes);
1863 
1864     // Copy trailing qwords
1865   __ BIND(L_copy_8_bytes);
1866     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1867     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1868     __ decrement(qword_count);
1869     __ jcc(Assembler::notZero, L_copy_8_bytes);
1870 
1871     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1872     if (is_oop) {
1873       __ jmp(L_exit);
1874     }
1875     restore_arg_regs();
1876     __ xorptr(rax, rax); // return 0
1877     __ leave(); // required for proper stackwalking of RuntimeStub frame
1878     __ ret(0);
1879 
1880     // Copy in 32-bytes chunks
1881     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1882 
1883    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
1884    __ bind(L_exit);
1885      if (is_oop) {
1886        Register end_to = rdx;
1887        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
1888        gen_write_ref_array_post_barrier(to, end_to, rax);
1889      }
1890     restore_arg_regs();
1891     __ xorptr(rax, rax); // return 0
1892     __ leave(); // required for proper stackwalking of RuntimeStub frame
1893     __ ret(0);
1894 
1895     return start;
1896   }
1897 
1898   // Arguments:
1899   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1900   //             ignored
1901   //   is_oop  - true => oop array, so generate store check code
1902   //   name    - stub name string
1903   //
1904   // Inputs:
1905   //   c_rarg0   - source array address
1906   //   c_rarg1   - destination array address
1907   //   c_rarg2   - element count, treated as ssize_t, can be zero
1908   //
1909  // Side Effects:
1910   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
1911   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
1912   //
1913   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
1914     __ align(CodeEntryAlignment);
1915     StubCodeMark mark(this, "StubRoutines", name);
1916     address start = __ pc();
1917 
1918     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
1919     const Register from        = rdi;  // source array address
1920     const Register to          = rsi;  // destination array address
1921     const Register qword_count = rdx;  // elements count
1922     const Register end_from    = from; // source array end address
1923     const Register end_to      = rcx;  // destination array end address
1924     const Register saved_to    = to;
1925     // End pointers are inclusive, and if count is not zero they point
1926     // to the last unit copied:  end_to[0] := end_from[0]
1927 
1928     __ enter(); // required for proper stackwalking of RuntimeStub frame
1929     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
1930     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1931 
1932     if (is_oop) {
1933       disjoint_oop_copy_entry  = __ pc();
1934       // no registers are destroyed by this call
1935       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
1936     } else {
1937       disjoint_long_copy_entry = __ pc();
1938     }
1939     BLOCK_COMMENT("Entry:");
1940     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1941 
1942     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1943                       // r9 and r10 may be used to save non-volatile registers
1944 
1945     // 'from', 'to' and 'qword_count' are now valid
1946 
1947     // Copy from low to high addresses.  Use 'to' as scratch.
1948     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1949     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1950     __ negptr(qword_count);
1951     __ jmp(L_copy_32_bytes);
1952 
1953     // Copy trailing qwords
1954   __ BIND(L_copy_8_bytes);
1955     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1956     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1957     __ increment(qword_count);
1958     __ jcc(Assembler::notZero, L_copy_8_bytes);
1959 
1960     if (is_oop) {
1961       __ jmp(L_exit);
1962     } else {
1963       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1964       restore_arg_regs();
1965       __ xorptr(rax, rax); // return 0
1966       __ leave(); // required for proper stackwalking of RuntimeStub frame
1967       __ ret(0);
1968     }
1969 
1970     // Copy 64-byte chunks
1971     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
1972 
1973     if (is_oop) {
1974     __ BIND(L_exit);
1975       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
1976       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
1977     } else {
1978       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
1979     }
1980     restore_arg_regs();
1981     __ xorptr(rax, rax); // return 0
1982     __ leave(); // required for proper stackwalking of RuntimeStub frame
1983     __ ret(0);
1984 
1985     return start;
1986   }
1987 
1988   // Arguments:
1989   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
1990   //             ignored
1991   //   is_oop  - true => oop array, so generate store check code
1992   //   name    - stub name string
1993   //
1994   // Inputs:
1995   //   c_rarg0   - source array address
1996   //   c_rarg1   - destination array address
1997   //   c_rarg2   - element count, treated as ssize_t, can be zero
1998   //
1999   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
2000     __ align(CodeEntryAlignment);
2001     StubCodeMark mark(this, "StubRoutines", name);
2002     address start = __ pc();
2003 
2004     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
2005     const Register from        = rdi;  // source array address
2006     const Register to          = rsi;  // destination array address
2007     const Register qword_count = rdx;  // elements count
2008     const Register saved_count = rcx;
2009 
2010     __ enter(); // required for proper stackwalking of RuntimeStub frame
2011     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2012 
2013     address disjoint_copy_entry = NULL;
2014     if (is_oop) {
2015       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
2016       disjoint_copy_entry = disjoint_oop_copy_entry;
2017       oop_copy_entry  = __ pc();
2018       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
2019     } else {
2020       disjoint_copy_entry = disjoint_long_copy_entry;
2021       long_copy_entry = __ pc();
2022       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
2023     }
2024     BLOCK_COMMENT("Entry:");
2025     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2026 
2027     array_overlap_test(disjoint_copy_entry, Address::times_8);
2028     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2029                       // r9 and r10 may be used to save non-volatile registers
2030 
2031     // 'from', 'to' and 'qword_count' are now valid
2032 
2033     if (is_oop) {
2034       // Save to and count for store barrier
2035       __ movptr(saved_count, qword_count);
2036       // No registers are destroyed by this call
2037       gen_write_ref_array_pre_barrier(to, saved_count);
2038     }
2039 
2040     __ jmp(L_copy_32_bytes);
2041 
2042     // Copy trailing qwords
2043   __ BIND(L_copy_8_bytes);
2044     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2045     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2046     __ decrement(qword_count);
2047     __ jcc(Assembler::notZero, L_copy_8_bytes);
2048 
2049     if (is_oop) {
2050       __ jmp(L_exit);
2051     } else {
2052       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2053       restore_arg_regs();
2054       __ xorptr(rax, rax); // return 0
2055       __ leave(); // required for proper stackwalking of RuntimeStub frame
2056       __ ret(0);
2057     }
2058 
2059     // Copy in 32-bytes chunks
2060     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
2061 
2062     if (is_oop) {
2063     __ BIND(L_exit);
2064       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
2065       gen_write_ref_array_post_barrier(to, rcx, rax);
2066       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
2067     } else {
2068       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
2069     }
2070     restore_arg_regs();
2071     __ xorptr(rax, rax); // return 0
2072     __ leave(); // required for proper stackwalking of RuntimeStub frame
2073     __ ret(0);
2074 
2075     return start;
2076   }
2077 
2078 
2079   // Helper for generating a dynamic type check.
2080   // Smashes no registers.
2081   void generate_type_check(Register sub_klass,
2082                            Register super_check_offset,
2083                            Register super_klass,
2084                            Label& L_success) {
2085     assert_different_registers(sub_klass, super_check_offset, super_klass);
2086 
2087     BLOCK_COMMENT("type_check:");
2088 
2089     Label L_miss;
2090 
2091     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2092                                      super_check_offset);
2093     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2094 
2095     // Fall through on failure!
2096     __ BIND(L_miss);
2097   }
2098 
2099   //
2100   //  Generate checkcasting array copy stub
2101   //
2102   //  Input:
2103   //    c_rarg0   - source array address
2104   //    c_rarg1   - destination array address
2105   //    c_rarg2   - element count, treated as ssize_t, can be zero
2106   //    c_rarg3   - size_t ckoff (super_check_offset)
2107   // not Win64
2108   //    c_rarg4   - oop ckval (super_klass)
2109   // Win64
2110   //    rsp+40    - oop ckval (super_klass)
2111   //
2112   //  Output:
2113   //    rax ==  0  -  success
2114   //    rax == -1^K - failure, where K is partial transfer count
2115   //
2116   address generate_checkcast_copy(const char *name) {
2117 
2118     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2119 
2120     // Input registers (after setup_arg_regs)
2121     const Register from        = rdi;   // source array address
2122     const Register to          = rsi;   // destination array address
2123     const Register length      = rdx;   // elements count
2124     const Register ckoff       = rcx;   // super_check_offset
2125     const Register ckval       = r8;    // super_klass
2126 
2127     // Registers used as temps (r13, r14 are save-on-entry)
2128     const Register end_from    = from;  // source array end address
2129     const Register end_to      = r13;   // destination array end address
2130     const Register count       = rdx;   // -(count_remaining)
2131     const Register r14_length  = r14;   // saved copy of length
2132     // End pointers are inclusive, and if length is not zero they point
2133     // to the last unit copied:  end_to[0] := end_from[0]
2134 
2135     const Register rax_oop    = rax;    // actual oop copied
2136     const Register r11_klass  = r11;    // oop._klass
2137 
2138     //---------------------------------------------------------------
2139     // Assembler stub will be used for this call to arraycopy
2140     // if the two arrays are subtypes of Object[] but the
2141     // destination array type is not equal to or a supertype
2142     // of the source type.  Each element must be separately
2143     // checked.
2144 
2145     __ align(CodeEntryAlignment);
2146     StubCodeMark mark(this, "StubRoutines", name);
2147     address start = __ pc();
2148 
2149     __ enter(); // required for proper stackwalking of RuntimeStub frame
2150 
2151     checkcast_copy_entry  = __ pc();
2152     BLOCK_COMMENT("Entry:");
2153 
2154 #ifdef ASSERT
2155     // caller guarantees that the arrays really are different
2156     // otherwise, we would have to make conjoint checks
2157     { Label L;
2158       array_overlap_test(L, TIMES_OOP);
2159       __ stop("checkcast_copy within a single array");
2160       __ bind(L);
2161     }
2162 #endif //ASSERT
2163 
2164     // allocate spill slots for r13, r14
2165     enum {
2166       saved_r13_offset,
2167       saved_r14_offset,
2168       saved_rbp_offset,
2169       saved_rip_offset,
2170       saved_rarg0_offset
2171     };
2172     __ subptr(rsp, saved_rbp_offset * wordSize);
2173     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2174     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2175     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2176                        // ckoff => rcx, ckval => r8
2177                        // r9 and r10 may be used to save non-volatile registers
2178 #ifdef _WIN64
2179     // last argument (#4) is on stack on Win64
2180     const int ckval_offset = saved_rarg0_offset + 4;
2181     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
2182 #endif
2183 
2184     // check that int operands are properly extended to size_t
2185     assert_clean_int(length, rax);
2186     assert_clean_int(ckoff, rax);
2187 
2188 #ifdef ASSERT
2189     BLOCK_COMMENT("assert consistent ckoff/ckval");
2190     // The ckoff and ckval must be mutually consistent,
2191     // even though caller generates both.
2192     { Label L;
2193       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2194                         Klass::super_check_offset_offset_in_bytes());
2195       __ cmpl(ckoff, Address(ckval, sco_offset));
2196       __ jcc(Assembler::equal, L);
2197       __ stop("super_check_offset inconsistent");
2198       __ bind(L);
2199     }
2200 #endif //ASSERT
2201 
2202     // Loop-invariant addresses.  They are exclusive end pointers.
2203     Address end_from_addr(from, length, TIMES_OOP, 0);
2204     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2205     // Loop-variant addresses.  They assume post-incremented count < 0.
2206     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2207     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2208 
2209     gen_write_ref_array_pre_barrier(to, count);
2210 
2211     // Copy from low to high addresses, indexed from the end of each array.
2212     __ lea(end_from, end_from_addr);
2213     __ lea(end_to,   end_to_addr);
2214     __ movptr(r14_length, length);        // save a copy of the length
2215     assert(length == count, "");          // else fix next line:
2216     __ negptr(count);                     // negate and test the length
2217     __ jcc(Assembler::notZero, L_load_element);
2218 
2219     // Empty array:  Nothing to do.
2220     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2221     __ jmp(L_done);
2222 
2223     // ======== begin loop ========
2224     // (Loop is rotated; its entry is L_load_element.)
2225     // Loop control:
2226     //   for (count = -count; count != 0; count++)
2227     // Base pointers src, dst are biased by 8*(count-1),to last element.
2228     __ align(OptoLoopAlignment);
2229 
2230     __ BIND(L_store_element);
2231     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2232     __ increment(count);               // increment the count toward zero
2233     __ jcc(Assembler::zero, L_do_card_marks);
2234 
2235     // ======== loop entry is here ========
2236     __ BIND(L_load_element);
2237     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2238     __ testptr(rax_oop, rax_oop);
2239     __ jcc(Assembler::zero, L_store_element);
2240 
2241     __ load_klass(r11_klass, rax_oop);// query the object klass
2242     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2243     // ======== end loop ========
2244 
2245     // It was a real error; we must depend on the caller to finish the job.
2246     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2247     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2248     // and report their number to the caller.
2249     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
2250     __ lea(end_to, to_element_addr);
2251     __ addptr(end_to, -heapOopSize);      // make an inclusive end pointer
2252     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2253     __ movptr(rax, r14_length);           // original oops
2254     __ addptr(rax, count);                // K = (original - remaining) oops
2255     __ notptr(rax);                       // report (-1^K) to caller
2256     __ jmp(L_done);
2257 
2258     // Come here on success only.
2259     __ BIND(L_do_card_marks);
2260     __ addptr(end_to, -heapOopSize);         // make an inclusive end pointer
2261     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
2262     __ xorptr(rax, rax);                  // return 0 on success
2263 
2264     // Common exit point (success or failure).
2265     __ BIND(L_done);
2266     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2267     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2268     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
2269     restore_arg_regs();
2270     __ leave(); // required for proper stackwalking of RuntimeStub frame
2271     __ ret(0);
2272 
2273     return start;
2274   }
2275 
2276   //
2277   //  Generate 'unsafe' array copy stub
2278   //  Though just as safe as the other stubs, it takes an unscaled
2279   //  size_t argument instead of an element count.
2280   //
2281   //  Input:
2282   //    c_rarg0   - source array address
2283   //    c_rarg1   - destination array address
2284   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2285   //
2286   // Examines the alignment of the operands and dispatches
2287   // to a long, int, short, or byte copy loop.
2288   //
2289   address generate_unsafe_copy(const char *name) {
2290 
2291     Label L_long_aligned, L_int_aligned, L_short_aligned;
2292 
2293     // Input registers (before setup_arg_regs)
2294     const Register from        = c_rarg0;  // source array address
2295     const Register to          = c_rarg1;  // destination array address
2296     const Register size        = c_rarg2;  // byte count (size_t)
2297 
2298     // Register used as a temp
2299     const Register bits        = rax;      // test copy of low bits
2300 
2301     __ align(CodeEntryAlignment);
2302     StubCodeMark mark(this, "StubRoutines", name);
2303     address start = __ pc();
2304 
2305     __ enter(); // required for proper stackwalking of RuntimeStub frame
2306 
2307     // bump this on entry, not on exit:
2308     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2309 
2310     __ mov(bits, from);
2311     __ orptr(bits, to);
2312     __ orptr(bits, size);
2313 
2314     __ testb(bits, BytesPerLong-1);
2315     __ jccb(Assembler::zero, L_long_aligned);
2316 
2317     __ testb(bits, BytesPerInt-1);
2318     __ jccb(Assembler::zero, L_int_aligned);
2319 
2320     __ testb(bits, BytesPerShort-1);
2321     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2322 
2323     __ BIND(L_short_aligned);
2324     __ shrptr(size, LogBytesPerShort); // size => short_count
2325     __ jump(RuntimeAddress(short_copy_entry));
2326 
2327     __ BIND(L_int_aligned);
2328     __ shrptr(size, LogBytesPerInt); // size => int_count
2329     __ jump(RuntimeAddress(int_copy_entry));
2330 
2331     __ BIND(L_long_aligned);
2332     __ shrptr(size, LogBytesPerLong); // size => qword_count
2333     __ jump(RuntimeAddress(long_copy_entry));
2334 
2335     return start;
2336   }
2337 
2338   // Perform range checks on the proposed arraycopy.
2339   // Kills temp, but nothing else.
2340   // Also, clean the sign bits of src_pos and dst_pos.
2341   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2342                               Register src_pos, // source position (c_rarg1)
2343                               Register dst,     // destination array oo (c_rarg2)
2344                               Register dst_pos, // destination position (c_rarg3)
2345                               Register length,
2346                               Register temp,
2347                               Label& L_failed) {
2348     BLOCK_COMMENT("arraycopy_range_checks:");
2349 
2350     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2351     __ movl(temp, length);
2352     __ addl(temp, src_pos);             // src_pos + length
2353     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2354     __ jcc(Assembler::above, L_failed);
2355 
2356     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2357     __ movl(temp, length);
2358     __ addl(temp, dst_pos);             // dst_pos + length
2359     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2360     __ jcc(Assembler::above, L_failed);
2361 
2362     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2363     // Move with sign extension can be used since they are positive.
2364     __ movslq(src_pos, src_pos);
2365     __ movslq(dst_pos, dst_pos);
2366 
2367     BLOCK_COMMENT("arraycopy_range_checks done");
2368   }
2369 
2370   //
2371   //  Generate generic array copy stubs
2372   //
2373   //  Input:
2374   //    c_rarg0    -  src oop
2375   //    c_rarg1    -  src_pos (32-bits)
2376   //    c_rarg2    -  dst oop
2377   //    c_rarg3    -  dst_pos (32-bits)
2378   // not Win64
2379   //    c_rarg4    -  element count (32-bits)
2380   // Win64
2381   //    rsp+40     -  element count (32-bits)
2382   //
2383   //  Output:
2384   //    rax ==  0  -  success
2385   //    rax == -1^K - failure, where K is partial transfer count
2386   //
2387   address generate_generic_copy(const char *name) {
2388 
2389     Label L_failed, L_failed_0, L_objArray;
2390     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2391 
2392     // Input registers
2393     const Register src        = c_rarg0;  // source array oop
2394     const Register src_pos    = c_rarg1;  // source position
2395     const Register dst        = c_rarg2;  // destination array oop
2396     const Register dst_pos    = c_rarg3;  // destination position
2397     // elements count is on stack on Win64
2398 #ifdef _WIN64
2399 #define C_RARG4 Address(rsp, 6 * wordSize)
2400 #else
2401 #define C_RARG4 c_rarg4
2402 #endif
2403 
2404     { int modulus = CodeEntryAlignment;
2405       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2406       int advance = target - (__ offset() % modulus);
2407       if (advance < 0)  advance += modulus;
2408       if (advance > 0)  __ nop(advance);
2409     }
2410     StubCodeMark mark(this, "StubRoutines", name);
2411 
2412     // Short-hop target to L_failed.  Makes for denser prologue code.
2413     __ BIND(L_failed_0);
2414     __ jmp(L_failed);
2415     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2416 
2417     __ align(CodeEntryAlignment);
2418     address start = __ pc();
2419 
2420     __ enter(); // required for proper stackwalking of RuntimeStub frame
2421 
2422     // bump this on entry, not on exit:
2423     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2424 
2425     //-----------------------------------------------------------------------
2426     // Assembler stub will be used for this call to arraycopy
2427     // if the following conditions are met:
2428     //
2429     // (1) src and dst must not be null.
2430     // (2) src_pos must not be negative.
2431     // (3) dst_pos must not be negative.
2432     // (4) length  must not be negative.
2433     // (5) src klass and dst klass should be the same and not NULL.
2434     // (6) src and dst should be arrays.
2435     // (7) src_pos + length must not exceed length of src.
2436     // (8) dst_pos + length must not exceed length of dst.
2437     //
2438 
2439     //  if (src == NULL) return -1;
2440     __ testptr(src, src);         // src oop
2441     size_t j1off = __ offset();
2442     __ jccb(Assembler::zero, L_failed_0);
2443 
2444     //  if (src_pos < 0) return -1;
2445     __ testl(src_pos, src_pos); // src_pos (32-bits)
2446     __ jccb(Assembler::negative, L_failed_0);
2447 
2448     //  if (dst == NULL) return -1;
2449     __ testptr(dst, dst);         // dst oop
2450     __ jccb(Assembler::zero, L_failed_0);
2451 
2452     //  if (dst_pos < 0) return -1;
2453     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2454     size_t j4off = __ offset();
2455     __ jccb(Assembler::negative, L_failed_0);
2456 
2457     // The first four tests are very dense code,
2458     // but not quite dense enough to put four
2459     // jumps in a 16-byte instruction fetch buffer.
2460     // That's good, because some branch predicters
2461     // do not like jumps so close together.
2462     // Make sure of this.
2463     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2464 
2465     // registers used as temp
2466     const Register r11_length    = r11; // elements count to copy
2467     const Register r10_src_klass = r10; // array klass
2468     const Register r9_dst_klass  = r9;  // dest array klass
2469 
2470     //  if (length < 0) return -1;
2471     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
2472     __ testl(r11_length, r11_length);
2473     __ jccb(Assembler::negative, L_failed_0);
2474 
2475     __ load_klass(r10_src_klass, src);
2476 #ifdef ASSERT
2477     //  assert(src->klass() != NULL);
2478     BLOCK_COMMENT("assert klasses not null");
2479     { Label L1, L2;
2480       __ testptr(r10_src_klass, r10_src_klass);
2481       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2482       __ bind(L1);
2483       __ stop("broken null klass");
2484       __ bind(L2);
2485       __ load_klass(r9_dst_klass, dst);
2486       __ cmpq(r9_dst_klass, 0);
2487       __ jcc(Assembler::equal, L1);     // this would be broken also
2488       BLOCK_COMMENT("assert done");
2489     }
2490 #endif
2491 
2492     // Load layout helper (32-bits)
2493     //
2494     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2495     // 32        30    24            16              8     2                 0
2496     //
2497     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2498     //
2499 
2500     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2501                     Klass::layout_helper_offset_in_bytes();
2502 
2503     const Register rax_lh = rax;  // layout helper
2504 
2505     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2506 
2507     // Handle objArrays completely differently...
2508     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2509     __ cmpl(rax_lh, objArray_lh);
2510     __ jcc(Assembler::equal, L_objArray);
2511 
2512     //  if (src->klass() != dst->klass()) return -1;
2513     __ load_klass(r9_dst_klass, dst);
2514     __ cmpq(r10_src_klass, r9_dst_klass);
2515     __ jcc(Assembler::notEqual, L_failed);
2516 
2517     //  if (!src->is_Array()) return -1;
2518     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2519     __ jcc(Assembler::greaterEqual, L_failed);
2520 
2521     // At this point, it is known to be a typeArray (array_tag 0x3).
2522 #ifdef ASSERT
2523     { Label L;
2524       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2525       __ jcc(Assembler::greaterEqual, L);
2526       __ stop("must be a primitive array");
2527       __ bind(L);
2528     }
2529 #endif
2530 
2531     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2532                            r10, L_failed);
2533 
2534     // typeArrayKlass
2535     //
2536     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2537     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2538     //
2539 
2540     const Register r10_offset = r10;    // array offset
2541     const Register rax_elsize = rax_lh; // element size
2542 
2543     __ movl(r10_offset, rax_lh);
2544     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2545     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2546     __ addptr(src, r10_offset);           // src array offset
2547     __ addptr(dst, r10_offset);           // dst array offset
2548     BLOCK_COMMENT("choose copy loop based on element size");
2549     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2550 
2551     // next registers should be set before the jump to corresponding stub
2552     const Register from     = c_rarg0;  // source array address
2553     const Register to       = c_rarg1;  // destination array address
2554     const Register count    = c_rarg2;  // elements count
2555 
2556     // 'from', 'to', 'count' registers should be set in such order
2557     // since they are the same as 'src', 'src_pos', 'dst'.
2558 
2559   __ BIND(L_copy_bytes);
2560     __ cmpl(rax_elsize, 0);
2561     __ jccb(Assembler::notEqual, L_copy_shorts);
2562     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2563     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2564     __ movl2ptr(count, r11_length); // length
2565     __ jump(RuntimeAddress(byte_copy_entry));
2566 
2567   __ BIND(L_copy_shorts);
2568     __ cmpl(rax_elsize, LogBytesPerShort);
2569     __ jccb(Assembler::notEqual, L_copy_ints);
2570     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2571     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2572     __ movl2ptr(count, r11_length); // length
2573     __ jump(RuntimeAddress(short_copy_entry));
2574 
2575   __ BIND(L_copy_ints);
2576     __ cmpl(rax_elsize, LogBytesPerInt);
2577     __ jccb(Assembler::notEqual, L_copy_longs);
2578     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2579     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2580     __ movl2ptr(count, r11_length); // length
2581     __ jump(RuntimeAddress(int_copy_entry));
2582 
2583   __ BIND(L_copy_longs);
2584 #ifdef ASSERT
2585     { Label L;
2586       __ cmpl(rax_elsize, LogBytesPerLong);
2587       __ jcc(Assembler::equal, L);
2588       __ stop("must be long copy, but elsize is wrong");
2589       __ bind(L);
2590     }
2591 #endif
2592     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2593     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2594     __ movl2ptr(count, r11_length); // length
2595     __ jump(RuntimeAddress(long_copy_entry));
2596 
2597     // objArrayKlass
2598   __ BIND(L_objArray);
2599     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
2600 
2601     Label L_plain_copy, L_checkcast_copy;
2602     //  test array classes for subtyping
2603     __ load_klass(r9_dst_klass, dst);
2604     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
2605     __ jcc(Assembler::notEqual, L_checkcast_copy);
2606 
2607     // Identically typed arrays can be copied without element-wise checks.
2608     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2609                            r10, L_failed);
2610 
2611     __ lea(from, Address(src, src_pos, TIMES_OOP,
2612                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2613     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2614                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2615     __ movl2ptr(count, r11_length); // length
2616   __ BIND(L_plain_copy);
2617     __ jump(RuntimeAddress(oop_copy_entry));
2618 
2619   __ BIND(L_checkcast_copy);
2620     // live at this point:  r10_src_klass, !r11_length
2621     {
2622       // assert(r11_length == C_RARG4); // will reload from here
2623       Register r11_dst_klass = r11;
2624       __ load_klass(r11_dst_klass, dst);
2625 
2626       // Before looking at dst.length, make sure dst is also an objArray.
2627       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
2628       __ jcc(Assembler::notEqual, L_failed);
2629 
2630       // It is safe to examine both src.length and dst.length.
2631 #ifndef _WIN64
2632       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
2633                              rax, L_failed);
2634 #else
2635       __ movl(r11_length, C_RARG4);     // reload
2636       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2637                              rax, L_failed);
2638       __ load_klass(r11_dst_klass, dst); // reload
2639 #endif
2640 
2641       // Marshal the base address arguments now, freeing registers.
2642       __ lea(from, Address(src, src_pos, TIMES_OOP,
2643                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2644       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2645                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2646       __ movl(count, C_RARG4);          // length (reloaded)
2647       Register sco_temp = c_rarg3;      // this register is free now
2648       assert_different_registers(from, to, count, sco_temp,
2649                                  r11_dst_klass, r10_src_klass);
2650       assert_clean_int(count, sco_temp);
2651 
2652       // Generate the type check.
2653       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2654                         Klass::super_check_offset_offset_in_bytes());
2655       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2656       assert_clean_int(sco_temp, rax);
2657       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2658 
2659       // Fetch destination element klass from the objArrayKlass header.
2660       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
2661                        objArrayKlass::element_klass_offset_in_bytes());
2662       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2663       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
2664       assert_clean_int(sco_temp, rax);
2665 
2666       // the checkcast_copy loop needs two extra arguments:
2667       assert(c_rarg3 == sco_temp, "#3 already in place");
2668       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
2669       __ jump(RuntimeAddress(checkcast_copy_entry));
2670     }
2671 
2672   __ BIND(L_failed);
2673     __ xorptr(rax, rax);
2674     __ notptr(rax); // return -1
2675     __ leave();   // required for proper stackwalking of RuntimeStub frame
2676     __ ret(0);
2677 
2678     return start;
2679   }
2680 
2681 #undef length_arg
2682 
2683   void generate_arraycopy_stubs() {
2684     // Call the conjoint generation methods immediately after
2685     // the disjoint ones so that short branches from the former
2686     // to the latter can be generated.
2687     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
2688     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
2689 
2690     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
2691     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
2692 
2693     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
2694     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
2695 
2696     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
2697     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
2698 
2699 
2700     if (UseCompressedOops) {
2701       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
2702       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
2703     } else {
2704       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
2705       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
2706     }
2707 
2708     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
2709     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
2710     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
2711 
2712     // We don't generate specialized code for HeapWord-aligned source
2713     // arrays, so just use the code we've already generated
2714     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2715     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2716 
2717     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2718     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2719 
2720     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2721     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2722 
2723     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2724     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2725 
2726     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2727     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2728   }
2729 
2730   void generate_math_stubs() {
2731     {
2732       StubCodeMark mark(this, "StubRoutines", "log");
2733       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2734 
2735       __ subq(rsp, 8);
2736       __ movdbl(Address(rsp, 0), xmm0);
2737       __ fld_d(Address(rsp, 0));
2738       __ flog();
2739       __ fstp_d(Address(rsp, 0));
2740       __ movdbl(xmm0, Address(rsp, 0));
2741       __ addq(rsp, 8);
2742       __ ret(0);
2743     }
2744     {
2745       StubCodeMark mark(this, "StubRoutines", "log10");
2746       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2747 
2748       __ subq(rsp, 8);
2749       __ movdbl(Address(rsp, 0), xmm0);
2750       __ fld_d(Address(rsp, 0));
2751       __ flog10();
2752       __ fstp_d(Address(rsp, 0));
2753       __ movdbl(xmm0, Address(rsp, 0));
2754       __ addq(rsp, 8);
2755       __ ret(0);
2756     }
2757     {
2758       StubCodeMark mark(this, "StubRoutines", "sin");
2759       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2760 
2761       __ subq(rsp, 8);
2762       __ movdbl(Address(rsp, 0), xmm0);
2763       __ fld_d(Address(rsp, 0));
2764       __ trigfunc('s');
2765       __ fstp_d(Address(rsp, 0));
2766       __ movdbl(xmm0, Address(rsp, 0));
2767       __ addq(rsp, 8);
2768       __ ret(0);
2769     }
2770     {
2771       StubCodeMark mark(this, "StubRoutines", "cos");
2772       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2773 
2774       __ subq(rsp, 8);
2775       __ movdbl(Address(rsp, 0), xmm0);
2776       __ fld_d(Address(rsp, 0));
2777       __ trigfunc('c');
2778       __ fstp_d(Address(rsp, 0));
2779       __ movdbl(xmm0, Address(rsp, 0));
2780       __ addq(rsp, 8);
2781       __ ret(0);
2782     }
2783     {
2784       StubCodeMark mark(this, "StubRoutines", "tan");
2785       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2786 
2787       __ subq(rsp, 8);
2788       __ movdbl(Address(rsp, 0), xmm0);
2789       __ fld_d(Address(rsp, 0));
2790       __ trigfunc('t');
2791       __ fstp_d(Address(rsp, 0));
2792       __ movdbl(xmm0, Address(rsp, 0));
2793       __ addq(rsp, 8);
2794       __ ret(0);
2795     }
2796 
2797     // The intrinsic version of these seem to return the same value as
2798     // the strict version.
2799     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
2800     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
2801   }
2802 
2803 #undef __
2804 #define __ masm->
2805 
2806   // Continuation point for throwing of implicit exceptions that are
2807   // not handled in the current activation. Fabricates an exception
2808   // oop and initiates normal exception dispatching in this
2809   // frame. Since we need to preserve callee-saved values (currently
2810   // only for C2, but done for C1 as well) we need a callee-saved oop
2811   // map and therefore have to make these stubs into RuntimeStubs
2812   // rather than BufferBlobs.  If the compiler needs all registers to
2813   // be preserved between the fault point and the exception handler
2814   // then it must assume responsibility for that in
2815   // AbstractCompiler::continuation_for_implicit_null_exception or
2816   // continuation_for_implicit_division_by_zero_exception. All other
2817   // implicit exceptions (e.g., NullPointerException or
2818   // AbstractMethodError on entry) are either at call sites or
2819   // otherwise assume that stack unwinding will be initiated, so
2820   // caller saved registers were assumed volatile in the compiler.
2821   address generate_throw_exception(const char* name,
2822                                    address runtime_entry,
2823                                    bool restore_saved_exception_pc) {
2824     // Information about frame layout at time of blocking runtime call.
2825     // Note that we only have to preserve callee-saved registers since
2826     // the compilers are responsible for supplying a continuation point
2827     // if they expect all registers to be preserved.
2828     enum layout {
2829       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
2830       rbp_off2,
2831       return_off,
2832       return_off2,
2833       framesize // inclusive of return address
2834     };
2835 
2836     int insts_size = 512;
2837     int locs_size  = 64;
2838 
2839     CodeBuffer code(name, insts_size, locs_size);
2840     OopMapSet* oop_maps  = new OopMapSet();
2841     MacroAssembler* masm = new MacroAssembler(&code);
2842 
2843     address start = __ pc();
2844 
2845     // This is an inlined and slightly modified version of call_VM
2846     // which has the ability to fetch the return PC out of
2847     // thread-local storage and also sets up last_Java_sp slightly
2848     // differently than the real call_VM
2849     if (restore_saved_exception_pc) {
2850       __ movptr(rax,
2851                 Address(r15_thread,
2852                         in_bytes(JavaThread::saved_exception_pc_offset())));
2853       __ push(rax);
2854     }
2855 
2856     __ enter(); // required for proper stackwalking of RuntimeStub frame
2857 
2858     assert(is_even(framesize/2), "sp not 16-byte aligned");
2859 
2860     // return address and rbp are already in place
2861     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
2862 
2863     int frame_complete = __ pc() - start;
2864 
2865     // Set up last_Java_sp and last_Java_fp
2866     __ set_last_Java_frame(rsp, rbp, NULL);
2867 
2868     // Call runtime
2869     __ movptr(c_rarg0, r15_thread);
2870     BLOCK_COMMENT("call runtime_entry");
2871     __ call(RuntimeAddress(runtime_entry));
2872 
2873     // Generate oop map
2874     OopMap* map = new OopMap(framesize, 0);
2875 
2876     oop_maps->add_gc_map(__ pc() - start, map);
2877 
2878     __ reset_last_Java_frame(true, false);
2879 
2880     __ leave(); // required for proper stackwalking of RuntimeStub frame
2881 
2882     // check for pending exceptions
2883 #ifdef ASSERT
2884     Label L;
2885     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
2886             (int32_t) NULL_WORD);
2887     __ jcc(Assembler::notEqual, L);
2888     __ should_not_reach_here();
2889     __ bind(L);
2890 #endif // ASSERT
2891     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2892 
2893 
2894     // codeBlob framesize is in words (not VMRegImpl::slot_size)
2895     RuntimeStub* stub =
2896       RuntimeStub::new_runtime_stub(name,
2897                                     &code,
2898                                     frame_complete,
2899                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2900                                     oop_maps, false);
2901     return stub->entry_point();
2902   }
2903 
2904   // Initialization
2905   void generate_initial() {
2906     // Generates all stubs and initializes the entry points
2907 
2908     // This platform-specific stub is needed by generate_call_stub()
2909     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
2910 
2911     // entry points that exist in all platforms Note: This is code
2912     // that could be shared among different platforms - however the
2913     // benefit seems to be smaller than the disadvantage of having a
2914     // much more complicated generator structure. See also comment in
2915     // stubRoutines.hpp.
2916 
2917     StubRoutines::_forward_exception_entry = generate_forward_exception();
2918 
2919     StubRoutines::_call_stub_entry =
2920       generate_call_stub(StubRoutines::_call_stub_return_address);
2921 
2922     // is referenced by megamorphic call
2923     StubRoutines::_catch_exception_entry = generate_catch_exception();
2924 
2925     // atomic calls
2926     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
2927     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
2928     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
2929     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
2930     StubRoutines::_atomic_add_entry          = generate_atomic_add();
2931     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
2932     StubRoutines::_fence_entry               = generate_orderaccess_fence();
2933 
2934     StubRoutines::_handler_for_unsafe_access_entry =
2935       generate_handler_for_unsafe_access();
2936 
2937     // platform dependent
2938     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
2939 
2940     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
2941   }
2942 
2943   void generate_all() {
2944     // Generates all stubs and initializes the entry points
2945 
2946     // These entry points require SharedInfo::stack0 to be set up in
2947     // non-core builds and need to be relocatable, so they each
2948     // fabricate a RuntimeStub internally.
2949     StubRoutines::_throw_AbstractMethodError_entry =
2950       generate_throw_exception("AbstractMethodError throw_exception",
2951                                CAST_FROM_FN_PTR(address,
2952                                                 SharedRuntime::
2953                                                 throw_AbstractMethodError),
2954                                false);
2955 
2956     StubRoutines::_throw_IncompatibleClassChangeError_entry =
2957       generate_throw_exception("IncompatibleClassChangeError throw_exception",
2958                                CAST_FROM_FN_PTR(address,
2959                                                 SharedRuntime::
2960                                                 throw_IncompatibleClassChangeError),
2961                                false);
2962 
2963     StubRoutines::_throw_ArithmeticException_entry =
2964       generate_throw_exception("ArithmeticException throw_exception",
2965                                CAST_FROM_FN_PTR(address,
2966                                                 SharedRuntime::
2967                                                 throw_ArithmeticException),
2968                                true);
2969 
2970     StubRoutines::_throw_NullPointerException_entry =
2971       generate_throw_exception("NullPointerException throw_exception",
2972                                CAST_FROM_FN_PTR(address,
2973                                                 SharedRuntime::
2974                                                 throw_NullPointerException),
2975                                true);
2976 
2977     StubRoutines::_throw_NullPointerException_at_call_entry =
2978       generate_throw_exception("NullPointerException at call throw_exception",
2979                                CAST_FROM_FN_PTR(address,
2980                                                 SharedRuntime::
2981                                                 throw_NullPointerException_at_call),
2982                                false);
2983 
2984     StubRoutines::_throw_StackOverflowError_entry =
2985       generate_throw_exception("StackOverflowError throw_exception",
2986                                CAST_FROM_FN_PTR(address,
2987                                                 SharedRuntime::
2988                                                 throw_StackOverflowError),
2989                                false);
2990 
2991     // entry points that are platform specific
2992     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
2993     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
2994     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
2995     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
2996 
2997     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
2998     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
2999     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3000     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3001 
3002     // support for verify_oop (must happen after universe_init)
3003     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3004 
3005     // arraycopy stubs used by compilers
3006     generate_arraycopy_stubs();
3007 
3008     generate_math_stubs();
3009   }
3010 
3011  public:
3012   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3013     if (all) {
3014       generate_all();
3015     } else {
3016       generate_initial();
3017     }
3018   }
3019 }; // end class declaration
3020 
3021 address StubGenerator::disjoint_byte_copy_entry  = NULL;
3022 address StubGenerator::disjoint_short_copy_entry = NULL;
3023 address StubGenerator::disjoint_int_copy_entry   = NULL;
3024 address StubGenerator::disjoint_long_copy_entry  = NULL;
3025 address StubGenerator::disjoint_oop_copy_entry   = NULL;
3026 
3027 address StubGenerator::byte_copy_entry  = NULL;
3028 address StubGenerator::short_copy_entry = NULL;
3029 address StubGenerator::int_copy_entry   = NULL;
3030 address StubGenerator::long_copy_entry  = NULL;
3031 address StubGenerator::oop_copy_entry   = NULL;
3032 
3033 address StubGenerator::checkcast_copy_entry = NULL;
3034 
3035 void StubGenerator_generate(CodeBuffer* code, bool all) {
3036   StubGenerator g(code, all);
3037 }