1 /*
   2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Optimization - Graph Style
  26 
  27 #include "incls/_precompiled.incl"
  28 #include "incls/_lcm.cpp.incl"
  29 
  30 //------------------------------implicit_null_check----------------------------
  31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  33 // I can generate a memory op if there is not one nearby.
  34 // The proj is the control projection for the not-null case.
  35 // The val is the pointer being checked for nullness or
  36 // decodeHeapOop_not_null node if it did not fold into address.
  37 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  38   // Assume if null check need for 0 offset then always needed
  39   // Intel solaris doesn't support any null checks yet and no
  40   // mechanism exists (yet) to set the switches at an os_cpu level
  41   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  42 
  43   // Make sure the ptr-is-null path appears to be uncommon!
  44   float f = end()->as_MachIf()->_prob;
  45   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  46   if( f > PROB_UNLIKELY_MAG(4) ) return;
  47 
  48   uint bidx = 0;                // Capture index of value into memop
  49   bool was_store;               // Memory op is a store op
  50 
  51   // Get the successor block for if the test ptr is non-null
  52   Block* not_null_block;  // this one goes with the proj
  53   Block* null_block;
  54   if (_nodes[_nodes.size()-1] == proj) {
  55     null_block     = _succs[0];
  56     not_null_block = _succs[1];
  57   } else {
  58     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  59     not_null_block = _succs[0];
  60     null_block     = _succs[1];
  61   }
  62   while (null_block->is_Empty() == Block::empty_with_goto) {
  63     null_block     = null_block->_succs[0];
  64   }
  65 
  66   // Search the exception block for an uncommon trap.
  67   // (See Parse::do_if and Parse::do_ifnull for the reason
  68   // we need an uncommon trap.  Briefly, we need a way to
  69   // detect failure of this optimization, as in 6366351.)
  70   {
  71     bool found_trap = false;
  72     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  73       Node* nn = null_block->_nodes[i1];
  74       if (nn->is_MachCall() &&
  75           nn->as_MachCall()->entry_point() ==
  76           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
  77         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
  78         if (trtype->isa_int() && trtype->is_int()->is_con()) {
  79           jint tr_con = trtype->is_int()->get_con();
  80           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
  81           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
  82           assert((int)reason < (int)BitsPerInt, "recode bit map");
  83           if (is_set_nth_bit(allowed_reasons, (int) reason)
  84               && action != Deoptimization::Action_none) {
  85             // This uncommon trap is sure to recompile, eventually.
  86             // When that happens, C->too_many_traps will prevent
  87             // this transformation from happening again.
  88             found_trap = true;
  89           }
  90         }
  91         break;
  92       }
  93     }
  94     if (!found_trap) {
  95       // We did not find an uncommon trap.
  96       return;
  97     }
  98   }
  99 
 100   // Check for decodeHeapOop_not_null node which did not fold into address
 101   bool is_decoden = ((intptr_t)val) & 1;
 102   val = (Node*)(((intptr_t)val) & ~1);
 103 
 104   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 105          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 106 
 107   // Search the successor block for a load or store who's base value is also
 108   // the tested value.  There may be several.
 109   Node_List *out = new Node_List(Thread::current()->resource_area());
 110   MachNode *best = NULL;        // Best found so far
 111   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 112     Node *m = val->out(i);
 113     if( !m->is_Mach() ) continue;
 114     MachNode *mach = m->as_Mach();
 115     was_store = false;
 116     switch( mach->ideal_Opcode() ) {
 117     case Op_LoadB:
 118     case Op_LoadUS:
 119     case Op_LoadD:
 120     case Op_LoadF:
 121     case Op_LoadI:
 122     case Op_LoadL:
 123     case Op_LoadP:
 124     case Op_LoadN:
 125     case Op_LoadS:
 126     case Op_LoadKlass:
 127     case Op_LoadNKlass:
 128     case Op_LoadRange:
 129     case Op_LoadD_unaligned:
 130     case Op_LoadL_unaligned:
 131       assert(mach->in(2) == val, "should be address");
 132       break;
 133     case Op_StoreB:
 134     case Op_StoreC:
 135     case Op_StoreCM:
 136     case Op_StoreD:
 137     case Op_StoreF:
 138     case Op_StoreI:
 139     case Op_StoreL:
 140     case Op_StoreP:
 141     case Op_StoreN:
 142       was_store = true;         // Memory op is a store op
 143       // Stores will have their address in slot 2 (memory in slot 1).
 144       // If the value being nul-checked is in another slot, it means we
 145       // are storing the checked value, which does NOT check the value!
 146       if( mach->in(2) != val ) continue;
 147       break;                    // Found a memory op?
 148     case Op_StrComp:
 149     case Op_StrEquals:
 150     case Op_StrIndexOf:
 151     case Op_AryEq:
 152       // Not a legit memory op for implicit null check regardless of
 153       // embedded loads
 154       continue;
 155     default:                    // Also check for embedded loads
 156       if( !mach->needs_anti_dependence_check() )
 157         continue;               // Not an memory op; skip it
 158       {
 159         // Check that value is used in memory address in
 160         // instructions with embedded load (CmpP val1,(val2+off)).
 161         Node* base;
 162         Node* index;
 163         const MachOper* oper = mach->memory_inputs(base, index);
 164         if (oper == NULL || oper == (MachOper*)-1) {
 165           continue;             // Not an memory op; skip it
 166         }
 167         if (val == base ||
 168             val == index && val->bottom_type()->isa_narrowoop()) {
 169           break;                // Found it
 170         } else {
 171           continue;             // Skip it
 172         }
 173       }
 174       break;
 175     }
 176     // check if the offset is not too high for implicit exception
 177     {
 178       intptr_t offset = 0;
 179       const TypePtr *adr_type = NULL;  // Do not need this return value here
 180       const Node* base = mach->get_base_and_disp(offset, adr_type);
 181       if (base == NULL || base == NodeSentinel) {
 182         // Narrow oop address doesn't have base, only index
 183         if( val->bottom_type()->isa_narrowoop() &&
 184             MacroAssembler::needs_explicit_null_check(offset) )
 185           continue;             // Give up if offset is beyond page size
 186         // cannot reason about it; is probably not implicit null exception
 187       } else {
 188         const TypePtr* tptr;
 189         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
 190           // 32-bits narrow oop can be the base of address expressions
 191           tptr = base->bottom_type()->make_ptr();
 192         } else {
 193           // only regular oops are expected here
 194           tptr = base->bottom_type()->is_ptr();
 195         }
 196         // Give up if offset is not a compile-time constant
 197         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 198           continue;
 199         offset += tptr->_offset; // correct if base is offseted
 200         if( MacroAssembler::needs_explicit_null_check(offset) )
 201           continue;             // Give up is reference is beyond 4K page size
 202       }
 203     }
 204 
 205     // Check ctrl input to see if the null-check dominates the memory op
 206     Block *cb = cfg->_bbs[mach->_idx];
 207     cb = cb->_idom;             // Always hoist at least 1 block
 208     if( !was_store ) {          // Stores can be hoisted only one block
 209       while( cb->_dom_depth > (_dom_depth + 1))
 210         cb = cb->_idom;         // Hoist loads as far as we want
 211       // The non-null-block should dominate the memory op, too. Live
 212       // range spilling will insert a spill in the non-null-block if it is
 213       // needs to spill the memory op for an implicit null check.
 214       if (cb->_dom_depth == (_dom_depth + 1)) {
 215         if (cb != not_null_block) continue;
 216         cb = cb->_idom;
 217       }
 218     }
 219     if( cb != this ) continue;
 220 
 221     // Found a memory user; see if it can be hoisted to check-block
 222     uint vidx = 0;              // Capture index of value into memop
 223     uint j;
 224     for( j = mach->req()-1; j > 0; j-- ) {
 225       if( mach->in(j) == val ) {
 226         vidx = j;
 227         // Ignore DecodeN val which could be hoisted to where needed.
 228         if( is_decoden ) continue;
 229       }
 230       // Block of memory-op input
 231       Block *inb = cfg->_bbs[mach->in(j)->_idx];
 232       Block *b = this;          // Start from nul check
 233       while( b != inb && b->_dom_depth > inb->_dom_depth )
 234         b = b->_idom;           // search upwards for input
 235       // See if input dominates null check
 236       if( b != inb )
 237         break;
 238     }
 239     if( j > 0 )
 240       continue;
 241     Block *mb = cfg->_bbs[mach->_idx];
 242     // Hoisting stores requires more checks for the anti-dependence case.
 243     // Give up hoisting if we have to move the store past any load.
 244     if( was_store ) {
 245       Block *b = mb;            // Start searching here for a local load
 246       // mach use (faulting) trying to hoist
 247       // n might be blocker to hoisting
 248       while( b != this ) {
 249         uint k;
 250         for( k = 1; k < b->_nodes.size(); k++ ) {
 251           Node *n = b->_nodes[k];
 252           if( n->needs_anti_dependence_check() &&
 253               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 254             break;              // Found anti-dependent load
 255         }
 256         if( k < b->_nodes.size() )
 257           break;                // Found anti-dependent load
 258         // Make sure control does not do a merge (would have to check allpaths)
 259         if( b->num_preds() != 2 ) break;
 260         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
 261       }
 262       if( b != this ) continue;
 263     }
 264 
 265     // Make sure this memory op is not already being used for a NullCheck
 266     Node *e = mb->end();
 267     if( e->is_MachNullCheck() && e->in(1) == mach )
 268       continue;                 // Already being used as a NULL check
 269 
 270     // Found a candidate!  Pick one with least dom depth - the highest
 271     // in the dom tree should be closest to the null check.
 272     if( !best ||
 273         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
 274       best = mach;
 275       bidx = vidx;
 276 
 277     }
 278   }
 279   // No candidate!
 280   if( !best ) return;
 281 
 282   // ---- Found an implicit null check
 283   extern int implicit_null_checks;
 284   implicit_null_checks++;
 285 
 286   if( is_decoden ) {
 287     // Check if we need to hoist decodeHeapOop_not_null first.
 288     Block *valb = cfg->_bbs[val->_idx];
 289     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
 290       // Hoist it up to the end of the test block.
 291       valb->find_remove(val);
 292       this->add_inst(val);
 293       cfg->_bbs.map(val->_idx,this);
 294       // DecodeN on x86 may kill flags. Check for flag-killing projections
 295       // that also need to be hoisted.
 296       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 297         Node* n = val->fast_out(j);
 298         if( n->Opcode() == Op_MachProj ) {
 299           cfg->_bbs[n->_idx]->find_remove(n);
 300           this->add_inst(n);
 301           cfg->_bbs.map(n->_idx,this);
 302         }
 303       }
 304     }
 305   }
 306   // Hoist the memory candidate up to the end of the test block.
 307   Block *old_block = cfg->_bbs[best->_idx];
 308   old_block->find_remove(best);
 309   add_inst(best);
 310   cfg->_bbs.map(best->_idx,this);
 311 
 312   // Move the control dependence
 313   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 314     best->set_req(0, _nodes[0]);
 315 
 316   // Check for flag-killing projections that also need to be hoisted
 317   // Should be DU safe because no edge updates.
 318   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 319     Node* n = best->fast_out(j);
 320     if( n->Opcode() == Op_MachProj ) {
 321       cfg->_bbs[n->_idx]->find_remove(n);
 322       add_inst(n);
 323       cfg->_bbs.map(n->_idx,this);
 324     }
 325   }
 326 
 327   Compile *C = cfg->C;
 328   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 329   // One of two graph shapes got matched:
 330   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 331   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 332   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 333   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 334   // We need to flip the projections to keep the same semantics.
 335   if( proj->Opcode() == Op_IfTrue ) {
 336     // Swap order of projections in basic block to swap branch targets
 337     Node *tmp1 = _nodes[end_idx()+1];
 338     Node *tmp2 = _nodes[end_idx()+2];
 339     _nodes.map(end_idx()+1, tmp2);
 340     _nodes.map(end_idx()+2, tmp1);
 341     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
 342     tmp1->replace_by(tmp);
 343     tmp2->replace_by(tmp1);
 344     tmp->replace_by(tmp2);
 345     tmp->destruct();
 346   }
 347 
 348   // Remove the existing null check; use a new implicit null check instead.
 349   // Since schedule-local needs precise def-use info, we need to correct
 350   // it as well.
 351   Node *old_tst = proj->in(0);
 352   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 353   _nodes.map(end_idx(),nul_chk);
 354   cfg->_bbs.map(nul_chk->_idx,this);
 355   // Redirect users of old_test to nul_chk
 356   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 357     old_tst->last_out(i2)->set_req(0, nul_chk);
 358   // Clean-up any dead code
 359   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 360     old_tst->set_req(i3, NULL);
 361 
 362   cfg->latency_from_uses(nul_chk);
 363   cfg->latency_from_uses(best);
 364 }
 365 
 366 
 367 //------------------------------select-----------------------------------------
 368 // Select a nice fellow from the worklist to schedule next. If there is only
 369 // one choice, then use it. Projections take top priority for correctness
 370 // reasons - if I see a projection, then it is next.  There are a number of
 371 // other special cases, for instructions that consume condition codes, et al.
 372 // These are chosen immediately. Some instructions are required to immediately
 373 // precede the last instruction in the block, and these are taken last. Of the
 374 // remaining cases (most), choose the instruction with the greatest latency
 375 // (that is, the most number of pseudo-cycles required to the end of the
 376 // routine). If there is a tie, choose the instruction with the most inputs.
 377 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
 378 
 379   // If only a single entry on the stack, use it
 380   uint cnt = worklist.size();
 381   if (cnt == 1) {
 382     Node *n = worklist[0];
 383     worklist.map(0,worklist.pop());
 384     return n;
 385   }
 386 
 387   uint choice  = 0; // Bigger is most important
 388   uint latency = 0; // Bigger is scheduled first
 389   uint score   = 0; // Bigger is better
 390   int idx = -1;     // Index in worklist
 391 
 392   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 393     // Order in worklist is used to break ties.
 394     // See caller for how this is used to delay scheduling
 395     // of induction variable increments to after the other
 396     // uses of the phi are scheduled.
 397     Node *n = worklist[i];      // Get Node on worklist
 398 
 399     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 400     if( n->is_Proj() ||         // Projections always win
 401         n->Opcode()== Op_Con || // So does constant 'Top'
 402         iop == Op_CreateEx ||   // Create-exception must start block
 403         iop == Op_CheckCastPP
 404         ) {
 405       worklist.map(i,worklist.pop());
 406       return n;
 407     }
 408 
 409     // Final call in a block must be adjacent to 'catch'
 410     Node *e = end();
 411     if( e->is_Catch() && e->in(0)->in(0) == n )
 412       continue;
 413 
 414     // Memory op for an implicit null check has to be at the end of the block
 415     if( e->is_MachNullCheck() && e->in(1) == n )
 416       continue;
 417 
 418     uint n_choice  = 2;
 419 
 420     // See if this instruction is consumed by a branch. If so, then (as the
 421     // branch is the last instruction in the basic block) force it to the
 422     // end of the basic block
 423     if ( must_clone[iop] ) {
 424       // See if any use is a branch
 425       bool found_machif = false;
 426 
 427       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 428         Node* use = n->fast_out(j);
 429 
 430         // The use is a conditional branch, make them adjacent
 431         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
 432           found_machif = true;
 433           break;
 434         }
 435 
 436         // More than this instruction pending for successor to be ready,
 437         // don't choose this if other opportunities are ready
 438         if (ready_cnt[use->_idx] > 1)
 439           n_choice = 1;
 440       }
 441 
 442       // loop terminated, prefer not to use this instruction
 443       if (found_machif)
 444         continue;
 445     }
 446 
 447     // See if this has a predecessor that is "must_clone", i.e. sets the
 448     // condition code. If so, choose this first
 449     for (uint j = 0; j < n->req() ; j++) {
 450       Node *inn = n->in(j);
 451       if (inn) {
 452         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 453           n_choice = 3;
 454           break;
 455         }
 456       }
 457     }
 458 
 459     // MachTemps should be scheduled last so they are near their uses
 460     if (n->is_MachTemp()) {
 461       n_choice = 1;
 462     }
 463 
 464     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
 465     uint n_score   = n->req();   // Many inputs get high score to break ties
 466 
 467     // Keep best latency found
 468     if( choice < n_choice ||
 469         ( choice == n_choice &&
 470           ( latency < n_latency ||
 471             ( latency == n_latency &&
 472               ( score < n_score ))))) {
 473       choice  = n_choice;
 474       latency = n_latency;
 475       score   = n_score;
 476       idx     = i;               // Also keep index in worklist
 477     }
 478   } // End of for all ready nodes in worklist
 479 
 480   assert(idx >= 0, "index should be set");
 481   Node *n = worklist[(uint)idx];      // Get the winner
 482 
 483   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 484   return n;
 485 }
 486 
 487 
 488 //------------------------------set_next_call----------------------------------
 489 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
 490   if( next_call.test_set(n->_idx) ) return;
 491   for( uint i=0; i<n->len(); i++ ) {
 492     Node *m = n->in(i);
 493     if( !m ) continue;  // must see all nodes in block that precede call
 494     if( bbs[m->_idx] == this )
 495       set_next_call( m, next_call, bbs );
 496   }
 497 }
 498 
 499 //------------------------------needed_for_next_call---------------------------
 500 // Set the flag 'next_call' for each Node that is needed for the next call to
 501 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 502 // next subroutine call get priority - basically it moves things NOT needed
 503 // for the next call till after the call.  This prevents me from trying to
 504 // carry lots of stuff live across a call.
 505 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
 506   // Find the next control-defining Node in this block
 507   Node* call = NULL;
 508   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 509     Node* m = this_call->fast_out(i);
 510     if( bbs[m->_idx] == this && // Local-block user
 511         m != this_call &&       // Not self-start node
 512         m->is_Call() )
 513       call = m;
 514       break;
 515   }
 516   if (call == NULL)  return;    // No next call (e.g., block end is near)
 517   // Set next-call for all inputs to this call
 518   set_next_call(call, next_call, bbs);
 519 }
 520 
 521 //------------------------------sched_call-------------------------------------
 522 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 523   RegMask regs;
 524 
 525   // Schedule all the users of the call right now.  All the users are
 526   // projection Nodes, so they must be scheduled next to the call.
 527   // Collect all the defined registers.
 528   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 529     Node* n = mcall->fast_out(i);
 530     assert( n->Opcode()==Op_MachProj, "" );
 531     --ready_cnt[n->_idx];
 532     assert( !ready_cnt[n->_idx], "" );
 533     // Schedule next to call
 534     _nodes.map(node_cnt++, n);
 535     // Collect defined registers
 536     regs.OR(n->out_RegMask());
 537     // Check for scheduling the next control-definer
 538     if( n->bottom_type() == Type::CONTROL )
 539       // Warm up next pile of heuristic bits
 540       needed_for_next_call(n, next_call, bbs);
 541 
 542     // Children of projections are now all ready
 543     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 544       Node* m = n->fast_out(j); // Get user
 545       if( bbs[m->_idx] != this ) continue;
 546       if( m->is_Phi() ) continue;
 547       if( !--ready_cnt[m->_idx] )
 548         worklist.push(m);
 549     }
 550 
 551   }
 552 
 553   // Act as if the call defines the Frame Pointer.
 554   // Certainly the FP is alive and well after the call.
 555   regs.Insert(matcher.c_frame_pointer());
 556 
 557   // Set all registers killed and not already defined by the call.
 558   uint r_cnt = mcall->tf()->range()->cnt();
 559   int op = mcall->ideal_Opcode();
 560   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 561   bbs.map(proj->_idx,this);
 562   _nodes.insert(node_cnt++, proj);
 563 
 564   // Select the right register save policy.
 565   const char * save_policy;
 566   switch (op) {
 567     case Op_CallRuntime:
 568     case Op_CallLeaf:
 569     case Op_CallLeafNoFP:
 570       // Calling C code so use C calling convention
 571       save_policy = matcher._c_reg_save_policy;
 572       break;
 573 
 574     case Op_CallStaticJava:
 575     case Op_CallDynamicJava:
 576       // Calling Java code so use Java calling convention
 577       save_policy = matcher._register_save_policy;
 578       break;
 579 
 580     default:
 581       ShouldNotReachHere();
 582   }
 583 
 584   // When using CallRuntime mark SOE registers as killed by the call
 585   // so values that could show up in the RegisterMap aren't live in a
 586   // callee saved register since the register wouldn't know where to
 587   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 588   // have debug info on them.  Strictly speaking this only needs to be
 589   // done for oops since idealreg2debugmask takes care of debug info
 590   // references but there no way to handle oops differently than other
 591   // pointers as far as the kill mask goes.
 592   bool exclude_soe = op == Op_CallRuntime;
 593 
 594   // If the call is a MethodHandle invoke, we need to exclude the
 595   // register which is used to save the SP value over MH invokes from
 596   // the mask.  Otherwise this register could be used for
 597   // deoptimization information.
 598   if (op == Op_CallStaticJava) {
 599     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 600     if (mcallstaticjava->_method_handle_invoke)
 601       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 602   }
 603 
 604   // Fill in the kill mask for the call
 605   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 606     if( !regs.Member(r) ) {     // Not already defined by the call
 607       // Save-on-call register?
 608       if ((save_policy[r] == 'C') ||
 609           (save_policy[r] == 'A') ||
 610           ((save_policy[r] == 'E') && exclude_soe)) {
 611         proj->_rout.Insert(r);
 612       }
 613     }
 614   }
 615 
 616   return node_cnt;
 617 }
 618 
 619 
 620 //------------------------------schedule_local---------------------------------
 621 // Topological sort within a block.  Someday become a real scheduler.
 622 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
 623   // Already "sorted" are the block start Node (as the first entry), and
 624   // the block-ending Node and any trailing control projections.  We leave
 625   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 626   // Node.  Everything else gets topo-sorted.
 627 
 628 #ifndef PRODUCT
 629     if (cfg->trace_opto_pipelining()) {
 630       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 631       for (uint i = 0;i < _nodes.size();i++) {
 632         tty->print("# ");
 633         _nodes[i]->fast_dump();
 634       }
 635       tty->print_cr("#");
 636     }
 637 #endif
 638 
 639   // RootNode is already sorted
 640   if( _nodes.size() == 1 ) return true;
 641 
 642   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 643   uint node_cnt = end_idx();
 644   uint phi_cnt = 1;
 645   uint i;
 646   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 647     Node *n = _nodes[i];
 648     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 649         (n->is_Proj()  && n->in(0) == head()) ) {
 650       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 651       _nodes.map(i,_nodes[phi_cnt]);
 652       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 653     } else {                    // All others
 654       // Count block-local inputs to 'n'
 655       uint cnt = n->len();      // Input count
 656       uint local = 0;
 657       for( uint j=0; j<cnt; j++ ) {
 658         Node *m = n->in(j);
 659         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
 660           local++;              // One more block-local input
 661       }
 662       ready_cnt[n->_idx] = local; // Count em up
 663 
 664       // A few node types require changing a required edge to a precedence edge
 665       // before allocation.
 666       if( UseConcMarkSweepGC || UseG1GC ) {
 667         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 668           // Note: Required edges with an index greater than oper_input_base
 669           // are not supported by the allocator.
 670           // Note2: Can only depend on unmatched edge being last,
 671           // can not depend on its absolute position.
 672           Node *oop_store = n->in(n->req() - 1);
 673           n->del_req(n->req() - 1);
 674           n->add_prec(oop_store);
 675           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 676         }
 677       }
 678       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 679           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 680            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 681         // MemBarAcquire could be created without Precedent edge.
 682         // del_req() replaces the specified edge with the last input edge
 683         // and then removes the last edge. If the specified edge > number of
 684         // edges the last edge will be moved outside of the input edges array
 685         // and the edge will be lost. This is why this code should be
 686         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 687         Node *x = n->in(TypeFunc::Parms);
 688         n->del_req(TypeFunc::Parms);
 689         n->add_prec(x);
 690       }
 691     }
 692   }
 693   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 694     ready_cnt[_nodes[i2]->_idx] = 0;
 695 
 696   // All the prescheduled guys do not hold back internal nodes
 697   uint i3;
 698   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 699     Node *n = _nodes[i3];       // Get pre-scheduled
 700     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 701       Node* m = n->fast_out(j);
 702       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
 703         ready_cnt[m->_idx]--;   // Fix ready count
 704     }
 705   }
 706 
 707   Node_List delay;
 708   // Make a worklist
 709   Node_List worklist;
 710   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 711     Node *m = _nodes[i4];
 712     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
 713       if (m->is_iteratively_computed()) {
 714         // Push induction variable increments last to allow other uses
 715         // of the phi to be scheduled first. The select() method breaks
 716         // ties in scheduling by worklist order.
 717         delay.push(m);
 718       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 719         // Force the CreateEx to the top of the list so it's processed
 720         // first and ends up at the start of the block.
 721         worklist.insert(0, m);
 722       } else {
 723         worklist.push(m);         // Then on to worklist!
 724       }
 725     }
 726   }
 727   while (delay.size()) {
 728     Node* d = delay.pop();
 729     worklist.push(d);
 730   }
 731 
 732   // Warm up the 'next_call' heuristic bits
 733   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
 734 
 735 #ifndef PRODUCT
 736     if (cfg->trace_opto_pipelining()) {
 737       for (uint j=0; j<_nodes.size(); j++) {
 738         Node     *n = _nodes[j];
 739         int     idx = n->_idx;
 740         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
 741         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
 742         tty->print("%4d: %s\n", idx, n->Name());
 743       }
 744     }
 745 #endif
 746 
 747   // Pull from worklist and schedule
 748   while( worklist.size() ) {    // Worklist is not ready
 749 
 750 #ifndef PRODUCT
 751     if (cfg->trace_opto_pipelining()) {
 752       tty->print("#   ready list:");
 753       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 754         Node *n = worklist[i];      // Get Node on worklist
 755         tty->print(" %d", n->_idx);
 756       }
 757       tty->cr();
 758     }
 759 #endif
 760 
 761     // Select and pop a ready guy from worklist
 762     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 763     _nodes.map(phi_cnt++,n);    // Schedule him next
 764 
 765 #ifndef PRODUCT
 766     if (cfg->trace_opto_pipelining()) {
 767       tty->print("#    select %d: %s", n->_idx, n->Name());
 768       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
 769       n->dump();
 770       if (Verbose) {
 771         tty->print("#   ready list:");
 772         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 773           Node *n = worklist[i];      // Get Node on worklist
 774           tty->print(" %d", n->_idx);
 775         }
 776         tty->cr();
 777       }
 778     }
 779 
 780 #endif
 781     if( n->is_MachCall() ) {
 782       MachCallNode *mcall = n->as_MachCall();
 783       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
 784       continue;
 785     }
 786     // Children are now all ready
 787     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 788       Node* m = n->fast_out(i5); // Get user
 789       if( cfg->_bbs[m->_idx] != this ) continue;
 790       if( m->is_Phi() ) continue;
 791       if( !--ready_cnt[m->_idx] )
 792         worklist.push(m);
 793     }
 794   }
 795 
 796   if( phi_cnt != end_idx() ) {
 797     // did not schedule all.  Retry, Bailout, or Die
 798     Compile* C = matcher.C;
 799     if (C->subsume_loads() == true && !C->failing()) {
 800       // Retry with subsume_loads == false
 801       // If this is the first failure, the sentinel string will "stick"
 802       // to the Compile object, and the C2Compiler will see it and retry.
 803       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 804     }
 805     // assert( phi_cnt == end_idx(), "did not schedule all" );
 806     return false;
 807   }
 808 
 809 #ifndef PRODUCT
 810   if (cfg->trace_opto_pipelining()) {
 811     tty->print_cr("#");
 812     tty->print_cr("# after schedule_local");
 813     for (uint i = 0;i < _nodes.size();i++) {
 814       tty->print("# ");
 815       _nodes[i]->fast_dump();
 816     }
 817     tty->cr();
 818   }
 819 #endif
 820 
 821 
 822   return true;
 823 }
 824 
 825 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 826 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 827   for (uint l = 0; l < use->len(); l++) {
 828     if (use->in(l) == old_def) {
 829       if (l < use->req()) {
 830         use->set_req(l, new_def);
 831       } else {
 832         use->rm_prec(l);
 833         use->add_prec(new_def);
 834         l--;
 835       }
 836     }
 837   }
 838 }
 839 
 840 //------------------------------catch_cleanup_find_cloned_def------------------
 841 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 842   assert( use_blk != def_blk, "Inter-block cleanup only");
 843 
 844   // The use is some block below the Catch.  Find and return the clone of the def
 845   // that dominates the use. If there is no clone in a dominating block, then
 846   // create a phi for the def in a dominating block.
 847 
 848   // Find which successor block dominates this use.  The successor
 849   // blocks must all be single-entry (from the Catch only; I will have
 850   // split blocks to make this so), hence they all dominate.
 851   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 852     use_blk = use_blk->_idom;
 853 
 854   // Find the successor
 855   Node *fixup = NULL;
 856 
 857   uint j;
 858   for( j = 0; j < def_blk->_num_succs; j++ )
 859     if( use_blk == def_blk->_succs[j] )
 860       break;
 861 
 862   if( j == def_blk->_num_succs ) {
 863     // Block at same level in dom-tree is not a successor.  It needs a
 864     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 865     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 866     for(uint k = 1; k < use_blk->num_preds(); k++) {
 867       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
 868     }
 869 
 870     // Check to see if the use_blk already has an identical phi inserted.
 871     // If it exists, it will be at the first position since all uses of a
 872     // def are processed together.
 873     Node *phi = use_blk->_nodes[1];
 874     if( phi->is_Phi() ) {
 875       fixup = phi;
 876       for (uint k = 1; k < use_blk->num_preds(); k++) {
 877         if (phi->in(k) != inputs[k]) {
 878           // Not a match
 879           fixup = NULL;
 880           break;
 881         }
 882       }
 883     }
 884 
 885     // If an existing PhiNode was not found, make a new one.
 886     if (fixup == NULL) {
 887       Node *new_phi = PhiNode::make(use_blk->head(), def);
 888       use_blk->_nodes.insert(1, new_phi);
 889       bbs.map(new_phi->_idx, use_blk);
 890       for (uint k = 1; k < use_blk->num_preds(); k++) {
 891         new_phi->set_req(k, inputs[k]);
 892       }
 893       fixup = new_phi;
 894     }
 895 
 896   } else {
 897     // Found the use just below the Catch.  Make it use the clone.
 898     fixup = use_blk->_nodes[n_clone_idx];
 899   }
 900 
 901   return fixup;
 902 }
 903 
 904 //--------------------------catch_cleanup_intra_block--------------------------
 905 // Fix all input edges in use that reference "def".  The use is in the same
 906 // block as the def and both have been cloned in each successor block.
 907 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 908 
 909   // Both the use and def have been cloned. For each successor block,
 910   // get the clone of the use, and make its input the clone of the def
 911   // found in that block.
 912 
 913   uint use_idx = blk->find_node(use);
 914   uint offset_idx = use_idx - beg;
 915   for( uint k = 0; k < blk->_num_succs; k++ ) {
 916     // Get clone in each successor block
 917     Block *sb = blk->_succs[k];
 918     Node *clone = sb->_nodes[offset_idx+1];
 919     assert( clone->Opcode() == use->Opcode(), "" );
 920 
 921     // Make use-clone reference the def-clone
 922     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
 923   }
 924 }
 925 
 926 //------------------------------catch_cleanup_inter_block---------------------
 927 // Fix all input edges in use that reference "def".  The use is in a different
 928 // block than the def.
 929 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
 930   if( !use_blk ) return;        // Can happen if the use is a precedence edge
 931 
 932   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
 933   catch_cleanup_fix_all_inputs(use, def, new_def);
 934 }
 935 
 936 //------------------------------call_catch_cleanup-----------------------------
 937 // If we inserted any instructions between a Call and his CatchNode,
 938 // clone the instructions on all paths below the Catch.
 939 void Block::call_catch_cleanup(Block_Array &bbs) {
 940 
 941   // End of region to clone
 942   uint end = end_idx();
 943   if( !_nodes[end]->is_Catch() ) return;
 944   // Start of region to clone
 945   uint beg = end;
 946   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
 947         !_nodes[beg-1]->in(0)->is_Call() ) {
 948     beg--;
 949     assert(beg > 0,"Catch cleanup walking beyond block boundary");
 950   }
 951   // Range of inserted instructions is [beg, end)
 952   if( beg == end ) return;
 953 
 954   // Clone along all Catch output paths.  Clone area between the 'beg' and
 955   // 'end' indices.
 956   for( uint i = 0; i < _num_succs; i++ ) {
 957     Block *sb = _succs[i];
 958     // Clone the entire area; ignoring the edge fixup for now.
 959     for( uint j = end; j > beg; j-- ) {
 960       Node *clone = _nodes[j-1]->clone();
 961       sb->_nodes.insert( 1, clone );
 962       bbs.map(clone->_idx,sb);
 963     }
 964   }
 965 
 966 
 967   // Fixup edges.  Check the def-use info per cloned Node
 968   for(uint i2 = beg; i2 < end; i2++ ) {
 969     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
 970     Node *n = _nodes[i2];        // Node that got cloned
 971     // Need DU safe iterator because of edge manipulation in calls.
 972     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
 973     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
 974       out->push(n->fast_out(j1));
 975     }
 976     uint max = out->size();
 977     for (uint j = 0; j < max; j++) {// For all users
 978       Node *use = out->pop();
 979       Block *buse = bbs[use->_idx];
 980       if( use->is_Phi() ) {
 981         for( uint k = 1; k < use->req(); k++ )
 982           if( use->in(k) == n ) {
 983             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
 984             use->set_req(k, fixup);
 985           }
 986       } else {
 987         if (this == buse) {
 988           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
 989         } else {
 990           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
 991         }
 992       }
 993     } // End for all users
 994 
 995   } // End of for all Nodes in cloned area
 996 
 997   // Remove the now-dead cloned ops
 998   for(uint i3 = beg; i3 < end; i3++ ) {
 999     _nodes[beg]->disconnect_inputs(NULL);
1000     _nodes.remove(beg);
1001   }
1002 
1003   // If the successor blocks have a CreateEx node, move it back to the top
1004   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1005     Block *sb = _succs[i4];
1006     uint new_cnt = end - beg;
1007     // Remove any newly created, but dead, nodes.
1008     for( uint j = new_cnt; j > 0; j-- ) {
1009       Node *n = sb->_nodes[j];
1010       if (n->outcnt() == 0 &&
1011           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1012         n->disconnect_inputs(NULL);
1013         sb->_nodes.remove(j);
1014         new_cnt--;
1015       }
1016     }
1017     // If any newly created nodes remain, move the CreateEx node to the top
1018     if (new_cnt > 0) {
1019       Node *cex = sb->_nodes[1+new_cnt];
1020       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1021         sb->_nodes.remove(1+new_cnt);
1022         sb->_nodes.insert(1,cex);
1023       }
1024     }
1025   }
1026 }