1 /*
   2  * Copyright (c) 1997, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
  26 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
  27 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
  28 
  29 // All classes in the virtual machine must be subclassed
  30 // by one of the following allocation classes:
  31 //
  32 // For objects allocated in the resource area (see resourceArea.hpp).
  33 // - ResourceObj
  34 //
  35 // For objects allocated in the C-heap (managed by: free & malloc).
  36 // - CHeapObj
  37 //
  38 // For objects allocated on the stack.
  39 // - StackObj
  40 //
  41 // For embedded objects.
  42 // - ValueObj
  43 //
  44 // For classes used as name spaces.
  45 // - AllStatic
  46 //
  47 // The printable subclasses are used for debugging and define virtual
  48 // member functions for printing. Classes that avoid allocating the
  49 // vtbl entries in the objects should therefore not be the printable
  50 // subclasses.
  51 //
  52 // The following macros and function should be used to allocate memory
  53 // directly in the resource area or in the C-heap:
  54 //
  55 //   NEW_RESOURCE_ARRAY(type,size)
  56 //   NEW_RESOURCE_OBJ(type)
  57 //   NEW_C_HEAP_ARRAY(type,size)
  58 //   NEW_C_HEAP_OBJ(type)
  59 //   char* AllocateHeap(size_t size, const char* name);
  60 //   void  FreeHeap(void* p);
  61 //
  62 // C-heap allocation can be traced using +PrintHeapAllocation.
  63 // malloc and free should therefore never called directly.
  64 
  65 // Base class for objects allocated in the C-heap.
  66 
  67 // In non product mode we introduce a super class for all allocation classes
  68 // that supports printing.
  69 // We avoid the superclass in product mode since some C++ compilers add
  70 // a word overhead for empty super classes.
  71 
  72 #ifdef PRODUCT
  73 #define ALLOCATION_SUPER_CLASS_SPEC
  74 #else
  75 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
  76 class AllocatedObj {
  77  public:
  78   // Printing support
  79   void print() const;
  80   void print_value() const;
  81 
  82   virtual void print_on(outputStream* st) const;
  83   virtual void print_value_on(outputStream* st) const;
  84 };
  85 #endif
  86 
  87 class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
  88  public:
  89   void* operator new(size_t size);
  90   void  operator delete(void* p);
  91   void* new_array(size_t size);
  92 };
  93 
  94 // Base class for objects allocated on the stack only.
  95 // Calling new or delete will result in fatal error.
  96 
  97 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
  98  public:
  99   void* operator new(size_t size);
 100   void  operator delete(void* p);
 101 };
 102 
 103 // Base class for objects used as value objects.
 104 // Calling new or delete will result in fatal error.
 105 //
 106 // Portability note: Certain compilers (e.g. gcc) will
 107 // always make classes bigger if it has a superclass, even
 108 // if the superclass does not have any virtual methods or
 109 // instance fields. The HotSpot implementation relies on this
 110 // not to happen. So never make a ValueObj class a direct subclass
 111 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 112 // like this:
 113 //
 114 //   class A VALUE_OBJ_CLASS_SPEC {
 115 //     ...
 116 //   }
 117 //
 118 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 119 // be defined as a an empty string "".
 120 //
 121 class _ValueObj {
 122  public:
 123   void* operator new(size_t size);
 124   void operator delete(void* p);
 125 };
 126 
 127 // Base class for classes that constitute name spaces.
 128 
 129 class AllStatic {
 130  public:
 131   AllStatic()  { ShouldNotCallThis(); }
 132   ~AllStatic() { ShouldNotCallThis(); }
 133 };
 134 
 135 
 136 //------------------------------Chunk------------------------------------------
 137 // Linked list of raw memory chunks
 138 class Chunk: public CHeapObj {
 139  protected:
 140   Chunk*       _next;     // Next Chunk in list
 141   const size_t _len;      // Size of this Chunk
 142  public:
 143   void* operator new(size_t size, size_t length);
 144   void  operator delete(void* p);
 145   Chunk(size_t length);
 146 
 147   enum {
 148     // default sizes; make them slightly smaller than 2**k to guard against
 149     // buddy-system style malloc implementations
 150 #ifdef _LP64
 151     slack      = 40,            // [RGV] Not sure if this is right, but make it
 152                                 //       a multiple of 8.
 153 #else
 154     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
 155 #endif
 156 
 157     init_size  =  1*K  - slack, // Size of first chunk
 158     medium_size= 10*K  - slack, // Size of medium-sized chunk
 159     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
 160     non_pool_size = init_size + 32 // An initial size which is not one of above
 161   };
 162 
 163   void chop();                  // Chop this chunk
 164   void next_chop();             // Chop next chunk
 165   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
 166 
 167   size_t length() const         { return _len;  }
 168   Chunk* next() const           { return _next;  }
 169   void set_next(Chunk* n)       { _next = n;  }
 170   // Boundaries of data area (possibly unused)
 171   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
 172   char* top()    const          { return bottom() + _len; }
 173   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
 174 
 175   // Start the chunk_pool cleaner task
 176   static void start_chunk_pool_cleaner_task();
 177 };
 178 
 179 
 180 //------------------------------Arena------------------------------------------
 181 // Fast allocation of memory
 182 class Arena: public CHeapObj {
 183 protected:
 184   friend class ResourceMark;
 185   friend class HandleMark;
 186   friend class NoHandleMark;
 187   Chunk *_first;                // First chunk
 188   Chunk *_chunk;                // current chunk
 189   char *_hwm, *_max;            // High water mark and max in current chunk
 190   void* grow(size_t x);         // Get a new Chunk of at least size x
 191   NOT_PRODUCT(size_t _size_in_bytes;) // Size of arena (used for memory usage tracing)
 192   NOT_PRODUCT(static size_t _bytes_allocated;) // total #bytes allocated since start
 193   friend class AllocStats;
 194   debug_only(void* malloc(size_t size);)
 195   debug_only(void* internal_malloc_4(size_t x);)
 196  public:
 197   Arena();
 198   Arena(size_t init_size);
 199   Arena(Arena *old);
 200   ~Arena();
 201   void  destruct_contents();
 202   char* hwm() const             { return _hwm; }
 203 
 204   // Fast allocate in the arena.  Common case is: pointer test + increment.
 205   void* Amalloc(size_t x) {
 206     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
 207     x = ARENA_ALIGN(x);
 208     debug_only(if (UseMallocOnly) return malloc(x);)
 209     NOT_PRODUCT(_bytes_allocated += x);
 210     if (_hwm + x > _max) {
 211       return grow(x);
 212     } else {
 213       char *old = _hwm;
 214       _hwm += x;
 215       return old;
 216     }
 217   }
 218   // Further assume size is padded out to words
 219   void *Amalloc_4(size_t x) {
 220     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 221     debug_only(if (UseMallocOnly) return malloc(x);)
 222     NOT_PRODUCT(_bytes_allocated += x);
 223     if (_hwm + x > _max) {
 224       return grow(x);
 225     } else {
 226       char *old = _hwm;
 227       _hwm += x;
 228       return old;
 229     }
 230   }
 231 
 232   // Allocate with 'double' alignment. It is 8 bytes on sparc.
 233   // In other cases Amalloc_D() should be the same as Amalloc_4().
 234   void* Amalloc_D(size_t x) {
 235     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 236     debug_only(if (UseMallocOnly) return malloc(x);)
 237 #if defined(SPARC) && !defined(_LP64)
 238 #define DALIGN_M1 7
 239     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
 240     x += delta;
 241 #endif
 242     NOT_PRODUCT(_bytes_allocated += x);
 243     if (_hwm + x > _max) {
 244       return grow(x); // grow() returns a result aligned >= 8 bytes.
 245     } else {
 246       char *old = _hwm;
 247       _hwm += x;
 248 #if defined(SPARC) && !defined(_LP64)
 249       old += delta; // align to 8-bytes
 250 #endif
 251       return old;
 252     }
 253   }
 254 
 255   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
 256   void Afree(void *ptr, size_t size) {
 257 #ifdef ASSERT
 258     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
 259     if (UseMallocOnly) return;
 260 #endif
 261     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
 262   }
 263 
 264   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size );
 265 
 266   // Move contents of this arena into an empty arena
 267   Arena *move_contents(Arena *empty_arena);
 268 
 269   // Determine if pointer belongs to this Arena or not.
 270   bool contains( const void *ptr ) const;
 271 
 272   // Total of all chunks in use (not thread-safe)
 273   size_t used() const;
 274 
 275   // Total # of bytes used
 276   size_t size_in_bytes() const         NOT_PRODUCT({  return _size_in_bytes; }) PRODUCT_RETURN0;
 277   void set_size_in_bytes(size_t size)  NOT_PRODUCT({ _size_in_bytes = size;  }) PRODUCT_RETURN;
 278   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
 279   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
 280 
 281 private:
 282   // Reset this Arena to empty, access will trigger grow if necessary
 283   void   reset(void) {
 284     _first = _chunk = NULL;
 285     _hwm = _max = NULL;
 286   }
 287 };
 288 
 289 // One of the following macros must be used when allocating
 290 // an array or object from an arena
 291 #define NEW_ARENA_ARRAY(arena, type, size)\
 292   (type*) arena->Amalloc((size) * sizeof(type))
 293 
 294 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)\
 295   (type*) arena->Arealloc((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) )
 296 
 297 #define FREE_ARENA_ARRAY(arena, type, old, size)\
 298   arena->Afree((char*)(old), (size) * sizeof(type))
 299 
 300 #define NEW_ARENA_OBJ(arena, type)\
 301   NEW_ARENA_ARRAY(arena, type, 1)
 302 
 303 
 304 //%note allocation_1
 305 extern char* resource_allocate_bytes(size_t size);
 306 extern char* resource_allocate_bytes(Thread* thread, size_t size);
 307 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size);
 308 extern void resource_free_bytes( char *old, size_t size );
 309 
 310 //----------------------------------------------------------------------
 311 // Base class for objects allocated in the resource area per default.
 312 // Optionally, objects may be allocated on the C heap with
 313 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 314 // ResourceObj's can be allocated within other objects, but don't use
 315 // new or delete (allocation_type is unknown).  If new is used to allocate,
 316 // use delete to deallocate.
 317 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 318  public:
 319   enum allocation_type { UNKNOWN = 0, C_HEAP, RESOURCE_AREA, ARENA };
 320 #ifdef ASSERT
 321  private:
 322   allocation_type _allocation;
 323  public:
 324   bool allocated_on_C_heap()    { return _allocation == C_HEAP; }
 325 #endif // ASSERT
 326 
 327  public:
 328   void* operator new(size_t size, allocation_type type);
 329   void* operator new(size_t size, Arena *arena) {
 330       address res = (address)arena->Amalloc(size);
 331       // Set allocation type in the resource object
 332       DEBUG_ONLY(((ResourceObj *)res)->_allocation = ARENA;)
 333       return res;
 334   }
 335   void* operator new(size_t size) {
 336       address res = (address)resource_allocate_bytes(size);
 337       // Set allocation type in the resource object
 338       DEBUG_ONLY(((ResourceObj *)res)->_allocation = RESOURCE_AREA;)
 339       return res;
 340   }
 341   void* operator new(size_t size, void* where, allocation_type type) {
 342       void* res = where;
 343       // Set allocation type in the resource object
 344       DEBUG_ONLY(((ResourceObj *)res)->_allocation = type;)
 345       return res;
 346   }
 347   void  operator delete(void* p);
 348 };
 349 
 350 // One of the following macros must be used when allocating an array
 351 // or object to determine whether it should reside in the C heap on in
 352 // the resource area.
 353 
 354 #define NEW_RESOURCE_ARRAY(type, size)\
 355   (type*) resource_allocate_bytes((size) * sizeof(type))
 356 
 357 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 358   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 359 
 360 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 361   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type) )
 362 
 363 #define FREE_RESOURCE_ARRAY(type, old, size)\
 364   resource_free_bytes((char*)(old), (size) * sizeof(type))
 365 
 366 #define FREE_FAST(old)\
 367     /* nop */
 368 
 369 #define NEW_RESOURCE_OBJ(type)\
 370   NEW_RESOURCE_ARRAY(type, 1)
 371 
 372 #define NEW_C_HEAP_ARRAY(type, size)\
 373   (type*) (AllocateHeap((size) * sizeof(type), XSTR(type) " in " __FILE__))
 374 
 375 #define REALLOC_C_HEAP_ARRAY(type, old, size)\
 376   (type*) (ReallocateHeap((char*)old, (size) * sizeof(type), XSTR(type) " in " __FILE__))
 377 
 378 #define FREE_C_HEAP_ARRAY(type,old) \
 379   FreeHeap((char*)(old))
 380 
 381 #define NEW_C_HEAP_OBJ(type)\
 382   NEW_C_HEAP_ARRAY(type, 1)
 383 
 384 extern bool warn_new_operator;
 385 
 386 // for statistics
 387 #ifndef PRODUCT
 388 class AllocStats : StackObj {
 389   int    start_mallocs, start_frees;
 390   size_t start_malloc_bytes, start_res_bytes;
 391  public:
 392   AllocStats();
 393 
 394   int    num_mallocs();    // since creation of receiver
 395   size_t alloc_bytes();
 396   size_t resource_bytes();
 397   int    num_frees();
 398   void   print();
 399 };
 400 #endif
 401 
 402 
 403 //------------------------------ReallocMark---------------------------------
 404 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 405 // ReallocMark, which is declared in the same scope as the reallocated
 406 // pointer.  Any operation that could __potentially__ cause a reallocation
 407 // should check the ReallocMark.
 408 class ReallocMark: public StackObj {
 409 protected:
 410   NOT_PRODUCT(int _nesting;)
 411 
 412 public:
 413   ReallocMark()   PRODUCT_RETURN;
 414   void check()    PRODUCT_RETURN;
 415 };