1 /*
   2  * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_allocation.cpp.incl"
  27 
  28 void* CHeapObj::operator new(size_t size){
  29   return (void *) AllocateHeap(size, "CHeapObj-new");
  30 }
  31 
  32 void CHeapObj::operator delete(void* p){
  33  FreeHeap(p);
  34 }
  35 
  36 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  37 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
  38 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  39 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
  40 
  41 void* ResourceObj::operator new(size_t size, allocation_type type) {
  42   address res;
  43   switch (type) {
  44    case C_HEAP:
  45     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
  46     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
  47     break;
  48    case RESOURCE_AREA:
  49     // Will set allocation type in the resource object.
  50     res = (address)operator new(size);
  51     break;
  52    default:
  53     ShouldNotReachHere();
  54   }
  55   return res;
  56 }
  57 
  58 void ResourceObj::operator delete(void* p) {
  59   assert(((ResourceObj *)p)->allocated_on_C_heap(),
  60          "delete only allowed for C_HEAP objects");
  61   DEBUG_ONLY(((ResourceObj *)p)->_allocation = badHeapOopVal;)
  62   FreeHeap(p);
  63 }
  64 
  65 #ifdef ASSERT
  66 void ResourceObj::set_allocation_type(address res, allocation_type type) {
  67     // Set allocation type in the resource object
  68     uintptr_t allocation = (uintptr_t)res;
  69     assert((allocation & allocation_mask) == 0, "address should be aligned ot 4 bytes at least");
  70     assert(type <= allocation_mask, "incorrect allocation type");
  71     ((ResourceObj *)res)->_allocation = ~(allocation + type);
  72 }
  73 
  74 ResourceObj::allocation_type ResourceObj::get_allocation_type() {
  75     assert(~(_allocation | allocation_mask) == (uintptr_t)this, "lost resource object");
  76     return (allocation_type)((~_allocation) & allocation_mask);
  77 }
  78 
  79 ResourceObj::ResourceObj() { // default construtor
  80     if (~(_allocation | allocation_mask) != (uintptr_t)this) {
  81       set_allocation_type((address)this, STACK_OR_EMBEDDED);
  82     } else {
  83       assert(allocated_on_res_area() || allocated_on_C_heap() || allocated_on_arena(),
  84              "allocation_type should be set by operator new()");
  85     }
  86 }
  87 
  88 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy construtor
  89     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
  90     set_allocation_type((address)this, STACK_OR_EMBEDDED);
  91 }
  92 
  93 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
  94     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
  95     assert(allocated_on_stack(), "copy only into local");
  96     // Keep current _allocation value;
  97     return *this;
  98 }
  99 
 100 ResourceObj::~ResourceObj() {
 101     if (!allocated_on_C_heap()) { // operator delete() checks C_heap allocation_type.
 102       _allocation = badHeapOopVal;
 103     }
 104 }
 105 #endif // ASSERT
 106 
 107 
 108 void trace_heap_malloc(size_t size, const char* name, void* p) {
 109   // A lock is not needed here - tty uses a lock internally
 110   tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name);
 111 }
 112 
 113 
 114 void trace_heap_free(void* p) {
 115   // A lock is not needed here - tty uses a lock internally
 116   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
 117 }
 118 
 119 bool warn_new_operator = false; // see vm_main
 120 
 121 //--------------------------------------------------------------------------------------
 122 // ChunkPool implementation
 123 
 124 // MT-safe pool of chunks to reduce malloc/free thrashing
 125 // NB: not using Mutex because pools are used before Threads are initialized
 126 class ChunkPool {
 127   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
 128   size_t       _num_chunks;   // number of unused chunks in pool
 129   size_t       _num_used;     // number of chunks currently checked out
 130   const size_t _size;         // size of each chunk (must be uniform)
 131 
 132   // Our three static pools
 133   static ChunkPool* _large_pool;
 134   static ChunkPool* _medium_pool;
 135   static ChunkPool* _small_pool;
 136 
 137   // return first element or null
 138   void* get_first() {
 139     Chunk* c = _first;
 140     if (_first) {
 141       _first = _first->next();
 142       _num_chunks--;
 143     }
 144     return c;
 145   }
 146 
 147  public:
 148   // All chunks in a ChunkPool has the same size
 149    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
 150 
 151   // Allocate a new chunk from the pool (might expand the pool)
 152   void* allocate(size_t bytes) {
 153     assert(bytes == _size, "bad size");
 154     void* p = NULL;
 155     { ThreadCritical tc;
 156       _num_used++;
 157       p = get_first();
 158       if (p == NULL) p = os::malloc(bytes);
 159     }
 160     if (p == NULL)
 161       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
 162 
 163     return p;
 164   }
 165 
 166   // Return a chunk to the pool
 167   void free(Chunk* chunk) {
 168     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
 169     ThreadCritical tc;
 170     _num_used--;
 171 
 172     // Add chunk to list
 173     chunk->set_next(_first);
 174     _first = chunk;
 175     _num_chunks++;
 176   }
 177 
 178   // Prune the pool
 179   void free_all_but(size_t n) {
 180     // if we have more than n chunks, free all of them
 181     ThreadCritical tc;
 182     if (_num_chunks > n) {
 183       // free chunks at end of queue, for better locality
 184       Chunk* cur = _first;
 185       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
 186 
 187       if (cur != NULL) {
 188         Chunk* next = cur->next();
 189         cur->set_next(NULL);
 190         cur = next;
 191 
 192         // Free all remaining chunks
 193         while(cur != NULL) {
 194           next = cur->next();
 195           os::free(cur);
 196           _num_chunks--;
 197           cur = next;
 198         }
 199       }
 200     }
 201   }
 202 
 203   // Accessors to preallocated pool's
 204   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
 205   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
 206   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
 207 
 208   static void initialize() {
 209     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
 210     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
 211     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
 212   }
 213 };
 214 
 215 ChunkPool* ChunkPool::_large_pool  = NULL;
 216 ChunkPool* ChunkPool::_medium_pool = NULL;
 217 ChunkPool* ChunkPool::_small_pool  = NULL;
 218 
 219 
 220 void chunkpool_init() {
 221   ChunkPool::initialize();
 222 }
 223 
 224 
 225 //--------------------------------------------------------------------------------------
 226 // ChunkPoolCleaner implementation
 227 
 228 class ChunkPoolCleaner : public PeriodicTask {
 229   enum { CleaningInterval = 5000,        // cleaning interval in ms
 230          BlocksToKeep     = 5            // # of extra blocks to keep
 231   };
 232 
 233  public:
 234    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
 235    void task() {
 236      ChunkPool::small_pool()->free_all_but(BlocksToKeep);
 237      ChunkPool::medium_pool()->free_all_but(BlocksToKeep);
 238      ChunkPool::large_pool()->free_all_but(BlocksToKeep);
 239    }
 240 };
 241 
 242 //--------------------------------------------------------------------------------------
 243 // Chunk implementation
 244 
 245 void* Chunk::operator new(size_t requested_size, size_t length) {
 246   // requested_size is equal to sizeof(Chunk) but in order for the arena
 247   // allocations to come out aligned as expected the size must be aligned
 248   // to expected arean alignment.
 249   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
 250   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
 251   size_t bytes = ARENA_ALIGN(requested_size) + length;
 252   switch (length) {
 253    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
 254    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
 255    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
 256    default: {
 257      void *p =  os::malloc(bytes);
 258      if (p == NULL)
 259        vm_exit_out_of_memory(bytes, "Chunk::new");
 260      return p;
 261    }
 262   }
 263 }
 264 
 265 void Chunk::operator delete(void* p) {
 266   Chunk* c = (Chunk*)p;
 267   switch (c->length()) {
 268    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
 269    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
 270    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
 271    default:                 os::free(c);
 272   }
 273 }
 274 
 275 Chunk::Chunk(size_t length) : _len(length) {
 276   _next = NULL;         // Chain on the linked list
 277 }
 278 
 279 
 280 void Chunk::chop() {
 281   Chunk *k = this;
 282   while( k ) {
 283     Chunk *tmp = k->next();
 284     // clear out this chunk (to detect allocation bugs)
 285     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
 286     delete k;                   // Free chunk (was malloc'd)
 287     k = tmp;
 288   }
 289 }
 290 
 291 void Chunk::next_chop() {
 292   _next->chop();
 293   _next = NULL;
 294 }
 295 
 296 
 297 void Chunk::start_chunk_pool_cleaner_task() {
 298 #ifdef ASSERT
 299   static bool task_created = false;
 300   assert(!task_created, "should not start chuck pool cleaner twice");
 301   task_created = true;
 302 #endif
 303   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
 304   cleaner->enroll();
 305 }
 306 
 307 //------------------------------Arena------------------------------------------
 308 
 309 Arena::Arena(size_t init_size) {
 310   size_t round_size = (sizeof (char *)) - 1;
 311   init_size = (init_size+round_size) & ~round_size;
 312   _first = _chunk = new (init_size) Chunk(init_size);
 313   _hwm = _chunk->bottom();      // Save the cached hwm, max
 314   _max = _chunk->top();
 315   set_size_in_bytes(init_size);
 316 }
 317 
 318 Arena::Arena() {
 319   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
 320   _hwm = _chunk->bottom();      // Save the cached hwm, max
 321   _max = _chunk->top();
 322   set_size_in_bytes(Chunk::init_size);
 323 }
 324 
 325 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
 326   set_size_in_bytes(a->size_in_bytes());
 327 }
 328 
 329 Arena *Arena::move_contents(Arena *copy) {
 330   copy->destruct_contents();
 331   copy->_chunk = _chunk;
 332   copy->_hwm   = _hwm;
 333   copy->_max   = _max;
 334   copy->_first = _first;
 335   copy->set_size_in_bytes(size_in_bytes());
 336   // Destroy original arena
 337   reset();
 338   return copy;            // Return Arena with contents
 339 }
 340 
 341 Arena::~Arena() {
 342   destruct_contents();
 343 }
 344 
 345 // Destroy this arenas contents and reset to empty
 346 void Arena::destruct_contents() {
 347   if (UseMallocOnly && _first != NULL) {
 348     char* end = _first->next() ? _first->top() : _hwm;
 349     free_malloced_objects(_first, _first->bottom(), end, _hwm);
 350   }
 351   _first->chop();
 352   reset();
 353 }
 354 
 355 
 356 // Total of all Chunks in arena
 357 size_t Arena::used() const {
 358   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
 359   register Chunk *k = _first;
 360   while( k != _chunk) {         // Whilst have Chunks in a row
 361     sum += k->length();         // Total size of this Chunk
 362     k = k->next();              // Bump along to next Chunk
 363   }
 364   return sum;                   // Return total consumed space.
 365 }
 366 
 367 
 368 // Grow a new Chunk
 369 void* Arena::grow( size_t x ) {
 370   // Get minimal required size.  Either real big, or even bigger for giant objs
 371   size_t len = MAX2(x, (size_t) Chunk::size);
 372 
 373   Chunk *k = _chunk;            // Get filled-up chunk address
 374   _chunk = new (len) Chunk(len);
 375 
 376   if (_chunk == NULL)
 377       vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
 378 
 379   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
 380   else _first = _chunk;
 381   _hwm  = _chunk->bottom();     // Save the cached hwm, max
 382   _max =  _chunk->top();
 383   set_size_in_bytes(size_in_bytes() + len);
 384   void* result = _hwm;
 385   _hwm += x;
 386   return result;
 387 }
 388 
 389 
 390 
 391 // Reallocate storage in Arena.
 392 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
 393   assert(new_size >= 0, "bad size");
 394   if (new_size == 0) return NULL;
 395 #ifdef ASSERT
 396   if (UseMallocOnly) {
 397     // always allocate a new object  (otherwise we'll free this one twice)
 398     char* copy = (char*)Amalloc(new_size);
 399     size_t n = MIN2(old_size, new_size);
 400     if (n > 0) memcpy(copy, old_ptr, n);
 401     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
 402     return copy;
 403   }
 404 #endif
 405   char *c_old = (char*)old_ptr; // Handy name
 406   // Stupid fast special case
 407   if( new_size <= old_size ) {  // Shrink in-place
 408     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
 409       _hwm = c_old+new_size;    // Adjust hwm
 410     return c_old;
 411   }
 412 
 413   // make sure that new_size is legal
 414   size_t corrected_new_size = ARENA_ALIGN(new_size);
 415 
 416   // See if we can resize in-place
 417   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
 418       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
 419     _hwm = c_old+corrected_new_size;      // Adjust hwm
 420     return c_old;               // Return old pointer
 421   }
 422 
 423   // Oops, got to relocate guts
 424   void *new_ptr = Amalloc(new_size);
 425   memcpy( new_ptr, c_old, old_size );
 426   Afree(c_old,old_size);        // Mostly done to keep stats accurate
 427   return new_ptr;
 428 }
 429 
 430 
 431 // Determine if pointer belongs to this Arena or not.
 432 bool Arena::contains( const void *ptr ) const {
 433 #ifdef ASSERT
 434   if (UseMallocOnly) {
 435     // really slow, but not easy to make fast
 436     if (_chunk == NULL) return false;
 437     char** bottom = (char**)_chunk->bottom();
 438     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
 439       if (*p == ptr) return true;
 440     }
 441     for (Chunk *c = _first; c != NULL; c = c->next()) {
 442       if (c == _chunk) continue;  // current chunk has been processed
 443       char** bottom = (char**)c->bottom();
 444       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
 445         if (*p == ptr) return true;
 446       }
 447     }
 448     return false;
 449   }
 450 #endif
 451   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
 452     return true;                // Check for in this chunk
 453   for (Chunk *c = _first; c; c = c->next()) {
 454     if (c == _chunk) continue;  // current chunk has been processed
 455     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
 456       return true;              // Check for every chunk in Arena
 457     }
 458   }
 459   return false;                 // Not in any Chunk, so not in Arena
 460 }
 461 
 462 
 463 #ifdef ASSERT
 464 void* Arena::malloc(size_t size) {
 465   assert(UseMallocOnly, "shouldn't call");
 466   // use malloc, but save pointer in res. area for later freeing
 467   char** save = (char**)internal_malloc_4(sizeof(char*));
 468   return (*save = (char*)os::malloc(size));
 469 }
 470 
 471 // for debugging with UseMallocOnly
 472 void* Arena::internal_malloc_4(size_t x) {
 473   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 474   if (_hwm + x > _max) {
 475     return grow(x);
 476   } else {
 477     char *old = _hwm;
 478     _hwm += x;
 479     return old;
 480   }
 481 }
 482 #endif
 483 
 484 
 485 //--------------------------------------------------------------------------------------
 486 // Non-product code
 487 
 488 #ifndef PRODUCT
 489 // The global operator new should never be called since it will usually indicate
 490 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
 491 // that they're allocated on the C heap.
 492 // Commented out in product version to avoid conflicts with third-party C++ native code.
 493 // %% note this is causing a problem on solaris debug build. the global
 494 // new is being called from jdk source and causing data corruption.
 495 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
 496 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
 497 #ifdef CATCH_OPERATOR_NEW_USAGE
 498 void* operator new(size_t size){
 499   static bool warned = false;
 500   if (!warned && warn_new_operator)
 501     warning("should not call global (default) operator new");
 502   warned = true;
 503   return (void *) AllocateHeap(size, "global operator new");
 504 }
 505 #endif
 506 
 507 void AllocatedObj::print() const       { print_on(tty); }
 508 void AllocatedObj::print_value() const { print_value_on(tty); }
 509 
 510 void AllocatedObj::print_on(outputStream* st) const {
 511   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
 512 }
 513 
 514 void AllocatedObj::print_value_on(outputStream* st) const {
 515   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
 516 }
 517 
 518 size_t Arena::_bytes_allocated = 0;
 519 
 520 AllocStats::AllocStats() {
 521   start_mallocs = os::num_mallocs;
 522   start_frees = os::num_frees;
 523   start_malloc_bytes = os::alloc_bytes;
 524   start_res_bytes = Arena::_bytes_allocated;
 525 }
 526 
 527 int     AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
 528 size_t  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
 529 size_t  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
 530 int     AllocStats::num_frees() { return os::num_frees - start_frees; }
 531 void    AllocStats::print() {
 532   tty->print("%d mallocs (%ldK), %d frees, %ldK resrc",
 533              num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K);
 534 }
 535 
 536 
 537 // debugging code
 538 inline void Arena::free_all(char** start, char** end) {
 539   for (char** p = start; p < end; p++) if (*p) os::free(*p);
 540 }
 541 
 542 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
 543   assert(UseMallocOnly, "should not call");
 544   // free all objects malloced since resource mark was created; resource area
 545   // contains their addresses
 546   if (chunk->next()) {
 547     // this chunk is full, and some others too
 548     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
 549       char* top = c->top();
 550       if (c->next() == NULL) {
 551         top = hwm2;     // last junk is only used up to hwm2
 552         assert(c->contains(hwm2), "bad hwm2");
 553       }
 554       free_all((char**)c->bottom(), (char**)top);
 555     }
 556     assert(chunk->contains(hwm), "bad hwm");
 557     assert(chunk->contains(max), "bad max");
 558     free_all((char**)hwm, (char**)max);
 559   } else {
 560     // this chunk was partially used
 561     assert(chunk->contains(hwm), "bad hwm");
 562     assert(chunk->contains(hwm2), "bad hwm2");
 563     free_all((char**)hwm, (char**)hwm2);
 564   }
 565 }
 566 
 567 
 568 ReallocMark::ReallocMark() {
 569 #ifdef ASSERT
 570   Thread *thread = ThreadLocalStorage::get_thread_slow();
 571   _nesting = thread->resource_area()->nesting();
 572 #endif
 573 }
 574 
 575 void ReallocMark::check() {
 576 #ifdef ASSERT
 577   if (_nesting != Thread::current()->resource_area()->nesting()) {
 578     fatal("allocation bug: array could grow within nested ResourceMark");
 579   }
 580 #endif
 581 }
 582 
 583 #endif // Non-product